WorldWideScience

Sample records for simulated altitude conditions

  1. UV Absorption Measurements of Nitric Oxide Compared to Probe Sampling Data for Measurements in a Turbine Engine Exhaust at Simulated Altitude Conditions

    National Research Council Canada - National Science Library

    Howard, R

    1997-01-01

    Nitric oxide measurements were conducted in the exhaust of a turbofan engine at simulated altitude conditions in a ground-level test cell using both optical nonintrusive and conventional gas sampling techniques...

  2. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    Science.gov (United States)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  3. [Physiological aspects of altitude training and the use of altitude simulators].

    Science.gov (United States)

    Ranković, Goran; Radovanović, Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatisation, which improves oxygen transport and/or utilisation, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training through hypoxia), and live high and train low (the new trend). In an effort to reduce the financial and logistical challenges of travelling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters). Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarised.

  4. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  5. Numerical simulation of altitude impact on pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xiaohui; He, Boshu; Ling, Ling; Wang, Lei [Beijing Jiaotong Univ., Beijing (China). Inst. of Mechanical, Electronic and Control Engineering

    2013-07-01

    A drop-tube Furnace simulation model has been developed to investigate the pulverized coal combustion characteristics under different altitudes using the commercially available software Fluent. The altitude conditions of 0, 500, 1,000, 1,500 m have been discussed. The results included the fields of temperature, pressure, velocity, the coal burnout, CO burnout and NO emission in the tube furnace. The variation of these parameters with altitude has been analyzed. The coal combustion characteristics were affected by the altitude. The time and space for coal burnout should be increased with the rise of altitude. The valuable results could be referenced in the design of coal- fired furnaces for the high altitude areas.

  6. Evaluation of transport ventilators at mild simulated altitude: a bench study in a hypobaric chamber.

    Science.gov (United States)

    Boussen, Salah; Coulange, Mathieu; Fournier, Marc; Gainnier, Marc; Michelet, Pierre; Micoli, Christophe; Negrel, Lionel

    2014-08-01

    Previous studies on ventilators used for air transport showed significant effects of altitude, in particular with regard to accuracy of the tidal volume (VT) and breathing frequency. The aim of the study was to evaluate transport ventilators under hypobaric conditions. We conducted a bench study of 6 transport ventilators in a Comex hypobaric chamber to simulate mild altitude (1,500 m [4,920 feet] and 2,500 m [8,200 feet]). The ventilators were connected to a test lung to evaluate their accuracy: (1) to deliver a set VT under normal resistance and compliance conditions at F(IO2) = 0.6 and 1, (2) to establish a set PEEP (0, 5, 10, and 15 cm H2O), and (3) to establish a set inspiratory pressure in pressure controlled mode, (4) at a F(IO2) setting, and (5) and at a frequency setting. Four ventilators kept an average relative error in VT of ventilator was affected by the altitude only at F(IO2) = 1. The Osiris 3 ventilator had > 40% error even at 1,500 m. We found no change in frequency as a function of altitude for any ventilators studied. No clinically important differences were found between all altitudes with the PEEP or inspiratory pressure setting. Although F(IO2) was affected by altitude, the average error did not exceed 11%, and it is unclear whether this fact is an experimental artifact. We have shown that most of the new transport ventilators tested require no setting adjustment at moderate altitude and are as safe at altitude as at sea level under normal respiratory conditions. Older technologies still deliver more volume with altitude in volumetric mode.

  7. Physiological aspects of altitude training and the use of altitude simulators

    OpenAIRE

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  8. Performance simulation in high altitude platforms (HAPs) communications systems

    Science.gov (United States)

    Ulloa-Vásquez, Fernando; Delgado-Penin, J. A.

    2002-07-01

    This paper considers the analysis by simulation of a digital narrowband communication system for an scenario which consists of a High-Altitude aeronautical Platform (HAP) and fixed/mobile terrestrial transceivers. The aeronautical channel is modelled considering geometrical (angle of elevation vs. horizontal distance of the terrestrial reflectors) and statistical arguments and under these circumstances a serial concatenated coded digital transmission is analysed for several hypothesis related to radio-electric coverage areas. The results indicate a good feasibility for the communication system proposed and analysed.

  9. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  10. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  11. Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude.

    Science.gov (United States)

    Heinzer, Raphaël; Saugy, Jonas J; Rupp, Thomas; Tobback, Nadia; Faiss, Raphael; Bourdillon, Nicolas; Rubio, José Haba; Millet, Grégoire P

    2016-08-01

    Hypoxia is known to generate sleep-disordered breathing but there is a debate about the pathophysiological responses to two different types of hypoxic exposure: normobaric hypoxia (NH) and hypobaric hypoxia (HH), which have never been directly compared. Our aim was to compare sleep disorders induced by these two types of altitude. Subjects were exposed to 26 h of simulated (NH) or real altitude (HH) corresponding to 3,450 m and a control condition (NN) in a randomized order. The sleep assessments were performed with nocturnal polysomnography (PSG) and questionnaires. Thirteen healthy trained males subjects volunteered for this study (mean ± SD; age 34 ± 9 y, body weight 76.2 ± 6.8 kg, height 179.7 ± 4.2 cm). Mean nocturnal oxygen saturation was further decreased during HH than in NH (81.2 ± 3.1 versus 83.6 ± 1.9%; P sleep time was longer in HH than in NH (351 ± 63 versus 317 ± 65 min, P sleep quality was similar between hypoxic conditions but lower than in NN. Our results suggest that HH has a greater effect on nocturnal breathing and sleep structure than NH. In HH, we observed more periodic breathing, which might arise from the lower saturation due to hypobaria, but needs to be confirmed. © 2016 Associated Professional Sleep Societies, LLC.

  12. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  13. The performance of Dräger Oxylog ventilators at simulated altitude.

    Science.gov (United States)

    Flynn, J G; Singh, B

    2008-07-01

    Ventilated patients frequently require transport by air in a hypobaric environment. Previous studies have demonstrated significant changes in the performance of ventilators with changes in cabin pressure (altitude) but no studies have been published on the function of modem ventilators at altitude. This experiment set out to evaluate ventilatory parameters (tidal volume and respiratory rate) of three commonly used transport ventilators (the Dräger Oxylog 1000, 2000 and 3000) in a simulated hypobaric environment. Ventilators were assessed using either air-mix (60% oxygen) or 100% oxygen and tested against models simulating a normal lung, a low compliance (Acute Respiratory Distress Syndrome) lung and a high-resistance (asthma) lung. Ventilators were tested at a range of simulated altitudes between sea level and 3048 m. Over this range, tidal volume delivered by the Oxylog 1000 increased by 68% and respiratory rate decreased by 28%. Tidal volume delivered by the Oxylog 2000 ventilator increased by 29% over the same range of altitudes but there was no significant change in respiratory rate. Tidal volume and respiratory rate remained constant with the Oxylog 3000 over the same range of altitudes. Changes were consistent with each ventilator regardless of oxygen content or lung model. It is important that clinicians involved in critical care transport in a hypobaric environment are aware that individual ventilators perform differently at altitude and that they are aware of the characteristics of the particular ventilator that they are using.

  14. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  15. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  16. Rangeland dynamics in South Omo Zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and Grazing types

    NARCIS (Netherlands)

    Terefe, A.; Ebro, A.; Tessema, Z.K.

    2010-01-01

    A study was undertaken in Hamer and Benna-Tsemay districts of the Southern Ethiopia with the objective to determine the condition of the rangelands for grazing animals as influenced by altitude and grazing types. The rangelands in each of the study districts were stratified based on altitude and

  17. Effects of simulated altitude (normobaric hypoxia on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects

    Directory of Open Access Journals (Sweden)

    Pierini Alberto

    2007-08-01

    Full Text Available Abstract Background Circulating Endothelial Precursors (PB-EPCs are involved in the maintenance of the endothelial compartment being promptly mobilized after injuries of the vascular endothelium, but the effects of a brief normobaric hypoxia on PB-EPCs in healthy subjects are scarcely studied. Methods Clinical and molecular parameters were investigated in healthy subjects (n = 8 in basal conditions (T0 and after 1 h of normobaric hypoxia (T1, with Inspiratory Fraction of Oxygen set at 11.2% simulating 4850 mt of altitude. Blood samples were obtained at T0 and T1, as well as 7 days after hypoxia (T2. Results In all studied subjects we observed a prompt and significant increase in PB-EPCs, with a return to basal value at T2. The induction of hypoxia was confirmed by Alveolar Oxygen Partial Pressure (PAO2 and Spot Oxygen Saturation decreases. Heart rate increased, but arterial pressure and respiratory response were unaffected. The change in PB-EPCs percent from T0 to T1 was inversely related to PAO2 at T1. Rapid (T1 increases in serum levels of hepatocyte growth factor and erythropoietin, as well as in cellular PB-EPCs-expression of Hypoxia Inducible Factor-1α were observed. Conclusion In conclusion, the endothelial compartment seems quite responsive to standardized brief hypoxia, possibly important for PB-EPCs activation and recruitment.

  18. Correlations between the simulated military tasks performance and physical fitness tests at high altitude

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2017-11-01

    Full Text Available The aim of this study was to investigate the Correlations between the Simulated Military Tasks Performance and Physical Fitness Tests at high altitude. This research is part of a project to modernize the physical fitness test of the Colombian Army. Data collection was performed at the 13th Battalion of Instruction and Training, located 30km south of Bogota D.C., with a temperature range from 1ºC to 23ºC during the study period, and at 3100m above sea level. The sample was composed by 60 volunteers from three different platoons. The volunteers start the data collection protocol after 2 weeks of acclimation at this altitude. The main results were the identification of a high positive correlation between the 3 Assault wall in succession and the Simulated Military Tasks performance (r = 0.764, p<0.001, and a moderate negative correlation between pull-ups and the Simulated Military Tasks performance (r = -0.535, p<0.001. It can be recommended the use of the 20-consecutive overtaking of the 3 Assault wall in succession as a good way to estimate the performance in operational tasks which involve: assault walls, network of wires, military Climbing Nets, Tarzan jump among others, at high altitude.

  19. Generalized math model for simulation of high-altitude balloon systems

    Science.gov (United States)

    Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.

    1985-01-01

    Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.

  20. Optimization technique of the stay of person in the middle-altitude conditions

    Directory of Open Access Journals (Sweden)

    Borisenko O.V.

    2013-12-01

    Full Text Available The objective: In order to improve exercise capacity in the middle-altitude conditions a technique of urgent adaptation with use of the compact device has been developed. Material and Methods. The study included two groups of people involved in mountain tourism, on the move and stay in the midlands, which used (experimental group and didn't use (control group the developed technique. Considering the specificity of observations directly on the mountain route, the compact equipment and functional studies (pulse oximetry, spirometry, peak flow, the dynamic measurement of pulse and blood pressure with the calculation of double product index were used to monitor the experiment. Results. During the experiment changes of the data characterizing positive development of the functioning of human cardiore-spiratory system during the physical activities in the conditions of middle mountains were recorded (peak expiratory flow rate (from 512,86 to 592,86 I / min, t = 2,25, or by 115,6% in the experimental group and double product index (from 95,66 to 127,09 units., t = 2,41, or by 132,9% in the experimental group. Conclusion. Thus, the offered device and its technique compose an effective scheme of preliminary preparation of cardiorespiratory system to stay in the middle-altitude condition and can be recommended for use in need short-term adaptation.

  1. Reducing pulmonary injury by hyperbaric oxygen preconditioning during simulated high altitude exposure in rats.

    Science.gov (United States)

    Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen

    2011-09-01

    Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.

  2. Effect of Simulated Intermittent Altitude on the Metabolic and Hematologic Parameters in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    mehdi Faramoushi

    2016-04-01

    Full Text Available Background & objectives: Type II diabetes is a metabolic disorder accompanied with insulin resistance of the whole body cells and is considered be the fifth cause of death in the world. Adaptation to altitude can lead to tolerance to many diseases. Therefore, the aim of this study was to determine the effect of simulated intermittent altitude on the metabolic and hematologic parameters and liver function in streptozotocin induced diabetic rats. Methods: In the current experimental study, twenty four male Wistar rats weighing 220±20 gr were randomly divided into three groups; normal control group (NC, n=8, diabetic control group (D, n=8 received fat diet for 2 weeks then were injected with streptozotocin (37 mg/kg and diabetic+hypoxia group (D+H, n=8 including diabetic rat exposed to chronic intermittent hypoxia (PiO2≈106 mm Hg, simulated altitude≈3400 m, 14% oxygen for 8 weeks. Diabetic, hematologic and lipid parameters as well as ALT and AST activities were measured in peripheral blood. Results: Our findings showed that intermittent hypoxia significantly decreased serum total cholesterol, LDL ,VLDL and triglyceride in D+H group compared to D group (p<0.05. Serum levels of fasting blood glucose and homeostatic model assessment-insulin resistance HOMA-IR( index and ALT were decreased in D+H group vs. D group p<0.05. Also, hemoglubin and hematocrite level increased in D+H group in comparison to D group p<0.05. No significant difference was detected in red blood cell count in D+H vs. D group. Conclusion: Based on resultant data, it seems that intermittent exposure to hypoxia (simulated to chronic and intermittent lodgement in altitude can be used to control of type 2 diabetes by increasing hemoglobin, decreasing insulin resistance and improving liver function as well as lipid parameters.

  3. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  4. 3H-thymidine labelling of DNA of radiosensitive organs of rats irradiated under alpine conditions and after adaptation to hypoxia in the altitude chamber

    International Nuclear Information System (INIS)

    Gusejnov, F.T.; Egorov, I.A.; Gladilin, K.L.; Farber, Yu.V.

    1979-01-01

    Preliminary adaptation of rats of high altitude conditions (3200 m) and training in the altitude chamber at the same imitated altitude inhibit 3 H-thymidine labelling of thymus DNA both shortly (26 h) and later (20 and 30 days) after irradiation. Whether the thymidine incorporation is activated or delayed depends on conditions of pretreatment. The data obtained are discussed from the point of view of the raioprotective effect of preadaptation of animals to high-altitude hypoxia

  5. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  6. The Effects Of Different Environmental Conditions (Cold, Heat and Altitude On Soccer Players' Performance And Health

    Directory of Open Access Journals (Sweden)

    Cem Sinan ASLAN

    2016-06-01

    Full Text Available Sports are divided into sub-headings according to structural characteristics as team sports and individual sports; according to the physiological characteristics as aerobic- and anaerobic-based sports. In addition, they may be described as "in-door" and "out-door", as well. While basketball, handball, volleyball are classified as "in-door" sports; cross country, mountaineering, skiing are classified as "out-door" sports. Football is one of the outdoor sports, and is highly influenced by external factors. Indeed, beyond affecting players’ performance, sometimes these factors may lead to unwanted consequences regarding the athlete’s health. In this review, it is targeted to examine the effects of different environmental conditions such as cold, heat and altitude on soccer players' performance and health, through referring to the results of previous studies.

  7. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    Science.gov (United States)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  8. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  9. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.

    Directory of Open Access Journals (Sweden)

    Daniel Radiloff

    Full Text Available Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

  10. GEAN T4 Simulations of Electromagnetic Showers Initiated by 30MeV y-Rays Entering the Atmosphere at Different Altitudes

    International Nuclear Information System (INIS)

    Akopov, N.; Grigoryan, A.; Karyan, G.

    2017-01-01

    The aim of this paper is to investigate the GEANT4 simulation for electromagnetic showers initiated by 30 MeV photons entering into the atmosphere at different altitudes (h). Charged and neutral components of the shower have been studied in various radial slices (R) with the detecting level corresponding to the altitude of Aragats mount, where the experimental setups of Cosmic Ray Division (CRD) of Yerevan Physics Institute (YerPhI) are operating. Qualitative observations of the energy spectra, as well as the tabulated parameters describing the fluxes at different values of h and R are used to make a comparison with those from the experimental data. The experimental data on particle fluxes are considered to be correlated with the atmospheric conditions such as pressure, temperature, presence of the charged clouds initiating the lightnings etc. (author)

  11. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  12. Effects of simulated altitude on blood glucose meter performance: implications for in-flight blood glucose monitoring.

    Science.gov (United States)

    Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David

    2012-07-01

    Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in

  13. Effects of altitude and beehive bottom board type on wintering losses of honeybee colonies under subtropical climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ucak-Koc, A.

    2014-06-01

    The effects of altitude and beehive bottom board types (BBBT) on the wintering performance of honeybee colonies were investigated in the South Aegean Region of Turkey: Experiment I (E-I), with 32 colonies, in 2010-2011, and Experiment II (E-II), with 20 colonies, in 2011-2012. Each lowland (25 m) and highland (797 m) colony was divided randomly into two BBBT subgroups, open screen floor (OSF) and normal bottom floor (NBF), and wintered for about three months. In E-I, the local genotype Aegean ecotype of Anatolian bee (AE) and Italian race (ItR) were used, while in E-II, only the AE genotype was present. In E-I, the effect of wintering altitudes on the number of combs covered with bees (NCCB), and the effects of BBBT on brood area (BA) and the NCCB were found to be statistically significant (p < 0.05), but the effects of genotype on BA and NCCB were statistically insignificant (p > 0.05). In the E-II, the effect of wintering altitude on beehive weight was found to be statistically significant (p < 0.05), while its effect on the NCCB was statistically insignificant (p > 0.05). The wintering losses in the highland and lowland groups in E-I were determined to be 25% and 62.5% respectively. In contrast to this result, no loss was observed in E-II for both altitudes. In E-I, the wintering losses for both OSF and NBF groups were the same (43.75%). In conclusion, under subtropical climatic conditions, due to variations from year to year, honeybee colonies can be wintered more successfully in highland areas with OSF bottom board type. (Author)

  14. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  15. Effect of microbiological fertilizer and soil additive on yield of buckwheat (Fagopyrum esculentum Moenchunder high altitude conditions

    Directory of Open Access Journals (Sweden)

    Oljača Snežana

    2012-01-01

    Full Text Available Effect of microbiological fertilizer (Slavol and soil additives (zeolite and hydrogel on buckwheat (Fagopyrum esculentum Moench yield was investigated in this paper. Trial was set up in the village of Radijevići, Serbia in agroecological conditions of mountain Zlatar (altitude 1,065 m during a two-year period 2009 and 2010. A randomized complete block design with four replications was set up. In organic cropping system three combinations of microbiological fertilizer (Slavol with zeolite and hydrogel were used prior to sowing. Different combinations of the microbiological fertilizer and the soil additives gave positive results especially in the second year of the trial. The best combination in organic cropping system was Slavol+hydrogel with foliar application of the microbiological fertilizer, which resulted in the greatest yield of buckwheat and this treatment can be recommended to producers. Buckwheat performed very well under limited conditions of acidic soil on high altitude in organic cropping system and it can be recommended as a very suitable crop for organic producers.

  16. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats.

    Science.gov (United States)

    Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya

    2012-09-28

    Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.

  17. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water

  18. Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes

    Science.gov (United States)

    2016-06-08

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person...Morris DS, Kalson NS, Wright AD, Imray CHE, et al. Changes to colour vision on exposure to high altitude. J R Army Med Corps. 2011; 157(1):107-109...4. Richalet JP, Duval-Arnould G, Darnaud B, Keromes A, Rutgers V. Modification of colour vision in the green/red axis in acute and chronic

  19. Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude

    Science.gov (United States)

    Biswas, H. M.; Boral, M. C.

    1986-06-01

    Three groups of adult male toads were exposed intermittently in a decompression chamber for a daily period of 4 and 8 hours at a time for 6 consecutive days to an “altitude” of 12,000; 18,000 and 24,000 feet (3658; 5486; 7315 m) respectively. Most of the exposed animals were sacrificed immediately after the last exposure, but only a few animals experiencing 8 hours of exposure were sacrificed after a further 16 hours of exposure at normal atmospheric pressure. Eight hours of daily exposure for 6 days causes a decrease of body fluids and an increase of hematological parameters in all the altitude exposed animals compared with to the changes noted in the animals having 4 hours of daily exposure for 6 days at the same altitude levels. The animals that were exposed to pressures equivalent to altitudes of 12,000 and 18,000 feet daily for 8 hours were found to return nearly to their normal body fluids and hematological balance after 16 hours of exposure to normal atmospheric pressure, whereas the animals exposed for a similar period at an equivalent 24,000 feet failed to get back their normal balance of body fluids and hematology after 16 hours of exposure at normal atmospheric pressure. The present experiment shows that the body weight loss and changes of body fluid and hematological parameters in the toad after exposure to simulated high altitude are due not only to dehydration, but suggest that hypoxia may also have a role.

  20. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    Science.gov (United States)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  1. Effect of Moxidectin Treatment at Peripartum on Gastrointestinal Parasite Infections in Ewes Raised under Tropical Andes High Altitude Conditions

    Science.gov (United States)

    Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.

    2015-01-01

    This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T 1, n = 15) or 48 hours after parturition (T 2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T 1) and 96.9% (T 2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T 1 (94.8%) and T 2 (96.7%) ewes (p ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913

  2. Experience with simulator training for emergency conditions

    International Nuclear Information System (INIS)

    1987-12-01

    The training of operators by the use of simulators is common to most countries with nuclear power plants. Simulator training programmes are generally well developed, but their value can be limited by the age, type, size and capability of the simulator. Within these limits, most full scope simulators have a capability of training operators for a range of design basis accidents. It is recognized that human performance under accident conditions is difficult to predict or analyse, particularly in the area of severe accidents. These are rare events and by their very nature, unpredictable. Of importance, therefore, is to investigate the training of operators for severe accident conditions, and to examine ways in which simulators may be used in this task. The International Nuclear Safety Advisory Group (INSAG) has reviewed this field and the associated elements of human behaviour. It has recommended that activities are concentrated on this area. Initially it is encouraging the following objectives: i) To train operators for accident conditions including severe accidents and to strongly encourage the development and use of simulators for this purpose; ii) To improve the man-machine interface by the use of computer aids to the operator; iii) To develop human performance requirements for plant operating staff. As part of this work, the IAEA convened a technical committee on 15-19 September 1986 to review the experience with simulator training for emergency conditions, to review simulator modelling for severe accident training, to examine the role of human cognitive behaviour modelling, and to review guidance on accident scenarios. A substantial deviation may be a major fuel failure, a Loss of Coolant Accident (LOCA), etc. Examples of engineered safety features are: an Emergency Core Cooling System (ECCS), and Containment Systems. This report was prepared by the participants during the meeting and reviewed further in a Consultant's Meeting. It also includes papers which were

  3. Pharmacological Correction of the Human Functional State in High Altitude Conditions

    Science.gov (United States)

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ...Cholesterol, Adaptation Paper presented at the RTO HFM Symposium on "Operational Medical Issues in Hypo- and Hyperbaric Conditions", held in Toronto...T.D., 1986, Recovery after Extreme Hypobaric Hypoxia as a Method of Study of Antihypoxic Activity of Chemical Compounds. In: Farmakologicheskaya

  4. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  5. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    Science.gov (United States)

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  6. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  7. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  8. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  9. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  10. High altitude C4 grasslands in the northern Andes: relicts from glacial conditions?

    NARCIS (Netherlands)

    Boom, A.; Mora, G.; Cleef, A.M.; Hooghiemstra, H.

    2001-01-01

    The altitudinal vegetation distribution in the northern Andes during glacial time differed from the present-day conditions as a result of temperature and precipitation change. New evidence indicate that as a response to a reduced atmospheric partial CO2 pressure (pCO2), the competitive balance

  11. Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation

    Science.gov (United States)

    Barriot, J.; Dehant, V.; Duron, J.

    2003-12-01

    We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.

  12. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  13. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  14. An attempt to quantify the placebo effect from a three-week simulated altitude training camp in elite race walkers.

    Science.gov (United States)

    Saunders, Philo U; Ahlgrim, Christoph; Vallance, Brent; Green, Daniel J; Robertson, Eileen Y; Clark, Sally A; Schumacher, Yorck O; Gore, Christopher J

    2010-12-01

    To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors. Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass). Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely). Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.

  15. Simulation of hydrocephalus condition in infant head

    Science.gov (United States)

    Wijayanti, Erna; Arif, Idam

    2014-03-01

    Hydrocephalus is a condition of an excessive of cerebrospinal fluid in brain. In this paper, we try to simulate the behavior of hydrocephalus conditions in infant head by using a hydro-elastic model which is combined with orthotropic elastic skull and with the addition of suture that divide the skull into two lobes. The model then gives predictions for the case of stenosis aqueduct by varying the cerebral aqueduct diameter, time constant and brain elastic modulus. The hydrocephalus condition which is shown by the significant value of ventricle displacement, as the result shows, is occurred when the aqueduct is as resistant as brain parenchyma for the flow of cerebrospinal fluid. The decrement of brain elastic modulus causes brain parenchyma displacement value approach ventricle displacement value. The smaller of time constant value causes the smaller value of ventricle displacement.

  16. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    Science.gov (United States)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  17. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  18. Slamming Simulations in a Conditional Wave

    DEFF Research Database (Denmark)

    Seng, Sopheak; Jensen, Jørgen Juncher

    2012-01-01

    A study of slamming events in conditional waves is presented in this paper. The ship is sailing in head sea and the motion is solved for under the assumption of rigid body motion constrained to two degree-of-freedom i.e. heave and pitch. Based on a time domain non-linear strip theory most probable...... surface NS/VOF CFD simulations under the same wave conditions. In moderate seas and no occurrence of slamming the structural responses predicted by the methods agree well. When slamming occurs the strip theory overpredicts VBM but the peak values of VBM occurs at approximately the same time as predicted...... by the CFD method implying the possibility to use the more accurate CFD results to improve the estimation of slamming loads in the strip theory through a rational correction coefficient....

  19. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  20. NUNOA: a computer simulator of individuals, families, and extended families of the high-altitude Quechua

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.C.; Weinstein, D.A.; Shugart, H.H.; Simmons, B.

    1980-10-01

    The Quechua Indians of the Peruvian Andes are an example of a human population which has developed special cultural adaptations to deal with hypocaloric stress imposed by a harsh environment. A highly detailed human ecosystem model, NUNOA, which simulates the yearly energy balance of individuals, families, and extended families in a hypothetical farming and herding Quechua community of the high Andes was developed. Unlike most population models which use sets of differential equations in which individuals are aggregated into groups, this model considers the response of each individual to a stochastic environment. The model calculates the yearly energy demand for each family based on caloric requirements of its members. For each family, the model simulates the cultivation of seven different crops and the impact of precipitation, temperature, and disease on yield. Herding, slaughter, and market sales of three different animal species are also simulated. Any energy production in excess of the family's energy demand is placed into extended family storage for possible redistribution. A family failing to meet their annual energy demand may slaughter additional herd animals, temporarily migrate from the community, or borrow food from the extended family storage. The energy balance is used in determining births, deaths, marriages, and resource sharing in the Indian community. In addition, the model maintains a record of each individual's ancestry as well as seven genetic traits for use in tracing lineage and gene flow. The model user has the opportunity to investigate the effect of changes in marriage patterns, resource sharing patterns, or subsistence activities on the ability of the human population to survive in the harsh Andean environment. In addition, the user may investigate the impact of external technology on the Indian culture.

  1. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  2. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  3. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude

    Directory of Open Access Journals (Sweden)

    Oliver M. Shannon

    2017-06-01

    Full Text Available Purpose: Nitric oxide (NO bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3− supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude.Methods:Ten males (mean (SD: V˙O2max: 60.9 (10.1 ml·kg−1·min−1 rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m and twice at very-high (~11.7% O2; ~4,300 m simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3− or NO3−-deplete (PLA; 0.01 mmol NO3− beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT, both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−], peripheral oxygen saturation (SpO2, pulmonary oxygen uptake (V˙O2, muscle and cerebral oxygenation, and cognitive function were measured throughout.Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001. Pulmonary V˙O2 was reduced (p = 0.020, and SpO2 was elevated (p = 0.005 during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3 vs. 1718.7 (213.0 s] and 4.2% [1,809.8 (262.0 vs. 1,889.1 (203.9 s] at 3,000 and 4,300 m, respectively (p = 0.019. Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011. The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056. Performance in all other cognitive tasks

  4. Design and simulation of solar powered aircraft for year-round operation at high altitude; Auslegung und Simulation von hochfliegenden, dauerhaft stationierbaren Solardrohnen

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, B.

    2000-05-18

    An unmanned solar powered aircraft configuration called SOLITAIR has been designed. This aircraft is intended to be used as an high altitude long endurance (HALE) sensor platform for year-round operation at intermediate latitudes up to about {+-}55 . For the design studies leading to this aircraft configuration, a software package has been developed which enables an effective design and a proper simulation of the entire solar aircraft system for various flight missions. The performance analysis and the mission simulation showed, that a configuration with large additional solar panels, that can be tilted in order to follow the sun angle during daytime operation appears to be superior to aircraft configurations with wing-mounted solar cells for the desired operational area. In order to examine the basic flight characteristics of the SOLITAIR configuration a remote controlled demonstration model has been built and test flown. [German] In der vorliegenden Arbeit wurden Moeglichkeiten geschaffen, um Gesamtsystemkonfigura-tionen unbemannter hochfliegender Solarflugzeuge fuer unterschiedliche Anwendungsfaelle auszulegen und die Flugleistungen sowie die Missionsfaehigkeit dieser Konfigurationen aufzuzeigen. Mit den geschaffenen und verifizierten Entwicklungswerkzeugen wurde eine Solarflugzeugkonfiguration entworfen und mittels eines Demonstrationsmodells erprobt. Mit dieser Konfiguration kann eine dauerhafte Stationierbarkeit von ca. 55 suedlicher bis 55 noerdlicher Breite erreicht werden. Dies stellt eine bedeutende Erweiterung des bisher fuer moeglich gehaltenen Nutzungsbereiches solcher Flugzeuge dar.

  5. Altitude and endurance training.

    Science.gov (United States)

    Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E

    2004-10-01

    The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (altitude training period (training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.

  6. [Arterial hypertension due to altitude].

    Science.gov (United States)

    Domej, Wolfgang; Trapp, Michael; Miggitsch, Eva Maria; Krakher, Tiziana; Riedlbauer, Rita; Roher, Peter; Schwaberger, Günther

    2008-01-01

    The behavior of blood pressure under hypoxic conditions depends on individual factors, altitude and duration of stay at altitude. While most humans are normotensive at higher altitudes, a few will react with moderate hypertension or hypotension. Excessive elevation of arterial blood pressure is not even to be expected below 4,000 m. Rather, several weeks' stay at higher altitude will decrease systolic and diastolic blood pressure at rest as well as during physical exertion. A high-altitude treatment for rehabilitation purposes at moderate altitude may be recommended for patients with cardio-circulatory disorders. Improvements can last several months even after returning to accustomed altitudes. Furthermore, endurance-trained hypertensive patients with pharmacologically controlled arterial blood pressure might be able to participate in mountain treks without additional health risk.

  7. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  8. Conditional simulation for efficient global optimization

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Mehdad, E.; Pasupathy, R.; Kim, S.-H.; Tolk, A.; Hill, R.; Kuhl, M.E.

    2013-01-01

    A classic Kriging or Gaussian process (GP) metamodel estimates the variance of its predictor by plugging-in the estimated GP (hyper)parameters; namely, the mean, variance, and covariances. The problem is that this predictor variance is biased. To solve this problem for deterministic simulations, we

  9. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  10. Initial conditions for turbulent mixing simulations

    Directory of Open Access Journals (Sweden)

    T. Kaman

    2010-01-01

    Full Text Available In the context of the classical Rayleigh-Taylor hydrodynamical instability, we examine the much debated question of models for initial conditions and the possible influence of unrecorded long wave length contributions to the instability growth rate α.

  11. Slamming Simulations in a Conditional Wave

    DEFF Research Database (Denmark)

    Seng, Sopheak; Jensen, Jørgen Juncher

    2012-01-01

    A study of slamming events in conditional waves is presented in this paper. The ship is sailing in head sea and the motion is solved for under the assumption of rigid body motion constrained to two degree-of-freedom i.e. heave and pitch. Based on a time domain non-linear strip theory most probable...

  12. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  13. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  14. Multiple point statistical simulation using uncertain (soft) conditional data

    Science.gov (United States)

    Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou

    2018-05-01

    Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.

  15. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  16. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps

    Science.gov (United States)

    Verfaillie, Deborah; Lafaysse, Matthieu; Déqué, Michel; Eckert, Nicolas; Lejeune, Yves; Morin, Samuel

    2018-04-01

    This article investigates the climatic response of a series of indicators for characterizing annual snow conditions and corresponding meteorological drivers at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps. Past and future changes were computed based on reanalysis and observations from 1958 to 2016, and using CMIP5-EURO-CORDEX GCM-RCM pairs spanning historical (1950-2005) and RCP2.6 (4), RCP4.5 and RCP8.5 (13 each) future scenarios (2006-2100). The adjusted climate model runs were used to drive the multiphysics ensemble configuration of the detailed snowpack model Crocus. Uncertainty arising from physical modeling of snow accounts for 20 % typically, although the multiphysics is likely to have a much smaller impact on trends. Ensembles of climate projections are rather similar until the middle of the 21st century, and all show a continuation of the ongoing reduction in average snow conditions, and sustained interannual variability. The impact of the RCPs becomes significant for the second half of the 21st century, with overall stable conditions with RCP2.6, and continued degradation of snow conditions for RCP4.5 and 8.5, the latter leading to more frequent ephemeral snow conditions. Changes in local meteorological and snow conditions show significant correlation with global temperature changes. Global temperature levels 1.5 and 2 °C above preindustrial levels correspond to a 25 and 32 % reduction, respectively, of winter mean snow depth with respect to the reference period 1986-2005. Larger reduction rates are expected for global temperature levels exceeding 2 °C. The method can address other geographical areas and sectorial indicators, in the field of water resources, mountain tourism or natural hazards.

  17. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Science.gov (United States)

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  18. Integrated Simulation of Atmospheric Pressures and Dynamic Forces During Accidental Decompression and Subsequent Emergency Descent of High Altitude Transport Aircraft

    National Research Council Canada - National Science Library

    1975-01-01

    .... Using the uniquely versatile centrifuge of the Naval Air Development Center, the volunteers, accompanied by on board observers, experienced a simulated take off and climbing flight, including a nose...

  19. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  20. Response of HEPA filters to simulated-accident conditions

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; Smith, P.R.; Fenton, D.E.

    1982-01-01

    High-efficiency particulate air (HEPA) filters have been subjected to simulated accident conditions to determine their response to abnormal operating events. Both domestic and European standard and high-capacity filters have been evaluated to determine their response to simulated fire, explosion, and tornado conditions. The HEPA filter structural limitations for tornado and explosive loadings are discussed. In addition, filtration efficiencies during these accident conditions are reported for the first time. Our data indicate efficiencies between 80% and 90% for shock loadings below the structural limit level. We describe two types of testing for ineffective filtration - clean filters exposed to pulse-entrained aerosol and dirty filters exposed to tornado and shock pulses. Efficiency and material loss data are described. Also, the resonse of standard HEPA filters to simulated fire conditions is presented. We describe a unique method of measuring accumulated combustion products on the filter. Additionally, data relating to pressure drop vs accumulated mass during plugging are reported for simulated combustion aerosols. The effects of concentration and moisture levels on filter plugging were evaluated. We are obtaining all of the above data so that mathematical models can be developed for fire, explosion, and tornado accident analysis computer codes. These computer codes can be used to assess the response of nuclear air cleaning systems to accident conditions

  1. Experimental study of the portable blood purification system for treatment of acute renal failure in dogs under the field condition in a high-altitude environment

    Directory of Open Access Journals (Sweden)

    Hai-bin LI

    2014-01-01

    Full Text Available Objective To reproduce the model of acute renal failure (ARF in beagles for comprehensively evaluating the safety, stability and validity of the continuous blood purification system under the field condition in a high-altitude environment. Methods Adult beagle ARF model was reproduced by bilateral nephrectomy. All ARF dogs underwent continuous veno-venous hemofiltration with a blood purification machine. Vital signs, renal function, liver function and plasma ion-levels before and after the therapy were analyzed through self-controlled study. Performance of the continuous blood purification machine running in a highaltitude environment was evaluated. Results Blood urea nitrogen (BUN and creatinine (Cr of six dogs were assayed 24 hours after nephrectomy, the difference showed statistical significance compared with those before the surgery (P<0.05, implying that six ARF models were reproduced successfully. Six dogs experienced continuous renal replacement therapy (CRRT with external jugular vein double-lumen tube placement (3 dogs or femoral vein catheter placement (3 dogs. Five dogs successfully finished the whole experiment, and one dog died because of falling off of the dialysis tube and blood loss. The continuous blood purification machine was sensitive with rapid release of warning signals when the condition was abnormal. Compared to that before CRRT, there were no statistically significant differences in heart rate, respiratory rate and blood pressure in ARF models 2, 4 hours after CRRT (P>0.05. And there were no statistically significant differences in ALT, AST and T-Bil in ARF models between that before and 2, 4 hours after CRRT (P>0.05. However, 2, 4 hours after CRRT, BUN and Cr levels descended significantly (P<0. 05, so was K+ level (P<0. 05. There were no complications such as hemorrhage or hypotension. There were no statistical differences in volume of replacement fluid or discarded fluid between before and after CRRT

  2. Hydrogen deflagration simulations under typical containment conditions for nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, J., E-mail: jorge.yanez@kit.edu [Institute for Energy and Nuclear Technology, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe (Germany); Kotchourko, A.; Lelyakin, A. [Institute for Energy and Nuclear Technology, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Lean H{sub 2}-air combustion experiments highly relevant to typical NPP simulated. Black-Right-Pointing-Pointer Analyzed effect of temperature, concentration of H{sub 2}, and steam concentration. Black-Right-Pointing-Pointer Similar conditions and H{sub 2} concentration yielded different combustion regimes. Black-Right-Pointing-Pointer Flame instabilities (FIs) were the effect driving divergences. Black-Right-Pointing-Pointer Model developed for acoustic FI in simulations. Agreement experiments obtained. - Abstract: This paper presents the modeling of low-concentration hydrogen deflagrations performed with the recently developed KYLCOM model specially created to perform calculations in large scale domains. Three experiments carried out in THAI facility (performed in the frames of international OECD THAI experimental program) were selected to be analyzed. The tests allow studying lean mixture hydrogen combustion at normal ambient, elevated temperature and superheated and saturated conditions. The experimental conditions considered together with the facility size and shape grant a high relevance degree to the typical NPP containment conditions. The results of the simulations were thoroughly compared with the experimental data, and the comparison was supplemented by the analysis of the combustion regimes taking place in the considered tests. Results of the analysis demonstrated that despite the comparatively small difference in mixture properties, three different combustion regimes can be definitely identified. The simulations of one of the cases required of the modeling of the acoustic-parametric instability which was carefully undertaken.

  3. Plasma-material interaction under simulated disruption conditions

    International Nuclear Information System (INIS)

    Arkhipov, N.I.; Bakhtin, V.P.; Safronov, V.M.; Toporkov, D.A.; Vasenin, S.G.; Wurz, H.; Zhitlukhin, A.M.

    1995-01-01

    Sudden evaporation of divertor plate surface under high heat load during tokamak plasma disruption instantaneously produces a vapor shield. The cloud of vaporized material prevents the divertor plates from the bulk of incoming energy flux and thus reduces the further material erosion. Dynamics and effectiveness of the vapor shield are studied experimentally at the 2MK-200 facility under simulated disruption conditions. (orig.)

  4. ANALYSIS OF OPERATING INSTRUMENT LANDING SYSTEM ACCURACY UNDER SIMULATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jerzy MERKISZ

    2017-03-01

    Full Text Available The instrument landing system (ILS is the most popular landing aid in the world. It is a distance-angled support system for landing in reduced visibility, while its task is the safe conduct of the aircraft from the prescribed course landing on the approach path. The aim of this study is to analyse the correctness of the ILS in simulated conditions. The study was conducted using a CKAS MotionSim5 flight simulator in the Simulation Research Laboratory of the Institute of Combustion Engines and Transport at Poznan University of Technology. With the advancement of technical equipment, it was possible to check the operation of the system in various weather conditions. Studies have shown that the impact of fog, rain and snow on the correct operation of the system is marginal. Significant influence has been observed, however, during landing in strong winds.

  5. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  6. The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis.

    Science.gov (United States)

    Hamlin, Michael J; Lizamore, Catherine A; Hopkins, Will G

    2018-02-01

    While adaptation to hypoxia at natural or simulated altitude has long been used with endurance athletes, it has only recently gained popularity for team-sport athletes. To analyse the effect of hypoxic interventions on high-intensity intermittent running performance in team-sport athletes. A systematic literature search of five journal databases was performed. Percent change in performance (distance covered) in the Yo-Yo intermittent recovery test (level 1 and level 2 were used without differentiation) in hypoxic (natural or simulated altitude) and control (sea level or normoxic placebo) groups was meta-analyzed with a mixed model. The modifying effects of study characteristics (type and dose of hypoxic exposure, training duration, post-altitude duration) were estimated with fixed effects, random effects allowed for repeated measurement within studies and residual real differences between studies, and the standard-error weighting factors were derived or imputed via standard deviations of change scores. Effects and their uncertainty were assessed with magnitude-based inference, with a smallest important improvement of 4% estimated via between-athlete standard deviations of performance at baseline. Ten studies qualified for inclusion, but two were excluded owing to small sample size and risk of publication bias. Hypoxic interventions occurred over a period of 7-28 days, and the range of total hypoxic exposure (in effective altitude-hours) was 4.5-33 km h in the intermittent-hypoxia studies and 180-710 km h in the live-high studies. There were 11 control and 15 experimental study-estimates in the final meta-analysis. Training effects were moderate and very likely beneficial in the control groups at 1 week (20 ± 14%, percent estimate, ± 90% confidence limits) and 4-week post-intervention (25 ± 23%). The intermittent and live-high hypoxic groups experienced additional likely beneficial gains at 1 week (13 ± 16%; 13 ± 15%) and 4-week post

  7. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    Science.gov (United States)

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  8. The importance of pruning to the quality of wine grape fruits (Vitis vinifera L. cultivated under high-altitude tropical conditions

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-12-01

    Full Text Available Since 1998, the Ain-Karim Vineyard has been growing different grape varieties for the production of high-altitude tropical wines in the municipality of Sutamarchan, located in the Alto Ricaurte region of Boyaca (Colombia. Pruning is used to limit the number and length of branches, generating a suitable balance between plant vigor and production; thereby, regulating fruit quantity and quality and ensuring reserves for the subsequent production. This study aimed to evaluate the effect of three pruning types (short = two buds on two spurs; long = five buds on three spurs and mixed = combination of short and long pruning types on the fruit quality of V. vinifera, Cabernet Sauvignon and Sauvignon Blanc varieties. To accomplish this, a completely randomized two-factor design was used. Physicochemical variables of fruit quality (fresh cluster weight, water content, total soluble solids (TSS, total titratable acidity (TTA, technical maturity index (TMI, and pH were determined at harvest. The long pruning type presented the highest values for the fresh cluster weight and TSS of the fruits from both varieties and a higher TMI in the Cabernet Sauvignon variety. These results indicate that, under the conditions of the vineyard, long pruning is the most suitable.

  9. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    Science.gov (United States)

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically.

  10. Limestone attrition under simulated oxyfiring Fluidized-Bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F. [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy); Salatino, P. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Napoli (Italy)

    2009-03-15

    Limestone attrition by surface wear was studied during the flue gas desulfurization under simulated fluidized-bed (FB) oxyfiring conditions and hindered calcination. Bench-scale experimental tests were carried out using well-established techniques previously developed for the characterization of sulfation and attrition of sorbents in air-blown atmospheric FB combustors. The experimental limestone conversion and attrition results were compared with those previously obtained with the same limestone under simulated air-blown combustion conditions. The differences in the conversion and attrition extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion were highlighted and related to the different particle morphologies and thicknesses of the sulfate layer. It was noted that attrition could play an important role in practical circulating FB combustor operation, by effectively enhancing particle sulfation under both oxyfiring and air-blown combustion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Relativistic initial conditions for N-body simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.

  12. Conditional truncated plurigaussian simulation; Simulacao plurigaussiana truncada com condicionamento

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Vitor Hugo

    1997-12-01

    The goal of this work was a development of an algorithm for the Truncated Plurigaussian Stochastic Simulation and its validation in a complex geologic model. The reservoir data comes from Aux Vases Zone at Rural Hill Field in Illinois, USA, and from the 2D geological interpretation, described by WEIMER et al. (1982), three sets of samples, with different grid densities ware taken. These sets were used to condition the simulation and to refine the estimates of the non-stationary matrix of facies proportions, used to truncate the gaussian random functions (RF). The Truncated Plurigaussian Model is an extension of the Truncated Gaussian Model (TG). In this new model its possible to use several facies with different spatial structures, associated with the simplicity of TG. The geological interpretation, used as a validation model, was chosen because it shows a set of NW/SE elongated tidal channels cutting the NE/SW shoreline deposits interleaved by impermeable facies. These characteristics of spatial structures of sedimentary facies served to evaluate the simulation model. Two independent gaussian RF were used, as well as an 'erosive model' as the truncation strategy. Also, non-conditional simulations were proceeded, using linearly combined gaussian RF with varying correlation coefficients. It was analyzed the influence of some parameters like: number of gaussian RF,correlation coefficient, truncations strategy, in the outcome of simulation, and also the physical meaning of these parameters under a geological point of view. It was showed, step by step, using an example, the theoretical model, and how to construct an algorithm to simulate with the Truncated Plurigaussian Model. The conclusion of this work was that even with a plain algorithm of the Conditional Truncated Plurigaussian and a complex geological model it's possible to obtain a usefulness product. (author)

  13. Corrosion of pure OFHC-copper in simulated repository conditions

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1990-04-01

    The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time

  14. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  15. Simulating reservoir lithologies by an actively conditioned Markov chain model

    Science.gov (United States)

    Feng, Runhai; Luthi, Stefan M.; Gisolf, Dries

    2018-06-01

    The coupled Markov chain model can be used to simulate reservoir lithologies between wells, by conditioning them on the observed data in the cored wells. However, with this method, only the state at the same depth as the current cell is going to be used for conditioning, which may be a problem if the geological layers are dipping. This will cause the simulated lithological layers to be broken or to become discontinuous across the reservoir. In order to address this problem, an actively conditioned process is proposed here, in which a tolerance angle is predefined. The states contained in the region constrained by the tolerance angle will be employed for conditioning in the horizontal chain first, after which a coupling concept with the vertical chain is implemented. In order to use the same horizontal transition matrix for different future states, the tolerance angle has to be small. This allows the method to work in reservoirs without complex structures caused by depositional processes or tectonic deformations. Directional artefacts in the modeling process are avoided through a careful choice of the simulation path. The tolerance angle and dipping direction of the strata can be obtained from a correlation between wells, or from seismic data, which are available in most hydrocarbon reservoirs, either by interpretation or by inversion that can also assist the construction of a horizontal probability matrix.

  16. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  17. Conditional flood frequency and catchment state: a simulation approach

    Science.gov (United States)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  18. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Science.gov (United States)

    Lacher, Larissa; Lohmann, Ulrike; Boose, Yvonne; Zipori, Assaf; Herrmann, Erik; Bukowiecki, Nicolas; Steinbacher, Martin; Kanji, Zamin A.

    2017-12-01

    In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L-1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L-1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L-1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L-1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other

  19. Altitude training improves glycemic control.

    Science.gov (United States)

    Chen, Shu-Man; Lin, Hsueh-Yi; Kuo, Chia-Hua

    2013-08-31

    Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate the shortfall caused by reduced fatty acid oxidation. Short-term moderate altitude exposure plus endurance physical activity has been found to improve glucose tolerance (not fasting glucose) in humans, which is associated with the improvement in the whole-body insulin sensitivity. However, most of people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness and insulin resistance. There is a wide variation among individuals in response to the altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity was not apparent in those individuals with low baseline dehydroepiandrosterone sulfate (DHEA-S) concentration. In rats, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can also improve insulin sensitivity, secondary to an effective suppression of adiposity. After prolonged hypoxia training, obese abnormality in upregulated baseline levels of AMP-activated protein kinase (AMPK) and AS160 phosphorylation in skeletal muscle can be reversed. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on the favorable change in body composition. Altitude training can exert strong impact on our metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting metabolic syndromes.

  20. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  1. Exact simulation of conditioned Wright-Fisher models.

    Science.gov (United States)

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2014-12-21

    Forward and backward simulations play an increasing role in population genetics, in particular when inferring the relative importance of evolutionary forces. It is therefore important to develop fast and accurate simulation methods for general population genetics models. Here we present an exact simulation method that generates trajectories of an allele׳s frequency in a finite population, as described by a general Wright-Fisher model. The method generates conditioned trajectories that start from a known frequency at a known time, and which achieve a specific final frequency at a known final time. The simulation method applies irrespective of the smallness of the probability of the transition between the initial and final states, because it is not based on rejection of trajectories. We illustrate the method on several different populations where a Wright-Fisher model (or related) applies, namely (i) a locus with 2 alleles, that is subject to selection and mutation; (ii) a locus with 3 alleles, that is subject to selection; (iii) a locus in a metapopulation consisting of two subpopulations of finite size, that are subject to selection and migration. The simulation method allows the generation of conditioned trajectories that can be used for the purposes of visualisation, the estimation of summary statistics, and the development/testing of new inferential methods. The simulated trajectories provide a very simple approach to estimating quantities that cannot easily be expressed in terms of the transition matrix, and can be applied to finite Markov chains other than the Wright-Fisher model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhanced hepatic insulin signaling in the livers of high altitude native rats under basal conditions and in the livers of low altitude native rats under insulin stimulation: a mechanistic study.

    Science.gov (United States)

    Al Dera, Hussain; Eleawa, Samy M; Al-Hashem, Fahaid H; Mahzari, Moeber M; Hoja, Ibrahim; Al Khateeb, Mahmoud

    2017-07-01

    This study was designed to investigate the role of the liver in lowering fasting blood glucose levels (FBG) in rats native to high (HA) and low altitude (LA) areas. As compared with LA natives, besides the improved insulin and glucose tolerance, HA native rats had lower FBG, at least mediated by inhibition of hepatic gluconeogenesis and activation of glycogen synthesis. An effect that is mediated by the enhancement of hepatic insulin signaling mediated by the decreased phosphorylation of TSC induced inhibition of mTOR function. Such effect was independent of activation of AMPK nor stabilization of HIF1α, but most probably due to oxidative stress induced REDD1 expression. However, under insulin stimulation, and in spite of the less activated mTOR function in HA native rats, LA native rats had higher glycogen content and reduced levels of gluconeogenic enzymes with a more enhanced insulin signaling, mainly due to higher levels of p-IRS1 (tyr612).

  3. Numerical simulation of controlled directional solidification under microgravity conditions

    Science.gov (United States)

    Holl, S.; Roos, D.; Wein, J.

    The computer-assisted simulation of solidification processes influenced by gravity has gained increased importance during the previous years regarding ground-based as well as microgravity research. Depending on the specific needs of the investigator, the simulation model ideally covers a broad spectrum of applications. These primarily include the optimization of furnace design in interaction with selected process parameters to meet the desired crystallization conditions. Different approaches concerning the complexity of the simulation models as well as their dedicated applications will be discussed in this paper. Special emphasis will be put on the potential of software tools to increase the scientific quality and cost-efficiency of microgravity experimentation. The results gained so far in the context of TEXUS, FSLP, D-1 and D-2 (preparatory program) experiments, highlighting their simulation-supported preparation and evaluation will be discussed. An outlook will then be given on the possibilities to enhance the efficiency of pre-industrial research in the Columbus era through the incorporation of suitable simulation methods and tools.

  4. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  5. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  6. Simulation of gas turbines operating in off-design condition

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br

    2000-07-01

    In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)

  7. Accurate initial conditions in mixed Dark Matter--Baryon simulations

    CERN Document Server

    Valkenburg, Wessel

    2017-06-01

    We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...

  8. The Horizontal Ice Nucleation Chamber (HINC: INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Directory of Open Access Journals (Sweden)

    L. Lacher

    2017-12-01

    Full Text Available In this work we describe the Horizontal Ice Nucleation Chamber (HINC as a new instrument to measure ambient ice-nucleating particle (INP concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T and relative humidity (RH in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l.  to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %, relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 % to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ

  9. Generalized Sheet Transition Condition FDTD Simulation of Metasurface

    Science.gov (United States)

    Vahabzadeh, Yousef; Chamanara, Nima; Caloz, Christophe

    2018-01-01

    We propose an FDTD scheme based on Generalized Sheet Transition Conditions (GSTCs) for the simulation of polychromatic, nonlinear and space-time varying metasurfaces. This scheme consists in placing the metasurface at virtual nodal plane introduced between regular nodes of the staggered Yee grid and inserting fields determined by GSTCs in this plane in the standard FDTD algorithm. The resulting update equations are an elegant generalization of the standard FDTD equations. Indeed, in the limiting case of a null surface susceptibility ($\\chi_\\text{surf}=0$), they reduce to the latter, while in the next limiting case of a time-invariant metasurface $[\\chi_\\text{surf}\

  10. Numerical simulation of hydrodynamic performance of ship under oblique conditions

    Directory of Open Access Journals (Sweden)

    CHEN Zhiming

    2018-02-01

    Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.

  11. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  12. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  13. Simulation of CHF Condition using an Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    Heat transfer is enhanced when the bubbles are generated on the heated surface at the nucleate boiling regime since vigorous mixing of the liquid occurs near the heated surface due to the buoyancy force of the bubbles. As this phenomenon intensified, vapor film can be formed on the heated surface and it impairs heat transfer disturbing the heat exchange between the surface and the bulk liquid. And thus, the heat flux has the certain maximum value. This maximum value, Critical Heat Flux (CHF) is generally exhibits in the pool boiling condition in non-film boiling mode. Actually, the higher heat flux could be generated at the film boiling mode with extremely high surface temperature, which may unendurable for the system structure. CHF phenomena is simulated by hydrogen gas using electroplating system in mass transfer experiment. Vapor behavior on mass transfer experiment was visualized, and it was similar to that of on the heat transfer. CHF value was simulated by hydrogen gas with isovolumetric concept. Thus, virtual heat flux was estimated by mass flux, which is a non-heating process. Difference of gas density from heat transfer and mass transfer systems were considered and revised for the simulated heat flux. Despite of the simple parametric analysis, estimated CHF value of this study was 6.6 times smaller than Zuber's.

  14. Durability of cemented waste in repository and under simulated conditions

    International Nuclear Information System (INIS)

    Dragolici, F.; Nicu, M.; Lungu, L.; Turcanu, C.; Rotarescu, Gh.

    2000-01-01

    The Romanian Radioactive Waste National Repository for low level and intermediate level radioactive waste was built in Baita - Bihor county, in an extinct uranium exploitation. The site is at 840 m above sea level and the host rock is crystalline with a low porosity, a good chemical homogeneity and impermeability, keeping these qualities over a considerable horizontal and vertical spans. To obtain the experimental data necessary for the waste form and package characterization together with the back-filling material behaviour in the repository environment, a medium term research programme (1996 - 2010) was implemented. The purpose of this experimental programme is to obtain a part of the data base necessary for the approach of medium and long term assessment of the safety and performance of Baita - Bihor Repository. The programme will provide: a deeper knowledge of the chemical species and reaction mechanisms, the structure, properties and performances of the final products. For safety reasons the behaviour of waste package, which is a main barrier, must be properly known in terms of long term durability in real repository conditions. Characterization of the behaviour includes many interactions between the waste package itself and the surrounding near field conditions such as mineralogy, hydrogeology and groundwater chemistry. To obtain a more deeper knowledge of the species and physical-chemical reactions participating in the matrix formation, as well as their future behaviour during the disposal period, a thorough XRD study started in 1998. For Romanian Radioactive Waste National Repository (DNDR) Baita - Bihor the following steps are planned for the conditioned waste matrix characterization in simulated and real conditions: - preparation and characterization of normal reference matrices based on different cement formulations; - preparation of reference simulated sludge cemented matrices containing iron hydroxide and iron phosphate; - selection of real and

  15. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  16. Modelling and simulation of concrete leaching under outdoor exposure conditions

    International Nuclear Information System (INIS)

    Schiopu, Nicoleta; Tiruta-Barna, Ligia; Jayr, Emmanuel; Mehu, Jacques; Moszkowicz, Pierre

    2009-01-01

    Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 'Hygiene, Health and Environment' of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, 'runoff' and 'stagnation', and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO 2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials

  17. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  18. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  19. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ait Chaou, Abdelouahed, E-mail: aitchaou@subatech.in2p3.fr; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO{sub 2} and a clay-like Mg–silicate, while under reducing conditions (H{sub 2}/N{sub 2} atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  20. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  1. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    Science.gov (United States)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  2. Multi-Scale Initial Conditions For Cosmological Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Oliver; /KIPAC, Menlo Park; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  3. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  4. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  5. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  6. Dependence of Substorm Evolution on Solar Wind Condition: Simulation Study

    Science.gov (United States)

    Kamiyoshikawa, N.; Ebihara, Y.; Tanaka, T.

    2017-12-01

    A substorm is one of the remarkable disturbances occurring in the magnetosphere. It is known that the substorm occurs frequently when IMF is southward and solar wind speed is high. However, the physical process to determine substorm scale is not well understood. We reproduced substorms by using global MHD simulation, calculated auroral electrojet (ionospheric Hall current) flowing in the ionosphere to investigate the dependence of substorm evolution on solar wind condition. Solar wind speed of 372.4 km/s and IMF Bz of 5.0 nT were imposed to, obtain the quasi-stationary state of the magnetosphere. Then the solar wind parameters were changed as a step function. For the solar wind speed, we assumed 300 km/s, 500 km/s and 700 km/s. For IMF, we assumed -1.0 nT, -3.0 nT, -5.0 nT, -7.0 nT and -9.0 nT. In total, 15 simulation runs were performed. In order to objectively evaluate the substorm, the onset was identified with the method based on the one proposed by Newell et al. (2011). This method uses the SME index that is an extension of the AE index. In this study, the geomagnetic variation induced by the ionospheric Hall current was obtained every 1 degree from the magnetic latitude 40 degrees to 80 degrees and in every 0.5 hours in the magnetic region direction. The upper and the lower envelopes of the geomagnetic variation are regarded as SMU index and SML index, respectively. The larger the solar wind speed, the larger the southward IMF, the more the onset tends to be faster. This tendency is consistent with the onset occurrence probability indicated by Newell et al. (2016). Moreover, the minimum value of the SML index within 30 minutes from the beginning of the onset tends to decrease with the solar wind speed and the magnitude of the southward IMF. A rapid decrease of the SML index can be explained by a rapid increase in the field-aligned currents flowing in and out of the nightside ionosphere. This means that electromagnetic energies flowing into the ionosphere

  7. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  8. CO2/ brine substitution experiments at simulated reservoir conditions

    Science.gov (United States)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  9. Structural performance of HEPA filters under simulated tornado conditions

    International Nuclear Information System (INIS)

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m 3 /s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits

  10. Simulation of fatigue crack growth under large scale yielding conditions

    Science.gov (United States)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  11. Photodegradation of clothianidin under simulated California rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Redman, Zachary C; Keener, Megan R; Ball, David B; Tjeerdema, Ronald S

    2016-07-01

    Photodegradation can be a major route of dissipation for pesticides applied to shallow rice field water, leading to diminished persistence and reducing the risk of offsite transport. The objective of this study was to characterize the aqueous-phase photodegradation of clothianidin under simulated California rice field conditions. Photodegradation of clothianidin was characterized in deionized, Sacramento River and rice field water samples. Pseudo-first-order rate constants and DT50 values in rice field water (mean k = 0.0158 min(-1) ; mean DT50 = 18.0 equivalent days) were significantly slower than in deionized water (k = 0.0167 min(-1) ; DT50 = 14.7 equivalent days) and river water (k = 0.0146 min(-1) ; DT50 = 16.6 equivalent days) samples. Quantum yield ϕc values demonstrate that approximately 1 and 0.5% of the light energy absorbed results in photochemical transformation in pure and field water respectively. Concentrations of the photodegradation product thiazolymethylurea in aqueous photolysis samples were determined using liquid chromatography-tandem mass spectrometry and accounted for ≤17% in deionized water and ≤8% in natural water. Photodegradation rates of clothianidin in flooded rice fields will be controlled by turbidity and light attenuation. Aqueous-phase photodegradation may reduce the risk of offsite transport of clothianidin from flooded rice fields (via drainage) and mitigate exposure to non-target organisms. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Minimization for conditional simulation: Relationship to optimal transport

    Science.gov (United States)

    Oliver, Dean S.

    2014-05-01

    In this paper, we consider the problem of generating independent samples from a conditional distribution when independent samples from the prior distribution are available. Although there are exact methods for sampling from the posterior (e.g. Markov chain Monte Carlo or acceptance/rejection), these methods tend to be computationally demanding when evaluation of the likelihood function is expensive, as it is for most geoscience applications. As an alternative, in this paper we discuss deterministic mappings of variables distributed according to the prior to variables distributed according to the posterior. Although any deterministic mappings might be equally useful, we will focus our discussion on a class of algorithms that obtain implicit mappings by minimization of a cost function that includes measures of data mismatch and model variable mismatch. Algorithms of this type include quasi-linear estimation, randomized maximum likelihood, perturbed observation ensemble Kalman filter, and ensemble of perturbed analyses (4D-Var). When the prior pdf is Gaussian and the observation operators are linear, we show that these minimization-based simulation methods solve an optimal transport problem with a nonstandard cost function. When the observation operators are nonlinear, however, the mapping of variables from the prior to the posterior obtained from those methods is only approximate. Errors arise from neglect of the Jacobian determinant of the transformation and from the possibility of discontinuous mappings.

  13. Optimizing grade-control drillhole spacing with conditional simulations

    Directory of Open Access Journals (Sweden)

    Adrian Martínez-Vargas

    2017-01-01

    Full Text Available This paper summarizes a method to determine the optimum spacing of grade-control drillholes drilled with reverse-circulation. The optimum drillhole spacing was defined as that one whose cost equals the cost of misclassifying ore and waste in selection mining units (SMU. The cost of misclassification of a given drillhole spacing is equal to the cost of processing waste misclassified as ore (Type I error plus the value of the ore misclassified as waste (Type II error. Type I and Type II errors were deduced by comparing true and estimated grades at SMUs, in relation to a cuttoff grade value and assuming free ore selection. True grades at SMUs and grades at drillhole samples were generated with conditional simulations. A set of estimated grades at SMU, one per each drillhole spacing, were generated with ordinary kriging. This method was used to determine the optimum drillhole spacing in a gold deposit. The results showed that the cost of misclassification is sensitive to extreme block values and tend to be overrepresented. Capping SMU’s lost values and implementing diggability constraints was recommended to improve calculations of total misclassification costs.

  14. Wetting of bituminized ion-exchangers under simulated repository conditions

    International Nuclear Information System (INIS)

    Aalto, H.; Valkiainen, M.

    2001-01-01

    According to the present plans the spent nuclear fuel from four Finnish nuclear power units will be transferred after interim storage to the final disposal site where it will be encapsulated and disposed of in a final repository constructed into the bedrock at a depth of 500 meters. Low and medium level waste generated at nuclear power plants will be finally disposed of in caverns constructed in the bedrock at the power plant site. The safety of the final disposal is based on a multibarrier concept and the degree of safety is estimated by using predictive models. The properties of the waste form are taken into account in the design of the repository construction. Bitumen has been chosen as an immobilisation agent for the wet wastes at Olkiluoto Power Plant, where two BWR units, TVO 1 and TVO 2, have separate bituminization facilities designed by Asea-Atom. Properties of bituminized spent ion-exchange resins from Olkiluoto power plant have been studied by VTT Chemical Technology since the late 70's. These studies have concentrated mainly on determining the long-term behaviour of the bituminization product under the repository conditions. Current interest lies on wetted product as a diffusion barrier. For this purpose a microscopic method for the visualisation of the structure of the wetted product has been developed. The equilibration of the samples in simulated concrete groundwater is currently going on at a temperature of 5-8 deg. C. Preliminary results are presented in this paper. Diffusion experiments have been planned for the further characterising of the wetted product as a release barrier for radionuclides including modelling. (author)

  15. Abiotic partitioning of clothianidin under simulated rice field conditions.

    Science.gov (United States)

    Mulligan, Rebecca A; Parikh, Sanjai J; Tjeerdema, Ronald S

    2015-10-01

    Clothianidin is registered for pre- and post-flood application in Californian rice fields for control of the rice seed midge, Cricotopus sylvestris, and the rice water weevil, Lissorhoptrus oryzophilus. The objective was to characterize air-water and soil-water partitioning of clothianidin under simulated Californian rice field conditions. Clothianidin was confirmed to be non-volatile (from water) via the gas purge method, as no loss from the aqueous phase was observed at 22 and 37 °C; an upper-limit KH value was calculated at 2.9 × 10(-11) Pa m(3) mol(-1) (20 °C). Soil-water partitioning was determined by the batch equilibrium method using four soils collected from rice fields in the Sacramento Valley, and sorption affinity (Kd ), sorbent capacity, desorption and organic-carbon-normalized distribution (Koc ) were determined. Values for pH, cation exchange capacity and organic matter content ranged from 4.5 to 6.6, from 5.9 to 37.9 and from 1.25 to 1.97% respectively. The log Koc values (22 and 37 °C) ranged from 2.6 to 2.7, while sorption capacity was low at 22 °C and decreased further at 37 °C. Hysteresis was observed in soils at both temperatures, suggesting that bound residues do not readily desorb. Soil-water and air-water partitioning will not significantly reduce offsite transport of clothianidin from flooded rice fields via drainage. © 2014 Society of Chemical Industry.

  16. Partitioning of etofenprox under simulated California rice-growing conditions.

    Science.gov (United States)

    Vasquez, Martice E; Gunasekara, Amrith S; Cahill, Thomas M; Tjeerdema, Ronald S

    2010-01-01

    The pyrethroid insecticide etofenprox is of current interest to rice farmers in the Sacramento Valley owing to its effectiveness against the rice water weevil, Lissorhoptrus oryzophilus Kuschel. This study aimed to describe the partitioning of etofenprox under simulated rice field conditions by determining its Henry's law constant (H) (an estimate of volatilization) and organic carbon-normalized soil-water distribution coefficient (K(oc)) at representative field temperatures. A comparison of etofenprox and lambda-cyhalothrin is presented using a level-1 fugacity model. Experimental determination of H revealed that etofenprox partitioned onto the apparatus walls and did not significantly volatilize; the maximum value of H was estimated to be 6.81 x 10(-1) Pa m(3) mol(-1) at 25 degrees C, based on its air and water method detection limits. Calculated values for H ranged from 5.6 x 10(-3) Pa m(3) mol(-1) at 5 degrees C to 2.9 x 10(-1) Pa m(3) mol(-1) at 40 degrees C, based on estimated solubility and vapor pressure values at various temperatures. Log K(oc) values (at 25 degrees C) were experimentally determined to be 6.0 and 6.4 for Princeton and Richvale rice field soils, respectively, and were very similar to the values for other pyrethroids. Finally, temperature appears to have little influence on etofenprox sorption, as the log K(oc) for the Princeton soil at 35 degrees C was 6.1. High sorption coefficients and relatively insignificant desorption and volatilization of etofenprox suggest that its insolubility drives it to partition from water by sorbing to soils with high affinity. Offsite movement is unlikely unless transported in a bound state on suspended sediments.

  17. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  18. NMR diffusion simulation based on conditional random walk.

    Science.gov (United States)

    Gudbjartsson, H; Patz, S

    1995-01-01

    The authors introduce here a new, very fast, simulation method for free diffusion in a linear magnetic field gradient, which is an extension of the conventional Monte Carlo (MC) method or the convolution method described by Wong et al. (in 12th SMRM, New York, 1993, p.10). In earlier NMR-diffusion simulation methods, such as the finite difference method (FD), the Monte Carlo method, and the deterministic convolution method, the outcome of the calculations depends on the simulation time step. In the authors' method, however, the results are independent of the time step, although, in the convolution method the step size has to be adequate for spins to diffuse to adjacent grid points. By always selecting the largest possible time step the computation time can therefore be reduced. Finally the authors point out that in simple geometric configurations their simulation algorithm can be used to reduce computation time in the simulation of restricted diffusion.

  19. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  20. Endurance training at altitude.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training.

  1. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    Science.gov (United States)

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  2. Effects of the initial conditions on cosmological $N$-body simulations

    OpenAIRE

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2014-01-01

    Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the infl...

  3. Desert Cyanobacteria under simulated space and Martian conditions

    Science.gov (United States)

    Billi, D.; Ghelardini, P.; Onofri, S.; Cockell, C. S.; Rabbow, E.; Horneck, G.

    2008-09-01

    The environment in space and on planets such as Mars, can be lethal to living organisms and high levels of tolerance to desiccation, cold and radiation are needed for survival: rock-inhabiting cyanobacteria belonging to the genus Chroococcidiopsis can fulfil these requirements [1]. These cyanobacteria constantly appear in the most extreme and dry habitats on Earth, including the McMurdo Dry Valleys (Antarctica) and the Atacama Desert (Chile), which are considered the closest terrestrial analogs of two Mars environmental extremes: cold and aridity. In their natural environment, these cyanobacteria occupy the last refuges for life inside porous rocks or at the stone-soil interfaces, where they survive in a dry, dormant state for prolonged periods. How desert strains of Chroococcidiopsis can dry without dying is only partially understood, even though experimental evidences support the existence of an interplay between mechanisms to avoid (or limit) DNA damage and repair it: i) desert strains of Chroococcidiopsis mend genome fragmentation induced by ionizing radiation [2]; ii) desiccation-survivors protect their genome from complete fragmentation; iii) in the dry state they show a survival to an unattenuated Martian UV flux greater than that of Bacillus subtilis spores [3], and even though they die following atmospheric entry after having orbited the Earth for 16 days [4], they survive to simulated shock pressures up to 10 GPa [5]. Recently additional experiments were carried out at the German Aerospace Center (DLR) of Cologne (Germany) in order to identify suitable biomarkers to investigate the survival of Chroococcidiopsis cells present in lichen-dominated communities, in view of their direct and long term space exposition on the International Space Station (ISS) in the framework of the LIchens and Fungi Experiments (LIFE, EXPOSEEuTEF, ESA). Multilayers of dried cells of strains CCMEE 134 (Beacon Valley, Antarctica), and CCMEE 123 (costal desert, Chile ), shielded by

  4. Leaching of Al2O3 in simulated repository conditions

    International Nuclear Information System (INIS)

    Svensson, B.-M.; Dahl, L.

    1978-06-01

    Al 2 O 3 material has been leached at 90 deg C in: simulated ground water at pH 8.5, embedded in bentonite + silica sand saturated with the same water, and in simulated ground water at pH 6 and pH 10. Leaching periods varied from 30 days to 300 days. We observed slight weight increments in all cases from deposits on samples from the environment. These mask weight losses from Al 2 O 3 that may have occurred. (author)

  5. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  6. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  7. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  8. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  9. Continuous Strip Reduction Test Simulating Tribological Conditions in Ironing

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Nielsen, Chris Valentin; Christiansen, Peter

    2017-01-01

    materials, surface roughnesses, normal pressure, sliding length, sliding speed, interface temperature and lubrication. This paper proposes a new Strip Reduction Test (SRT) for industrial ironing processes that is capable of replicating the highly severe tribological conditions that are experienced during...

  10. Persistence of Initial Conditions in Continental Scale Air Quality Simulations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in Figures 1 – 6 and Table 2 of the technical note "Persistence of Initial Conditions in Continental Scale Air Quality...

  11. Sensitivity of a Simulated Derecho Event to Model Initial Conditions

    Science.gov (United States)

    Wang, Wei

    2014-05-01

    Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.

  12. Finite element simulation of ironing process under warm conditions

    Directory of Open Access Journals (Sweden)

    Swadesh Kumar Singh

    2014-01-01

    Full Text Available Metal forming is one of the most important steps in manufacturing of a large variety of products. Ironing in deep drawing is done by adjusting the clearance between the punch and the die and allow the material flow over the punch. In the present investigation effect of extent of ironing behavior on the characteristics of the product like thickness distribution with respect to temperature was studied. With the help of finite element simulation using explicit finite element code LS-DYNA the stress in the drawn cup were predicted in the drawn cup. To increase the accuracy in the simulation process, numbers of integration points were increased in the thickness direction and it was found that there is very close prediction of finite element results to that of experimental ones.

  13. Development of simulation technology on full auto air conditioning system; Auto eakon no simulation gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, N; Otsubo, Y; Matsumura, K; Sako, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Mazda has developed simulation technology on control of full auto air conditioning system. We have developed the development tool based on the technology, aiming at higher controllability of full auto air conditioning system and shorter development period. The tool performs simulation on control, on-vehicle evaluation of actual load operation, collecting data and analyzing them by personal computer. This paper reports our verification results on effectiveness of the technology/ and the tool. 4 refs., 9 figs.

  14. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  15. Simulation of global warming effect on outdoor thermal comfort conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, G.R.; Ranjbar, F. [Univ. of Tehran (IR). Dept. of Physical Geography; Orosa, J.A. [Univ. of A Coruna (Spain). Dept. of Energy

    2010-07-01

    In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 C and 5.6 C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

  16. Simulation of conditional diffusions via forward-reverse stochastic representations

    KAUST Repository

    Bayer, Christian

    2015-01-01

    We derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval,conditioned on the terminal state. The conditioning can be with respect to a fixed measurement point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced by Milstein, Schoenmakers and Spokoiny in the context of density estimation. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We also present an application in statistics, in the context of the EM algorithm.

  17. Simulation of conditional diffusions via forward-reverse stochastic representations

    KAUST Repository

    Bayer, Christian

    2015-01-07

    We derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval,conditioned on the terminal state. The conditioning can be with respect to a fixed measurement point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced by Milstein, Schoenmakers and Spokoiny in the context of density estimation. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We also present an application in statistics, in the context of the EM algorithm.

  18. Simulation of Daylighting Conditions in a Virtual Underground City

    Directory of Open Access Journals (Sweden)

    Cristiano Merli Alcini

    2015-06-01

    Full Text Available From the Piranesi fantastic architectures to the animation movies and video games of the last thirty years, a new design approach has been introduced and developed: the design of the virtual space. Designing the "virtual" means experiencing a multidisciplinary approach where architecture, engineering, and urban planning meet the new horizons of information and communication technology. This study is focused on virtual space, which is an underground city. Mankind have always made and used underground environments: the possibilities of unlimited spaces to potential development, the reduced needs for raw materials for the construction and the protection from outdoor weather are some of the reasons that prompted humans to the realization of underground spaces in the past. These reasons and the availability of innovative technologies could encourage a breakthrough in the realization of new underground environments. A recent example is represented by the Underground City of Montreal (RÉSO. We present the architectural design of a virtual underground city, which is called Arch[ane], and its evaluation. The underground city is modular and the studied module is composed of eight floors with a total depth of 400 m and dimensions of 800 m × 800 m. The study comprises the evaluation of the effect of sunlight on each eight floors of the city. Daylighting simulations were performed considering different cities at different latitudes, days, and hours. The results have shown that the particular design of the underground city with skylights gives significant values of illuminance at a certain depth. Furthermore, the simulation results show how huge can be the potentialities of software to simulate extremely big environments.

  19. Radiotracer technique for leakage detection under simulated conditions

    International Nuclear Information System (INIS)

    Yelgaonkar, V.N.; Sharma, V.K.; Tapase, A.S.

    2001-01-01

    Radiotracer techniques are often used to locate leaks in underground pipelines. An attempt was made to standardize radiotracer pulse migration in terms of minimum detectable limit. For this purpose a 6 inch diameter 1200 long steel pipe was used. Two leak rates viz. 10 litres per minute and 1 litre per minute with an accuracy of ± 10% were simulated. The experiments on this pipeline showed that this method could be used to locate a leak of the order of 1 litre per minute in a 6 inch diameter isolated underground pipeline. (author)

  20. Simulation of temperature conditions on APT of HMA mixes

    CSIR Research Space (South Africa)

    Steyn, WJVDM

    2008-10-01

    Full Text Available between these APT data and practical application of the outcomes of the tests. The paper starts with general background on the effect of temperature on the loading conditions and response of HMA materials, methods to manage it during APT testing...

  1. Validation of Boundary Conditions for CFD Simulations on Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Jensen, Rasmus Lund; Pedersen, D.N.

    2001-01-01

    The application of Computational Fluid Dynamics (CFD) for ventilation research and design of ventilation systems has increased during the recent years. This paper provides an investigation of direct description of boundary conditions for a complex inlet diffuser and a heated surface. A series...

  2. Performance of Chlorella sorokiniana under simulated extreme winter conditions

    NARCIS (Netherlands)

    Cuaresma, M.; Buffing, M.F.; Janssen, M.G.J.; Lobato, C.V.; Wijffels, R.H.

    2012-01-01

    High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed

  3. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Directory of Open Access Journals (Sweden)

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-03-01

    Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician

  4. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  5. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    Science.gov (United States)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  6. Comments on ''Use of conditional simulation in nuclear waste site performance assessment'' by Carol Gotway

    International Nuclear Information System (INIS)

    Downing, D.J.

    1993-01-01

    This paper discusses Carol Gotway's paper, ''The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.'' The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out

  7. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  8. Key issues of ultraviolet radiation of OH at high altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing [State Key Laboratory of High Temperature Gasdynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  9. Simulation of drive of mechanisms, working in specific conditions

    Science.gov (United States)

    Ivanovskaya, A. V.; Rybak, A. T.

    2018-05-01

    This paper presents a method for determining the dynamic loads on the lifting actuator device other than the conventional methods, for example, ship windlass. For such devices, the operation of their drives is typical under special conditions: different environments, the influence of hydrometeorological factors, a high level of vibration, variability of loading, etc. Hoisting devices working in such conditions are not considered in the standard; however, relevant studies concern permissible parameters of the drive devices of this kind. As an example, the article studied the work deck lifting devices - windlass. To construct a model, the windlass is represented by a rod of the variable cross-section. As a result, a mathematical model of the longitudinal oscillations of such rod is obtained. Analytic dependencies have also been obtained to determine the natural frequencies of the lowest forms of oscillations, which are necessary and are the basis for evaluating the parameters of operation of this type of the device.

  10. Simulations of the Scandinavian ice sheet and its subsurface conditions

    International Nuclear Information System (INIS)

    Boulton, G.S.; Caban, P.; Hulton, N.

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite different in extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated

  11. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  12. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  13. Degradation of Poly (lactic acid under Simulated Landfill Conditions

    Directory of Open Access Journals (Sweden)

    Chomnutcha Boonmee

    2017-03-01

    Full Text Available In this study, the physical and chemical properties change of poly(lactic acid after burying in the mixture of soil and sludge under thermophilic (61 °C oxygen limited conditions were investigated using various analytical techniques. The environmental factors under these setting conditions and microbial activities accelerated the degradation process of PLA. Under tested conditions, PLA loss their weight about 90% at the burying time of 90 days. During the degradation process, PLA samples were continuously broken to small fragile fragments and showed the size less than 1 mm at the end of degradation test. Change of the surface morphology change was revealed by scanning electron microscopy (SEM. Many pores, cracks and irregular roughness were presented on the PLA surface. Thermal decomposition was decreased from 387.8 to 289.2 °C. The percentage of carbon content in molecular structure decreased from 49.46% to 45.42%. In addition, the Fourier transformed infrared spectroscopy (FTIR revealed the change of ester bonds. This study can be used for developing PLA waste management process.

  14. On the use of the polarization method of remote indication of oil pollutants on the sea surface under different hydrometerological conditions and at different altitudes of the sun

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, A A; Lakhtanov, G A

    1980-01-01

    Results of experimental investigations of water areas of the Caspian sea with the aid of a specially developed shipboard polarimeter. Interpretation of the remote measurements was carried out by laboratory analysis of the thickness of the oil film and the amount of dissolved oil in samples gathered from the surface of the sea. Analysis of the influence of weather conditions and of the composition of the petroleum products on the results of remote indications made it possible to formulate concrete methodical recommendations for achieving optimum results in remote assessment of oil pollutants of seawater areas. The effectiveness of the polarization method under different hydrometerological conditions makes it possible to regard it as a good supplementation to the traditional visual and instrumental methods of monitoring pollution of bodies of water.

  15. Behavior of ionic conducting IPN actuators in simulated space conditions

    Science.gov (United States)

    Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Laurent, Elisabeth; Cadiergues, Laurent; Vidal, Frédéric

    2016-04-01

    The presentation focuses on the performances of flexible all-polymer electroactive actuators under space-hazardous environmental factors in laboratory conditions. These bending actuators are based on high molecular weight nitrile butadiene rubber (NBR), poly(ethylene oxide) (PEO) derivative and poly(3,4-ethylenedioxithiophene) (PEDOT). The electroactive PEDOT is embedded within the PEO/NBR membrane which is subsequently swollen with an ionic liquid as electrolyte. Actuators have been submitted to thermal cycling test between -25 to 60°C under vacuum (2.4 10-8 mbar) and to ionizing Gamma radiations at a level of 210 rad/h during 100 h. Actuators have been characterized before and after space environmental condition ageing. In particular, the viscoelasticity properties and mechanical resistance of the materials have been determined by dynamic mechanical analysis and tensile tests. The evolution of the actuation properties as the strain and the output force have been characterized as well. The long-term vacuuming, the freezing temperature and the Gamma radiations do not affect significantly the thermomechanical properties of conducting IPNs actuators. Only a slight decrease on actuation performances has been observed.

  16. Heterogeneous oxidation of mercury in simulated post combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec [Iowa State University, Ames, IA (United States). Center for Sustainable Environmental Technologies

    2003-01-01

    Heterogeneous mercury oxidation was studied by exposing whole fly ash samples and magnetic, nonmagnetic, and size-classified fly ash fractions to elemental mercury vapor in simulated flue gas streams. Fly ash from sub-bituminous Wyodak-Anderson PRB coal and bituminous Blacksville coal were used. Scanning electron microscopy, X-ray diffraction, thermogravimetric analyses, and BET N{sub 2} isothermal sorption analyses were performed to characterize the fly ash samples. Mercury speciation downstream from the ash was determined using the Ontario Hydro method. Results showed that the presence of fly ash was critical for mercury oxidation, and the surface area of the ash appears to be an important parameter. However, for a given fly ash, there were generally no major differences in catalytic oxidation potential between different fly ash fractions. This includes fractions enriched in unburned carbon and iron oxides. The presence of NO{sub 2}, HCl, and SO{sub 2} resulted in greater levels of mercury oxidation, while NO inhibited mercury oxidation. The gas matrix affected mercury oxidation more than the fly ash composition. 21 refs., 10 figs., 2 tabs.

  17. Some potentialities of living organisms under simulated Martian conditions.

    Science.gov (United States)

    Lozina-Lozinsky, L K; Bychenkova, V N; Zaar, E I; Levin, V L; Rumyantseva, V M

    1971-01-01

    Temperature, humidity, pressure, composition of the atmosphere and radiation are the main factors conditioning life on the surface of Mars. When studying the Martian ecology, one must know the total effect of these factors. One may expect that, as a result of adaptation to low temperatures, there is a corresponding shift in the temperature optimum of enzymatic activity. Dryness is the main obstacle to active life. We suggest the presence of some soil moisture and water vapour. Moreover, there can be areas of permafrost. This minimum supply of water and periodic fluctuations of humidity may create conditions for the existence of drought-resistant organisms. Decreased atmospheric pressure alone does not affect micro-organisms, plants, protozoa and even insects. Ciliates reproduce in a flowing atmosphere of pure nitrogen containing 0.0002-0.0005% oxygen as an impurity. Protozoa may also develop in an atmosphere of 98-99% carbon dioxide mixed with 1% O2. Therefore, even traces of oxygen in the Martian atmosphere would be sufficient for aerobic unicellular organisms. Cells and organisms on earth have acquired various ways of protection from uv light, and therefore may increase their resistance further by adaptation or selection. The resistance of some organisms to ionizing radiation is high enough to enable them to endure hard ionizing radiation of the sun. Experiments with unicellular [correction of unicellar] organisms show that the effect of short wave uv radiation depends on the intensity of visible light, long-wave solar uv radiation, temperatures, cell repair processes, and the state of cell components, i.e. whether the cell was frozen, dried or hydrated.

  18. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions

    Science.gov (United States)

    Podolich, O.; Zaets, I.; Kukharenko, O.; Orlovska, I.; Reva, O.; Khirunenko, L.; Sosnin, M.; Haidak, A.; Shpylova, S.; Rabbow, E.; Skoryk, M.; Kremenskoy, M.; Demets, R.; Kozyrovska, N.; de Vera, J.-P.

    2017-05-01

    Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony—a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film.

  19. Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices

    Science.gov (United States)

    Nance, Robert P.; Hash, David B.; Hassan, H. A.

    1997-01-01

    A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.

  20. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  1. Simulation of worst-case operating conditions for integrated circuits operating in a total dose environment

    International Nuclear Information System (INIS)

    Bhuva, B.L.

    1987-01-01

    Degradations in the circuit performance created by the radiation exposure of integrated circuits are so unique and abnormal that thorough simulation and testing of VLSI circuits is almost impossible, and new ways to estimate the operating performance in a radiation environment must be developed. The principal goal of this work was the development of simulation techniques for radiation effects on semiconductor devices. The mixed-mode simulation approach proved to be the most promising. The switch-level approach is used to identify the failure mechanisms and critical subcircuits responsible for operational failure along with worst-case operating conditions during and after irradiation. For precise simulations of critical subcircuits, SPICE is used. The identification of failure mechanisms enables the circuit designer to improve the circuit's performance and failure-exposure level. Identification of worst-case operating conditions during and after irradiation reduces the complexity of testing VLSI circuits for radiation environments. The results of test circuits for failure simulations using a conventional simulator and the new simulator showed significant time savings using the new simulator. The savings in simulation time proved to be circuit topology-dependent. However, for large circuits, the simulation time proved to be orders of magnitude smaller than simulation time for conventional simulators

  2. Simulation study on the maximum continuous working condition of a power plant boiler

    Science.gov (United States)

    Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo

    2018-05-01

    First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.

  3. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    Science.gov (United States)

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  4. METAL STRUCTURES SURVIVABILITY ASSESSMENT WHEN SIMULATING SERVICE CONDITIONS

    Directory of Open Access Journals (Sweden)

    O. M. Gibalenko

    2016-04-01

    Full Text Available Purpose. The research is aimed at improving the quality and reliability of measures of primary and secondary protection of metal structures at manufacturing companies, to prolong the service life of cyclically loaded structures of production facilities taking into account the corrosion level of danger. Methodology. Authors proposed to use the principles of process approach for statement and realization of management problems of operational service life in corrosion environments. The principles of ensuring reliability on the level of corrosion danger include justification of stages sequence for survivability assessment of a structural metalwork based on the strategy of DMAIC (define, measure, analyze, improve, control: definitions, measurements, analysis, improvement and monitoring of measures of primary and secondary corrosion protection. Findings. Providing control measures from corrosion according to the criterion of corrosion danger allows providing requirements of reliability of structural metalwork based on calculated provisions of the limiting conditions method and solving the problems of management in technological safety during the expected service life of structural objects. Originality. The developed strategy of maintenance of the industrial facilities on an actual state includes the process approach to resource management by creation of system for the account and the functional controlling, risk analysis and regulation of technological safety in production facilities of the enterprises. Realization of the principles of process approach to management of technological safety at the object level is directed to perfecting of tools and methods of anticorrosive protection, extension of a resource taking into account indexes of survivability (, and justification of program measures to ensure the reliability of enterprises(PER. Practical value. On the basis of process approach to quality and reliability management, generalizations of the

  5. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Science.gov (United States)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo

    2013-12-01

    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  6. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik

    2013-12-01

    Full Text Available Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT. The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  7. Technical Note: Quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions

    Directory of Open Access Journals (Sweden)

    J. Kleffmann

    2008-11-01

    Full Text Available In the present pilot study, an optimized LOPAP instrument (LOng Path Absorption Photometer for the detection of nitrous acid (HONO in the atmosphere (DL 0.2 pptV was tested at the high alpine research station Jungfraujoch at 3580 m altitude in the Swiss Alps under conditions comparable to polar regions. HONO concentrations in the range <0.5–50 pptV with an average of 7.5 pptV were observed at the Jungfraujoch. The diurnal profiles obtained exhibited clear maxima at noon and minima with very low concentration during the night supporting the proposed photochemical production of HONO. In good agreement with recent measurements at the South Pole, it was demonstrated, that interferences of chemical HONO instruments can significantly influence the measurements and lead to considerable overestimations, especially for low pollution level. Accordingly, the active correction of interferences is of paramount importance for the determination of reliable HONO data.

  8. Artificial Boundary Conditions for the Numerical Simulation of Unsteady Acoustic Waves

    National Research Council Canada - National Science Library

    Tsynkov, S. V

    2003-01-01

    We construct non-local artificial boundary conditions (ABCs) for the numerical simulation of genuinely time-dependent acoustic waves that propagate from a compact source in an unbounded unobstructed space...

  9. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  10. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  11. Effect of high altitude cosmic irradiation upon cell generation time

    International Nuclear Information System (INIS)

    Soleilhavoup, J.P.; Croute, F.; Tixador, R.; Blanquet, Y.; Planel, H.

    1975-01-01

    Paramecia cultures placed at 3800 meter altitude show a proliferating activity acceleration compared to control cultures placed at low altitude under the same environment conditions. These results confirm the cosmic irradiation influence upon the activating effect produced by the natural ionizing radiations on living organisms [fr

  12. The effect of box shape on the dynamic properties of proteins simulated under periodic boundary conditions

    NARCIS (Netherlands)

    Wassenaar, T.A.; Mark, A.E.

    The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard

  13. A Simulation of Strategic Decision Making in Situational Stereotype Conditions for Entrepreneurial Companies.

    Science.gov (United States)

    West, G. Page, III; Wilson, E. Vance

    1995-01-01

    Examines simulation in entrepreneurial research, reviews cognitive structures and theories, and presents a computerized simulation of strategic decision-making in situational stereotype conditions for entrepreneurial companies. The study suggests repeated exposure to a pattern recognition issue in entrepreneurship may lead to a broader…

  14. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    DEFF Research Database (Denmark)

    Webber, Heidi; White, Jeffrey W; Kimball, Bruce

    2018-01-01

    to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences...... between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions....

  15. Detailed simulations of lighting conditions in office rooms lit by daylight and artificial light

    DEFF Research Database (Denmark)

    Iversen, Anne

    In this thesis the effect on the annual artificial lighting demand is investigated by employing detailed simulations of lighting conditions in office rooms lit by daylight and artificial. The simulations of the artificial lighting demand is accomplished through daylight simulations in Radiance....... The detailed simulations includes studies of the resolution of different weather data sets in climate-based daylight modeling. Furthermore, influence of the electrical lighting demand by simulating with dynamic occupancy patterns is studied. Finally the thesis explores the influence of obstructions in an urban...... canyon on the daylight availability within the buildings, and hence on the energy consumption for artificial lights. The results from the thesis demonstrates that the effect on the outcome of the daylight simulations when simulating with typical weather data files for the location of Copenhagen...

  16. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  17. Dietary Recommendations for Cyclists during Altitude Training

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH), “live high, train low” (LH-TL) or “intermittent hypoxic training” (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  18. Dietary Recommendations for Cyclists during Altitude Training.

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-06-18

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  19. Dietary Recommendations for Cyclists during Altitude Training

    Directory of Open Access Journals (Sweden)

    Małgorzata Michalczyk

    2016-06-01

    Full Text Available The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH, “live high, train low” (LH-TL or “intermittent hypoxic training” (IHT. Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  20. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  1. Studies on the survival of Ascaris suum eggs under laboratory and simulated field conditions

    NARCIS (Netherlands)

    Gaasenbeek, C.P.H.; Borgsteede, F.H.M.

    1998-01-01

    A series of four experiments was carried out to study the survival of Ascaris suum eggs: in a pig slurry unit on a farm, in the laboratory under anaerobic conditions and different relative humidities (rH), and under simulated field conditions. Survival of eggs in the pig slurry unit was 20% after

  2. Development of a comprehensive database of scattering environmental conditions and simulation constraints for offshore wind turbines

    Directory of Open Access Journals (Sweden)

    C. Hübler

    2017-10-01

    Full Text Available For the design and optimisation of offshore wind turbines, the knowledge of realistic environmental conditions and utilisation of well-founded simulation constraints is very important, as both influence the structural behaviour and power output in numerical simulations. However, real high-quality data, especially for research purposes, are scarcely available. This is why, in this work, a comprehensive database of 13 environmental conditions at wind turbine locations in the North and Baltic Sea is derived using data of the FINO research platforms. For simulation constraints, like the simulation length and the time of initial simulation transients, well-founded recommendations in the literature are also rare. Nevertheless, it is known that the choice of simulation lengths and times of initial transients fundamentally affects the quality and computing time of simulations. For this reason, studies of convergence for both parameters are conducted to determine adequate values depending on the type of substructure, the wind speed, and the considered loading (fatigue or ultimate. As the main purpose of both the database and the simulation constraints is to compromise realistic data for probabilistic design approaches and to serve as a guidance for further studies in order to enable more realistic and accurate simulations, all results are freely available and easy to apply.

  3. Effects of Uncertainties in Electric Field Boundary Conditions for Ring Current Simulations

    Science.gov (United States)

    Chen, Margaret W.; O'Brien, T. Paul; Lemon, Colby L.; Guild, Timothy B.

    2018-01-01

    Physics-based simulation results can vary widely depending on the applied boundary conditions. As a first step toward assessing the effect of boundary conditions on ring current simulations, we analyze the uncertainty of cross-polar cap potentials (CPCP) on electric field boundary conditions applied to the Rice Convection Model-Equilibrium (RCM-E). The empirical Weimer model of CPCP is chosen as the reference model and Defense Meteorological Satellite Program CPCP measurements as the reference data. Using temporal correlations from a statistical analysis of the "errors" between the reference model and data, we construct a Monte Carlo CPCP discrete time series model that can be generalized to other model boundary conditions. RCM-E simulations using electric field boundary conditions from the reference model and from 20 randomly generated Monte Carlo discrete time series of CPCP are performed for two large storms. During the 10 August 2000 storm main phase, the proton density at 10 RE at midnight was observed to be low (Dst index is bounded by the simulated Dst values. In contrast, the simulated Dst values during the recovery phases of the 10 August 2000 and 31 August 2005 storms tend to underestimate systematically the observed late Dst recovery. This suggests a need to improve the accuracy of particle loss calculations in the RCM-E model. Application of this technique can aid modelers to make efficient choices on either investing more effort on improving specification of boundary conditions or on improving descriptions of physical processes.

  4. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli

    Science.gov (United States)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    INTRODUCTION: Pulmonary altitude decompression sickness (DCS) is a rare condition. 'Chokes' which are characterized by the triad of substernal pain, cough, and dyspnea, are considered to be associated with severe accumulation of gas bubbles in the pulmonary capillaries and may rapidly develop into a life-threatening medical emergency. This study was aimed at characterizing early symptomatology and the appearance of venous gas emboli (VGE). METHODS: Symptoms of simulated-altitude DCS and VGE (with echo-imaging ultrasound) were analyzed in 468 subjects who participated in 22 high altitude hypobaric chamber research protocols from 1983 to 2001 at Brooks Air Force Base, TX. RESULTS: Of 2525 subject-exposures to simulated altitude, 1030 (41%) had symptoms of DCS. Only 29 of those included DCS-related pulmonary symptoms. Of these, only 3 subjects had all three pulmonary symptoms of chokes; 9 subjects had two of the pulmonary symptoms; and 17 subjects had only one. Of the 29 subject-exposures with pulmonary symptoms, 27 had VGE and 21 had severe VGE. The mean onset times of VGE and symptoms in the 29 subject-exposures were 42 +/- 30 min and 109 +/- 61 min, respectively. In 15 subjects, the symptoms disappeared during recompression to ground level followed by 2 h of oxygen breathing. In the remaining 14 cases, the symptoms disappeared with immediate hyperbaric oxygen treatment. CONCLUSIONS: Pulmonary altitude DCS or chokes is confirmed to be a rare condition. Our data showed that when diagnosed early, recompression to ground level pressure and/or hyperbaric oxygen treatment was 100% successful in resolving the symptoms.

  5. specsim: A Fortran-77 program for conditional spectral simulation in 3D

    Science.gov (United States)

    Yao, Tingting

    1998-12-01

    A Fortran 77 program, specsim, is presented for conditional spectral simulation in 3D domains. The traditional Fourier integral method allows generating random fields with a given covariance spectrum. Conditioning to local data is achieved by an iterative identification of the conditional phase information. A flowchart of the program is given to illustrate the implementation procedures of the program. A 3D case study is presented to demonstrate application of the program. A comparison with the traditional sequential Gaussian simulation algorithm emphasizes the advantages and drawbacks of the proposed algorithm.

  6. 某型膨胀循环发动机高空模拟试验方案研究%Research on altitude simulation test scheme for expand cycle engine

    Institute of Scientific and Technical Information of China (English)

    黄仕启; 李锦江; 孙慧娟

    2017-01-01

    某型膨胀循环发动机在研制初期基于环境压力可能对膨胀循环发动机起动加速性有较大影响的考虑,采用了全程主动引射高空模拟试验方案,试验结果显示环境压力对发动机起动加速性的影响较小.发动机室压和喷管面积比是影响引射方式的主要参数,该型膨胀循环发动机与采用被动引射的某型燃气发生器循环发动机参数相当,这为该型膨胀循环发动机采用被动引射提供了可能,并对膨胀循环发动机采用被动引射高空模拟试验方案的可行性进行仿真研究.%Based on the principal that the starting acceleration performance of an expand cycle engine was possibly affected by the ambient pressure in its developing beginning phase, a test scheme of the positive ejection altitude simulation was selected. The test results show that the ambient pressure affects the starting acceleration performance slightly, the chamber pressure and nozzle area ratio of the expand cycle engine are the main parameters affecting the ejection form, and the parameters of a cer-tain gas generator cycle engine with passive ejection are quite same as that of the expand cycle en-gine, which provide a possible selection for the expand cycle engine to adopt the passive ejection form. Therefore, the feasibility research on the passive ejection altitude simulation test scheme for the expand cycle engine is carried out in this paper.

  7. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  8. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  9. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Science.gov (United States)

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  10. Simulations of the transport and deposition of 137Cs over Europe after the Chernobyl NPP accident: influence of varying emission-altitude and model horizontal and vertical resolution

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Cozic, A.; Møller, A. P.

    2013-03-01

    The coupled model LMDzORINCA has been used to simulate the transport, wet and dry deposition of the radioactive tracer 137Cs after accidental releases. For that reason, two horizontal resolutions were deployed and used in the model, a regular grid of 2.5°×1.25°, and the same grid stretched over Europe to reach a resolution of 0.45°×0.51°. The vertical dimension is represented with two different resolutions, 19 and 39 levels, respectively, extending up to mesopause. Four different simulations are presented in this work; the first uses the regular grid over 19 vertical levels assuming that the emissions took place at the surface (RG19L(S)), the second also uses the regular grid over 19 vertical levels but realistic source injection heights (RG19L); in the third resolution the grid is regular and the vertical resolution 39 vertical levels (RG39L) and finally, it is extended to the stretched grid with 19 vertical levels (Z19L). The best choice for the model validation was the Chernobyl accident which occurred in Ukraine (ex-USSR) on 26 May 1986. This accident has been widely studied since 1986, and a large database has been created containing measurements of atmospheric activity concentration and total cumulative deposition for 137Cs from most of the European countries. According to the results, the performance of the model to predict the transport and deposition of the radioactive tracer was efficient and accurate presenting low biases in activity concentrations and deposition inventories, despite the large uncertainties on the intensity of the source released. However, the best agreement with observations was obtained using the highest horizontal resolution of the model (Z19L run). The model managed to predict the radioactive contamination in most of the European regions (similar to Atlas), and also the arrival times of the radioactive fallout. As regards to the vertical resolution, the largest biases were obtained for the 39 layers run due to the increase of

  11. Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

    Science.gov (United States)

    Arias, S.; Montlaur, A.

    2018-03-01

    In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

  12. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.

  13. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  14. Simulation of snow distribution and melt under cloudy conditions in an Alpine watershed

    Directory of Open Access Journals (Sweden)

    H.-Y. Li

    2011-07-01

    Full Text Available An energy balance method and remote-sensing data were used to simulate snow distribution and melt in an alpine watershed in northwestern China within a complete snow accumulation-melt period. The spatial energy budgets were simulated using meteorological observations and a digital elevation model of the watershed. A linear interpolation method was used to estimate the daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer (MODIS data. Hourly snow distribution and melt, snow cover extent and daily discharge were included in the simulated results. The root mean square error between the measured snow-water equivalent samplings and the simulated results is 3.2 cm. The Nash and Sutcliffe efficiency statistic (NSE between the measured and simulated discharges is 0.673, and the volume difference (Dv is 3.9 %. Using the method introduced in this article, modelling spatial snow distribution and melt runoff will become relatively convenient.

  15. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  16. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  17. Training at altitude in practice.

    Science.gov (United States)

    Dick, F W

    1992-10-01

    There can be little doubt that training at altitude is fundamental to preparing an athlete for competition at altitude. However the value of training at altitude for competition at sea level appears on the one hand to lack total acceptance amongst sports scientists; and on the other to hold some cloak of mystery for coaches who have yet to enjoy first hand experience. The fact is that very few endurance athletes will ignore the critical edge which altitude training affords. Each fraction of a percentage of performance advantage gained through methods which are within the rules of fair play in sport, may shift the balance between failure and achievement. Moreover, there is growing support for application of training at altitude for speed-related disciplines. This paper aims to demystify the subject by dealing with practical aspects of training at altitude. Such aspects include a checklist of what should and should not be done at altitude, when to use altitude relative to target competitions, and specific training examples.

  18. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  19. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    Science.gov (United States)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  20. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  1. Protein patterns of black fungi under simulated Mars-like conditions.

    Science.gov (United States)

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-29

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  2. Application of altitude/hypoxic training by elite athletes.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

  3. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  4. Low-Altitude Operation of Unmanned Rotorcraft

    Science.gov (United States)

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized

  5. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  6. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  7. Realizability conditions for the turbulent stress tensor in large-eddy simulation

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1994-01-01

    The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy

  8. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.; Hoteit, Hussein; Chawathe, Adwait

    2017-01-01

    and thermodynamic phase split, the impact of grid downscaling on CEOR simulations is not well understood. In this work, we introduce a geostatistical downscaling method conditioned to tracer data to refine a coarse history-matched WF model. This downscaling process

  9. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  10. Cavitation Simulation on Conventional and Highly-Skewed Propellers in the Behind Condition

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Mikkelsen, Robert Flemming

    2011-01-01

    The cavitating flows around conventional and highly-skewed propellers in the behind-hull condition are simulated by an in-house RANS solver, EllipSys (Sørensen 2003), with the cavitation model, based on the homogeneous equilibrium modeling (HEM) approach and a vapor transport equation. The valida...

  11. The Impact of Preparation: Conditions for Developing Professional Knowledge through Simulations

    Science.gov (United States)

    Sjöberg, David; Karp, Staffan; Söderström, Tor

    2015-01-01

    This article examines simulations of critical incidents in police education by investigating how activities in the preparation phase influence participants' actions and thus the conditions for learning professional knowledge. The study is based on interviews in two stages (traditional and stimulated recall interviews) with six selected students…

  12. Penetration of n-hexadecane and water into wood under conditions simulating catastrophic floods

    Science.gov (United States)

    Ganna Baglayeva; Wayne S. Seames; Charles R. Frihart; Jane O' Dell; Evguenii I. Kozliak

    2017-01-01

    To simulate fuel oil spills occurring during catastrophic floods, short-term absorption of two chemicals, n-hexadecane (representative of semivolatile organic compounds in fuel oil) and water, into southern yellow pine was gravimetrically monitored as a function of time at ambient conditions. Different scenarios were run on the basis of (1) the...

  13. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    International Nuclear Information System (INIS)

    Xu, H.; Mamou, M.; Khalid, M.

    2004-01-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  14. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2004-07-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  15. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    International Nuclear Information System (INIS)

    Wang, Haitao; Han, En-Hou

    2017-01-01

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  16. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haitao; Han, En-Hou [Chinese Academy of Sciences, Shenyang (China)

    2017-04-15

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  17. [Nursing students assessment in simulated conditions : in search of meaning and ethics].

    Science.gov (United States)

    Homerin, Marie-Pierre; Roumanet, Marie-Cécile

    2014-10-01

    A thought about the assessment in simulated conditions is at the origin of this research-action conducted at the Institute of Nursing Education of Chambery, France. Indeed, the differences in the assessment procedures between units that require this kind of validation and the disappointing rate of success at the examinations in simulated situations have led the trainers to raise the following question : « How can these assessments be meaningful and consistent with the goal of training (help to become autonomous and reflexive practitioners) » ?This issue was addressed with concepts such as socioconstructivism, simulation in health, assessment and ethical principles. The change of practices has been the application of the principles of ?educative? assessment according to G. Nunziatti which strongly involves the students in the assessment?s process.In order to estimate the impact of these changes of practices, an unidentified online survey was offered to all students who benefited from this kind of assessment. The results between two classes of students having had different evaluation procedures have also been compared.The objectives were, after the implementation of this new kind of evaluation, to assess the students? satisfaction, to compare the failure rate at the tests in simulated conditions and to verify the compliance with the ethical principles.This study has shown the students? satisfaction about these new forms of assessment in simulated conditions, an increased success rate in the tests and the applicability of the ethical principles with this way of proceeding. However, the principles of justice and non-maleficence are difficult to implement. Nevertheless, this critical thinking on the procedures of assessment in simulated conditions has helped to change the practices and the assessment design by the teachers.

  18. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    Science.gov (United States)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  19. Influence of changes in initial conditions for the simulation of dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kotyrba, Martin [Department of Informatics and Computers, University of Ostrava, 30 dubna 22, Ostrava (Czech Republic)

    2015-03-10

    Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will be presented for the simulation of Lorenz system.

  20. Respiratory Muscle Training and Cognitive Function Exercising at Altitude.

    Science.gov (United States)

    Quackenbush, Joseph; Duquin, Aubrey; Helfer, Samuel; Pendergast, David R

    2016-01-01

    Hiking and trekking often occur at altitudes up to 12,000 ft altitude. The hypoxia-induced hyperventilation at altitude paradoxically reduces arterial CO2 (Paco2). A reduction in Paco2 results in vasoconstriction of the blood vessels of the brain and thus in local hypoxia. The local hypoxia likely affects cognitive function, which may result in reduced performance and altitude accidents. Recent publications have demonstrated that voluntary isocapnic hyperventilatory training of the respiratory muscles (VIHT) can markedly enhance exercise endurance as it is associated with reduced ventilation and its energy cost. VIHT may be useful in blunting the altitude-induced hyperventilation leading to higher Paco2 and improved cognitive function. This study examined the effects of VIHT, compared to control (C) and placebo (PVIHT) groups, on selected measures of executive functioning, including working memory and processing speed (i.e., Stroop Test, Symbol Digit Modalities Test, and Digit Span Forward) at simulated altitude up to 12,000 ft. Associated physiological parameters were also measured. The Digit Span Forward Test did not show improvements after VIHT in any group. The VIHT group, but not C or PVIHT groups, improved significantly (17-30%) on the Stroop Test. Similarly the VIHT group, but not the C and PVIHT groups, improved correct responses (26%) and number of attempts (24%) on the Symbol Digit Modalities Test. In addition, reaction time was also improved (16%). VIHT improved processing speed and working memory during exercise at altitude.

  1. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  2. Simulation of concrete deterioration in Finnish rock cavern conditions for final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Kari, O.P.; Puttonen, J.

    2014-01-01

    Highlights: • Concrete deterioration in Finnish rock cavern disposal conditions was simulated. • Simulation requires advanced models instead of traditional linear diffusion models. • Concrete analysed performed moderately during the period of 500 years. • Corrosion of steel reinforcement cannot be excluded during the period analysed. - Abstract: A simulation of concrete ageing in Finnish rock cavern disposal conditions showed that the concrete undergoes complex deterioration processes during the period required for lowering the level of radiation. In respect of the concrete ageing, the life time of the disposal facilities shall be divided into the periods before and after the closing of the caverns. Generally, the sulphate-resistant type of concrete analysed performed moderately during the analysed period of 500 years contrary to the corrosion of steel reinforcement, which cannot be excluded. Simulation of ageing clearly requires thermodynamical methods instead of linear diffusion models based on Fick’s law, which are traditionally used in construction industry. The study proves that the thermodynamical simulation method developed with adequate experimental data also makes it possible to observe latent factors of concrete deterioration

  3. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jianlin [China University of Petroleum, Beijing (China); PetroChina Company Ltd. (China); Zhang, Jinjun; Li, Hongying; Zhang, Fan; Yang, Xiaojing [China University of Petroleum, Beijing (China)

    2005-07-01

    Daqing oil field is the largest oil field in China. This crude oil is a typical waxy crude oil, with a wax content of 26% and a gel point of 32 deg C. Flow behaviors of waxy crude oils at temperatures near the gel point/pour point are vital for both pipeline hydraulic calculation and evaluation on restartability of a shutdown pipeline. In this study, experimental simulation was conducted by using a stirred vessel with the energy dissipation of viscous flow as the shear simulation parameter. The viscosity, gel point, yield stress and thixotropy were measured by sampling from the simulation vessel. The viscosity under simulated pipelining condition was found less than that measured under quiescent cooling condition. The gel point decreased with decreasing temperature of sampling, i.e. the end temperature of the dynamic cooling process. At sampling temperatures above 35 deg C, that is 3 deg C above the gel point measured under quiescent cooling condition, both the yield stresses and the thixotropic parameters showed little dependence on the shear history. However, at lower sampling temperatures, remarkable shear history dependence was found. Empirical correlations were developed between the yield stress and the sampling temperature as well as the measurement temperature, and between the thixotropic parameters and the sampling temperature. (author)

  4. Study on operational condition of electro-decontamination by computer simulation

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Sato, Koji; Kawabe, Akihiro; Fujita, Reiko; Terai, Takayuki

    2005-01-01

    The molten-salt electro-decontamination method can be taken up as adecontamination method for contaminated metal systems generated in the reprocessing using the fluoride volatility method, etc. This method makes a small amount of secondary waste and is able to construct a small-size process in which a critical state is easily controlled. It can be further expected that an electrolytic current penetrates inside contaminated substances of complex shape. In this report, an appropriate operational condition was theoretically obtained by the simulation on the applicability of this method to decontamination of metal materials, and it was confirmed by a fundamental testing that the simulation result is reasonable. (M.H.)

  5. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  6. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  7. Simulation Evaluation of Controller-Managed Spacing Tools under Realistic Operational Conditions

    Science.gov (United States)

    Callantine, Todd J.; Hunt, Sarah M.; Prevot, Thomas

    2014-01-01

    Controller-Managed Spacing (CMS) tools have been developed to aid air traffic controllers in managing high volumes of arriving aircraft according to a schedule while enabling them to fly efficient descent profiles. The CMS tools are undergoing refinement in preparation for field demonstration as part of NASA's Air Traffic Management (ATM) Technology Demonstration-1 (ATD-1). System-level ATD-1 simulations have been conducted to quantify expected efficiency and capacity gains under realistic operational conditions. This paper presents simulation results with a focus on CMS-tool human factors. The results suggest experienced controllers new to the tools find them acceptable and can use them effectively in ATD-1 operations.

  8. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  9. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  10. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    Science.gov (United States)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  11. Second order bounce back boundary condition for the lattice Boltzmann fluid simulation

    International Nuclear Information System (INIS)

    Kim, In Chan

    2000-01-01

    A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method

  12. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    Science.gov (United States)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  13. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-11-15

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8{sup th} floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C.

  14. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    International Nuclear Information System (INIS)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe

    2015-01-01

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8"t"h floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C

  15. Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei

    2017-01-01

    Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k_e_f_f and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.

  16. Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chenghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Shen, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2017-04-15

    Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k{sub eff} and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.

  17. Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions

    Science.gov (United States)

    Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.

    2016-09-01

    The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.

  18. The Simulation and Animation of Virtual Humans to Better Understand Ergonomic Conditions at Manual Workplaces

    Directory of Open Access Journals (Sweden)

    Jürgen Rossmann

    2010-08-01

    Full Text Available This article extends an approach to simulate and control anthro- pomorphic kinematics as multiagent-systems. These "anthro- pomorphic multiagent-systems" have originally been developed to control coordinated multirobot systems in industrial applica- tions, as well as to simulate humanoid robots. Here, we apply the approach of the anthropomorphic multiagent-systems to propose a "Virtual Human" - a model of human kinematics - to analyze ergonomic conditions at manual workplaces. Ergonom- ics provide a wide range of methods to evaluate human postures and movements. By the simulation and animation of the Virtual Human we develop examples of how results from the field of ergonomics can help to consider the human factor during the design and optimization phases of production lines.

  19. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  20. Artemisia vulgaris pollen allergoids digestibility in the simulated conditions of the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    RATKO M. JANKOV

    2006-09-01

    Full Text Available Chemically modified allergens (allergoids have found use in both traditional and novel forms of immunotherapy of allergic disorders. Novel forms of immunotherapy include local allergen delivery, via the gastrointestinal tract. This study conveys the gastrointestinal stability of three types ofmugwort pollen allergoids under simulated conditions of the gut. Allergoids of the pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, succinic and maleic anhydride. Gastrointestinal tract conditions (saliva, and gastric fluid were simulated in accordance with the EU Pharmacopoeia. The biochemical and immunochemical properties of the derivatives following exposure to different conditions were monitored by determining the number of residual amino groups with 2,4,6-trinitrobenzenesulfonic acid, SDS PAGE, immunoblotting and inhibition of mugwort-specific IgE. Exposure to saliva fluid for 2 min did not influence the biochemical and immunochemical properties of the derivatives. In the very acidic conditions of the simulated gastric fluid, the degree of demaleylation and desuccinylation, even after 4 h exposure, was low, ranging from 10 to 30 %. The digestion patterns with pepsin proceeded rapidly in both the unmodified and modified samples. In all four cases, a highly resistant IgE-binding protein theMwof which was about 28 – 35 kD, was present. Within the physiological conditions, no new IgE binding epitopes were revealed, as demonstrated by immunoblot and CAP inhibition of the mugwort specific IgE binding. An important conclusion of this study is the stability of the modified derivatives in the gastrointestinal tract of patients, within physiological conditions. The means that they are suitable for use inmuch higher concentrations in local forms of immunotherapy than unmodified ones.

  1. Mapping and simulating systematics due to spatially varying observing conditions in DES science verification data

    International Nuclear Information System (INIS)

    Leistedt, B.; Peiris, H. V.; Elsner, F.; Benoit-Lévy, A.; Amara, A.

    2016-01-01

    Spatially varying depth and the characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, particularly in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES–SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementary nature of these two approaches by comparing the SV data with BCC-UFig, a synthetic sky catalog generated by forward-modeling of the DES–SV images. We analyze the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and are well-captured by the maps of observing conditions. The combined use of the maps, the SV data, and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak-lensing analyses. However, they will need to be carefully characterized in upcoming phases of DES in order to avoid biasing the inferred cosmological results. Finally, the framework presented here is relevant to all multi-epoch surveys and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope, which will require detailed null tests and realistic end-to-end image simulations to correctly interpret the deep, high

  2. Quantification of discreteness effects in cosmological N-body simulations: Initial conditions

    International Nuclear Information System (INIS)

    Joyce, M.; Marcos, B.

    2007-01-01

    The relation between the results of cosmological N-body simulations, and the continuum theoretical models they simulate, is currently not understood in a way which allows a quantification of N dependent effects. In this first of a series of papers on this issue, we consider the quantification of such effects in the initial conditions of such simulations. A general formalism developed in [A. Gabrielli, Phys. Rev. E 70, 066131 (2004).] allows us to write down an exact expression for the power spectrum of the point distributions generated by the standard algorithm for generating such initial conditions. Expanded perturbatively in the amplitude of the input (i.e. theoretical, continuum) power spectrum, we obtain at linear order the input power spectrum, plus two terms which arise from discreteness and contribute at large wave numbers. For cosmological type power spectra, one obtains as expected, the input spectrum for wave numbers k smaller than that characteristic of the discreteness. The comparison of real space correlation properties is more subtle because the discreteness corrections are not as strongly localized in real space. For cosmological type spectra the theoretical mass variance in spheres and two-point correlation function are well approximated above a finite distance. For typical initial amplitudes this distance is a few times the interparticle distance, but it diverges as this amplitude (or, equivalently, the initial redshift of the cosmological simulation) goes to zero, at fixed particle density. We discuss briefly the physical significance of these discreteness terms in the initial conditions, in particular, with respect to the definition of the continuum limit of N-body simulations

  3. A computer code simulating multistage chemical exchange column under wide range of operating conditions

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1996-09-01

    A computer code has been developed to simulate a multistage CECE(Combined Electrolysis Chemical Exchange) column. The solution of basic equations can be found out by the Newton-Raphson method. The independent variables are the atom fractions of D and T in each stage for the case where H is dominant within the column. These variables are replaced by those of H and T under the condition that D is dominant. Some effective techniques have also been developed to get a set of solutions of the basic equations: a setting procedure of initial values of the independent variables; and a procedure for the convergence of the Newton-Raphson method. The computer code allows us to simulate the column behavior under a wide range of the operating conditions. Even for a severe case, where the dominant species changes along the column height, the code can give a set of solutions of the basic equations. (author)

  4. Long-term durability experiments with concrete-based waste packages in simulated repository conditions

    International Nuclear Information System (INIS)

    Ipatti, A.

    1993-03-01

    Two extensive experiments on long-term durability of waste packages in simulated repository conditions are described. The first one is a 'half-scale experiment' comprising radioactive waste product and half-scale concrete containers in site specific groundwater conditions. The second one is 'full-scale experiment' including simulated inactive waste product and full-scale concrete container stored in slowly flowing fresh water. The scope of the experiments is to demonstrate long-term behaviour of the designed waste packages in contact with moderately concrete aggressive groundwater, and to evaluate the possible interactions between the waste product, concrete container and ground water. As the waste packages are made of high-quality concrete, provisions have been made to continue the experiments for several years

  5. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  6. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Science.gov (United States)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  7. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    Science.gov (United States)

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  8. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  9. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    International Nuclear Information System (INIS)

    Chirkov, D; Avdyushenko, A; Panov, L; Bannikov, D; Cherny, S; Skorospelov, V; Pylev, I

    2012-01-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part – the turbine itself – is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  10. An Automatic Approach to the Stabilization Condition in a HIx Distillation Simulation

    International Nuclear Information System (INIS)

    Chang, Ji Woon; Shin, Young Joon; Lee, Ki Young; Kim, Yong Wan; Chang, Jong Hwa; Youn, Cheung

    2010-01-01

    In the Sulfur-Iodine(SI) thermochemical process to produce nuclear hydrogen, an H 2 O-HI-I 2 ternary mixture solution discharged from the Bunsen reaction is primarily concentrated by electro-electrodialysis. The concentrated solution is distillated in the HIx distillation column to generate a high purity HI vapor. The pure HI vapor is obtained at the top of the HIx distillation column and the diluted HIx solution is discharged at the bottom of the column. In order to simulate the steady-state HIx distillation column, a vapor-liquid equilibrium (VLE) model of the H 2 O-HI-I 2 ternary system is required and the subprogram to calculate VLE concentrations has been already introduced by KAERI research group in 2006. The steady state simulation code for the HIx distillation process was also developed in 2007. However, the intrinsic phenomena of the VLE data such as the steep slope of a T-x-y diagram caused the instability of the simulation calculation. In this paper, a computer program to automatically find a stabilization condition in the steady state simulation of the HIx distillation column is introduced. A graphic user interface (GUI) function to monitor an approach to the stabilization condition was added in this program

  11. Artemisia vulgaris pollen allergoids digestibility in the simulated conditions of the gastrointestinal tract

    OpenAIRE

    RATKO M. JANKOV; NATALIJA DJ. POLOVIC; MARIJA DJ. GAVROVIC-JANKULOVIC; LIDIJA BURAZER; DANICA DJERGOVIC-PETROVIC; OLGA VUCKOVIC; OLIKA DROBNJAK; ZORICA SPORCIC; MARINA ATANASKOVIC-MARKOVIC; RATKO M. JANKOV

    2006-01-01

    Chemically modified allergens (allergoids) have found use in both traditional and novel forms of immunotherapy of allergic disorders. Novel forms of immunotherapy include local allergen delivery, via the gastrointestinal tract. This study conveys the gastrointestinal stability of three types ofmugwort pollen allergoids under simulated conditions of the gut. Allergoids of the pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, succinic and maleic anhydride. Gastro...

  12. The Matter Bispectrum in N-body Simulations with non-Gaussian Initial Conditions

    OpenAIRE

    Sefusatti, Emiliano; Crocce, Martin; Desjacques, Vincent

    2010-01-01

    We present measurements of the dark matter bispectrum in N-body simulations with non-Gaussian initial conditions of the local kind for a large variety of triangular configurations and compare them with predictions from Eulerian perturbation theory up to one-loop corrections. We find that the effects of primordial non-Gaussianity at large scales, when compared to perturbation theory, are well described by the initial component of the matter bispectrum, linearly extrapolated at the redshift of ...

  13. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat

    Science.gov (United States)

    Bhat, G. K.; Yang, H.; Sridaran, R.

    2001-01-01

    The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.

  14. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    OpenAIRE

    Paladino, Domenico; Huggenberger, Max; Schäfer, Frank

    2008-01-01

    Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural c...

  15. Mechanical Properties of a Unidirectional Basalt-Fiber-Reinforced Plastic Under a Loading Simulating Operation Conditions

    Science.gov (United States)

    Lobanov, D. S.; Slovikov, S. V.

    2017-01-01

    The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.

  16. Lifting simulation of an offshore supply vessel considering various operating conditions

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Jeong

    2016-06-01

    Full Text Available Recently, an offshore support vessel is being widely used to install an offshore structure such as a subsea equipment which is laid on its deck. The lifting operation which is one of the installation operations includes lifting off, lifting in the air, splash zone crossing, deep submerging, and finally landing of the structure with an offshore support vessel crane. There are some major considerations during this operation. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and hoisting (or lowering speed are bad, the excess of tension of wire ropes of the crane and the collision between the offshore support vessel and the structure can be occurred due to the relative motion between them. To solve this problem, this study performs the lifting simulation while the offshore support vessel installs the structure. The simulation includes the calculation of dynamic responses of the offshore support vessel and the equipment, including the wire tension and the collision detection. To check the applicability of the simulation, it is applied to some lifting steps by varying operating conditions. As a result, it is confirmed that the conditions affect the operability of those steps.

  17. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    Science.gov (United States)

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  19. Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters

    NARCIS (Netherlands)

    Tieleman, D.P; Berendsen, H.J.C.

    1996-01-01

    We compared molecular dynamics simulations of a bilayer of 128 fully hydrated phospholipid (DPPC) molecules, using different parameters and macroscopic boundary conditions. The same system was studied under constant pressure, constant volume, and constant surface tension boundary conditions, with

  20. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  1. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  2. Conditional Stochastic Models in Reduced Space: Towards Efficient Simulation of Tropical Cyclone Precipitation Patterns

    Science.gov (United States)

    Dodov, B.

    2017-12-01

    Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon

  3. Design and Simulation of an Air Conditioning Project in a Hospital Based on Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Ding X. R.

    2017-06-01

    Full Text Available This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primaiy humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.

  4. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Malcolm J [Los Alamos National Laboratory

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  5. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  6. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  7. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  8. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  9. Use of a driving simulator to assess performance under adverse weather conditions in adults with albinism.

    Science.gov (United States)

    Hofman, Gwen M; Summers, C Gail; Ward, Nicholas; Bhargava, Esha; Rakauskas, Michael E; Holleschau, Ann M

    2012-04-01

    Participants with albinism have reduced vision and nystagmus with reduced foveation times. This prospective study evaluated driving in 12 participants with albinism and 12 matched controls. Participants drove a vehicle simulator through a virtual rural course in sunny and foggy conditions. Under sunny conditions, participants with albinism showed a narrower preferred minimum safety boundary during car-following tasks than did controls, but there was no difference under foggy conditions. Their driving did not differ significantly from that of controls when approaching a stop sign or when choosing gap size between oncoming vehicles when crossing an intersection. However, when compared to control drivers, participants with albinism had a decreased minimum safety boundary for car-following that should be included in counseling regarding driving safety.

  10. Simulation of KAEVER experiments on aerosol behavior in a nuclear power plant containment at accident conditions with the ASTEC code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2006-01-01

    Experiments on aerosol behaviour in saturated and non-saturated atmosphere, which were performed in the KAEVER experimental facility, were simulated with the severe accident computer code ASTEC CPA V1.2. The specific purpose of the work was to assess the capability of the code to model aerosol condensation and deposition in the containment of a light-water-reactor nuclear power plant at severe accident conditions, if the atmosphere saturation conditions are simulated adequately. Five different tests were first simulated with boundary conditions, obtained from the experiments. In all five tests, a non-saturated atmosphere was simulated, although, in four tests, the atmosphere was allegedly saturated. The simulations were repeated with modified boundary conditions, to obtain a saturated atmosphere in all tests. Results of dry and wet aerosol concentrations in the test vessel atmosphere for both sets of simulations are compared to experimental results. (author)

  11. SQUEEZE-E: The Optimal Solution for Molecular Simulations with Periodic Boundary Conditions.

    Science.gov (United States)

    Wassenaar, Tsjerk A; de Vries, Sjoerd; Bonvin, Alexandre M J J; Bekker, Henk

    2012-10-09

    In molecular simulations of macromolecules, it is desirable to limit the amount of solvent in the system to avoid spending computational resources on uninteresting solvent-solvent interactions. As a consequence, periodic boundary conditions are commonly used, with a simulation box chosen as small as possible, for a given minimal distance between images. Here, we describe how such a simulation cell can be set up for ensembles, taking into account a priori available or estimable information regarding conformational flexibility. Doing so ensures that any conformation present in the input ensemble will satisfy the distance criterion during the simulation. This helps avoid periodicity artifacts due to conformational changes. The method introduces three new approaches in computational geometry: (1) The first is the derivation of an optimal packing of ensembles, for which the mathematical framework is described. (2) A new method for approximating the α-hull and the contact body for single bodies and ensembles is presented, which is orders of magnitude faster than existing routines, allowing the calculation of packings of large ensembles and/or large bodies. 3. A routine is described for searching a combination of three vectors on a discretized contact body forming a reduced base for a lattice with minimal cell volume. The new algorithms reduce the time required to calculate packings of single bodies from minutes or hours to seconds. The use and efficacy of the method is demonstrated for ensembles obtained from NMR, MD simulations, and elastic network modeling. An implementation of the method has been made available online at http://haddock.chem.uu.nl/services/SQUEEZE/ and has been made available as an option for running simulations through the weNMR GRID MD server at http://haddock.science.uu.nl/enmr/services/GROMACS/main.php .

  12. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  13. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  14. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  15. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    Directory of Open Access Journals (Sweden)

    Lizal Frantisek

    2016-01-01

    Full Text Available Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  16. Leaching behavior of a simulated bituminized radioactive waste form under deep geological conditions

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi; Akimoto, Toshiyuki

    2003-01-01

    The leaching behavior of a simulated bituminized waste form was studied to acquire data for the performance assessment of the geologic disposal of bituminized radioactive waste. Laboratory-scale leaching tests were performed for radioactive and non-radioactive waste specimens simulating bituminized waste of a French reprocessing company, COGEMA. The simulated waste was contacted with deionized water, an alkaline solution (0.03-mol/l KOH), and a saline solution (0.5-mol/l KCl) under atmospheric and anoxic conditions. The concentrations of Na, Ba, Cs, Sr, Np, Pu, NO 3 , SO 4 and I in the leachates were determined. Swelling of the bituminized waste progressed in deionized water and KOH. The release of the soluble components, Na and Cs, was enhanced by the swelling, and considered to be diffusion-controlled in the swelled layers of the specimens. The release of sparingly soluble components such as Ba and Np was solubility-limited in addition to the progression of leaching. Neptunium, a redox-sensitive element, showed a distinct difference in release between anoxic and atmospheric conditions. The elemental release from the bituminized waste specimens leached in the KCl was very low, which is likely due to the suppression of swelling of the specimens at high ionic strength. (author)

  17. Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions

    International Nuclear Information System (INIS)

    Boyarchenkov, A.S.; Potashnikov, S.I.; Nekrasov, K.A.; Kupryazhkin, A.Ya.

    2012-01-01

    Highlights: ► We perform MD simulation of UO 2 nanocrystals melting (in range of 768–49 152 ions). ► T(P) melting curves intersect zero near −20 GPa and saturate near 25 GPa. ► Reciprocal size dependences of nanocrystal melting point decrease nonlinearly. ► Linear and parabolic extrapolations to macroscopic values are considered. ► Melting point and density jump are reproduced, but heat of fusion is underestimated. - Abstract: Melting of uranium dioxide (UO 2 ) nanocrystals has been studied by molecular dynamics (MD) simulation. Ten recent and widely used sets of pair potentials were assessed in the rigid ion approximation. Both isolated (in vacuum) and periodic boundary conditions (PBC) were explored. Using barostat under PBC the pressure dependences of melting point were obtained. These curves intersected zero near −20 GPa, saturated near 25 GPa and increased nonlinearly in between. Using simulation of surface under isolated boundary conditions (IBC) recommended melting temperature and density jump were successfully reproduced. However, the heat of fusion is still underestimated. These melting characteristics were calculated for nanocrystals of cubic shape in the range of 768–49 152 particles (volume range of 10–1000 nm 3 ). The obtained reciprocal size dependences decreased nonlinearly. Linear and parabolic extrapolations to macroscopic values are considered. The parabolic one is found to be better suited for analysis of the data on temperature and heat of melting.

  18. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  19. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions.

    Science.gov (United States)

    Karadima, Katerina S; Mavrantzas, Vlasis G; Pandis, Spyros N

    2017-06-28

    Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C 30 H 62 ), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C 30 H 62 ), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

  20. Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods

    Science.gov (United States)

    Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald

    2017-12-01

    An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.

  1. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  2. FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations

    Directory of Open Access Journals (Sweden)

    G Boroni

    2017-03-01

    Full Text Available Lattice Boltzmann Method (LBM has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.

  3. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  4. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  5. Simulation of effects of incident beam condition in p-p elastic scattering

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Le Xiaoyun; Tanihata, I.

    2014-01-01

    The simulation is performed for the monitors of beam direction and beam position for p-p elastic scattering. We set several variables to simulate the monitors of incident beam condition changes: beam positions at the quadrupole magnet and target in beam line polarimeter (BLP2), distance between quadrupole magnet and target, size of plastic scintillators, distance between the target in BLP2 and the centers of plastic scintillators, and beam polarization. Through the rotation of the coordinate system, the distributions of scattered and recoiled protons in the laboratory system were obtained. By analyzing the count yields in plastic scintillators at different beam positions, we found that the beam incident angular change (0.35°) could be detected when the asymmetry of geometries of left and right scintillators in BLP2 was changed by 6%. Therefore, the scattering angle measured in the experiment can be tracked by these monitors. (authors)

  6. Simulation of irrigation and nitrogen fertilization management of maize under edaphic conditions of south of Havana

    International Nuclear Information System (INIS)

    Lopez Seijas, Teresa; Cid, G.; Gonzalez, F.; Jorge, Y.; Chaterlan, Y.; Giralt, E.; Rodriguez, R.; Duennas, G.

    1999-01-01

    The main objective of this work is to validate the crop simulation model STICS for the soil and climate conditions of south of Havana, especially for the water and nitrogen balances on Maize crop on Ferralitic soil, For this purpose was used all the available information from field experiments carried out in the Experimental Stations of the Irrigation and Drainage and Soil Research Institutes, both on south of Havana, The comparison between the simulation and observed values showed a good fitness for the variables related to the crop water uptake, while for the soil water content when the root water uptake flux is minimum and the soil water redistribution flux is maximum wasn't good, The soil nitrogen balance was adjusted from the optimization of the parameters related to the mineralization velocity of soil organic nitrogen, Nevertheless is necessary to complete this study involving other climate conditions and water and nitrogen managements to define the optimum strategy for irrigation and fertilization of Maize crop on the studied conditions,

  7. Effect of encapsulation of selected probiotic cell on survival in simulated gastrointestinal tract condition

    Directory of Open Access Journals (Sweden)

    Hasiah Ayama

    2014-06-01

    Full Text Available The health benefits of probiotic bacteria have been led to their increasing use in foods. Encapsulation has been investigated to improve their survival. In this study, the selection, encapsulation and viability of lactic acid bacteria (LAB with probiotic properties in simulated gastrointestinal tract (GIT condition were investigated. One hundred and fifty isolates of LAB were obtained from 30 samples of raw cow and goat milk and some fermented foods. Nine isolates could survive under GIT condition and only 3 isolates exhibited an antimicrobial activity against all food-borne pathogenic bacteria. Among them, 2 isolates (CM21 and CM53 exhibited bile salt hydrolase activity on glycocholate and glycodeoxycholate agar plates and were identified as Lactobacillus plantarum. CM53 was selected for encapsulation using 1-3% alginate and 2% Hi-maize resistant starch by emulsion system. Viability and releasing ability of encapsulated CM53 in simulated GIT condition was increased in accordance to the alginate concentration and incubation time, respectively.

  8. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  9. SIMULATION OF COOLING TOWER AND INFLUENCE OF AERODYNAMIC ELEMENTS ON ITS WORK UNDER CONDITIONS OF WIND

    Directory of Open Access Journals (Sweden)

    K. V. Dobrego

    2014-01-01

    Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.

  10. The Viability of the Lactobacillus Rhamnosus IL4.2 Strain in Simulated Gastrointestinal Conditions

    Directory of Open Access Journals (Sweden)

    Emanuel Vamanu

    2011-05-01

    Full Text Available The viability maintenance of Lactobacillus rhamnosus IL4.2 strain in gastrointestinal conditions represents one of the most important characteristics regarding its use for obtaining probiotic products. The tests were performed with a cell suspension kept in 0.5% NaCl. The influence of pepsin (3 g/l at pH of 1.5, 2, 2.5 and 3, as well as of pancreatin (1 g/l in the presence of bile salts (1.5, 2, 3 and 5 mg/ml were determined. The influence of casein and mucin, in a concentration of 1 g/l, was also established in the aforementioned conditions. It was observed that mucin presented a longer viability maintenance, fact also confirmed by the calculation of the mathematical parameters of viability and mortality, when mucin was either used or not, especially in the case of gastric transit. The results proved that the tested strain maintained its viability even at pH between 1.8 - 2 and at an even higher concentration, of 2 mg/ml of bile salts, but up to two hours as of the exposure to the conditions of the simulated small intestinal juice. Such results were also confirmed by the cumulated effect of the simulated gastric and small intestinal juice, the strain thus increasing its viability with an average of 10% in the presence of mucin.

  11. Inclusion of models to describe severe accident conditions in the fuel simulation code DIONISIO

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Daverio, Hernando [Gerencia Reactores y Centrales Nucleares, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina); Denis, Alicia [Sección Códigos y Modelos, Gerencia Ciclo del Combustible Nuclear, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Provincia de Buenos Aires (Argentina)

    2017-04-15

    The simulation of fuel rod behavior is a complex task that demands not only accurate models to describe the numerous phenomena occurring in the pellet, cladding and internal rod atmosphere but also an adequate interconnection between them. In the last years several models have been incorporated to the DIONISIO code with the purpose of increasing its precision and reliability. After the regrettable events at Fukushima, the need for codes capable of simulating nuclear fuels under accident conditions has come forth. Heat removal occurs in a quite different way than during normal operation and this fact determines a completely new set of conditions for the fuel materials. A detailed description of the different regimes the coolant may exhibit in such a wide variety of scenarios requires a thermal-hydraulic formulation not suitable to be included in a fuel performance code. Moreover, there exist a number of reliable and famous codes that perform this task. Nevertheless, and keeping in mind the purpose of building a code focused on the fuel behavior, a subroutine was developed for the DIONISIO code that performs a simplified analysis of the coolant in a PWR, restricted to the more representative situations and provides to the fuel simulation the boundary conditions necessary to reproduce accidental situations. In the present work this subroutine is described and the results of different comparisons with experimental data and with thermal-hydraulic codes are offered. It is verified that, in spite of its comparative simplicity, the predictions of this module of DIONISIO do not differ significantly from those of the specific, complex codes.

  12. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Science.gov (United States)

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  13. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  14. Simulation of Entropy Generation under Stall Conditions in a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-06-01

    Full Text Available Rotating stalls are generally the first instability met in turbomachinery, before surges. This 3D phenomenon is characterized by one or more stalled flow cells which rotate at a fraction of the impeller speed. The goal of the present work is to shed some light on the entropy generation in a centrifugal fan under rotating stall conditions. A numerical simulation of entropy generation is carried out with the ANSYS Fluent software which solves the Navier-Stokes equations and user defined function (UDF. The entropy generation characteristics in the centrifugal fan for five typical conditions are presented and discussed, involving the design condition, conditions on occurrence and development of stall inception, the rotating stall conditions with two throttle coefficients. The results show that the entropy generation increases after the occurrence of stall inception. The high entropy generation areas move along the circumferential and axial directions, and finally merge into one stall cell. The entropy generation rate during circumferential propagation of the stall cell is also discussed, showing that the entropy generation history is similar to sine curves in impeller and volute, and the volute tongue has a great influence on entropy generation in the centrifugal fan.

  15. Yield gap analysis of Chickpea under semi-arid conditions: A simulation study

    Directory of Open Access Journals (Sweden)

    seyed Reza Amiri Deh ahmadi

    2016-05-01

    Full Text Available Yield gap analysis provides an essential framework to prioritize research and policy efforts aimed at reducing yield constraints. To identify options for increasing chickpea yield, the SSM-chickpea model was parameterized and evaluated to analyze yield potentials, water limited yields and yield gaps for nine regions representing major chickpea-growing areas of Razavi Khorasan province. The average potential yield of chickpea for the locations was 2251 kg ha-1, while the water limited yield was 1026 kg ha-1 indicating a 54% reduction in yield due to adverse soil moisture conditions. Also, the average irrigated and rainfed actual yields were respectively 64% and 79% less than simulated potential and water limited yields. Maximum and minimum yield gap between potential yield and actual yield were observed in Quchan and Torbat-jam respectively. Generally, yield gap showed an increasing trend from the north (including Nishabur, Mashhad, Quchan and Daregaz regions to the south of the province (Torbat- Jam and Gonabad. In addition, yield gap between simulated water limited potential yield and rainfed actual yield were very low because both simulated water limiting potential and average rainfed actual yields were low in these regions. Yield gap analysis provides an essential framework to prioritize research and policy efforts aimed at reducing yield constraints. To identify options for increasing chickpea yield, the SSM-chickpea model was parameterized and evaluated to analyze yield potentials, water limited yields and yield gaps for nine regions representing major chickpea-growing areas of Razavi Khorasan province. The average potential yield of chickpea for the locations was 2251 kg ha-1, while the water limited yield was 1026 kg ha-1 indicating a 54% reduction in yield due to adverse soil moisture conditions. Also, the average irrigated and rainfed actual yields were respectively 64% and 79% less than simulated potential and water limited yields

  16. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    International Nuclear Information System (INIS)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-01-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further. (Wakatsuki, Y.)

  17. Influence of LOCA simulating conditions on the variation of electrical characteristics of insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Sohei; Yoshikawa, Masato; Ito, Masayuki; Kusama, Yasuo; Yagi, Toshiaki

    1982-12-01

    The authors have examined the variation of insulation resistance when the sheets of insulating materials and cables were exposed to various LOCA simulating environment. This report describes the summarized results obtained so far for ethylene propylene rubber (EPR) which is important as an insulating material of cables. The samples used were an EPR sheet of standard compound ratio, 2 kinds of EPR sheets of practical compound ratio, 6 types of PH cables (fire-retardant, EPR insulated, chlorosulphonated polyethylene sheathed cable) produced for trial as reactor use, and 6 kinds of EPR sheets of the same composition as the cable core. To discuss the difference of insulation resistance change, the logarithmic mean of the ratio of 1 min values to initial insulation resistance rho/rhosub(o) was used. PWR LOCA-simulating environment was used, while the thermal aging in the air at 121 deg C for 7 days and 50 Mrad irradiation in the air at room temperature were given as the predeterioration. The effect of LOCA-simulation period in the simultaneous method without air, in which steam and radiation were given in parallel, the difference in the experimental results of cables and sheets, the effect of air, the comparison of the simultaneous method with the sequential method in which LOCA-simulating steam was applied after the irradiation in the air and the reverse sequential method (dielectric property measurements) are described. Under the existence of air, the sequential method seems to be a good simulation condition for the simultaneous method, though many experiments are required further.

  18. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a

  19. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.

    Science.gov (United States)

    Berry, Bonnie J; Jenkins, David G; Schuerger, Andrew C

    2010-04-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30 degrees C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl(2), MgSO(4), NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20 degrees C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO(4) maintained at 20 or 30 degrees C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and -50 degrees C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m(-2) for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive

  20. Wind-driven rain as a boundary condition for HAM simulations: analysis of simplified modelling approaches

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Roels, Staf

    2007-01-01

    While the numerical simulation of moisture transfer inside building components is currently undergoing standardisation, the modelling of the atmospheric boundary conditions has received far less attention. This article analyses the modelling of the wind-driven-rain load on building facades...... though: the full variability with the perpendicular wind speed and horizontal rain intensity should be preserved, where feasible, for improved estimations of the moisture transfer in building components. In the concluding section, it is moreover shown that the dependence of the surface moisture transfer...

  1. Vehicle operation characteristic under different ramp entrance conditions in underground road: Analysis, simulation and modelling

    Science.gov (United States)

    Yao, Qiming; Liu, Shuo; Liu, Yang

    2018-05-01

    An experimental design was used to study the vehicle operation characteristics of different ramp entrance conditions in underground road. With driving simulator, the experimental scenarios include left or right ramp with first, second and third service level, respectively, to collect vehicle speed, acceleration, lateral displacement and location information at the ramp entrance section. By using paired t-test and ANOVA, the influence factors of vehicle operating characteristics are studied. The result shows that effects of ramp layout and mainline traffic environment on vehicle operation characteristics are significant. The regression model of vehicle traveling distance on acceleration lane is established. Suggestions are made for ramp entrance design of underground road.

  2. High temperature corrosion under conditions simulating biomass firing: depth-resolved phase identification

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2014-01-01

    ) were coated with KCl and is o-thermally exposed at 560 o C for 168 h under a flue gas corresponding to straw firing. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD) characterization techniques were employed for comprehensive characterization......Both cross-sectional and plan view, ‘top-down’ characterization methods were employed , for a depth-resolved characterization of corrosion products resulting from high temperature corrosion under laboratory conditions simulating biomass firing. Samples of an austenitic stainless steel (TP 347H FG...... of the corrosion product. Results from this comprehensive characterization revealed more details on the morphology and composition of the corrosion product....

  3. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    International Nuclear Information System (INIS)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.; Cavenago, M.

    2016-01-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained

  4. On simulation of no-slip condition in the method of discrete vortices

    Science.gov (United States)

    Shmagunov, O. A.

    2017-10-01

    When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.

  5. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations

    International Nuclear Information System (INIS)

    Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R.

    2006-01-01

    The generation of inflow data for spatially developing turbulent flows is one of the challenges that must be addressed prior to the application of LES to industrial flows and complex geometries. A new method of generation of synthetic turbulence, suitable for complex geometries and unstructured meshes, is presented herein. The method is based on the classical view of turbulence as a superposition of coherent structures. It is able to reproduce prescribed first and second order one point statistics, characteristic length and time scales, and the shape of coherent structures. The ability of the method to produce realistic inflow conditions in the test cases of a spatially decaying homogeneous isotropic turbulence and of a fully developed turbulent channel flow is presented. The method is systematically compared to other methods of generation of inflow conditions (precursor simulation, spectral methods and algebraic methods)

  6. Verification of the machinery condition monitoring technology by fault simulation tests

    International Nuclear Information System (INIS)

    Maehara, Takafumi; Watanabe, Yukio; Osaki, Kenji; Higuma, Koji; Nakano, Tomohito

    2009-01-01

    This paper shows the test items and equipments introduced by Japan Nuclear Energy Safety Organization to establish the monitoring technique for machinery conditions. From the result of vertical pump simulation tests, it was confirmed that fault analysis was impossible by measuring the accelerations on both motor and pump column pipes, however, was possible by measuring of pump shaft vibrations. Because hydraulic whirls by bearing wear had significant influences over bearing misalignments and flow rates, the monitoring trends must be done under the same condition (on bearing alignments and flow rates). We have confirmed that malfunctions of vertical pumps can be diagnosed using measured shaft vibration by ultrasonic sensors from outer surface of pump casing on the floor. (author)

  7. Simulation of potato yield in temperate condition by the AquaCrop model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2017-01-01

    Potato production ranks fourth in the world after rice, wheat, and maize and it is highly sensitive to water stress. It is thus very important to implement irrigation management strategies to minimize the effects of water stress under different climate conditions. The use of modelling tools...... to calculate the soil water balance on a daily basis has become widespread in the last decades. Therefore, this study was performed to simulate potato yield, dry matter and soil water content under different water stress condition using the AquaCrop model. Three levels of irrigation comprising full irrigated...... (If), deficit irrigated (Id) and not irrigated (I0) were investigated in three-years potato field experiment (2013–15) with four replicates in randomized complete block design. Tuber and total dry matter yield, canopy cover, dry matter production during the crop growth season, and soil water content...

  8. Experimental and simulational study of the operation conditions for a high transmission mass filter

    International Nuclear Information System (INIS)

    Ayesh, A. I.; Lassesson, A.; Brown, S. A.; Dunbar, A. D. F.; Kaufmann, M.; Partridge, J. G.; Reichel, R.; Lith, J. van

    2007-01-01

    The operation conditions of a double pulsed field mass filter were studied using both experiment and simulation. The mass filter consists of two pairs of parallel plates and operates on the time-of-flight principle. The study showed that the ions' beam deflection angle is a critical factor in optimizing the mass filter transmission efficiency. This angle is dependent on the accelerating voltage, ion mass, and horizontal velocity of the ions. The optimum operating conditions for the mass filter were found and used to study the mass distribution of palladium ions produced by a magnetron sputtering source. The study shows that this mass filter is suitable for technological applications because of its high transmission and wide mass range

  9. Dynamics of Plug Formation in a Circular Cylinder Under Low Bond Number Conditions: Experiment and Simulation

    Science.gov (United States)

    Hallaby, Ghazi; Kizito, John P.

    2016-08-01

    The goal of the current study is to investigate the dynamics of two phase interface under a low Bond number condition. Silicone oil is injected into a cylinder under a Bond number of about 0.47 via a side tube forming a T-junction with the former. The time evolution of the interface of silicon oil in a cylinder is captured using a high speed camera. The volume at which the plug is formed is then determined using an image processing tool to analyze the captured images. A numerical simulation is carried out where fluid is injected into a cylinder, under a less than unity Bond number condition, via a side tube. Numerical and experimental results are then compared.

  10. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    of the first Ares I vehicle. The A3 facility will be able to simulate pre-ignition altitude from sea-level to 100,000 feet and maintain it up to 650 seconds. Additionally the facility will be able to accommodate initial ignition, shutdown and then restart test profiles. A3 will produce up to 5000 lbm/sec of superheated steam utilizing a Chemical Steam generation system. Two separate inline steam ejectors will be used to produce a test cell vacuum to simulate the 100,000 ft required altitude. Operational capability will ensure that the facility can start up and shutdown without producing adverse pressure gradients across the J2X nozzle. The facility will have a modern thrust measurement system for accurate determination of engine performance. The latest advances in data acquisition and control will be incorporated to measure performance parameters during hotfire testing. Provisions are being made in the initial design of the new altitude facility to allow for testing of other, larger engines and potential upper stage launch vehicles that might require vacuum start testing of the engines. The new facility at Stennis Space Center will be complete and ready for hotfire operations in late 2010.

  11. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  12. Multiphysical Simulation of PT-CT Contact with Outer Boundary Condition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Se-Myong [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Hyoung Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The present study is about preliminary calculation results for these ICSP activity works, where the COMSOL Multiphysics code is used to simulate plastic deformation of a pressure tube as a result of the interaction of stress and temperature. It is shown that the thermal stress model of COMSOL is compatible to simulate the multiple heat transfers (including the radiation heat transfer and heat conduction) and stress strain in the simplified 2-D problem. The benchmark test result for radiation heat transfer is in good agreement with the analytical solution for the concentric configuration of PT(pressure tube) and CT(calandria tube). In this paper, the authors did an open computation of these multi-physical phenomena by changing the outer boundary condition of CT according to the experimental result of ICSP. A series of simulation has been done based on the benchmark test proposed by IAEA/ICSP. The unsteady multi-physics was treated some numerical models with COMSOL. The comparison with CATHENA code is verified as a good agreement as we increase the accuracy of numerical method, Gaussian quadrature. The open computation for the validation of this numerical code is still on-going, and the temperature inside and outside the PT shows a very good agreement.

  13. Multiphysical Simulation of PT-CT Contact with Outer Boundary Condition

    International Nuclear Information System (INIS)

    Chang, Se-Myong; Kim, Hyoung Tae

    2016-01-01

    The present study is about preliminary calculation results for these ICSP activity works, where the COMSOL Multiphysics code is used to simulate plastic deformation of a pressure tube as a result of the interaction of stress and temperature. It is shown that the thermal stress model of COMSOL is compatible to simulate the multiple heat transfers (including the radiation heat transfer and heat conduction) and stress strain in the simplified 2-D problem. The benchmark test result for radiation heat transfer is in good agreement with the analytical solution for the concentric configuration of PT(pressure tube) and CT(calandria tube). In this paper, the authors did an open computation of these multi-physical phenomena by changing the outer boundary condition of CT according to the experimental result of ICSP. A series of simulation has been done based on the benchmark test proposed by IAEA/ICSP. The unsteady multi-physics was treated some numerical models with COMSOL. The comparison with CATHENA code is verified as a good agreement as we increase the accuracy of numerical method, Gaussian quadrature. The open computation for the validation of this numerical code is still on-going, and the temperature inside and outside the PT shows a very good agreement

  14. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    Science.gov (United States)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  15. A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions.

    Science.gov (United States)

    Tanaka, Hiroaki; Inaka, Koji; Sugiyama, Shigeru; Takahashi, Sachiko; Sano, Satoshi; Sato, Masaru; Yoshitomi, Susumu

    2004-01-01

    We developed a new protein crystallization method has been developed using a simplified counter-diffusion method for optimizing crystallization condition. It is composed of only a single capillary, the gel in the silicon tube and the screw-top test tube, which are readily available in the laboratory. The one capillary can continuously scan a wide range of crystallization conditions (combination of the concentrations of the precipitant and the protein) unless crystallization occurs, which means that it corresponds to many drops in the vapor-diffusion method. The amount of the precipitant and the protein solutions can be much less than in conventional methods. In this study, lysozyme and alpha-amylase were used as model proteins for demonstrating the efficiency of this method. In addition, one-dimensional (1-D) simulations of the crystal growth were performed based on the 1-D diffusion model. The optimized conditions can be applied to the initial crystallization conditions for both other counter-diffusion methods with the Granada Crystallization Box (GCB) and for the vapor-diffusion method after some modification.

  16. Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions

    Science.gov (United States)

    Di Donato, Paola; Romano, Ida; Mastascusa, Vincenza; Poli, Annarita; Orlando, Pierangelo; Pugliese, Mariagabriella; Nicolaus, Barbara

    2018-03-01

    Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.

  17. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  18. Influence of surface conditions on fatigue strength through the numerical simulation of microstructure

    International Nuclear Information System (INIS)

    Le Pecheur, A.; Clavel, M.; Rey, C.; Bompard, P.; Le Pecheur, A.; Curtit, F.; Stephan, J.M.

    2010-01-01

    A thermal fatigue test (INTHERPOL) was developed by EDF in order to study the initiation of cracks. These tests are carried out on tubular specimens under various thermal loadings and surface finish qualities in order to give an account of these parameters on crack initiation. The main topic of this study is to test the sensitivity of different fatigue criteria to surface conditions using a micro/macro modelling approach. Therefore a 304L polycrystalline aggregate, used for cyclic plasticity based FE modelling, have been considered as a Representative Volume Element located at the surface and subsurface of the test tube. This aggregate has been cyclically strained according to the results issued from FE simulation of INTHERPOL thermal fatigue experiment. Different surface parameters have been numerically simulated: effects of local microstructure and of grains orientation, effects of machining: metallurgical prehardening, residual stress gradient, and surface roughness. Three different fatigue criteria (Manson Coffin, Fatemi Socie and dissipated energy types), previously fitted at a macro-scale for thermal fatigue of 304L, have been computed at a meso scale, in order to show the surface 'hot spots' features and test the sensitivity of these three criteria to different surface conditions. Results show that grain orientation and neighbouring play an important role on the location of hot spots, and also that the positive effect of pre-straining and the negative effect of roughness on fatigue life are not all similarly predicted by these different fatigue criteria. (authors)

  19. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    Energy Technology Data Exchange (ETDEWEB)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  20. CME Simulations with Boundary Conditions Derived from Multiple Viewpoints of STEREO

    Science.gov (United States)

    Singh, T.; Yalim, M. S.; Pogorelov, N. V.

    2017-12-01

    Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, which is a matter of huge concern for our modern technologically dependent society. Development of numerical approaches that would reproduce CME propagation through the interplanetary space is an important step towards our capability to predict CME arrival time at Earth and their geo-effectiveness. It is also important that CMEs are propagating through a realistic, data-driven background solar wind (SW). In this study, we use a version of the flux-rope-driven Gibson-Low (GL) model to simulate CMEs. We derive inner boundary conditions for the GL flux rope model using the Graduate Cylindrical Shell (GCS) method. This method uses viewpoints from STEREO A and B, and SOHO/LASCO coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from Sun. A flux rope created this way is inserted into an SDO/HMI vector magnetogram driven SW background obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). Numerical results are compared with STEREO, SDO/AIA and SOHO/LASCO observations in particular in terms of the CME speed, acceleration and magnetic field structure.

  1. Implementation of high fidelity models for the conditions of operation in stop in PWR simulators

    International Nuclear Information System (INIS)

    Gonzalez Sevillano, I.; Jimenez Bogarin, R.; Ortega Pascual, F.

    2014-01-01

    The operation in stop cold conditions and in particular the States of operation with reduced inventory, the call of half loop or half nozzle, is becoming increasingly more important. These States of operation are characterized by having the coolant level approximately on the generatrix of the branches, so that any deviation in the level or malfunction of the system for the disposal of waste heat could lead to compromising situations. The importance of this type of situation is reflected in the APS in other modes (APSOM), which show that the risk in these conditions may be comparable to the power. Hence the importance that the simulator training programmes include scenarios that cover these States of operation. The article describes on the one hand, the difficulties encountered in the simulation of situations characterized by low pressure and presence of Non-Condensable and, on the other hand, its implementation, not only in the field of training of plant personnel, but also in the field of review/validation of operating procedures. (Author)

  2. Seismic responses of an unanchored generic fixture with different simulated boundary conditions

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1994-01-01

    In the design of equipment for seismic loadings, it is common to anchor the equipment to prevent tipping or sliding. However, there are situations where the equipment should not be anchored. An unanchored piece of equipment is held to the floor only by the gravitational effect and, in the absence of friction, it could move freely. In the analytical investigation of an unanchored item during a seismic event, there is uncertainty on the proper simulation of the boundary conditions so that the analysis model will have no rigid-body motion. Seismic responses of a simple analytical model that is representative of a group of unanchored equipment have been investigated with different sets of simulated boundary conditions. The results show that, when the main interest of investigation is to assess the potential for tipping during an earthquake, the case with one of the four supporting pads simply supported, its two neighboring pads constrained against twisting motion, and all pads without vertical displacements yields the most conservative prediction. The analysis is applied to the fuel processing cell of the Integral Fast Reactor project. In order not to breach the liner of the existing facility and to keep operational flexibility of the fixtures, all new equipment to be installed within the fuel processing cell are required to be unanchored

  3. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  4. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    Science.gov (United States)

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  5. Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics

    International Nuclear Information System (INIS)

    Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.

    1998-01-01

    We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group

  6. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  7. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    Science.gov (United States)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  8. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  9. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  10. Chemical durability of lead borosilicate glass matrix under simulated geological conditions

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2002-03-01

    The lead borosilicate glass has been developed for vitrification of High Level Waste (HLW) stored at Trombay. This waste is contains especially high contents of sodium, uranium sulphate and iron. The glasses containing HLW are to be ultimately disposed into deep geological repositories. Long term leach rates under simulated geological conditions need to be evaluated for glass matrix. Studies were taken up to estimate the lead borosilicate glass WTR-62 matrix for chemical durability in presence of synthetic ground water. The leachant selected was based on composition of ground water sample near proposed repository site. In the first phase of these tests, the experiments were conducted for short duration of one and half month. The leaching experiments were conducted in presence of a) distilled water b) synthetic ground water c) synthetic ground water containing granite, bentonite and ferric oxide and d) synthetic ground water containing humic acid at 100 0 C. The leachate samples were analysed by pHmetry , ion chromatography and UV -VIS spectrophotometry. The normalised leach rates for lead borosilicate WTR- 62 glass matrix based on silica, boron and sulphate analyses of leachates were of the order of 10 -3 to 10 -5 gms/cm 2 /day for 45 days test period in presence of synthetic ground water as well as in presence of other materials likely to be present along with synthetic ground water. These rates are comparable to those of sodium borsilicate glass matrices reported in literature. It is known that the leach rates of glass matrix decrease with longer test durations due to formation of leached layer on its surface. The observed leach rates of lead borosilicate WTR- 62 glass matrix for 45 day tests under simulated geological conditions were found to be sufficiently encouraging to take up long term tests for evaluating its performances under repository conditions. (author)

  11. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  12. Fit for high altitude: are hypoxic challenge tests useful?

    Directory of Open Access Journals (Sweden)

    Matthys Heinrich

    2011-02-01

    Full Text Available Abstract Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax, sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST, which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists including mechanical aids to

  13. Fit for high altitude: are hypoxic challenge tests useful?

    Science.gov (United States)

    Matthys, Heinrich

    2011-02-28

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  14. The Titan Sky Simulator ™ - Testing Prototype Balloons in Conditions Approximating those in Titan's Atmosphere

    Science.gov (United States)

    Nott, Julian

    This paper will describe practical work flying prototype balloons in the "The Titan Sky Simulator TM " in conditions approximating those found in Titan's atmosphere. Saturn's moon, Titan, is attracting intense scientific interest. This has led to wide interest in exploring it with Aerobots, balloons or airships. Their function would be similar to the Rovers exploring Mars, but instead of moving laboriously across the rough terrain on wheels, they would float freely from location to location. To design any balloon or airship it is essential to know the temperature of the lifting gas as this influences the volume of the gas, which in turn influences the lift. To determine this temperature it is necessary to know how heat is transferred between the craft and its surroundings. Heat transfer for existing balloons is well understood. However, Titan conditions are utterly different from those in which balloons have ever been flown, so heat transfer rates cannot currently be calculated. In particular, thermal radiation accounts for most heat transfer for existing balloons but over Titan heat transfer will be dominated by convection. To be able to make these fundamental calculations, it is necessary to get fundamental experimental data. This is being obtained by flying balloons in a Simulator filled with nitrogen gas at very low temperature, about 95° K / minus 180° C, typical of Titan's temperatures. Because the gas in the Simulator is so cold, operating at atmospheric pressure the density is close to that of Titan's atmosphere. "The Titan Sky Simulator TM " has an open interior approximately 4.5 meter tall and 2.5 meters square. It has already been operated at 95° K/-180° C. By the time of the Conference it is fully expected to have data to present from actual balloons flying at this temperature. Perhaps the most important purpose of this testing is to validate numerical [computational fluid dynamics] models being developed by Tim Colonius of Caltech. These numerical

  15. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  16. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji

    2013-08-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  17. Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. I. Theory

    International Nuclear Information System (INIS)

    Pratt, L.R.; Haan, S.W.

    1981-01-01

    An exact formal theory for the effects of periodic boundary conditions on the equilibrium properties of computer simulated classical many-body systems is developed. This is done by observing that use of the usual periodic conditions is equivalent to the study of a certain supermolecular liquid, in which a supermolecule is a polyatomic molecule of infinite extent composed of one of the physical particles in the system plus all its periodic images. For this supermolecular system in the grand ensemble, all the cluster expansion techniques used in the study of real molecular liquids are directly applicable. As expected, particle correlations are translationally uniform, but explicitly anisotropic. When the intermolecular potential energy functions are of short enough range, or cut off, so that the minimum image method is used, evaluation of the cluster integrals is dramatically simplified. In this circumstance, a large and important class of cluster expansion contributions can be summed exactly, and expressed in terms of the correlation functions which result when the system size is allowed to increase without bound. This result yields a simple and useful approximation to the corrections to the particle correlations due to the use of periodic boundary conditions with finite systems. Numerical application of these results are reported in the following paper

  18. Computational science simulation of laser materials processing and provision of their irradiation conditions

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu

    2016-01-01

    In laser processing, it is necessary for achieving the intended performance and product, to understand the complex physical courses including melting and solidification phenomena occurring in laser processing, and thus to set proper laser irradiation conditions. This condition optimization work requires an enormous amount of overhead due to repeated efforts, and has become a cause for inhibiting the introduction of laser processing technology into the industrial field that points to the small lot production of many products. JAEA tried to make it possible to quantitatively handle the complex physical course from the laser light irradiation to the fabricating material until the completion of processing, and is under development of the computational science simulation code SPLICE that connects micro behavior and macro behavior through a multi-level scale model. This SPLICE is able to visualize the design space and to reduce the overhead associated with the setting of laser irradiation conditions and the like, which gives the prospect of being effective as a tool for front-loading. This approach has been confirmed to be effective for the welding and fusing process. (A.O.)

  19. Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions

    KAUST Repository

    Zhang, Ji; Jing, Wei; Roberts, William L.; Fang, Tiegang

    2013-01-01

    This study investigates the effect of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated compression-ignition engine conditions in a constant-volume chamber. The apparent heat release rate (AHRR) is calculated based on the measured pressure. High-speed imaging of OH* chemiluminescence and natural luminosity (NL) is employed to visualize the combustion process. Temporally and spatially resolved NL and OH* contour plots are obtained. The result indicates that AHRR depends monotonically on the ambient oxygen concentration for both fuels. A lower oxygen concentration yields a slower AHRR increase rate, a lower peak AHRR value, but a higher AHRR value during the burn-out stage when compared with higher ambient oxygen concentration conditions. OH* chemiluminescence and NL contours indicate that biodiesel may experience a longer premixed-combustion duration. The 18% ambient O2 condition works better for biodiesel than diesel in reducing soot luminosity. With 12% O2, diesel combustion is significantly degraded. However, both fuels experience low temperature combustion at 10% O2. These results may imply that biodiesel is able to achieve the desired lower soot production under a moderate oxygen level with higher combustion efficiency, while diesel needs to be burned under very low ambient oxygen concentration for low soot production. © 2013 Elsevier Ltd.

  20. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil

    Directory of Open Access Journals (Sweden)

    Yunsuo Duan

    2008-01-01

    Full Text Available Computational methods such as the finite difference time domain (FDTD play an important role in simulating radiofrequency (RF coils used in magnetic resonance imaging (MRI. The choice of absorbing boundary conditions affects the final outcome of such studies. We have used FDTD to assess the Berenger's perfectly matched layer (PML as an absorbing boundary condition for computation of the resonance patterns and electromagnetic fields of RF coils. We first experimentally constructed a high-pass birdcage head coil, measured its resonance pattern, and used it to acquire proton (1H phantom MRI images. We then computed the resonance pattern and B1 field of the coil using FDTD with a PML as an absorbing boundary condition. We assessed the accuracy and efficiency of PML by adjusting the parameters of the PML and comparing the calculated results with measured ones. The optimal PML parameters that produce accurate (comparable to the experimental findings FDTD calculations are then provided for the birdcage head coil operating at 127.72 MHz, the Larmor frequency of 1H at 3 Tesla (T.

  1. Research Article: Effects of long-term simulated Martian conditions on a freeze-dried and homogenized bacterial permafrost community

    DEFF Research Database (Denmark)

    Hansen, Aviaja Anna; Jensen, Lars Liengård; Kristoffersen, Tommy

    2009-01-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation......, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead......, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core...

  2. Blueberry proanthocyanidins against human norovirus surrogates in model foods and under simulated gastric conditions.

    Science.gov (United States)

    Joshi, Snehal; Howell, Amy B; D'Souza, Doris H

    2017-05-01

    Blueberry proanthocyanidins (B-PAC) are known to decrease titers of human norovirus surrogates in vitro. The application of B-PAC as therapeutic or preventive options against foodborne viral illness needs to be determined using model foods and simulated gastric conditions in vitro. The objective of this study was to evaluate the antiviral effect of B-PAC in model foods (apple juice (AJ) and 2% reduced fat milk) and simulated gastrointestinal fluids against cultivable human norovirus surrogates (feline calicivirus; FCV-F9 and murine norovirus; MNV-1) over 24 h at 37 °C. Equal amounts of each virus (5 log PFU/ml) was mixed with B-PAC (1, 2 and 5 mg/ml) prepared either in AJ, or 2% milk, or simulated gastric fluids and incubated over 24 h at 37 °C. Controls included phosphate buffered saline, malic acid (pH 7.2), AJ, 2% milk or simulated gastric and intestinal fluids incubated with virus over 24 h at 37 °C. The tested viruses were reduced to undetectable levels within 15 min with B-PAC (1, 2 and 5 mg/ml) in AJ (pH 3.6). However, antiviral activity of B-PAC was reduced in milk. FCV-F9 was reduced by 0.4 and 1.09 log PFU/ml with 2 and 5 mg/ml B-PAC in milk, respectively and MNV-1 titers were reduced by 0.81 log PFU/ml with 5 mg/ml B-PAC in milk after 24 h. B-PAC at 5 mg/ml in simulated intestinal fluid reduced titers of the tested viruses to undetectable levels within 30 min. Overall, these results show the potential of B-PAC as preventive and therapeutic options for foodborne viral illnesses. Copyright © 2016. Published by Elsevier Ltd.

  3. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.

    2017-10-02

    Recovery mechanisms are more likely to be influenced by grid-block size and reservoir heterogeneity in Chemical EOR (CEOR) than in conventional Water Flood (WF) simulations. Grid upscaling based on single-phase flow is a common practice in WF simulation models, where simulation grids are coarsened to perform history matching and sensitivity analyses within affordable computational times. This coarse grid resolution (typically about 100 ft.) could be sufficient in WF, however, it usually fails to capture key physical mechanisms in CEOR. In addition to increased numerical dispersion in coarse models, these models tend to artificially increase the level of mixing between the fluids and may not have enough resolution to capture different length scales of geological features to which EOR processes can be highly sensitive. As a result of which, coarse models usually overestimate the sweep efficiency, and underestimate the displacement efficiency. Grid refinement (simple downscaling) can resolve artificial mixing but appropriately re-creating the fine-scale heterogeneity, without degrading the history-match conducted on the coarse-scale, remains a challenge. Because of the difference in recovery mechanisms involved in CEOR, such as miscibility and thermodynamic phase split, the impact of grid downscaling on CEOR simulations is not well understood. In this work, we introduce a geostatistical downscaling method conditioned to tracer data to refine a coarse history-matched WF model. This downscaling process is necessary for CEOR simulations when the original (fine) earth model is not available or when major disconnects occur between the original earth model and the history-matched coarse WF model. The proposed downscaling method is a process of refining the coarse grid, and populating the relevant properties in the newly created finer grid cells. The method considers the values of rock properties in the coarse grid as hard data, and the corresponding variograms and property

  4. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  5. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  6. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-12

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  7. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    Directory of Open Access Journals (Sweden)

    Belén Feriche

    Full Text Available When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17 in conditions of normoxia (N1 and hypobaric hypoxia (HH and G2 (n = 11 in conditions of normoxia (N2 and normobaric hypoxia (NH. Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax was recorded as the highest P(mean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max (∼ 3% and maximal strength (1 RM (∼ 6% in G1 attributable to the climb to altitude (P<0.05. We also observed a stimulating effect of natural hypoxia on P(mean and P(peak in the middle-high part of the curve (≥ 60 kg; P<0.01 and a 7.8% mean increase in barbell displacement velocity (P<0.001. No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.

  8. Riboflavin enhances photo-oxidation of amino acids under simulated clinical conditions

    International Nuclear Information System (INIS)

    Bhatia, J.; Stegink, L.D.; Ziegler, E.E.

    1983-01-01

    In neonatal nurseries, solutions of amino acids with added vitamins may be exposed to relatively intense light from phototherapy units. Light, especially in the presence of photosensitizers such as certain vitamins, is capable of destroying amino acids. In the present study, the effect of riboflavin on amino acid concentrations in solutions exposed to light was studied. Solutions of crystalline amino acids with and without added riboflavin were infused into shielded collecting vessels for 24 hr under conditions simulating those occurring during phototherapy. Decreases in concentrations of some amino acids were observed with light exposure alone. Decreases in concentrations of methionine, proline, tryptophan, and tyrosine were significantly greater in the presence of riboflavin that in its absence. Riboflavin concentrations were also significantly reduced after light exposure. Although the losses of amino acids are probably not nutritionally significant, the photo-oxidation products are largely unknown and may be toxic

  9. Influence of physical and chemical dispersion on the biodegradation of oil under simulated marine conditions

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Daniel, F.; Croft, B. C.; Engelhardt, M. A.; Wilson, S.; Mitchell, D. J.; Lunel, T.

    1997-01-01

    Dispersion and biodegradation of oil was studied in marine microcosms designed to simulate oil dispersion at sea. Dispersion was studied using both Phase Doppler Particle Analyser and a Chamber Slide technique. In both natural and artificial seawater, oil addition was observed to encourage the growth of hydrocarbon-degrading bacteria in the presence of sufficient nitrogen and phosphorus. Results showed that microorganisms enhanced oil dispersion by colonizing physically-dispersed oil droplets and preventing re-coalescence with the surface slick. The addition of dispersants increased the rate of colonization as well as the number of degraded droplets. These results suggest that stimulation of physical dispersion by chemical means increase the rate of oil biodegradation under natural conditions. 25 refs., 3 tabs., 14 figs

  10. Experimental simulations of oxidizing conditions and organic decomposition on the surface of Mars

    International Nuclear Information System (INIS)

    Stoker, C.R.; Mancinelli, R.L.; Mckay, C.P.

    1988-01-01

    One important scientific objective of a Mars Rover Sample Return mission would be to look for traces of living and extinct life on Mars. An instrument to search for organic carbon may be the simplest instrument that could screen samples which are interesting from a biological point of view. An experimental program is described which would help to understand the nature of the oxidizing soil on Mars and the mechanism responsible for organic degradation on the Martian surface. This is approached by lab simulations of the actual conditions that occur on Mars, particularly the oxidant production by atmospheric photochemistry, and the combined effects of UV light and oxidants in decomposing organic compounds. The results will be used to formulate models of the photochemistry of the atmospheric, the atmosphere-soil interaction, and the diffusion of reactive compounds into the soils. This information will provide insights and constraints on the design of a sampling strategy to search for organic compounds on Mars

  11. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    Directory of Open Access Journals (Sweden)

    Riconda C.

    2013-11-01

    Full Text Available Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS, and Brillouin- (SBS, side/backscattering as well as Two-Plasmon-Decay (TPD are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  12. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.

    Science.gov (United States)

    Pan, Qing; Wang, Ruofan; Reglin, Bettina; Fang, Luping; Pries, Axel R; Ning, Gangmin

    2014-01-01

    Estimation of the boundary condition is a critical problem in simulating hemodynamics in microvascular networks. This paper proposed a boundary estimation strategy based on a particle swarm optimization (PSO) algorithm, which aims to minimize the number of vessels with inverted flow direction in comparison to the experimental observation. The algorithm took boundary values as the particle swarm and updated the position of the particles iteratively to approach the optimization target. The method was tested in a real rat mesenteric network. With random initial boundary values, the method achieved a minimized 9 segments with an inverted flow direction in the network with 546 vessels. Compared with reported literature, the current work has the advantage of a better fit with experimental observations and is more suitable for the boundary estimation problem in pulsatile hemodynamic models due to the experiment-based optimization target selection.

  13. KUPOL-M code for simulation of the VVER's accident localization system under LOCA conditions

    International Nuclear Information System (INIS)

    Efanov, A.D.; Lukyanov, A.A.; Shangin, N.N.; Zajtsev, A.A.; Solov'ev, S.L.

    2004-01-01

    Computer code KUPOL-M is developed for analysis of thermodynamic parameters of medium within full pressure containment for NPPs with VVER under LOCA conditions. The analysis takes into account the effects of non-stationary heat-mass transfer of gas-drop mixture in the containment compartments with natural convection, volume and surface steam condensation in the presence of noncondensables, heat-mass exchange of the compartment atmosphere with water in the sumps. The operation of the main safety systems like a spray system, hydrogen catalytic recombiners, emergency core cooling pumps, valves and a fan system is simulated in KUPOL-M code. The main results of the code verification including the ones of the participation in ISP-47 International Standard Problem on containment thermal-hydraulics are presented. (author)

  14. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2011-09-01

    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  15. Numerical simulation of air distribution in a room with a sidewall jet under benchmark test conditions

    Science.gov (United States)

    Zasimova, Marina; Ivanov, Nikolay

    2018-05-01

    The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.

  16. Growth and Survival of Some Probiotic Strains in Simulated Ice Cream Conditions

    Science.gov (United States)

    Homayouni, A.; Ehsani, M. R.; Azizi, A.; Razavi, S. H.; Yarmand, M. S.

    A Completely Randomized Design (CRD) experiment was applied in triplicates to evaluate the survival of four probiotic strains in simulated ice cream conditions. The growth and survival rate of these probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Bifidobacterium longum) in varying amount of sucrose (10, 15, 20 and 25%), oxygen scavenging components (0.05% L-cysteine and 0.05% L-ascorbate) and temperatures (4 and -20°C) during different periods of time (1, 2 and 3 months) were evaluated in MRS-broth medium. Optical density at 580 nm was used to measure growth. Lactobacilli strains proved to be highly resistant in comparison with Biffidobacteria strains. The viable cell number of Lactobacillus casei in different sucrose concentrations, different oxidoreduction potentials and refrigeration temperature was 1x1010, 2x108 and 5x107 cfu mL-1, respectively. Growth and survival rate of Lactobacillus casei showed to be the highest.

  17. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  18. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  19. [Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions].

    Science.gov (United States)

    Yang, Xin; Sun, Yi-fei; Tian, Lei; Si, Wen-jie; Feng, Hai-lan; Liu, Yi-hong

    2015-02-18

    To evaluate the precision of digital impressions taken under simulated clinical impression taking conditions with TRIOS and to compare with the precision of extraoral digitalizations. Six #14-#17 epoxy resin dentitions with extracted #16 tooth preparations embedded were made. For each artificial dentition, (1)a silicone rubber impression was taken with individual tray, poured with type IV plaster,and digitalized with 3Shape D700 model scanner for 10 times; (2) fastened to a dental simulator, 10 digital impressions for each were taken with 3Shape TRIOS intraoral scanner. To assess the precision, best-fit algorithm and 3D comparison were conducted between repeated scan models pairwise by Geomagic Qualify 12.0, exported as averaged errors (AE) and color-coded diagrams. Non-parametric analysis was performed to compare the precisions of digital impressions and model images. The color-coded diagrams were used to show the deviations distributions. The mean of AE for digital impressions was 7.058 281 μm, which was greater than that of 4.092 363 μm for the model images (Pimpressions were no more than 10 μm, which meant that the consistency between the digital impressions was good. The deviations distribution was uniform in the model images,while nonuniform in the digital impressions with greater deviations lay mainly around the shoulders and interproximal surfaces. Digital impressions with TRIOS are of good precision and up to the clinical standard. Shoulders and interproximal surfaces scanning are more difficult.

  20. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    Science.gov (United States)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  1. CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition

    Directory of Open Access Journals (Sweden)

    Kambiz Farahmand

    2012-01-01

    Full Text Available Injuries due to inhalation of hot gas are commonly encountered when dealing with fire and combustible material, which is harmful and threatens human life. In the literature, various studies have been conducted to investigate heat and mass transfer characteristics in the human respiratory tract (HRT. This study focuses on assessing the injury taking place in the upper human respiratory tract and identifying acute tissue damage, based on level of exposure. A three-dimensional heat transfer simulation is performed using Computational Fluid Dynamics (CFD software to study the temperature profile through the upper HRT consisting of the nasal cavity, oral cavity, trachea, and the first two generations of bronchi. The model developed is for the simultaneous oronasal breathing during the inspiration phase with a high volumetric flow rate of 90 liters/minute and the inspired air temperature of 100 degrees Celsius. The geometric model depicting the upper HRT is generated based on the data available and literature cited. The results of the simulation give the temperature distribution along the center and the surface tissue of the respiratory tract. This temperature distribution will help to assess the level of damage induced in the upper respiratory tract and appropriate treatment for the damage. A comparison of nasal breathing, oral breathing, and oronasal breathing is performed. Temperature distribution can be utilized in the design of the respirator systems where inlet temperature is regulated favoring the human body conditions.

  2. Performance analysis of air conditioning system and airflow simulation in an operating theater

    Science.gov (United States)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  3. Simulation of groundwater conditions and streamflow depletion to evaluate water availability in a Freeport, Maine, watershed

    Science.gov (United States)

    Nielsen, Martha G.; Locke, Daniel B.

    2012-01-01

    , the public-supply withdrawals (105.5 million gallons per year (Mgal/yr)) were much greater than those for any other category, being almost 7 times greater than all domestic well withdrawals (15.3 Mgal/yr). Industrial withdrawals in the study area (2.0 Mgal/yr) are mostly by a company that withdraws from an aquifer at the edge of the Merrill Brook watershed. Commercial withdrawals are very small (1.0 Mgal/yr), and no irrigation or other agricultural withdrawals were identified in this study area. A three-dimensional, steady-state groundwater-flow model was developed to evaluate stream-aquifer interactions and streamflow depletion from pumping, to help refine the conceptual model, and to predict changes in streamflow resulting from changes in pumping and recharge. Groundwater levels and flow in the Freeport aquifer study area were simulated with the three-dimensional, finite-difference groundwater-flow modeling code, MODFLOW-2005. Study area hydrology was simulated with a 3-layer model, under steady-state conditions. The groundwater model was used to evaluate changes that could occur in the water budgets of three parts of the local hydrologic system (the Harvey Brook watershed, the Merrill Brook watershed, and the buried aquifer from which pumping occurs) under several different climatic and pumping scenarios. The scenarios were (1) no pumping well withdrawals; (2) current (2009) pumping, but simulated drought conditions (20-percent reduction in recharge); (3) current (2009) recharge, but a 50-percent increase in pumping well withdrawals for public supply; and (4) drought conditions and increased pumping combined. In simulated drought situations, the overall recharge to the buried valley is about 15 percent less and the total amount of streamflow in the model area is reduced by about 19 percent. Without pumping, infiltration to the buried valley aquifer around the confining unit decreased by a small amount (0.05 million gallons per day (Mgal/d)), and discharge to the

  4. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.

    Science.gov (United States)

    Yates, S R; Ashworth, D J

    2018-04-15

    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  5. Water corrosion of F82H-modified in simulated irradiation conditions by heat treatment

    International Nuclear Information System (INIS)

    Lapena, J.; Blazquez, F.

    2000-01-01

    This paper presents results of testing carried out on F82H in water at 260 deg. C with 2 ppm H 2 and the addition of 0.27 ppm Li in the form of LiOH. Uniform corrosion tests have been carried out on as-received material and on specimens from welded material [TIG and electron beam (EB)]. Stress corrosion cracking (SCC) tests have been carried out in as-received material and in material heat treated to simulate neutron irradiation hardening (1075 deg. C/30' a.c. and 1040 deg. C/30' + 625 deg. C/1 h a.c.) with hardness values of 405 and 270 HV30, respectively. Results for uniform corrosion after 2573 h of testing have shown weight losses of about 60 mg/dm 2 . Compact tension (CT) specimens from the as-received material tested under constant load have not experienced crack growth. However, in the simulated irradiation conditions for a stress intensity factor between 40 and 80 MPa√m, crack growth rates of about 7x10 -8 m/s have been measured

  6. Variations of the ISM conditions accross the Main Sequence of star forming galaxies: observations and simulations.

    Science.gov (United States)

    Martinez Galarza, Juan R.; Smith, Howard Alan; Lanz, Lauranne; Hayward, Christopher C.; Zezas, Andreas; Hung, Chao-Ling; Rosenthal, Lee; Weiner, Aaron

    2015-01-01

    A significant amount of evidence has been gathered that leads to the existence of a main sequence (MS) of star formation in galaxies. This MS is expressed in terms of a correlation between the SFR and the stellar mass of the form SFR ∝ M* and spans a few orders of magnitude in both quantities. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift, but no consensus has been reached regarding its true nature, and whether the membership or not of particular galaxies to this MS underlies the existence of two different modes of star formation. In order to advance in the understanding of the MS, here we use a statistically robust Bayesian SED analysis method (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers, both local and at intermediate redshift. We find a remarkable, very tight correlation between the specific star formation rate (sSFR) of galaxies, and the typical ISM conditions near their inernal star-forming regions, parametrized via a novel quantity: the compactness parameter (C). The evolution of mergers along this correlation explains the spread of the MS, and implies that the physical conditions of the ISM smoothly evolve between on-MS (secular) conditions and off-MS (coalescence/starburst) conditions. Furthermore, we show that the slope of the correlation can be interpreted in terms of the efficiency in the conversion of gas into stars, and that this efficiency remains unchanged along and across the MS. Finally, we discuss differences in the normalization of the correlation as a function of merger mass and redshift, and conclude that these differences imply the existence of two different modes of star formation, unrelated to the smooth evolution across the MS: a disk-like, low pressure mode and a compact nuclear-starburst mode.

  7. The halo bispectrum in N-body simulations with non-Gaussian initial conditions

    Science.gov (United States)

    Sefusatti, E.; Crocce, M.; Desjacques, V.

    2012-10-01

    We present measurements of the bispectrum of dark matter haloes in numerical simulations with non-Gaussian initial conditions of local type. We show, in the first place, that the overall effect of primordial non-Gaussianity on the halo bispectrum is larger than on the halo power spectrum when all measurable configurations are taken into account. We then compare our measurements with a tree-level perturbative prediction, finding good agreement at large scales when the constant Gaussian bias parameter, both linear and quadratic, and their constant non-Gaussian corrections are fitted for. The best-fitting values of the Gaussian bias factors and their non-Gaussian, scale-independent corrections are in qualitative agreement with the peak-background split expectations. In particular, we show that the effect of non-Gaussian initial conditions on squeezed configurations is fairly large (up to 30 per cent for fNL = 100 at redshift z = 0.5) and results from contributions of similar amplitude induced by the initial matter bispectrum, scale-dependent bias corrections as well as from non-linear matter bispectrum corrections. We show, in addition, that effects at second order in fNL are irrelevant for the range of values allowed by cosmic microwave background and galaxy power spectrum measurements, at least on the scales probed by our simulations (k > 0.01 h Mpc-1). Finally, we present a Fisher matrix analysis to assess the possibility of constraining primordial non-Gaussianity with future measurements of the galaxy bispectrum. We find that a survey with a volume of about 10 h-3 Gpc3 at mean redshift z ≃ 1 could provide an error on fNL of the order of a few. This shows the relevance of a joint analysis of galaxy power spectrum and bispectrum in future redshift surveys.

  8. Realistic sampling of anisotropic correlogram parameters for conditional simulation of daily rainfields

    Science.gov (United States)

    Gyasi-Agyei, Yeboah

    2018-01-01

    This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.

  9. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  10. Large Eddy Simulation and the effect of the turbulent inlet conditions in the mixing Tee

    International Nuclear Information System (INIS)

    Ndombo, Jean-Marc; Howard, Richard J.A.

    2011-01-01

    Highlights: → LES of Tee junctions can easily reproduce the bulk flow. → The presence or absence of a turbulent inlet condition has an affect on the wall heat transfer. → The maximum heat transfer moves 1 cm and reduces by 10% when a turbulent inlet is used. - Abstract: Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones. Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Here one LES subgrid model is studied, namely the Dynamic Smagorinsky model. This paper has two goals. The first is to demonstrate some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and the second is to look at the effect of including synthetic turbulence at the Tee junction pipe inlets. The last goal is the main topic of this paper. The Synthetic Eddy Method is used to create the turbulent inlet conditions and is applied to two kinds of grids. One contains six million cells and the other ten million. The addition of turbulence at the inlet does not seem to have much effect on the bulk flow and all computations are in good agreement with the experimental data. However, the inlet turbulence does have an effect on the near wall flow. All cases show that the wall temperature fluctuation and the wall temperature/velocity correlation are not the same when a turbulent inlet condition is used. Inclusion of the turbulent inlet condition moves the downstream location of the maximum temperature/velocity correlation by 1 cm and reduces its magnitude by 10%. This result is very important because the temperature/velocity correlation is closely related to the turbulent heat transfer in the flow, which is in turn responsible for the mechanical stresses on the structure. Finally we have studied in detail the influence of the turbulent inlet condition just

  11. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  12. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  13. Multivariate prediction of spontaneous repetitive responses in ventricular myocardium exposed in vitro to simulated ischemic conditions.

    Science.gov (United States)

    Schiariti, M; Puddu, P E; Rouet, R

    1994-06-01

    Guinea-pig ventricular myocardium was partly exposed to normal Tyrode's superfusion and partly to altered conditions (using modified Tyrode's solution) set to simulate acute myocardial ischemia (PO2 80 +/- 10 mmHg; no glucose; pH 7.00 +/- 0.05; K+ 12 mM). Using a double-chamber tissue bath and standard microelectrode technique, the occurrence of spontaneous repetitive responses was investigated during simulated ischemia (occlusion) and after reperfusing the previously ischemic superfused tissue with normal Tyrode's solution (reperfusion). In 62 experiments (42 animals) the effects of: (1) duration of simulated ischemia (1321 +/- 435 s), (2) stimulation rate (1002 +/- 549 ms) and (3) number of successive simulated ischemic periods (occlusions) (1.58 +/- 0.92) on: (1) resting membrane potential, (2) action potential amplitude, (3) duration of 50 and 90% action potentials and (4) maximal upstroke velocity of action potential were studied. All variables were considered as gradients (delta) between normal and ischemic tissue. Both during occlusion and upon reperfusion, spontaneous repetitive responses were coded as single, couplets, salvos (three to nine and > 10) or total spontaneous repetitive responses (coded present when at least one of the above-mentioned types was seen). The incidence of total spontaneous repetitive responses was 31% (19/62) on occlusion and 85% (53/62) upon reperfusion. Cox's models (forced and stepwise) were used to predict multivariately the occurrence of arrhythmic events considered as both total spontaneous repetitive responses and as separate entities. These models were applicable since continuous monitoring of the experiments enabled exact timing of spontaneous repetitive response onset during both occlusion and reperfusion. In predicting reperfusion spontaneous repetitive responses, total spontaneous repetitive responses and blocks observed during the occlusion period were also considered. Total occlusion spontaneous repetitive responses

  14. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    Science.gov (United States)

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer. Copyright © 2015. Published by Elsevier Inc.

  15. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  16. Predicting the solubility of gases in Nitrile Butadiene Rubber in extreme conditions using molecular simulation

    Science.gov (United States)

    Khawaja, Musab; Molinari, Nicola; Sutton, Adrian; Mostofi, Arash

    In the oil and gas industry, elastomer seals play an important role in protecting sensitive monitoring equipment from contamination by gases - a problem that is exacerbated by the high pressures and temperatures found down-hole. The ability to predict and prevent such permeative failure has proved elusive to-date. Nitrile butadiene rubber (NBR) is a common choice of elastomer for seals due to its resistance to heat and fuels. In the conditions found in the well it readily absorbs small molecular weight gases. How this behaviour changes quantitatively for different gases as a function of temperature and pressure is not well-understood. In this work a series of fully atomistic simulations are performed to understand the effect of extreme conditions on gas solubility in NBR. Widom particle insertion is used to compute solubilities. The importance of sampling and allowing structural relaxation upon compression are highlighted, and qualitatively reasonable trends reproduced. Finally, while at STP it has previously been shown that the solubility of CO2 is higher than that of He in NBR, we observe that under the right circumstances it is possible to reverse this trend.

  17. Numerical simulation of time-dependent deformations under hygral and thermal transient conditions

    International Nuclear Information System (INIS)

    Roelfstra, P.E.

    1987-01-01

    Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)

  18. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  19. Laboratory Eh simulations in relation to the Redox conditions in natural granitic groundwaters

    International Nuclear Information System (INIS)

    Wikberg, P.

    1992-01-01

    Redox conditions are one of the prime parameters affecting the sorption of radionuclides released from a nuclear waste repository. The swedish granitic groundwaters are all reducing from a depth of approximately 100 m, the vast majority already from a depth of a few tens of metres. The contents of ferrous iron reaches a maximum at the same depth due to the weathering of iron rich minerals. At greater depths the iron content decreases while sulphide contents increases. The redox buffering capacity (in groundwater) lies mainly in the rock. The contents of iron, sulphide and manganese constitute the buffer in the groundwater. The redox potential (Eh) is controlled by the iron system in the groundwater and the rock. Sulphate is not involved in the groundwater redox processes. Laboratory simulations of the groundwater rock interactions with respect to the redox conditions have been realized, but there is still a difference compared to the natural system. This difference is due to the fact that traces of oxygen diffuses into the laboratory system causing a continuous oxidation. 20 refs., 4 figs., 1 tab

  20. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  1. Bats aloft: Variation in echolocation call structure at high altitudes

    Science.gov (United States)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  2. PHYSICAL ADAPTATION OF CHILDREN TO LIFE AT HIGH-ALTITUDE

    NARCIS (Netherlands)

    DEMEER, K; HEYMANS, HSA; ZIJLSTRA, WG

    Children permanently exposed to hypoxia at altitudes of > 3000 m above sea level show a phenotypical form of adaptation. Under these environmental conditions, oxygen uptake in the lungs is enhanced by increases in ventilation, lung compliance, and pulmonary diffusion. Lung and thorax volumes in

  3. Genotype by environment interaction for growth due to altitude in United States Angus cattle.

    Science.gov (United States)

    Williams, J L; Bertrand, J K; Misztal, I; Łukaszewicz, M

    2012-07-01

    The objectives of this study were to determine if sires perform consistently across altitude and to quantify the genetic relationship between growth and survival at differing altitudes. Data from the American Angus Association included weaning weight (WW) adjusted to 205 (n = 77,771) and yearling weight adjusted to 365 (n = 39,450) d of age from 77,771 purebred Angus cattle born in Colorado between 1972 and 2007. Postweaning gain (PWG) was calculated by subtracting adjusted WW from adjusted yearling weight. Altitude was assigned to each record based upon the zip code of each herd in the database. Records for WW and PWG were each split into 2 traits measured at low and high altitude, with the records from medium altitude removed from the data due to inconsistencies between growth performance and apparent culling rate. A binary trait, survival (SV), was defined to account for censored records at yearling for each altitude. It was assumed that, at high altitude, individuals missing a yearling weight either died or required relocation to a lower altitude predominantly due to brisket disease, a condition common at high altitude. Model 1 considered each WW and PWG measured at 2 altitudes as separate traits. Model 2 treated PWG and SV measured as separate traits due to altitude. Models included the effects of weaning contemporary group, age of dam, animal additive genetic effects, and residual. Maternal genetic and maternal permanent environmental effects were included for WW. Heritability estimates for WW in Model 1 were 0.28 and 0.26 and for PWG were 0.26 and 0.19 with greater values in low altitude. Genetic correlations between growth traits measured at different altitude were moderate in magnitude: 0.74 for WW and 0.76 for PWG and indicate possibility of reranking of sires across altitude. Maternal genetic correlation between WW at varying altitude of 0.75 also indicates these may be different traits. In Model 2, heritabilities were 0.14 and 0.27 for PWG and 0.36 and

  4. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  5. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions

    KAUST Repository

    Katsaounis, Theodoros

    2017-09-18

    A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial device because of the significantly increased diffuse component of the solar radiation which enters the back cell surface.

  6. 2D simulation and performance evaluation of bifacial rear local contact c-Si solar cells under variable illumination conditions

    KAUST Repository

    Katsaounis, Theodoros; Kotsovos, Konstantinos; Gereige, Issam; Al-Saggaf, Ahmed; Tzavaras, Athanasios

    2017-01-01

    A customized 2D computational tool has been developed to simulate bifacial rear local contact PERC type PV structures based on the numerical solution of the transport equations through the finite element method. Simulations were performed under various device material parameters and back contact geometry configurations in order to optimize bifacial solar cell performance under different simulated illumination conditions. Bifacial device maximum power output was also compared with the monofacial equivalent one and the industrial standard Al-BSF structure. The performance of the bifacial structure during highly diffused irradiance conditions commonly observed in the Middle East region due to high concentrations of airborne dust particles was also investigated. Simulation results demonstrated that such conditions are highly favorable for the bifacial device because of the significantly increased diffuse component of the solar radiation which enters the back cell surface.

  7. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  8. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station

    International Nuclear Information System (INIS)

    Araiza M, E.; Nunez C, A.

    2001-01-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  9. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  10. Interactions of carbon monoxide and hemoglobin at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.R. (Univ. of Southern California Medical Center, Los Angeles); Goldsmith, J.R.

    1983-01-01

    The health risks to U.S. populations who are exposed to ambient carbon monoxide and live at altitudes (such as Denver, Salt Lake City, and Albuquerque) were evaluated using a set of mathematical models. The assumption that a given increase in carboxyhemoglobin would require a more stringent volumetric air quality standard was tested. The results using the model predict that the 8-h or 1-h standards adopted for sea level condition need not be altered to protect individuals against health risks at altitude, if the standards are in volumetric terms. They would need to be reduced if the standards are left in gravimetric terms. If the guideline is to be based on a given decrement of oxygen tension, many other variables must be specified, but expected differences in ambient carbon monoxide have a small impact compared to the effect of altitude itself.

  11. Simulation of experiment on aerosol behaviour at severe accident conditions in the LACE experimental facility with the ASTEC CPA code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2007-01-01

    The experiment LACE LA4 on thermal-hydraulics and aerosol behavior in a nuclear power plant containment, which was performed in the LACE experimental facility, was simulated with the ASTEC CPA module of the severe accident computer code ASTEC V1.2. The specific purpose of the work was to assess the capability of the module (code) to simulate thermal-hydraulic conditions and aerosol behavior in the containment of a light-water-reactor nuclear power plant at severe accident conditions. The test was simulated with boundary conditions, described in the experiment report. Results of thermal-hydraulic conditions in the test vessel, as well as dry aerosol concentrations in the test vessel atmosphere, are compared to experimental results and analyzed. (author)

  12. Crew-MC communication and characteristics of crewmembers' sleep under conditions of simulated prolonged space flight

    Science.gov (United States)

    Shved, Dmitry; Gushin, Vadim; Yusupova, Anna; Ehmann, Bea; Balazs, Laszlo; Zavalko, Irina

    Characteristics of crew-MC communication and psychophysiological state of the crewmembers were studied in simulation experiment with 520-day isolation. We used method of computerized quantitative content analysis to investigate psychologically relevant characteristics of the crew’s messages content. Content analysis is a systematic, reproducible method of reducing of a text array to a limited number of categories by means of preset scientifically substantiated rules of coding (Berelson, 1971, Krippendorff, 2004). All statements in the crew’s messages to MC were coded with certain psychologically relevant content analysis categories (e.g. ‘Needs’, ‘Negativism’, ‘Time’). We attributed to the ‘Needs’ category statements (semantic units), containing the words, related to subject’s needs and their satisfaction, e.g. ‘‘necessary, need, wish, want, demand’’. To the ‘Negativism’ category we refer critical statements, containing such words as ‘‘mistakes, faults, deficit, shortage’’. The ‘Time’ category embodies statements related to time perception, e.g. “hour, day, always, never, constantly”. Sleep study was conducted with use of EEG and actigraphy techniques to assess characteristics of the crewmembers’ night sleep, reflecting the crew’s adaptation to the experimental conditions. The overall amount of communication (quantity of messages and their length) positively correlated with sleep effectiveness (time of sleep related to time in bed) and with delta sleep latency. Occurrences of semantic units in categories ‘Time’ and ‘Negativism’ negatively correlated with sleep latency, and positively - with delta sleep latency and sleep effectiveness. Frequency of time-related semantic units’ utilization in the crew’s messages was significantly increasing during or before the key events of the experiment (beginning of high autonomy, planetary landing simulation, etc.). It is known that subjective importance of time

  13. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    Science.gov (United States)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE

  14. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    International Nuclear Information System (INIS)

    Mamou, M.; Xu, H.; Khalid, M.

    2004-01-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  15. Flow simulations past helicopters at different flight conditions using low and high order CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Mamou, M.; Xu, H.; Khalid, M. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Mahmoud.Mamou@nrc-cnrc.gc.ca

    2004-07-01

    The present paper contains a comprehensive literature survey on helicopter flow analyses and describes some true unsteady flows past helicopter rotors obtained using low and high order CFD models. The low order model is based on a panel method coupled with a viscous boundary layer approach and a compressibility correction. The USAERO software is used for the computations. The high order model is based on Euler and Navier-Stokes equations. For the high order models, a true unsteady scheme, as implemented in the CFD-FASTRAN code using the Euler equations, is considered for flows past hovering rotor. On the other hand, a quasi-steady approach, using the WIND code with the Navier-Stokes equations and the SST turbulence model, is used to assess the validity of the approach for the simulation of flows past a helicopter in forward flight conditions. When using the high order models, a Chimera grid technique is used to describe the blade motions within the parent stationary grid. Comparisons with experimental data are performed and the true unsteady simulations provide a reasonable agreement with the available experimental data. The panel method and the quasisteady approach are found to overestimate the loads on the helicopter rotors. The USAERO panel code is found to produce more thrust owing to some error sources in the computations when a wake-surface collision occurs, as the blades interact with their own wakes. The automatic cutting of the wake sheets, as they approach the model surface, is not working properly at every time step. (author)

  16. Simulation of Electrical Discharge Initiated by a Nanometer-Sized Probe in Atmospheric Conditions

    International Nuclear Information System (INIS)

    Chen Ran; Chen Chilai; Liu Youjiang; Wang Huanqin; Kong Deyi; Ma Yuan; Cada Michael; Brugger Jürgen

    2013-01-01

    In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1:1 to 1:10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Furthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship

  17. Simulation modelling of a patient surge in an emergency department under disaster conditions

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2015-10-01

    Full Text Available The efficiency of emergency departments (EDs in handling patient surges during disaster times using the available resources is very important. Many EDs require additional resources to overcome the bottlenecks in emergency systems. The assumption is that EDs consider the option of temporary staff dispatching, among other options, in order to respond to an increased demand or even the hiring temporarily non-hospital medical staff. Discrete event simulation (DES, a well-known simulation method and based on the idea of process modeling, is used for establishing ED operations and management related models. In this study, a DES model is developed to investigate and analyze an ED under normal conditions and an ED in a disaster scenario which takes into consideration an increased influx of disaster victims-patients. This will allow early preparedness of emergency departments in terms of physical and human resources. The studied ED is located in an earthquake zone in Istanbul. The report on Istanbul’s disaster preparedness presented by the Japan International Cooperation Agency (JICA and Istanbul Metropolitan Municipality (IMM, asserts that the district where the ED is located is estimated to have the highest injury rate. Based on real case study information, the study aims to suggest a model on pre-planning of ED resources for disasters. The results indicate that in times of a possible disaster, when the percentage of red patient arrivals exceeds 20% of total patient arrivals, the number of red area nurses and the available space for red area patients will be insufficient for the department to operate effectively. A methodological improvement presented a different distribution function that was tested for service time of the treatment areas. The conclusion is that the Weibull distribution function used in service process of injection room fits the model better than the Gamma distribution function.

  18. Extended survival of several organisms and amino acids under simulated martian surface conditions

    Science.gov (United States)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  19. Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions

    Science.gov (United States)

    Jost, Bernhard; Pommerol, Antoine; Poch, Olivier; Yoldi, Zuriñe; Fornasier, Sonia; Hasselmann, Pedro Henrique; Feller, Clément; Carrasco, Nathalie; Szopa, Cyril; Thomas, Nicolas

    2017-10-01

    This work is intended to be the second publication in a series of papers reporting on the spectro-photometric properties of cometary analogues measured in the laboratory. Herein, we provide in-situ hyperspectral imaging data in the 0.40-2.35 μm range from three sublimation experiments under simulated space conditions in thermal vacuum from samples made of water ice, carbonaceous compounds and complex organic molecules. The dataset is complemented by measurements of the bidirectional reflectance in the visible (750 nm) spectral range before and after sublimation. A qualitative characterization of surface evolution processes is provided as well as a description of morphological changes during the simulation experiment. The aim of these experiments is to mimic the spectrum of comet 67P/Churyumov-Gerasimenko (67P) as acquired by the Rosetta mission by applying sublimation experiments on the mixtures of water ice with a complex organic material (tholins) and carbonaceous compounds (carbon black; activated charcoal) studied in our companion publication (Jost et al., submitted). Sublimation experiments are needed to develop the particular texture (high porosity), expected on the nucleus' surface, which might have a strong influence on spectro-photometric properties. The spectrally best matching mixtures of non volatile organic molecules from Jost et al. (submitted) are mixed with fine grained water ice particles and evolved in a thermal vacuum chamber, in order to monitor the influence of the sublimation process on their spectro-photometric properties. We demonstrate that the way the water ice and the non-volatile constituents are mixed, plays a major role in the formation and evolution of a surface residue mantle as well as having influence on the consolidation processes of the underlying ice. Additionally it results in different activity patterns under simulated insolation cycles. Further we show that the phase curves of samples having a porous surface mantle layer

  20. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael

    2017-05-15

    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  1. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  2. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  3. Altitude Stress During Participation of Medical Congress

    Science.gov (United States)

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  4. Germination of rye brome (Bromus secalinus L. seeds under simulated drought and different thermal conditions

    Directory of Open Access Journals (Sweden)

    Małgorzata Haliniarz

    2014-01-01

    Full Text Available The aim of the present study was to compare the germination of rye brome (Bromus secalinus L. seeds and the initial growth of seedlings under simulated drought and different thermal conditions. The study included two experiments carried out under laboratory conditions in the spring of 2012. The first experiment involved an evaluation of the speed of germination as well as of the biometric characters and weight of seedlings in polyethylene glycol solutions (PEG 8000 in which the water potential was: -0.2; -0.4; -0.65; -0.9 MPa, and in distilled water as the control treatment. The experiment was conducted at the following temperatures: 25/22oC and 18/14oC day/night, at a relative air humidity of 90%. The other experiment, in which lessive soil was used as a germination substrate, was carried out in a plant growth chamber at two levels of air humidity (55–65% and 85–95% and temperature (22/10oC and 16/5oC. The soil moisture content was determined by the gravimetric method and the water potential corresponding to it was as follows: -0.02, -0.07, -0.16, -0.49, -1.55 MPa. The germination capacity and emergence of Bromus secalinus as well as the weight of sprouts produced were significantly dependent on the water potential of the polyethylene glycol solution and on the soil water potential. The emergence of Bromus secalinus was completely inhibited by reducing the soil water potential below -0.16 MPa (the point of strong growth inhibition. The emergence and biometric characters of rye bro- me seedlings were significantly dependent on temperature and air humidity.

  5. A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krisman, Alexander; Hawkes, Evatt Robert.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.

    2016-11-11

    In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel, DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.

  6. Simulation of tree shade impacts on residential energy use for space conditioning in Sacramento

    Science.gov (United States)

    Simpson, J. R.; McPherson, E. G.

    Tree shade reduces summer air conditioning demand and increases winter heating load by intercepting solar energy that would otherwise heat the shaded structure. We evaluate the magnitude of these effects here for 254 residential properties participating in a utility sponsored tree planting program in Sacramento, California. Tree and building characteristics and typical weather data are used to model hourly shading and energy used for space conditioning for each building for a period of one year. There were an average of 3.1 program trees per property which reduced annual and peak (8 h average from 1 to 9 p.m. Pacific Daylight Time) cooling energy use 153 kWh (7.1%) and 0.08 kW (2.3%) per tree, respectively. Annual heating load increased 0.85 GJ (0.80 MBtu, 1.9%) per tree. Changes in cooling load were smaller, but percentage changes larger, for newer buildings. Averaged over all homes, annual cooling savings of 15.25 per tree were reduced by a heating penalty of 5.25 per tree, for net savings of 10.00 per tree from shade. We estimate an annual cooling penalty of 2.80 per tree and heating savings of 6.80 per tree from reduced wind speed, for a net savings of 4.00 per tree, and total annual savings of 14.00 per tree (43.00 per property). Results are found to be consistent with previous simulations and the limited measurements available.

  7. Simulations of QCD and QED with C boundary conditions

    DEFF Research Database (Denmark)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino

    2018-01-01

    that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C...

  8. Pulse simulations and heat flow measurements for the ATLAS Forward Calorimeter under high-luminosity conditions

    CERN Document Server

    AUTHOR|(SzGeCERN)758133; Zuber, Kai

    The high luminosity phase of the Large Hadron Collider at CERN is an important step for further and more detailed studies of the Standard Model of particle physics as well as searches for new physics. The necessary upgrade of the ATLAS detector is a challenging task as the increased luminosity entails many problems for the different detector parts. The liquid-argon Forward Calorimeter suffers signal-degradation effects and a high voltage drop of the supply potential under high-luminosity conditions. It is possible that the argon starts to boil due to the large energy depositions. The effect of the high-luminosity environment on the liquid-argon Forward Calorimeter has been simulated in order to investigate the level of signal degradation. The results show a curvature of the triangular pulse shape that appears prolonged when increasing the energy deposit. This effect is caused by the drop in the electric potential that produces a decrease in the electric field across the liquid-argon gap in the Forward Calorim...

  9. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    Science.gov (United States)

    Casartelli, E.; Mangani, L.; Romanelli, G.; Staubli, T.

    2014-03-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns.

  10. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    International Nuclear Information System (INIS)

    Casartelli, E; Mangani, L; Romanelli, G; Staubli, T

    2014-01-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns

  11. The simulation of CANDU fuel channel behavior in thermal transient conditions

    International Nuclear Information System (INIS)

    Mihalache, M.; Roth, M.; Radu, V.; Dumitrescu, I.

    2005-01-01

    In certain LOCA conditions into the CANDU fuel channel, is possible the ballooning of the pressure tube and the contact with the calandria tube. After the contact moment, a radial heat transfer to the moderator through the contact area is occurs. When the temperature of channel walls increases, the contact area is drying and the heat transfer becomes inefficiently. Thus, the fuel channel could lose its integrity. This paper present a computer code, DELOCA, developed in INR, which simulate the transient thermo-mechanical behaviour of CANDU fuel channel before and after contact. The code contains few models: alloy creep, heat transfer by conduction through the cylindrical walls, channel failure criteria and calculus of heat transfer at the calandria tube - moderator interface. This code evaluates the contact and channel failure moments. It was verified step by step by Contact1 and Cathena codes. In this paper, the results obtained at different temperature increasing rates are presented. Also, the contact moment for a RIH 5% postulated accident was presented. The input data was furnished by the Cathena thermo-hydraulic code. (author)

  12. Sildenafil and tadalafil in simulated chlorination conditions: Ecotoxicity of drugs and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Temussi, Fabio; DellaGreca, Marina; Pistillo, Paola; Previtera, Lucio; Zarrelli, Armando [UdR Napoli 4 INCA, Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant' Angelo, Università Federico II, Via Cintia, I-80126 Napoli (Italy); Criscuolo, Emma; Lavorgna, Margherita; Russo, Chiara [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy); Isidori, Marina, E-mail: marina.isidori@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy)

    2013-10-01

    Chlorination experiments on two drugs (sildenafil and tadalafil) were performed mimicking the conditions of a typical wastewater treatment process. The main transformation products were isolated by chromatographic techniques (Thin Layer Chromatography (TLC), Column Chromatography (CC), High Performance Liquid Chromatography (HPLC)) and fully characterized employing Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) analyses. The environmental effects of the parent compounds and transformation products were evaluated using an overall toxicity approach that considered aquatic acute and chronic toxicity on Brachionus calyciflorus and Ceriodaphnia dubia as well as mutagenesis and genotoxicity on bacterial strains. The results revealed that both parent drugs did not show high acute and chronic toxicity for the organisms utilized in the bioassays while, chronic exposure to chlorine derivatives caused inhibition of growth population on rotifers and crustaceans. A mutagenic potential was found for all the compounds investigated. - Highlights: • Simulated disinfection process of pharmaceuticals was performed. • Toxicity and genotoxicity of sildenafil, tadalafil and their derivatives were evaluated. • Chlorine derivatives caused chronic toxicity on rotifers and crustaceans. • A mutagenic potential was found for all the compounds investigated.

  13. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    Science.gov (United States)

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  14. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition

    Science.gov (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.

    2017-07-01

    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  15. Numerical simulation of the shot peening process under previous loading conditions

    International Nuclear Information System (INIS)

    Romero-Ángeles, B; Urriolagoitia-Sosa, G; Torres-San Miguel, C R; Molina-Ballinas, A; Benítez-García, H A; Vargas-Bustos, J A; Urriolagoitia-Calderón, G

    2015-01-01

    This research presents a numerical simulation of the shot peening process and determines the residual stress field induced into a component with a previous loading history. The importance of this analysis is based on the fact that mechanical elements under shot peening are also subjected to manufacturing processes, which convert raw material into finished product. However, material is not provided in a virgin state, it has a previous loading history caused by the manner it is fabricated. This condition could alter some beneficial aspects of the residual stress induced by shot peening and could accelerate the crack nucleation and propagation progression. Studies were performed in beams subjected to strain hardening in tension (5ε y ) before shot peening was applied. Latter results were then compared in a numerical assessment of an induced residual stress field by shot peening carried out in a component (beam) without any previous loading history. In this paper, it is clearly shown the detrimental or beneficial effect that previous loading history can bring to the mechanical component and how it can be controlled to improve the mechanical behavior of the material

  16. Modeling and simulation of a solar powered two bed adsorption air conditioning system

    International Nuclear Information System (INIS)

    Li Yong; Sumathy, K.

    2004-01-01

    A simple lumped parameter model is established to investigate the performance of a solar powered adsorption air conditioning system driven by flat-type solar collectors with three different configurations of glazes: (i) single glazed cover; (ii) double glazed cover and (iii) transparent insulation material (TIM) cover. The dynamic performance of a continuous adsorption cycle using a double adsorber along with heat recovery is measured in terms of the temperature histories, gross solar coefficient of performance and specific cooling power. Also, the influences of some important design and operational parameters on the performance of the system are studied. It is found that the chosen three types of collector configurations make no big difference on the performance, but the adsorbent mass and lumped capacitance have significant effects on the system performance as well as on the system size. Simulation results indicate that the effect of overall heat transfer coefficient is not predominant if the cycle duration is longer. Also, there exists an optimum time to initiate the heating of the adsorbent bed in a day's operation

  17. 360⁰ -View of Quantum Theory and Ab Initio Simulation at Extreme Conditions: 2014 Sanibel Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States)

    2016-09-02

    The Sanibel Symposium 2014 was held February 16-21, 2014, at the King and Prince, St. Simons Island, GA. It was successful in bringing condensed-matter physicists and quantum chemists together productively to drive the emergence of those specialties. The Symposium had a significant role in preparing a whole generation of quantum theorists. The 54th Sanibel meeting looked to the future in two ways. We had 360⁰-View sessions to honor the exceptional contributions of Rodney Bartlett (70), Bill Butler (70), Yngve Öhrn (80), Fritz Schaefer (70), and Malcolm Stocks (70). The work of these five has greatly impacted several generations of quantum chemists and condensed matter physicists. The “360⁰” is the sum of their ages. More significantly, it symbolizes a panoramic view of critical developments and accomplishments in theoretical and computational chemistry and physics oriented toward the future. Thus, two of the eight 360⁰-View sessions focused specifically on younger scientists. The 360⁰-View program was the major component of the 2014 Sanibel meeting. Another four sessions included a sub-symposium on ab initio Simulations at Extreme Conditions, with focus on getting past the barriers of present-day Born-Oppenheimer molecular dynamics by advances in finite-temperature density functional theory, orbital-free DFT, and new all-numerical approaches.

  18. Bubble behavior and breakdown characteristics in LHe under simulating quench condition of S.C. magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Yoshizuka, H.; Takano, K.; Hara, M. [Kyushu University, Fukuoka (Japan)

    1996-09-20

    In large superconducting magneto, liquid helium is usually used both as coolant and electrical insulator. An abnormal high voltage and thermal bubbles often appear simultaneously during the quenching period. Such an incident is thought serious from a point of view of electrical insulation. In this work, thermal bubble behavior affected by the electrostatic forces in liquid helium and electrical breakdown mechanism of liquid helium are studied under the simulating quench condition of S.C magnet. The results show that (1) the electrostatic forces produced by nonuniform electric field are useful for reducing the effect of thermal bubbles on electrical breakdown in almost all cases, although the bubble aggregation occurs in the region where the gradient force is counterbalancing with the buoyancy and (2) the fins on the surface of superconducting wires are helpful to prevent the bubbles from being released into strong field region if the groove between fins is formed along the field decreasing direction on the wire surface. 11 refs., 14 figs., 1 tab.

  19. Assessment of eye lens doses in interventional radiology: a simulation in laboratory conditions

    International Nuclear Information System (INIS)

    Cemusova, Z.; Ekendahl, D.; Judas, L.

    2016-01-01

    As workers in interventional radiology belong to one of the most occupationally exposed groups, methods for sufficiently accurate quantification of their external exposure are sought. The objective of the authors' experiment was to investigate the relations between eye lens dose and H p (10), H p (3) or H p (0.07) values measured with a conventional whole-body personal thermoluminescence dosemeter (TLD). Conditions of occupational exposure during common interventional procedures were simulated in laboratory. An anthropomorphic phantom represented a physician. The TLDs were fixed to the phantom in different locations that are common for purposes of personal dosimetry. In order to monitor the dose at the eye lens level during the exposures, a special thermoluminescence eye dosemeter was fixed to the phantom's temple. Correlations between doses measured with the whole-body and the eye dosemeters were found. There are indications that personnel in interventional radiology do not need to be unconditionally equipped with additional eye dosemeters, especially if an appropriate whole-body dosimetry system has been already put into practice. (authors)

  20. Enhanced oil recovery methods studied by gamma tracer scanning at simulated reservoir conditions

    International Nuclear Information System (INIS)

    Eriksen, D.O.; Haugen, O.B.; Bjornstad, T.

    2009-01-01

    During recovery (production) of hydrocarbons pressure is maintained by injecting prepared sea water and recycled gas (lean gas) into dedicated injection wells. In one well at the Snorre field in the North Sea the injected gas was recycled too fast to enable support of pressure and squeezing of oil. To plug this high-permeable area the operator wanted to inject foam as a test of its possibilities to decrease gas permeability. As part of the project laboratory tests were included. In these tests we could for the first time map the foam inside the sandstone sample at simulated reservoir conditions. The tracers used were 22 Na + for the γ-scanning of the aqueous brine, tritiated water for permeability measurements, and 35 S-labeled organic sulfonic acid of the same compound as the surfactant. This method resulted in a 'negative' mapping of the foam, i.e. measurements of the absence or exclusion of the aqueous phase by the foam. This method was new and showed that radiotracer-based γ-scanning could give much more accurate measurements of the position of the foam than the standard method using measurements of pressure drops over parts of the core. (author)

  1. Aeroacoustic Simulation for NASA CC3 Centrifugal Compressor Operating at off Design Condition

    Directory of Open Access Journals (Sweden)

    Alqaradawi Mohamed

    2016-01-01

    Full Text Available This paper covers the characterization of the acoustic noise and the unsteady flow field of a high speed centrifugal compressor NASA CC3. In order to accurately predict the noise, all analyses are carried out through the use of Large Eddy Simulation and Ffowcs Williams–Hawkings model for noise prediction. The relative effect of hub cavity on flow characteristics and sound levels is investigated, for a compressor stage with a total pressure ratio equal to 4, working from surge to near choke condition. In comparison with the experimental results from literature, the predicted compressor performance and flow field are predicted well. The hub cavity flow effect on the compressor aeroacoustic generated noise is shown in the paper. The unsteady static pressure and sound pressure levels are compared not only at different location but also for design and off design operating points. The internal flow results inside the hub cavity are presented at surge, design and near choke points. The conclusion is that the cavity effect of the centrifugal compressor cannot be ignored in the numerical prediction of aerodynamic generated noise. The impeller back plate of the rotor experiences a strong pressure fluctuation, which is maxima at the impeller outer radius for all operating point, but higher pressure values at the surge point.

  2. Molecular dynamics simulations of polyelectrolyte brushes under poor solvent conditions: origins of bundle formation.

    Science.gov (United States)

    He, Gui-Li; Merlitz, Holger; Sommer, Jens-Uwe

    2014-03-14

    Molecular dynamics simulations are applied to investigate salt-free planar polyelectrolyte brushes under poor solvent conditions. Starting above the Θ-point with a homogeneous brush and then gradually reducing the temperature, the polymers initially display a lateral structure formation, forming vertical bundles of chains. A further reduction of the temperature (or solvent quality) leads to a vertical collapse of the brush. By varying the size and selectivity of the counterions, we show that lateral structure formation persists and therefore demonstrate that the entropy of counterions being the dominant factor for the formation of the bundle phase. By applying an external compression force on the brush we calculate the minimal work done on the polymer phase only and prove that the entropy gain of counterions in the bundle state, as compared to the homogeneously collapsed state at the same temperature, is responsible for the lateral microphase segregation. As a consequence, the observed lateral structure formation has to be regarded universal for osmotic polymer brushes below the Θ-point.

  3. An experimental study of the response of the Galesville sandstone to simulated CAES conditions

    Energy Technology Data Exchange (ETDEWEB)

    Erikson, R L; Stottlemyre, J A; Smith, R P

    1980-07-01

    The objective of this experimental study was to determine how the mineralogical and physical characteristics of host rock formations are affected by environmental conditions anticipated for compressed air energy storage (CAES) in porous, permeable rock. In this study, Galesville sandstone cores were reacted in autoclave pressure vessels supporting one of four environments: dry air; heated, air-water vapor; heated, nitrogen-water vapor mixtures; and heated, compressed, liquid water. The simulated CAES environments were maintained in autoclave pressure vessels by controlling the following independent variables: temperature, pressure, time, oxygen content, carbon dioxide content, nitrogen content, and liquid volume. The dependent variables studied were: apparent porosity, gas permeability, water permeability, and friability. These variables were measured at ambient temperature and pressure before and after each sandstone sample was reacted in one of the CAES environments. The experiments gave the following results: the Galesville sandstone exhibited excellent stability in dry air at all temperatures tested (50/sup 0/ to 300/sup 0/C); and significant physical alterations occurred in sandstone samples exposed to liquid water above 150/sup 0/C. Samples shielded from dripping water exhibited excellent stability to 300/sup 0/C; sandstone may be a suitable storage media for heated, humid air provided elevated temperature zones are relatively free of mobile liquid water; and observed changes in the physical properties of the rock may have been caused, in part, by the lack of confining stress on the sample. The inability to apply confining pressure is a severe limitation of autoclave experiments.

  4. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  5. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  6. [CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions].

    Science.gov (United States)

    Wu, Qin; Zhang, Guang-Can; Pei, Bin; Xu, Zhi-Qiang; Zhao, Yu; Fang, Li-Dong

    2013-06-01

    Taking the two-year old potted Prunus sibirica seedlings as test materials, and using CIRAS-2 photosynthetic system, this paper studied the CO2 response process of P. sibirica photosynthesis in semi-arid loess hilly region under eight soil moisture conditions. The CO2 response data of P. sibirica were fitted and analyzed by rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Meanwhile, the quantitative relationships between the photosynthesis and the soil moisture were discussed. The results showed that the CO2 response process of P. sibirica photosynthesis had obvious response characteristics to the soil moisture threshold. The relative soil water content (RWC) required to maintain the higher photosynthetic rate (P(n)) and carboxylation efficiency (CE) of P. sibirica was in the range of 46.3%-81.9%. In this RWC range, the photosynthesis did not appear obvious CO2 saturated inhibition phenomenon. When the RWC exceeded this range, the photosynthetic capacity (P(n max)), CE, and CO2 saturation point (CSP) decreased evidently. Under different soil moisture conditions, there existed obvious differences among the three models in simulating the CO2 response data of P. sibirica. When the RWC was in the range of 46.3%-81.9%, the CO2 response process and the characteristic parameters such as CE, CO2 compensation point (see symbol), and photorespiration rate (R(p)) could be well fitted by the three models, and the accuracy was in the order of modified rectangular hyperbola model > exponential equation > rectangular hyperbola model. When the RWC was too high or too low, namely, the RWC was > 81.9% or CO2 response process and the characteristic parameters. It was suggested that when the RWC was from 46.3% to 81.9%, the photosynthetic efficiency of P. sibirica was higher, and, as compared with rectangular hyperbola model and exponential equation, modified rectangular hyperbola model had more applicability to fit the CO2 response data of

  7. Incidence and Symptoms of High Altitude Illness in South Pole Workers: Antarctic Study of Altitude Physiology (ASAP

    Directory of Open Access Journals (Sweden)

    Paul J. Anderson

    2011-01-01

    altitude alone. Many symptoms persist, possibly due to extremely cold, arid conditions and the benefits of acetazolamide appeared negligible, though it may have prevented more severe symptoms in higher risk subjects.

  8. Longitudinal Static Stability and wake visualization of high altitude long endurance aircraft developed in Bandung institute of technology

    Science.gov (United States)

    Irsyad Lukman, E.; Agoes Moelyadi, M.

    2018-04-01

    A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.

  9. Survival of Lactobacillus delbrueckii UFV H2b20 in fermented milk under simulated gastric and intestinal conditions.

    Science.gov (United States)

    da Conceição, L L; Leandro, E S; Freitas, F S; de Oliveira, M N V; Ferreira-Machado, A B; Borges, A C; de Moraes, C A

    2013-09-01

    The survival of Lactobacillus delbrueckii UFV H2b20 was assessed in fermented milk, both during the storage period and after exposure to simulated gastric and intestinal juices, as well the detection of the gene fbpA involved in adherence to human gastrointestinal tract. L. delbrueckii UFV H2b20 remained stable and viable for 28 days under refrigerated storage conditions. After one day of storage, that strain exhibited a one-log population reduction following exposure in tandem to simulated gastric and intestinal juices. After 14 days of storage, a two-log reduction was observed following 90 min of exposure to the simulated gastric conditions. However, the strain did not survive following exposure to the simulated intestinal juice. The observed tolerance to storage conditions and resistance to the simulated gastric and intestinal conditions confirm the potential use of L. delbrueckii UFV H2b20 as a probiotic, which is further reinforced by the detection of fbpA in this strain.

  10. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  11. Modeling of Air Attenuation Effects on Gamma Detection at Altitude

    International Nuclear Information System (INIS)

    Detwiler, R. S.

    2002-01-01

    This paper focuses on modeling the detection capabilities of NaI sensor systems at high altitudes for ground sources. The modeling was done with the Monte Carlo N-Transport (MCNP) code developed at Los Alamos National Laboratory. The specific systems modeled were the fixed wing and helicopter aircraft sensor systems, assets of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Aerial Measuring System (AMS). In previous (2001) modeling, Sodium Iodine (NaI) detector responses were simulated for both point and distributed surface sources as a function of gamma energy and altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 (micro)Ci/m 2 . To validate the calculations, benchmark measurements were made for simple source-detector configurations. The 2002 continuation of the modeling presented here includes checking models against available data, and modifications to allow more effective and accurate directional biasing of ground point and distributed sources. Fixed-wing data results will be shown for two point sources as a function of altitude

  12. Study and simulation of irradiated zirconium alloys fracture under type RIA accidental loading conditions; Comprehension et modelisation de la rupture d'alliages de zirconium irradies en conditions accidentelles de type RIA

    Energy Technology Data Exchange (ETDEWEB)

    Le Saux, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    The thesis aims to study and simulate the mechanical behavior under Reactivity Initiated Accident loading conditions, of the Zircaloy 4 fuel claddings, irradiated or not. It also aims to characterize and simulate the behavior and the fracture under RIA loading conditions of hydrided Zircaloy 4 non irradiated. This study proposes an experimental approach and a simulation. (A.L.B.)

  13. Cardiovascular Effects of Altitude on Performance Athletes.

    Science.gov (United States)

    Shah, Ankit B; Coplan, Neil

    Altitude plays an important role in cardiovascular performance and training for athletes. Whether it is mountaineers, skiers, or sea-level athletes trying to gain an edge by training or living at increased altitude, there are many potential benefits and harms of such endeavors. Echocardiographic studies done on athletes at increased altitude have shown evidence for right ventricular dysfunction and pulmonary hypertension, but no change in left ventricular ejection fraction. In addition, 10% of athletes are susceptible to pulmonary hypertension and high-altitude pulmonary edema. Some studies suggest that echocardiography may be able to identify athletes susceptible to high-altitude pulmonary edema prior to competing or training at increased altitudes. Further research is needed on the long-term effects of altitude training, as repeated, transient episodes of pulmonary hypertension and right ventricular dysfunction may have long-term implications. Current literature suggests that performance athletes are not at higher risk for ventricular arrhythmias when training or competing at increased altitudes. For sea-level athletes, the optimal strategy for attaining the benefits while minimizing the harms of altitude training still needs to be clarified, although-for now-the "live high, train low" approach appears to have the most rationale.

  14. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia

    Directory of Open Access Journals (Sweden)

    Amelia J. Carr, Philo U. Saunders, Brent S. Vallance, Laura A. Garvican-Lewis, Christopher J. Gore

    2015-12-01

    Full Text Available This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities on haemoglobin mass (Hbmass, maximum oxygen consumption (VO2max, time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10 or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night-1 at a simulated altitude of 3000 m using hypoxic tents; n = 8. A control group (CON; n = 10 lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02. In comparison to baseline, Hbmass increased by 1.2% (±1.4% in the lowHH group, 2.6% (±1.8% in lowHH+NHnight, and there was a decrease of 0.9% (±4.9% in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03 and a ~8% pre to post-intervention difference (p = 0.006 after lowHH only. We recommend low altitude (1380 m combined with sleeping in altitude tents (3000 m as one effective alternative to traditional altitude training methods, which can improve Hbmass.

  15. Experimental observation and numerical simulation of permeability changes in dolomite at CO2 sequestration conditions

    Science.gov (United States)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.

  16. A Comparitive Analysis of the Influence of Weather on the Flight Altitudes of Birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; van Loon, Emiel; van Gasteren, Hans; van Belle, Jelmer; Bouten, Willem; Buurma, Luit

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions.We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard ), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris).Maximum flight altitudes varied among species, during the day and among days. Weather significantly influenced the flight altitudes of all species studied. Factors such as temperature, relative humidity, atmospheric instability, cloud cover, and sea level pressure were related to flight altitudes. Different combinations of factors explained 40% 70% of the variance in maximum flight altitudes. Weather affected flight strategy groups differently. Compared to flapping species, buzzards and swifts showed stronger variations in maximum daily altitude and f lew higher under conditions reflecting stronger thermal convection. The dynamic vertical distributions of birds are important for risk assessment and mitigation measures in flight safety as well as wind turbine studies.

  17. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  18. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    International Nuclear Information System (INIS)

    Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F

    2013-01-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)

  19. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.

    Science.gov (United States)

    Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T

    2016-03-01

    Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91

  20. Artificial boundary conditions for the numerical simulation of unsteady acoustic waves

    International Nuclear Information System (INIS)

    Tsynkov, S.V.

    2003-01-01

    We construct non-local artificial boundary conditions (ABCs) for the numerical simulation of genuinely time-dependent acoustic waves that propagate from a compact source in an unbounded unobstructed space. The key property used for obtaining the ABCs is the presence of lacunae, i.e., sharp aft fronts of the waves, in wave-type solutions in odd-dimension spaces. This property can be considered a manifestation of the Huygens' principle. The ABCs are obtained directly for the discrete formulation of the problem. They truncate the original unbounded domain and guarantee the complete transparency of the new outer boundary for all the outgoing waves. A central feature of the proposed ABCs is that the extent of their temporal non-locality is fixed and limited, and it does not come at the expense of simplifying the original model. It is rather a natural consequence of the existence of lacunae, which is a fundamental property of the corresponding solutions. The proposed ABCs can be built for any consistent and stable finite-difference scheme. Their accuracy can always be made as high as that of the interior approximation, and it will not deteriorate even when integrating over long time intervals. Besides, the ABCs are most flexible from the standpoint of geometry and can handle irregular boundaries on regular grids with no fitting/adaptation needed and no accuracy loss induced. Finally, they allow for a wide range of model settings. In particular, not only one can analyze the simplest advective acoustics case with the uniform background flow, but also the case when the waves' source (or scatterer) is engaged in an accelerated motion

  1. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    International Nuclear Information System (INIS)

    Dolez, Patricia; Vinches, Ludwig; Vu-Khanh, Toan; Wilkinson, Kevin; Plamondon, Philippe

    2011-01-01

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health and Safety (H and S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H and S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  2. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    Energy Technology Data Exchange (ETDEWEB)

    Dolez, Patricia; Vinches, Ludwig; Vu-Khanh, Toan [Ecole de technologie superieure, 1100 rue Notre-Dame Ouest, Montreal QC H3C 1K3 (Canada); Wilkinson, Kevin [Universite de Montreal, C.P. 6128, succ. Centre-ville Montreal QC H3C 3J7 (Canada); Plamondon, Philippe, E-mail: patricia.dolez@etsmtl.ca [Ecole polytechnique, C.P. 6079, succ. Centre-ville, Montreal QC H3C 3A7 (Canada)

    2011-07-06

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health and Safety (H and S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H and S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  3. Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use

    Science.gov (United States)

    Dolez, Patricia; Vinches, Ludwig; Wilkinson, Kevin; Plamondon, Philippe; Vu-Khanh, Toan

    2011-07-01

    Nanoparticle manufacture and use are in full expansion. The associated risks of occupational exposure raise large concerns due to their potential toxicity. Even if they stand as a last resort in the traditional occupational Health & Safety (H&S) risk management strategy, personal protective equipment (PPE) against nanoparticles are an absolute need in the context of precautionary principle advocated by H&S organizations worldwide. However no standard test method is currently available for evaluating the efficiency of PPE against nanoparticles, in particular in the case of gloves. A project is thus underway to develop a test method for measuring nanoparticle penetration through protective gloves in conditions simulating glove-nanoparticle occupational interaction. The test setup includes an exposure and a sampling chamber separated by a circular glove sample. A system of cylinders is used to deform the sample while it is exposed to nanoparticles. The whole system is enclosed in a glove box to ensure the operator safety during assembly, dismounting and clean-up operations as well as during the tests. Appropriate nanoparticle detection techniques were also identified. Results are reported here for commercial 15nm TiO2 nanoparticles - powder and colloidal solutions in 1,2-propanediol, ethylene glycol and water - and four types of protective gloves: disposable nitrile and latex as well as unsupported neoprene and butyl rubber gloves. They show that mechanical deformations and contact with colloidal solution liquid carriers may affect glove materials. Preliminary results obtained with TiO2 powder indicate a possible penetration of nanoparticles through gloves following mechanical deformations.

  4. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia.

    Science.gov (United States)

    Carr, Amelia J; Saunders, Philo U; Vallance, Brent S; Garvican-Lewis, Laura A; Gore, Christopher J

    2015-12-01

    This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short exposure to simulated altitudes of 3000 m can elicit physiological and performance benefits, without compromise to

  5. RELAP simulation and experimental verification of transient boiling conditions in narrow coolant channels, at low temperature and pressure

    International Nuclear Information System (INIS)

    Kunze, J.F.; Loyalka, S.K.; Hultsch, R.A.; Oladiran, O.; McKibben, J.C.

    1990-01-01

    This paper reports on benchmark experiments needed to verify the accuracy of thermal hydraulic codes (such as RELAP5/MOD2) with respect to their capability to simulate transient boiling conditions both with and without a closed recirculation path in narrow channels, under essentially atmospheric pressure conditions characteristic of plate-type research reactors. An experimental apparatus with this objective has been constructed, and data for surface heat flux of 1.2 x 10 5 w/m 2 are reported

  6. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  7. Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method.

    Science.gov (United States)

    Hamanaka, Ryo; Yamaoka, Satoshi; Anh, Tuan Nguyen; Tominaga, Jun-Ya; Koga, Yoshiyuki; Yoshida, Noriaki

    2017-11-01

    Although many attempts have been made to simulate orthodontic tooth movement using the finite element method, most were limited to analyses of the initial displacement in the periodontal ligament and were insufficient to evaluate the effect of orthodontic appliances on long-term tooth movement. Numeric simulation of long-term tooth movement was performed in some studies; however, neither the play between the brackets and archwire nor the interproximal contact forces were considered. The objectives of this study were to simulate long-term orthodontic tooth movement with the edgewise appliance by incorporating those contact conditions into the finite element model and to determine the force system when the space is closed with sliding mechanics. We constructed a 3-dimensional model of maxillary dentition with 0.022-in brackets and 0.019 × 0.025-in archwire. Forces of 100 cN simulating sliding mechanics were applied. The simulation was accomplished on the assumption that bone remodeling correlates with the initial tooth displacement. This method could successfully represent the changes in the moment-to-force ratio: the tooth movement pattern during space closure. We developed a novel method that could simulate the long-term orthodontic tooth movement and accurately determine the force system in the course of time by incorporating contact boundary conditions into finite element analysis. It was also suggested that friction is progressively increased during space closure in sliding mechanics. Copyright © 2017. Published by Elsevier Inc.

  8. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  9. Effects of food type on diel behaviours of common carp Cyprinus carpio in simulated aquaculture pond conditions

    NARCIS (Netherlands)

    Rahman, M.M.; Meyer, C.G.

    2009-01-01

    In order to better understand behaviour patterns of common carp Cyprinus carpio in aquaculture ponds, their diel grazing, swimming, resting and schooling behaviours were observed in six 1 m(2) tanks under simulated pond conditions. Each tank was fertilized to stimulate natural food production before

  10. Effects of elevated CO2 and drought on wheat : testing crop simulation models for different experimental and climatic conditions

    NARCIS (Netherlands)

    Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Porter, J.R.; Kimball, B.A.; Pinter, P.J.; Manderscheid, R.; Weigel, H.J.; Fangmeier, A.; Fereres, E.; Villalobos, F.

    2002-01-01

    Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been

  11. Numerical simulations of island-scale airflow over Maui and the Maui vortex under summer trade wind conditions

    Science.gov (United States)

    DaNa L. Carlis; Yi-Leng Chen; Vernon R. Morris

    2010-01-01

    The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during July–August 2005. The model forecasts are validated by surface observations with good agreement.

  12. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    Science.gov (United States)

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  13. System for measuring the effect of fouling and corrosion on heat transfer under simulated OTEC conditions. [HTAU and LABTTF codes

    Energy Technology Data Exchange (ETDEWEB)

    Fetkovich, J.G.

    1976-12-01

    A complete system designed to measure, with high precision, changes in heat transfer rates due to fouling and corrosion of simulated heat exchanger tubes, at sea and under OTEC conditions is described. All aspects of the system are described in detail, including theory, mechanical design, electronics design, assembly procedures, test and calibration, operating procedures, laboratory results, field results, and data analysis programs.

  14. Influence of different process settings conditions on the accuracy of micro injection molding simulations: an experimental validation

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2009-01-01

    Currently available software packages exhibit poor results accuracy when performing micro injection molding (µIM) simulations. However, with an appropriate set-up of the processing conditions, the quality of results can be improved. The effects on the simulation results of different and alternative...... process conditions are investigated, namely the nominal injection speed, as well as the cavity filling time and the evolution of the cavity injection pressure as experimental data. In addition, the sensitivity of the results to the quality of the rheological data is analyzed. Simulated results...... are compared with experiments in terms of flow front position at part and micro features levels, as well as cavity injection filling time measurements....

  15. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  16. Measurement and modeling the coefficient of restitution of char particles under simulated entrained flow gasifier conditions

    Science.gov (United States)

    Gibson, LaTosha M.

    Inefficiencies in plant operations due to carbon loss in flyash, necessitate control of ash deposition and the handling of the slag disposal. Excessive char/ash deposition in convective coolers causes reduction in the heat transfer, both in the radiative (slagging) section and in the low-temperature convective (fouling) heating section. This can lead to unplanned shutdowns and result in an increased cost of electricity generation. CFD models for entrained flow gasification have used the average bulk coal composition to simulate slagging and ash deposition with a narrow particle size distribution (PSD). However, the variations in mineral (inorganic) and macerals (organic) components in coal have led to particles with a variation in their inorganic and organic composition after grinding as governed by their Particle Size Distribution (PSD) and mineral liberation kinetics. As a result, each particle in a PSD of coal exhibits differences in its conversion, particle trajectory within the gasifier, fragmentation, swelling, and slagging probability depending on the gasifier conditions (such as the temperature, coal to oxygen ratio, and swirling capacity of the coal injector). Given the heterogeneous behavior of char particles within a gasifier, the main objective of this work was to determine boundary conditions of char particle adhering and/or rebounding from the refractory wall or a layer of previously adhered particles. In the past, viscosity models based on the influence of ash composition have been used as the method to characterize sticking. It is well documented that carbon contributes to the non-wettability of particles. Therefore, it has been hypothesized that viscosity models would not be adequate to accurately predict the adhesion behavior of char. Certain particle wall impact models have incorporated surface tension which can account the contributions of the carbon content to the adhesive properties of a char particle. These particle wall impact models also

  17. Simulation of electrochemical nucleation in the presence of additives under galvanostatic and pulsed plating conditions

    International Nuclear Information System (INIS)

    Emekli, Ugur; West, Alan C.

    2010-01-01

    Galvanostatic nucleation of copper onto pretreated ruthenium is investigated using experimental methods and numerical simulations in the presence of two different suppressor molecules; polyethylene glycol (PEG) and ethylene glycol-propylene glycol-ethylene glycol block copolymer (EPE). The model parameters have been largely determined from electrochemical characterization. Results suggest that a fast adsorption rate of the suppressor results in higher nucleus densities. Simulation results provide insight why EPE is more effective than PEG at increasing nucleus density. In addition, the simulations are used to predict the impact of pulse plating paramaters, showing that both the properties of the additive and the waveform need to be considered to optimize nucleus density enhancement.

  18. Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: Francesco.Riggi@ct.infn.it

    2009-07-15

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive air showers induced by high-energy primary protons in the atmosphere were also carried out, involving undergraduate and graduate teaching levels.

  19. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    Full Text Available Abstract Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2- during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites, lipoprotein signal peptides (13 have SpII sites, and N-terminal membrane helices (9 have transmembrane helices. The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa of protective antigen (PA were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and

  20. CFD SIMULATION OF AIR ION REGIME IN WORK AREAS AT CONDITION OF ARTIFICIAL AIR IONIZATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-02-01

    Full Text Available Purpose. The paper supposes creation of a CFD model for calculating the air ion regime in the premises and in work areas at artificial ionization of the air by the ionizer installation indoors with considering the most important physical factors that influence the formation of ions concentration field. Methodology. The proposed CFD model for calculation of the air ion regime in work areas at artificial ionization of the air by installing ionizer indoors is based on the application of aerodynamics, electrostatics and mass transfer equations. The mass transfer equation takes into account the interaction of different polarities of ions with each other and with the dust particles. The calculation of air flow rate in the room is realized on the basis of the potential flow model by using the Laplace equation for the stream function. Poisson equation for the electric potential is used for calculation of the charged particles drift in an electric field. At the simulation to take into account: 1 influence of the working area geometric characteristics; 2 location of the ventilation holes; 3 placement of furniture and equipment; 4 ventilation regime in the room; 5 presence of obstacles on the ions dispersion process; 6 specific location of dust particles emission