WorldWideScience

Sample records for simulated altitude conditions

  1. [Physiological aspects of altitude training and the use of altitude simulators].

    Science.gov (United States)

    Ranković, Goran; Radovanović, Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatisation, which improves oxygen transport and/or utilisation, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training through hypoxia), and live high and train low (the new trend). In an effort to reduce the financial and logistical challenges of travelling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters). Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarised.

  2. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  3. Numerical simulation of altitude impact on pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xiaohui; He, Boshu; Ling, Ling; Wang, Lei [Beijing Jiaotong Univ., Beijing (China). Inst. of Mechanical, Electronic and Control Engineering

    2013-07-01

    A drop-tube Furnace simulation model has been developed to investigate the pulverized coal combustion characteristics under different altitudes using the commercially available software Fluent. The altitude conditions of 0, 500, 1,000, 1,500 m have been discussed. The results included the fields of temperature, pressure, velocity, the coal burnout, CO burnout and NO emission in the tube furnace. The variation of these parameters with altitude has been analyzed. The coal combustion characteristics were affected by the altitude. The time and space for coal burnout should be increased with the rise of altitude. The valuable results could be referenced in the design of coal- fired furnaces for the high altitude areas.

  4. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    Science.gov (United States)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  5. UV Absorption Measurements of Nitric Oxide Compared to Probe Sampling Data for Measurements in a Turbine Engine Exhaust at Simulated Altitude Conditions

    National Research Council Canada - National Science Library

    Howard, R

    1997-01-01

    Nitric oxide measurements were conducted in the exhaust of a turbofan engine at simulated altitude conditions in a ground-level test cell using both optical nonintrusive and conventional gas sampling techniques...

  6. Evaluation of transport ventilators at mild simulated altitude: a bench study in a hypobaric chamber.

    Science.gov (United States)

    Boussen, Salah; Coulange, Mathieu; Fournier, Marc; Gainnier, Marc; Michelet, Pierre; Micoli, Christophe; Negrel, Lionel

    2014-08-01

    Previous studies on ventilators used for air transport showed significant effects of altitude, in particular with regard to accuracy of the tidal volume (VT) and breathing frequency. The aim of the study was to evaluate transport ventilators under hypobaric conditions. We conducted a bench study of 6 transport ventilators in a Comex hypobaric chamber to simulate mild altitude (1,500 m [4,920 feet] and 2,500 m [8,200 feet]). The ventilators were connected to a test lung to evaluate their accuracy: (1) to deliver a set VT under normal resistance and compliance conditions at F(IO2) = 0.6 and 1, (2) to establish a set PEEP (0, 5, 10, and 15 cm H2O), and (3) to establish a set inspiratory pressure in pressure controlled mode, (4) at a F(IO2) setting, and (5) and at a frequency setting. Four ventilators kept an average relative error in VT of ventilator was affected by the altitude only at F(IO2) = 1. The Osiris 3 ventilator had > 40% error even at 1,500 m. We found no change in frequency as a function of altitude for any ventilators studied. No clinically important differences were found between all altitudes with the PEEP or inspiratory pressure setting. Although F(IO2) was affected by altitude, the average error did not exceed 11%, and it is unclear whether this fact is an experimental artifact. We have shown that most of the new transport ventilators tested require no setting adjustment at moderate altitude and are as safe at altitude as at sea level under normal respiratory conditions. Older technologies still deliver more volume with altitude in volumetric mode.

  7. The performance of Dräger Oxylog ventilators at simulated altitude.

    Science.gov (United States)

    Flynn, J G; Singh, B

    2008-07-01

    Ventilated patients frequently require transport by air in a hypobaric environment. Previous studies have demonstrated significant changes in the performance of ventilators with changes in cabin pressure (altitude) but no studies have been published on the function of modem ventilators at altitude. This experiment set out to evaluate ventilatory parameters (tidal volume and respiratory rate) of three commonly used transport ventilators (the Dräger Oxylog 1000, 2000 and 3000) in a simulated hypobaric environment. Ventilators were assessed using either air-mix (60% oxygen) or 100% oxygen and tested against models simulating a normal lung, a low compliance (Acute Respiratory Distress Syndrome) lung and a high-resistance (asthma) lung. Ventilators were tested at a range of simulated altitudes between sea level and 3048 m. Over this range, tidal volume delivered by the Oxylog 1000 increased by 68% and respiratory rate decreased by 28%. Tidal volume delivered by the Oxylog 2000 ventilator increased by 29% over the same range of altitudes but there was no significant change in respiratory rate. Tidal volume and respiratory rate remained constant with the Oxylog 3000 over the same range of altitudes. Changes were consistent with each ventilator regardless of oxygen content or lung model. It is important that clinicians involved in critical care transport in a hypobaric environment are aware that individual ventilators perform differently at altitude and that they are aware of the characteristics of the particular ventilator that they are using.

  8. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  9. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  10. Physiological aspects of altitude training and the use of altitude simulators

    OpenAIRE

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  11. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  12. Comparison of Sleep Disorders between Real and Simulated 3,450-m Altitude.

    Science.gov (United States)

    Heinzer, Raphaël; Saugy, Jonas J; Rupp, Thomas; Tobback, Nadia; Faiss, Raphael; Bourdillon, Nicolas; Rubio, José Haba; Millet, Grégoire P

    2016-08-01

    Hypoxia is known to generate sleep-disordered breathing but there is a debate about the pathophysiological responses to two different types of hypoxic exposure: normobaric hypoxia (NH) and hypobaric hypoxia (HH), which have never been directly compared. Our aim was to compare sleep disorders induced by these two types of altitude. Subjects were exposed to 26 h of simulated (NH) or real altitude (HH) corresponding to 3,450 m and a control condition (NN) in a randomized order. The sleep assessments were performed with nocturnal polysomnography (PSG) and questionnaires. Thirteen healthy trained males subjects volunteered for this study (mean ± SD; age 34 ± 9 y, body weight 76.2 ± 6.8 kg, height 179.7 ± 4.2 cm). Mean nocturnal oxygen saturation was further decreased during HH than in NH (81.2 ± 3.1 versus 83.6 ± 1.9%; P sleep time was longer in HH than in NH (351 ± 63 versus 317 ± 65 min, P sleep quality was similar between hypoxic conditions but lower than in NN. Our results suggest that HH has a greater effect on nocturnal breathing and sleep structure than NH. In HH, we observed more periodic breathing, which might arise from the lower saturation due to hypobaria, but needs to be confirmed. © 2016 Associated Professional Sleep Societies, LLC.

  13. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  14. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  15. Generalized math model for simulation of high-altitude balloon systems

    Science.gov (United States)

    Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.

    1985-01-01

    Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.

  16. Correlations between the simulated military tasks performance and physical fitness tests at high altitude

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2017-11-01

    Full Text Available The aim of this study was to investigate the Correlations between the Simulated Military Tasks Performance and Physical Fitness Tests at high altitude. This research is part of a project to modernize the physical fitness test of the Colombian Army. Data collection was performed at the 13th Battalion of Instruction and Training, located 30km south of Bogota D.C., with a temperature range from 1ºC to 23ºC during the study period, and at 3100m above sea level. The sample was composed by 60 volunteers from three different platoons. The volunteers start the data collection protocol after 2 weeks of acclimation at this altitude. The main results were the identification of a high positive correlation between the 3 Assault wall in succession and the Simulated Military Tasks performance (r = 0.764, p<0.001, and a moderate negative correlation between pull-ups and the Simulated Military Tasks performance (r = -0.535, p<0.001. It can be recommended the use of the 20-consecutive overtaking of the 3 Assault wall in succession as a good way to estimate the performance in operational tasks which involve: assault walls, network of wires, military Climbing Nets, Tarzan jump among others, at high altitude.

  17. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.

    Directory of Open Access Journals (Sweden)

    Daniel Radiloff

    Full Text Available Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

  18. Performance simulation in high altitude platforms (HAPs) communications systems

    Science.gov (United States)

    Ulloa-Vásquez, Fernando; Delgado-Penin, J. A.

    2002-07-01

    This paper considers the analysis by simulation of a digital narrowband communication system for an scenario which consists of a High-Altitude aeronautical Platform (HAP) and fixed/mobile terrestrial transceivers. The aeronautical channel is modelled considering geometrical (angle of elevation vs. horizontal distance of the terrestrial reflectors) and statistical arguments and under these circumstances a serial concatenated coded digital transmission is analysed for several hypothesis related to radio-electric coverage areas. The results indicate a good feasibility for the communication system proposed and analysed.

  19. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  1. Effects of simulated altitude on blood glucose meter performance: implications for in-flight blood glucose monitoring.

    Science.gov (United States)

    Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David

    2012-07-01

    Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in

  2. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  3. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    Science.gov (United States)

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  4. GEAN T4 Simulations of Electromagnetic Showers Initiated by 30MeV y-Rays Entering the Atmosphere at Different Altitudes

    International Nuclear Information System (INIS)

    Akopov, N.; Grigoryan, A.; Karyan, G.

    2017-01-01

    The aim of this paper is to investigate the GEANT4 simulation for electromagnetic showers initiated by 30 MeV photons entering into the atmosphere at different altitudes (h). Charged and neutral components of the shower have been studied in various radial slices (R) with the detecting level corresponding to the altitude of Aragats mount, where the experimental setups of Cosmic Ray Division (CRD) of Yerevan Physics Institute (YerPhI) are operating. Qualitative observations of the energy spectra, as well as the tabulated parameters describing the fluxes at different values of h and R are used to make a comparison with those from the experimental data. The experimental data on particle fluxes are considered to be correlated with the atmospheric conditions such as pressure, temperature, presence of the charged clouds initiating the lightnings etc. (author)

  5. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  6. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli

    Science.gov (United States)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    INTRODUCTION: Pulmonary altitude decompression sickness (DCS) is a rare condition. 'Chokes' which are characterized by the triad of substernal pain, cough, and dyspnea, are considered to be associated with severe accumulation of gas bubbles in the pulmonary capillaries and may rapidly develop into a life-threatening medical emergency. This study was aimed at characterizing early symptomatology and the appearance of venous gas emboli (VGE). METHODS: Symptoms of simulated-altitude DCS and VGE (with echo-imaging ultrasound) were analyzed in 468 subjects who participated in 22 high altitude hypobaric chamber research protocols from 1983 to 2001 at Brooks Air Force Base, TX. RESULTS: Of 2525 subject-exposures to simulated altitude, 1030 (41%) had symptoms of DCS. Only 29 of those included DCS-related pulmonary symptoms. Of these, only 3 subjects had all three pulmonary symptoms of chokes; 9 subjects had two of the pulmonary symptoms; and 17 subjects had only one. Of the 29 subject-exposures with pulmonary symptoms, 27 had VGE and 21 had severe VGE. The mean onset times of VGE and symptoms in the 29 subject-exposures were 42 +/- 30 min and 109 +/- 61 min, respectively. In 15 subjects, the symptoms disappeared during recompression to ground level followed by 2 h of oxygen breathing. In the remaining 14 cases, the symptoms disappeared with immediate hyperbaric oxygen treatment. CONCLUSIONS: Pulmonary altitude DCS or chokes is confirmed to be a rare condition. Our data showed that when diagnosed early, recompression to ground level pressure and/or hyperbaric oxygen treatment was 100% successful in resolving the symptoms.

  7. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  8. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  9. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  10. Optimization technique of the stay of person in the middle-altitude conditions

    Directory of Open Access Journals (Sweden)

    Borisenko O.V.

    2013-12-01

    Full Text Available The objective: In order to improve exercise capacity in the middle-altitude conditions a technique of urgent adaptation with use of the compact device has been developed. Material and Methods. The study included two groups of people involved in mountain tourism, on the move and stay in the midlands, which used (experimental group and didn't use (control group the developed technique. Considering the specificity of observations directly on the mountain route, the compact equipment and functional studies (pulse oximetry, spirometry, peak flow, the dynamic measurement of pulse and blood pressure with the calculation of double product index were used to monitor the experiment. Results. During the experiment changes of the data characterizing positive development of the functioning of human cardiore-spiratory system during the physical activities in the conditions of middle mountains were recorded (peak expiratory flow rate (from 512,86 to 592,86 I / min, t = 2,25, or by 115,6% in the experimental group and double product index (from 95,66 to 127,09 units., t = 2,41, or by 132,9% in the experimental group. Conclusion. Thus, the offered device and its technique compose an effective scheme of preliminary preparation of cardiorespiratory system to stay in the middle-altitude condition and can be recommended for use in need short-term adaptation.

  11. 3H-thymidine labelling of DNA of radiosensitive organs of rats irradiated under alpine conditions and after adaptation to hypoxia in the altitude chamber

    International Nuclear Information System (INIS)

    Gusejnov, F.T.; Egorov, I.A.; Gladilin, K.L.; Farber, Yu.V.

    1979-01-01

    Preliminary adaptation of rats of high altitude conditions (3200 m) and training in the altitude chamber at the same imitated altitude inhibit 3 H-thymidine labelling of thymus DNA both shortly (26 h) and later (20 and 30 days) after irradiation. Whether the thymidine incorporation is activated or delayed depends on conditions of pretreatment. The data obtained are discussed from the point of view of the raioprotective effect of preadaptation of animals to high-altitude hypoxia

  12. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude

    Directory of Open Access Journals (Sweden)

    Oliver M. Shannon

    2017-06-01

    Full Text Available Purpose: Nitric oxide (NO bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3− supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude.Methods:Ten males (mean (SD: V˙O2max: 60.9 (10.1 ml·kg−1·min−1 rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m and twice at very-high (~11.7% O2; ~4,300 m simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3− or NO3−-deplete (PLA; 0.01 mmol NO3− beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT, both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−], peripheral oxygen saturation (SpO2, pulmonary oxygen uptake (V˙O2, muscle and cerebral oxygenation, and cognitive function were measured throughout.Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001. Pulmonary V˙O2 was reduced (p = 0.020, and SpO2 was elevated (p = 0.005 during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3 vs. 1718.7 (213.0 s] and 4.2% [1,809.8 (262.0 vs. 1,889.1 (203.9 s] at 3,000 and 4,300 m, respectively (p = 0.019. Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011. The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056. Performance in all other cognitive tasks

  13. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  14. Reducing pulmonary injury by hyperbaric oxygen preconditioning during simulated high altitude exposure in rats.

    Science.gov (United States)

    Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen

    2011-09-01

    Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.

  15. [Arterial hypertension due to altitude].

    Science.gov (United States)

    Domej, Wolfgang; Trapp, Michael; Miggitsch, Eva Maria; Krakher, Tiziana; Riedlbauer, Rita; Roher, Peter; Schwaberger, Günther

    2008-01-01

    The behavior of blood pressure under hypoxic conditions depends on individual factors, altitude and duration of stay at altitude. While most humans are normotensive at higher altitudes, a few will react with moderate hypertension or hypotension. Excessive elevation of arterial blood pressure is not even to be expected below 4,000 m. Rather, several weeks' stay at higher altitude will decrease systolic and diastolic blood pressure at rest as well as during physical exertion. A high-altitude treatment for rehabilitation purposes at moderate altitude may be recommended for patients with cardio-circulatory disorders. Improvements can last several months even after returning to accustomed altitudes. Furthermore, endurance-trained hypertensive patients with pharmacologically controlled arterial blood pressure might be able to participate in mountain treks without additional health risk.

  16. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  17. Rangeland dynamics in South Omo Zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and Grazing types

    NARCIS (Netherlands)

    Terefe, A.; Ebro, A.; Tessema, Z.K.

    2010-01-01

    A study was undertaken in Hamer and Benna-Tsemay districts of the Southern Ethiopia with the objective to determine the condition of the rangelands for grazing animals as influenced by altitude and grazing types. The rangelands in each of the study districts were stratified based on altitude and

  18. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    Science.gov (United States)

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  19. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  20. Effect of Simulated Intermittent Altitude on the Metabolic and Hematologic Parameters in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    mehdi Faramoushi

    2016-04-01

    Full Text Available Background & objectives: Type II diabetes is a metabolic disorder accompanied with insulin resistance of the whole body cells and is considered be the fifth cause of death in the world. Adaptation to altitude can lead to tolerance to many diseases. Therefore, the aim of this study was to determine the effect of simulated intermittent altitude on the metabolic and hematologic parameters and liver function in streptozotocin induced diabetic rats. Methods: In the current experimental study, twenty four male Wistar rats weighing 220±20 gr were randomly divided into three groups; normal control group (NC, n=8, diabetic control group (D, n=8 received fat diet for 2 weeks then were injected with streptozotocin (37 mg/kg and diabetic+hypoxia group (D+H, n=8 including diabetic rat exposed to chronic intermittent hypoxia (PiO2≈106 mm Hg, simulated altitude≈3400 m, 14% oxygen for 8 weeks. Diabetic, hematologic and lipid parameters as well as ALT and AST activities were measured in peripheral blood. Results: Our findings showed that intermittent hypoxia significantly decreased serum total cholesterol, LDL ,VLDL and triglyceride in D+H group compared to D group (p<0.05. Serum levels of fasting blood glucose and homeostatic model assessment-insulin resistance HOMA-IR( index and ALT were decreased in D+H group vs. D group p<0.05. Also, hemoglubin and hematocrite level increased in D+H group in comparison to D group p<0.05. No significant difference was detected in red blood cell count in D+H vs. D group. Conclusion: Based on resultant data, it seems that intermittent exposure to hypoxia (simulated to chronic and intermittent lodgement in altitude can be used to control of type 2 diabetes by increasing hemoglobin, decreasing insulin resistance and improving liver function as well as lipid parameters.

  1. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats.

    Science.gov (United States)

    Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya

    2012-09-28

    Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.

  2. Application of altitude/hypoxic training by elite athletes.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

  3. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  4. Altitude and endurance training.

    Science.gov (United States)

    Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E

    2004-10-01

    The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (altitude training period (training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.

  5. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    Science.gov (United States)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  6. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  7. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  8. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    Science.gov (United States)

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  9. Dietary Recommendations for Cyclists during Altitude Training

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-01-01

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH), “live high, train low” (LH-TL) or “intermittent hypoxic training” (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented. PMID:27322318

  10. Dietary Recommendations for Cyclists during Altitude Training.

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-06-18

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  11. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  12. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  13. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  14. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    Science.gov (United States)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  15. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  16. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    Science.gov (United States)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  17. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  18. Effect of microbiological fertilizer and soil additive on yield of buckwheat (Fagopyrum esculentum Moenchunder high altitude conditions

    Directory of Open Access Journals (Sweden)

    Oljača Snežana

    2012-01-01

    Full Text Available Effect of microbiological fertilizer (Slavol and soil additives (zeolite and hydrogel on buckwheat (Fagopyrum esculentum Moench yield was investigated in this paper. Trial was set up in the village of Radijevići, Serbia in agroecological conditions of mountain Zlatar (altitude 1,065 m during a two-year period 2009 and 2010. A randomized complete block design with four replications was set up. In organic cropping system three combinations of microbiological fertilizer (Slavol with zeolite and hydrogel were used prior to sowing. Different combinations of the microbiological fertilizer and the soil additives gave positive results especially in the second year of the trial. The best combination in organic cropping system was Slavol+hydrogel with foliar application of the microbiological fertilizer, which resulted in the greatest yield of buckwheat and this treatment can be recommended to producers. Buckwheat performed very well under limited conditions of acidic soil on high altitude in organic cropping system and it can be recommended as a very suitable crop for organic producers.

  19. Dietary Recommendations for Cyclists during Altitude Training

    Directory of Open Access Journals (Sweden)

    Małgorzata Michalczyk

    2016-06-01

    Full Text Available The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like “live high, train high” (LH-TH, “live high, train low” (LH-TL or “intermittent hypoxic training” (IHT. Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  20. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia.

    Science.gov (United States)

    Carr, Amelia J; Saunders, Philo U; Vallance, Brent S; Garvican-Lewis, Laura A; Gore, Christopher J

    2015-12-01

    This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short exposure to simulated altitudes of 3000 m can elicit physiological and performance benefits, without compromise to

  1. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  2. Respiratory Muscle Training and Exercise Endurance at Altitude.

    Science.gov (United States)

    Helfer, Samuel; Quackenbush, Joseph; Fletcher, Michael; Pendergast, David R

    2016-08-01

    Climbing and trekking at altitude are common recreational and military activities. Physiological effects of altitude are hypoxia and hyperventilation. The hyperventilatory response to altitude may cause respiratory muscle fatigue and reduce sustained submaximal exercise. Voluntary isocapnic hyperpnea respiratory muscle training (VIHT) improves exercise endurance at sea level and at depth. The purpose of this study was to test the hypothesis that VIHT would improve exercise time at altitude [3600 m (11,811 ft)] compared to control and placebo groups. Subjects pedaled an ergometer until exhaustion at simulated altitude in a hypobaric chamber while noninvasive arterial saturation (Sao2), ventilation (VE), and oxygen consumption (Vo2) were measured. As expected, Sao2 decreased to 88 ± 4% saturation at rest and to 81 ± 2% during exercise, and was not affected by VIHT. VIHT resulted in a 40% increase in maximal training VE compared to pre-VIHT. Exercise endurance significantly increased 44% after VIHT (P = altitude post-VIHT increased more (49%) for longer (21 min) and decreased less (11% at 25.4 ± 6.7 min). VIHT improved exercise time at altitude and sustained VE. This suggests that VIHT reduced respiratory muscle fatigue and would be useful to trekkers and military personnel working at altitude. Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitutde. Aerosp Med Hum Perform. 2016; 87(8):704-711.

  3. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  4. Changes of body fluid and hematology in toad and their rehabilitation following intermittent exposure to simulated high altitude

    Science.gov (United States)

    Biswas, H. M.; Boral, M. C.

    1986-06-01

    Three groups of adult male toads were exposed intermittently in a decompression chamber for a daily period of 4 and 8 hours at a time for 6 consecutive days to an “altitude” of 12,000; 18,000 and 24,000 feet (3658; 5486; 7315 m) respectively. Most of the exposed animals were sacrificed immediately after the last exposure, but only a few animals experiencing 8 hours of exposure were sacrificed after a further 16 hours of exposure at normal atmospheric pressure. Eight hours of daily exposure for 6 days causes a decrease of body fluids and an increase of hematological parameters in all the altitude exposed animals compared with to the changes noted in the animals having 4 hours of daily exposure for 6 days at the same altitude levels. The animals that were exposed to pressures equivalent to altitudes of 12,000 and 18,000 feet daily for 8 hours were found to return nearly to their normal body fluids and hematological balance after 16 hours of exposure to normal atmospheric pressure, whereas the animals exposed for a similar period at an equivalent 24,000 feet failed to get back their normal balance of body fluids and hematology after 16 hours of exposure at normal atmospheric pressure. The present experiment shows that the body weight loss and changes of body fluid and hematological parameters in the toad after exposure to simulated high altitude are due not only to dehydration, but suggest that hypoxia may also have a role.

  5. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  6. Altitude training improves glycemic control.

    Science.gov (United States)

    Chen, Shu-Man; Lin, Hsueh-Yi; Kuo, Chia-Hua

    2013-08-31

    Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate the shortfall caused by reduced fatty acid oxidation. Short-term moderate altitude exposure plus endurance physical activity has been found to improve glucose tolerance (not fasting glucose) in humans, which is associated with the improvement in the whole-body insulin sensitivity. However, most of people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness and insulin resistance. There is a wide variation among individuals in response to the altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity was not apparent in those individuals with low baseline dehydroepiandrosterone sulfate (DHEA-S) concentration. In rats, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can also improve insulin sensitivity, secondary to an effective suppression of adiposity. After prolonged hypoxia training, obese abnormality in upregulated baseline levels of AMP-activated protein kinase (AMPK) and AS160 phosphorylation in skeletal muscle can be reversed. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on the favorable change in body composition. Altitude training can exert strong impact on our metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting metabolic syndromes.

  7. New method of calculating the power at altitude of aircraft engines equipped with superchargers on the basis of tests made under sea-level conditions

    Science.gov (United States)

    Sarracino, Marcello

    1941-01-01

    The present article deals with what is considered to be a simpler and more accurate method of determining, from the results of bench tests under approved rating conditions, the power at altitude of a supercharged aircraft engine, without application of correction formulas. The method of calculating the characteristics at altitude, of supercharged engines, based on the consumption of air, is a more satisfactory and accurate procedure, especially at low boost pressures.

  8. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  9. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  10. Effects of altitude and beehive bottom board type on wintering losses of honeybee colonies under subtropical climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ucak-Koc, A.

    2014-06-01

    The effects of altitude and beehive bottom board types (BBBT) on the wintering performance of honeybee colonies were investigated in the South Aegean Region of Turkey: Experiment I (E-I), with 32 colonies, in 2010-2011, and Experiment II (E-II), with 20 colonies, in 2011-2012. Each lowland (25 m) and highland (797 m) colony was divided randomly into two BBBT subgroups, open screen floor (OSF) and normal bottom floor (NBF), and wintered for about three months. In E-I, the local genotype Aegean ecotype of Anatolian bee (AE) and Italian race (ItR) were used, while in E-II, only the AE genotype was present. In E-I, the effect of wintering altitudes on the number of combs covered with bees (NCCB), and the effects of BBBT on brood area (BA) and the NCCB were found to be statistically significant (p < 0.05), but the effects of genotype on BA and NCCB were statistically insignificant (p > 0.05). In the E-II, the effect of wintering altitude on beehive weight was found to be statistically significant (p < 0.05), while its effect on the NCCB was statistically insignificant (p > 0.05). The wintering losses in the highland and lowland groups in E-I were determined to be 25% and 62.5% respectively. In contrast to this result, no loss was observed in E-II for both altitudes. In E-I, the wintering losses for both OSF and NBF groups were the same (43.75%). In conclusion, under subtropical climatic conditions, due to variations from year to year, honeybee colonies can be wintered more successfully in highland areas with OSF bottom board type. (Author)

  11. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  12. Incidence and Symptoms of High Altitude Illness in South Pole Workers: Antarctic Study of Altitude Physiology (ASAP

    Directory of Open Access Journals (Sweden)

    Paul J. Anderson

    2011-01-01

    altitude alone. Many symptoms persist, possibly due to extremely cold, arid conditions and the benefits of acetazolamide appeared negligible, though it may have prevented more severe symptoms in higher risk subjects.

  13. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia.

    Directory of Open Access Journals (Sweden)

    Belén Feriche

    Full Text Available When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17 in conditions of normoxia (N1 and hypobaric hypoxia (HH and G2 (n = 11 in conditions of normoxia (N2 and normobaric hypoxia (NH. Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax was recorded as the highest P(mean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max (∼ 3% and maximal strength (1 RM (∼ 6% in G1 attributable to the climb to altitude (P<0.05. We also observed a stimulating effect of natural hypoxia on P(mean and P(peak in the middle-high part of the curve (≥ 60 kg; P<0.01 and a 7.8% mean increase in barbell displacement velocity (P<0.001. No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.

  14. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  15. Effect of high altitude cosmic irradiation upon cell generation time

    International Nuclear Information System (INIS)

    Soleilhavoup, J.P.; Croute, F.; Tixador, R.; Blanquet, Y.; Planel, H.

    1975-01-01

    Paramecia cultures placed at 3800 meter altitude show a proliferating activity acceleration compared to control cultures placed at low altitude under the same environment conditions. These results confirm the cosmic irradiation influence upon the activating effect produced by the natural ionizing radiations on living organisms [fr

  16. Respiratory Muscle Training and Cognitive Function Exercising at Altitude.

    Science.gov (United States)

    Quackenbush, Joseph; Duquin, Aubrey; Helfer, Samuel; Pendergast, David R

    2016-01-01

    Hiking and trekking often occur at altitudes up to 12,000 ft altitude. The hypoxia-induced hyperventilation at altitude paradoxically reduces arterial CO2 (Paco2). A reduction in Paco2 results in vasoconstriction of the blood vessels of the brain and thus in local hypoxia. The local hypoxia likely affects cognitive function, which may result in reduced performance and altitude accidents. Recent publications have demonstrated that voluntary isocapnic hyperventilatory training of the respiratory muscles (VIHT) can markedly enhance exercise endurance as it is associated with reduced ventilation and its energy cost. VIHT may be useful in blunting the altitude-induced hyperventilation leading to higher Paco2 and improved cognitive function. This study examined the effects of VIHT, compared to control (C) and placebo (PVIHT) groups, on selected measures of executive functioning, including working memory and processing speed (i.e., Stroop Test, Symbol Digit Modalities Test, and Digit Span Forward) at simulated altitude up to 12,000 ft. Associated physiological parameters were also measured. The Digit Span Forward Test did not show improvements after VIHT in any group. The VIHT group, but not C or PVIHT groups, improved significantly (17-30%) on the Stroop Test. Similarly the VIHT group, but not the C and PVIHT groups, improved correct responses (26%) and number of attempts (24%) on the Symbol Digit Modalities Test. In addition, reaction time was also improved (16%). VIHT improved processing speed and working memory during exercise at altitude.

  17. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    Science.gov (United States)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  18. Key issues of ultraviolet radiation of OH at high altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing [State Key Laboratory of High Temperature Gasdynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  19. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  20. Effects of simulated altitude (normobaric hypoxia on cardiorespiratory parameters and circulating endothelial precursors in healthy subjects

    Directory of Open Access Journals (Sweden)

    Pierini Alberto

    2007-08-01

    Full Text Available Abstract Background Circulating Endothelial Precursors (PB-EPCs are involved in the maintenance of the endothelial compartment being promptly mobilized after injuries of the vascular endothelium, but the effects of a brief normobaric hypoxia on PB-EPCs in healthy subjects are scarcely studied. Methods Clinical and molecular parameters were investigated in healthy subjects (n = 8 in basal conditions (T0 and after 1 h of normobaric hypoxia (T1, with Inspiratory Fraction of Oxygen set at 11.2% simulating 4850 mt of altitude. Blood samples were obtained at T0 and T1, as well as 7 days after hypoxia (T2. Results In all studied subjects we observed a prompt and significant increase in PB-EPCs, with a return to basal value at T2. The induction of hypoxia was confirmed by Alveolar Oxygen Partial Pressure (PAO2 and Spot Oxygen Saturation decreases. Heart rate increased, but arterial pressure and respiratory response were unaffected. The change in PB-EPCs percent from T0 to T1 was inversely related to PAO2 at T1. Rapid (T1 increases in serum levels of hepatocyte growth factor and erythropoietin, as well as in cellular PB-EPCs-expression of Hypoxia Inducible Factor-1α were observed. Conclusion In conclusion, the endothelial compartment seems quite responsive to standardized brief hypoxia, possibly important for PB-EPCs activation and recruitment.

  1. Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.

    Science.gov (United States)

    Butaric, Lauren N; Klocke, Ross P

    2018-05-01

    High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018

  2. THE EFFECT OF ACCLIMATIZATION ON THE HEART RATE TO INCREASED ALTITUDE

    Directory of Open Access Journals (Sweden)

    Blaž Jereb

    2010-09-01

    Full Text Available The aim of the present study is to monitor heart rate (HR at real and at simulated altitude before and immediately after acclimatization, and one month after acclimatization. Six students of Faculty of Sport in Ljubljana (two women and four men participated in the study. They undergone 18-day long acclimatization process on 2100 - 5642 m. HR was measured during the step test at 300 m, 2100 m, and 3800 m (in a laboratory »Josef Stefan« Ljubljana, at simulated altitude. The results show that the HR decreased significant immediately after acclimatization comparing to the values before acclimatization. HR values returned to the values before acclimatization one month after acclimatization.

  3. Austrian Moderate Altitude Studies (AMAS): benefits of exposure to moderate altitudes (1,500-2,500 m).

    Science.gov (United States)

    Schobersberger, Wolfgang; Leichtfried, Veronika; Mueck-Weymann, Michael; Humpeler, Egon

    2010-09-01

    A considerable part of the millions of Alpine tourists suffer from pre-existing diseases (e.g., metabolic syndrome) and high daily stress levels. The main goal of the Austrian Moderate Altitude Study (AMAS) was to investigate (a) the consequences of an active vacation at moderate altitude on the key parameters of the metabolic syndrome (AMAS I) and (b) the effects of a short active vacation on adult progenitor cells, bio-psychological parameters, and heart rate variability (HRV). During the AMAS I pilot study (n = 22; 1,700 m a.s.l.) and AMAS I main study (n = 71; 1,700 m a.s.l. and 200 m a.s.l.), the volunteers simulated 3-week coached hiking vacations. For AMAS II, healthy volunteers (n = 13) participated in a 1-week active holiday at 1,700 m. There were significant improvements of obesity, hypertension, dyslipidemia, and insulin resistance of AMAS I patients after the vacation. In AMAS II participants, we found an increase in circulating endothelial progenitor cells as well as improvements in bio-psychological and HRV parameters. Active vacations at moderate altitude are associated with a variety of positive health effects in persons with metabolic syndrome and in healthy subjects.

  4. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  5. Increased Hypoxic Dose After Training at Low Altitude with 9h Per Night at 3000m Normobaric Hypoxia

    Directory of Open Access Journals (Sweden)

    Amelia J. Carr, Philo U. Saunders, Brent S. Vallance, Laura A. Garvican-Lewis, Christopher J. Gore

    2015-12-01

    Full Text Available This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities on haemoglobin mass (Hbmass, maximum oxygen consumption (VO2max, time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10 or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night-1 at a simulated altitude of 3000 m using hypoxic tents; n = 8. A control group (CON; n = 10 lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02. In comparison to baseline, Hbmass increased by 1.2% (±1.4% in the lowHH group, 2.6% (±1.8% in lowHH+NHnight, and there was a decrease of 0.9% (±4.9% in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03 and a ~8% pre to post-intervention difference (p = 0.006 after lowHH only. We recommend low altitude (1380 m combined with sleeping in altitude tents (3000 m as one effective alternative to traditional altitude training methods, which can improve Hbmass.

  6. Research on the Power Recovery of Diesel Engines with Regulated Two-Stage Turbocharging System at Different Altitudes

    Directory of Open Access Journals (Sweden)

    Hualei Li

    2014-01-01

    Full Text Available Recovering the boost pressure is very important in improving the dynamic performance of diesel engines at high altitudes. A regulated two-stage turbocharging system is an adequate solution for power recovery of diesel engines. In the present study, the change of boost pressure and engine power at different altitudes was investigated, and a regulated two-stage turbocharging system was constructed with an original turbocharger and a matched low pressure turbocharger. The valve control strategies for boost pressure recovery, which formed the basis of the power recovery method, are presented here. The simulation results showed that this system was effective in recovering the boost pressure at different speeds and various altitudes. The turbine bypass valve and compressor bypass valve had different modes to adapt to changes in operating conditions. The boost pressure recovery could not ensure power recovery over the entire operating range of the diesel engine, because of variation in overall turbocharger efficiency. The fuel-injection compensation method along with the valve control strategies for boost pressure recovery was able to reach the power recovery target.

  7. Observation of a 27-day solar signature in noctilucent cloud altitude

    Science.gov (United States)

    Köhnke, Merlin C.; von Savigny, Christian; Robert, Charles E.

    2018-05-01

    Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400 m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ≳ 70 ° N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.

  8. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  9. Training at altitude in practice.

    Science.gov (United States)

    Dick, F W

    1992-10-01

    There can be little doubt that training at altitude is fundamental to preparing an athlete for competition at altitude. However the value of training at altitude for competition at sea level appears on the one hand to lack total acceptance amongst sports scientists; and on the other to hold some cloak of mystery for coaches who have yet to enjoy first hand experience. The fact is that very few endurance athletes will ignore the critical edge which altitude training affords. Each fraction of a percentage of performance advantage gained through methods which are within the rules of fair play in sport, may shift the balance between failure and achievement. Moreover, there is growing support for application of training at altitude for speed-related disciplines. This paper aims to demystify the subject by dealing with practical aspects of training at altitude. Such aspects include a checklist of what should and should not be done at altitude, when to use altitude relative to target competitions, and specific training examples.

  10. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Liu, Jian-Xia; Chen, Xiao-Qian

    2013-01-01

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  11. Development and quality of pineapple guava fruit in two locations with different altitudes in Cundinamarca, Colombia

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    2015-01-01

    Full Text Available Fruit growth is stimulated by different weather conditions. The aim of this study was to determine the influence of weather conditions on the physicochemical properties of pineapple guava fruit growth. Twenty trees were marked in two production areas located at different altitudes (1,800 and 2,580 m.a.s.l., and measurements were performed every 7 days from 99 and 141 days post-anthesis to harvest at altitudes of 1,800 and 2,580 m.a.s.l., respectively. The results indicate that altitude and weather conditions greatly influence the growth and development of pineapple guava fruit, and these effects are primarily manifested in the physical characteristics of the fruit. The weight and size of the fruit at harvest are directly related to the altitude of the production area. The weather condition that has the greatest impact on total titratable acidity at harvest is cumulative radiation during fruit growth; the highest value of total soluble solids at harvest corresponds to the location with the higher altitude, lower rainfall and relative humidity and higher cumulative radiation during the fruit growth period. The hue angle and pulp firmness at harvest are not influenced by the location or weather conditions at any location and do not determine the fruit quality at harvest time.

  12. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a

  13. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    Science.gov (United States)

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer. Copyright © 2015. Published by Elsevier Inc.

  14. A Comparitive Analysis of the Influence of Weather on the Flight Altitudes of Birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; van Loon, Emiel; van Gasteren, Hans; van Belle, Jelmer; Bouten, Willem; Buurma, Luit

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions.We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard ), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris).Maximum flight altitudes varied among species, during the day and among days. Weather significantly influenced the flight altitudes of all species studied. Factors such as temperature, relative humidity, atmospheric instability, cloud cover, and sea level pressure were related to flight altitudes. Different combinations of factors explained 40% 70% of the variance in maximum flight altitudes. Weather affected flight strategy groups differently. Compared to flapping species, buzzards and swifts showed stronger variations in maximum daily altitude and f lew higher under conditions reflecting stronger thermal convection. The dynamic vertical distributions of birds are important for risk assessment and mitigation measures in flight safety as well as wind turbine studies.

  15. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  16. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  17. Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight

    Science.gov (United States)

    Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias

    2014-12-01

    SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.

  18. Metabolic adaptations may counteract ventilatory adaptations of intermittent hypoxic exposure during submaximal exercise at altitudes up to 4000 m.

    Directory of Open Access Journals (Sweden)

    Martin Faulhaber

    Full Text Available Intermittent hypoxic exposure (IHE has been shown to induce aspects of altitude acclimatization which affect ventilatory, cardiovascular and metabolic responses during exercise in normoxia and hypoxia. However, knowledge on altitude-dependent effects and possible interactions remains scarce. Therefore, we determined the effects of IHE on cardiorespiratory and metabolic responses at different simulated altitudes in the same healthy subjects. Eight healthy male volunteers participated in the study and were tested before and 1 to 2 days after IHE (7 × 1 hour at 4500 m. The participants cycled at 2 submaximal workloads (corresponding to 40% and 60% of peak oxygen uptake at low altitude at simulated altitudes of 2000 m, 3000 m, and 4000 m in a randomized order. Gas analysis was performed and arterial oxygen saturation, blood lactate concentrations, and blood gases were determined during exercise. Additionally baroreflex sensitivity, hypoxic and hypercapnic ventilatory response were determined before and after IHE. Hypoxic ventilatory response was increased after IHE (p<0.05. There were no altitude-dependent changes by IHE in any of the determined parameters. However, blood lactate concentrations and carbon dioxide output were reduced; minute ventilation and arterial oxygen saturation were unchanged, and ventilatory equivalent for carbon dioxide was increased after IHE irrespective of altitude. Changes in hypoxic ventilatory response were associated with changes in blood lactate (r = -0.72, p<0.05. Changes in blood lactate correlated with changes in carbon dioxide output (r = 0.61, p<0.01 and minute ventilation (r = 0.54, p<0.01. Based on the present results it seems that the reductions in blood lactate and carbon dioxide output have counteracted the increased hypoxic ventilatory response. As a result minute ventilation and arterial oxygen saturation did not increase during submaximal exercise at simulated altitudes between 2000 m and 4000 m.

  19. Iron Supplementation and Altitude: Decision Making Using a Regression Tree

    Directory of Open Access Journals (Sweden)

    Laura A. Garvican-Lewis, Andrew D. Govus, Peter Peeling, Chris R. Abbiss, Christopher J. Gore

    2016-03-01

    Full Text Available Altitude exposure increases the body’s need for iron (Gassmann and Muckenthaler, 2015, primarily to support accelerated erythropoiesis, yet clear supplementation guidelines do not exist. Athletes are typically recommended to ingest a daily oral iron supplement to facilitate altitude adaptations, and to help maintain iron balance. However, there is some debate as to whether athletes with otherwise healthy iron stores should be supplemented, due in part to concerns of iron overload. Excess iron in vital organs is associated with an increased risk of a number of conditions including cancer, liver disease and heart failure. Therefore clear guidelines are warranted and athletes should be discouraged from ‘self-prescribing” supplementation without medical advice. In the absence of prospective-controlled studies, decision tree analysis can be used to describe a data set, with the resultant regression tree serving as guide for clinical decision making. Here, we present a regression tree in the context of iron supplementation during altitude exposure, to examine the association between pre-altitude ferritin (Ferritin-Pre and the haemoglobin mass (Hbmass response, based on daily iron supplement dose. De-identified ferritin and Hbmass data from 178 athletes engaged in altitude training were extracted from the Australian Institute of Sport (AIS database. Altitude exposure was predominantly achieved via normobaric Live high: Train low (n = 147 at a simulated altitude of 3000 m for 2 to 4 weeks. The remaining athletes engaged in natural altitude training at venues ranging from 1350 to 2800 m for 3-4 weeks. Thus, the “hypoxic dose” ranged from ~890 km.h to ~1400 km.h. Ethical approval was granted by the AIS Human Ethics Committee, and athletes provided written informed consent. An in depth description and traditional analysis of the complete data set is presented elsewhere (Govus et al., 2015. Iron supplementation was prescribed by a sports physician

  20. Endurance training at altitude.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training.

  1. Dose-response of altitude training: how much altitude is enough?

    Science.gov (United States)

    Levine, Benjamin D; Stray-Gundersen, James

    2006-01-01

    Altitude training continues to be a key adjunctive aid for the training of competitive athletes throughout the world. Over the past decade, evidence has accumulated from many groups of investigators that the "living high--training low" approach to altitude training provides the most robust and reliable performance enhancements. The success of this strategy depends on two key features: 1) living high enough, for enough hours per day, for a long enough period of time, to initiate and sustain an erythropoietic effect of high altitude; and 2) training low enough to allow maximal quality of high intensity workouts, requiring high rates of sustained oxidative flux. Because of the relatively limited access to environments where such a strategy can be practically applied, numerous devices have been developed to "bring the mountain to the athlete," which has raised the key issue of the appropriate "dose" of altitude required to stimulate an acclimatization response and performance enhancement. These include devices using molecular sieve technology to provide a normobaric hypoxic living or sleeping environment, approaches using very high altitudes (5,500m) for shorter periods of time during the day, and "intermittent hypoxic training" involving breathing very hypoxic gas mixtures for alternating 5 minutes periods over the course of 60-90 minutes. Unfortunately, objective testing of the strategies employing short term (less than 4 hours) normobaric or hypobaric hypoxia has failed to demonstrate an advantage of these techniques. Moreover individual variability of the response to even the best of living high--training low strategies has been great, and the mechanisms behind this variability remain obscure. Future research efforts will need to focus on defining the optimal dosing strategy for these devices, and determining the underlying mechanisms of the individual variability so as to enable the individualized "prescription" of altitude exposure to optimize the performance of

  2. Altitude-Wind-Tunnel Investigation of the 19B-2, 19B-8 and 19XB-1 Jet- Propulsion Engines. 4; Analysis of Compressor Performance

    Science.gov (United States)

    Dietz, Robert O.; Kuenzig, John K.

    1947-01-01

    Investigations were conducted in the Cleveland altitude wind tunnel to determine the performance and operational characteristics of the 19B-2, 19B-8, and 19XS-1 turbojet engines. One objective was to determine the effect of altitude, flight Mach number, and tail-pipe-nozzle area on the performance characteristics of the six-stage and ten-stage axial-flow compressors of the 19B-8 and 19XB-1 engines, respectively, The data were obtained over a range of simulated altitudes and flight Mach numbers. At each simulated flight condition the engine was run over its full operable range of speeds. Performance characteristics of the 19B-8 and 19XB-1 compressors for the range of operation obtainable in the turboJet-engine installation are presented. Compressor characteristics are presented as functions of air flow corrected to sea-level conditions, compressor Mach number, and compressor load coefficient. For the range of compressor operation investigated, changes in Reynolds number had no measurable effect on the relations among compressor Mach number, corrected air flow, compressor load coefficient, compressor pressure ratio, and compressor efficiency. The operating lines for the 19B-8 compressor lay on the low-air-flow side of the region of maximum compressor efficiency; the 19B-8 compressor operated at higher average pressure coefficients per stage and produced a lower over-all pressure ratio than did the 19XB-1 compressor.

  3. Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Francesco; La Rocca, Paola; Riggi, Francesco [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: Francesco.Riggi@ct.infn.it

    2009-07-15

    Cosmic ray count rates with a set of portable Geiger counters were measured at different altitudes on the way to a mountain top and aboard an aircraft, between sea level and cruise altitude. Basic measurements may constitute an educational activity even with high school teams. For the understanding of the results obtained, simulations of extensive air showers induced by high-energy primary protons in the atmosphere were also carried out, involving undergraduate and graduate teaching levels.

  4. Fit for high altitude: are hypoxic challenge tests useful?

    Directory of Open Access Journals (Sweden)

    Matthys Heinrich

    2011-02-01

    Full Text Available Abstract Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax, sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST, which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists including mechanical aids to

  5. Fit for high altitude: are hypoxic challenge tests useful?

    Science.gov (United States)

    Matthys, Heinrich

    2011-02-28

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  6. Design and simulation of solar powered aircraft for year-round operation at high altitude; Auslegung und Simulation von hochfliegenden, dauerhaft stationierbaren Solardrohnen

    Energy Technology Data Exchange (ETDEWEB)

    Keidel, B.

    2000-05-18

    An unmanned solar powered aircraft configuration called SOLITAIR has been designed. This aircraft is intended to be used as an high altitude long endurance (HALE) sensor platform for year-round operation at intermediate latitudes up to about {+-}55 . For the design studies leading to this aircraft configuration, a software package has been developed which enables an effective design and a proper simulation of the entire solar aircraft system for various flight missions. The performance analysis and the mission simulation showed, that a configuration with large additional solar panels, that can be tilted in order to follow the sun angle during daytime operation appears to be superior to aircraft configurations with wing-mounted solar cells for the desired operational area. In order to examine the basic flight characteristics of the SOLITAIR configuration a remote controlled demonstration model has been built and test flown. [German] In der vorliegenden Arbeit wurden Moeglichkeiten geschaffen, um Gesamtsystemkonfigura-tionen unbemannter hochfliegender Solarflugzeuge fuer unterschiedliche Anwendungsfaelle auszulegen und die Flugleistungen sowie die Missionsfaehigkeit dieser Konfigurationen aufzuzeigen. Mit den geschaffenen und verifizierten Entwicklungswerkzeugen wurde eine Solarflugzeugkonfiguration entworfen und mittels eines Demonstrationsmodells erprobt. Mit dieser Konfiguration kann eine dauerhafte Stationierbarkeit von ca. 55 suedlicher bis 55 noerdlicher Breite erreicht werden. Dies stellt eine bedeutende Erweiterung des bisher fuer moeglich gehaltenen Nutzungsbereiches solcher Flugzeuge dar.

  7. The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis.

    Science.gov (United States)

    Hamlin, Michael J; Lizamore, Catherine A; Hopkins, Will G

    2018-02-01

    While adaptation to hypoxia at natural or simulated altitude has long been used with endurance athletes, it has only recently gained popularity for team-sport athletes. To analyse the effect of hypoxic interventions on high-intensity intermittent running performance in team-sport athletes. A systematic literature search of five journal databases was performed. Percent change in performance (distance covered) in the Yo-Yo intermittent recovery test (level 1 and level 2 were used without differentiation) in hypoxic (natural or simulated altitude) and control (sea level or normoxic placebo) groups was meta-analyzed with a mixed model. The modifying effects of study characteristics (type and dose of hypoxic exposure, training duration, post-altitude duration) were estimated with fixed effects, random effects allowed for repeated measurement within studies and residual real differences between studies, and the standard-error weighting factors were derived or imputed via standard deviations of change scores. Effects and their uncertainty were assessed with magnitude-based inference, with a smallest important improvement of 4% estimated via between-athlete standard deviations of performance at baseline. Ten studies qualified for inclusion, but two were excluded owing to small sample size and risk of publication bias. Hypoxic interventions occurred over a period of 7-28 days, and the range of total hypoxic exposure (in effective altitude-hours) was 4.5-33 km h in the intermittent-hypoxia studies and 180-710 km h in the live-high studies. There were 11 control and 15 experimental study-estimates in the final meta-analysis. Training effects were moderate and very likely beneficial in the control groups at 1 week (20 ± 14%, percent estimate, ± 90% confidence limits) and 4-week post-intervention (25 ± 23%). The intermittent and live-high hypoxic groups experienced additional likely beneficial gains at 1 week (13 ± 16%; 13 ± 15%) and 4-week post

  8. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  9. The Effects Of Different Environmental Conditions (Cold, Heat and Altitude On Soccer Players' Performance And Health

    Directory of Open Access Journals (Sweden)

    Cem Sinan ASLAN

    2016-06-01

    Full Text Available Sports are divided into sub-headings according to structural characteristics as team sports and individual sports; according to the physiological characteristics as aerobic- and anaerobic-based sports. In addition, they may be described as "in-door" and "out-door", as well. While basketball, handball, volleyball are classified as "in-door" sports; cross country, mountaineering, skiing are classified as "out-door" sports. Football is one of the outdoor sports, and is highly influenced by external factors. Indeed, beyond affecting players’ performance, sometimes these factors may lead to unwanted consequences regarding the athlete’s health. In this review, it is targeted to examine the effects of different environmental conditions such as cold, heat and altitude on soccer players' performance and health, through referring to the results of previous studies.

  10. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  11. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  12. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  13. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  14. An attempt to quantify the placebo effect from a three-week simulated altitude training camp in elite race walkers.

    Science.gov (United States)

    Saunders, Philo U; Ahlgrim, Christoph; Vallance, Brent; Green, Daniel J; Robertson, Eileen Y; Clark, Sally A; Schumacher, Yorck O; Gore, Christopher J

    2010-12-01

    To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors. Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass). Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely). Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.

  15. Interactions of carbon monoxide and hemoglobin at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.R. (Univ. of Southern California Medical Center, Los Angeles); Goldsmith, J.R.

    1983-01-01

    The health risks to U.S. populations who are exposed to ambient carbon monoxide and live at altitudes (such as Denver, Salt Lake City, and Albuquerque) were evaluated using a set of mathematical models. The assumption that a given increase in carboxyhemoglobin would require a more stringent volumetric air quality standard was tested. The results using the model predict that the 8-h or 1-h standards adopted for sea level condition need not be altered to protect individuals against health risks at altitude, if the standards are in volumetric terms. They would need to be reduced if the standards are left in gravimetric terms. If the guideline is to be based on a given decrement of oxygen tension, many other variables must be specified, but expected differences in ambient carbon monoxide have a small impact compared to the effect of altitude itself.

  16. Experience with simulator training for emergency conditions

    International Nuclear Information System (INIS)

    1987-12-01

    The training of operators by the use of simulators is common to most countries with nuclear power plants. Simulator training programmes are generally well developed, but their value can be limited by the age, type, size and capability of the simulator. Within these limits, most full scope simulators have a capability of training operators for a range of design basis accidents. It is recognized that human performance under accident conditions is difficult to predict or analyse, particularly in the area of severe accidents. These are rare events and by their very nature, unpredictable. Of importance, therefore, is to investigate the training of operators for severe accident conditions, and to examine ways in which simulators may be used in this task. The International Nuclear Safety Advisory Group (INSAG) has reviewed this field and the associated elements of human behaviour. It has recommended that activities are concentrated on this area. Initially it is encouraging the following objectives: i) To train operators for accident conditions including severe accidents and to strongly encourage the development and use of simulators for this purpose; ii) To improve the man-machine interface by the use of computer aids to the operator; iii) To develop human performance requirements for plant operating staff. As part of this work, the IAEA convened a technical committee on 15-19 September 1986 to review the experience with simulator training for emergency conditions, to review simulator modelling for severe accident training, to examine the role of human cognitive behaviour modelling, and to review guidance on accident scenarios. A substantial deviation may be a major fuel failure, a Loss of Coolant Accident (LOCA), etc. Examples of engineered safety features are: an Emergency Core Cooling System (ECCS), and Containment Systems. This report was prepared by the participants during the meeting and reviewed further in a Consultant's Meeting. It also includes papers which were

  17. Tropical temperature altitude amplification in the hiatus period (1998-2012

    Directory of Open Access Journals (Sweden)

    Ducić Vladan D.

    2015-01-01

    Full Text Available In the period 1998-2012 there was a stagnation in temperature rise, despite the GHGs radiation forcing is increased (hiatus period. According to Global Circulation Models simulations, expected response on the rise of GHGs forcing is tropical temperature altitude amplification - temperature increases faster in higher troposphere than in lower troposphere. In this paper, two satellite data sets, UAH MSU and RSS, were used to test altitude temperature amplification in tropic (20°N-20°S in the hiatus period. We compared data from satellite data sets from lower troposphere (TLT and middle troposphere (TMT in general and particularly for land and ocean (for UAH MSU. The results from both satellite measurements showed the presence of hiatus, i.e. slowdown of the temperature rise in the period 1998-2012 compared to period 1979-2012 (UAH MSU and temperature fall for RSS data. Smaller increase, i.e. temperature fall over ocean showed that hiatus is an ocean phenomenon above all. Data for UAH MSU showed that temperature altitude amplification in tropic was not present either for period 1979-2012, or 1998-2012. RSS data set also do not show temperature altitude amplification either for longer (1979-2012, or for shorter period (1998-2012. RSS data for successive 15-year periods from 1979-1993 till 1998-2012 does not show tropical temperature altitude amplification and in one case negative trend is registered in TLT and in two cases in TMT. In general, our results do not show presence of temperature altitude amplification in tropic in the hiatus period. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  18. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  19. Modeling of Air Attenuation Effects on Gamma Detection at Altitude

    International Nuclear Information System (INIS)

    Detwiler, R. S.

    2002-01-01

    This paper focuses on modeling the detection capabilities of NaI sensor systems at high altitudes for ground sources. The modeling was done with the Monte Carlo N-Transport (MCNP) code developed at Los Alamos National Laboratory. The specific systems modeled were the fixed wing and helicopter aircraft sensor systems, assets of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Aerial Measuring System (AMS). In previous (2001) modeling, Sodium Iodine (NaI) detector responses were simulated for both point and distributed surface sources as a function of gamma energy and altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 (micro)Ci/m 2 . To validate the calculations, benchmark measurements were made for simple source-detector configurations. The 2002 continuation of the modeling presented here includes checking models against available data, and modifications to allow more effective and accurate directional biasing of ground point and distributed sources. Fixed-wing data results will be shown for two point sources as a function of altitude

  20. Corona Onset Characteristics of Bundle Conductors in UHV AC Power Lines at 2200 m Altitude

    Directory of Open Access Journals (Sweden)

    Shilong Huang

    2018-04-01

    Full Text Available The corona onset characteristic of bundle conductors is an important limiting factor for the design of UHV AC power lines in high-altitude areas. An experimental study on the corona characteristics of 8 × LGJ630, 6 × LGJ720, 8 × LGJ720 and 10 × LGJ720 bundle conductors commonly used in UHV power lines under dry and wet conductor conditions, as well as artificial moderate and heavy rain conditions, was conducted in Ping’an County, Xining City (elevation 2200 m. By using the tangent line method, the corona onset voltages and onset electric field of four types of conductors at high altitudes are obtained for the first time. In addition, the calculation model of corona onset voltage considering the outer strands’ effect on the electric field and the geometric factor in the corona cage in high altitude areas is established. The comparison of the calculation results and experimental results under dry conditions verifies the model’s correctness. Based on the results, an optimal selection scheme for high altitudes is proposed. The roughness coefficient was also calculated and analysed: the roughness coefficient of bundled conductors was between 0.59 and 0.77, and the roughness coefficient of the wet conductor was between the dry and rainy conditions. Both the experimental data and the calculation model can provide a reference for conductor selection for UHV AC power lines for use in high-altitude areas.

  1. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  2. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  3. High-altitude hypoxia as a therapeutic factor in the management of X-ray and cytostatic lymphocytopenias in cancer patients

    International Nuclear Information System (INIS)

    Kulish, u.P.; Galkina, K.A.; Karabekova, Z.K.; Kudryavtsev, V.I.; Gudi, T.P.

    1984-01-01

    An attempt is made to clarify possibilities of high-altitude conditions use in clinics to restore hematological indices deteriorating as a result of antitumoral radiation or cytostatic therapy. Using conventional methods the content of hemoglobin, the number of erythrocytes and leukocytes, leukocytic formula in the blood of patients have been determined. Using the method of hemocultures the ability of the blood serum to affect leukocyte migration of practically healthy people (donors) has been studied and by the method of amperometric titration the content of SH-groups in the blood is determined. In patients examined under high-altitude conditions the content of hemoglobin and the number of erythrocytes in blood increased, the level of total SH-groups of blood also grew. Blood serum of patients with the expressed lymphocytopenia instead of suppressing effect on leukocyte migration, observed under low-altitude conditions (Frunze), under high-altitude conditions attained the ability to increase leukocyte migration. The conclusion is made that high-altitude hypoxia is a positive factor in the treatment of radiation and cytostatic lymphopenias in cancer patients

  4. Changes in BOLD and ADC weighted imaging in acute hypoxia during sea-level and altitude adapted states

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, Henrik B.W.; Born, Alfred P.

    2005-01-01

    possible structural changes as measured by diffusion weighted imaging. Eleven healthy sea-level residents were studied after 5 weeks of adaptation to high altitude conditions at Chacaltaya, Bolivia (5260 m). The subjects were studied immediately after return to sea-level in hypoxic and normoxic conditions...... was slightly elevated in high altitude as compared to sea-level adaptation. It is concluded that hypoxia significantly diminishes the BOLD response, and the mechanisms underlying this finding are discussed. Furthermore, altitude adaptation may influence both the magnitude of the activation-related response......, and the examinations repeated 6 months later after re-adaptation to sea-level conditions. The BOLD response, measured at 1.5 T, was severely reduced during acute hypoxia both in the altitude and sea-level adapted states (50% reduction during an average S(a)O(2) of 75%). On average, the BOLD response magnitude was 23...

  5. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  6. Simulations of QCD and QED with C* boundary conditions

    Science.gov (United States)

    Hansen, Martin; Lucini, Biagio; Patella, Agostino; Tantalo, Nazario

    2018-03-01

    We present exploratory results from dynamical simulations of QCD in isolation, as well as QCD coupled to QED, with C* boundary conditions. In finite volume, the use of C* boundary conditions allows for a gauge invariant and local formulation of QED without zero modes. In particular we show that the simulations reproduce known results and that masses of charged mesons can be extracted in a completely gauge invariant way. For the simulations we use a modified version of the HiRep code. The primary features of the simulation code are presented and we discuss some details regarding the implementation of C* boundary conditions and the simulated lattice action. Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

  7. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study.

    Science.gov (United States)

    Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C

    2017-09-01

    Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  8. Longitudinal Static Stability and wake visualization of high altitude long endurance aircraft developed in Bandung institute of technology

    Science.gov (United States)

    Irsyad Lukman, E.; Agoes Moelyadi, M.

    2018-04-01

    A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.

  9. SPLENIC INFARCTION: an intriguing and important cause of pain abdomen in high altitude

    Directory of Open Access Journals (Sweden)

    P. K. Hota

    2015-01-01

    Full Text Available Background: Patients with Sickle cell trait (SCT are usually asymptomatic. They are usually unaware of their condition unless they have a family history. There are specific situations, where these people suffer from the effects of sickle cell trait. Splenic syndrome at high altitude is one of the specific problems. It is usually seen after a patient with SCT has been inducted to high altitude like in case of mountaineers and military personnel deployed in high altitude warfare. Pain abdomen due to splenic infarction in individuals with SCT is one of the manifestations. These patients, if diagnosed in time, they can be spared from unnecessary surgical interventions. We present herewith our experience of splenic infarction due to SCT in high altitude and their management.

  10. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  11. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  12. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  13. NEURO ENGINEERING TECHNOLOGY TO ACCELERATE THE HUMAN ADAPTATION TO HIGH ALTITUDE HYPOXIA

    Directory of Open Access Journals (Sweden)

    Mukhamed T. Shaov

    2018-01-01

    Full Text Available Abstract. The aim is to study the influence of neuro-information signals modulated by pulse hypoxia on the rhythm of cardiac contractions in low-mountain and high-mountain conditions. Methods. Heart rate was measured using the pulse oxymetry device ELOX-01M2. The impact analysis of information-wave signals was carried out with the help of the neuro-protector "Anthropotherapist", non-invasively (remotely at a distance of up to 5 meters for 5 min. /day during 10 days. The investigations were carried out in lowmountain conditions (city of Nalchik, 550 m above sea level and highlands, Mount Elbrus (site of "Garabashi", 3780 m. above sea level. Participants in the study were divided into groups: control group – 18 participants; experimental group - 18 participants. In the low-mountain and high-mountain conditions, the control group was not affected by the neuro-protector. In high-mountain conditions, the participants in the control group experienced only the effects of high-altitude hypoxia sessions. The experimental group was exposed to the neuro-information signals from the neuro-protector. High-altitude studies were carried out in the following mode: heart rate was recorded at the altitudes of Nalchik - exit to Elbrus – on the way to the site of "Garabashi" - return route to Nalchik. Results. It was found that with frequency exposure, there is a significant decrease and fluctuations in heart rate in low-mountain inhabitants. The stability of these changes in the rhythm of cardiac activity can also be seen in conditions of high-altitude hypoxia. Conclusion. Consequently, the proposed mode of frequency impact, implemented using the "Anthropotherapist" neuro-protector technology, can form a stage of adaptation to hypoxia and unfavorable climatic and environmental factors.

  14. Response of HEPA filters to simulated-accident conditions

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; Smith, P.R.; Fenton, D.E.

    1982-01-01

    High-efficiency particulate air (HEPA) filters have been subjected to simulated accident conditions to determine their response to abnormal operating events. Both domestic and European standard and high-capacity filters have been evaluated to determine their response to simulated fire, explosion, and tornado conditions. The HEPA filter structural limitations for tornado and explosive loadings are discussed. In addition, filtration efficiencies during these accident conditions are reported for the first time. Our data indicate efficiencies between 80% and 90% for shock loadings below the structural limit level. We describe two types of testing for ineffective filtration - clean filters exposed to pulse-entrained aerosol and dirty filters exposed to tornado and shock pulses. Efficiency and material loss data are described. Also, the resonse of standard HEPA filters to simulated fire conditions is presented. We describe a unique method of measuring accumulated combustion products on the filter. Additionally, data relating to pressure drop vs accumulated mass during plugging are reported for simulated combustion aerosols. The effects of concentration and moisture levels on filter plugging were evaluated. We are obtaining all of the above data so that mathematical models can be developed for fire, explosion, and tornado accident analysis computer codes. These computer codes can be used to assess the response of nuclear air cleaning systems to accident conditions

  15. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  16. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  17. HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures

    DEFF Research Database (Denmark)

    Karl, I.; Sørensen, Jesper Givskov; Loeschcke, Volker

    2009-01-01

    temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low-altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high-altitude butterflies showed much less plasticity...... in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high-altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction......The ability to express heat-shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction...

  18. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  19. Altitude Stress During Participation of Medical Congress

    Science.gov (United States)

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  20. Performance of portable ventilators at altitude.

    Science.gov (United States)

    Blakeman, Thomas; Britton, Tyler; Rodriquez, Dario; Branson, Richard

    2014-09-01

    Aeromedical transport of critically ill patients requires continued, accurate performance of equipment at altitude. Changes in barometric pressure can affect the performance of mechanical ventilators calibrated for operation at sea level. Deploying ventilators that can maintain a consistent tidal volume (VT) delivery at various altitudes is imperative for lung protection when transporting wounded war fighters to each echelon of care. Three ventilators (Impact 731, Hamilton T1, and CareFusion Revel) were tested at pediatric (50 and 100 mL) and adult (250-750 mL) tidal VTs at 0 and 20 cm H₂O positive end expiratory pressure and at inspired oxygen of 0.21 and 1.0. Airway pressure, volume, and flow were measured at sea level as well as at 8,000, 16,000, and 22,000 ft (corresponding to barometric pressures of 760, 564, 412, and 321 mm Hg) using a calibrated pneumotachograph connected to a training test lung in an altitude chamber. Set VT and delivered VT as well as changes in VT at each altitude were compared by t test. The T1 delivered VT within 10% of set VT at 8,000 ft. The mean VT was less than set VT at sea level as a result of circuit compressible volume with the Revel and the 731. Changes in VT varied widely among the devices at sea level and at altitude. Increasing altitudes resulted in larger VT than set for the Revel and the T1. The 731 compensated for changes in altitude delivered VT within 10% at the adult settings at all altitudes. Altitude compensation is an active software algorithm. Only the 731 actively accounts for changes in barometric pressure to maintain the set VT at all tested altitudes.

  1. PHYSICAL ADAPTATION OF CHILDREN TO LIFE AT HIGH-ALTITUDE

    NARCIS (Netherlands)

    DEMEER, K; HEYMANS, HSA; ZIJLSTRA, WG

    Children permanently exposed to hypoxia at altitudes of > 3000 m above sea level show a phenotypical form of adaptation. Under these environmental conditions, oxygen uptake in the lungs is enhanced by increases in ventilation, lung compliance, and pulmonary diffusion. Lung and thorax volumes in

  2. Relativistic initial conditions for N-body simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.

  3. Simulating Wake Vortex Detection with the Sensivu Doppler Wind Lidar Simulator

    Science.gov (United States)

    Ramsey, Dan; Nguyen, Chi

    2014-01-01

    In support of NASA's Atmospheric Environment Safety Technologies NRA research topic on Wake Vortex Hazard Investigation, Aerospace Innovations (AI) investigated a set of techniques for detecting wake vortex hazards from arbitrary viewing angles, including axial perspectives. This technical report describes an approach to this problem and presents results from its implementation in a virtual lidar simulator developed at AI. Threedimensional data volumes from NASA's Terminal Area Simulation System (TASS) containing strong turbulent vortices were used as the atmospheric domain for these studies, in addition to an analytical vortex model in 3-D space. By incorporating a third-party radiative transfer code (BACKSCAT 4), user-defined aerosol layers can be incorporated into atmospheric models, simulating attenuation and backscatter in different environmental conditions and altitudes. A hazard detection algorithm is described that uses a twocomponent spectral model to identify vortex signatures observable from arbitrary angles.

  4. Effect of Moxidectin Treatment at Peripartum on Gastrointestinal Parasite Infections in Ewes Raised under Tropical Andes High Altitude Conditions

    Science.gov (United States)

    Vargas-Duarte, J. J.; Lozano-Márquez, H.; Grajales-Lombana, H. A.; Manrique-Perdomo, C.; Martínez-Bello, D. A.; Saegerman, C.; Raes, M.; Kirschvink, N.

    2015-01-01

    This study tested the impact of moxidectin at peripartum on nematode fecal egg count (FEC) and clinical parameters on ewes in the high altitude tropical Andes of Colombia. FEC and clinical evaluations were performed on 9 occasions in 43 naturally infected ewes before and during gestation and after lambing. Moxidectin (Mox, 200 µg kg−1) was applied at late pregnancy (T 1, n = 15) or 48 hours after parturition (T 2, n = 14). 14 untreated ewes served as controls (C). Suckling lambs (n = 58) remained untreated and underwent four clinical and parasitological evaluations until 8 weeks after birth. Mox efficacy equaled 99.3% (T 1) and 96.9% (T 2). Highest mean FEC value reflecting periparturient nematode egg rise (PPER) was recorded in C ewes at 4–6 weeks after lambing. Significant FEC reductions were found in T 1 (94.8%) and T 2 (96.7%) ewes (p ewes-group independent increase in FEC before weaning (p < 0.05). Clinical parameters (anemia and diarrhea) showed time- and treatment-related differences (p < 0.05). Monitoring of FEC and clinical parameters linked to gastrointestinal parasite infections allowed demonstrating that postpartum or preweaning are two critical periods to nematode infection for sheep raised under tropical Andes high altitude conditions. Use of Mox as anthelmintic treatment prevented PPER. PMID:26078913

  5. Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels

    International Nuclear Information System (INIS)

    Ramos, Ángel; García-Contreras, Reyes; Armas, Octavio

    2016-01-01

    Highlights: • Effects of altitude, alternative fuels and driving conditions on emissions have been studied. • Combustion timing was studied by means of on-line thermodynamic diagnosis. • Altitude particularly increases the combustion duration of paraffinic fuels. • Altitude increases NOx emissions more than ten times compared to the sea level. • Effect of fuels on particulate matter is masked when diesel particle filters work efficiently. - Abstract: The altitude effect on performance, emissions and thermodynamic diagnosis under real world driving conditions has been evaluated using two alternative fuels and a diesel fuel. Three places, at different altitudes, were selected for the tests, from 0 to 2500 m above the sea level. Besides, two type of circuits (Urban and Extra-urban) have been selected in order to evaluate these two driving pattern conditions. A light duty diesel vehicle equipped with the same after-treatment system as Euro 5 engines was used as test vehicle. Thermodynamic diagnosis shows that, when the engine works with two pre-injection events (mainly at high altitude and without EGR) the ignition delay agrees of the cetane number of fuels. At urban conditions, altitude increases the combustion duration of all fuels and particularly with paraffinic fuels. The effect of altitude on THC and CO emissions is not noticeable, but at high altitude, NOx emissions during extra-urban tests were around three times higher than those from testing along the urban circuit. Besides, compared to circuits next to the sea level, these emissions at both circuits (urban and extra-urban) were around ten times higher, respectively, than the limits established by the Euro standards. The effect of fuels on pollutant emissions was masked by the variability associated to real driving conditions.

  6. Cardiovascular Effects of Altitude on Performance Athletes.

    Science.gov (United States)

    Shah, Ankit B; Coplan, Neil

    Altitude plays an important role in cardiovascular performance and training for athletes. Whether it is mountaineers, skiers, or sea-level athletes trying to gain an edge by training or living at increased altitude, there are many potential benefits and harms of such endeavors. Echocardiographic studies done on athletes at increased altitude have shown evidence for right ventricular dysfunction and pulmonary hypertension, but no change in left ventricular ejection fraction. In addition, 10% of athletes are susceptible to pulmonary hypertension and high-altitude pulmonary edema. Some studies suggest that echocardiography may be able to identify athletes susceptible to high-altitude pulmonary edema prior to competing or training at increased altitudes. Further research is needed on the long-term effects of altitude training, as repeated, transient episodes of pulmonary hypertension and right ventricular dysfunction may have long-term implications. Current literature suggests that performance athletes are not at higher risk for ventricular arrhythmias when training or competing at increased altitudes. For sea-level athletes, the optimal strategy for attaining the benefits while minimizing the harms of altitude training still needs to be clarified, although-for now-the "live high, train low" approach appears to have the most rationale.

  7. Altitude Testing of Large Liquid Propellant Engines

    Science.gov (United States)

    Maynard, Bryon T.; Raines, Nickey G.

    2010-01-01

    of the first Ares I vehicle. The A3 facility will be able to simulate pre-ignition altitude from sea-level to 100,000 feet and maintain it up to 650 seconds. Additionally the facility will be able to accommodate initial ignition, shutdown and then restart test profiles. A3 will produce up to 5000 lbm/sec of superheated steam utilizing a Chemical Steam generation system. Two separate inline steam ejectors will be used to produce a test cell vacuum to simulate the 100,000 ft required altitude. Operational capability will ensure that the facility can start up and shutdown without producing adverse pressure gradients across the J2X nozzle. The facility will have a modern thrust measurement system for accurate determination of engine performance. The latest advances in data acquisition and control will be incorporated to measure performance parameters during hotfire testing. Provisions are being made in the initial design of the new altitude facility to allow for testing of other, larger engines and potential upper stage launch vehicles that might require vacuum start testing of the engines. The new facility at Stennis Space Center will be complete and ready for hotfire operations in late 2010.

  8. EFFECT OF HIGH ALTITUDE ON ERECTILE FUNCTION IN OTHERWISE HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Usama Bin Zubair

    2016-06-01

    Full Text Available Objective: To determine the effect of high altitude on Erectile function in otherwise healthy individuals and associated socio demographic factors. Study Design: Cross sectional descriptive study. Place and Duration of Study: January 2014 to March 2014 at Goma, Siachin. Material and Methods: One hundred & twenty two married male subjects living at an altitude of more than 15000 feet for more than 3 month and less than one year were included in the study. Erectile dysfunction (ED was assessed using International Index of Erectile Function-5 (IIEF-5. Age, education, smoking, monthly income, any drug intake, altitude, duration of stay and weather conditions were correlated independently with ED. Results: Out of 122, 26 (21.3% had no ED, 18 had mild, 28 (14.8% had mild to moderate, 36(29.5% had moderate and 14 (11.5% had severe ED. Advancing age, low monthly income, smoking, high altitude, cold weather and longer duration of stay had significant association with ED (p-value<0.05 while education and use of any drug were not found significantly associated in our study. Conclusion: This study showed a high prevalence of erectile dysfunction among otherwise healthy individuals when exposed to high altitude. Special attention should be paid on individuals with more age, less income and those working or residing at higher altitudes in peak winter season. Smoking and stay for longer durations should also be discouraged.

  9. Diagnostic criteria of high-altitude de-adaptation for high-altitude migrants returning to the plains: a multicenter, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Qi-quan ZHOU

    2012-02-01

    Full Text Available Objective  To investigate the diagnostic method of high-altitude de-adaptation and constitute the diagnostic criteria of high-altitude de-adaptation for people returning to the plains from high-altitude. Methods  Epidemiological survey and clinical multicenter randomized controlled studies were used to determine/perform blood picture, routine urine analysis, routine stool examination, myocardial enzymes, liver and kidney functions, nerve function, sex hormone, microalbuminuria, ECG, echocardiography, pulmonary function tests, and so on, in 3011 subjects after they returned to the plains from high-altitude. The diagnostic criteria of high-altitude de-adaptation were formulated by a comparative analysis of the obtained data with those of healthy subjects living in the same area, altitude, and age. The regularity and characteristics of high-altitude de-adaptation syndrome were found and diagnostic criteria for high-altitude de-adaptation was established based on the results. Results  The investigative results showed that the incidence of high-altitude de-adaptation syndrome was found in 84.36% of population returning to the plains from high-altitude. About 60% of them were considered to have mild reactions, 30% medium, and only 10% were severe. The lower the altitude they returned to, the longer the duration of stay in highland, and the heavier the labor they engaged in high altitude, the higher the incidence rate of high-altitude de-adaptation syndrome was. Patients with high-altitude de-adaptation syndrome exhibited hematological abnormality and abnormal ventricular function, especially the right ventricular diastolic function after returning for 1 year to 5 years. Long-term hypoxia exposure often caused obvious change in cardiac morphology with left and right ventricular hypertrophy, particularly the right ventricle. In addition, low blood pressure and low pulse pressure were found at times. Microalbuminuria was found in some high-altitude de

  10. Oblique-wing research airplane motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  11. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  12. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  13. ABOUT TRANSITION ALTITUDE IN RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article is about establishing a common transition altitude over all territory of Russian Federation. The main objective is to prove the necessity of a common transition altitude in Russian airspace and to define, which variant of tran- sition altitude (low, medium, high is the most suitable to be implemented in Russia. ICAO and IFALPA points of view, data and experience from different states and regions all over the world were examined in order to show all the advantages and disadvantages of different approaches towards common transition altitude. The research showed that the most appro- priate common transition altitude in Russia will be 10000 feet (3050 meters, it will cover almost all the international aero- dromes and regions in the country. Only several exceptions are needed in mountainous areas. This article can be used to further study of the possibility of implementation of common transition altitude, because it can’t take into consideration all the local features of all the FIRs (Flight Information Regions in Russia. The conclusion is establishing a common transi- tion altitude over such a big part of the world as Russian Federation will lead to improvement of the flight safety, harmoni- zation with ICAO and IFALPA policies and flexibility in airspace design.

  14. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists.

    Science.gov (United States)

    Garvican, L; Martin, D; Quod, M; Stephens, B; Sassi, A; Gore, C

    2012-02-01

    To determine the time course of hemoglobin mass (Hb(mass)) to natural altitude training, Hb(mass), erythropoietin [EPO], reticulocytes, ferritin and soluble transferrin receptor (sTfR) were measured in 13 elite cyclists during, and 10 days after, 3 weeks of sea level (n=5) or altitude (n=8, 2760 m) training. Mean Hb(mass), with a typical error of ∼2%, increased during the first 11 days at altitude (mean ± standard deviation 2.9 ± 2.0%) and was 3.5 ± 2.5% higher than baseline after 19 days. [EPO] increased 64.2 ± 18.8% after 2 nights at altitude but was not different from baseline after 12 nights. Hb(mass) and [EPO] did not increase in sea level. Reticulocytes (%) were slightly elevated in altitude at Days 5 and 12 (18.9 ± 17.7% and 20.4 ± 25.3%), sTfR was elevated at Day 12 (18.9 ± 15.0%), but both returned to baseline by Day 20. Hb(mass) and [EPO] decreased on descent to sea level while ferritin increased. The mean increase in Hb(mass) observed after 11 days (∼300 h) of altitude training was beyond the measurement error and consitent with the mean increase after 300 h of simulated live high:train low altitude. Our results suggest that in elite cyclists, Hb(mass) increases progressively with 3 weeks of natural altitude exposure, with greater increases expected as exposure persists. © 2010 John Wiley & Sons A/S.

  15. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  16. Hemoglobin mass after 21 days of conventional altitude training at 1816 m.

    Science.gov (United States)

    Pottgiesser, Torben; Ahlgrim, Christoph; Ruthardt, Sebastian; Dickhuth, Hans-Hermann; Schumacher, Yorck Olaf

    2009-11-01

    The underlying mechanisms of altitude training are still a matter of controversial discussion but erythropoietic adaptations with an increase of total haemoglobin mass (tHb) have been shown in several studies, partly depending on an adequate hypoxic dose. The aim of this retrospective study was to investigate if a 3 weeks sojourn at moderate altitude (1816 m) with conventional training sessions (live and train at moderate altitude), especially under real and uncontrolled conditions, results in an increased tHb. tHb was measured in seven male cyclists competing at elite level (German national cycling team, U23 category) prior to the ascent to altitude and immediately after descent to sea-level. The athletes completed a 21 days altitude training camp living at 1816 m and training at 1800-2400 m during the competitive season. No significant difference was found in tHb after the altitude sojourn (prior 927+/-109g vs. 951+/-113g post, 95% CI -13-61g). Additionally, the analysis of red cell volume, plasma volume and blood volume or haemoglobin concentration [Hb] as well as haematocrit (Hct) did not reveal any significant changes. The data supports the theory that an adequate hypoxic dose is required for adaptations of the erythropoietic system with an increase of tHb and a threshold of approximately 2100-2500 m has to be exceeded.

  17. On the use of mobile inflatable hypoxic marquees for sport-specific altitude training in team sports.

    Science.gov (United States)

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P

    2013-12-01

    With the evolving boundaries of sports science and greater understanding of the driving factors in the human performance physiology, one of the limiting factors has now become the technology. The growing scientific interest on the practical application of hypoxic training for intermittent activities such as team and racket sports legitimises the development of innovative technologies serving athletes in a sport-specific setting. Description of a new mobile inflatable simulated hypoxic equipment. The system comprises two inflatable units-that is, a tunnel and a rectangular design, each with a 215 m(3) volume and a hypoxic trailer generating over 3000 Lpm of hypoxic air with FiO₂ between 0.21 and 0.10 (a simulated altitude up to 5100 m). The inflatable units offer a 45 m running lane (width=1.8 m and height=2.5 m) as well as a 8 m × 10 m dome tent. FiO₂ is stable within a range of 0.1% in normal conditions inside the tunnel. The air supplied is very dry-typically 10-15% relative humidity. This mobile inflatable simulated hypoxic equipment is a promising technological advance within sport sciences. It offers an opportunity for team-sport players to train under hypoxic conditions, both for repeating sprints (tunnel configuration) or small-side games (rectangular configuration).

  18. Effects of the initial conditions on cosmological $N$-body simulations

    OpenAIRE

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2014-01-01

    Cosmology is entering an era of percent level precision due to current large observational surveys. This precision in observation is now demanding more accuracy from numerical methods and cosmological simulations. In this paper, we study the accuracy of $N$-body numerical simulations and their dependence on changes in the initial conditions and in the simulation algorithms. For this purpose, we use a series of cosmological $N$-body simulations with varying initial conditions. We test the infl...

  19. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Experimental study of human thermal sensation under hypobaric conditions in winter clothes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiying; Hu, Songtao; Liu, Guodan [Department of Environment and Municipal Engineering, Qingdao Technological University, Qingdao (China); Li, Angui [Department of Environment and Municipal Engineering, Xi' an University of Architecture and Technology, Xi' an (China)

    2010-11-15

    Hypobaric conditions, with pressures about 20-30% below that at sea level, are often experienced at mountain resorts and plateau areas. The diffusive transfer of water evaporation increases at hypobaric conditions whereas dry heat loss by convection decreases. In order to clarify the effects of barometric on human thermal comfort, experiments are conducted in a decompression chamber where the air parameters were controllable. During experiments, air temperature is set at a constant of 20, air velocity is controlled at <0.1 m/s, 0.2 m/s, 0.25 m/s, and 0.3 m/s by stages. The barometric condition is examined stepwise for 1atm, 0.85 atm and 0.75 atm of simulated hypobaric conditions, which is equivalent to altitude of 0 m, 1300 m, and 2300 m respectively. Ten males and ten females in winter clothes participate in the experiments. Thermal sensations are measured with ASHRAE seven-point rating scales and skin temperatures were tested at each altitude. The main results are as follows: when the altitude rises, (1) the mean thermal sensation drops; (2) people become more sensitive to draught and expect lower air movements; (3) no significant change of mean skin temperature has been found. The results of the present study indicate that hypobaric environment tends to make people feel cooler. (author)

  1. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  2. Genotype by environment interaction for growth due to altitude in United States Angus cattle.

    Science.gov (United States)

    Williams, J L; Bertrand, J K; Misztal, I; Łukaszewicz, M

    2012-07-01

    The objectives of this study were to determine if sires perform consistently across altitude and to quantify the genetic relationship between growth and survival at differing altitudes. Data from the American Angus Association included weaning weight (WW) adjusted to 205 (n = 77,771) and yearling weight adjusted to 365 (n = 39,450) d of age from 77,771 purebred Angus cattle born in Colorado between 1972 and 2007. Postweaning gain (PWG) was calculated by subtracting adjusted WW from adjusted yearling weight. Altitude was assigned to each record based upon the zip code of each herd in the database. Records for WW and PWG were each split into 2 traits measured at low and high altitude, with the records from medium altitude removed from the data due to inconsistencies between growth performance and apparent culling rate. A binary trait, survival (SV), was defined to account for censored records at yearling for each altitude. It was assumed that, at high altitude, individuals missing a yearling weight either died or required relocation to a lower altitude predominantly due to brisket disease, a condition common at high altitude. Model 1 considered each WW and PWG measured at 2 altitudes as separate traits. Model 2 treated PWG and SV measured as separate traits due to altitude. Models included the effects of weaning contemporary group, age of dam, animal additive genetic effects, and residual. Maternal genetic and maternal permanent environmental effects were included for WW. Heritability estimates for WW in Model 1 were 0.28 and 0.26 and for PWG were 0.26 and 0.19 with greater values in low altitude. Genetic correlations between growth traits measured at different altitude were moderate in magnitude: 0.74 for WW and 0.76 for PWG and indicate possibility of reranking of sires across altitude. Maternal genetic correlation between WW at varying altitude of 0.75 also indicates these may be different traits. In Model 2, heritabilities were 0.14 and 0.27 for PWG and 0.36 and

  3. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    Science.gov (United States)

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically.

  4. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  5. Multiple point statistical simulation using uncertain (soft) conditional data

    Science.gov (United States)

    Hansen, Thomas Mejer; Vu, Le Thanh; Mosegaard, Klaus; Cordua, Knud Skou

    2018-05-01

    Geostatistical simulation methods have been used to quantify spatial variability of reservoir models since the 80s. In the last two decades, state of the art simulation methods have changed from being based on covariance-based 2-point statistics to multiple-point statistics (MPS), that allow simulation of more realistic Earth-structures. In addition, increasing amounts of geo-information (geophysical, geological, etc.) from multiple sources are being collected. This pose the problem of integration of these different sources of information, such that decisions related to reservoir models can be taken on an as informed base as possible. In principle, though difficult in practice, this can be achieved using computationally expensive Monte Carlo methods. Here we investigate the use of sequential simulation based MPS simulation methods conditional to uncertain (soft) data, as a computational efficient alternative. First, it is demonstrated that current implementations of sequential simulation based on MPS (e.g. SNESIM, ENESIM and Direct Sampling) do not account properly for uncertain conditional information, due to a combination of using only co-located information, and a random simulation path. Then, we suggest two approaches that better account for the available uncertain information. The first make use of a preferential simulation path, where more informed model parameters are visited preferentially to less informed ones. The second approach involves using non co-located uncertain information. For different types of available data, these approaches are demonstrated to produce simulation results similar to those obtained by the general Monte Carlo based approach. These methods allow MPS simulation to condition properly to uncertain (soft) data, and hence provides a computationally attractive approach for integration of information about a reservoir model.

  6. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  7. A suitable boundary condition for bounded plasma simulation without sheath resolution

    International Nuclear Information System (INIS)

    Parker, S.E.; Procassini, R.J.; Birdsall, C.K.; Cohen, B.I.

    1993-01-01

    We have developed a technique that allows for a sheath boundary layer without having to resolve the inherently small space and time scales of the sheath region. We refer to this technique as the logical sheath boundary condition. This boundary condition, when incorporated into a direct-implicit particle code, permits large space- and time-scale simulations of bounded systems, which would otherwise be impractical on current supercomputers. The lack of resolution of the collector sheath potential drop obtained from conventional implicit simulations at moderate values of ω pe Δt and Δz/λ De provides the motivation for the development of the logical sheath boundary condition. The algorithm for use of the logical sheath boundary condition in a particle simulation is presented. Results from simulations which use the logical sheath boundary condition are shown to compare reasonably well with those from an analytic theory and simulations in which the sheath is resolved

  8. Terminal altitude maximization for Mars entry considering uncertainties

    Science.gov (United States)

    Cui, Pingyuan; Zhao, Zeduan; Yu, Zhengshi; Dai, Juan

    2018-04-01

    Uncertainties present in the Mars atmospheric entry process may cause state deviations from the nominal designed values, which will lead to unexpected performance degradation if the trajectory is designed merely based on the deterministic dynamic model. In this paper, a linear covariance based entry trajectory optimization method is proposed considering the uncertainties presenting in the initial states and parameters. By extending the elements of the state covariance matrix as augmented states, the statistical behavior of the trajectory is captured to reformulate the performance metrics and path constraints. The optimization problem is solved by the GPOPS-II toolbox in MATLAB environment. Monte Carlo simulations are also conducted to demonstrate the capability of the proposed method. Primary trading performances between the nominal deployment altitude and its dispersion can be observed by modulating the weights on the dispersion penalty, and a compromised result referring to maximizing the 3σ lower bound of the terminal altitude is achieved. The resulting path constraints also show better satisfaction in a disturbed environment compared with the nominal situation.

  9. Analysis of high-altitude de-acclimatization syndrome after exposure to high altitudes: a cluster-randomized controlled trial.

    Science.gov (United States)

    He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong

    2013-01-01

    The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.

  10. Exact simulation of conditioned Wright-Fisher models.

    Science.gov (United States)

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2014-12-21

    Forward and backward simulations play an increasing role in population genetics, in particular when inferring the relative importance of evolutionary forces. It is therefore important to develop fast and accurate simulation methods for general population genetics models. Here we present an exact simulation method that generates trajectories of an allele׳s frequency in a finite population, as described by a general Wright-Fisher model. The method generates conditioned trajectories that start from a known frequency at a known time, and which achieve a specific final frequency at a known final time. The simulation method applies irrespective of the smallness of the probability of the transition between the initial and final states, because it is not based on rejection of trajectories. We illustrate the method on several different populations where a Wright-Fisher model (or related) applies, namely (i) a locus with 2 alleles, that is subject to selection and mutation; (ii) a locus with 3 alleles, that is subject to selection; (iii) a locus in a metapopulation consisting of two subpopulations of finite size, that are subject to selection and migration. The simulation method allows the generation of conditioned trajectories that can be used for the purposes of visualisation, the estimation of summary statistics, and the development/testing of new inferential methods. The simulated trajectories provide a very simple approach to estimating quantities that cannot easily be expressed in terms of the transition matrix, and can be applied to finite Markov chains other than the Wright-Fisher model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bats aloft: Variation in echolocation call structure at high altitudes

    Science.gov (United States)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  12. PHOTOIONIZATION OF HIGH-ALTITUDE GAS IN A SUPERNOVA-DRIVEN TURBULENT INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Wood, Kenneth; Hill, Alex S.; Haffner, L. Matthew; Reynolds, R. J.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Madsen, G. J.

    2010-01-01

    We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.

  13. Approximate Simulation of Acute Hypobaric Hypoxia with Normobaric Hypoxia

    Science.gov (United States)

    Conkin, J.; Wessel, J. H., III

    2011-01-01

    INTRODUCTION. Some manufacturers of reduced oxygen (O2) breathing devices claim a comparable hypobaric hypoxia (HH) training experience by providing F(sub I) O2 pO2) of the target altitude. METHODS. Literature from investigators and manufacturers indicate that these devices may not properly account for the 47 mmHg of water vapor partial pressure that reduces the inspired partial pressure of O2 (P(sub I) O2). Nor do they account for the complex reality of alveolar gas composition as defined by the Alveolar Gas Equation. In essence, by providing iso-pO2 conditions for normobaric hypoxia (NH) as for HH exposures the devices ignore P(sub A)O2 and P(sub A)CO2 as more direct agents to induce signs and symptoms of hypoxia during acute training exposures. RESULTS. There is not a sufficient integrated physiological understanding of the determinants of P(sub A)O2 and P(sub A)CO2 under acute NH and HH given the same hypoxic pO2 to claim a device that provides isohypoxia. Isohypoxia is defined as the same distribution of hypoxia signs and symptoms under any circumstances of equivalent hypoxic dose, and hypoxic pO2 is an incomplete hypoxic dose. Some devices that claim an equivalent HH experience under NH conditions significantly overestimate the HH condition, especially when simulating altitudes above 10,000 feet (3,048 m). CONCLUSIONS. At best, the claim should be that the devices provide an approximate HH experience since they only duplicate the ambient pO2 at sea level as at altitude (iso-pO2 machines). An approach to reduce the overestimation is to at least provide machines that create the same P(sub I)O2 (iso-P(sub I)O2 machines) conditions at sea level as at the target altitude, a simple software upgrade.

  14. Piloted Simulation of a Model-Predictive Automated Recovery System

    Science.gov (United States)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  15. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  16. SEADYN Analysis of a Tow Line for a High Altitude Towed Glider

    Science.gov (United States)

    Colozza, Anthony J.

    1996-01-01

    The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.

  17. Spatial patterns in Central Asian climate and equilibrium line altitudes

    International Nuclear Information System (INIS)

    Rupper, Summer; Koppes, Michele

    2010-01-01

    A suite of general circulation model (GCM) simulations and a glacier equilibrium line altitude (ELA) model are compared to reconstructed glacier advances from geomorphic data and used to test the sensitivity of Central Asian glaciers to simulated climate changes at the Last Glacial Maximum (LGM). Results highlight temperature changes as being the most important influence on glacier ELA changes during the LGM. With the exception of the southern Himalaya, for much of Central Asia there is consistency between GCMs for simulated LGM temperature changes, with a mean cooling of 4 0 C. Further research will necessarily need to focus on detailed analysis of the inter-model differences in temperature in the southern Himalaya, and acquiring additional paleoclimate proxies in the region in order to further constrain the GCMs.

  18. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  19. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    Science.gov (United States)

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  20. Wind-governed flight altitudes of nocturnal spring migrants over the ...

    African Journals Online (AJOL)

    Flight costs make up a large proportion of energy expenditure during migration and are strongly dependent on atmospheric conditions aloft. Birds crossing the Sahara can take advantage of the fairly reliable trade-wind regime. In our study, we investigated whether birds adapt flight altitude to minimise energy or water loss.

  1. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. ON THE ORIGIN OF HIGH-ALTITUDE OPEN CLUSTERS IN THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Velazquez, H., E-mail: lamartinez@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, 22860 Ensenada, B.C., México (Mexico)

    2016-01-20

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending on the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.

  3. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Science.gov (United States)

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  4. Altitude training considerations for the winter sport athlete.

    Science.gov (United States)

    Chapman, Robert F; Stickford, Jonathon L; Levine, Benjamin D

    2010-03-01

    Winter sports events routinely take place at low to moderate altitudes, and nearly all Winter Olympic Games have had at least one venue at an altitude >1000 m. The acute and chronic effects of altitude can have a substantial effect on performance outcomes. Acutely, the decline in oxygen delivery to working muscle decreases maximal oxygen uptake, negatively affecting performance in endurance events, such as cross-country skiing and biathlon. The reduction in air resistance at altitude can dramatically affect sports involving high velocities and technical skill components, such as ski jumping, speed skating, figure skating and ice hockey. Dissociation between velocity and sensations usually associated with work intensity (ventilation, metabolic signals in skeletal muscle and heart rate) may impair pacing strategy and make it difficult to determine optimal race pace. For competitions taking place at altitude, a number of strategies may be useful, depending on the altitude of residence of the athlete and ultimate competition altitude, as follows. First, allow extra time and practice (how much is yet undetermined) for athletes to adjust to the changes in projectile motion; hockey, shooting, figure skating and ski jumping may be particularly affected. These considerations apply equally in the reverse direction; that is, for athletes practising at altitude but competing at sea level. Second, allow time for acclimatization for endurance sports: 3-5 days if possible, especially for low altitude (500-2000 m); 1-2 weeks for moderate altitude (2000-3000 m); and at least 2 weeks if possible for high altitude (>3000 m). Third, increase exercise-recovery ratios as much as possible, with 1:3 ratio probably optimal, and consider more frequent substitutions for sports where this is allowed, such as ice hockey. Fourth, consider the use of supplemental O(2) on the sideline (ice hockey) or in between heats (skating and Alpine skiing) to facilitate recovery. For competitions at sea

  5. Physical activity at altitude: challenges for people with diabetes: a review

    NARCIS (Netherlands)

    Mol, P. de; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Bilo, H.J.; Tack, C.J.

    2014-01-01

    BACKGROUND: A growing number of subjects with diabetes take part in physical activities at altitude such as skiing, climbing, and trekking. Exercise under conditions of hypobaric hypoxia poses some unique challenges on subjects with diabetes, and the presence of diabetes can complicate safe and

  6. Physical Activity at Altitude : Challenges for People With Diabetes A Review

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Reinold O. B.; Bilo, Henk J. G.; Tack, Cees J.

    BACKGROUND A growing number of subjects with diabetes take part in physical activities at altitude such as skiing, climbing, and trekking. Exercise under conditions of hypobaric hypoxia poses some unique challenges on subjects with diabetes, and the presence of diabetes can complicate safe and

  7. Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-07-01

    Full Text Available Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB for different activity conditions with low-altitude isotropic boundaries (IB observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB lies in the region where Rc/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries. Keywords. Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

  8. Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-07-01

    Full Text Available Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB for different activity conditions with low-altitude isotropic boundaries (IB observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB lies in the region where Rc/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries.

    Keywords. Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

  9. RaD-X: Complementary measurements of dose rates at aviation altitudes

    Science.gov (United States)

    Meier, Matthias M.; Matthiä, Daniel; Forkert, Tomas; Wirtz, Michael; Scheibinger, Markus; Hübel, Robert; Mertens, Christopher J.

    2016-09-01

    The RaD-X stratospheric balloon flight organized by the National Aeronautics and Space Administration was launched from Fort Sumner on 25 September 2015 and carried several instruments to measure the radiation field in the upper atmosphere at the average vertical cutoff rigidity Rc of 4.1 GV. The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) in cooperation with Lufthansa German Airlines supported this campaign with an independent measuring flight at the altitudes of civil aviation on a round trip from Germany to Japan. The goal was to measure dose rates under similar space weather conditions over an area on the Northern Hemisphere opposite to the RaD-X flight. Dose rates were measured in the target areas, i.e., around vertical cutoff rigidity Rc of 4.1 GV, at two flight altitudes for about 1 h at each position with acceptable counting statistics. The analysis of the space weather situation during the flights shows that measuring data were acquired under stable and moderate space weather conditions with a virtually undisturbed magnetosphere. The measured rates of absorbed dose in silicon and ambient dose equivalent complement the data recorded during the balloon flight. The combined measurements provide a set of experimental data suitable for validating and improving numerical models for the calculation of radiation exposure at aviation altitudes.

  10. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  11. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.

    Science.gov (United States)

    Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H

    2016-07-01

    Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. © 2016 Poultry Science Association Inc.

  12. Self-consistent electrostatic simulations of reforming double layers in the downward current region of the aurora

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2015-10-01

    Full Text Available The plasma on a magnetic field line in the downward current region of the aurora is simulated using a Vlasov model. It is found that an electric field parallel to the magnetic fields is supported by a double layer moving toward higher altitude. The double layer accelerates electrons upward, and these electrons give rise to plasma waves and electron phase-space holes through beam–plasma interaction. The double layer is disrupted when reaching altitudes of 1–2 Earth radii where the Langmuir condition no longer can be satisfied due to the diminishing density of electrons coming up from the ionosphere. During the disruption the potential drop is in part carried by the electron holes. The disruption creates favourable conditions for double layer formation near the ionosphere and double layers form anew in that region. The process repeats itself with a period of approximately 1 min. This period is determined by how far the double layer can reach before being disrupted: a higher disruption altitude corresponds to a longer repetition period. The disruption altitude is, in turn, found to increase with ionospheric density and to decrease with total voltage. The current displays oscillations around a mean value. The period of the oscillations is the same as the recurrence period of the double layer formations. The oscillation amplitude increases with increasing voltage, whereas the mean value of the current is independent of voltage in the 100 to 800 V range covered by our simulations. Instead, the mean value of the current is determined by the electron density at the ionospheric boundary.

  13. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  14. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  15. System for indicating fuel-efficient aircraft altitude

    Science.gov (United States)

    Gary, B. L. (Inventor)

    1984-01-01

    A method and apparatus are provided for indicating the altitude at which an aircraft should fly so the W/d ratio (weight of the aircraft divided by the density of air) more closely approaches the optimum W/d for the aircraft. A passive microwave radiometer on the aircraft is directed at different angles with respect to the horizon to determine the air temperature, and therefore the density of the air, at different altitudes. The weight of the aircraft is known. The altitude of the aircraft is changed to fly the aircraft at an altitude at which is W/d ratio more closely approaches the optimum W/d ratio for that aircraft.

  16. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  17. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    Science.gov (United States)

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    Science.gov (United States)

    Craig, Roger A.

    1994-01-01

    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.

  19. Hypoxic Hypoxia at Moderate Altitudes: State of the Science

    Science.gov (United States)

    2011-05-01

    nature of cognitive appraisal during exercise in environmentally stressful conditions. Psychology of Sport and Exercise. 2: 47-67. Alpern, M...Shukitt-Hale, B. 1993. Effects of altitude on mood, behaviour and cognitive functioning: A review. Sports Medicine. 16(2): 97-125. Balldin, U...exposure to hypoxia in healthy males [Abstract]. Aviation, Space, and Environmental Medicine. 78(3): 399. Chiles , W. D., Iampietro, P. F. and

  20. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  1. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  2. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  3. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  4. Acute high-altitude illness | Hofmeyr | South African Medical Journal

    African Journals Online (AJOL)

    A substantial proportion of South Africa (SA)'s population lives at high altitude (>1 500 m), and many travel to very high altitudes (>3 500 m) for tourism, business, recreation or religious pilgrimages every year. Despite this, knowledge of acute altitude illnesses is poor among SA doctors. At altitude, the decreasing ambient ...

  5. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  6. Molecular mechanisms regulating oxygen transport and consumption in high altitude and hibernating mammals

    DEFF Research Database (Denmark)

    Revsbech, Inge Grønvall

    2016-01-01

    The aim of this thesis is to broaden the knowledge of molecular mechanisms of adjustment in oxygen (O2) uptake, conduction, delivery and consumption in mammals adapted to extreme conditions. For this end, I have worked with animals living at high altitude as an example of environmental hypoxia...... of the repeatedly found adaptive traits in animals living at high altitude and in hibernating mammals during hibernation compared with the active state. Factors that affect O2 affinity of Hb include temperature, H+/CO2 via the Bohr effect as well as Cl- and organic phosphates, in mammals mainly 2...

  7. Altitude variations of ionospheric currents at auroral latitudes

    International Nuclear Information System (INIS)

    Kamide, Y.; Brekke, A.

    1993-01-01

    On the basis of updated EISCAT experiments, the first full derivation of the ionospheric current density of the auroral electrojets at six different altitudes are presented. It is found that current vectors at different altitudes are quite different, although the eastward and westward currents prevail in the evening and morning sectors, respectively, once the currents are integrated over altitude. The eastward electrojet becomes almost northward whilst the westward electrojet becomes almost southward, at the highest altitude, 125 km, in this study. The physical implications of these characteristics are discussed

  8. Decompression to altitude: assumptions, experimental evidence, and future directions.

    Science.gov (United States)

    Foster, Philip P; Butler, Bruce D

    2009-02-01

    Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.

  9. Impact of habitat variability and altitude on growth dynamics and reproductive allocation in Ferula jaeschkeana Vatke

    Directory of Open Access Journals (Sweden)

    Ubaid Yaqoob

    2017-01-01

    Full Text Available Ferula jaeschkeana Vatke is an important threatened medicinal plant of the Himalayan region. The present study was carried out to determine the impact of the habitat variability and altitudinal gradient on the morphological and reproductive features of the species under study. The species exhibited great variability in its morphological traits under different environmental conditions. The plants were more vigorous and taller at a low altitude site, Kashmir University Botanical Garden (KUBG while the plants of a high altitude site, Gulmarg were shorter. With increased altitude, a significant reduction in the number of umbels per flowering stem, umbellules per umbel and flowers per umbellule occurred. An increase in the number of stigma and anthers was also observed in some plants at higher altitudes. Principal component analysis (PCA revealed that the habitat of KUBG and Dachigam proved relatively better for the growth of F. jaeschkeana. Maximum resources were allocated to the growth and development of the stem followed by root tubers, leaves and inflorescence. Reproductive success of the plant species varied along the altitudinal gradient and ranged from 64% to 72%. Increasing altitude resulted in a decrease in the allocation of biomass to reproductive structures in the form of decreasing dry weight. The total resource budget per plant was maximum in low altitude Drang (572.6 ± 158.36 g and Dachigam (568.4 ± 133.42 g populations and was least in the Gulmarg population (333.4 ± 82.89 g. The reproductive effort was higher (50.83% for the high altitude Gulmarg population. The regression analysis revealed a positive correlation and predicts that plant height has a direct impact on the umbel diameter and leaf length. Our results present a detailed account on the variation of growth characteristics, reproductive success and changes in allocation patterns in relation to the environmental conditions of this valuable medicinal plant species

  10. High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory

    Science.gov (United States)

    Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.

    2017-05-01

    With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.

  11. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes.

    Science.gov (United States)

    Heinicke, K; Heinicke, I; Schmidt, W; Wolfarth, B

    2005-06-01

    It is well known that altitude training stimulates erythropoiesis, but only few data are available concerning the direct altitude effect on red blood cell volume (RCV) in world class endurance athletes during exposure to continued hypoxia. The purpose of this study was to evaluate the impact of three weeks of traditional altitude training at 2050 m on total hemoglobin mass (tHb), RCV and erythropoietic activity in highly-trained endurance athletes. Total hemoglobin mass, RCV, plasma volume (PV), and blood volume (BV) from 6 males and 4 females, all members of a world class biathlon team, were determined on days 1 and 20 during their stay at altitude as well as 16 days after returning to sea-level conditions (800 m, only males) by using the CO-rebreathing method. In males tHb (14.0 +/- 0.2 to 15.3 +/- 1.0 g/kg, p altitude and returned to near sea-level values 16 days after descent. Similarly in females, tHb (13.0 +/- 1.0 to 14.2 +/- 1.3 g/kg, p altitude training period, whereas PV was not altered. In male athletes, plasma erythropoietin concentration increased up to day 4 at altitude (11.8 +/- 5.0 to 20.8 +/- 6.0 mU/ml, p altitude training period, both parameters indicating enhanced erythropoietic activity. In conclusion, we show for the first time that a three-week traditional altitude training increases erythropoietic activity even in world class endurance athletes leading to elevated tHb and RCV. Considering the relatively fast return of tHb and RCV to sea-level values after hypoxic exposure, our data suggest to precisely schedule training at altitude and competition at sea level.

  12. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  13. Altitude Registration of Limb-Scattered Radiation

    Science.gov (United States)

    Moy, Leslie; Bhartia, Pawan K.; Jaross, Glen; Loughman, Robert; Kramarova, Natalya; Chen, Zhong; Taha, Ghassan; Chen, Grace; Xu, Philippe

    2017-01-01

    One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh scattering attitude sensing (RSAS) and absolute radiance residual method (ARRM), are able to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique introduced in this paper, can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of RSAS to Limb Profiler (LP) measurements from the Ozone Mapping and Profiler Suite (OMPS) on board the Suomi NPP (SNPP) satellite indicates tangent height (TH) errors greater than 1 km with an absolute accuracy of +/-200 m. Results using ARRM indicate a approx. 300 to 400m intra-orbital TH change varying seasonally +/-100 m, likely due to either errors in the spacecraft pointing or in the geopotential height (GPH) data that we use in our analysis. ARRM shows a change of approx. 200m over 5 years with a relative accuracy (a long-term accuracy) of 100m outside the polar regions.

  14. Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices

    Science.gov (United States)

    Nance, Robert P.; Hash, David B.; Hassan, H. A.

    1997-01-01

    A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.

  15. Conditional truncated plurigaussian simulation; Simulacao plurigaussiana truncada com condicionamento

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Vitor Hugo

    1997-12-01

    The goal of this work was a development of an algorithm for the Truncated Plurigaussian Stochastic Simulation and its validation in a complex geologic model. The reservoir data comes from Aux Vases Zone at Rural Hill Field in Illinois, USA, and from the 2D geological interpretation, described by WEIMER et al. (1982), three sets of samples, with different grid densities ware taken. These sets were used to condition the simulation and to refine the estimates of the non-stationary matrix of facies proportions, used to truncate the gaussian random functions (RF). The Truncated Plurigaussian Model is an extension of the Truncated Gaussian Model (TG). In this new model its possible to use several facies with different spatial structures, associated with the simplicity of TG. The geological interpretation, used as a validation model, was chosen because it shows a set of NW/SE elongated tidal channels cutting the NE/SW shoreline deposits interleaved by impermeable facies. These characteristics of spatial structures of sedimentary facies served to evaluate the simulation model. Two independent gaussian RF were used, as well as an 'erosive model' as the truncation strategy. Also, non-conditional simulations were proceeded, using linearly combined gaussian RF with varying correlation coefficients. It was analyzed the influence of some parameters like: number of gaussian RF,correlation coefficient, truncations strategy, in the outcome of simulation, and also the physical meaning of these parameters under a geological point of view. It was showed, step by step, using an example, the theoretical model, and how to construct an algorithm to simulate with the Truncated Plurigaussian Model. The conclusion of this work was that even with a plain algorithm of the Conditional Truncated Plurigaussian and a complex geological model it's possible to obtain a usefulness product. (author)

  16. On the altitude dependence of transversely heated O+ distributions in the cusp/cleft

    Directory of Open Access Journals (Sweden)

    L. Kistler

    2004-04-01

    Full Text Available The present paper focuses on the altitude dependence of oxygen ion conics in the dayside cusp/cleft region. Here, combining oxygen data from the Akebono, Interball-2 and Cluster satellites allows, for the first time, one to follow the global development of energetic (up to ~10keV ion outflow over a continuous and broad altitude range up to about 5.5 Earth radii (RE. According to earlier statistical studies, the results are consistent with a height-integrated energization of ions at altitudes up to 3.5 RE. Higher up, the results inferred from Cluster observations put forward evidence of a saturation of both a transverse energization rate and ion gyroradii. We suggest that such results may be interpreted as finite perpendicular wavelength effects (a few tens of km in the wave-particle interactions. To substantiate the suggestion, we carry out two-dimensional, Monte Carlo simulations of ion conic production that incorporate such effects and limited residence times due to the finite latitudinal extent of the heating region.Key words. Magnetospheric physics (auroral phenomena – Space plasma physics (charged particle motion and acceleration; wave-particle interactions

  17. Position statement--altitude training for improving team-sport players' performance: current knowledge and unresolved issues.

    Science.gov (United States)

    Girard, Olivier; Amann, Markus; Aughey, Robert; Billaut, François; Bishop, David J; Bourdon, Pitre; Buchheit, Martin; Chapman, Robert; D'Hooghe, Michel; Garvican-Lewis, Laura A; Gore, Christopher J; Millet, Grégoire P; Roach, Gregory D; Sargent, Charli; Saunders, Philo U; Schmidt, Walter; Schumacher, Yorck O

    2013-12-01

    Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.

  18. Position statement—altitude training for improving team-sport players’ performance: current knowledge and unresolved issues

    Science.gov (United States)

    Girard, Olivier; Amann, Markus; Aughey, Robert; Billaut, François; Bishop, David J; Bourdon, Pitre; Buchheit, Martin; Chapman, Robert; D'Hooghe, Michel; Garvican-Lewis, Laura A; Gore, Christopher J; Millet, Grégoire P; Roach, Gregory D; Sargent, Charli; Saunders, Philo U; Schmidt, Walter; Schumacher, Yorck O

    2013-01-01

    Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports. PMID:24282213

  19. Altitude Training in Elite Swimmers for Sea Level Performance (Altitude Project).

    Science.gov (United States)

    Rodríguez, Ferran A; Iglesias, Xavier; Feriche, Belén; Calderón-Soto, Carmen; Chaverri, Diego; Wachsmuth, Nadine B; Schmidt, Walter; Levine, Benjamin D

    2015-09-01

    This controlled, nonrandomized, parallel-groups trial investigated the effects on performance, V˙O2 and hemoglobin mass (tHbmass) of four preparatory in-season training interventions: living and training at moderate altitude for 3 and 4 wk (Hi-Hi3, Hi-Hi), living high and training high and low (Hi-HiLo, 4 wk), and living and training at sea level (SL) (Lo-Lo, 4 wk). From 61 elite swimmers, 54 met all inclusion criteria and completed time trials over 50- and 400-m crawl (TT50, TT400), and 100 (sprinters) or 200 m (nonsprinters) at best stroke (TT100/TT200). Maximal oxygen uptake (V˙O2max) and HR were measured with an incremental 4 × 200 m test. Training load was estimated using cumulative training impulse method and session RPE. Initial measures (PRE) were repeated immediately (POST) and once weekly on return to SL (PostW1 to PostW4). tHbmass was measured in duplicate at PRE and once weekly during the camp with CO rebreathing. Effects were analyzed using mixed linear modeling. TT100 or TT200 was worse or unchanged immediately at POST, but improved by approximately 3.5% regardless of living or training at SL or altitude after at least 1 wk of SL recovery. Hi-HiLo achieved greater improvement 2 (5.3%) and 4 wk (6.3%) after the camp. Hi-HiLo also improved more in TT400 and TT50 2 (4.2% and 5.2%, respectively) and 4 wk (4.7% and 5.5%) from return. This performance improvement was not linked linearly to changes in V˙O2max or tHbmass. A well-implemented 3- or 4-wk training camp may impair performance immediately but clearly improves performance even in elite swimmers after a period of SL recovery. Hi-HiLo for 4 wk improves performance in swimming above and beyond altitude and SL controls through complex mechanisms involving altitude living and SL training effects.

  20. Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes

    Science.gov (United States)

    2016-06-08

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person...Morris DS, Kalson NS, Wright AD, Imray CHE, et al. Changes to colour vision on exposure to high altitude. J R Army Med Corps. 2011; 157(1):107-109...4. Richalet JP, Duval-Arnould G, Darnaud B, Keromes A, Rutgers V. Modification of colour vision in the green/red axis in acute and chronic

  1. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude].

    Science.gov (United States)

    Li, S H; Li, S; Sun, L; Bai, Z Z; Yang, Q Y; Ga, Q; Jin, G E

    2016-08-23

    To investigate the correlation between pulmonary artery pressure (PAP) and the expression level of Egl nine homologue 1 (EGLN1) gene or its protein in lung tissue of rats at different altitudes. Totally 121 male Wistar rats were randomly divided into low altitude group (n=11), moderate altitude group and high altitude group, the rats in moderate altitude and high altitude group were further divided into 1(st) day, 3(rd) days, 7(th) days, 15(th) day and 30(th) day group according to the exposure time to hypoxic environment, each group 11 rats. The low altitude group, the PAP of rats were determined by physiological signal acquisition system, and tissue samples were collected in liquid nitrogen container for storage at an altitude of 498 m area. Moderate altitude group rats were placed in altitude of 2 260 meters of natural environment, 5 high altitude groups rats were placed in the hypobaric hypoxic chamber, simulating altitude of 4 500 meters. The PAP of rats in moderate altitude group and high altitude group were also determined by physiological signal acquisition system, and tissue samples were collected when rats were exposed to hypoxia at 1(st), 3(rd), 7(th), 15(th) and 30(th) day; Western blot was used to determine expression levels of EGLN1 protein, and person correlation analysis was used to analyze whether the protein was related to the formation of pulmonary arterial hypertension (PH) under hypoxia. Real-time quantitive PCR method determined expression levels of EGLN1 mRNA in lung tissues, and the relative expression method was used to analyze PCR data, and finally assess whether the EGLN1 gene was the initial cause of the formation of PH during hypoxia. The mean PAP of rats was (20.0±3.2) mmHg (1 mmHg=0.133 kPa) in low altitude group; in moderate altitude group, mean PAP began to increase slightly when rats were exposed to hypoxia on the 15(th) day and reached at (22.7±4.1) mmHg on hypoxic 30(th) day, but compared with the low altitude group, there was

  2. On the Isotopic Altitude Effect of Precipitation in the Northern Adriatic (Croatia)

    Energy Technology Data Exchange (ETDEWEB)

    Roller-Lutz, Z.; Mance, D.; Hunjak, T., E-mail: Roller@medri.hr [Stable Isotope Laboratory, Medical Faculty, University of Rijeka, Rijeka (Croatia); Lutz, H. O. [Stable Isotope Laboratory, Medical Faculty, University of Rijeka, Rijeka (Croatia); Physics Faculty, Bielefeld University, Bielefeld (Germany)

    2013-07-15

    The upper (northern) Adriatic is very rich in precipitation. This input into the water system and its stable isotope composition is a basic factor, knowledge of which is required for proper use and management of water resources. The geomorphology of the region (e.g., mountains of 1400 m next to the sea) can cause specific local conditions. The isotopic composition of precipitation has been measured in various locations at different altitudes. For {delta}{sup 18}O this 'altitude effect' is found to lie around -0.2 per mille /100 m; its exact value depends on the specific location and the season. The {delta}{sup 2}H values and the d-excess vary correspondingly. (author)

  3. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  4. Choix d'un modèle pluie-ruissellement pour des conditions hydrologiques complexes

    Science.gov (United States)

    Gárfias, Jaime; Verrette, Jean-Louis; Antigüedad, Iñaki; André, Cécile

    1996-03-01

    The main purpose of this study is to compare the application possibilities of different rainfall-runoff models and how to choose that which best corresponds to certain hydrological conditions. The system chosen for analysis lies in the Bolivian highlands. The region is drained by the River Desaguadero, which flows out of Lake Titicaca (altitude 3810 m), and into Lake Poopo (altitude 3686 m). Following an analysis of hydrological models in general, the conclusions are applied to the particular characteristics of the Bolivian highlands. A simulation procedure, based on the decomposition of the basin into elements, was used. Detailed provisions to represent the losses along one of the channel reaches led to significant improvements in the simulation. It is concluded that channel losses are due to the characteristic geographic position and the specific characteristics of the system. The results of the study suggest that modelling of the surface water runoff may be applied with success in the Bolivian highlands but that the present, commonly used, methods are inadequate and adjustments are necessary.

  5. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  6. A comparison of measured and calculated upwelling radiance over water as a function of sensor altitude

    Science.gov (United States)

    Coney, T. A.; Salzman, J. A.

    1979-01-01

    The present paper compares remote sensing data measured over water at altitudes ranging from 30 m to 15.2 km to data calculated for corresponding altitudes using surface measurements and an atmospheric radiative transfer model. The data were acquired on June 22, 1978 in Lake Erie and it was found that suspended solids and chlorophyll concentrations were 0.59 + or - 0.02 mg/liter and 2.42 + or - 0.03 micro gram/liter respectively throughout the duration of the experiment. Calculated and measured nadir radiances for altitudes of 152 m and 12.5 km agree to within 16% and 14% respectively. It is noted that the model offered a poor simulation of the variation in measured radiance with look angle. Finally, it is concluded that an accurate assessment of the source of error will require the inclusion in the analysis of the contributions made by the sea state and specular sky reflectance

  7. Limestone attrition under simulated oxyfiring Fluidized-Bed combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F. [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy); Salatino, P. [Dipartimento di Ingegneria Chimica - Universita degli Studi di Napoli Federico II, Napoli (Italy)

    2009-03-15

    Limestone attrition by surface wear was studied during the flue gas desulfurization under simulated fluidized-bed (FB) oxyfiring conditions and hindered calcination. Bench-scale experimental tests were carried out using well-established techniques previously developed for the characterization of sulfation and attrition of sorbents in air-blown atmospheric FB combustors. The experimental limestone conversion and attrition results were compared with those previously obtained with the same limestone under simulated air-blown combustion conditions. The differences in the conversion and attrition extents and patterns associated with oxyfiring as compared to air-blown atmospheric combustion were highlighted and related to the different particle morphologies and thicknesses of the sulfate layer. It was noted that attrition could play an important role in practical circulating FB combustor operation, by effectively enhancing particle sulfation under both oxyfiring and air-blown combustion conditions. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure.

    Science.gov (United States)

    Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia

    2012-05-01

    We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.

  9. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water

  10. AltitudeOmics: Resetting of cerebrovascular CO2 reactivity following acclimatization to high altitude

    Directory of Open Access Journals (Sweden)

    Jui-Lin eFan

    2016-01-01

    Full Text Available Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv responses to modified rebreathing at sea level (SL, upon ascent (ALT1 and following 16 days of acclimatization (ALT16 to 5,260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95% vs. 129%, SL vs. ALT1, 95% confidence intervals (CI [77, 112], [111, 145], respectively, P=0.024 and the slope of the sigmoid response (4.5 vs. 7.5 %/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P=0.026 to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177%, 95% CI [139, 215], P<0.001; slope: 10.3 %/mmHg, 95% CI [8.2, 12.5], P=0.003 compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P=0.982, while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P=0.001 vs. SL, indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2 following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  11. VisibleWind: wind profile measurements at low altitude

    Science.gov (United States)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  12. Pre-Altitude Serum Ferritin Levels and Daily Oral Iron Supplement Dose Mediate Iron Parameter and Hemoglobin Mass Responses to Altitude Exposure.

    Directory of Open Access Journals (Sweden)

    Andrew D Govus

    Full Text Available To investigate the influence of daily oral iron supplementation on changes in hemoglobin mass (Hbmass and iron parameters after 2-4 weeks of moderate altitude exposure.Hematological data collected from 178 athletes (98 males, 80 females exposed to moderate altitude (1,350-3,000 m were analysed using linear regression to determine how altitude exposure combined with oral iron supplementation influenced Hbmass, total iron incorporation (TII and blood iron parameters [ferritin and transferrin saturation (TSAT].Altitude exposure (mean ± s: 21 ± 3 days increased Hbmass by 1.1% [-0.4, 2.6], 3.3% [1.7, 4.8], and 4.0% [2.0, 6.1] from pre-altitude levels in athletes who ingested nil, 105 mg and 210 mg respectively, of oral iron supplement daily. Serum ferritin levels decreased by -33.2% [-46.9, -15.9] and 13.8% [-32.2, 9.7] from pre-altitude levels in athletes who supplemented with nil and 105 mg of oral iron supplement daily, but increased by 36.8% [1.3, 84.8] in athletes supplemented with 210 mg of oral iron daily. Finally, athletes who ingested either 105 mg or 210 mg of oral iron supplement daily had a greater TII compared with non-supplemented athletes (0 versus 105 mg: effect size (d = -1.88 [-2.56, -1.17]; 0 versus 210 mg: effect size (d = -2.87 [-3.88, -1.66].Oral iron supplementation during 2-4 weeks of moderate altitude exposure may enhance Hbmass production and assist the maintenance of iron balance in some athletes with low pre-altitude iron stores.

  13. Effects of hiking at moderate and low altitude on cardiovascular parameters in male patients with metabolic syndrome: Austrian Moderate Altitude Study.

    Science.gov (United States)

    Neumayr, Günther; Fries, Dietmar; Mittermayer, Markus; Humpeler, Egon; Klingler, Anton; Schobersberger, Wolfgang; Spiesberger, Reinhard; Pokan, Rochus; Schmid, Peter; Berent, Robert

    2014-09-01

    Physical activity is a cornerstone in therapy for patients with metabolic syndrome. Walking and hiking in a mountain scenery represents an ideal approach to make them move. The Austrian Moderate Altitude Study (AMAS) 2000 main study is a randomized controlled trial to investigate the cardiovascular effects of hiking at moderate altitude on patients with metabolic syndrome compared with a control group at low altitude, to assess a potential altitude-specific effect. Seventy-one male patients with metabolic syndrome were randomly assigned to a moderate altitude group (at 1700 m), with 36 participants, or to a low altitude group (at 200 m), with 35 participants. The 3-week vacation program included 12 hiking tours (4 per week, average duration 2.5 hours, intensity 55% to 65% of heart rate maximum). Physical parameters, performance capacity, 24-hour blood pressure, and heart rate profiles were obtained before, during, and after the stay. In both groups, we found a significant mean weight loss of -3.13 kg; changes in performance capacity were minor. Systolic, diastolic, and mean arterial pressures and circadian heart rate profiles were significantly reduced in both groups, with no differences between them. Consequently, the pressure-rate product was reduced as well. All study participants tolerated the vacation well without any adverse events. A 3-week hiking vacation at moderate or low altitude is safe for patients with metabolic syndrome and provides several improvements in their cardiovascular parameters. The cardiovascular benefits achieved are more likely to be the result of regular physical activity than the altitude-specific effect of a mountain environment. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  14. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  15. Improving estimation of flight altitude in wildlife telemetry studies

    Science.gov (United States)

    Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd

    2018-01-01

    Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.

  16. Acute and Chronic Altitude-Induced Cognitive Dysfunction in Children and Adolescents.

    Science.gov (United States)

    Rimoldi, Stefano F; Rexhaj, Emrush; Duplain, Hervé; Urben, Sébastien; Billieux, Joël; Allemann, Yves; Romero, Catherine; Ayaviri, Alejandro; Salinas, Carlos; Villena, Mercedes; Scherrer, Urs; Sartori, Claudio

    2016-02-01

    To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. THE RELATIONSHIP BETWEEN ALTITUDES AND THE CONTENTS OF PROTEIN, CARBOHYDRATES, LIPIDS OF PUMPKIN (Cucurbita moschata

    Directory of Open Access Journals (Sweden)

    Suranto Tjiptowibisono

    2015-02-01

    Full Text Available Cucurbita moschata or pumpkin can be used as an alternative food mainly due to its carbohydrate content, and it is very easy to grow in many different habitats. The objective of this research was to evaluate the biochemical contents of C. moschata based on the altitudes and also to examine whether any relationship between the environmental conditions and protein, carbohydrate and lipid contents. Proximate analysis was used for statistical consideration of the results obtained. Chemical analysis was conducted by using mesocarp of pumpkin after cleaning, peeling and removing seeds from the center of fruits. Kjedahl and soxhlet methods were used to look at the content of protein and lipid respectively. Meanwhile, the method of difference was employed to measure the percentage of carbohydrates. Although there was no significant relationship between the biochemical contents and the environmental conditions, it was recorded that plants grown at higher altitudes with high soil pH and air temperature tended to have higher protein, carbohydrate and lipid contents, compared to that of higher soil moisture. This results showed that the highest biochemical contents of protein, carbohydrate and lipid of two varieties C. moschata were evident at the lowest altitude.

  18. Hydrogen deflagration simulations under typical containment conditions for nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Yanez, J., E-mail: jorge.yanez@kit.edu [Institute for Energy and Nuclear Technology, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe (Germany); Kotchourko, A.; Lelyakin, A. [Institute for Energy and Nuclear Technology, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Lean H{sub 2}-air combustion experiments highly relevant to typical NPP simulated. Black-Right-Pointing-Pointer Analyzed effect of temperature, concentration of H{sub 2}, and steam concentration. Black-Right-Pointing-Pointer Similar conditions and H{sub 2} concentration yielded different combustion regimes. Black-Right-Pointing-Pointer Flame instabilities (FIs) were the effect driving divergences. Black-Right-Pointing-Pointer Model developed for acoustic FI in simulations. Agreement experiments obtained. - Abstract: This paper presents the modeling of low-concentration hydrogen deflagrations performed with the recently developed KYLCOM model specially created to perform calculations in large scale domains. Three experiments carried out in THAI facility (performed in the frames of international OECD THAI experimental program) were selected to be analyzed. The tests allow studying lean mixture hydrogen combustion at normal ambient, elevated temperature and superheated and saturated conditions. The experimental conditions considered together with the facility size and shape grant a high relevance degree to the typical NPP containment conditions. The results of the simulations were thoroughly compared with the experimental data, and the comparison was supplemented by the analysis of the combustion regimes taking place in the considered tests. Results of the analysis demonstrated that despite the comparatively small difference in mixture properties, three different combustion regimes can be definitely identified. The simulations of one of the cases required of the modeling of the acoustic-parametric instability which was carefully undertaken.

  19. Effects of Uncertainties in Electric Field Boundary Conditions for Ring Current Simulations

    Science.gov (United States)

    Chen, Margaret W.; O'Brien, T. Paul; Lemon, Colby L.; Guild, Timothy B.

    2018-01-01

    Physics-based simulation results can vary widely depending on the applied boundary conditions. As a first step toward assessing the effect of boundary conditions on ring current simulations, we analyze the uncertainty of cross-polar cap potentials (CPCP) on electric field boundary conditions applied to the Rice Convection Model-Equilibrium (RCM-E). The empirical Weimer model of CPCP is chosen as the reference model and Defense Meteorological Satellite Program CPCP measurements as the reference data. Using temporal correlations from a statistical analysis of the "errors" between the reference model and data, we construct a Monte Carlo CPCP discrete time series model that can be generalized to other model boundary conditions. RCM-E simulations using electric field boundary conditions from the reference model and from 20 randomly generated Monte Carlo discrete time series of CPCP are performed for two large storms. During the 10 August 2000 storm main phase, the proton density at 10 RE at midnight was observed to be low (Dst index is bounded by the simulated Dst values. In contrast, the simulated Dst values during the recovery phases of the 10 August 2000 and 31 August 2005 storms tend to underestimate systematically the observed late Dst recovery. This suggests a need to improve the accuracy of particle loss calculations in the RCM-E model. Application of this technique can aid modelers to make efficient choices on either investing more effort on improving specification of boundary conditions or on improving descriptions of physical processes.

  20. Spatial and temporal distribution of ionospheric currents-4: altitude ...

    African Journals Online (AJOL)

    (a) The continuous distribution of current density model reproduces the altitude distribution parameters of EEJ current density very well, (b) the altitude distribution parameters of EEJ current density in India and Peru are not significantly different and (c) The altitude distribution parameters of EEJ current density from rockets ...

  1. Evaluation of Intensive Care Unit Ventilators at Altitude.

    Science.gov (United States)

    Blakeman, Thomas; Rodriquez, Dario; Petro, Michael; Branson, Richard

    Devices may forgo US military air worthiness and safety testing in an attempt to expedite the availability of critical assets such as mechanical ventilators with a waiver for one-time use in extenuating circumstances. We evaluated two Intensive Care Unit (ICU) level ventilators: Drager Evita XL and Puritan Bennett (PB) 840 in an altitude chamber at sea level and altitudes of 8,000 and 16,000 feet. Altitude affected delivered tidal volumes (VTs) in volume control mode (VCV) and Pressure Regulated Volume Controlled (PRVC) mode at altitude with the Evita XL but the differences were not considered clinically important with the PB 840. Sixty-seven percent of the V T s were outside the ASTM standard of ± 10% of set V T with the Evita XL at altitude. The PB 840 did not deliver V T s that were larger than the ASTM standard up to an altitude of 16,000 feet while the majority of the delivered V T s with the Därger XL were greater than the ASTM standard. This could present a patient safety issue. Caregivers must be aware of the capabilities and limitations of ICU ventilators when utilized in a hypobaric environment in order to provide safe care. Copyright © 2017 Air Medical Journal Associates. All rights reserved.

  2. Geolocation of a Known Altitude Target Using TDOA and GROA in the Presence of Receiver Location Uncertainty

    Directory of Open Access Journals (Sweden)

    Bing Deng

    2016-01-01

    Full Text Available This paper considers the problem of geolocating a target on the Earth surface using the target signal time difference of arrival (TDOA and gain ratio of arrival (GROA measurements when the receiver positions are subject to random errors. The geolocation Cramer-Rao lower bound (CRLB is derived and the performance improvement due to the use of target altitude information is quantified. An algebraic geolocation solution is developed and its approximate efficiency under small Gaussian noise is established analytically. Its sensitivity to the target altitude error is also studied. Simulations justify the validity of the theoretical developments and illustrate the good performance of the proposed geolocation method.

  3. Pathology of high altitude pulmonary oedema

    International Nuclear Information System (INIS)

    Saleem, N.

    2014-01-01

    Objective: To describe autopsy findings in fatal cases of high altitude pulmonary oedema. Study Design: Descriptive study. Place and Duration of Study: The study was carried out between 1999 and 2002 at an army field medical unit in Baltistan, Armed Forces Institute of Pathology, Rawalpindi and Army Medical College, Rawalpindi, Pakistan. Patients and Methods:Autopsies were performed in 17 fatal cases of High Altitude Pulmonary Edema (HAPE) occurring among soldiers serving in Siachen. Results:All cases were males with a mean age of 26.8 years (19-35). The mean altitude at which HAPE occurred was 5192 meters (2895-6492), and the mean duration of stay at these altitudes was 15.3 days (1-30). Eleven individuals had undergone proper acclimatization. The commonest clinical findings were cough (70%), dyspnoea (53%), nausea (47%), headache (41%), vomiting (35%), chest pain (35%) and tightness in chest (24%). Cyanosis and frothy secretions in the nostrils and mouth were present in all but one case. Mean combined weight of lungs was 1470 grams (1070-1810). There was marked congestion of outer and cut surfaces. Interstitial oedema was present in all cases. RBCs and leukocyte infiltrates were seen in 13 and alveolar hyaline membranes in 9 cases. Thrombi were seen in 2 cases. Cerebral oedema was present in 9 cases. Conclusion:HAPE can occur after more than two weeks of stay at high altitudes despite proper acclimatization. Concomitant cerebral oedema is frequently present. Our autopsy findings are consistent with what has been reported previously. (author)

  4. Low-Altitude Operation of Unmanned Rotorcraft

    Science.gov (United States)

    Scherer, Sebastian

    Currently deployed unmanned rotorcraft rely on preplanned missions or teleoperation and do not actively incorporate information about obstacles, landing sites, wind, position uncertainty, and other aerial vehicles during online motion planning. Prior work has successfully addressed some tasks such as obstacle avoidance at slow speeds, or landing at known to be good locations. However, to enable autonomous missions in cluttered environments, the vehicle has to react quickly to previously unknown obstacles, respond to changing environmental conditions, and find unknown landing sites. We consider the problem of enabling autonomous operation at low-altitude with contributions to four problems. First we address the problem of fast obstacle avoidance for a small aerial vehicle and present results from over a 1000 rims at speeds up to 10 m/s. Fast response is achieved through a reactive algorithm whose response is learned based on observing a pilot. Second, we show an algorithm to update the obstacle cost expansion for path planning quickly and demonstrate it on a micro aerial vehicle, and an autonomous helicopter avoiding obstacles. Next, we examine the mission of finding a place to land near a ground goal. Good landing sites need to be detected and found and the final touch down goal is unknown. To detect the landing sites we convey a model based algorithm for landing sites that incorporates many helicopter relevant constraints such as landing sites, approach, abort, and ground paths in 3D range data. The landing site evaluation algorithm uses a patch-based coarse evaluation for slope and roughness, and a fine evaluation that fits a 3D model of the helicopter and landing gear to calculate a goodness measure. The data are evaluated in real-time to enable the helicopter to decide on a place to land. We show results from urban, vegetated, and desert environments, and demonstrate the first autonomous helicopter that selects its own landing sites. We present a generalized

  5. Monitoring of total body water to examine the progress of acclimatization of runners at varying altitudes

    Directory of Open Access Journals (Sweden)

    Miroslav Semerád

    2017-11-01

    Full Text Available The purpose of our pilot study was to find out if total body water (TBW changes could objectively modify the course of adaptation during training for elite runners at different altitudes. The aim of this pilot study is to summarize the indication of the progress of acclimatization at high altitudes (1000–2700 meters above sea level during alpine conditioning. In three training camps at various altitudes the TBW of elite runners (F = 3, M = 1; n = 4; age 23 } 0.9 was monitored, in order to check the progress of acclimatization. We used BIA measurement methods (Bodystat 1500 at different high altitude running camps at the Czech Republic, Morocco and Ethiopia. Changes in TBW were used to check the progress of acclimatization. We discovered that the retention peaks of TBW corresponded with critical days (p ≤ 0.04; Cohen’s d. The highest measured increases of TBW at an altitude of 1000 m were for runner 1, 1.7 litres and for runner 2, 2.1 litres with retention peaks for both occurring on the 5th day. At an altitude of 1770 m runner 1 reached an increase of TBW of 6.3 litres, with a retention peak on the 11th day, and runner 3 had an increase of 5.1 litres with a peak on the 8th day. In the acclimatization phase we found two critical periods, from the 4th–6th day, and after the 10th–12th day. For runner 4 in altitude 2700m who completed the camp at a higher altitude, the situation is more complicated because there were fluctuations of the content of TBW in the range of 1.25 litres, with the highest depression on the 5th and then again an unsettled rise and reaching a maximum on the 12th, when she nearly returned to the initial value. Detected retention peaks reflected different levels of altitude (5th–12th days.We can conclude that the measuring of changes in TBW during camps at higher altitudes may be one of the biomarkers during acclimatization to altitude.

  6. Simulations of the neutral structure within the dusk side aurora

    Directory of Open Access Journals (Sweden)

    H. F. Parish

    2006-10-01

    Full Text Available Observations of neutral winds from rocket release experiments within the premidnight and postmidnight substorm recovery phase aurora, show very large E-region neutral winds of several hundred m/s, where winds measured on the dusk side are even larger than those on the dawn side. These large winds are also associated with strong shears, and there is evidence that some of the regions below these shears may be unstable. The mechanisms which generate this strong vertical structure are not well understood. It is also not known whether the acceleration conditions in the pre and post midnight sectors of the aurora may produce significantly different neutral responses on the dawn and dusk sides. Simulations have been performed using a three-dimensional high resolution limited area thermosphere model to try to understand the neutral structure within the dawn and dusk side aurora. When simulations are performed using auroral forcing alone, for equivalent conditions within the dawn and dusk sectors, differences are found in the simulated response on each side. When measured values of auroral forcing parameters, and background winds and tides consistent with recent observations, are used as model inputs, some of the main features of the zonal and meridional wind observations are reproduced in the simulations, but the magnitude of the peak zonal wind around 140 km tends to be too small and the maximum meridional wind around 130 km is overestimated. The winds above 120 km altitude are found to be sensitive to changes in electric fields and ion densities, as was the case for the dawn side, but the effects of background winds and tides on the magnitudes of the winds above 120 km are found to be relatively small on the dusk side. The structure below 120 km appears to be related mainly to background winds and tides rather than auroral forcing, as was found in earlier studies on the dawn side, although the peak magnitudes of simulated wind variations in the 100 to

  7. 40 CFR 86.1604 - Conditions for disapproval.

    Science.gov (United States)

    2010-07-01

    ... Altitude Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1604 Conditions for disapproval. (a) The Administrator shall not approve altitude performance adjustments that will: (1) Cause any... adjustments correctly. Adjustment procedures should not require knowledge or training beyond that required to...

  8. Slamming Simulations in a Conditional Wave

    DEFF Research Database (Denmark)

    Seng, Sopheak; Jensen, Jørgen Juncher

    2012-01-01

    A study of slamming events in conditional waves is presented in this paper. The ship is sailing in head sea and the motion is solved for under the assumption of rigid body motion constrained to two degree-of-freedom i.e. heave and pitch. Based on a time domain non-linear strip theory most probable...... surface NS/VOF CFD simulations under the same wave conditions. In moderate seas and no occurrence of slamming the structural responses predicted by the methods agree well. When slamming occurs the strip theory overpredicts VBM but the peak values of VBM occurs at approximately the same time as predicted...... by the CFD method implying the possibility to use the more accurate CFD results to improve the estimation of slamming loads in the strip theory through a rational correction coefficient....

  9. Usefulness of training camps at high altitude for well-trained adolescents

    Directory of Open Access Journals (Sweden)

    Jiří Suchý

    2015-03-01

    Full Text Available Objective: Opinions on the suitability of sports training at altitudes of 1800-2200 m above sea level (ASL for increasing performance in youth are not unanimous. The objective of this study was to test the influence of a ten day altitude training camp on performance in well-trained adolescent cross-country skiers. Methods: A running test of 3 × 2 km (aerobic, anaerobic and critical intensity was used with a rest interval of 10 minutes. The test was performed 4 times - an initial test at a lowland (900 m ASL prior to departure for altitude, two tests at altitude (1850 m ASL, a final test ten days after returning to lower altitudes. The aerobic, anaerobic and critical load intensities were set by graded a load test. For all individual tests, the participants maintained the same heart rate individually defined for the various segments using a heart rate monitor. Changes in speed between the tests were compared. The body's internal response was also monitored by the concentration of lactate (2 and 8 minutes after each exertion. Participants: Well-trained adolescent cross-country skiers (N = 11, age: 14.4 ± 1.2 years, weight: 54.4 ± 8.6 kg, height: 170 ± 7 cm, fat: 13 ± 2.6%. Results: The average times attained in the first altitude test for aerobic and anaerobic load were higher (p < .05 than in the entry test at low altitude. In the second altitude test the average times for all intensities were significantly (p < .05 higher than in the first altitude test. In the tests after returning to the lower altitudes the times attained for all intensities were on average higher than at altitude. The average lactate concentration levels following the various intensities were similar (p > .05. The dynamics of the cool-down monitored via the lactate value at the eighth minute after completing the relevant segment showed that at altitude the adolescents cooled down significantly (p < .05 slower rate following the aerobic and anaerobic intensity than at

  10. A comparison study between observations and simulation results of Barghouthi model for O+ and H+ outflows in the polar wind

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2011-11-01

    Full Text Available To advance our understanding of the effect of wave-particle interactions on ion outflows in the polar wind region and the resulting ion heating and escape from low altitudes to higher altitudes, we carried out a comparison between polar wind simulations obtained using Barghouthi model with corresponding observations obtained from different satellites. The Barghouthi model describes O+ and H+ outflows in the polar wind region in the range 1.7 RE to 13.7 RE, including the effects of gravity, polarization electrostatic field, diverging geomagnetic field lines, and wave-particle interactions. Wave-particle interactions were included into the model by using a particle diffusion equation, which depends on diffusion coefficients determined from estimates of the typical electric field spectral density at relevant altitudes and frequencies. We provide a formula for the velocity diffusion coefficient that depends on altitude and velocity, in which the velocity part depends on the perpendicular wavelength of the electromagnetic turbulence λ⊥. Because of the shortage of information about λ⊥, it was included into the model as a parameter. We produce different simulations (i.e. ion velocity distributions, ions density, ion drift velocity, ion parallel and perpendicular temperatures for O+ and H+ ions, and for different λ⊥. We discuss the simulations in terms of wave-particle interactions, perpendicular adiabatic cooling, parallel adiabatic cooling, mirror force, and ion potential energy. The main findings of the simulations are as follows: (1 O+ ions are highly energized at all altitudes in the simulation tube due to wave-particle interactions that heat the ions in the perpendicular direction, and part of this gained energy transfer to the parallel direction by mirror force, resulting in accelerating O+ ions along geomagnetic field lines from lower altitudes to higher altitudes. (2 The effect of wave-particle interactions is negligible for H

  11. Plasma-material interaction under simulated disruption conditions

    International Nuclear Information System (INIS)

    Arkhipov, N.I.; Bakhtin, V.P.; Safronov, V.M.; Toporkov, D.A.; Vasenin, S.G.; Wurz, H.; Zhitlukhin, A.M.

    1995-01-01

    Sudden evaporation of divertor plate surface under high heat load during tokamak plasma disruption instantaneously produces a vapor shield. The cloud of vaporized material prevents the divertor plates from the bulk of incoming energy flux and thus reduces the further material erosion. Dynamics and effectiveness of the vapor shield are studied experimentally at the 2MK-200 facility under simulated disruption conditions. (orig.)

  12. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    Science.gov (United States)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  13. Nutrição para os praticantes de exercício em grandes altitudes Nutritional strategy for exercising in high altitudes

    Directory of Open Access Journals (Sweden)

    Caroline Buss

    2006-02-01

    Full Text Available Quando o atleta ascende a uma grande altitude, ele é exposto a uma pressão barométrica reduzida, e os efeitos fisiológicos que acompanham estas mudanças da pressão atmosférica podem ter grande influência sobre o seu organismo e seu desempenho físico. Acredita-se que a hipóxia seja responsável pelo início de uma cascata de eventos sinalizadores que, ao final, levam à adaptação à altitude. A exposição aguda à hipóxia provoca sonolência, fadiga mental e muscular e prostração. Cefaléia, náusea e anorexia são sintomas provocados pela Doença Aguda das Montanhas, que pode ocorrer nos primeiros dias de permanência na altitude. Uma estratégia nutricional adequada é fundamental para que o organismo não sofra nenhum estresse adicional. O objetivo deste trabalho foi apresentar os principais efeitos da altitude sobre o organismo e sobre o desempenho físico, discutir e/ou sugerir recomendações nutricionais para esta situação e, se possível, apresentar uma orientação nutricional prática para o atleta na altitude. Algumas das principais conclusões encontradas foram: o consumo energético deve ser aumentado; é fundamental monitorar a quantidade de líquidos ingeridos e escolher alimentos agradáveis ao paladar, ricos em energia e nutrientes. Recomenda-se trabalhar com um nutricionista do esporte com antecedência, para que um plano alimentar individual seja elaborado e colocado em prática antes mesmo da viagem à altitude.When athletes are subject to high altitudes, they are exposed to a lower barometric pressure and the physiological effects that accompany these atmospheric pressure changes can have a strong influence on their bodies and performance. Hypoxia is thought to be responsible for triggering a cascade of signaling events that eventually leads to altitude acclimatization. Acute exposure to hypoxia causes sleepiness, mental and muscle fatigue and prostration. Headache, nausea and anorexia are some of the

  14. Development of simulation technology on full auto air conditioning system; Auto eakon no simulation gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, N; Otsubo, Y; Matsumura, K; Sako, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Mazda has developed simulation technology on control of full auto air conditioning system. We have developed the development tool based on the technology, aiming at higher controllability of full auto air conditioning system and shorter development period. The tool performs simulation on control, on-vehicle evaluation of actual load operation, collecting data and analyzing them by personal computer. This paper reports our verification results on effectiveness of the technology/ and the tool. 4 refs., 9 figs.

  15. Occupational health of miners at altitude: adverse health effects, toxic exposures, pre-placement screening, acclimatization, and worker surveillance.

    Science.gov (United States)

    Vearrier, David; Greenberg, Michael I

    2011-08-01

    Mining operations conducted at high altitudes provide health challenges for workers as well as for medical personnel. To review the literature regarding adverse health effects and toxic exposures that may be associated with mining operations conducted at altitude and to discuss pre-placement screening, acclimatization issues, and on-site surveillance strategies. We used the Ovid ( http://ovidsp.tx.ovid.com ) search engine to conduct a MEDLINE search for "coal mining" or "mining" and "altitude sickness" or "altitude" and a second MEDLINE search for "occupational diseases" and "altitude sickness" or "altitude." The search identified 97 articles of which 76 were relevant. In addition, the references of these 76 articles were manually reviewed for relevant articles. CARDIOVASCULAR EFFECTS: High altitude is associated with increased sympathetic tone that may result in elevated blood pressure, particularly in workers with pre-existing hypertension. Workers with a history of coronary artery disease experience ischemia at lower work rates at high altitude, while those with a history of congestive heart failure have decreased exercise tolerance at high altitude as compared to healthy controls and are at higher risk of suffering an exacerbation of their heart failure. PULMONARY EFFECTS: High altitude is associated with various adverse pulmonary effects, including high-altitude pulmonary edema, pulmonary hypertension, subacute mountain sickness, and chronic mountain sickness. Mining at altitude has been reported to accelerate silicosis and other pneumoconioses. Miners with pre-existing pneumoconioses may experience an exacerbation of their condition at altitude. Persons traveling to high altitude have a higher incidence of Cheyne-Stokes respiration while sleeping than do persons native to high altitude. Obesity increases the risk of pulmonary hypertension, acute mountain sickness, and sleep-disordered breathing. NEUROLOGICAL EFFECTS: The most common adverse neurological

  16. Effect of high altitude exposure on the hemodynamics of the bidirectional Glenn physiology: modeling incremented pulmonary vascular resistance and heart rate.

    Science.gov (United States)

    Vallecilla, Carolina; Khiabani, Reza H; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2014-06-03

    The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. For this purpose, a mathematical approach based on a lumped parameter model was developed to model the BDG circulation. Catheterization data from 39 BDG patients at stabilized oxygen conditions was used to determine baseline flows and pressures for the model. The effect of high altitude exposure was modeled by increasing the pulmonary vascular resistance (PVR) and heart rate (HR) in increments up to 80% and 40%, respectively. The resulting differences in vascular flows, pressures and ventricular function parameters were analyzed. By simultaneously increasing PVR and HR, significant changes (p fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simulation study on the maximum continuous working condition of a power plant boiler

    Science.gov (United States)

    Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo

    2018-05-01

    First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.

  18. Enhancing team-sport athlete performance: is altitude training relevant?

    Science.gov (United States)

    Billaut, François; Gore, Christopher J; Aughey, Robert J

    2012-09-01

    Field-based team sport matches are composed of short, high-intensity efforts, interspersed with intervals of rest or submaximal exercise, repeated over a period of 60-120 minutes. Matches may also be played at moderate altitude where the lower oxygen partial pressure exerts a detrimental effect on performance. To enhance run-based performance, team-sport athletes use varied training strategies focusing on different aspects of team-sport physiology, including aerobic, sprint, repeated-sprint and resistance training. Interestingly, 'altitude' training (i.e. living and/or training in O(2)-reduced environments) has only been empirically employed by athletes and coaches to improve the basic characteristics of speed and endurance necessary to excel in team sports. Hypoxia, as an additional stimulus to training, is typically used by endurance athletes to enhance performance at sea level and to prepare for competition at altitude. Several approaches have evolved in the last few decades, which are known to enhance aerobic power and, thus, endurance performance. Altitude training can also promote an increased anaerobic fitness, and may enhance sprint capacity. Therefore, altitude training may confer potentially-beneficial adaptations to team-sport athletes, which have been overlooked in contemporary sport physiology research. Here, we review the current knowledge on the established benefits of altitude training on physiological systems relevant to team-sport performance, and conclude that current evidence supports implementation of altitude training modalities to enhance match physical performances at both sea level and altitude. We hope that this will guide the practice of many athletes and stimulate future research to better refine training programmes.

  19. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  20. The Study of a Super Low Altitude Satellite

    Science.gov (United States)

    Noda, Atsushi; Homma, Masanori; Utashima, Masayoshi

    This paper reports the result of a study for super low altitude satellite. The altitude of this satellite's orbit is lower than ever. The altitude of a conventional earth observing satellite is generally around from 600km to 900km. The lowest altitude of earth observing satellite launched in Japan was 350km; the Tropical Rainfall Measuring Mission (TRMM). By comparison, the satellite reported in this paper is much lower than that and it is planned to orbit below 200km. Furthermore, the duration of the flight planned is more than two years. Any satellite in the world has not achieved to keep such a low altitude that long term. The satellite in such a low orbit drops quickly because of the strong air drag. Our satellite will cancel the air drag effect by ion engine thrust. To realize this idea, a drag-free system will be applied. This usually leads a complicated and expensive satellite system. We, however, succeeded in finding a robust control law for a simple system even under the unpredictable change of air drag. When the altitude of the satellite is lowered successfully, the spatial resolution of an optical sensor can be highly improved. If a SAR is equipped with the satellite, it enables the drastic reduction of electric power consumption and the fabulous spatial resolution improvement at the same time.

  1. S-40: Acute Phase Protein Increse in High Altitude Mountaineers

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    2017-03-01

    Full Text Available “Erciyes Tigers” are an elite group of high altitude climbers. They have been climbing ErciyesMountain (3500 m, in Kayseri, Turkey once a week at least for ten years. When they climb Erciyes in winter, they also take a snow bath. This study investigated the effects of regular high altitude climbing on the metabolic and hematological responses of mountaineers. Venous blood samples were taken to investigate hematological, biochemical parameters and some hormone values from 21 mountaineers and 16 healthy age-matched sedentary volunteers at resting condition. The neutrophil/lymphocyte (N/L ratio was calculated. The N/L was associated with an increased risk of long-term mortality and it could provide a good measure of exercise stress and subsequent recovery. Most of the hematological and biochemical parameters i.e., erythrocyte, leukocyte, hemoglobin and hematocrit values did not change significantly. The neutrophil to lymphocyte (N/L ratio was significantly (p<0.04 decreased in the mountaineer compared with the sedentary group. Total protein (p<0.000 and albumin (0.001 were lower, while ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase levels (p<0.01 were higher in mountaineers. Our results show that regular high altitude climbing increased serum levels of some acute-phase proteins and these increments were not transient.

  2. Transient immune impairment after a simulated long-haul flight.

    Science.gov (United States)

    Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A

    2012-04-01

    Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.

  3. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    Science.gov (United States)

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  4. Conditional flood frequency and catchment state: a simulation approach

    Science.gov (United States)

    Brettschneider, Marco; Bourgin, François; Merz, Bruno; Andreassian, Vazken; Blaquiere, Simon

    2017-04-01

    Catchments have memory and the conditional flood frequency distribution for a time period ahead can be seen as non-stationary: it varies with the catchment state and climatic factors. From a risk management perspective, understanding the link of conditional flood frequency to catchment state is a key to anticipate potential periods of higher flood risk. Here, we adopt a simulation approach to explore the link between flood frequency obtained by continuous rainfall-runoff simulation and the initial state of the catchment. The simulation chain is based on i) a three state rainfall generator applied at the catchment scale, whose parameters are estimated for each month, and ii) the GR4J lumped rainfall-runoff model, whose parameters are calibrated with all available data. For each month, a large number of stochastic realizations of the continuous rainfall generator for the next 12 months are used as inputs for the GR4J model in order to obtain a large number of stochastic realizations for the next 12 months. This process is then repeated for 50 different initial states of the soil moisture reservoir of the GR4J model and for all the catchments. Thus, 50 different conditional flood frequency curves are obtained for the 50 different initial catchment states. We will present an analysis of the link between the catchment states, the period of the year and the strength of the conditioning of the flood frequency compared to the unconditional flood frequency. A large sample of diverse catchments in France will be used.

  5. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  6. High-altitude and high-latitude O+ and H+ outflows: the effect of finite electromagnetic turbulence wavelength

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2007-11-01

    Full Text Available The energization of ions, due to interaction with electromagnetic turbulence (i.e. wave-particle interactions, has an important influence on H+ and O+ ions outflows in the polar region. The effects of altitude and velocity dependent wave-particle interaction on H+ and O+ ions outflows in the auroral region were investigated by using Monte Carlo method. The Monte Carlo simulation included the effects of altitude and velocity dependent wave-particle interaction, gravity, polarization electrostatic field, and divergence of auroral geomagnetic field within the simulation tube (1.2–10 earth radii, RE. As the ions are heated due to wave-particle interactions (i.e. ion interactions with electromagnetic turbulence and move to higher altitudes, the ion gyroradius ρi may become comparable to the electromagnetic turbulence wavelength λ⊥ and consequently (k⊥ρi becomes larger than unity. This turns the heating rate to be negligible and the motion of the ions is described by using Liouville theorem. The main conclusions are as follows: (1 the formation of H+ and O+ conics at lower altitudes and for all values of λ⊥; (2 O+ toroids appear at 3.72 RE, 2.76 RE and 2 RE, for λ⊥=100, 10, and 1 km, respectively; however, H+ toroids appear at 6.6 RE, 4.4 RE and 3 RE, for λ⊥=100, 10, and 1 km, respectively; and H+ and O+ ion toroids did not appear for the case λ⊥ goes to infinity, i.e. when the effect of velocity dependent wave-particle interaction was not included; (3 As λ⊥ decreases, H+ and O+ ion drift velocity decreases, H+ and O+ ion density increases, H+ and O+ ion perpendicular temperature and H+ and O+ ion parallel temperature decrease; (4 Finally, including the effect of finite electromagnetic turbulence wavelength, i.e. the effect of velocity dependent diffusion coefficient and consequently, the velocity dependent wave-particle interactions produce realistic H+ and O+ ion temperatures and H+ and O+ toroids, and this is, qualitatively

  7. Exercise capacity and selected physiological factors by ancestry and residential altitude

    DEFF Research Database (Denmark)

    Bianba; Berntsen, Sveinung; Andersen, Lars Bo

    2014-01-01

    AIM: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity...... Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300 m when measured at their respective residential altitudes. Such altitude- or ancestry...... (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea...

  8. Effect of Wegener-Bergeron-Findeisen Process to Black Carbon Simulation

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; He, Cenlin; Wang, Xin; Huang, Jianping

    2016-04-01

    We systematically investigated the effect of Wegener-Bergeron-Findeisen (WBF) process to black carbon (BC) simulation by a global 3D chemical transport model GEOS-Chem constrained by measurements of BC scavenging efficiencies, concentration in air, deposition fluxes, concentration in snow and washout ratios. Including effect of WBF process reduces the annual mean BC scavenging efficiencies (the ratio of BC in cloud droplets to total BC) at all altitudes by 43-76% in the Arctic. For mid latitude BC scavenging efficiencies decrease by 8-22%, 23-39%, and 41-50% in lower (0-2 km), middle (2-5 km) and upper troposphere (5-10 km), respectively. Simulated BC in air in the Arctic and at mid altitude (˜4 km) in mid latitude increases by ˜40%, and the discrepancy reduces from -65% to -30%. Simulated median BC in snow decreases from 25.7 to 22.4 ng g-1, by 15% in mid latitude and increases from 8.7 to 11.0 ng g-1, by 26% in the Arctic and the comparison with observations improves. The model overestimates washout ratios (ratio of BC in fresh snow/rain to BC in surface air) at most of the sites by up to a factor of 165. With effect of WBF process included, the discrepancy decreases to a factor of 72. The simulated BC burden increases from 0.22 to 0.35 mg m-2 yr-1 when effect of WBF process is included, partly explains the scaled up of BC burden in Bond et al., 2013. Moreover, burden above 5 km increases from 22% to 27% when WBF process is included, indicating a higher forcing efficiency. We also found that BC simulation is insensitive to the temperature criteria between mixed phase clouds and ice clouds. The simulated BC burden is the same when the temperature is set as -15° C and -25° C. This study also suggests that more observations are needed to better distinguish riming dominated and WBF dominated conditions and better parameterize BC scavenging efficiency under the two conditions.

  9. Application of a sensory-instrumental tool to study apple texture characteristics shaped by altitude and time of harvest.

    Science.gov (United States)

    Charles, Mathilde; Corollaro, Maria Laura; Manfrini, Luigi; Endrizzi, Isabella; Aprea, Eugenio; Zanella, Angelo; Corelli Grappadelli, Luca; Gasperi, Flavia

    2018-02-01

    Texture is important in the preferences of apple consumers. Of the pre-harvest factors affecting fruit quality and especially texture, altitude and subsequent climatic conditions are crucial, determining differences in the physiological mechanisms of fruit growth, ripening stage and chemical composition, as demonstrated by several studies. This work applies a detailed sensory-instrumental protocol developed in a previous paper to investigate the impact of altitude, time of harvest and their cross-effect on sensory characteristics of apple, with a focus on texture. Sensory differences were found in relation to altitude, although the profile results were mainly affected by the time of harvest. Fruit from lower altitude was described as juicier, crunchier and sweeter than samples from higher altitude, which were floury, sourer and more astringent. Texture performance, soluble solids content and titratable acidity corroborated this sensory description. Moreover, anatomical data showed that fruit from lower altitude had a larger volume, a higher number of cells and a higher percentage of intercellular spaces. We demonstrated that differences between fruit from various altitudes can be perceived through human senses, and that the proposed sensory-instrumental tool can be used to describe such differences. This study brings more understanding about the impact of altitude and time of harvest on apple sensory properties. This work could support apple producers, from semi-mountainous regions (Alps, Tyrol, etc.), in advertising and valorising their products with their specific characteristics in a more efficient manner. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  11. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.

    Science.gov (United States)

    Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent

    2017-09-01

    head repositioning accuracy in healthy subjects. Discussion/impact/recommendations: Postural control mechanisms are very sensitive to acute mild hypoxia and have been recently investigated. Acute hypobaric hypoxia at moderate and high altitudes has a negative effect on postural control. However, which part of the postural system is affected has not yet been determined and proprioception has been little investigated. The results from this study highlighted that in healthy subjects with good cervical spine proprioception at baseline, artificial hypoxia induced by the simulation of moderate altitude does not increase head repositioning error. Further studies should investigate cervical joint position sense in real aircraft, at different altitudes and in a group of experienced helicopter pilots, to evaluate the impact of moderate altitude on cervical joint position sense in a different population. Conducting the same experiments in a population of pilots and in real flight conditions should be considered, since various factors such as the level of proprioception, head posture, type of movement, head load, muscle fatigue, flight altitude, and the length of flight time might influence the kinesthetic sensitivity. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  12. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  13. Simulation of hydrocephalus condition in infant head

    Science.gov (United States)

    Wijayanti, Erna; Arif, Idam

    2014-03-01

    Hydrocephalus is a condition of an excessive of cerebrospinal fluid in brain. In this paper, we try to simulate the behavior of hydrocephalus conditions in infant head by using a hydro-elastic model which is combined with orthotropic elastic skull and with the addition of suture that divide the skull into two lobes. The model then gives predictions for the case of stenosis aqueduct by varying the cerebral aqueduct diameter, time constant and brain elastic modulus. The hydrocephalus condition which is shown by the significant value of ventricle displacement, as the result shows, is occurred when the aqueduct is as resistant as brain parenchyma for the flow of cerebrospinal fluid. The decrement of brain elastic modulus causes brain parenchyma displacement value approach ventricle displacement value. The smaller of time constant value causes the smaller value of ventricle displacement.

  14. Protein patterns of black fungi under simulated Mars-like conditions.

    Science.gov (United States)

    Zakharova, Kristina; Marzban, Gorji; de Vera, Jean-Pierre; Lorek, Andreas; Sterflinger, Katja

    2014-05-29

    Two species of microcolonial fungi - Cryomyces antarcticus and Knufia perforans - and a species of black yeasts-Exophiala jeanselmei - were exposed to thermo-physical Mars-like conditions in the simulation chamber of the German Aerospace Center. In this study the alterations at the protein expression level from various fungi species under Mars-like conditions were analyzed for the first time using 2D gel electrophoresis. Despite of the expectations, the fungi did not express any additional proteins under Mars simulation that could be interpreted as stress induced HSPs. However, up-regulation of some proteins and significant decreasing of protein number were detected within the first 24 hours of the treatment. After 4 and 7 days of the experiment protein spot number was increased again and the protein patterns resemble the protein patterns of biomass from normal conditions. It indicates the recovery of the metabolic activity under Martian environmental conditions after one week of exposure.

  15. Numerical simulation of the groundwater-flow system of the Kitsap Peninsula, west-central Washington

    Science.gov (United States)

    Frans, Lonna M.; Olsen, Theresa D.

    2016-05-05

    ,905 acre-ft/yr (7 percent of total simulated inflow). Simulated outflow from the model primarily was through discharge to streams, lakes, springs, seeps, and Puget Sound (594,595 acre-ft/yr; 95 percent of total simulated outflow excluding changes in storage) and through withdrawals from wells (30,761 acre-ft/yr; 5 percent of total simulated outflow excluding changes in storage).Six scenarios were formulated with input from project stakeholders and were simulated using the calibrated model to provide representative examples of how the model could be used to evaluate the effects on water levels and stream baseflows of potential changes in groundwater withdrawals, in consumptive use, and in recharge. These included simulations of a steady-state system, no-pumping and return flows, 15-percent increase in current withdrawals in all wells, 80-percent decrease in outdoor water to simulate effects of conservation efforts, 15-percent decrease in recharge from precipitation to simulate a drought, and particle tracking to determine flow paths.Changes in water-level altitudes and baseflow amounts vary depending on the stress applied to the system in these various scenarios. Reducing recharge by 15 percent between 2005 and 2012 had the largest effect, with water-level altitudes declining throughout the model domain and baseflow amounts decreasing by as much as 18 percent compared to baseline conditions. Changes in pumping volumes had a smaller effect on the model. Removing all pumping and resulting return flows caused increased water-level altitudes in many areas and increased baseflow amounts of between 1 and 3 percent.

  16. Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

    Science.gov (United States)

    Arias, S.; Montlaur, A.

    2018-03-01

    In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

  17. Does 'altitude training' increase exercise performance in elite athletes?

    Science.gov (United States)

    Lundby, Carsten; Robach, Paul

    2016-07-01

    What is the topic of this review? The aim is to evaluate the effectiveness of various altitude training strategies as investigated within the last few years. What advances does it highlight? Based on the available literature, the foundation to recommend altitude training to athletes is weak. Athletes may use one of the various altitude training strategies to improve exercise performance. The scientific support for such strategies is, however, not as sound as one would perhaps imagine. The question addressed in this review is whether altitude training should be recommended to elite athletes or not. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  18. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of oxygen supplementation on broiler eggs in a hatchery at high altitude on the growth performance and ascites syndrome of broilers reared at low altitude. The treatment groups were low altitude with no oxygen supplemented in the hatchery (LA-NOX); high altitude with ...

  19. Simulating reservoir lithologies by an actively conditioned Markov chain model

    Science.gov (United States)

    Feng, Runhai; Luthi, Stefan M.; Gisolf, Dries

    2018-06-01

    The coupled Markov chain model can be used to simulate reservoir lithologies between wells, by conditioning them on the observed data in the cored wells. However, with this method, only the state at the same depth as the current cell is going to be used for conditioning, which may be a problem if the geological layers are dipping. This will cause the simulated lithological layers to be broken or to become discontinuous across the reservoir. In order to address this problem, an actively conditioned process is proposed here, in which a tolerance angle is predefined. The states contained in the region constrained by the tolerance angle will be employed for conditioning in the horizontal chain first, after which a coupling concept with the vertical chain is implemented. In order to use the same horizontal transition matrix for different future states, the tolerance angle has to be small. This allows the method to work in reservoirs without complex structures caused by depositional processes or tectonic deformations. Directional artefacts in the modeling process are avoided through a careful choice of the simulation path. The tolerance angle and dipping direction of the strata can be obtained from a correlation between wells, or from seismic data, which are available in most hydrocarbon reservoirs, either by interpretation or by inversion that can also assist the construction of a horizontal probability matrix.

  20. Transient analysis of multifailure conditions by using PWR plant simulator

    International Nuclear Information System (INIS)

    Morisaki, Hidetoshi; Yokobayashi, Masao.

    1984-11-01

    This report describes results of the analysis of abnormal transients caused by multifailures using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at the end of life. Various malfunctions to simulate abnormal conditions caused by equipment failures are provided. In this report, features of abnormal transients caused by concurrence of malfunctions are discussed. The abnormal conditions studied are leak of primary coolant, loss of charging and feedwater flows, and control systems failure. From the results, it was observed that transient responses caused by some of the malfunctions are almost same as the addition of behaviors caused by each single malfunction. Therefore, it can be said that kinds of malfunctions which are concurrent may be estimated from transient characteristics of each single malfunction. (author)

  1. ANALYSIS OF OPERATING INSTRUMENT LANDING SYSTEM ACCURACY UNDER SIMULATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jerzy MERKISZ

    2017-03-01

    Full Text Available The instrument landing system (ILS is the most popular landing aid in the world. It is a distance-angled support system for landing in reduced visibility, while its task is the safe conduct of the aircraft from the prescribed course landing on the approach path. The aim of this study is to analyse the correctness of the ILS in simulated conditions. The study was conducted using a CKAS MotionSim5 flight simulator in the Simulation Research Laboratory of the Institute of Combustion Engines and Transport at Poznan University of Technology. With the advancement of technical equipment, it was possible to check the operation of the system in various weather conditions. Studies have shown that the impact of fog, rain and snow on the correct operation of the system is marginal. Significant influence has been observed, however, during landing in strong winds.

  2. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  3. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  4. specsim: A Fortran-77 program for conditional spectral simulation in 3D

    Science.gov (United States)

    Yao, Tingting

    1998-12-01

    A Fortran 77 program, specsim, is presented for conditional spectral simulation in 3D domains. The traditional Fourier integral method allows generating random fields with a given covariance spectrum. Conditioning to local data is achieved by an iterative identification of the conditional phase information. A flowchart of the program is given to illustrate the implementation procedures of the program. A 3D case study is presented to demonstrate application of the program. A comparison with the traditional sequential Gaussian simulation algorithm emphasizes the advantages and drawbacks of the proposed algorithm.

  5. Human nutrition in cold and high terrestrial altitudes

    Science.gov (United States)

    Srivastava, K. K.; Kumar, Ratan

    1992-03-01

    The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.

  6. Numerical simulation of controlled directional solidification under microgravity conditions

    Science.gov (United States)

    Holl, S.; Roos, D.; Wein, J.

    The computer-assisted simulation of solidification processes influenced by gravity has gained increased importance during the previous years regarding ground-based as well as microgravity research. Depending on the specific needs of the investigator, the simulation model ideally covers a broad spectrum of applications. These primarily include the optimization of furnace design in interaction with selected process parameters to meet the desired crystallization conditions. Different approaches concerning the complexity of the simulation models as well as their dedicated applications will be discussed in this paper. Special emphasis will be put on the potential of software tools to increase the scientific quality and cost-efficiency of microgravity experimentation. The results gained so far in the context of TEXUS, FSLP, D-1 and D-2 (preparatory program) experiments, highlighting their simulation-supported preparation and evaluation will be discussed. An outlook will then be given on the possibilities to enhance the efficiency of pre-industrial research in the Columbus era through the incorporation of suitable simulation methods and tools.

  7. Using Virtual Reality in K-12 Education: A Simulation of Shooting Bottle Rockets for Distance

    Directory of Open Access Journals (Sweden)

    Charles Nippert

    2012-10-01

    Full Text Available Typically, it is often more challenging to shoot bottle rockets for distance instead of shooting them straight up and measuring altitude, as is often done.Using a device made from pipe and wood to launch bottle rockets and control the launch angle creates a much more interesting problem for students who are attempting to optimize launch conditions.Plans are presented for a launcher that allow students to adjust the launch angle. To help embellish the exercise, we supplement the bottle rocket with a model using virtual reality and a photorealistic simulation of the launch that allows the students to appreciate the optimization problems associated with water and air pressure and launch angle. Our usage data indicates that students easily adapt to the virtual reality simulation and use our simulation for intuitive experiments on their own to optimize launch conditions.

  8. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  9. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  10. Accuracy and Optimal Altitude for Physical Habitat Assessment (PHA of Stream Environments Using Unmanned Aerial Vehicles (UAV

    Directory of Open Access Journals (Sweden)

    Ângela Maria Klein Hentz

    2018-05-01

    Full Text Available Physical Habitat Assessments (PHA are useful to characterize and monitor stream and river habitat conditions, but can be costly and time-consuming. Alternative methods for data collection are getting attention, such as Unmanned Aerial Vehicles (UAV. The objective of this work was to evaluate the accuracy of UAV-based remote sensing techniques relative to ground-based PHA measurements, and to determine the influence of flight altitude on those accuracies. A UAV quadcopter equipped with an RGB camera was flown at the altitudes of 30.5 m, 61.0 m, 91.5 m and 122.0 m, and the metrics wetted width (Ww, bankfull width (Wbf and distance to water (Dw were compared to field PHA. The UAV-PHA method generated similar values to observed PHA values, but underestimated distance to water, and overestimated wetted width. Bankfull width provided the largest RMSE (25–28%. No systematic error patterns were observed considering the different flight altitudes, and results indicated that all flight altitudes investigated can be reliably used for PHA measurements. However, UAV flight at 61 m provided the most accurate results (CI = 0.05 considering all metrics. All UAV parameters over all altitudes showed significant correlation with observed PHA data, validating the use of UAV-based remote sensing for PHA.

  11. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  12. Study of the Floristic Biodiversity Available on Permanent Pastures Located at Different Altitude Levels

    Directory of Open Access Journals (Sweden)

    Dorin Rechiţean

    2011-10-01

    Full Text Available The researches carried out between the altitude levels of 236 and 1300 m, in 13 localities from Banat Mountains, proved the influence exerted by stationary natural conditions on the botanic diversity of the vegetal cover. From one vegetal association to another, the total number of botanic species ranged between 9 and 21; the biggest number of species was recorded between 236 – 630 m altitude, and the smallest one between 462 – 650 m. The mean coverage degree of these species was 42.69% in the species belonging to the Poaceae Family (with a variation of 30-70% and 12.85% in the species belonging to the Fabaceae Family (variation of 25-65%.

  13. Altitude variation of cosmic-ray neutrons

    International Nuclear Information System (INIS)

    Nakamura, T.; Uwamino, Y.; Ohkubo, T.; Hara, A.

    1987-01-01

    The altitude variation of the cosmic-ray neutron energy spectrum and the dose equivalent rate was measured at an average geomagnetic latitude of 24 degrees N by using the high-efficiency multi-sphere neutron spectrometer and neutron dose-equivalent counter developed by the authors. The data were obtained from a 2-h flight over Japan on 27 February 1985. The neutron energy spectra measured at sea level and at altitudes of 4880 m and at 11,280 m were compared with the calculated spectra of O'Brien and with other experimental spectra, and they are in moderately good agreement with them. The dose equivalent rate increases according to a quadratic curve up to about 6000 m and then increases linearly between 6000 m and 11,280 m. The dependence of dose equivalent rates at sea level and at an altitude of 12,500 m on geomagnetic latitude also is given by referring to other experimental results

  14. CFD simulation of a four-loop PWR at asymmetric operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian-Ping; Yan, Li-Ming; Li, Feng-Chen, E-mail: lifch@hit.edu.cn

    2016-04-15

    Highlights: • A CFD numerical simulation procedure was established for simulating RPV of VVER-1000. • The established CFD approach was validated by comparing with available data. • Thermal hydraulic characteristics under asymmetric operation condition were investigated. • Apparent influences of the shutdown loop on its neighboring loops were obtained. - Abstract: The pressurized water reactor (PWR) with multiple loops may have abnormal working conditions with coolant pumps out of running in some loops. In this paper, a computational fluid dynamics (CFD) numerical study of the four-loop VVER-1000 PWR pressure vessel model was presented. Numerical simulations of the thermohydrodynamic characteristics in the pressure vessel were carried out at different inlet conditions with four and three loops running, respectively. At normal stead-state condition (four-loop running), different parameters were obtained for the full fluid domain, including pressure losses across different parts, pressure, velocity and temperature distributions in the reactor pressure vessel (RPV) and mass flow distribution of the coolant at the inlet of reactor core. The obtained results for pressure losses matched with the experimental reference values of the VVER-1000 PWR at Tianwan nuclear power plant (NPP). For most fuel assemblies (FAs), the inlet flow rates presented a symmetrical distribution about the center under full-loop operation conditions, which accorded with the practical distribution. These results indicate that it is now possible to study the dynamic transition process between different asymmetric operation conditions in a multi-loop PWR using the established CFD method.

  15. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee.

    Science.gov (United States)

    Tolessa, Kassaye; D'heer, Jolien; Duchateau, Luc; Boeckx, Pascal

    2017-07-01

    Coffee quality is a key characteristic for the international market, comprising cup quality and chemical bean constituents. In Ethiopia, using total specialty cup scores, coffees are grouped into Q1 (specialty 1) ≥ 85 and Q2 (80-84.75). This classification results in market segmentation and higher prices. Although different studies have evaluated the effects of altitude and shade on bean quality, optimum shade levels along different altitudinal ranges are not clearly indicated. Information on effects of harvest periods on coffee quality is also scanty. The present study examined the influences of these factors and their interactions on Ethiopian coffee quality RESULTS: Coffee from high altitude with open or medium shade and early to middle harvest periods had a superior bean quality. These growing conditions also favoured the production of beans with lower caffeine. An increasing altitude, from mid to high, at approximately 400 m, decreased caffeine content by 10%. At high altitude, dense shade decreased Q1 coffee by 50%. Compared to late harvesting, early harvesting increased the percentage from 27% to 73%. At mid altitude, > 80% is Q2 coffee. Changes of quality scores driven by altitude, shade and harvest period are small, although they may induce dramatic switches in the fraction Q1 versus Q2 coffee. The latter affects both farmers' profits and competitiveness in international markets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. The effect of altitude hypoxia on glucose homeostasis in men

    DEFF Research Database (Denmark)

    Larsen, J J; Hansen, J M; Olsen, Niels Vidiendal

    1997-01-01

    1. Exposure to altitude hypoxia elicits changes in glucose homeostasis with increases in glucose and insulin concentrations within the first few days at altitude. Both increased and unchanged hepatic glucose production (HGP) have previously been reported in response to acute altitude hypoxia...... (noradrenaline and adrenaline) and day 7 (adrenaline), but not at sea level. 4. In conclusion, insulin action decreases markedly in response to two days of altitude hypoxia, but improves with more prolonged exposure. HGP is always unchanged. The changes in insulin action may in part be explained by the changes...

  17. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  18. Flow behavior of Daqing waxy crude oil under simulated pipelining conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jianlin [China University of Petroleum, Beijing (China); PetroChina Company Ltd. (China); Zhang, Jinjun; Li, Hongying; Zhang, Fan; Yang, Xiaojing [China University of Petroleum, Beijing (China)

    2005-07-01

    Daqing oil field is the largest oil field in China. This crude oil is a typical waxy crude oil, with a wax content of 26% and a gel point of 32 deg C. Flow behaviors of waxy crude oils at temperatures near the gel point/pour point are vital for both pipeline hydraulic calculation and evaluation on restartability of a shutdown pipeline. In this study, experimental simulation was conducted by using a stirred vessel with the energy dissipation of viscous flow as the shear simulation parameter. The viscosity, gel point, yield stress and thixotropy were measured by sampling from the simulation vessel. The viscosity under simulated pipelining condition was found less than that measured under quiescent cooling condition. The gel point decreased with decreasing temperature of sampling, i.e. the end temperature of the dynamic cooling process. At sampling temperatures above 35 deg C, that is 3 deg C above the gel point measured under quiescent cooling condition, both the yield stresses and the thixotropic parameters showed little dependence on the shear history. However, at lower sampling temperatures, remarkable shear history dependence was found. Empirical correlations were developed between the yield stress and the sampling temperature as well as the measurement temperature, and between the thixotropic parameters and the sampling temperature. (author)

  19. Glaciers and hydrological changes in the Tien Shan: simulation and prediction

    International Nuclear Information System (INIS)

    Aizen, V B; Aizen, E M; Kuzmichonok, V A

    2007-01-01

    In this study, we estimated the current glacier state and forecast the potential impact of global and regional climate change on the glaciers and glacier runoff in the Tien Shan. General (G) and detailed (D) simulations were developed based on assessment of the Tien Shan glacier recession between 1943 and 2003 using an iterative stepwise increase in the equilibrium line altitude of 20 m. The G simulation was developed for 2777 grids each of which covered over 1000 km 2 of glacier surface and D for the 15 953 Tien Shan glaciers. Both simulations employed glacier morphometric characteristics derived from Digital Elevation Model based on remote sensing data, high resolution maps and in situ GPS validation. Simulated changes in glacier area demonstrated that a possible increase in air temperature of 1 deg. C at E-barLA must be compensated by a 100 mm increase in precipitation at the same altitude if Tien Shan glaciers are to be maintained in their current state. An increase in mean air temperature of 4 deg. C and precipitation of 1.1 times the current level could increase E-barLA by 570 m during the 21st century. Under these conditions, the number of glaciers, glacier covered area, glacier volume, and glacier runoff are predicted to be 94%, 69%, 75%, and 75% of current values. The maximum glacier runoff may reach as much as 1.25 times current levels while the minimum will likely equal zero

  20. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    Science.gov (United States)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  1. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  2. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  3. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  4. DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Hao

    2015-06-01

    Full Text Available The traditional MUltiple SIgnal Classification (MUSIC algorithm requires significant computational effort and can not be employed for the Direction Of Arrival (DOA estimation of targets in a low-altitude multipath environment. As such, a novel MUSIC approach is proposed on the basis of the algorithm of Adaptive Step Glowworm Swarm Optimization (ASGSO. The virtual spatial smoothing of the matrix formed by each snapshot is used to realize the decorrelation of the multipath signal and the establishment of a fullorder correlation matrix. ASGSO optimizes the function and estimates the elevation of the target. The simulation results suggest that the proposed method can overcome the low altitude multipath effect and estimate the DOA of target readily and precisely without radar effective aperture loss.

  5. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  6. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  7. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  8. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  9. Chernobyl radioactivity and high altitude air-particulate monitoring at Islamabad

    International Nuclear Information System (INIS)

    Bhatti, M.S.; Ihsanullah; Shafiq, M.; Perveen, N.; Orfi, S.D.

    1987-11-01

    High altitude sampling of air particulates for radioactivity monitoring was conducted at Islamabad after the CHERNOBYL accident. Smears from aeroplanes flying at varying altitudes were collected and analysed for fresh fission products mainly gamma emitters e.g. Ru-103 and Cs-137 etc. The maximum radioactivity observed was of the order of 15Bq/sample for Ru-103 and 9Bq/sample for Cs-137 respectively. The study was purely qualitative in nature indicated the presence of fresh fission radioactivity at high altitudes over Islamabad. For quantitative measurements at high altitudes sophisticated instrumentation/procedure needs to be adopted. (author)

  10. Atmospheric electron flux at airplane altitude

    International Nuclear Information System (INIS)

    Enomoto, R.; Chiba, J.; Ogawa, K.; Sumiyoshi, T.; Takasaki, F.; Kifune, T.; Matsubara, Y.; Nishimura, J.

    1991-01-01

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made

  11. Corrosion of pure OFHC-copper in simulated repository conditions

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1990-04-01

    The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time

  12. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    Science.gov (United States)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15°C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that

  13. Increase of cerebral blood flow at high altitude

    DEFF Research Database (Denmark)

    Lassen, N A

    1992-01-01

    but rather somewhat sharpened over five days at almost 4000 meters of altitude. This, along with other evidence, shows that CBF does not in itself adapt to chronic hypoxia. Nevertheless, a decrease in CBF is seen over days at constant altitude primarily due to increase in the hematocrit. The cerebral...

  14. Investigation of the I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. V - Operational Characteristics. 5; Operational Characteristics

    Science.gov (United States)

    Golladay, Richard L.; Gendler, Stanley L.

    1947-01-01

    held constant by the Woodward governor and the Edwards regulator during simulated dives and climbs at constant throttle position. The bearing cooling system was satisfactory at all altitudes and airspeeds. The engines operated without serious failure, although the exhaust cone, the tail pipe, and the airplane fuselage were damaged during altitude starts.

  15. Quantification of discreteness effects in cosmological N-body simulations: Initial conditions

    International Nuclear Information System (INIS)

    Joyce, M.; Marcos, B.

    2007-01-01

    The relation between the results of cosmological N-body simulations, and the continuum theoretical models they simulate, is currently not understood in a way which allows a quantification of N dependent effects. In this first of a series of papers on this issue, we consider the quantification of such effects in the initial conditions of such simulations. A general formalism developed in [A. Gabrielli, Phys. Rev. E 70, 066131 (2004).] allows us to write down an exact expression for the power spectrum of the point distributions generated by the standard algorithm for generating such initial conditions. Expanded perturbatively in the amplitude of the input (i.e. theoretical, continuum) power spectrum, we obtain at linear order the input power spectrum, plus two terms which arise from discreteness and contribute at large wave numbers. For cosmological type power spectra, one obtains as expected, the input spectrum for wave numbers k smaller than that characteristic of the discreteness. The comparison of real space correlation properties is more subtle because the discreteness corrections are not as strongly localized in real space. For cosmological type spectra the theoretical mass variance in spheres and two-point correlation function are well approximated above a finite distance. For typical initial amplitudes this distance is a few times the interparticle distance, but it diverges as this amplitude (or, equivalently, the initial redshift of the cosmological simulation) goes to zero, at fixed particle density. We discuss briefly the physical significance of these discreteness terms in the initial conditions, in particular, with respect to the definition of the continuum limit of N-body simulations

  16. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  17. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion

    DEFF Research Database (Denmark)

    Sawka, M N; Young, Jette Feveile; Rock, P B

    1996-01-01

    blood oxygen content alters erythropoietin responses during altitude acclimatization, and 4) mechanisms responsible for plasma loss at altitude. Sixteen healthy men had a series of hematologic measurements made at sea level, on the first and ninth days of altitude (4,300 m) residence, and after...

  18. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  19. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst

    Science.gov (United States)

    Robertson, D. K.; Mathias, D. L.

    2017-03-01

    Simulations of asteroid airburst are being conducted to obtain best estimates of damage areas and assess sensitivity to variables for asteroid characterization and mitigation efforts. The simulations presented here employed the ALE3D hydrocode to examine the breakup and energy deposition of asteroids entering the Earth's atmosphere, using the Chelyabinsk meteor as a test case. This paper examines the effect of increasingly complex material models on the energy deposition profile. Modeling the meteor as a rock having a single strength can reproduce airburst altitude and energy deposition reasonably well but is not representative of real rock masses (large bodies of material). Accounting for a yield curve that includes different tensile, shear, and compressive strengths shows that shear strength determines the burst altitude. Including yield curves and compaction of porous spaces in the material changes the detailed mechanics of the breakup but only has a limited effect on the burst altitude and energy deposition. Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the material strength. Weak asteroids, even though they structurally fail at high altitude, require the increased pressure at lower altitude to disrupt and disperse the rubble. As a result, a wide range of weaker asteroid strengths produce peak energy deposition at a similar altitude.

  20. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models

  1. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    Science.gov (United States)

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  2. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  3. Crew microbiology (DTO 71-19). [Skylab altitude test effect on human microbiological burden

    Science.gov (United States)

    Wooley, B. C.; Mcqueen, J. L.; Graves, R. C.; Mieszkue, B. J.; Taylor, G. R.

    1973-01-01

    States of microbial imbalance as a result of human altitude chamber confinement occurred, for the most part, only in those genera and species of bacteria, yeast, and fungi which are classified as transients and are not part of the true indigenous flora of the crewmembers. Inasmuch as no crew illness events occurred and only subtle changes in the indigenous flora were noted, it appears that confinement of 56-days in a Skylab simulated environment does not mediate toward shifts in bacterial populations which have obvious clinical significance.

  4. Mobile platform of altitude measurement based on a smartphone

    Science.gov (United States)

    Roszkowski, Paweł; Kowalczyk, Marcin

    2016-09-01

    The article presents a low cost, fully - functional meter of altitude and pressure changes in a form of mobile application controlled by Android OS (operating system). The measurements are possible due to pressure sensor inserted in majority of latest modern mobile phones, which are known as smartphones. Using their computing capabilities and other equipment components like GPS receiver in connection with data from the sensor enabled authors to create a sophisticated handheld measuring platform with many unique features. One of them is a drawing altitude maps mode in which user can create maps of altitude changes just by moving around examined area. Another one is a convenient mode for altitude measurement. It is also extended with analysis tools which provide a possibility to compare measured values by displaying the data in a form of plots. The platform consists of external backup server, where the user can secure all gathered data. Moreover, the results of measurement's accuracy examination process which was executed after building the solution were shown. At the end, the realized meter of altitude was compared to other popular altimeters, which are available on the market currently.

  5. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps

    Science.gov (United States)

    Verfaillie, Deborah; Lafaysse, Matthieu; Déqué, Michel; Eckert, Nicolas; Lejeune, Yves; Morin, Samuel

    2018-04-01

    This article investigates the climatic response of a series of indicators for characterizing annual snow conditions and corresponding meteorological drivers at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps. Past and future changes were computed based on reanalysis and observations from 1958 to 2016, and using CMIP5-EURO-CORDEX GCM-RCM pairs spanning historical (1950-2005) and RCP2.6 (4), RCP4.5 and RCP8.5 (13 each) future scenarios (2006-2100). The adjusted climate model runs were used to drive the multiphysics ensemble configuration of the detailed snowpack model Crocus. Uncertainty arising from physical modeling of snow accounts for 20 % typically, although the multiphysics is likely to have a much smaller impact on trends. Ensembles of climate projections are rather similar until the middle of the 21st century, and all show a continuation of the ongoing reduction in average snow conditions, and sustained interannual variability. The impact of the RCPs becomes significant for the second half of the 21st century, with overall stable conditions with RCP2.6, and continued degradation of snow conditions for RCP4.5 and 8.5, the latter leading to more frequent ephemeral snow conditions. Changes in local meteorological and snow conditions show significant correlation with global temperature changes. Global temperature levels 1.5 and 2 °C above preindustrial levels correspond to a 25 and 32 % reduction, respectively, of winter mean snow depth with respect to the reference period 1986-2005. Larger reduction rates are expected for global temperature levels exceeding 2 °C. The method can address other geographical areas and sectorial indicators, in the field of water resources, mountain tourism or natural hazards.

  6. Snow chemistry of high altitude glaciers in the French Alps

    OpenAIRE

    MAUPETIT, FRANÇOIS; DELMAS, ROBERT J.

    2011-01-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980–3540 m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (∼ May), before the onset of late spring–summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, ...

  7. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  8. Effect of altitude on physiological performance: a statistical analysis using results of international football games.

    Science.gov (United States)

    McSharry, Patrick E

    2007-12-22

    To assess the effect of altitude on match results and physiological performance of a large and diverse population of professional athletes. Statistical analysis of international football (soccer) scores and results. FIFA extensive database of 1460 football matches in 10 countries spanning over 100 years. Altitude had a significant (Pnegative impact on physiological performance as revealed through the overall underperformance of low altitude teams when playing against high altitude teams in South America. High altitude teams score more and concede fewer goals with increasing altitude difference. Each additional 1000 m of altitude difference increases the goal difference by about half of a goal. The probability of the home team winning for two teams from the same altitude is 0.537, whereas this rises to 0.825 for a home team with an altitude difference of 3695 m (such as Bolivia v Brazil) and falls to 0.213 when the altitude difference is -3695 m (such as Brazil v Bolivia). Altitude provides a significant advantage for high altitude teams when playing international football games at both low and high altitudes. Lowland teams are unable to acclimatise to high altitude, reducing physiological performance. As physiological performance does not protect against the effect of altitude, better predictors of individual susceptibility to altitude illness would facilitate team selection.

  9. Research progress on high altitude retinopathy and application of Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hai-Xiang Huang

    2014-11-01

    Full Text Available High altitude retinopathy(HARrefers to the body which can't adapt to the hypobaric hypoxia environment at high altitude leading to retinal diseases, which typically manifested as retinal hemorrhages, optic disc edema and cotton wool spots. With the development of high altitude medicine, HAR become a hot topic of eye research in recent years. New researches show a significantly higher incidence of HAR, and HAR has a close contact with acute mountain sickness, high altitude cerebral edema and high altitude pulmonary edema. A further study in pathogenesis and prevention measures of HAR will promote the prevention of altitude sickness. Traditional Chinese Medicine has achieved good effects in the prevention of altitude sickness, but the effect and mechanism of herbs on HAR has not been reported. Through read and summarize the relevant literatures and reports, the author will give an overview of the research advances on HAR's pathogenesis and application of Traditional Chinese Medicine.

  10. Lifting simulation of an offshore supply vessel considering various operating conditions

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Jeong

    2016-06-01

    Full Text Available Recently, an offshore support vessel is being widely used to install an offshore structure such as a subsea equipment which is laid on its deck. The lifting operation which is one of the installation operations includes lifting off, lifting in the air, splash zone crossing, deep submerging, and finally landing of the structure with an offshore support vessel crane. There are some major considerations during this operation. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and hoisting (or lowering speed are bad, the excess of tension of wire ropes of the crane and the collision between the offshore support vessel and the structure can be occurred due to the relative motion between them. To solve this problem, this study performs the lifting simulation while the offshore support vessel installs the structure. The simulation includes the calculation of dynamic responses of the offshore support vessel and the equipment, including the wire tension and the collision detection. To check the applicability of the simulation, it is applied to some lifting steps by varying operating conditions. As a result, it is confirmed that the conditions affect the operability of those steps.

  11. Quadrant to Measure the Sun's Altitude

    Science.gov (United States)

    Windsor, A Morgan, Jr.

    2013-01-01

    The changing altitude of the Sun (either over the course of a day or longer periods) is a phenomenon that students do not normally appreciate. However, the altitude of the Sun affects many topics in disciplines as diverse as astronomy, meteorology, navigation, or horology, such as the basis for seasons, determination of latitude and longitude, or…

  12. Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation

    OpenAIRE

    Gonzales, Gustavo F.; Jefe de la Unidad de Reproducción, Instituto de Investigaciones de la Altura y Jefe del Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Doctor en Medicina y Doctor en Ciencias. Especialista en Endocrinología.

    2011-01-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulti...

  13. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    Science.gov (United States)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  14. Experimental verification of altitude effect over thermal power in an atmospheric burner

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Agudelo, John Ramiro; Cortes, Jaime

    1992-01-01

    Colombian national massive gasification plan is carried out in a variety of geographic altitudes ranging from 0 to 2.600 meter. The biggest market is located in the Andinan Region, which is characterized by great urban centres located at high altitudes. Commercial, domestic and industrial applications are characterized by the utilization of appliances using atmospheric burners. The thermal power of these burners is affected by altitude. This paper shows experimental results of thermal power reduction in atmospheric burners due to altitude changes. It was found that thermal power is reduced by 1,5% each 304 meters of altitude

  15. Hemorrhages and hemostasis in guinea-pigs exposed to irradiation at high altitude

    International Nuclear Information System (INIS)

    Tartakovskij, V.N.; Daniyarov, S.B.

    1988-01-01

    Hemorrhagic intensity, hemostasis and blood vessel wall resistance to mechanical effects were studied in guinea-pigs exposed to whole-body irradiation (3.0 Gy). The animals were irradiated at low altitude (760 m above sea level) and at high altitude (3200 m above sea level) after 1 and 31 days of adaptation. It was demonstrated that hemorrhagic intensity in both groups of guinea-pigs irradiated at high altitude was significantly reduced in comparison with that at low altitude. The decrease of radiation-induced hemorrhages at high altitude is associated with less severe changes in thrombopoiesis, blood vessel wall and blood coagulation

  16. Initial Study of An Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Science.gov (United States)

    Xue, Min; Rios, Joseph

    2017-01-01

    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.

  17. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    Science.gov (United States)

    Litt, Jonathan S.; Liu, Yuan; Sowers, Thomas S.; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  18. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae, a lizard dwell at altitudes higher than any other living lizards in the world.

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    Full Text Available Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae, which inhabits high altitudes (4500 m and Phrynocephalusprzewalskii (Lacertilia: Agamidae, which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD and the HOAD/citrate synthase (CS ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  19. Acúmulo de nutrientes em frutos de cafeeiro em duas altitudes de cultivo: micronutrientes Nutrient accumulation in coffee fruits at two at two plantation altitudes: micronutrients

    Directory of Open Access Journals (Sweden)

    Bruno Galvêas Laviola

    2007-12-01

    Full Text Available Dado à importância de se conhecer a exportação de micronutrientes pelos frutos, bem como, as épocas em que são mais demandados pelo cafeeiro, estudou-se o acúmulo de B, Cu, Fe, Mn e Zn em frutos de Coffea arabica L da antese à maturação, em lavouras estabelecidas em duas altitudes. Estudou-se também a variação no teor desses elementos. Estudou-se o acúmulo de B, Cu, Fe, Mn e Zn em frutos de cafeeiro arábico da antese à maturação em duas altitudes, bem como a variação na concentração dos elementos em folhas dos ramos produtivos. O experimento foi constituído da variedade de cafeeiro (Coffea arabica L. Catuaí IAC 44 cultivada a 720 e 950 m de altitude, no município de Martins Soares-MG. O delineamento experimental foi inteiramente ao acaso, com três repetições, usando um esquema de parcela subdividida no tempo. O aumento da altitude influenciou o ciclo reprodutivo do cafeeiro, demandando maior tempo para formação dos frutos. O consumo de nutrientes pelos frutos, assim como o enchimento de grãos, foi mais crítico em condições de menor altitude, já que a planta necessitou completar esses processos em menor espaço de tempo. No estádio de expansão rápida, a percentagem de acúmulo de micronutrientes foi maior na altitude de 720 m, comparada à de 950 m. De modo geral, a altitude influenciou a variação das concentrações foliares de nutrientes, apesar de não se ter observado resposta-padrão da concentração foliar ao aumento da altitude. Conclui-se que a altitude teve influência na extensão do ciclo, bem como no acúmulo de micronutrientes em frutos e na variação, das concentrações foliares destes elementos em folhas de cafeeiro.In view of the importance of knowing fruit micronutrients export from the soil, and the season in which its coffee-plant demand is higher, the accumulation of B, Cu, Fe, Mn and Zn in fruits as well as the variation in the leaf content of the elements in productive branches of

  20. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  1. Inverse association between altitude and obesity: A prevalence study among Andean and low-altitude adult individuals of Peru

    Science.gov (United States)

    Woolcott, Orison O.; Gutierrez, Cesar; Castillo, Oscar A.; Elashoff, Robert M.; Stefanovski, Darko; Bergman, Richard N.

    2015-01-01

    Objective To determine the association between altitude and obesity in a nationally representative sample of the Peruvian adult population. Design and Methods This is a cross-sectional analysis of publicly available data from the Food and Nutrition National Center (CENAN, Peru), period 2009-2010. Prevalence ratio of obesity and abdominal obesity was determined as a measure of association. Obesity and abdominal obesity were diagnosed based on direct anthropometric measurements. Results The final dataset consisted of 31,549 individuals ≥20 years old. The prevalence ratio of obesity was as follows: 1.00 between 0–499 m (reference category), 1.00 (95% confidence interval 0.87-1.16) between 500–1,499 m, 0.74 (0.63-0.86) between 1,500–2,999, and 0.54 (0.45-0.64) at ≥3,000 m, adjusting for age, sex, self-reported physical activity, out-migration rate, urbanization, poverty, education, and geographical latitude and longitude. In the same order, the adjusted prevalence ratio of abdominal obesity was 1.00, 1.01 (0.94-1.07), 0.93 (0.87-0.99), and 0.89 (0.82-0.95), respectively. We found an interaction between altitude and sex and between altitude and age (P<0.001, for both interactions) on the association with obesity and abdominal obesity. Conclusions Among Peruvian adult individuals, we found an inverse association between altitude and obesity, adjusting for multiple covariates. This adjusted association varied by sex and age. PMID:26935008

  2. Inverse association between altitude and obesity: A prevalence study among andean and low-altitude adult individuals of Peru.

    Science.gov (United States)

    Woolcott, Orison O; Gutierrez, Cesar; Castillo, Oscar A; Elashoff, Robert M; Stefanovski, Darko; Bergman, Richard N

    2016-04-01

    To determine the association between altitude and obesity in a nationally representative sample of the Peruvian adult population. This is a cross-sectional analysis of publicly available data from the Food and Nutrition National Center (CENAN, Peru), period 2009-2010. The Prevalence ratio of obesity and abdominal obesity was determined as a measure of association. Obesity and abdominal obesity were diagnosed based on direct anthropometric measurements. The final data set consisted of 31,549 individuals ≥20 years old. The prevalence ratio of obesity was as follows: 1.00 between 0 and 499 m (reference category), 1.00 (95% confidence interval 0.87-1.16) between 500-1,499 m, 0.74 (0.63-0.86) between 1,500-2,999 m, and 0.54 (0.45-0.64) at ≥3,000 m, adjusting for age, sex, self-reported physical activity, out-migration rate, urbanization, poverty, education, and geographical latitude and longitude. In the same order, the adjusted prevalence ratio of abdominal obesity was 1.00, 1.01 (0.94-1.07), 0.93 (0.87-0.99), and 0.89 (0.82-0.95), respectively. We found an interaction between altitude and sex and between altitude and age (P association with obesity and abdominal obesity. Among Peruvian adult individuals, we found an inverse association between altitude and obesity, adjusting for multiple covariates. This adjusted association varied by sex and age. © 2016 The Obesity Society.

  3. Can people with Raynaud's phenomenon travel to high altitude?

    Science.gov (United States)

    Luks, Andrew M; Grissom, Colin K; Jean, Dominique; Swenson, Erik R

    2009-01-01

    To determine whether high altitude travel adversely affects mountain enthusiasts with Raynaud's phenomenon. Volunteers with Raynaud's phenomenon were recruited using announcements disseminated by organizations dedicated to climbing or wilderness travel and Internet discussion boards dedicated to mountain activities to complete an online, anonymous survey. Survey questions addressed demographic variables, aspects of their Raynaud's phenomenon, and features of their mountain activities. Respondents compared experiences with Raynaud's phenomenon between high (>2440 m; 8000 feet) and low elevations and rated agreement with statements concerning their disease and the effects of high altitude. One hundred forty-two people, 98% of whom had primary Raynaud's phenomenon, completed the questionnaire. Respondents spent 5 to 7 days per month at elevations above 2440 m and engaged in 5.4 +/- 2.0 different activities. Eighty-nine percent of respondents engaged in winter sports and only 22% reported changing their mountain activities because of Raynaud's phenomenon. Respondents reported a variety of tactics to prevent and treat Raynaud's attacks, but only 12% used prophylactic medications. Fifteen percent of respondents reported an episode of frostbite following a Raynaud's phenomenon attack at high altitude. There was considerable heterogeneity in participants' perceptions of the frequency, duration, and severity of attacks at high altitude compared to their home elevation. Motivated individuals with primary Raynaud's phenomenon, employing various prevention and treatment strategies, can engage in different activities, including winter sports, at altitudes above 2440 m. Frostbite may be common in this population at high altitude, and care must be taken to prevent its occurrence.

  4. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.

    Science.gov (United States)

    Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R

    2017-07-15

    (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  5. The risk of cardiovascular events during leisure time activities at altitude.

    Science.gov (United States)

    Burtscher, Martin; Ponchia, Andrea

    2010-01-01

    Annually, more than 100 million tourists are attracted by the mountainous areas around the world. On the one hand, leisure time activities at altitude may well contribute to the well-established beneficial effects of exercise; on the other hand, these activities are also associated with a relatively high risk of death. Sudden cardiac death (SCD) is the most frequent cause of nontraumatic death in males older than 34 years at altitude during leisure time activities such as downhill skiing and hiking. Whereas prior myocardial infarction is the most important risk factor for SCD, particularly relevant in downhill skiers, the unusual physical activity during the first days at altitude and the prolonged abstinence from food and fluid intake during exercise at altitude are the most important triggers. Unaccustomed physical activity seems more likely to trigger SCD than altitude per se. The detection of subjects at risk, evidence-based therapy, and advice on adequate behavior during the altitude sojourn will help to prevent SCD and to increase the health benefits generated by mountaineering activities.

  6. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  7. Productive performance of blackberry cultivars in altitude region

    Directory of Open Access Journals (Sweden)

    Jéssica de Oliveira

    2017-11-01

    Full Text Available ABSTRACT: Information on the production performance of blackberry in less colder regions are fundamentals to the expansion of the cultivated area and extension of management practices for cultivars adapted to climate conditions in Brazil. The research was carried out with the aim to evaluate the productive performance of different blackberries cultivars in altitude region of 1,387m with mild temperatures, situate at 18º14’56”S, 43º36’0”W, in Minas Gerais State, Brazil. It was carried during the seasons 2013/2014, 2014/2015 and 2015/2016. The blackberry cultivars evaluated were the following ones ‘Brazos’, ‘Guarani’, ‘Tupy’ and ‘Xavante’. Flowering and harvesting of cultivars were evaluated as well as climatological data of the area in order to relate the number of hours of accumulated cold less than 13°C, 10°C and 7.2°C with production and crop time. To determine the production, the mass of blackberries harvested per plant was measured. Production of blackberry cultivars was extended in altitude region with similar productivity to the other producing regions in Brazil. Productive performance of the cultivars varied according to the accumulation of cold hours with mild temperatures that occurred in cultivation region. ‘Brazos’, ‘Guarani’, ‘Tupy’ and ‘Xavante’ showed good adaptation, being ‘Brazos’ the cultivar most productive.

  8. The FAA altitude chamber training flight profile : a survey of altitude reactions, 1965-1989.

    Science.gov (United States)

    1990-09-01

    Reactions from 1,161 trainees out of 12,759 trainees subjected to the FAA altitude chamber training flights from 1965-1989 are annotated in this survey. Although there were some mild and expected reactions, these training profiles appear to provide a...

  9. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

  10. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    Science.gov (United States)

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  11. Validation of a blood marker for plasma volume in endurance athletes during a live-high train-low altitude training camp.

    Science.gov (United States)

    Lobigs, Louisa M; Garvican-Lewis, Laura A; Vuong, Victor L; Tee, Nicolin; Gore, Christopher J; Peeling, Peter; Dawson, Brian; Schumacher, Yorck O

    2018-02-19

    Altitude is a confounding factor within the Athlete Biological Passport (ABP) due, in part, to the plasma volume (PV) response to hypoxia. Here, a newly developed PV blood test is applied to assess the possible efficacy of reducing the influence of PV on the volumetric ABP markers; haemoglobin concentration ([Hb]) and the OFF-score. Endurance athletes (n=34) completed a 21-night simulated live-high train-low (LHTL) protocol (14 h.d -1 at 3000 m). Bloods were collected twice pre-altitude; at days 3, 8, and 15 at altitude; and 1, 7, 21, and 42 days post-altitude. A full blood count was performed on the whole blood sample. Serum was analysed for transferrin, albumin, calcium, creatinine, total protein, and low-density lipoprotein. The PV blood test (consisting of the serum markers, [Hb] and platelets) was applied to the ABP adaptive model and new reference predictions were calculated for [Hb] and the OFF-score, thereby reducing the PV variance component. The PV correction refined the ABP reference predictions. The number of atypical passport findings (ATPFs) for [Hb] was reduced from 7 of 5 subjects to 6 of 3 subjects. The OFF-score ATPFs increased with the PV correction (from 9 to 13, 99% specificity); most likely the result of more specific reference limit predictions combined with the altitude-induced increase in red cell production. Importantly, all abnormal biomarker values were identified by a low confidence value. Although the multifaceted, individual physiological response to altitude confounded some results, the PV model appears capable of reducing the impact of PV fluctuations on [Hb]. Copyright © 2018 John Wiley & Sons, Ltd.

  12. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  13. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias

    2016-09-16

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  14. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  15. Influence of the altitude on the burning velocity of the natural gas

    International Nuclear Information System (INIS)

    Arrieta, Andres Amell; Garcia Posada, Jorge Mario; Quilindo Valencia, Arvey; Henao Vallejo, Diego Alberto

    2004-01-01

    By the increasing use of natural gas in cities of Latin America located to high altitude, is necessary to study the effect of the altitude on the combustion, for example the burning velocity. This work is an experimental study of as it changes to the burning velocity with the altitude, being made test in sites with altitude of 40, 550, 1.020, 1.550, 2.040 and 2.550 meters. The result was that the variations are slight

  16. Radiation exposure and high-altitude flight. NCRP Commentary No. 12

    International Nuclear Information System (INIS)

    1995-01-01

    Enhanced air crew and public radiation exposure while flying at current altitudes and speeds has not been adequately addressed. However, the commercial aircraft industry continues to expand with greater numbers of passengers and more air crews year by year. With the expected expansions in high-altitude flight in the next two decades there will be many more people exposed to higher levels of ionizing radiation than currently. The equivalent dose rates at the higher altitudes are of the order of two to three times those received at current aircraft altitudes, but are not known very well, partly because of limitations in the knowledge of the component radiations, especially the high-energy neutron component. The risks are also more uncertain than for low-LET exposures on the ground because of uncertainty in an average W R to use for high-LET radiations. Exposures of current air crew are presently comparable with the average exposures of other radiation workers on the ground (EPA, 1995). Substantially higher exposures must be expected at high altitudes to air crew (perhaps approaching or possibly exceeding the current limit for workers on the ground). Higher exposures to sensitive groups of the population such as the fetuses carried by pregnant women are of special concern. Therefore, steps must be taken to improve our knowledge base with respect to dose levels and risks at these high altitudes. Following acquisition of this knowledge, modifications in radiation protection practices with respect to air crew and passengers will need to be considered and recommended to assure that adequate radiation protection is provided with respect to high-altitude flight

  17. Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia

    Directory of Open Access Journals (Sweden)

    Yun-Sheng Liu

    2018-05-01

    Full Text Available Background: Because the pathogenesis of high altitude polycythemia (HAPC is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause.Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR, ferritin, and hepcidin as well as erythropoietin (EPO and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed.Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression.Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.

  18. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  19. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  20. Shape memory alloy resistance behaviour at high altitude for feedback control

    Science.gov (United States)

    Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.

    2017-12-01

    Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.

  1. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  2. Artificial Boundary Conditions for the Numerical Simulation of Unsteady Acoustic Waves

    National Research Council Canada - National Science Library

    Tsynkov, S. V

    2003-01-01

    We construct non-local artificial boundary conditions (ABCs) for the numerical simulation of genuinely time-dependent acoustic waves that propagate from a compact source in an unbounded unobstructed space...

  3. Influence of altitude training modality on performance and total haemoglobin mass in elite swimmers.

    Science.gov (United States)

    Gough, Clare E; Saunders, Philo U; Fowlie, John; Savage, Bernard; Pyne, David B; Anson, Judith M; Wachsmuth, Nadine; Prommer, Nicole; Gore, Christopher J

    2012-09-01

    We compared changes in performance and total haemoglobin mass (tHb) of elite swimmers in the weeks following either Classic or Live High:Train Low (LHTL) altitude training. Twenty-six elite swimmers (15 male, 11 female, 21.4 ± 2.7 years; mean ± SD) were divided into two groups for 3 weeks of either Classic or LHTL altitude training. Swimming performances over 100 or 200 m were assessed before altitude, then 1, 7, 14 and 28 days after returning to sea-level. Total haemoglobin mass was measured twice before altitude, then 1 and 14 days after return to sea-level. Changes in swimming performance in the first week after Classic and LHTL were compared against those of Race Control (n = 11), a group of elite swimmers who did not complete altitude training. In addition, a season-long comparison of swimming performance between altitude and non-altitude groups was undertaken to compare the progression of performances over the course of a competitive season. Regardless of altitude training modality, swimming performances were substantially slower 1 day (Classic 1.4 ± 1.3% and LHTL 1.6 ± 1.6%; mean ± 90% confidence limits) and 7 days (0.9 ± 1.0% and 1.9 ± 1.1%) after altitude compared to Race Control. In both groups, performances 14 and 28 days after altitude were not different from pre-altitude. The season-long comparison indicated that no clear advantage was obtained by swimmers who completed altitude training. Both Classic and LHTL elicited ~4% increases in tHb. Although altitude training induced erythropoeisis, this physiological adaptation did not transfer directly into improved competitive performance in elite swimmers.

  4. Altitude training: an up-to-date approach and implementation in practice

    OpenAIRE

    Issurin, Vladimir

    2007-01-01

    This article overviews current comprehension of altitude training, which is quite contradictory: many sources declare that altitude training provides no benefits to sea level performances compared to appropriate conventional training while others consider altitude training to be an efficacious and proven tool to enhance high-performance preparation. This contradiction can be partly explained by the variety of individual training responses, i.e., individual predispositions among some athletes ...

  5. Comments on ''Use of conditional simulation in nuclear waste site performance assessment'' by Carol Gotway

    International Nuclear Information System (INIS)

    Downing, D.J.

    1993-01-01

    This paper discusses Carol Gotway's paper, ''The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.'' The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out

  6. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors.

    Science.gov (United States)

    Brito, Julio; Siques, Patricia; López, Rosario; Romero, Raul; León-Velarde, Fabiola; Flores, Karen; Lüneburg, Nicole; Hannemann, Juliane; Böger, Rainer H

    2018-01-01

    Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition. Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400-4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level. Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5-29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3-5 points, including cephalea; moderate was LLS of 6-10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18-66.39); p Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA

  7. Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation

    Science.gov (United States)

    Barriot, J.; Dehant, V.; Duron, J.

    2003-12-01

    We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.

  8. Effect of altitude on protein metabolism in Bolivian children

    International Nuclear Information System (INIS)

    Beaufrere, B.; Gachon, P.; Boirie, Y.; San Miguel, J.L.; Maubois, J.L.; Coudert, J.

    1994-01-01

    Protein utilization during feeding is difficult to assess by classical tracer methodology, particularly under field conditions. We propose a new approach using the measurement of tracer recovery (expired 13 CO 2 ) after the ingestion of a single oral dose of a 13 C-leucine labelled milk protein. Protein will be obtained by infusing a cow with 13 C-leucine. The difference between the amounts of tracer given and recovered should be an index of protein utilization. Since altitude might influence protein absorption, this non-invasive method will be used in Bolivian children, living either at 3600 m (La Paz) or at sea level. (author). 14 refs

  9. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  11. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude.......Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...

  12. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  13. Simulation of gas turbines operating in off-design condition

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Arnaldo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: walter@fem.unicamp.br

    2000-07-01

    In many countries thermal power plants based on gas turbines have been the main option for new investment into the electric system due to their relatively high efficiency and low capital cost. Cogeneration systems based on gas turbines have also been an important option for the electric industry. Feasibility studies of power plants based on gas turbine should consider the effect of atmospheric conditions and part-load operation on the machine performance. Doing this, an off-design procedure is required. A G T off-design simulation procedure is described in this paper. Ruston R M was used to validate the simulation procedure that, general sense, presents deviations lower than 2.5% in comparison to manufacturer's data. (author)

  14. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  15. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  16. [Cardiorespiratory capacity in children living at moderate altitude].

    Science.gov (United States)

    Gómez-Campos, Rossana; Arruda, Miguel; Almonacid-Fierro, Alejandro; Holbold, Edílson; Amaral-Camargo, Cristiane; Gamero, Diego; Cossio-Bolanos, Marco A

    2014-04-01

    To determine the cardiorespiratory capacity of school children living at moderate altitude. 795 children (394 children and 401 girls) were selected from urban public schools in Arequipa, Peru at moderate altitude (2,320 m). Anthropometric variables (body mass, height, body fat percentage) and cardiorespiratory capacity were assessed using the Course Navette test, considering the following categories: deficient, poor, fair, good, very good and excellent. The results showed significant differences in all categories (poverweight (r=-0.20 to -0.22) and a moderate negative correlation with obesity (r=-0.39 to -0.42) were described for both genders. Low levels of cardiorespiratory capacity in boys and girls living at moderate altitude are observed, which is negatively correlated with excess body weight. The results suggest that 1 in 5 children are likely to suffer some type of cardiovascular event.

  17. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  18. Simulation of a combined-cycle engine

    Science.gov (United States)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  19. A Simulation of Strategic Decision Making in Situational Stereotype Conditions for Entrepreneurial Companies.

    Science.gov (United States)

    West, G. Page, III; Wilson, E. Vance

    1995-01-01

    Examines simulation in entrepreneurial research, reviews cognitive structures and theories, and presents a computerized simulation of strategic decision-making in situational stereotype conditions for entrepreneurial companies. The study suggests repeated exposure to a pattern recognition issue in entrepreneurship may lead to a broader…

  20. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    Directory of Open Access Journals (Sweden)

    Hasim Rushiti

    2015-05-01

    Full Text Available The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21. All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situation is of subjects was examined, then, all students, at the same time, gave blood for analysis. In this experiment, three main hematologic parameters were taken in consideration: such as hemoglobin, hematocrit and red blood cells. The same analyses were carried out after the 10-day stay at a high altitude. The results of the experiment have shown significant changes after the ten-day stay at high altitude, despite the previous results that show changes only after the twenty-day stay in such elevations.

  1. Genomic scan reveals loci under altitude adaptation in Tibetan and Dahe pigs.

    Directory of Open Access Journals (Sweden)

    Kunzhe Dong

    Full Text Available High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP that is well adapted to the high altitude and Dahe pig (DHP that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19 for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16 were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9 were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.

  2. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Kuo-Lung Huang

    2015-07-01

    Full Text Available The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft’s nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft’s nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

  3. The effects of classic altitude training on hemoglobin mass in swimmers.

    Science.gov (United States)

    Wachsmuth, N B; Völzke, C; Prommer, N; Schmidt-Trucksäss, A; Frese, F; Spahl, O; Eastwood, A; Stray-Gundersen, J; Schmidt, W

    2013-05-01

    Aim of the study was to determine the influence of classic altitude training on hemoglobin mass (Hb-mass) in elite swimmers under the following aspects: (1) normal oscillation of Hb-mass at sea level; (2) time course of adaptation and de-adaptation; (3) sex influences; (4) influences of illness and injury; (5) interaction of Hb-mass and competition performance. Hb-mass of 45 top swimmers (male 24; female 21) was repeatedly measured (~6 times) over the course of 2 years using the optimized CO-rebreathing method. Twenty-five athletes trained between one and three times for 3-4 weeks at altitude training camps (ATCs) at 2,320 m (3 ATCs) and 1,360 m (1 ATC). Performance was determined by analyzing 726 competitions according to the German point system. The variation of Hb-mass without hypoxic influence was 3.0 % (m) and 2.7 % (f). At altitude, Hb-mass increased by 7.2 ± 3.3 % (p altitude. In conclusion, the altitude (2,320 m) effect on Hb-mass is still present 3 weeks after return, it decisively depends on the health status, but is not influenced by sex. In healthy subjects it exceeds by far the oscillation occurring at sea level. After return from altitude performance increases after a delay of 3 weeks.

  4. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    Science.gov (United States)

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Metadata-Assisted Global Motion Estimation for Medium-Altitude Unmanned Aerial Vehicle Video Applications

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2015-09-01

    Full Text Available Global motion estimation (GME is a key technology in unmanned aerial vehicle remote sensing (UAVRS. However, when a UAV’s motion and behavior change significantly or the image information is not rich, traditional image-based methods for GME often perform poorly. Introducing bottom metadata can improve precision in a large-scale motion condition and reduce the dependence on unreliable image information. GME is divided into coarse and residual GME through coordinate transformation and based on the study hypotheses. In coarse GME, an auxiliary image is built to convert image matching from a wide baseline condition to a narrow baseline one. In residual GME, a novel information and contrast feature detection algorithm is proposed for big-block matching to maximize the use of reliable image information and ensure that the contents of interest are well estimated. Additionally, an image motion monitor is designed to select the appropriate processing strategy by monitoring the motion scales of translation, rotation, and zoom. A medium-altitude UAV is employed to collect three types of large-scale motion datasets. Peak signal to noise ratio (PSNR and motion scale are computed. This study’s result is encouraging and applicable to other medium- or high-altitude UAVs with a similar system structure.

  6. High altitude medicine education in China: exploring a new medical education reform.

    Science.gov (United States)

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.

  7. Transcriptome and network changes in climbers at extreme altitudes.

    Directory of Open Access Journals (Sweden)

    Fang Chen

    Full Text Available Extreme altitude can induce a range of cellular and systemic responses. Although it is known that hypoxia underlies the major changes and that the physiological responses include hemodynamic changes and erythropoiesis, the molecular mechanisms and signaling pathways mediating such changes are largely unknown. To obtain a more complete picture of the transcriptional regulatory landscape and networks involved in extreme altitude response, we followed four climbers on an expedition up Mount Xixiabangma (8,012 m, and collected blood samples at four stages during the climb for mRNA and miRNA expression assays. By analyzing dynamic changes of gene networks in response to extreme altitudes, we uncovered a highly modular network with 7 modules of various functions that changed in response to extreme altitudes. The erythrocyte differentiation module is the most prominently up-regulated, reflecting increased erythrocyte differentiation from hematopoietic stem cells, probably at the expense of differentiation into other cell lineages. These changes are accompanied by coordinated down-regulation of general translation. Network topology and flow analyses also uncovered regulators known to modulate hypoxia responses and erythrocyte development, as well as unknown regulators, such as the OCT4 gene, an important regulator in stem cells and assumed to only function in stem cells. We predicted computationally and validated experimentally that increased OCT4 expression at extreme altitude can directly elevate the expression of hemoglobin genes. Our approach established a new framework for analyzing the transcriptional regulatory network from a very limited number of samples.

  8. Cerebral venous system and anatomical predisposition to high-altitude headache

    NARCIS (Netherlands)

    Wilson, Mark H.; Davagnanam, Indran; Holland, Graeme; Dattani, Raj S.; Tamm, Alexander; Hirani, Shashivadan P.; Kolfschoten, Nicky; Strycharczuk, Lisa; Green, Cathy; Thornton, John S.; Wright, Alex; Edsell, Mark; Kitchen, Neil D.; Sharp, David J.; Ham, Timothy E.; Murray, Andrew; Holloway, Cameron J.; Clarke, Kieran; Grocott, Mike P. W.; Montgomery, Hugh; Imray, Chris; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.

    2013-01-01

    As inspired oxygen availability falls with ascent to altitude, some individuals develop high-altitude headache (HAH). We postulated that HAH results when hypoxia-associated increases in cerebral blood flow occur in the context of restricted venous drainage, and is worsened when cerebral compliance

  9. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  10. [Geographic Altitude of Residence and Alcohol Dependence in a Peruvian Population].

    Science.gov (United States)

    Quiñones-Laveriano, Dante Manuel; Espinoza-Chiong, César; Scarsi-Mejia, Ottavia; Rojas-Camayo, José; Mejia, Christian Richard

    2016-01-01

    The aim of this study was to determine the association between alcohol dependence and altitude of residence in 11 villages in two high altitude areas of Peru. An analytical cross-sectional study was performed using a survey conducted by physicians in primary health care in 11 villages until 2013, that were divided into low altitude (≤2500m asl (above sea level)), and high altitude (>2500m asl) areas. The CAGE test for alcoholism (cut point, ≥2) was applied to those who responded positively when asked if they consumed alcohol. Statistical associations were obtained with generalised linear models Of the 737 participants, 51% were women and the median age was 36 years [interquartile range, 25-50], 334 (45%) lived at low altitude, and 113 (15%) had alcohol dependence. The highest frequency of alcoholism was positively associated with being a village considered extremely poor (Likelihood Ratio (LP)=2.42; 95%CI, 1.40-4.19), while being female (LP=0.44; 95%CI, 0.23-0.89) and residing at high altitude (LP=0.15; 95%CI, 0.07-0.31) were negatively associated. These were adjusted for nine socio-occupational and pathological variables. According to these data, there is a higher frequency of alcohol dependence in being, male, extremely poor, and residing at low altitude. These results should be taken into account by professionals who work in primary care and those involved in mental health care, because of their implications in society. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Supplemental oxygen effect on hypoxemia at moderate altitude in patients with COPD.

    Science.gov (United States)

    Kelly, Paul T; Swanney, Maureen P; Stanton, Josh D; Frampton, Chris; Peters, Matthew J; Beckert, Lutz E

    2009-09-01

    Altitude exposure will cause moderate to severe hypoxemia in patients with chronic obstructive pulmonary disease (COPD). Supplemental oxygen can be used to attenuate this hypoxemia; however, individual response is variable and difficult to predict. The aim of this study was to assess the efficacy of oxygen supplementation in patients with COPD at a barometric pressure similar to that of a commercial aircraft cabin. Following sea-level (40 m) arterial blood gases measurements, 18 patients with COPD were driven to altitude (2086 m), where blood gases were repeated at rest and while on 2 L x min(-1) of supplementary oxygen (altitude O2). Ascent from sea level to altitude caused significant hypoxemia (75 +/- 9 vs. 51 +/- 6 mmHg), which was partially reversed by supplemental oxygen (64 +/- 9 mmHg). Oxygen supplementation did not significantly alter PaCO2 levels (vs. altitude PaCO2). There was a significant relationship between the sea-level CaO2 versus the altitude O2 CaO2 (r = 0.89, P commercial air travel in patients with COPD.

  12. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    Science.gov (United States)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  13. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  14. High-altitude haematology: Quechua-Aymara comparisons.

    Science.gov (United States)

    Arnaud, J; Quilici, J C; Rivière, G

    1981-01-01

    Haematological studies have been carried out at various altitudes between 450 m and 4800 m, on two separate human groups (Quechuas and Aymaras) living in South America. Changes in the haematological parameters do not develop linearly in relation to the attitude. Th impact of chronic hypoxia on erythropoiesis is greater above 3000 m. The haemogram varies quantitatively and not qualitatively (mean corpuscular volume and mean haemoglobin concentration remain constant). The haematological study also reveals the greater adaptability to high altitude of the Aymaras, an adaptability characterized by an increase in red cell count and concentration and a decrease in red cell volume. The adaptative phenomena observed in the Quechuas are reversible, whereas they persist in the Aymaras when they migrate to the lowlands (450 m).

  15. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  16. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    Science.gov (United States)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  17. Hematocrit and Hemoglobin Levels of Nonhuman Apes at Moderate Altitudes: A Comparison with Humans.

    Science.gov (United States)

    Mortola, Jacopo P; Wilfong, DeeAnn

    2016-12-01

    Mortola, Jacopo P. and DeeAnn Wilfong. Hematocrit and hemoglobin levels of nonhuman apes at moderate altitudes: a comparison with humans. High Alt Med Biol. 17:323-335, 2016.-We asked to what extent the hematologic response (increase in hematocrit [Hct] and in blood hemoglobin concentration [Hb]) of humans to altitude hypoxia was shared by our closest relatives, the nonhuman apes. Data were collected from 29 specimens of 7 species of apes at 2073 m altitude (barometric pressure Pb = 598 mm Hg); additional data originated from apes located at a lower altitude (1493 m, Pb = 639 mm Hg). The human altitude profiles of Hct and Hb between sea level and 3000 m were constructed from a compilation of literature sources that (all combined) comprised data sets of 10,000-12,000 subjects for each gender. These human data were binned for 0-250 m altitude (sea level) and for each 500 m of progressively higher altitudes. Values of Hb and Hct of both men and women were significantly higher than at sea level at the 1500 bin (1250-1750 m); hence, the altitude threshold for the human hematological responses must be between 1000 and 1500 m. In the nonhuman apes, no increase in Hct or Hb was apparent at 1500 m; at 2000 m, the increase was significant only for the Hb of females. At either altitude in the group of nonhuman apes, the increase in Hct was much less than in humans, and that of Hb was significantly less at 1500 m. We conclude that lack of, or minimal, hematopoietic response to moderate altitude can occur in mammalian species that are not genetically adapted to high altitudes. Polycythemia is not a common response to altitude hypoxia and, at least at moderate altitudes, the degree of the human response may represent the exception among apes rather than the rule.

  18. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  19. Erythropoietin, 2,3 DPG, oxygen transport capacity, and altitude training in adolescent Alpine skiers.

    Science.gov (United States)

    Son, Hee Jeong; Kim, Hyo Jeong; Kim, Jin Hae; Ohno, Hideki; Kim, Chang Keun

    2012-01-01

    Rapid growth during adolescence caused by metabolic changes and their metabolic response to anaerobic and aerobic exercise differs considerably from that in adults and this is especially true in the responses to stresses, such as altitude exposure. However, there is little information on the suitability of exercise training at altitude for young athletes. Six male Korean adolescent alpine skiers (13-17 yr), with a skiing career of 3-5 yr, participated in the study. All subjects were exposed to an altitude of 2700 m (8858 ft) for 5 wk and altitude exposure consisted of 6 d/wk of training (4-5 h/d), with living quarters at 2100 m (-6890 ft) (Tignes, France). The 5 wk of ski training at altitude were maintained at the same level (the same number of slalom and giant slalom skiing trials) as at sea level. There was a significant increase in oxygen transport capacity, despite decreased erythropoietin (EPO) production (-31%) after altitude training. Red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), and 2,3 DPG concentrations increased significantly during altitude exposure and after return to sea level. Results indicate that applying altitude training in adolescent skiers may improve their endurance performance. However, EPO production during altitude training needs to be evaluated in larger future studies.

  20. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  1. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir......This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea level...... and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...

  2. Altitude training for elite endurance athletes: A review for the travel medicine practitioner.

    Science.gov (United States)

    Flaherty, Gerard; O'Connor, Rory; Johnston, Niall

    2016-01-01

    High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Simulation of worst-case operating conditions for integrated circuits operating in a total dose environment

    International Nuclear Information System (INIS)

    Bhuva, B.L.

    1987-01-01

    Degradations in the circuit performance created by the radiation exposure of integrated circuits are so unique and abnormal that thorough simulation and testing of VLSI circuits is almost impossible, and new ways to estimate the operating performance in a radiation environment must be developed. The principal goal of this work was the development of simulation techniques for radiation effects on semiconductor devices. The mixed-mode simulation approach proved to be the most promising. The switch-level approach is used to identify the failure mechanisms and critical subcircuits responsible for operational failure along with worst-case operating conditions during and after irradiation. For precise simulations of critical subcircuits, SPICE is used. The identification of failure mechanisms enables the circuit designer to improve the circuit's performance and failure-exposure level. Identification of worst-case operating conditions during and after irradiation reduces the complexity of testing VLSI circuits for radiation environments. The results of test circuits for failure simulations using a conventional simulator and the new simulator showed significant time savings using the new simulator. The savings in simulation time proved to be circuit topology-dependent. However, for large circuits, the simulation time proved to be orders of magnitude smaller than simulation time for conventional simulators

  4. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  5. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  6. Second order bounce back boundary condition for the lattice Boltzmann fluid simulation

    International Nuclear Information System (INIS)

    Kim, In Chan

    2000-01-01

    A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method

  7. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  8. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors

    Directory of Open Access Journals (Sweden)

    Julio Brito

    2018-03-01

    Full Text Available Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH. The implications of working intermittently (day shifts at high altitude (hypobaric hypoxia over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition.Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400–4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs, sleep disturbances and physiological variables were measured at altitude and at sea level.Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5–29 years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3–5 points, including cephalea; moderate was LLS of 6–10 points (38.3% at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP >25 mmHg, 9% HAPH (≥30 mmHg, 85% mild increase in right ventricle wall thickness (≥5 mm, 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA (OR 8.84 (1.18–66.39; p < 0.05 and insulin (OR: 1.11 (1.02–1.20; p < 0.05 were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical with higher mPAP.Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and

  9. Multi-Scale Initial Conditions For Cosmological Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Oliver; /KIPAC, Menlo Park; Abel, Tom; /KIPAC, Menlo Park /ZAH, Heidelberg /HITS, Heidelberg

    2011-11-04

    We discuss a new algorithm to generate multi-scale initial conditions with multiple levels of refinements for cosmological 'zoom-in' simulations. The method uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). The new algorithm achieves rms relative errors of the order of 10{sup -4} for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier-space-induced interference ringing. An optional hybrid multi-grid and Fast Fourier Transform (FFT) based scheme is introduced which has identical Fourier-space behaviour as traditional approaches. Using a suite of re-simulations of a galaxy cluster halo our real-space-based approach is found to reproduce correlation functions, density profiles, key halo properties and subhalo abundances with per cent level accuracy. Finally, we generalize our approach for two-component baryon and dark-matter simulations and demonstrate that the power spectrum evolution is in excellent agreement with linear perturbation theory. For initial baryon density fields, it is suggested to use the local Lagrangian approximation in order to generate a density field for mesh-based codes that is consistent with the Lagrangian perturbation theory instead of the current practice of using the Eulerian linearly scaled densities.

  10. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. The importance of pruning to the quality of wine grape fruits (Vitis vinifera L. cultivated under high-altitude tropical conditions

    Directory of Open Access Journals (Sweden)

    Pedro José Almanza-Merchán

    2014-12-01

    Full Text Available Since 1998, the Ain-Karim Vineyard has been growing different grape varieties for the production of high-altitude tropical wines in the municipality of Sutamarchan, located in the Alto Ricaurte region of Boyaca (Colombia. Pruning is used to limit the number and length of branches, generating a suitable balance between plant vigor and production; thereby, regulating fruit quantity and quality and ensuring reserves for the subsequent production. This study aimed to evaluate the effect of three pruning types (short = two buds on two spurs; long = five buds on three spurs and mixed = combination of short and long pruning types on the fruit quality of V. vinifera, Cabernet Sauvignon and Sauvignon Blanc varieties. To accomplish this, a completely randomized two-factor design was used. Physicochemical variables of fruit quality (fresh cluster weight, water content, total soluble solids (TSS, total titratable acidity (TTA, technical maturity index (TMI, and pH were determined at harvest. The long pruning type presented the highest values for the fresh cluster weight and TSS of the fruits from both varieties and a higher TMI in the Cabernet Sauvignon variety. These results indicate that, under the conditions of the vineyard, long pruning is the most suitable.

  12. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.

  13. [Dolichomegacolon of the Andes and intestinal volvulus due to altitude].

    Science.gov (United States)

    Frisancho, Oscar

    2008-01-01

    Sigmoid volvulus is a frequent cause of emergencies in hospitals in the Andean area, representing more than 50% of all intestinal obstructions. Andean dolichomegacolon (DCMA) and retractile mesocolonitis are the main contributing factors for volvulus. The mesocolonitis nears the proximal and distal segment of the sigmoid handle, favoring its torsion. Copious intake of fermentable food is the precipitating factor for volvulus. The majority of patients are seen during sowing and harvest periods, in which the consumption of this type of food increases. Andean people who live at an altitude of 3,000 m have a larger and thicker colon than coastal residents. We call this acquired characteristic the Andean dolichomegacolon (DCMA). A fiber-rich diet may inhibit the histological phenomenon known as elastogenesis, developing--over the years--the megacolon. Another important factor may be the lower atmospheric pressure in the altitude, and according to Boyle and Mariotte's physical law, the expansion of intraluminal gas may have an influence on intestinal enlargement. DCMA has many special anatomic, clinical, radiological, histological and serological features which make it different from the . chagasic megacolon. Mild emergency procedures may be performed to treat the sigmoid volvulus, such as endoscopic disvolvulation. Changing the colon rotation is helpful in diminishing abdominal pressure and restore complete blood circulation. An emergency surgery treatment must take the patient's general condition and the colon handle condition during surgery as a guiding point. High rates of mortality are found in relation to elderly patients, disease evolution time and stage of intestinal ischemia. Other new therapeutic procedures such as percutaneous sigmoidpexy, laparoscopic sigmoidectomy and mesosigmoplasty are under review, and have precise indications. Wider series are needed to evaluate them better.

  14. Computer aided method of low voltage power distribution networks protection system against lightning and electromagnetic pulse generated by high altitude nuclear burst

    International Nuclear Information System (INIS)

    Laroubine, J.

    1989-01-01

    The lightning creates an electromagnetic field which produces a slow duration and high energy pulse of current on low voltage power distribution networks. On the other hand an high altitude nuclear burst generates an electromagnetic pulse which causes fast and intense interferences. We describe here the specifications of a passive filter that can reject these interferences. We used a computer aided method of simulation to create a prototype. Experimental results confirm the validity of the model used for simulation [fr

  15. Women at Altitude: Effects of Menstrual Cycle Phase and Alpha-Adrenergic Blockade on High Altitude Acclimatization

    National Research Council Canada - National Science Library

    Moore, Lorna

    1998-01-01

    .... Results indicated that the effects of the menstrual cycle were modest. In year 2, we evaluated the safety and efficacy of administering an a-adrenergic blocker and made selected observations during a brief exposure to an altitude of 4300 m...

  16. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  17. [Nursing students assessment in simulated conditions : in search of meaning and ethics].

    Science.gov (United States)

    Homerin, Marie-Pierre; Roumanet, Marie-Cécile

    2014-10-01

    A thought about the assessment in simulated conditions is at the origin of this research-action conducted at the Institute of Nursing Education of Chambery, France. Indeed, the differences in the assessment procedures between units that require this kind of validation and the disappointing rate of success at the examinations in simulated situations have led the trainers to raise the following question : « How can these assessments be meaningful and consistent with the goal of training (help to become autonomous and reflexive practitioners) » ?This issue was addressed with concepts such as socioconstructivism, simulation in health, assessment and ethical principles. The change of practices has been the application of the principles of ?educative? assessment according to G. Nunziatti which strongly involves the students in the assessment?s process.In order to estimate the impact of these changes of practices, an unidentified online survey was offered to all students who benefited from this kind of assessment. The results between two classes of students having had different evaluation procedures have also been compared.The objectives were, after the implementation of this new kind of evaluation, to assess the students? satisfaction, to compare the failure rate at the tests in simulated conditions and to verify the compliance with the ethical principles.This study has shown the students? satisfaction about these new forms of assessment in simulated conditions, an increased success rate in the tests and the applicability of the ethical principles with this way of proceeding. However, the principles of justice and non-maleficence are difficult to implement. Nevertheless, this critical thinking on the procedures of assessment in simulated conditions has helped to change the practices and the assessment design by the teachers.

  18. Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009

    Science.gov (United States)

    Guo, Zhongming; Wang, Ninglian; Kehrwald, Natalie M.; Mao, Ruijuan; Wu, Hongbo; Wu, Yuwei; Jiang, Xi

    2014-07-01

    Understanding changes in glacier mass balance is important because it is indicative of changes in climate and the hydrologic cycle. The latter also has particular influence on people living near glaciers and/or glacier-fed rivers. The Western Himalayas remain one of the regions where recent changes in glacier mass balance are not well-known. The temporal and spatial changes in firn line altitudes are an indicator of equilibrium line altitudes and thus reflect changes in glacier mass balance. Here, we use Himalayan Landsat TM/ETM + data in July and August (the late summer melt season) to quantify changes in firn line altitudes from 1998 to 2009. We produced reflectance maps through radiometric calibration and atmospheric correction and use topographic correction to remove or reduce terrain or shadow effects. The real ‘surface albedo’ is obtained by narrowband-to-broadband (NTB) albedo conversion from the combined solar radiation. The firn line altitude was then extracted by combining the ‘surface albedo’ with pre-registered digital elevation model. The individual firn line altitude varies by region. The Western Himalayas display the largest range of firn line variability, where the firn line altitudes vary from 4840 m a.s.l. to 5770 m a.s.l. The individual glacier mean firn line altitude from 1998 to 2009 rose from 5072 ± 77 m a.s.l. to 5640 ± 74 m a.s.l. in the Western Himalayas. The mean firn line altitude increased from 1998 to 2009. The lowest mean recorded firn line altitude recorded was 5237 ± 166 m a.s.l. in 1998, whereas the highest was 5397 ± 135 m a.s.l. in 2000. We also observed a difference between the changes in fine line altitudes of northern and southern slopes of the western Himalayans, as the northern slope glaciers display a greater increase in firn line altitudes than the southern slope glaciers. In the southern slope, changes in firn line altitudes correlate with NCDC-NOAA temperature and precipitation data. This sustained increase of

  19. Study on operational condition of electro-decontamination by computer simulation

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Sato, Koji; Kawabe, Akihiro; Fujita, Reiko; Terai, Takayuki

    2005-01-01

    The molten-salt electro-decontamination method can be taken up as adecontamination method for contaminated metal systems generated in the reprocessing using the fluoride volatility method, etc. This method makes a small amount of secondary waste and is able to construct a small-size process in which a critical state is easily controlled. It can be further expected that an electrolytic current penetrates inside contaminated substances of complex shape. In this report, an appropriate operational condition was theoretically obtained by the simulation on the applicability of this method to decontamination of metal materials, and it was confirmed by a fundamental testing that the simulation result is reasonable. (M.H.)

  20. Stochastic simulation of PWR vessel integrity for pressurized thermal shock conditions

    International Nuclear Information System (INIS)

    Jackson, P.S.; Moelling, D.S.

    1984-01-01

    A stochastic simulation methodology is presented for performing probabilistic analyses of Pressurized Water Reactor vessel integrity. Application of the methodology to vessel-specific integrity analyses is described in the context of Pressurized Thermal Shock (PTS) conditions. A Bayesian method is described for developing vessel-specific models of the density of undetected volumetric flaws from ultrasonic inservice inspection results. Uncertainty limits on the probabilistic results due to sampling errors are determined from the results of the stochastic simulation. An example is provided to illustrate the methodology

  1. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  2. [Relationship between baroreflex function and training effects on altitude training].

    Science.gov (United States)

    Yanagida, Ryo; Ogawa, Yojiro; Mizuochi, Fumio; Suzuki, Tsukasa; Takahashi, Masanori; Iwasaki, Kenichi

    2012-05-01

    Altitude training is frequently used for athletes requiring competitive endurance in an attempt to improve their sea-level performance. However, there has been no study in which the mechanisms by which spontaneous arterial-cardiac baroreflex function changes was examined in responders or nonresponders of altitude training. The purpose of this study was to clarify the different effects of altitude training on baroreflex function between responders and nonresponders. Twelve university student cross-country skiers (6 men, 6 women; age, 19±1 years) participated in the altitude training in a camp for 3 weeks, which was carried out in accordance with the method of Living High-Training Low. Baroreflex function was estimated by transfer function analysis before and after the training. The responders of the training were 3 men and 2 women, and the nonresponders were 3 men and 4 women. In the responders, the transfer function gain in the high-frequency range significantly increased after the training (28.9→46.5 ms/mmHg p=0.021). On the other hand, no significant change in this index was observed in the nonresponders (25.9→21.2 ms/mmHg p=0.405). As indicated by the results of transfer function gain in the high-frequency range, the baroreflex function in the responders increased significantly after the altitude training, whereas no significant change was observed in the nonresponders.

  3. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  4. 某型膨胀循环发动机高空模拟试验方案研究%Research on altitude simulation test scheme for expand cycle engine

    Institute of Scientific and Technical Information of China (English)

    黄仕启; 李锦江; 孙慧娟

    2017-01-01

    某型膨胀循环发动机在研制初期基于环境压力可能对膨胀循环发动机起动加速性有较大影响的考虑,采用了全程主动引射高空模拟试验方案,试验结果显示环境压力对发动机起动加速性的影响较小.发动机室压和喷管面积比是影响引射方式的主要参数,该型膨胀循环发动机与采用被动引射的某型燃气发生器循环发动机参数相当,这为该型膨胀循环发动机采用被动引射提供了可能,并对膨胀循环发动机采用被动引射高空模拟试验方案的可行性进行仿真研究.%Based on the principal that the starting acceleration performance of an expand cycle engine was possibly affected by the ambient pressure in its developing beginning phase, a test scheme of the positive ejection altitude simulation was selected. The test results show that the ambient pressure affects the starting acceleration performance slightly, the chamber pressure and nozzle area ratio of the expand cycle engine are the main parameters affecting the ejection form, and the parameters of a cer-tain gas generator cycle engine with passive ejection are quite same as that of the expand cycle en-gine, which provide a possible selection for the expand cycle engine to adopt the passive ejection form. Therefore, the feasibility research on the passive ejection altitude simulation test scheme for the expand cycle engine is carried out in this paper.

  5. No Change in Running Mechanics With Live High-Train Low Altitude Training in Elite Distance Runners.

    Science.gov (United States)

    Stickford, Abigail S L; Wilhite, Daniel P; Chapman, Robert F

    2017-01-01

    Investigations into ventilatory, metabolic, and hematological changes with altitude training have been completed; however, there is a lack of research exploring potential gait-kinematic changes after altitude training, despite a common complaint of athletes being a lack of leg "turnover" on return from altitude training. To determine if select kinematic variables changed in a group of elite distance runners after 4 wk of altitude training. Six elite male distance runners completed a 28-d altitude-training intervention in Flagstaff, AZ (2150 m), following a modified "live high-train low" model, wherein higherintensity runs were performed at lower altitudes (945-1150 m) and low-intensity sessions were completed at higher altitudes (1950-2850 m). Gait parameters were measured 2-9 d before departure to altitude and 1 to 2 d after returning to sea level at running speeds of 300-360 m/min. No differences were found in ground-contact time, swing time, or stride length or frequency after altitude training (P > .05). Running mechanics are not affected by chronic altitude training in elite distance runners. The data suggest that either chronic training at altitude truly has no effect on running mechanics or completing the live high-train low model of altitude training, where higher-velocity workouts are completed at lower elevations, mitigates any negative mechanical adaptations that may be associated with chronic training at slower speeds.

  6. Air to muscle O2 delivery during exercise at altitude

    DEFF Research Database (Denmark)

    Calbet, J.A.; Lundby, C.

    2009-01-01

    , diffusion limitation explains most of the additional Pao2-Pao2. With altitude, acclimatization exercise (Pao2-Pao2) is reduced, but does not reach the low values observed in high altitude natives, who possess an exceptionally high DLo2. Convective O2 transport depends on arterial O2 content (Cao2), cardiac...

  7. Timing the arrival at 2340m altitude for aerobic performance

    DEFF Research Database (Denmark)

    Schuler, B; Thomsen, JJ; Gassmann, M

    2007-01-01

    This study tested the hypothesis that maximal oxygen uptake (VO2max) and performance increase upon altitude acclimatization at moderate altitude. Eight elite cyclists were studied at sea level, and after 1 (Day 1), 7 (Day 7), 14 (Day 14) and 21 (Day 21) days of exposure to 2340 m. Capillary blood...

  8. Effects of Intermittent Altitude Exposures on Acclimatization of 4,300 M

    National Research Council Canada - National Science Library

    Beidleman, Beth

    2001-01-01

    This study examined the effects of 3 wk of intermittent exposures (4 h/d, 5 d/wk) to 4,300 m altitude-equivalent, in combination with either passive sitting or exercise training, on the process of altitude acclimatization...

  9. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  10. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2004-07-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  11. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    International Nuclear Information System (INIS)

    Xu, H.; Mamou, M.; Khalid, M.

    2004-01-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  12. Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS Simulations with Aircraft and Tower Observations

    Directory of Open Access Journals (Sweden)

    Meelis Mölder

    2012-10-01

    Full Text Available Simulation of atmospheric and surface processes with an atmospheric model (RAMS during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed.

  13. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  14. Iterative approach to self-adapting and altitude-dependent regularization for atmospheric profile retrievals.

    Science.gov (United States)

    Ridolfi, Marco; Sgheri, Luca

    2011-12-19

    In this paper we present the IVS (Iterative Variable Strength) method, an altitude-dependent, self-adapting Tikhonov regularization scheme for atmospheric profile retrievals. The method is based on a similar scheme we proposed in 2009. The new method does not need any specifically tuned minimization routine, hence it is more robust and faster. We test the self-consistency of the method using simulated observations of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We then compare the new method with both our previous scheme and the scalar method currently implemented in the MIPAS on-line processor, using both synthetic and real atmospheric limb measurements. The IVS method shows very good performances.

  15. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  16. Altitude-wind-tunnel investigation of tail-pipe burning with a Westinghouse X24C-4B axial-flow turbojet engine

    Science.gov (United States)

    Fleming, William A; Wallner, Lewis E

    1948-01-01

    Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.

  17. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  18. An Automatic Approach to the Stabilization Condition in a HIx Distillation Simulation

    International Nuclear Information System (INIS)

    Chang, Ji Woon; Shin, Young Joon; Lee, Ki Young; Kim, Yong Wan; Chang, Jong Hwa; Youn, Cheung

    2010-01-01

    In the Sulfur-Iodine(SI) thermochemical process to produce nuclear hydrogen, an H 2 O-HI-I 2 ternary mixture solution discharged from the Bunsen reaction is primarily concentrated by electro-electrodialysis. The concentrated solution is distillated in the HIx distillation column to generate a high purity HI vapor. The pure HI vapor is obtained at the top of the HIx distillation column and the diluted HIx solution is discharged at the bottom of the column. In order to simulate the steady-state HIx distillation column, a vapor-liquid equilibrium (VLE) model of the H 2 O-HI-I 2 ternary system is required and the subprogram to calculate VLE concentrations has been already introduced by KAERI research group in 2006. The steady state simulation code for the HIx distillation process was also developed in 2007. However, the intrinsic phenomena of the VLE data such as the steep slope of a T-x-y diagram caused the instability of the simulation calculation. In this paper, a computer program to automatically find a stabilization condition in the steady state simulation of the HIx distillation column is introduced. A graphic user interface (GUI) function to monitor an approach to the stabilization condition was added in this program

  19. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    Science.gov (United States)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  20. Simulation of CHF Condition using an Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    Heat transfer is enhanced when the bubbles are generated on the heated surface at the nucleate boiling regime since vigorous mixing of the liquid occurs near the heated surface due to the buoyancy force of the bubbles. As this phenomenon intensified, vapor film can be formed on the heated surface and it impairs heat transfer disturbing the heat exchange between the surface and the bulk liquid. And thus, the heat flux has the certain maximum value. This maximum value, Critical Heat Flux (CHF) is generally exhibits in the pool boiling condition in non-film boiling mode. Actually, the higher heat flux could be generated at the film boiling mode with extremely high surface temperature, which may unendurable for the system structure. CHF phenomena is simulated by hydrogen gas using electroplating system in mass transfer experiment. Vapor behavior on mass transfer experiment was visualized, and it was similar to that of on the heat transfer. CHF value was simulated by hydrogen gas with isovolumetric concept. Thus, virtual heat flux was estimated by mass flux, which is a non-heating process. Difference of gas density from heat transfer and mass transfer systems were considered and revised for the simulated heat flux. Despite of the simple parametric analysis, estimated CHF value of this study was 6.6 times smaller than Zuber's.

  1. Effects of repetitive training at low altitude on erythropoiesis in 400 and 800 m runners.

    Science.gov (United States)

    Frese, F; Friedmann-Bette, B

    2010-06-01

    Classical altitude training can cause an increase in total hemoglobin mass (THM) if a minimum "dose of hypoxia" is reached (altitude >or=2,000 m, >or=3 weeks). We wanted to find out if repetitive exposure to mild hypoxia during living and training at low altitude (training camps at low altitude interspersed by 3 weeks of sea-level training and at the same time points in a control group (CG) of 5 well-trained runners. EPO, sTfR and ferritin were also repeatedly measured during the altitude training camps. Repeated measures ANOVA revealed significant increases in EPO- and sTfR-levels during both training camps and a significant decrease in ferritin indicating enhanced erythropoietic stimulation during living and training at low altitude. Furthermore, significant augmentation of THM by 5.1% occurred in the course of the 2 altitude training camps. In conclusion, repetitive living and training at low altitude leads to a hypoxia-induced increase in erythropoietic stimulation in elite 400 m and 800 m runners and, apparently, might also cause a consecutive augmentation of THM.

  2. Investigation of junior school student myopia in high-altitude Tibetan areas in Qinghai Province

    OpenAIRE

    Xia Han; Hai-Ling Miao; Dan Huang

    2014-01-01

    AIM: To know the rate of students' myopia in junior school and factors affecting its occurrence in high altitude Tibetan areas in Qinghai, and provide basis for the prevention of myopia. METHODS: Totally 2 209 junior school students were extracted as respondent with stratified cluster sampling method. The gender, age, ethnicity, grade, eye behavior, physical activity and parental visual conditions were collected by self-made questionnaire, and the curvature of the cornea, anterior chamber dep...

  3. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  4. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    Science.gov (United States)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  5. Artemisia vulgaris pollen allergoids digestibility in the simulated conditions of the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    RATKO M. JANKOV

    2006-09-01

    Full Text Available Chemically modified allergens (allergoids have found use in both traditional and novel forms of immunotherapy of allergic disorders. Novel forms of immunotherapy include local allergen delivery, via the gastrointestinal tract. This study conveys the gastrointestinal stability of three types ofmugwort pollen allergoids under simulated conditions of the gut. Allergoids of the pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, succinic and maleic anhydride. Gastrointestinal tract conditions (saliva, and gastric fluid were simulated in accordance with the EU Pharmacopoeia. The biochemical and immunochemical properties of the derivatives following exposure to different conditions were monitored by determining the number of residual amino groups with 2,4,6-trinitrobenzenesulfonic acid, SDS PAGE, immunoblotting and inhibition of mugwort-specific IgE. Exposure to saliva fluid for 2 min did not influence the biochemical and immunochemical properties of the derivatives. In the very acidic conditions of the simulated gastric fluid, the degree of demaleylation and desuccinylation, even after 4 h exposure, was low, ranging from 10 to 30 %. The digestion patterns with pepsin proceeded rapidly in both the unmodified and modified samples. In all four cases, a highly resistant IgE-binding protein theMwof which was about 28 – 35 kD, was present. Within the physiological conditions, no new IgE binding epitopes were revealed, as demonstrated by immunoblot and CAP inhibition of the mugwort specific IgE binding. An important conclusion of this study is the stability of the modified derivatives in the gastrointestinal tract of patients, within physiological conditions. The means that they are suitable for use inmuch higher concentrations in local forms of immunotherapy than unmodified ones.

  6. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.

    Science.gov (United States)

    Chapman, Robert F; Karlsen, Trine; Resaland, Geir K; Ge, R-L; Harber, Matthew P; Witkowski, Sarah; Stray-Gundersen, James; Levine, Benjamin D

    2014-03-15

    Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.

  7. A method for sampling microbial aerosols using high altitude balloons.

    Science.gov (United States)

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A 45-year-old man with excessive daytime somnolence, and witnessed apnea at altitude

    Directory of Open Access Journals (Sweden)

    Welsh CH

    2011-04-01

    Full Text Available A sleepy man without sleep apnea at 1609m (5280 feet had disturbed sleep at his home altitude of 3200m (10500 feet. In addition to common disruptors of sleep such as psychophysiologic insomnia, restless leg syndrome, alcohol and excessive caffeine use, central sleep apnea with periodic breathing can be a significant cause of disturbed sleep at altitude. In symptomatic patients living at altitude, a sleep study at their home altitude should be considered to accurately diagnose the presence and magnitude of sleep disordered breathing as sleep studies performed at lower altitudes may miss this diagnosis. Treatments options differ from those to treat obstructive apnea. Supplemental oxygen is considered by many to be first-line therapy.

  9. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte.

    Science.gov (United States)

    Cazorla, O; Aït Mou, Y; Goret, L; Vassort, G; Dauzat, M; Lacampagne, A; Tanguy, S; Obert, P

    2006-09-01

    Previous studies have questioned whether there is an improved cardiac function after high-altitude training. Accordingly, the present study was designed specifically to test whether this apparent blunted response of the whole heart to training can be accounted for by altered mechanical properties at the cellular level. Adult rats were trained for 5 weeks under normoxic (N, NT for sedentary and trained animals, respectively) or hypobaric hypoxic (H, HT) conditions. Cardiac morphology and function were evaluated by echocardiography. Calcium Ca2+ sensitivity of the contractile machinery was estimated in skinned cardiomyocytes isolated from the left ventricular (LV) sub-epicardium (Epi) and sub-endocardium (Endo) at short and long sarcomere lengths (SL). Cardiac remodelling was harmonious (increase in wall thickness with chamber dilatation) in NT rats and disharmonious (hypertrophy without chamber dilatation) in HT rats. Contrary to NT rats, HT rats did not exhibit enhancement in global cardiac performance evaluated by echocardiography. Stretch- dependent Ca2+ sensitization of the myofilaments (cellular index of the Frank-Starling mechanism) increased from Epi to Endo in N rats. Training in normoxic conditions further increased this stretch-dependent Ca2+ sensitization. Chronic hypoxia did not significantly affect myofibrilar Ca2+ sensitivity. In contrast, high-altitude training decreased Ca2+ sensitivity of the myofilaments at both SL, mostly in Endo cells, resulting in a loss of the transmural gradient of the stretch-dependent Ca2+ sensitization. Expression of myosin heavy chain isoforms was affected both by training and chronic hypoxia but did not correlate with mechanical data. Training at sea level increased the transmural gradient of stretch-dependent Ca2+ sensitization of the myofilaments, accounting for an improved Frank-Starling mechanism. High-altitude training depressed myofilament response to Ca2+, especially in the Endo layer. This led to a reduction in

  10. Update in the understanding of altitude-induced limitations to performance in team-sport athletes.

    Science.gov (United States)

    Billaut, François; Aughey, Robert J

    2013-12-01

    The internationalism of field-based team sports (TS) such as football and rugby requires teams to compete in tournaments held at low to moderate altitude (∼1200-2500 m). In TS, acceleration, speed and aerobic endurance are physical characteristics associated with ball possession and, ultimately, scoring. While these qualities are affected by the development of neuromuscular fatigue at sea level, arterial hypoxaemia induced by exposure to altitude may further hinder the capacity to perform consecutive accelerations (CAC) or sprint endurance and thereby change the outcome of a match. The higher the altitude, the more severe the hypoxaemia, and thus, the larger the expected decline in aerobic endurance, CAC and match running performance. Therefore, it is critical for athletes and coaches to understand how arterial hypoxaemia affects aerobic endurance and CAC and the magnitude of decline they may face at altitude for optimal preparation and increased chances of success. This mini review summarises the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches at natural altitude, and analyses the latest findings about the consequences of arterial hypoxaemia on the relationship between peripheral perturbations, neural adjustments and performance during repeated sprints or CAC. Finally, we briefly discuss how altitude training can potentially help athletes prepare for competition at altitude.

  11. Generalized Sheet Transition Condition FDTD Simulation of Metasurface

    Science.gov (United States)

    Vahabzadeh, Yousef; Chamanara, Nima; Caloz, Christophe

    2018-01-01

    We propose an FDTD scheme based on Generalized Sheet Transition Conditions (GSTCs) for the simulation of polychromatic, nonlinear and space-time varying metasurfaces. This scheme consists in placing the metasurface at virtual nodal plane introduced between regular nodes of the staggered Yee grid and inserting fields determined by GSTCs in this plane in the standard FDTD algorithm. The resulting update equations are an elegant generalization of the standard FDTD equations. Indeed, in the limiting case of a null surface susceptibility ($\\chi_\\text{surf}=0$), they reduce to the latter, while in the next limiting case of a time-invariant metasurface $[\\chi_\\text{surf}\

  12. The Impact of Preparation: Conditions for Developing Professional Knowledge through Simulations

    Science.gov (United States)

    Sjöberg, David; Karp, Staffan; Söderström, Tor

    2015-01-01

    This article examines simulations of critical incidents in police education by investigating how activities in the preparation phase influence participants' actions and thus the conditions for learning professional knowledge. The study is based on interviews in two stages (traditional and stimulated recall interviews) with six selected students…

  13. Pharmacological Correction of the Human Functional State in High Altitude Conditions

    Science.gov (United States)

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ...Cholesterol, Adaptation Paper presented at the RTO HFM Symposium on "Operational Medical Issues in Hypo- and Hyperbaric Conditions", held in Toronto...T.D., 1986, Recovery after Extreme Hypobaric Hypoxia as a Method of Study of Antihypoxic Activity of Chemical Compounds. In: Farmakologicheskaya

  14. Impacts of more frequent droughts on a relict low-altitude Pinus uncinata stand in the French Alps

    Directory of Open Access Journals (Sweden)

    Christophe eCorona

    2015-01-01

    Full Text Available Cold microclimatic conditions provide exceptional microhabitats to Pinus uncinata stands occurring at abnormally low altitudes in seven paleorefugia of the northern French Alps. Here, P. uncinata is located at the lower bounds of its ecological limits and therefore expected to provide a sensitive indicator of climate change processes. We used dendrochronological analysis to study the growth patterns of closely spaced chronologies across an elevational transect and compare a relict low-altitude to a P. uncinata stand located at the alpine treeline. Two detrending procedures are used to reveal high and low-frequency wavelengths embedded in annually resolved ring-width series. Growth response of P. uncinata to instrumental temperature and precipitation data is investigated by means of moving response function analyses. Results show an increase in the sensitivity of tree-ring widths to drought during previous summer in both stands. At the treeline stand, an increasing correlation with fall temperature is observed whereby low-frequency variability of fall temperature and radial tree growth increased in two synchronous steps around ~1930 and from ~1980–present. At the low-altitude stand, P. uncinata appears more drought sensitive and exhibits a sharp growth decline since the mid-1980s, coinciding with increasing summer temperatures. Growth divergence between the two stands can be observed since the mid-1980s. We argue that the positive growth trend at the high-altitude stand is due to increasing fall temperatures which would favor the formation of metabolic reserves in conjunction with atmospheric CO2 enrichment that in turn would facilitate improved water use efficiency. At the relict low-altitude stand, in contrast, it seems that improved water use efficiency cannot compensate for the increase in summer temperatures.

  15. Altitude training for elite endurance performance: a 2012 update.

    Science.gov (United States)

    Fudge, Barry W; Pringle, Jamie S M; Maxwell, Neil S; Turner, Gareth; Ingham, Stephen A; Jones, Andrew M

    2012-01-01

    Altitude training is commonly used by endurance athletes and coaches in pursuit of enhancement of performance on return to sea level. The purpose of the current review article was to update and evaluate recent literature relevant to the practical application of altitude training for endurance athletes. Consequently, the literature can be considered in either of two categories: performance-led investigations or mechanistic advancements/insights. Each section discusses the relevant literature and proposes future directions where appropriate.

  16. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    International Nuclear Information System (INIS)

    Chirkov, D; Avdyushenko, A; Panov, L; Bannikov, D; Cherny, S; Skorospelov, V; Pylev, I

    2012-01-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part – the turbine itself – is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  17. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis.

    Science.gov (United States)

    Gore, Christopher J; Sharpe, Ken; Garvican-Lewis, Laura A; Saunders, Philo U; Humberstone, Clare E; Robertson, Eileen Y; Wachsmuth, Nadine B; Clark, Sally A; McLean, Blake D; Friedmann-Bette, Birgit; Neya, Mitsuo; Pottgiesser, Torben; Schumacher, Yorck O; Schmidt, Walter F

    2013-12-01

    To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of the effects of altitude used in a random effects meta-analysis to obtain an overall estimate of the effect of altitude, with separate analyses during altitude and postaltitude. In addition, within-subject differences from the prealtitude phase for altitude participant and all the data on control participants were used to estimate the analytical SD. The 'true' between-subject response to altitude was estimated from the within-subject differences on altitude participants, between the prealtitude and during-altitude phases, together with the estimated analytical SD. During-altitude Hbmass was estimated to increase by ∼1.1%/100 h for LHTL and classic altitude. Postaltitude Hbmass was estimated to be 3.3% higher than prealtitude values for up to 20 days. The within-subject SD was constant at ∼2% for up to 7 days between observations, indicative of analytical error. A 95% prediction interval for the 'true' response of an athlete exposed to 300 h of altitude was estimated to be 1.1-6%. Camps as short as 2 weeks of classic and LHTL altitude will quite likely increase Hbmass and most athletes can expect benefit.

  18. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  19. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  20. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man.

    Science.gov (United States)

    Basu, M; Pal, K; Prasad, R; Malhotra, A S; Rao, K S; Sawhney, R C

    1997-06-01

    High altitude-induced alterations in pituitary, gonadal and adrenal hormones were studied in (i) eugonadal men from the armed forces who were resident at sea level (SL), (ii) SL residents staying at an altitude of 3542 m for periods ranging from 3 to 12 months (acclimatized lowlanders, ALL), (iii) ALL who stayed at 6300 m for 6 months, (iv) ALL who trekked from 3542 to 5080 m and stayed at an altitude of more than 6300 m in the glacier region for 6 months, and (v) high-altitude natives (HAN) resident at an altitude of 3300-3700 m. Circulating levels of LH, FSH, prolactin, cortisol, testosterone, dihydrotestosterone (DHT) and progesterone in ALL at 3542 m and in HAN were not significantly different (p > 0.05) from the SL control values. When the ALL living at 3542 m trekked to an extreme altitude of 5080 m, their testosterone levels showed a significant decrease (p 0.05) from the SL values. The LH levels after trekking to 5080 m were significantly higher (p 0.05) from the SL values. Plasma progesterone levels tended to increase on arrival at 5080 m but a significant increase (p < 0.001) was evident only after a 6-month stay at extreme altitude. These observations suggest that prolonged residence at lower as well as at extreme altitude does not appreciably alter blood levels of pituitary, gonadal or adrenal hormones except for plasma levels of progesterone. The exact mechanism and significance of this increase remains unknown, but may be important in increasing the sensitivity of the hypoxic ventilatory response and activation of haemoglobin synthesis.

  2. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  3. Comparative Study of Wing Lift Distribution Analysis for High Altitude Long Endurance (HALE) Unmaned Aerial Vehicle

    Science.gov (United States)

    Silitonga, Faber Y.; Agoes Moelyadi, M.

    2018-04-01

    The development of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) has been emerged for both civil and military purposes. Its ability of operating in high altitude with long endurance is important in supporting maritime applications.Preliminary analysis of HALE UAV lift distribution of the wing presented to give decisive consideration for its early development. Ensuring that the generated lift is enough to compensate its own weight. Therotical approach using Pradtl’s non-linear lifting line theory will be compared with modern numerical approach using Computational Fluid Dynamics (CFD). Results of wing lift distribution calculated from both methods will be compared to study the reliability of it. HALE UAV ITB has high aspect ratio wing and will be analyze at cruise flight condition. The result indicates difference between Non-linear Lifting Line and CFD method.

  4. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  5. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  6. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  7. Survival of Lactobacillus delbrueckii UFV H2b20 in fermented milk under simulated gastric and intestinal conditions.

    Science.gov (United States)

    da Conceição, L L; Leandro, E S; Freitas, F S; de Oliveira, M N V; Ferreira-Machado, A B; Borges, A C; de Moraes, C A

    2013-09-01

    The survival of Lactobacillus delbrueckii UFV H2b20 was assessed in fermented milk, both during the storage period and after exposure to simulated gastric and intestinal juices, as well the detection of the gene fbpA involved in adherence to human gastrointestinal tract. L. delbrueckii UFV H2b20 remained stable and viable for 28 days under refrigerated storage conditions. After one day of storage, that strain exhibited a one-log population reduction following exposure in tandem to simulated gastric and intestinal juices. After 14 days of storage, a two-log reduction was observed following 90 min of exposure to the simulated gastric conditions. However, the strain did not survive following exposure to the simulated intestinal juice. The observed tolerance to storage conditions and resistance to the simulated gastric and intestinal conditions confirm the potential use of L. delbrueckii UFV H2b20 as a probiotic, which is further reinforced by the detection of fbpA in this strain.

  8. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    Directory of Open Access Journals (Sweden)

    Tania dos Reis Mendonça

    2016-03-01

    Full Text Available ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of altitude in Divinolândia, São Paulo State, Brazil. The Chardonnay vines (clone 96, grafted onto 1103 Paulsen rootstock and trained in a vertical shoot positioning trellis system, were assessed. Vegetative vigor, bud fruitfulness, production and physicochemical composition of grapes were evaluated during 2014 and 2015 growing seasons. The Royat pruning induced higher vegetative vigor and increased the bud fruitfulness, the cluster number and the productivity of Chardonnay vine when compared to Guyot pruning. Even though the increase on yield was observed, there was no effect of pruning type on grape final quality. Therefore, the choice of pruning method in function of variety genetic characteristics and their interaction with environment can optimize the vineyard profitability. In the Brazilian southeast, the Royat system is the most suitable one to grow Chardonnay for sparkling wines production.

  9. Effects of high altitude training on exercise capacity: fact or myth.

    Science.gov (United States)

    de Paula, Paula; Niebauer, Josef

    2012-03-01

    High altitude training has become a mainstay in endurance sports, with live high-train low as the current protocol of choice. Athletes either live or sleep in artificial or natural hypoxic conditions with the aim to increase serum erythropoietin concentrations, which are thought to improve maximum oxygen uptake and thus exercise performance. Changes, however, are not very striking and only apparent in so-called responders, who are not a well-defined group and may be as little as 50% of the trained study population. Whereas some studies show minor improvement, others report no change or even worsening. Furthermore, the mechanisms behind the proposed beneficial changes remain obscure and are far from being proven. There is an evident lack of sufficiently powered randomized, double-blinded studies, with training protocols that are identical for all groups and groups that are indeed comparable. Several studies discriminate between responders and non-responders, without clearly assessing the characteristics of the so-called responders. Until this has been done, it remains unclear if such a group really exists and how these subjects are characterized. This, however, would be of immense value, so protocols could be tailored to athletes' needs. Taken together, the current literature on natural or artificial hypoxia somewhat documents improved performance at high but not low altitude.

  10. A quantitative analysis of TIMS data obtained on the Learjet 23 at various altitudes

    Science.gov (United States)

    Jaggi, S.

    1992-01-01

    A series of Thermal Infrared Multispectral Scanner (TIMS) data acquisition flights were conducted on the NASA Learjet 23 at different altitudes over a test site. The objective was to monitor the performance of the TIMS (its estimation of the brightness temperatures of the ground scene) with increasing altitude. The results do not show any significant correlation between the brightness temperatures and the altitude. The analysis indicates that the estimation of the temperatures is a function of the accuracy of the atmospheric correction used for each altitude.

  11. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    Science.gov (United States)

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  12. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  13. Azimuth-Variant Signal Processing in High-Altitude Platform Passive SAR with Spaceborne/Airborne Transmitter

    Directory of Open Access Journals (Sweden)

    Huaizong Shao

    2013-03-01

    Full Text Available High-altitude platforms (HAP or near-space vehicle offers several advantages over current low earth orbit (LEO satellite and airplane, because HAP is not constrained by orbital mechanics and fuel consumption. These advantages provide potential for some specific remote sensing applications that require persistent monitoring or fast-revisiting frequency. This paper investigates the azimuth-variant signal processing in HAP-borne bistatic synthetic aperture radar (BiSAR with spaceborne or airborne transmitter for high-resolution remote sensing. The system configuration, azimuth-variant Doppler characteristics and two-dimensional echo spectrum are analyzed. Conceptual system simulation results are also provided. Since the azimuth-variant BiSAR geometry brings a challenge for developing high precision data processing algorithms, we propose an image formation algorithm using equivalent velocity and nonlinear chirp scaling (NCS to address the azimuth-variant signal processing problem. The proposed algorithm is verified by numerical simulation results.

  14. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  15. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    International Nuclear Information System (INIS)

    Wang, Haitao; Han, En-Hou

    2017-01-01

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  16. Numerical Simulation of Interactions between Corrosion Pits on Stainless Steel under Loading Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haitao; Han, En-Hou [Chinese Academy of Sciences, Shenyang (China)

    2017-04-15

    The interactions between corrosion pits on stainless steel under loading conditions are studied by using a cellular automata model coupled with finite element method at a mesoscopic scale. The cellular automata model focuses on a metal/film/electrolyte system, including anodic dissolution, passivation, diffusion of hydrogen ions and salt film hydrolysis. The Chopard block algorithm is used to improve the diffusion simulation efficiency. The finite element method is used to calculate the stress concentration on the pit surface during pit growth, and the effect of local stress and strain on anodic current is obtained by using the Gutman model, which is used as the boundary conditions of the cellular automata model. The transient current characteristics of the interactions between corrosion pits under different simulation factors including the breakdown of the passive film at the pit mouth and the diffusion of hydrogen ions are analyzed. The analysis of the pit stability product shows that the simulation results are close to the experimental conclusions.

  17. Changes in labial capillary density on ascent to and descent from high altitude [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Edward Gilbert-Kawai

    2016-08-01

    Full Text Available Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021. There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017. Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area, despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains

  18. The peak altitude of H3+ auroral emission: comparison with the ultraviolet

    Science.gov (United States)

    Blake, J.; Stallard, T.; Miller, S.; Melin, H.; O'Donoghue, J.; Baines, K.

    2013-09-01

    The altitude of Saturn's peak auroral emission has previously been measured for specific cases in both the ultraviolet (UV) and the infrared (IR). Gerard et al [2009] concludes that the night side H2 UV emission is within the range of 800 to 1300 km above the 1-bar pressure surface. However, using colour ratio spectroscopy, Gustin et al [2009] located the emission layer at or above 610 km. Measurements of the infrared auroral altitude was conducted by Stallard et al [2012] on H3+ emissions from nine VIMS Cassini images, resulting in a measurement of 1155 ± 25 km above the 1-bar pressure surface. Here we present data analysed in a manner similar to Stallard et al [2012] on the observations of H3+ emission in twenty images taken by the Visual Infrared Mapping Spectrometer (VIMS) aboard the spacecraft Cassini from the years 2006, 2008 and 2012. The bins covered were 3.39872, 3.51284, 3.64853, 4.18299 and 4.33280 μm. These observations were selected from a set of 15,000 as they contained a useful alignment of the aurorae on the limb and the body of the planet. The specific conditions that had to be met for each image were as follows; minimum integration time of 75 milliseconds per pixel, minimum number of pixels in the x and y direction of 32, the image must include the latitude range of 70 to 90 degrees for either hemisphere and the sub spacecraft angle must be between 0 and 20 degrees. This alignment allowed for the altitudinal profiles to be analysed in terms of the difference between the latitude of aurorae on the limb and on the body of Saturn; thus permitting an investigation into the effects of misalignment. In this instance, misalignment was defined as the difference between the latitude of the peak emission latitude on the planet and the latitude of the limb; assuming the aurorae to be approximately circular. A statistical study by Badman et al [2011] showed that centre of the oval is on average offset anti sunward of the pole by about 1.6 degrees. To

  19. Pilot points method for conditioning multiple-point statistical facies simulation on flow data

    Science.gov (United States)

    Ma, Wei; Jafarpour, Behnam

    2018-05-01

    We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.

  20. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate

  1. HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery

    Science.gov (United States)

    Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie

    2014-05-01

    During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical

  2. Realizability conditions for the turbulent stress tensor in large-eddy simulation

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1994-01-01

    The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy

  3. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit

    2006-01-01

    , and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle...... O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia....... The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48...

  4. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude.

    Science.gov (United States)

    Flueck, Martin

    2010-03-01

    Human muscle operates along a continuum of power output, which is set through bioenergetic and anatomical principles. In turn, environmental and intrinsic factors during contractile work exert pronounced control over muscle performance by instructing muscle remodelling. This phenotypic control is specifically indicated with intense exercise at altitude, when extra strain is put on energy supply and the temperature-dependent mechanical efficiency of contraction. While it is classically thought that chronic exposure to hypoxia is maladaptive, repeated short episodes of reduced oxygenation alone or in combination with intense endurance work is now understood to preserve exercise performance when atmospheric oxygen levels are low. Endurance training at moderate altitude exploits the temperature-dependent malleability of energy supply that may maximize metabolic flux at altitude. The contribution of genomic mechanisms is important to the plasticity of metabolic pathways in exercised muscle. This is highlighted by the association of distinct gene polymorphisms in master governors of mitochondrial and vascular growth with exercise phenotypes. Feedforward control of human locomoter muscle by exercise involves the transient upregulation of transcript expression for metabolic processes. The response of the mitochondrial transcriptome to intense exercise is graded with respect to mitochondrial content and deoxygenation during muscle work and reflects exercise-induced mitochondrial biogenesis. This supports the notion that genome-mediated muscle malleability is under feedback control by design constraints of the pathway of oxygen. Thus, activity-dependent and genetic mechanisms contribute to the interindividual difference in the metabolic bottlenecks in athletes performing in exceptional environmental conditions.

  5. Impact of a Newly Constructed Motor Vehicle Road on Altitude Illness in the Nepal Himalayas.

    Science.gov (United States)

    Reisman, Jonathan; Deonarain, Dinesh; Basnyat, Buddha

    2017-12-01

    This study investigated the impact that motor vehicle travel along a newly constructed road has on altitude illness (including acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema). The new road from Besisahar (760 m) to Manang (3540 m) in Nepal was completed in December 2014. We enrolled all patients diagnosed with altitude illness at the Himalayan Rescue Association Manang clinic in fall 2016. Phi coefficients were calculated to test for an association between Nepali ethnicity and rapid ascent by motor vehicle. A retrospective review looked at all patients with altitude illness from fall (September-November) 2010 to spring (February-May) 2016. In fall 2016, more than half (54%) of patients with altitude illness traveled to Manang by motor vehicle, and one-third (33%) reached Manang from low altitude (Besisahar) in less than 48 hours. Nepali nationality had a significant association with motor vehicle travel (phi +0.69, P road (P constructed road from Besisahar to Manang appears to be related to a significant increase in the number of patients with all forms of altitude illness, especially among Nepalis. The authors believe that educational interventions emphasizing prevention are urgently needed. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  7. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  8. The structure of high altitude O+ energization and outflow: a case study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2004-07-01

    Full Text Available Multi-spacecraft observations from the CIS ion spectrometers on board the Cluster spacecraft have been used to study the structure of high-altitude oxygen ion energization and outflow. A case study taken from 12 April 2004 is discussed in more detail. In this case the spacecraft crossed the polar cap, mantle and high-altitude cusp region at altitudes between 4RE and 8RE and 2 of the spacecraft provided data. The oxygen ions were seen as a beam with narrow energy distribution, and increasing field-aligned velocity and temperature at higher altitude further in the upstream flow direction. The peak O+ energy was typically just above the highest energy of observed protons. The observed energies reached the upper limit of the CIS ion spectrometer, i.e. 38keV. Moment data from the spacecraft have been cross-correlated to determine cross-correlation coefficients, as well as the phase delay between the spacecraft. Structures in ion density, temperature and field-aligned flow appear to drift with the observed field-perpendicular drift. This, together with a velocity dispersion analysis, indicates that much of the structure can be explained by transverse heating well below the spacecraft. However, temperature isotropy and the particle flux as a function of field-aligned velocity are inconsistent with a single altitude Maxwellian source. Heating over extended altitude intervals, possibly all the way up to the observation point, seem consistent with the observations.

  9. Detailed simulations of lighting conditions in office rooms lit by daylight and artificial light

    DEFF Research Database (Denmark)

    Iversen, Anne

    In this thesis the effect on the annual artificial lighting demand is investigated by employing detailed simulations of lighting conditions in office rooms lit by daylight and artificial. The simulations of the artificial lighting demand is accomplished through daylight simulations in Radiance....... The detailed simulations includes studies of the resolution of different weather data sets in climate-based daylight modeling. Furthermore, influence of the electrical lighting demand by simulating with dynamic occupancy patterns is studied. Finally the thesis explores the influence of obstructions in an urban...... canyon on the daylight availability within the buildings, and hence on the energy consumption for artificial lights. The results from the thesis demonstrates that the effect on the outcome of the daylight simulations when simulating with typical weather data files for the location of Copenhagen...

  10. High altitude-induced albuminuria in normal man is enhanced by infusion of low-dose dopamine

    DEFF Research Database (Denmark)

    Hansen, J M; Kanstrup, I L; Richalet, J P

    1996-01-01

    -85) (median with quartiles in parentheses) at high altitude. High altitude hypoxia increased Ualb from 3.2 micrograms min-1 (2.7-3.5) to 5.0 micrograms min-1 (3.3-6.6) (p ... flow (ERPF) from 465 ml min-1 (412-503) to 410 ml min-1 (385-451) (p high altitude. Dopamine...... increased ERPF, GFR, CLi, CNa, and decreased the filtration fraction in both environments. Infusion of dopamine further increased Ualb to 10.5 micrograms min-1 (5.5-64.8) (p high altitude, but had no effect on Ualb at sea level. In conclusion, high altitude hypoxia per se increases the urinary...

  11. Prevalence of high altitude pulmonary hypertension among the natives of Spiti Valley--a high altitude region in Himachal Pradesh, India.

    Science.gov (United States)

    Negi, Prakash Chand; Marwaha, Rajeev; Asotra, Sanjeev; Kandoria, Arvind; Ganju, Neeraj; Sharma, Rajesh; Kumar, Ravi V; Bhardwaj, Rajeev

    2014-12-01

    The study aimed to determine the prevalence of high altitude pulmonary hypertension (HAPH) and its predisposing factors among natives of Spiti Valley. A cross-sectional survey study was done on the permanent natives of Spiti Valley residing at an altitude of 3000 m to 4200 m. Demographic characteristics, health behavior, anthropometrics, and blood pressure were recorded. Investigations included recording of 12 lead electrocardiogram (ECG), SaO2 with pulse oximeter, spirometry and echocardiography study, and measurement of Hb levels using the cynmethhemoglobin method. HAPH was diagnosed using criteria; tricuspid regurgitation (TR) gradient of ≥46 mmHg. ECG evidence of RV overload on 12 lead ECG was documented based on presence of 2 out of 3 criteria; R>S in V1, right axis deviation or RV strain, T wave inversion in V1 and V2. Data of 1087 subjects were analyzed who were free of cardiorespiratory diseases to determine the prevalence of HAPH and its predisposing factors. HAPH was recorded in 3.23% (95% C.I. of 0.9-8.1%) and ECG evidence of right ventricular (RV) overload was 1.5% in the study population. Prevalence of HAPH was not different in men and women 2.63% vs. 3.54% p<0.2. Age (Z statistics of 3.4 p<0.0006), hypoxemia (Z statistics of 2.9 p<0.002), and erythrocythemia (Z statistics of 4.7 p<0.003) were independently associated with HAPH. Altitude of residence was not found to be significantly associated with HAPH, although there was a trend of increasing prevalence with increasing altitude. It can be concluded that HAPH is prevalent in 3.23% of natives of Spiti Valley. Increasing age, erythrocythemia and hypoxemia are independent predisposing factors.

  12. Carcass yields of two different strains of ducks raised in different altitude

    Science.gov (United States)

    Dillak, St. Y. F. G.; Mulyantini, N. G. A.; Sipahelut, G. M.; Lole, U. R.

    2018-02-01

    The objective of this research was to determine if there is a difference in performance and carcass yield between ducks of two different strains raised in different altitude. Ducks different strains (Muscovy vs Pekin ducks) and they raised either in high or low altitude (high altitude which was between 500 and 1000m vs low altitude which was below 500m). All ducks were given one of two different diet s and provided water ad libitum. The diets were: 1) commercial diet, and 2) local diet. There were three replicate per treatment and there were 5 ducks per replication. Ducks from each strain were standardized to a similar weight. The results show that Pekin ducks carcass performance was significantly better than Muscovy ducks. Ducks given diet 2 had significantly (Pabdominal fat percentage in Pekin ducks is significantly (Pabdominal fat percentage in Muscovy ducks.

  13. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    Science.gov (United States)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  14. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    Science.gov (United States)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  15. EFECTO DEL ASCENSO SÚBITO A UNA ALTITUD MODERADA SOBRE LA PERCEPCIÓN SUBJETIVA DE ESFUERZO A DIFERENTES INTENSIDADES DE EJERCICIO

    Directory of Open Access Journals (Sweden)

    P. Rodríguez

    2010-09-01

    Full Text Available

     

    RESUMEN

    Dieciséis sujetos varones y sanos (VO2max de 4,06 ± 0,7 l.min-1, fueron sometidos a un protocolo incremental máximo en sendas condiciones de normoxia (N y altitud aguda moderada (Alt en días diferentes. La percepción subjetiva de esfuerzo (RPE y demás parámetros máximos y los relacionados con el umbral de lactato (UL, fueron registrados y comparados entre ambas condiciones. No se observaron diferencias significativas entre los RPEL, RPEC y RPET entre ambas condiciones ni para la máxima capacidad de trabajo ni en el UL. Tampoco se observaron cambios significativos en las potencias de trabajo, VO2 (l.min-1, Ve (l.min-1 y Lac (mMol.l-1 a las intensidades estudiadas. Sin embargo, aunque la Fc registrada al UL no mostró diferencias con la obtenida en Alt, sí se observó una reducción importante en la Fc a la máxima carga de trabajo alcanzada en condiciones de hipoxia (188 ± 9 vs 182 ± 7 ppm para una p<0.001. El ascenso súbito a una altitud moderada no altera la percepción subjetiva de esfuerzo en el UL ni a la máxima capacidad de trabajo. En estas condiciones, la Fc no se muestra tan buen indicador de la intensidad de ejercicio como la percepción de esfuerzo.
    PALABRAS CLAVE: RPE, altitud, hipoxia, umbral láctico.

     

    ABSTRACT

    Sixteen healthy males, were submitted to a maximum incremental test in conditions of normoxia (N and of moderate acute altitude (Alt in two different days. Rating of perceived exertion (RPE, respiratory data, heart rate and lactate were measured during the test. The values at maximum work and at the lactate thresold (LT were compared between both conditions. Meaningful differences between the work, RPE, VO2 (l.min-1, Ve (l.min-1 y Lac (mMol.l-1 were not observed at

  16. Optic neuropathy following an altitude exposure.

    Science.gov (United States)

    Steigleman, Allan; Butler, Frank; Chhoeu, Austin; O'Malley, Timothy; Bower, Eric; Giebner, Stephen

    2003-09-01

    This case report describes a 20-yr-old man who presented with retro-orbital pain and blurred vision in his left eye 3 wk after an altitude exposure in a hypobaric chamber. He was found to have significant deficits in color vision and visual fields consistent with an optic neuropathy in his left eye. The patient was diagnosed with decompression sickness and treated with hyperbaric oxygen with a U.S. Navy Treatment Table VI. All signs and symptoms resolved with a single hyperbaric oxygen treatment but recurred. A head MRI revealed a left frontoethmoid sinus opacity. A concomitant sinusitis was diagnosed. The patient had full resolution of symptoms after a total of four hyperbaric oxygen treatments and antibiotic therapy at 6-wk follow-up. Although a para-infectious etiology for this patient's optic neuropathy cannot be excluded, his history of altitude exposure and significant, rapid response to hyperbaric oxygen treatment strongly implies decompression sickness in this case.

  17. A Novel Approach to Critical Congenital Heart Disease (CCHD Screening at Moderate Altitude

    Directory of Open Access Journals (Sweden)

    Erin Lueth

    2016-07-01

    Full Text Available The American Academy of Pediatrics (AAP has endorsed Critical Congenital Heart Disease (CCHD screening using pulse oximetry nationwide, but, however, acknowledges that altitude may impact failure rates and alternative algorithms may be required at high altitudes. We therefore evaluated a modified screening protocol at an altitude of 6200 feet with the hypothesis that modifications could decrease failure rates. We evaluated 2001 well, newborn infants ≥35 weeks gestation using a modified protocol, which included a lower saturation cutoff for the first screen (85% instead of the AAP recommended 90% and an oxygen hood intervention between the first two screens. Using our modified screening algorithm, we found a 0.3% failure rate, which was similar to the 0.2% sea-level rate and statistically different from the 1.1% rate identified in a recent study at similar altitude. Had the AAP protocol been used, the failure rate would have increased to 0.8%, which is similar to prior reports near this altitude. Echocardiograms were performed on failing newborns with no CCHD identified. A Birth Defects Registry Database review demonstrated one newborn with CCHD was missed after meeting AAP passing criteria. Overall, this study demonstrates that an alternative algorithm can be implemented at moderate altitude with decreased failure rate and comparable false negative rate.

  18. The GRAD high-altitude balloon flight over Antarctica

    International Nuclear Information System (INIS)

    Eichhorn, G.; Coldwell, R.L.; Dunnam, F.E.; Rester, A.C.; Trombka, J.I.; Starr, R.; Lasche, G.P.

    1989-01-01

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78 degree S over Antarctica for observations of gamma radiation emitted by the radioactive decay of 56 Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software

  19. Acute Exposure of College Basketball Players to Moderate Altitude: Selected Physiological Responses.

    Science.gov (United States)

    Noble, Bruce J.; Maresh, Carl M.

    1979-01-01

    In general, basketball players with moderately high aerobic power who reside at an altitude of 1,000 m do not display the hypoxic response to an altitude of 2,200 m expected of sea level residents and aerobically trained athletes. (JD)

  20. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    Science.gov (United States)

    Kopardekar, Parimal H.

    2016-01-01

    in the airspace. In its most mature form, the UTM system could be developed using autonomicity characteristics that include self-configuration, self-optimization and self-protection. The self-configuration aspect could determine whether the operations should continue given the current andor predicted windweather conditions. NASA envisions concepts for two types of possible UTM systems. The first type would be a Portable UTM system, which would move from between geographical areas and support operations such as precision agriculture and disaster relief. The second type of system would be a Persistent UTM system, which would support low-altitude operations and provide continuous coverage for a geographical area. Either system would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. What is NASA doing to test the technologies? NASA's near-term goal is the development and demonstration of a possible future UTM system that could safely enable low-altitude airspace and UAS operations. Working alongside many committed government, industry and academic partners, NASA is leading the research, development and testing that is taking place in a series of activities called Technology Capability Levels (TCL), each increasing in complexity. UTM TCL1 concluded field testing in August 2015 and is undergoing additional testing at an FAA site.