WorldWideScience

Sample records for simulate laser interstitial

  1. Interstitial laser thermotherapy in neurosurgery: a review

    NARCIS (Netherlands)

    Menovsky, T.; Beek, J. F.; van Gemert, M. J.; Roux, F. X.; Bown, S. G.

    1996-01-01

    One of the most recent laser treatment modalities in neurosurgery is interstitial laser thermotherapy (ILTT). In this review, experimental and clinical studies concerning intracranial ILTT are discussed. Two methods for intra-operative control of the laser induced lesions are described; i.e.,

  2. Temperature control in interstitial laser cancer immunotherapy

    Science.gov (United States)

    Bandyopadhyay, Pradip K.; Holmes, Kyland; Burnett, Corinthius; Zharov, Vladimir P.

    2003-07-01

    Positive results of Laser-Assisted Cancer Immunotherapy (LACI) have been reported previously in the irradiation of superficial tumors. This paper reports the effect of LACI using laser interstitial therapy approach. We hypothesize that the maximum immuno response depends on laser induced tumor temperature. The measurement of tumor temperature is crucial to ensure necrosis by thermal damage and immuno response. Wister Furth female rats in this study were inoculated with 13762 MAT B III rat mammary adinocarcinoma. LACI started seven to ten days following inoculation. Contrary to surface irradation, we applied laser interstitial irradiation of tumor volume to maximize the energy deposition. A diode laser with a wavelength of 805 nm was used for tumor irradiation. The laser energy was delivered inside the tumor through a quartz fiber. Tumor temperature was measured with a micro thermocouple (interstitial), while the tumor surface temperature was controlled with an IR detector. The temperature feedback demonstrates that it is possible to maintain the average tumor temperature at the same level with reasonable accuracy in the desired range from 65°C-85°C. In some experiments we used microwave thermometry to control average temperature in deep tissue for considerable period of time, to cause maximum thermal damage to the tumor. The experimental set-up and the different temperature measurement techniques are reported in detail, including the advantages and disadvantages for each method.

  3. Sapphire capillary interstitial irradiators for laser medicine

    Science.gov (United States)

    Shikunova, I. A.; Dolganova, I. N.; Dubyanskaya, E. N.; Mukhina, E. E.; Zaytsev, K. I.; Kurlov, V. N.

    2018-04-01

    In this paper, we demonstrate instruments for laser radiation delivery based on sapphire capillary needles. Such sapphire irradiators (introducers) can be used for various medical applications, such as photodynamic therapy, laser hyperthermia, laser interstitial thermal therapy, and ablation of tumors of various organs. Unique properties of sapphire allow for effective redistribution of the heat, generated in biological tissues during their exposure to laser radiation. This leads to homogeneous distribution of the laser irradiation around the needle, and lower possibility of formation of the overheating focuses, as well as the following non-transparent thrombi.

  4. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    Science.gov (United States)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  5. The immunological response created by interstitial and non-invasive laser immunotherapy

    Science.gov (United States)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; West, Connor L.; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. LIT can be performed through either interstitial or non-invasive laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. The development of LIT has been focused on creating an optimal immune response created by irradiating the tumor. One important factor that could enhance the immune response is the duration of laser irradiation. Irradiating the tumor for a shorter or longer amount of time could weaken the immune response created by LIT. Another factor that could weaken this immune response is the proliferation of regulatory T cells (TRegs) in response to the laser irradiation. However, low dose cyclophosphamide (CY) can help suppress the proliferation of TRegs and help create a more optimal immune response. An additional factor that could weaken the effectiveness of LIT is the selectivity of the laser. If LIT is performed non-invasively, then deeply embedded tumors and highly pigmented skin could cause an uneven temperature distribution inside the tumor. To solve this problem, an immunologically modified carbon nanotube system was created by using an immunoadjuvant known as glycated chitosan (GC) as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. In this preliminary study, tumor-bearing rats were treated with LIT either interstitially by an 805-nm laser with GC and low-dose CY, or non-invasively by a 980-nm laser with SWNT-GC. The goal was to observe the effects of CY on the immune response induced by LIT and to also determine the effect of irradiation duration for

  6. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  7. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    International Nuclear Information System (INIS)

    Salas, Nelson Jr.; Manns, Fabrice; Milne, Peter J; Denham, David B; Minhaj, Ahmed M; Parel, Jean-Marie; Robinson, David S

    2004-01-01

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T 3 mm 3 ) coagulation volume without unwanted tissue liquefaction and carbonization

  8. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

    International Nuclear Information System (INIS)

    Pandeya, G.D.; Klaessens, J.H.G.M.; Greuter, M.J.W.; Oudkerk, M.; Schmidt, B.; Flohr, T.; Hillegersberg, R. van

    2011-01-01

    To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All tissues were imaged at least once before and 7 times during laser heating using CT and temperatures were simultaneously measured with 5 calibrated thermal sensors. The dependency of the average CT numbers as a function of temperature was analysed with regression analysis and a CT thermal sensitivity was derived. During laser heating, the growing hypodense area was observed around the laser source and that area showed an increase as a function of time. The formation of hypodense area was caused by declining in CT numbers at increasing temperatures. The regression analysis showed an inverse linear dependency between temperature and average CT number with -0.65 ± 0.048 HU/ C (R 2 = 0.75) for the range of 18-85 C in bovine liver. The non-invasive CT based thermometry during interstitial laser heating is feasible in the bovine liver. CT based thermometry could be further developed and may be of potential use during clinical LITT of the liver. (orig.)

  9. Interstitial laser coagulation in the treatment of benign prostatic hyperplasia using a diode laser system: results of an evolving technology

    NARCIS (Netherlands)

    Mårtenson, A. C.; de la Rosette, J. J. M. C. H.

    1999-01-01

    Interstitial laser coagulation (ILC) treatment is a recent technique in the treatment of BPH that is evolving rapidly. The results of a prospective randomised study vs transurethral resection of the prostate (TURP) is presented as well as results of patients treated with a temperature sensing laser

  10. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Nelson Jr. [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Manns, Fabrice [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Milne, Peter J [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, 1638 NW 10th Ave, McKnight Bldg, Miami, FL 33136 (United States); Denham, David B [Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami School of Medicine, 1638 NW 10th Ave, McKnight Bldg, Miami, FL 33136 (United States); Minhaj, Ahmed M [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Parel, Jean-Marie [Biomedical Optics and Laser Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, PO Box 248294, Coral Gables, FL 33124 (United States); Robinson, David S [Center for Breast Care, St Luke' s Hospital of Kansas City, 4400 Broadway, Suite 509, Kansas City, MO 64111 (United States)

    2004-05-07

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 deg. C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 x 10{sup 3} mm{sup 3}) coagulation volume without unwanted tissue liquefaction and carbonization.

  11. Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.

    Science.gov (United States)

    Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun

    2014-01-01

    This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.

  12. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule

    DEFF Research Database (Denmark)

    Døssing, Helle; Bennedbaek, Finn Noe; Hegedüs, Laszlo

    2003-01-01

    effects and often necessitates multiple treatment sessions. We present a case of a 17-year-old female successfully treated with ultrasound (US)-guided percutaneous interstitial laser photocoagulation (ILP) for an AFTN. Initially, she had a serum thyrotropin (TSH) of 0.01 mU/L and normal peripheral thyroid.......9 mL (40% reduction) without further alterations during an additional 9 months of follow-up. Side effects were transient thyrotoxicosis and local pain as seen with PEI. To our knowledge, this is the first reported case of ILP used in a patient with a pretoxic thyroid nodule. US-guided thermic tissue...

  13. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron

    International Nuclear Information System (INIS)

    Wirth, B.D.; Odette, G.R.; California Univ., Santa Barbara, CA; Maroudas, D.; Lucas, G.E.; California Univ., Santa Barbara, CA

    1997-01-01

    Energetic primary recoil atoms from fast neutron irradiation generate both isolated point defects and clusters of vacancies and interstitials. Self-interstitial mobility as well as defect cluster stability and mobility play key roles in the subsequent fate of defects and, hence, in the overall microstructural evolution under irradiation. Self-interstitials and two, three and four-member self-interstitial clusters are highly mobile at low temperatures as observed in molecular-dynamics simulations and high mobility probably also extends to larger clusters. In this study, the morphology, energetics and mobility of self-interstitials and small self-interstitial clusters in α-iron are studied by molecular-statics and molecular-dynamics simulations using a Finnis-Sinclair many-body interatomic potential. Self-interstitial migration is found to be a two-step process consisting of a rotation out of the split-dumbbell configuration into the split-dumbbell configuration and translational jumps through the crowdion configuration before returning to the dumbbell configuration. Self-interstitial clusters of type split-interstitials assembled on adjacent {110} planes migrate along directions in an amoeba-like fashion by sequential local dissociation and re-association processes. (orig.)

  14. Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)

    Science.gov (United States)

    Pham, Ngot T.; Lee, Seul Lee; Lee, Yong Wook; Kang, Hyun Wook

    2017-02-01

    Temperature variations are often monitored by using sensors operating at the site of treatment during Laser-induced Interstitial Thermotherapy (LITT). Currently, temperature measurements during LITT have been performed with thermocouples (TCs). However, TCs could directly absorb laser light and lead to self-heating (resulting in an over-estimation). Fiber Bragg grating (FBG) sensors can instead overcome this limitation of the TCs due to its insensitivity to electromagnetic interference. The aim of the current study was to quantitatively evaluate the FBG temperature sensor with a K-type thermocouple to real-time monitor temperature increase in ex vivo tissue during diffuser-assisted LITT. A 4-W 980-nm laser was employed to deliver optical energy in continuous mode through a 600-µm core-diameter diffusing applicator. A goniometric measurement validated the uniform light distribution in polar and longitudinal directions. The FBG sensor showed a linear relationship (R2 = 0.995) between wavelength shift and temperature change in air and tissue along with a sensitivity of 0.0114 nm/˚C. Regardless of sensor type, the measured temperature increased with irradiation time and applied power but decreased with increasing distance from the diffuser surface. The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT (4.0±0.3-mm at 99˚C after 120-s). The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT s irradiation). The FBG-integrated diffuser was able to monitor the interstitial temperature in tubular tissue (porcine urethra) real-time during laser treatment. However, the thermal coagulation thickness of the porcine urethra was measured to be 1.5 mm that was slightly thicker ( 20%) than that of the bovine liver after 4-W 980-nm laser for 48 s. The FBG temperature sensor can be a feasible tool to real-time monitor the temporal development of the temperature during the diffuser-assisted LITT to

  15. The role of silicon interstitials in the deactivation and reactivation of high concentration boron profiles

    Energy Technology Data Exchange (ETDEWEB)

    Aboy, Maria [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain)]. E-mail: marabo@tel.uva.es; Pelaz, Lourdes [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Marques, Luis A. [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Lopez, Pedro [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Barbolla, Juan [Campus Miguel Delibes, University of Valladolid, 47011 Valladolid (Spain); Venezia, V.C. [Philips Research Leuven, Leuven (Belgium); Duffy, R. [Philips Research Leuven, Leuven (Belgium); Griffin, Peter B. [Stanford University, Stanford, CA (United States)

    2004-12-15

    Boron cluster formation and dissolution in high concentration B profiles and the role of Si interstitials in these processes are analyzed by kinetic non-lattice Monte Carlo atomistic simulations. For this purpose, we use theoretical structures as simplifications of boron implants into preamorphized Si, followed by low-temperature solid phase epitaxial (SPE) regrowth or laser thermal annealing process. We observe that in the presence of high B concentrations (above 10{sup 20} cm{sup -3}), significant deactivation occurs during high temperature anneal, even in the presence of only equilibrium Si interstitials. The presence of additional Si interstitials from an end of range (EOR) damage region accelerates the deactivation process and makes B deactivation slightly higher. We show that B deactivation and reactivation processes can be clearly correlated to the evolution of Si interstitial defects at the EOR. The minimum level of activation occurs when the Si interstitial defects at EOR dissolve or form very stable defects.

  16. Computer simulation of strain-induced ordering in interstitial solutions based on the b.c.c. Ta lattice

    International Nuclear Information System (INIS)

    Blanter, M.S.; Khachaturyan, A.G.

    1980-01-01

    A computer simulation is made of strain-induced ordering of interstitial atoms within octahedral interstices in the Ta host lattice. The calculation technique allows to take into account infinite-range strain-induced interaction. Computer simulation of ordering process enables to model the sequence of structure changes which occur during the ordering process and to find the equilibrium structure of the stable interstitial superstructures. The structures of high-temperature ordering phases obtained by the method of static concentration waves coincide with those obtained by means of computer simulation. However computer simulation enables to predict the structures of low-temperature ordered phases which cannot be obtained by the method of concentration waves. Comparison of computer simulation results and structures of observed ordered phases demonstrates good agreement. (author)

  17. PHOTODYNAMIC THERAPY FOR HEAD AND NECK BASAL CELL SKIN CANCER WITH ADDITIONAL INTERSTITIAL LASER IRRADIATION

    Directory of Open Access Journals (Sweden)

    V. N. Kapinus

    2017-01-01

    Full Text Available The article is devoted to the development and evaluation of the effi ciency of photodynamic therapy (PDT with photosensitizer photolon with additional interstitial laser irradiation in patients with head and  neck basal cell skin cancer (BCSC. Treatment was performed in 55  patients. On the fi rst stage, all patients underwent photodynamic  therapy with interstitial irradiation using fl exible optical fi bers with  cylindrical diffuser, on the second stage PDT with distant delivery of  laser at a dose of 50-300 J/cm2 was carried out. During the follow- up period of 6 months to 4 years in 13 (23.6% of the 55 patients a  recurrence of the disease was diagnosed. A higher rate of recurrence was in the group of patients who underwent PDT for recurrent  neoplasms compared with patients with primary disease (37.5% and 4.3%, respectively, in patients with endophytic growth of the tumor compared to patients with exophytic component (30.0% and 16.0%,respectively and in patients with large tumors (up to 2.0 cm – 14.3%, from 2.0 to 5.0 cm – 16.7% and more than 5.0 cm – 54.4%.

  18. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, L., E-mail: lmbarnard@wisc.edu; Morgan, D., E-mail: ddmorgan@wisc.edu

    2014-06-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion.

  19. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    International Nuclear Information System (INIS)

    Barnard, L.; Morgan, D.

    2014-01-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion

  20. Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date

    Directory of Open Access Journals (Sweden)

    Shukla ND

    2017-09-01

    Full Text Available Navika D Shukla, Allen L Ho, Arjun V Pendharkar, Eric S Sussman, Casey H Halpern Department of Neurosurgery, Stanford University, Stanford, CA, USA Abstract: Medically intractable epilepsy is associated with increased morbidity and mortality. For those with focal epilepsy and correlated electrophysiological or radiographic features, open surgical resection can achieve high rates of seizure control, but can be associated with neurologic deficits and cognitive effects. Recent innovations have allowed for more minimally invasive methods of surgical seizure control such as magnetic resonance-guided laser interstitial therapy (MRgLITT. MRgLITT achieves the goal of ablating seizure foci while preserving neuropsychological function and offering real-time feedback and monitoring of tissue ablation. This review summarizes the utilization of MRgLITT for mesial temporal lobe epilepsy and other seizure disorders. Overall, the efficacy of MRgLITT is comparable to that of open surgery and offers a less invasive approach in patients with significantly less morbidity. Keywords: laser ablation, MRgLITT, mesial temporal lobe epilepsy, epilepsy surgery, corpus callostomy

  1. The behavior of interstitials in irradiated graphite

    International Nuclear Information System (INIS)

    Pedraza, D.F.

    1991-01-01

    A computer model is developed to simulate the behavior of self-interstitials with particular attention to clustering. Owing to the layer structure of graphite, atomistic simulations can be performed using a large parallelepipedic supercell containing a few layers. In particular, interstitial clustering is studied here using a supercell that contains two basal planes only. Frenkel pairs are randomly produced. Interstitials are placed at sites between the crystal planes while vacancies are distributed in the two crystal planes. The size of the computational cell is 20000 atoms and periodic boundary conditions are used in two dimensions. Vacancies are assumed immobile whereas interstitials are given a certain mobility. Two point defect sinks are considered, direct recombination of Frenkel pairs and interstitial clusters. The clusters are assumed to be mobile up to a certain size where they are presumed to become loop nuclei. Clusters can shrink by emission of singly bonded interstitials or by recombination of a peripheral interstitial with a neighboring vacancy. The conditions under which interstitial clustering occurs are reported. It is shown that when clustering occurs the cluster size population gradually shifts towards the largest size cluster. The implications of the present results for irradiation growth and irradiation-induced amorphization are discussed

  2. First-principles studies of di-arsenic interstitial and its implications for arsenic-interstitial diffusion in crystalline silicon

    International Nuclear Information System (INIS)

    Kim, Yonghyun; Kirichenko, Taras A.; Kong, Ning; Larson, Larry; Banerjee, Sanjay K.

    2007-01-01

    We propose new structural configurations and novel diffusion mechanisms for neutral di-arsenic interstitial (As 2 I 2 ) in silicon with a first-principle density functional theory simulation within the generalized gradient approximation. With an assumption of excess silicon interstitials and high arsenic concentrations, neutral As 2 I 2 is expected to be favorable and mobile with low-migration barrier. Moreover, because the diffusion barrier of arsenic interstitial pairs (AsI) is very low ( 2 I 2 can be easily formed and likely intermediate stage of larger arsenic interstitial clusters

  3. Simulations of laser undulators

    Science.gov (United States)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  4. Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

    Directory of Open Access Journals (Sweden)

    Wei Yao

    2012-01-01

    Full Text Available Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells caused by interstitial fluid flow. The numerical simulation results show the following: (i the parallel nature of capillaries will lead to directional interstitial fluid flow, which may explain the long interstitial tissue channels or meridians observed in some experiments; (ii when the distribution of capillaries is staggered, increases in the velocity alternate, and the velocity tends to be uniform, which is beneficial for substance exchange; (iii interstitial fluid flow induces a shear stress, with magnitude of several Pa, on interstitial cell membranes, which will activate cells and lead to a biological response; (iv capillary and interstitial parameters, such as capillary density, blood pressure, capillary permeability, interstitial pressure, and interstitial porosity, affect the shear stress on cell surfaces. The numerical simulation results suggest that in vivo interstitial fluid flow constitutes the mechanical environment of cells and plays a key role in guiding cell activities, which may explain the meridian phenomena and the acupuncture effects observed in experiments.

  5. Development of stereotactically guided laser interstitial thermotherapy of breast cancer: in situ measurement and analysis of the temperature field in ex vivo and in vivo adipose tissue.

    Science.gov (United States)

    Milne, P J; Parel, J M; Manns, F; Denham, D B; Gonzalez-Cirre, X; Robinson, D S

    2000-01-01

    The size (0.5-1.0 cm) of early nonpalpable breast tumors currently detected by mammography and confirmed by stereotactic core biopsy is of the order of the penetration depth of near infrared photons in breast tissue. In principle, stereotactically biopsied tumors, therefore, could be safely and efficiently treated with laser thermotherapy. The aim of the current study is to confirm the controlled heating produced by clinically relevant power levels delivered with an interstitial laser fiber optic probe adapted for use with stereotactic mammography and biopsy procedures. Temperature increases and the resultant thermal field produced by the irradiation of ex vivo (porcine and human) and in vivo (porcine) tissue models appropriate to the treatment of human breast tissue by using cw Nd:YAG laser radiation delivered with a interstitial fiber optic probe with a quartz diffusing tip, were recorded with an array of fifteen 23-gauge needle thermocouple probes connected to a laboratory computer-based data acquisition system. By using a stepwise decreasing power cycle to avoid tissue charring, acceptably symmetric thermal fields of repeatable volumetric dimensions were obtained. Reproducible thermal gradients and predictable tissue necrosis without carbonization could be induced in a 3-cm-diameter region around the fiber probe during a single treatment lasting only 3 minutes. The time-dependences of the temperature rise of the thermocouples surrounding the LITT probe were quantitatively modeled with simple linear functions during the applied laser heating cycles. Analysis of our experimental results show that reproducible, symmetric and predictable volumetric temperature increases in time can be reliably produced by interstitial laser thermotherapy. Copyright 2000 Wiley-Liss, Inc.

  6. Migration of di- and tri-interstitials in silicon

    International Nuclear Information System (INIS)

    Posselt, M.; Gao, F.; Zwicker, D.

    2005-01-01

    A comprehensive study on the migration of di- and tri-interstitials in silicon is performed using classical molecular dynamics simulations with the Stillinger-Weber potential. The initial di- and tri-interstitial configurations with the lowest formation energies are determined, and then, the defect migration is investigated for temperatures between 800 and 1600 K. The defect diffusivity and the self-diffusion coefficient per defect are calculated. Compared to the mono-interstitial, the di-interstitial migrates faster, whereas the tri-interstitial diffuses slower. The migration mechanism of the di-interstitial shows a pronounced dependence on the temperature. Like in the case of the mono-interstitial, the mobility of the di-interstitial is higher than the mobility of the lattice atoms during the defect diffusion. On the other hand, the tri-interstitial mobility is lower than the corresponding atomic mobility. The implications of the present results for the analysis of experimental data on defect evolution and migration are discussed

  7. Directional interstitial brachytherapy from simulation to application

    Science.gov (United States)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the

  8. International registry results for an interstitial laser BPH treatment device

    Science.gov (United States)

    Conn, Richard L.; Muschter, Rolf; Adams, Curtis S.; Esch, Victor C.

    1996-05-01

    Benign prostatic hyperplasia (BPH) can significantly impair quality of life in older men. Most men over 60 experience some symptoms due to BPH and it is thought that essentially all men would eventually be affected by it if they lived long enough. At present, transurethral resection of the prostate (TURP), a surgical treatment for BPH, is one of the more common procedures performed in the developed world, particularly in the United States. A number of other treatments are also often used, including open prostatectomy, side-firing lasers, and drug therapy. With the population in the developed world rapidly aging, BPH is expected to affect an even larger group of men in the future. Current methods of therapy carry significant disadvantages. Open prostatectomy carries a fairly high risk of impotence and incontinence, as well as sometimes significant risk of death depending on the patient's age and medical conditions. TURP also carries similar risks, albeit reduced, including the risk of substantial blood loss and a small but meaningful risk of death. Side-firing lasers are thought to have a reduced risk of death compared to TURP due to significantly reduced bleeding; however, patients often experience an extended period of pain during voiding due to prolonged tissue sloughing. Drug treatment, although useful for some patients, does not strongly improve symptoms in the majority of patients. Even with the current range of treatments, many patients with symptomatic BPH elect to avoid any current treatment due to risks and side effects. As a possible solution to this problem, previous writers have suggested the possibility of treating BPH through interstitial thermotherapy. In this treatment, prostatic tissue is heated from within the prostate to the point of irreversible necrosis. Healing processes then reduce the volume of the affected tissue, even in the absence of sloughing. This study covers initial human use of such a device, using an 810 nm wavelength diode laser

  9. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  10. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules - a randomised study

    DEFF Research Database (Denmark)

    Døssing, Helle; Bennedbaek, Finn Noe; Hegedüs, Laszlo

    2005-01-01

    AIM: To evaluate the efficacy of ultrasound (US)-guided interstitial laser photocoagulation (ILP) on thyroid function, nodule size and patient satisfaction in benign solitary solid cold thyroid nodules by comparing one ILP session with no treatment in a prospective randomised study. MATERIALS...... and thyroid function was determined by routine assays before and during follow-up. Pressure and cosmetic complaints before and at 6 months were evaluated on a visual analogue scale. ILP was performed under US guidance and with an output power of 2.5-3.5 W. RESULTS: In the ILP group, the nodule volume...

  11. Safety of Laser Interstitial Thermal Therapy in Patients With Pacemakers.

    Science.gov (United States)

    Grewal, Sanjeet S; Gorny, Krzysztof R; Favazza, Christopher P; Watson, Robert E; Kaufmann, Timothy J; Van Gompel, Jamie J

    2018-02-10

    Laser interstitial thermal therapy (LiTT) has increasingly been used as a treatment option for medically refractory epilepsy, tumors, and radiation necrosis. The use of LiTT requires intraoperative magnetic resonance (MR) thermography. This can become an issue in patients with other implanted therapeutic devices such as pacemakers and vagal nerve stimulators due to concerns regarding increases in the specific absorption rate (SAR). This is a technical case report demonstrating a successfully and safely performed LiTT in a 1.5-T magnetic resonance imaging (MRI) in a patient with a pacemaker for mesial temporal sclerosis. An 83-yr-old gentleman who had an implanted cardiac pacemaker presented with medically intractable epilepsy and was confirmed to have mesial temporal sclerosis on imaging. Video electroencephalography demonstrated concordant ipsilateral seizures and semiology. He underwent LiTT for ablation of the mesial temporal lobe. This was performed with the below described protocol with a cardiology nurse monitoring the patient's cardiac condition and a physicist monitoring SAR, and MR imaging quality without any adverse events. This study reports on a protocol of cardiac and MR SAR to safely perform MR-guided LiTT in the setting of traditional pacemakers in patients who are not pacemaker dependent. Copyright © 2018 by the Congress of Neurological Surgeons

  12. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  13. Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte

    Directory of Open Access Journals (Sweden)

    Jeffrey eCassidy

    2015-02-01

    Full Text Available Monte Carlo (MC simulation is recognized as the gold standard for biophotonic simulation, capturing all relevant physics and material properties at the perceived cost of high computing demands. Tetrahedral-mesh-based MC simulations particularly are attractive due to the ability to refine the mesh at will to conform to complicated geometries or user-defined resolution requirements. Since no approximations of material or light-source properties are required, MC methods are applicable to the broadest set of biophotonic simulation problems. MC methods also have other implementation features including inherent parallelism, and permit a continuously-variable quality-runtime tradeoff. We demonstrate here a complete MC-based prospective fluence dose evaluation system for interstitial PDT to generate dose-volume histograms on a tetrahedral mesh geometry description. To our knowledge, this is the first such system for general interstitial photodynamic therapy employing MC methods and is therefore applicable to a very broad cross-section of anatomy and material properties. We demonstrate that evaluation of dose-volume histograms is an effective variance-reduction scheme in its own right which greatly reduces the number of packets required and hence runtime required to achieve acceptable result confidence. We conclude that MC methods are feasible for general PDT treatment evaluation and planning, and considerably less costly than widely believed.

  14. Interstitial laser immunotherapy for treatment of metastatic mammary tumors in rats

    Science.gov (United States)

    Figueroa, Daniel; Joshi, Chet; Wolf, Roman F.; Walla, Jonny; Goddard, Jessica; Martin, Mallory; Kosanke, Stanley D.; Broach, Fred S.; Pontius, Sean; Brown, Destiny; Li, Xiaosong; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2011-03-01

    Thermal therapy has been used for cancer treatment for more than a century. While thermal effect can be direct, immediate, and controllable, it is not sufficient to completely eradicate tumors, particularly when tumors have metastasized locally or to the distant sites. Metastases are the major cause of treatment failure and cancer deaths. Current available therapies, such as surgery, radiation, and chemotherapy, only have limited curative effects in patients with late-stage, metastatic cancers. Immunotherapy has been considered as the ultimate approach for cancer treatment since a systemic, anti-tumor, immunological response can be induced. Using the combination of photothermal therapy and immunotherapy, laser immunotherapy (LIT),a novel immunotherapy modality for late-stage cancer treatment, has been developed. LIT has shown great promise in pre-clinical studies and clinical breast cancer and melanoma pilot trials. However, the skin color and the depth of the tumor have been challenges for effective treatment with LIT. To induce a thermal destruction zone of appropriate size without causing thermal damage on the skin, we have developed interstitial laser immunotherapy (ILIT) using a cylindrical diffuser. To determine the effectiveness of ILIT, we treated the DMBA-4 metastatic tumors in rats. The thermal damage in tumor tissue was studied using TTC immersion and hematoxolin and eosin (H & E) staining. Also observed was the overall survival of the treated animals. Our results demonstrated that the ILIT could impact a much larger tumor area, and it significantly reduced the surface damage compared with the early version of non-invasive LIT. The survival data also indicate that ILIT has the potential to become an effective tool for the treatment of deeper, larger, and metastatic tumors, with reduced side effects.

  15. Modeling of interstitial diffusion of ion-implanted boron

    International Nuclear Information System (INIS)

    Velichko, O.I.; Knyazheva, N.V.

    2009-01-01

    A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)

  16. Modeling of long-range migration of boron interstitials

    International Nuclear Information System (INIS)

    Velichko, O.I.; Burunova, O.N.

    2009-01-01

    A model of the interstitial migration of ion-implanted dopant in silicon during low-temperature thermal treatment has been formulated. It is supposed that the boron interstitials are created during ion implantation or at the initial stage of annealing. During thermal treatment a migration of these impurity interstitials to the surface and in the bulk of a semiconductor occurs. On this basis, a simulation of boron redistribution during thermal annealing for 35 minutes at a temperature of 800 0 C has been carried out. The calculated boron profile agrees well with the experimental data. A number of the parameters describing the interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 0.092 μm at a temperature of 800 0 C. To carry out modeling of ion-implanted boron redistribution, the analytical solutions of nonstationary diffusion equation for impurity interstitials have been obtained. The case of Dirichlet boundary conditions and the case of reflecting boundary on the surface of a semiconductor have been considered. (authors)

  17. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tong Huifeng; Yuan Hong [Institute of Fluid Physics, Chinese Academy of Engineering Physics, P.O. Box 919-101, Mianyang, Sichuan 621900 (China); Tang Zhiping [CAS Key Laboratory for Mechanical Behavior and Design of Materials, Department of Mechanics and Mechanical Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  18. Interstitial laser photocoagulation in the treatment of liver tumors. Personal technique, short term results and complications in patients with normal and impaired liver function; Fotocoagulazione laser-interstiziale ecoguidata dei tumori maligni del fegato: tecnica personale, risultati immediati e complicanze a breve termine nei pazienti con funzionalita' epatica normale e alterata

    Energy Technology Data Exchange (ETDEWEB)

    Giorgio, A.; Tarantino, L.; De Stefano, G.; Farella, N. [Azienda Ospedaliera D. Cotugno, Naples (Italy). Servizio di Ecografia ed Ecointerventistica; Catalano, O.; Cusati, B. [Ospedale S. Maria delle Grazie, Pozzuoli, NA (Italy). Servizio di Radiologia; Alalia, A. [Azienda Ospedaliera D. Cotugno, Naples (Italy). Servizio di Anestesia e Rianimazione; Del Vescovo, L. [Naples Univ. II, Naples (Italy). Ist. di Radiologia

    2000-04-01

    The work reports the personal experience with interstitial laser photocoagulation in patients with liver tumors (mostly cirrhotics with hepatocellular carcinoma). The aim was to evaluate the short term efficacy of percutaneous interstitial laser photocoagulation in inducing focal ablation of liver tumors and the possible complications in patients with normal and impaired liver function. [Italian] Il presente lavoro riporta l'esperienza personale con l'utilizzazione della fotocoagulazione laser-interstiziale per tumori maligni del fegato, rappresentati in gran parte da epatocarcinomi in cirrosi. Lo scopo e' quello di verificare l'efficacia terapeutica in termini di volume di necrosi e di valutare gli effetti collaterali e le complicanze a breve termine sulla riserva funzionale del fegato e di altri organi, soprattutto nei pazienti con alterata funzionalita' epatica.

  19. Interstitial nephritis.

    Science.gov (United States)

    Papper, S

    1980-01-01

    There are many causes of interstitial nephritis other than pyelonephritis. The term interstitial nephritis does not connote a single etiologic or pathogenetic mechanism; it rather arbitrarily places together a wider variety of renal diseases that have a predilection for early and major involvement of the renal interstitium. The prototype of acute interstitial nephritis is acute pyelonephritis. In addition, there is a drug-related acute interstitial disease that is probably of immunological nature and usually reverses with discontinuance of the offending drug. Chronic interstitial nephritis includes many diverse illnesses. Nonobstructive pyelonephritis occurs but its prevalence is debated. Analgesic abuse nephropathy is not rare and is potentially reversible. Papillary necrosis has many causes and a wide spectrum of clinical presentations. Heavy metals, such as lead, cause interstitial nephritis. Balkan nephropathy occurs in an endemic area and although not bacterial in origin is of unknown cause.

  20. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  1. On the atomic displacement fields of small interstitial dislocation loops

    International Nuclear Information System (INIS)

    Zhou, Z.; Dudarev, S.L.; Jenkins, M.L.; Sutton, A.P.; Kirk, M.A.

    2005-01-01

    The atomic displacement fields of dislocation loops of size 1-5 nm formed by self-interstitial atoms in α-Fe have been calculated using isotropic elasticity theory and anisotropic elasticity theory, and compared with atomic simulations for loops formed by 43-275 self-interstitial atoms. The atomic displacements predicted by anisotropic elasticity theory were in good agreement with those given by the atomistic simulations at distances greater than 3 nm from the loop plane, but the displacements predicted by isotropic elasticity theory showed significant discrepancies at distances up to 15 nm

  2. Role of Self-Interstitial Atoms on the High Temperature Properties of Metals

    International Nuclear Information System (INIS)

    Nordlund, K.; Averback, R.S.

    1998-01-01

    Equilibrium concentrations of self-interstitial atoms and divacancies have been determined in Cu by molecular dynamics computer simulations using embedded atom potentials. Near the melting temperature these concentrations are both ∼10 -6 . Owing to the higher mobility of the interstitial atoms, however, they contribute more to diffusion. In perfect, or pulse-heated crystals, spontaneous Frenkel pair production results in even higher interstitial concentrations. copyright 1998 The American Physical Society

  3. Development of our laser fusion integration simulation

    International Nuclear Information System (INIS)

    Li, J.; Zhai, C.; Li, S.; Li, X.; Zheng, W.; Yong, H.; Zeng, Q.; Hang, X.; Qi, J.; Yang, R.; Cheng, J.; Song, P.; Gu, P.; Zhang, A.; An, H.; Xu, X.; Guo, H.; Cao, X.; Mo, Z.; Pei, W.; Jiang, S.; Zhu, S. P.

    2013-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happening in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (authors)

  4. MO-FG-BRA-09: Quantification of Nanoparticle Heating and Concentration for MR-Guided Laser Interstitial Thermal Therapy

    International Nuclear Information System (INIS)

    MacLellan, CJ; Melancon, M; Fuentes, D; Stafford, RJ; Salatan, F; Yang, Q; Hwang, KP

    2015-01-01

    Purpose: Nanoparticle Mediated Laser Interstitial Thermal Therapy (npLITT) is a technique that utilizes tumor localized optically activated nanoparticles to increase the conformality of laser ablation procedures. Temperatures in these procedures are dependent on the particle concentration which generally cannot be measured noninvasively prior to therapy. In this work we attempt to quantify particle concentration in vivo by estimating the increase in R2* relaxation induced by bifunctional magnetic resonance (MR)-visible gold-based nanoparticles (SPIO@Au) and relate it to the temperature increase observed during real time MR temperature imaging (MRTI) of laser ablation. Methods: SPIO@Au nanoparticles (90nm) were synthesized containing a silica-iron core (for MR visibility via R2*) and gold shell (for near-infrared absorption). High resolution R2* maps were acquired before and after injecting four different particle concentrations (saline,1e10, 5e10, and 10e10 particles/mL) into HN5 flank xenografts. Tumors were monitored using MRTI during treatment with an interstitial fiber. (1 watt, 808 nm, 3 minutes) Results: The maximum temperature within the tumors increased linearly with concentration of injected particles, reaching 34.0, 37.6, 45.8, and 55.4 "0C for saline, 1e10, 5e10 and 10e10 particles/mL injections, respectively (R2=.994). The highest temperatures occur at the injection site rather than the fiber, confirming that SPIO@Au nanoparticles are the primary absorber. The differences between the median R2* measured at the injection site and the rest of the tumor were −6, 134, 111, 156 s-1 for the saline,1e10,5e10 and 10e10 particles/mL injections, respectively. This R2* change is consistent with the measured relaxivity for the 1e10 particles/mL injection but does not maintain linearity at higher concentrations. Conclusion: Bifunctional SPIO@Au nanoparticles are a promising technology for providing noninvasive estimates of particle concentration via MRI and

  5. Potential of solar-simulator-pumped alexandrite lasers

    Science.gov (United States)

    Deyoung, Russell J.

    1990-01-01

    An attempt was made to pump an alexandrite laser rod using a Tamarak solar simulator and also a tungsten-halogen lamp. A very low optical laser cavity was used to achieve the threshold minimum pumping-power requirement. Lasing was not achieved. The laser threshold optical-power requirement was calculated to be approximately 626 W/sq cm for a gain length of 7.6 cm, whereas the Tamarak simulator produces 1150 W/sq cm over a gain length of 3.3 cm, which is less than the 1442 W/sq cm required to reach laser threshold. The rod was optically pulsed with 200 msec pulses, which allowed the alexandrite rod to operate at near room temperature. The optical intensity-gain-length product to achieve laser threshold should be approximately 35,244 solar constants-cm. In the present setup, this product was 28,111 solar constants-cm.

  6. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: technical case report.

    Science.gov (United States)

    Hawasli, Ammar H; Ray, Wilson Z; Murphy, Rory K J; Dacey, Ralph G; Leuthardt, Eric C

    2012-06-01

    To describe the novel use of the AutoLITT System (Monteris Medical, Winnipeg, Manitoba, Canada) for focused laser interstitial thermal therapy (LITT) with intraoperative magnetic resonance imaging (MRI) and stereotactic image guidance for the treatment of metastatic adenocarcinoma in the left insula. The patient was a 61-year-old right-handed man with a history of metastatic adenocarcinoma of the colon. He had previously undergone resection of multiple lesions, Gamma Knife radiosurgery, and whole-brain radiation. Despite treatment of a left insular tumor, serial imaging revealed that the lesion continued to enlarge. Given the refractory nature of this tumor to radiation and the deep-seated location, the patient elected to undergo LITT treatment. The center of the lesion and entry point on the scalp were identified with STEALTH (Medtronic, Memphis, Tennessee) image-guided navigation. The AXiiiS Stereotactic Miniframe (Monteris Medical) for the LITT system was secured onto the skull, and a trajectory was defined to achieve access to the centroid of the tumor. After a burr hole was made, a gadolinium template probe was inserted into the AXiiiS base. The trajectory was confirmed via an intraoperative MRI, and the LITT probe driver was attached to the base and CO2-cooled, side-firing laser LITT probe. The laser was activated and thermometry images were obtained. Two trajectories, posteromedial and anterolateral, produced satisfactory tumor ablation. LITT with intraoperative MRI and stereotactic image guidance is a newly available, minimally invasive, and therapeutically viable technique for the treatment of deep seated brain tumors.

  7. Large-field image intensifiers versus conventional chest radiography: ROC study with simulated interstitial disease

    International Nuclear Information System (INIS)

    Winter, L.H.L.; Chakraborty, D.P.; Waes, P.F.G.M.

    1988-01-01

    Two image intensifier tubes have recently been introduced whose large imaging area makes them suitable for chest imaging (Phillips Pulmodiagnost TLX slit II and Siemens TX 57 large entrance field II). Both modalities present a 10 x 10-cm hard copy image to the radiologist. A receiver operating characteristic (ROC) curve study with simulated interstitial disease was performed to compare the image quality of these image intensifiers with conventional chest images. The relative ranking in terms of decreasing ROC areas was Siemens, conventional, and Philips. Compared with conventional imaging, none of the differences in ROC curve area were statistically significant at the 5% level

  8. Gallium interstitial contributions to diffusion in gallium arsenide

    Science.gov (United States)

    Schick, Joseph T.; Morgan, Caroline G.

    2011-09-01

    A new diffusion path is identified for gallium interstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the gallium interstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for gallium interstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been

  9. In-vitro analysis of early calcification in aortic valvular interstitial cells using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Davari, Seyyed Ali; Masjedi, Shirin; Ferdous, Zannatul; Mukherjee, Dibyendu

    2018-01-01

    Calcific aortic valve disease (CAVD) is a major cardiovascular disorder caused by osteogenic differentiation of valvular interstitial cells (VICs) within aortic valves. Conventional methods like colorimetric assays and histology fail to detect small calcium depositions during in-vitro VIC cultures. Laser-induced breakdown spectroscopy (LIBS) is a robust analytical tool used for inorganic materials characterizations, but relatively new to biomedical applications. We employ LIBS, for the first time, for quantitative in-vitro detection of calcium depositions in VICs at various osteogenic differentiation stages. VICs isolated from porcine aortic valves were cultured in osteogenic media over various days. Colorimetric calcium assays based on arsenazo dye and Von Kossa staining measured the calcium depositions within VICs. Simultaneously, LIBS signatures for Ca I (422.67 nm) atomic emission lines were collected for estimating calcium depositions in lyophilized VIC samples. Our results indicate excellent linear correlation between the calcium assay and our LIBS measurements. Furthermore, unlike the assay results, the LIBS results could resolve calcium signals from cell samples with as early as 2 days of osteogenic culture. Quantitatively, the LIBS measurements establish the limit of detection for calcium content in VICs to be ∼0.17±0.04 μg which indicates a 5-fold improvement over calcium assay. Picture: Quantitative LIBS enables in-vitro analysis for early stage detection of calcium deposition within aortic valvular interstitial cells (VICs). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  11. Computational simulation of laser heat processing of materials

    Science.gov (United States)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  12. Measurement and simulation of laser power noise in GEO 600

    International Nuclear Information System (INIS)

    Smith, J R; Degallaix, J; Freise, A; Grote, H; Hewitson, M; Hild, S; Lueck, H; Strain, K A; Willke, B

    2008-01-01

    This paper describes measurements and simulations related to power fluctuations of the laser light in the GEO 600 laser-interferometric gravitational wave detector. Measurements of the relative fluctuations of the light power at three different ports of the main interferometer are presented. In addition, measurements and simulations of the coupling transfer functions from power fluctuations at the input laser to these ports are shown. The transfer function from the input laser to the output port of the interferometer is found to be non-trivial. Despite this, the numerical simulation produces an excellent match to it and gives insight to the mechanisms leading to the complicated shape. Furthermore, the coupling transfer functions of power fluctuations to the main (heterodyne) detector outputs are measured and simulated. These are used to evaluate the level with which laser power fluctuations contribute to the overall noise level of the instrument

  13. MATLAB simulation of a Distributed Feedback (DFB) laser with chirp effects

    Science.gov (United States)

    Espe, Burt L.

    1994-12-01

    A model of a distributed feedback (DFB) laser was implemented in MATLAB and SIMULINK. Using the laser rate equation, the model was simulated to obtain general characteristics of the chirp of the lasers frequency. The simulations were controlled by using different drive current waveforms, based on various bit patterns, data rates, and drive current values (threshold current and the extinction ratio). Once created, the laser drive current was passed to the SIMULINK DFB laser model. The output of a simulation provided frequency chirp, laser power emitted, photon density, and carrier density data. Two sets of simulations were conducted. The first set of simulations focused on the data rates and bit patterns. From these simulations it was determined that the transition from a ZERO bit to a ONE bit caused the greatest frequency excursions. Also, as the data rate increases the maximum frequency excursion increases. Finally, the first set of simulations revealed that the predictability of the chirp decreases as the data rate increases and as the complexity of the bit pattern increases. The second set of simulations examined the effect of the extinction ratio on frequency chirp. By plotting the maximum frequency excursion against its respective extinction ratio, it was determined that in some cases the maximum frequency excursions in a system could be minimized.

  14. Solar-simulator-pumped atomic iodine laser kinetics

    Science.gov (United States)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  15. MED101: a laser-plasma simulation code. User guide

    International Nuclear Information System (INIS)

    Rodgers, P.A.; Rose, S.J.; Rogoyski, A.M.

    1989-12-01

    Complete details for running the 1-D laser-plasma simulation code MED101 are given including: an explanation of the input parameters, instructions for running on the Rutherford Appleton Laboratory IBM, Atlas Centre Cray X-MP and DEC VAX, and information on three new graphics packages. The code, based on the existing MEDUSA code, is capable of simulating a wide range of laser-produced plasma experiments including the calculation of X-ray laser gain. (author)

  16. Numerical simulation for nuclear pumped laser

    Energy Technology Data Exchange (ETDEWEB)

    Sakasai, Kaoru [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    To apply nuclear pumped laser of {sup 3}He-Ne-Ar gas to detect neutron, the optimum gas mixture was investigated by numerical simulation. When {sup 3}He-Ne-Ar mixture gas are irradiated by neutron, proton and triton with high velocity are produced by {sup 3}He(np)T and two charge particles ionized {sup 3}He, Ne and Ar which reacted each other and attained to 3p`(1/2){sub 0}-3S`(1/2). The calculation method is constructed by defining the rate equations of each ion and exited atom and the electron energy balance equation and by time integrating the simultaneous differential equations of the above two equations and the law of conservation of charge. Penning ionization and energy transport by elastic collision of neutral atom were considered in the transport process of electron energy direct ionization by secondary charge particle. Calculation time was 1 msec. The optimum component was shown 3 atm He, 24 Torr He and 8 Torr Ar by simulation. Laser oscilation was generated under the conditions 3.3 x 10{sup 14} (N/cm{sup 2}/5) thermal neutron flux at 50 cm laser cell length and 99% coefficient of reflection of mirror. After laser oscilation, laser output was proportional to neutron flux. These results showed nuclear pumped laser of {sup 3}He-Ne-Ar was able to detect optically neutron. (S.Y)

  17. A spectral unaveraged algorithm for free electron laser simulations

    International Nuclear Information System (INIS)

    Andriyash, I.A.; Lehe, R.; Malka, V.

    2015-01-01

    We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes

  18. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  19. Transuranium elements leaching from simulated HLW glasses in synthetic interstitial claywater

    International Nuclear Information System (INIS)

    Wang, L.

    1992-08-01

    The main objective of this Master Thesis is to measure the steady-state concentrations of Pu, Np, and Am upon the leaching of High-Level Waste Glass in two types of synthetic claywater: humic acid free and humic acid containing synthetic claywater. The synthetic claywater has a composition that is representative for the in-situ interstitial groundwater of the Boom clay formation, a potential geological repository of radioactive waste in Belgium. The steady-state concentrations of transuranium elements were measured by leaching experiments with a typical duration of 400 days. Five main conclusions are drawn from the experimental data. (1) The transuranium elements that are released from simulated High Level Waste Glass are dominantly present in the synthetic claywater solutions as colloids. These colloids are smaller than 2 nm in absence of humic acids. In the presence of humic acids however, the colloids interact with actinides (adsorb or coagulate) and form particles larger than 2 nm. Np and Am are associated with inorganic and organic colloids in the synthetic interstitial claywater solution whereas Pu forms only inorganic colloids. (2) The steady-state concentration of Pu is in good agreement with the solubility of the Pu compound PuO 2 .xH 2 O. It is therefore concluded that PuO 2 .xH 2 O is the solubility controlling phase. (3) The Pu(IV)-species are dominant in the leaching solutions. Carbonate and humic acid complexes are negligible. (4) The steady-state concentrations of Np and Am in leaching solutions were much lower than the values calculated on the basis of known thermodynamic data. This indicates that the solubility controlling phases for Np and Am were not correctly identified or that the measured Np and Am concentrations were not steady-state values. (5) Non-active glass leaching tests have indicated that no organic colloids were formed as a result of glass dissolution. (A.S.)

  20. Annihilation of interstitial-type dislocation loops in {alpha}-Fe during He irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Wang, Y.X. [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Katakabe, Y. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Iwakiri, H. [Faculty of Education, University of the Ryukyus, Okinawa 903-0213 (Japan); Yoshida, N. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2011-10-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  1. Annihilation of interstitial-type dislocation loops in α-Fe during He irradiation

    International Nuclear Information System (INIS)

    Xu, Q.; Wang, Y.X.; Katakabe, Y.; Iwakiri, H.; Yoshida, N.; Sato, K.; Yoshiie, T.

    2011-01-01

    Interstitial-type dislocation loops were formed in Fe-9Cr alloys on irradiation with 1-MeV He ions at 673 K. However, with increasing irradiation dose, the dislocation loops shrunk. A molecular dynamics simulation was used to elucidate the mechanism of this unexpected phenomenon. The simulation shows that, although the binding energy of a self-interstitial atom to a dislocation loop is normally greater than that of a vacancy, the energy hierarchy is reversed when He atoms decorate the loop. This may indicates preferential absorption of vacancies, causing loop shrinkage at high doses, consistent with experimental observation.

  2. Fluid simulation for two laser beams co-propagating in underdense plasma

    International Nuclear Information System (INIS)

    Mahdy, A.I.

    2004-09-01

    2D simulations code was constructed in order simulate the interactions of two co-propagating laser beams with underdense plasma. Simulations results at different laser intensities and separation-distances between the beams centroids were presented. In the results the effects of the laser intensities on the self-focusing and merging of the propagating beams were shown. In addition, the influence of increasing the separation-distance on the beams stability and trajectories were studied. A comparison with previous simulations at similar conditions was carried out in order to evaluate the numerical technique used to solve the basic equations. (author)

  3. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules.

    Science.gov (United States)

    Amabile, Gerardo; Rotondi, Mario; Pirali, Barbara; Dionisio, Rosa; Agozzino, Lucio; Lanza, Michele; Buonanno, Luciano; Di Filippo, Bruno; Fonte, Rodolfo; Chiovato, Luca

    2011-09-01

    Interstitial laser photocoagulation (ILP) is a new therapeutic option for the ablation of non-functioning and hyper-functioning benign thyroid nodules. Amelioration of the ablation procedure currently allows treating large nodules. Aim of this study was to evaluate the therapeutic efficacy of ILP, performed according to a modified protocol of ablation, in patients with large functioning and non-functioning thyroid nodules and to identify the best parameters for predicting successful outcome in hyperthyroid patients. Fifty-one patients with non-functioning thyroid nodules (group 1) and 26 patients with hyperfunctioning thyroid nodules (group 2) were enrolled. All patients had a nodular volume ≥40 ml. Patients were addressed to 1-3 cycles of ILP. A cycle consisted of three ILP sessions, each lasting 5-10 minutes repeated at an interval of 1 month. After each cycle of ILP patients underwent thyroid evaluation. A nodule volume reduction, expressed as percentage of the basal volume, significantly occurred in both groups (F = 190.4; P nodule volume; (iii) total amount of energy delivered expressed in Joule. ROC curves identified the percentage of volume reduction as the best parameter predicting a normalized serum TSH (area under the curve 0.962; P thyroid nodules, both in terms of nodule size reduction and cure of hyperthyroidism (87% of cured patients after the last ILP cycle). ILP should not be limited to patients refusing or being ineligible for surgery and/or radioiodine. Copyright © 2011 Wiley-Liss, Inc.

  4. Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources.

    Science.gov (United States)

    Maruoka, Yasuhiro; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Okuyama, Shuhei; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-21

    Near infrared photoimmunotherapy (NIR-PIT) is a new target-cell-specific cancer treatment that induces highly selective necrotic/immunogenic cell death after systemic administration of a photoabsorber antibody conjugate and subsequent NIR light exposure. However, the depth of NIR light penetration in tissue (approximately 2 cm) with external light sources limits the therapeutic effects of NIR-PIT. Interstitial light exposure using cylindrical diffusing optical fibers can overcome this limitation. The purpose in this study was to compare three NIR light delivery methods for treating tumors with NIR-PIT using a NIR laser system at an identical light energy; external exposure alone, interstitial exposure alone, and the combination. Panitumumab conjugated with the photoabsorber IRDye-700DX (pan-IR700) was intravenously administered to mice with A431-luc xenografts which are epithelial growth factor receptor (EGFR) positive. One and 2 days later, NIR light was administered to the tumors using one of three methods. Interstitial exposure alone and in combination with external sources showed the greatest decrease in bioluminescence signal intensity. Additionally, the combination of external and interstitial NIR light exposure showed significantly greater tumor size reduction and prolonged survival after NIR-PIT compared to external exposure alone. This result suggested that the combination of external and interstitial NIR light exposure was more effective than externally applied light alone. Although external exposure is the least invasive means of delivering light, the combination of external and interstitial exposures produces superior therapeutic efficacy in tumors greater than 2 cm in depth from the tissue surface.

  5. Microdefects and self-interstitial diffusion in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, W.B.

    1998-05-01

    In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Li{sup +}) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Li{sup +} drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Li{sup +} drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Li{sup +} drifting. TEM was performed on a samples from the partially Li{sup +} drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Li{sup +} drifted. This result indicates D-defects are responsible for the precipitation that halts the Li{sup +} drift process. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. Li{sup +} drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Li{sup +} drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.

  6. Optical simulations of laser focusing for optimization of laser betatron

    Czech Academy of Sciences Publication Activity Database

    Stanke, Ladislav; Thakur, Anita; Šmíd, Michal; Gu, Yanjun; Falk, Kateřina

    2017-01-01

    Roč. 12, May (2017), 1-14, č. článku P05004. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : matter * accelerator modelling and simulations * multi-particle dynamics * single-particle dynamics * Beam Optics Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.220, year: 2016

  7. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  8. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  9. Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser

    International Nuclear Information System (INIS)

    Tamura, Koji; Ishigami, Ryoya; Yamagishi, Ryuichiro

    2016-01-01

    Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser was studied for application to nuclear decommissioning. Successful cutting of carbon steel and stainless steel plates up to 300 mm in thickness was demonstrated, as was that of thick steel components such as simulated reactor vessel walls, a large pipe, and a gate valve. The results indicate that laser cutting applied to nuclear decommissioning is a promising technology. (author)

  10. PIC Simulation of Laser Plasma Interactions with Temporal Bandwidths

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2015-11-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temperal bandwidths under conditions relevant to current and future shock ignition experiments on the NIKE laser. Our simulations show that, for sufficiently large bandwidth, the saturation level, and the distribution of hot electrons, can be effected by the addition of temporal bandwidths (which can be accomplished in experiments using smoothing techniques such as SSD or ISI). We will show that temporal bandwidth along play an important role in the control of LPI's in these lasers and discuss future directions. This work is conducted under the auspices of NRL.

  11. The diffuse interstitial lung disease - with emphasis in the idiopathic interstitial pneumonias

    International Nuclear Information System (INIS)

    Bustillo P, Jose G; Pacheco, Pedro M; Matiz, Carlos; Ojeda, Paulina; Carrillo B, Jorge A.

    2003-01-01

    The term diffuse interstitial lung disease, it refers to those diseases that commit the interstice basically, the space between the membrane basal epithelial and endothelial, although the damage can also commit the outlying air spaces and the vessels; the supplement is centered in the diffuse interstitial lung illness of unknown cause; well-known as idiopathic interstitial pneumonias, making emphasis in the more frequents, the pulmonary fibrosis idiopathic or cryptogenic fibrosant alveolitis

  12. Molecular dynamics study of interstitial-solute interactions in irradiated alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Doan, N.V.; Adda, Y.

    1980-01-01

    The molecular dynamics technique has been used, in conjunction with the interionic potentials of Dagens et al, to study the stability, configuration, binding, and induced migration of mixed dumbbells in an irradiated Al-Zn alloy. For the purpose of comparisons, self-interstitials in pure Al were also investigated. The Al-Al and Al-Zn interactions were described by pair potentials which extended to ninth-neighbour distances. Both the self-interstitial dumbbell and the mixed dumbbell were found to be stable in the configuration. The formation energy of the self-interstitial is 2.89 eV and the mixed-dumbbell binding energy is 0.38 eV. As a result of this strong binding, the threshold energy required to induce the migration of the mixed dumbbell is about 1.2 eV, which is significantly larger than the minimum energy of about 0.15 eV transferred to a self-interstitial to induce its jumps in pure Al. Caging motions of the mixed dumbbell were observed. The present computer-simulation results are compared with experimental measurements. (author)

  13. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  14. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, H. (Aomori Public College, 153-4 Yamazaki, Goushi-zawa, Aomori 030-01 (Japan)); Rafii-Tabar, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Kawazoe, Y. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan)); Matsui, H. (Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980 (Japan))

    1994-09-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  15. An MD simulation of interactions between self-interstitial atoms and edge dislocation in bcc transition metals

    International Nuclear Information System (INIS)

    Kamiyama, H.; Rafii-Tabar, H.; Kawazoe, Y.; Matsui, H.

    1994-01-01

    According to our model on the mechanism of dislocation bias reduction based on the interaction of dumbbell self-interstitial atoms (SIAs) with dislocation, the bias is significantly different depending on the dumbbell configuration in the dislocation strain field. A large-scale molecular dynamics (MD) simulation is performed to reveal the stability and the mechanism of diffusion of dumbbell SIAs near the edge dislocation core in bcc iron. Most SIAs take the crowdion configuration parallel to the Burgers vector in the expansion side of the dislocation. Such crowdions are stable in the temperature range of this simulation, i.e. between 373 and 473 K, making one-dimensional random to-and-fro motion parallel to the dislocation Burgers vector staying at several atomic layers ''below'' the dislocation core. This means that the SIA does not approach the dislocation core. These results suggest that the stable configuration of SIAs is seriously affected by the dislocation resulting in a reduction of bias factor. ((orig.))

  16. Simulaser, a graphical laser simulator based on Matlab Simulink

    CSIR Research Space (South Africa)

    Jacobs, Cobus

    2016-07-01

    Full Text Available We present a single-element plane-wave laser rate equation model and its implementation as a graphical laser simulation library using Matlab Simulink. Simulink’s graphical interface and vector capabilities provide a unique layer of abstraction...

  17. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  18. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.

    Science.gov (United States)

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H

    2017-09-12

    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.

  19. Formation of Frenkel pairs and diffusion of self-interstitial in Si under normal and hydrostatic pressure: Quantumchemical simulation

    International Nuclear Information System (INIS)

    Gusakov, Vasilii; Belko, Victor; Dorozhkin, Nikolai

    2009-01-01

    A theoretical modeling of the formation of Frenkel pairs and the diffusion of a self-interstitial atom in silicon crystals at normal and high (hydrostatic) pressures has been performed using quantum-chemical (NDDO-PM5), methods. It is shown that, in a silicon crystal, the most stable configuration of a self-interstitial atom in the neutral charge state (I 0 ) is the split configuration . The tetrahedral configuration is not stable, an interstitial atom being shifted from T position in a new position T 1 on a distance Δd=0.2 A. The hexagonal configuration is not stable in NDDO approximation. The split interstitial configuration remains the more stable configuration under hydrostatic pressure (P a ( →T 1 )=0.59 eV, E a (T 1 →neighboring T 1 )=0.1 eV and E a (T 1 → )=0.23 eV. The hydrostatic pressure (P<80 kbar) increases the activation barrier for diffusion of self-interstitial atoms in silicon crystals. The energies of the formation of a separate Frenkel pair, a self-interstitial atom, and a vacancy are determined. It is demonstrated that the hydrostatic pressure decreases the energy of the formation of Frenkel pairs.

  20. Two dimensional simulation of high power laser-surface interaction

    International Nuclear Information System (INIS)

    Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.

    1998-01-01

    For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing

  1. Finite element simulation of laser transmission welding of dissimilar ...

    African Journals Online (AJOL)

    user

    materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.

  2. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  3. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  4. Simulation of medical Q-switch flash-pumped Er:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanlin; Huang Chuyun; Yao Yucheng; Zou Xiaolin, E-mail: Wangyanlin0@126.com, E-mail: chuyunh@163.com, E-mail: yyuch@soho.com, E-mail: zouxiaol@126.com [Physics school, Hubei University of Technology, Wuhan, China 430068 (China)

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm{sup -1}. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  5. The effect of laser radiation on eyesight and determination of safety distance when using laser simulators

    International Nuclear Information System (INIS)

    Rakochevicj, S.; Dugandzhija, S.

    1989-01-01

    The influence of laser emission from the GaAs laser in a spectrum close infrared range on human eye and skin has been discussed. The application of gallium arsenide laser injections includes laser simulators. Analytic expression is defined. It is used to calculate the safety distance for the given parameters. There is a diagram of the programme procedure for calculation and graphical analysis of safety distance. Typical dependences of safety distance on the energy and divergency of laser radiation are discussed. (author). 5 refs.; 14 figs

  6. Interstitial pregnancy: role of MRI

    International Nuclear Information System (INIS)

    Filhastre, M.; Lesnik, A.; Dechaud, H.; Taourel, P.

    2005-01-01

    We report the MRI features of two cases of interstitial pregnancy. In both cases, MRI was able to localize the ectopic pregnancy by showing a gestational structure surrounded by a thick wall in the upper part of the uterine wall separated from the endometrium by an uninterrupted junctional zone. Because US may confuse angular and interstitial pregnancies and because interstitial pregnancy has a particular evolutive course, MR imaging may play a key role in the diagnosis and management of women with interstitial pregnancy. (orig.)

  7. A simulation of laser energy absorption by nanowired surface

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F., E-mail: miguel.vasconcelos@usp.br, E-mail: alex.ramos@usp.br [Universidade de São Paulo (USP), SP (Brazil). Escola de Artes, Ciências e Humanidades

    2017-07-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  8. A simulation of laser energy absorption by nanowired surface

    International Nuclear Information System (INIS)

    Vasconcelos, Miguel F.S.; Ramos, Alexandre F.

    2017-01-01

    Despite recent advances on research about laser inertial fusion energy, to increase the portion of energy absorbed by the target's surface from lasers remains as an important challenge. The plasma formed during the initial instants of laser arrival shields the target and prevents the absorption of laser energy by the deeper layers of the material. One strategy to circumvent that effect is the construction of targets whose surfaces are populated with nanowires. The nanowired surfaces have increased absorption of laser energy and constitutes a promising pathway for enhancing laser-matter coupling. In our work we present the results of simulations aiming to investigate how target's geometrical properties might contribute for maximizing laser energy absorption by material. Simulations have been carried out using the software FLASH, a multi-physics platform developed by researchers from the University of Chicago, written in FORTRAN 90 and Python. Different tools for generating target's geometry and analysis of results were developed using Python. Our results show that a nanowired surfaces has an increased energy absorption when compared with non wired surface. The software for visualization developed in this work also allowed an analysis of the spatial dynamics of the target's temperature, electron density, ionization levels and temperature of the radiation emitted by it. (author)

  9. Atomic displacements due to interstitial hydrogen in Cu and Pd

    Indian Academy of Sciences (India)

    Total energy calculations and molecular dynamics simulations employing DFT are reliable tools ... as well as predicting equilibrium and non-equilibrium properties. Self-consistent ..... produced by interstitial hydrogen in Cu and Pd. The quantity of central interest .... These numbers are in reasonable qualitative agreement.

  10. Evaluation of the litcit software for thermal simulation of superficial lasers such as hair removal lasers

    Directory of Open Access Journals (Sweden)

    Shirkavand A

    2007-01-01

    Full Text Available Background and Objectives : In this study, we evaluate LITCIT software for its application as a thermal simulation software for superficial hair removal laser systems. Materials and Methods: Two articles were used as our references. Complete information regarding the tissues, such as optical/thermal properties and geometrical modeling and also the laser systems such as wavelength, spot size, pulse duration and fluence were extracted from these texts. Then, this information regarding the tissues and systems was entered into the LITCIT simulation software. Further, we ran the program and saved the results. Finally, we compared our results with the results in references and evaluated the. Results : Output results of the LITCIT show that they are consistent with the results of references that were calculated with a different thermal modeling. Such a small average error shows the accuracy of the software for simulation and calculating the temperature. Conclusions : This simulating software has a good ability to be used as a treatment planning software for superficial lasers. Thus, it can be used for the optimization of treatment parameters and protocols.

  11. Formation and annealing of metastable (interstitial oxygen)-(interstitial carbon) complexes in n- and p-type silicon

    CERN Document Server

    Makarenko, L F; Lastovskii, S B; Murin, L I; Moll, M; Pintilie, I

    2014-01-01

    It is shown experimentally that, in contrast to the stable configuration of (interstitial carbon)-(interstitial oxygen) complexes (CiOi), the corresponding metastable configuration (CiOi{*}) cannot be found in n-Si based structures by the method of capacitance spectroscopy. The rates of transformation CiOi{*} -> CiOi are practically the same for both n- and p-Si with a concentration of charge carriers of no higher than 10(13) cm(-3). It is established that the probabilities of the simultaneous formation of stable and metastable configurations of the complex under study in the case of the addition of an atom of interstitial carbon to an atom of interstitial oxygen is close to 50\\%. This is caused by the orientation dependence of the interaction potential of an atom of interstitial oxygen with an interstitial carbon atom, which diffuses to this oxygen atom.

  12. Gigantic uphill drift of vacancies and self-interstitials in silicon

    International Nuclear Information System (INIS)

    Voronkov, V.V.; Falster, R.

    2009-01-01

    Point defect transport in a growing crystal includes a drift along the temperature gradient, G, at a velocity αG. It was not clear if the drift is negligible or strong in silicon crystal growth. It is now found that reported microdefect patterns in crystals grown with a temporarily halt provide a clear evidence in favour of a strong (even gigantic) drift of both kinds of intrinsic point defects. The drift coefficients α V (for vacancies) and α I (for self-interstitials) are deduced by fitting the simulating defect profiles to the observed location of halt-induced interstitial region immersed into a vacancy-type crystal.

  13. Theory and simulation of ion acceleration with circularly polarized laser pulses; Theorie et simulation de l'acceleration des ions par impulsions laser a polarisation circulaire

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, A. [CNR/INFM/polyLAB, Pisa (Italy); Macchi, A.; Tuveri, S.; Veghini, S. [Pisa Univ., Dept. of Physics E. Fermi (Italy); Liseikina, T.V. [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    2009-03-15

    Ion acceleration driven by the radiation pressure of circularly polarized pulses is investigated via analytical modeling and particle-in-cell simulations. Both thick and thin targets, i.e. the 'hole boring' and 'light sail' regimes are considered. Parametric studies in one spatial dimension are used to determine the optimal thickness of thin targets and to address the effects of preformed plasma profiles and laser pulse ellipticity in thick targets. Three-dimensional (3D) simulations show that 'flat-top' radial profiles of the intensity are required to prevent early laser pulse breakthrough in thin targets. The 3D simulations are also used to address the issue of the conservation of the angular momentum of the laser pulse and its absorption in the plasma. (authors)

  14. DETECTING LASER SPOT IN SHOOTING SIMULATOR USING AN EMBEDDED CAMERA

    OpenAIRE

    Soetedjo, Aryuanto; Mahmudi, Ali; Ibrahim Ashari, M.; Ismail Nakhoda, Yusuf

    2017-01-01

    This paper presents the application of an embedded camera system for detecting laser spot in the shooting simulator. The proposed shooting simulator uses a specific target box, where the circular pattern target is mounted. The embedded camera is installed inside the box to capture the circular pattern target and laser spot image. To localize the circular pattern automatically, two colored solid circles are painted on the target. This technique allows the simple and fast color tracking to trac...

  15. Optothermal transfer simulation in laser-irradiated human dentin.

    Science.gov (United States)

    Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex

    2003-04-01

    Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.

  16. Chlorambucil-Induced Acute Interstitial Pneumonitis

    Directory of Open Access Journals (Sweden)

    Hammad Shafqat

    2014-01-01

    Full Text Available Chlorambucil is an alkylating agent commonly used in treatment of chronic lymphocytic leukemia (CLL. We report a case of interstitial pneumonitis developing in an 83-year-old man 1.5 months after completing a six-month course of chlorambucil for CLL. The interstitial pneumonitis responded to therapy with prednisone. We performed a systematic review of literature and identified 13 other case reports of chlorambucil-induced pulmonary toxicity, particularly interstitial pneumonitis. No unifying risk factor could be discerned and the mechanism of injury remains unknown. In contrast, major randomized trials of chlorambucil therapy in CLL have not reported interstitial pneumonitis as an adverse effect, which may be due to the rarity of the phenomenon or due to underreporting of events occurring after completion of treatment. Clinicians should consider drug-induced interstitial pneumonitis in the differential diagnosis of a suggestive syndrome developing even after discontinuation of chlorambucil.

  17. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    Science.gov (United States)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  18. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (<600 K), which consists of <110> dumbbells and <111> crowdions in a specific configuration, resulting in an immobile defect. The stability and diffusion of this cluster at higher temperatures is explored. In addition, an anisotropy distribution factor of a particular [hkl] interstitial loop within the family of loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the <111> crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  19. Migration mechanisms of self-interstitial atoms and their clusters in Fe-Cr alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; Malerba, L.

    2006-06-01

    The mobility of self-interstitial atoms (SIAs) and their clusters in pure iron and iron-chromium alloys was studied by atomic scale modelling techniques. Molecular dynamics (MD) was used to simulate thermally activated motion, i.e. diffusion, and its mechanisms whereas molecular statics was used to estimate energies of interactions of SIA and SIA clusters with Cr-impurities. It is shown that the presence of Cr atoms reduces the diffusivity of SIAs and their clusters in a non monotonic way with increasing Cr concentration. The main reason for this reduction is the presence of a long-range attractive interaction between self-interstitials in the crowdion configuration and Cr atoms. The migration mechanisms behind this effect are discussed relying on the results obtained from the MD simulations. (author)

  20. Thermal and thermo-mechanical simulation of laser assisted machining

    International Nuclear Information System (INIS)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-01-01

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece

  1. Smoking-related interstitial lung diseases

    International Nuclear Information System (INIS)

    Marten, K.

    2007-01-01

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis

  2. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    International Nuclear Information System (INIS)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A.D.P.; Valsakumar, M.C.

    2017-01-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  3. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Bhardwaj, U., E-mail: haptork@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Warrier, M., E-mail: manoj.warrier@gmail.com [Computational Analysis Division, BARC, Visakhapatnam 530012, Andhra Pradesh (India); Rao, A.D.P., E-mail: adp_rao_99@yahoo.com [Dept. of Nuclear Physics, Andhra University, Visakhapatnam 530003 (India); Valsakumar, M.C., E-mail: mc.valsakumar@gmail.com [IIT Palakkad, Kozhippara P.O., Palakkad 678557, Kerala (India)

    2017-02-15

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values “r” to the lattice constant “a” lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods. - Highlights: • Max-Space Clustering (MSC) method is developed to identify interstitials in crystals. • MSC provides a structured way to identify the temperature dependent cut-off radius. • It is compared with widely used sphere methods and found to be better. • MSC coupled with graph tree optimization can be used to obtain diffusion trajectory. • Cascade simulations of Fe, W are carried out and results are compared with various methods.

  4. Effects of applied strain on nanoscale self-interstitial cluster formation in BCC iron

    Science.gov (United States)

    Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Wang, Zhiguang

    2017-09-01

    The effect of applied strains on the configurational evolution of self-interstitial clusters in BCC iron (Fe) is explored with atomistic simulations. A novel cluster configuration is discovered at low temperatures (family of 〈 hkl 〉 loops is calculated as a function of strain. The results show that loop anisotropy is governed by the angle between the stress direction and the orientation of the 〈 111 〉 crowdions in the loop, and directly linked to the stress induced preferred nucleation of self-interstitial atoms.

  5. Numerical simulations of novel high-power high-brightness diode laser structures

    Science.gov (United States)

    Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter

    2001-07-01

    One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.

  6. Numerical simulation of laser bending of AISI 304 plate with a ...

    African Journals Online (AJOL)

    Keywords: laser bending; process modeling; bending angle; response surface models. ... (Shi et al., 2007) presented numerical simulation of bending for with different shapes of laser ..... Matlab 2011a application code is used to develop and.

  7. Finite element simulation of the mechanism of laser ultrasound induced pain weapon

    Science.gov (United States)

    Zhou, Bo; Zhan, Ren Jun; Shan, Ning

    2018-03-01

    The Laser-Ultrasonic technique uses laser energy to generate ultrasound waves in various solids. In normal conditions, this technique is used to inspect large structures without destruction, but in military use, we hope get this destruction. Nociceptors in Human skin can feel cold, heat, mechanical and other stimuli, when the stimulus exceeds a certain threshold will produce pain. Based on this principle, a laser induced pain weapon may be made. The generated ultrasound wave form is affected by features of laser pulse. The results obtained from the finite element model of laser generated ultrasound are presented in terms of temperature and displacement. At first step, the transient temperature field can be precisely calculated by using the finite element method. Then, laser generated surface acoustic wave forms are calculated by coupling the temperature distribution. Displacement is used to represent the mechanical action of skin caused by laser ultrasound. Results from numerical simulation are compared with other references; the accuracy of the method is proved accordingly. The results of simulation in the given conditions demonstrate that the stresses generated by pulse laser in human skin model were about -8 and +4 MPa. According to the results of simulation, the max and min stress are both emerged in the range of 0 600 um, that is exactly the location of myelinated Aδ and unmyelinated C nociceptor. The value of stress is can be adjusted by chose suitable parameters of laser. The study provides a possibility for developing a new non-lethal weapon to control riots or crowd.

  8. Intracranial interstitial radiation

    International Nuclear Information System (INIS)

    Willis, D.; Rittenmeyer, H.; Hitchon, P.

    1986-01-01

    Primary malignant brain tumors are fatal, with 90% of patients having these tumors dying within two years following diagnosis. Cranial interstitial radiation therapy, a technique under investigation to control these tumors, involves implantation of radioactive iodine 125 seeds into the tumor bed by stereotaxic technique. The interstitial radiation technique, monitoring of radiation, and nursing care of patients are discussed. Case histories are presented, along with discussion of results attained using this therapy, and its future

  9. Interstitial micelles in binary blends of A B A triblock copolymers and homopolymers

    Science.gov (United States)

    Wołoszczuk, S.; Banaszak, M.

    2018-01-01

    We investigate triblock-homopolymer blends of types A1BA2/A and A1BA2/B, using a lattice Monte Carlo method. While the simulated triblock chains are compositionally symmetric in terms of the A-to-B volume ratio, the A1 block is significantly shorter than the A2 block. For the pure A1BA2 melt and the A1BA2 solutions in selective solvent the phase behavior is relatively well known, including existence and stability of the interstitial micelles which were discovered in previous Monte Carlo simulations. In this paper we study the stability of the interstitial micelles as a function of triblock volume fraction in selective homopolymers of either type A or type B, using two significantly different homopolymer chain lengths. We found that adding selective homopolymer of type A shifts the stability of the interstitial micelles into significantly higher temperatures. We also obtained, via self-assembly, intriguing new nanostructures which can be identified as ordered truncated octahedra. Finally, we established that the phase behavior of the triblock-homopolymer blends depends relatively weakly on the chain length of the added homopolymer.

  10. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  11. Simulation flow and model verification for laser direct-write lithography

    Science.gov (United States)

    Onanuga, Temitope; Rumler, Maximilian; Erdmann, Andreas

    2017-07-01

    A simulation flow for laser direct-write lithography (LDWL), a maskless lithography process in which a focused laser beam is scanned through a photoresist, is proposed. The simulation flow includes focusing of Gaussian beams, photoresist exposure, free-radical polymerization chemistry of the photoresist, and photoresist development. We applied the simulation method to investigate the scaling of feature sizes or linewidths for a varying number of exposure cycles at a total constant exposure dose. Experimental results from literature demonstrate that exposing the photoresist over multiple exposure cycles causes a reduction in linewidths. We explore possible reasons for this phenomenon and conclude that radical losses occurring between subsequent exposures provide a possible explanation of the observed effects. Furthermore, we apply the developed simulation method to analyze lithographic structures that were fabricated by a combination of LDWL and nanoimprint lithography. The simulation results agree with the experimental tendencies of a reduced likelihood of overexposures with an increase in the number of exposure cycles.

  12. A simulator for airborne laser swath mapping via photon counting

    Science.gov (United States)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  13. Interstitial irradiation for craniopharyngioma

    International Nuclear Information System (INIS)

    Barlas, O.; Bayindir, C.; Can, M.

    2000-01-01

    The results of interstitial irradiation treatment for craniopharyngioma in two patients with six year follow-ups are presented. Stereotactic interstitial irradiation with iodine-125 sources as sole therapy was employed in two adult patients who refused surgical resection. The diagnoses were confirmed by stereotactic biopsy. The first tumour which underwent interstitial irradiation was solid and 4 cm in diameter, and the second, 2.7 cm in diameter, had both cystic and solid components. The implanted iodine-125 seeds delivered 67 Gy and 60 Gy to tumour periphery at the rate of 12 and 14 cGy/h, respectively, were removed at the end of designated radiation periods. Tumour shrinkage and central hypo density, first observed 3 months after irradiation, continued until one tumour shrank to less than 1 cm at 12 months, and the other disappeared completely at 24 months. In both cases functional integrity was restored, and neither radiation induced toxicity nor recurrence has occurred six years after treatment. The results in these two cases suggest that solid craniopharyngiomas are sensitive to interstitial irradiation. (author)

  14. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  15. Numerical Simulation of the Micro-explosion during Ho:YAG laser lithotripsy

    International Nuclear Information System (INIS)

    Yao Yucheng; Huang Chuyun; Xu Guowang; Yan Xudong; Wang Yanlin

    2011-01-01

    The micro-explosion during Ho:YAG laser lithotripsy may cause calculus fragmentation and migration. It plays an important role to the surgery. A numerical simulation of the micro-explosion during Ho:YAG laser lithotripsy has been developed. The explosion problem in water environment was solved by the Euler algorithm and the piecewise parabolic method (PPM) was selected in the calculation. This simulation investigated the explosion dynamics evolution in the lithotripsy area. The pressure and intensity of the calculus surface were calculated for different laser pulse energy and different distance between calculus and fiber tip. The calculation results indicate that the micro-explosion's properties are determined by the pulse energy, pulse duration and the water distance. Though Short pulse duration and large pulse energy cause high ablation efficiency, it mains more calculus retropulsion at the same time. The ideal surgery results need property laser parameters.

  16. Immunological indices of blood and interstitial fluid in estimation of a program of therapy of upper limb secondary edemas

    International Nuclear Information System (INIS)

    Kuz'mina, E.G.; Degtyareva, A.A.; Doroshenko, L.N.; Rogova, N.M.; Zorina, L.N.

    1990-01-01

    The efficacy of therapy of upper limb secondary edemas after 4 programs was compared among 83 patients. The methods were as follows: traditional method (TM) including routine conservative therapy, acupuncture (AP), He-Ne laser OKG-13 and semiconductor laser against a background of traditional therapy. A study was made of the time course of the extent of edema, total protein, IG, G, A and M and circulating immune complexes (CIC) during therapy of such patients. Blood serum and interstitial fluid indices were compared. It was shown that the application of both lasers led to increasing efficacy of TM and AP

  17. Interstitial Cells of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Vladimír Pucovský

    2010-01-01

    Full Text Available Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.

  18. Dynamic contrast enhanced CT measurement of blood flow during interstitial laser photocoagulation: comparison with an Arrhenius damage model

    International Nuclear Information System (INIS)

    Purdie, T.J.; Lee, T.J.; Iizuka, M.; Sherar, M.D.

    2000-01-01

    One effect of heating during interstitial laser photocoagulation (ILP) is to directly destroy the tumour vasculature resulting in a loss of viable blood supply. Therefore, blood flow measured during and after treatment can be a useful indicator of tissue thermal damage. In this study, the effect of ILP treatment on rabbit thigh tumours was investigated by measuring blood flow changes using dynamic contrast enhanced computed tomography (CT). The CT measured changes in blood flow of treated tumour tissue were fitted to an Arrhenius model assuming first order rate kinetics. Our results show that changes in blood flow of tumour tissue distant from surrounding normal tissue are well described by an Arrhenius model. By contrast, the temperature profile of tumour tissue adjacent to normal tissue must be modified to account for heat dissipation by the latter. Finally, the Arrhenius parameters derived in the study are similar to those derived by heating tumour tissue to a lower temperature (<47 deg. C) than the current study. In conclusion, CT can be used to monitor blood flow changes during ILP and these measurements are related to the thermal damage predicted by the Arrhenius model. (author)

  19. Numerical simulation of a battlefield Nd:YAG laser

    Science.gov (United States)

    Henriksson, Markus; Sjoqvist, Lars; Uhrwing, Thomas

    2005-11-01

    A numeric model has been developed to identify the critical components and parameters in improving the output beam quality of a flashlamp pumped Q-switched Nd:YAG laser with a folded Porro-prism resonator and polarization output coupling. The heating of the laser material and accompanying thermo-optical effects are calculated using the finite element partial differential equations package FEMLAB allowing arbitrary geometries and time distributions. The laser gain and the cavity are modeled with the physical optics simulation code GLAD including effects such as gain profile, thermal lensing and stress-induced birefringence, the Pockels cell rise-time and component aberrations. The model is intended to optimize the pumping process of an OPO providing radiation to be used for ranging, imaging or optical countermeasures.

  20. Theory and Simulation of an Inverse Free Electron Laser Experiment

    Science.gov (United States)

    Guo, S. K.; Bhattacharjee, A.; Fang, J. M.; Marshall, T. C.

    1996-11-01

    An experimental demonstration of the acceleration of electrons using a high power CO2 laser in an inverse free electron laser (IFEL) is underway at the Brookhaven National Laboratory. This experiment has generated data, which we are attempting to simulate. Included in our studies are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge (which is significant at lower laser power); energy-spread of the electrons; arbitrary wiggler field profile; and slippage. Two types of wiggler profile have been considered: a linear taper of the period, and a step-taper of the period (the period is ~ 3cm, the field is ~ 1T, and the wiggler length is 47cm). The energy increment of the electrons ( ~ 1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (40MeV). For laser power ~ 0.5GW, the predictions of the simulations are in good accord with experimental results. A matter currently under study is the discrepancy between theory and observations for the electron energy distribution observed at the end of the IFEL. This work is supported by the Department of Energy.

  1. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Highlights: • Prediction of the properties of laser remelted surface layer with the use of FEM analysis. • The simulation was applied to determine the shape of molten pool of remelted surface. • Applying of numerical model MES for simulation of surface laser treatment to meaningfully shorten time of selection of optimum parameters. • An FEM model was established for the purpose of building a computer simulation. - Abstract: Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the

  2. Circuit simulation model multi-quantum well laser diodes inducing transport and capture/escape

    International Nuclear Information System (INIS)

    Zhuber-Okrog, K.

    1996-04-01

    This work describes the development of world's first circuit simulation model for multi-quantum well (MQW) semiconductor lasers comprising caier transport and capture/escape effects. This model can be seen as the application of a new semiconductor device simulator for quasineutral structures including MQW layers with an extension for simple single mode modeling of optical behavior. It is implemented in a circuit simulation program. The model is applied to Fabry-Perot laser diodes and compared to measured data. (author)

  3. Computer simulations of a single-laser double-gas-jet wakefield accelerator concept

    Directory of Open Access Journals (Sweden)

    R. G. Hemker

    2002-04-01

    Full Text Available We report in this paper on full scale 2D particle-in-cell simulations investigating laser wakefield acceleration. First we describe our findings of electron beam generation by a laser propagating through a single gas jet. Using realistic parameters which are relevant for the experimental setup in our laboratory we find that the electron beam resulting after the propagation of a 0.8 μm, 50 fs laser through a 1.5 mm gas jet has properties that would make it useful for further acceleration. Our simulations show that the electron beam is generated when the laser exits the gas jet, and the properties of the generated beam, especially its energy, depend only weakly on most properties of the gas jet. We therefore propose to use the first gas jet as a plasma cathode and then use a second gas jet placed immediately behind the first to provide additional acceleration. Our simulations of this proposed setup indicate the feasibility of this idea and also suggest ways to optimize the quality of the resulting beam.

  4. Observation of interstitial molecular hydrogen in clathrate hydrates.

    Science.gov (United States)

    Grim, R Gary; Barnes, Brian C; Lafond, Patrick G; Kockelmann, Winfred A; Keen, David A; Soper, Alan K; Hiratsuka, Masaki; Yasuoka, Kenji; Koh, Carolyn A; Sum, Amadeu K

    2014-09-26

    The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I ∼ 10 17 W/cm 2 by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated

  6. Theory and simulation of an inverse free-electron laser experiment

    Science.gov (United States)

    Gou, S. K.; Bhattacharjee, A.; Fang, J.-M.; Marshall, T. C.

    1997-03-01

    An experimental demonstration of the acceleration of electrons using a high-power CO2 laser interacting with a relativistic electron beam moving along a wiggler has been carried out at the Accelerator Test Facility of the Brookhaven National Laboratory [Phys. Rev. Lett. 77, 2690 (1996)]. The data generated by this inverse free-electron-laser (IFEL) experiment are studied by means of theory and simulation. Included in the simulations are such effects as: a low-loss metallic waveguide with a dielectric coating on the walls; multi-mode coupling due to self-consistent interaction between the electrons and the optical wave; space charge; energy spread of the electrons; and arbitrary wiggler-field profile. Two types of wiggler profile are considered: a linear taper of the period, and a step-taper of the period. (The period of the wiggler is ˜3 cm, its magnetic field is ˜1 T, and the wiggler length is 0.47 m.) The energy increment of the electrons (˜1-2%) is analyzed in detail as a function of laser power, wiggler parameters, and the initial beam energy (˜40 MeV). At a laser power level ˜0.5 Gw, the simulation results on energy gain are in reasonable agreement with the experimental results. Preliminary results on the electron energy distribution at the end of the IFEL are presented. Whereas the experiment produces a near-monotone distribution of electron energies with the peak shifted to higher energy, the simulation shows a more structured and non-monotonic distribution at the end of the wiggler. Effects that may help reconcile these differences are considered.

  7. Computer simulation of interstitial atom loop with vacancies in gamma-iron lattice

    International Nuclear Information System (INIS)

    Golubov, S.I.; Doronina, V.I.; Kaipetskaya, E.N.

    1985-01-01

    The interaction of vacanies and a dislocation loop has been investigated by the mashine stimulation method. The calculations have been performed by the variation method using the Jonson pair potential for gamma-iron. The interaction of a vacancy and a loop of interstitial atoms in the form of a regular hexagon has been investigated. The results obtained are compared with calculations in the elastic approximation

  8. Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2014-01-01

    Full Text Available The grain microstructure of molten pool during the solidification of TC4 titanium alloy in the single point laser cladding was investigated based on the CAFE model which is the cellular automaton (CA coupled with the finite element (FE method. The correct temperature field is the prerequisite for simulating the grain microstructure during the solidification of the molten pool. The model solves the energy equation by the FE method to simulate the temperature distribution in the molten pool of the single point laser cladding. Based on the temperature field, the solidification microstructure of the molten pool is also simulated with the CAFE method. The results show that the maximum temperature in the molten pool increases with the laser power and the scanning rate. The laser power has a larger influence on the temperature distribution of the molten pool than the scanning rate. During the solidification of the molten pool, the heat at the bottom of the molten pool transfers faster than that at the top of the molten pool. The grains rapidly grow into the molten pool, and then the columnar crystals are formed. This study has a very important significance for improving the quality of the structure parts manufactured through the laser cladding forming.

  9. Chylothorax in dermatomyositis complicated with interstitial pneumonia.

    Science.gov (United States)

    Isoda, Kentaro; Kiboshi, Takao; Shoda, Takeshi

    2017-04-01

    Chylothorax is a disease in which chyle leaks and accumulates in the thoracic cavity. Interstitial pneumonia and pneumomediastinum are common thoracic manifestations of dermatomyositis, but chylothorax complicated with dermatomyositis is not reported. We report a case of dermatomyositis with interstitial pneumonia complicated by chylothorax. A 77-year-old woman was diagnosed as dermatomyositis with Gottron's papules, skin ulcers, anti-MDA5 antibody and rapid progressive interstitial pneumonia. Treatment with betamethasone, tacrolimus and intravenous high-dose cyclophosphamide was initiated, and her skin symptoms and interstitial pneumonia improved once. However, right-sided chylothorax began to accumulate and gradually increase, and at the same time, her interstitial pneumonia began to exacerbate, and skin ulcers began to reappear on her fingers and auricles. Although her chylothorax improved by fasting and parenteral nutrition, she died due to further exacerbations of dermatomyositis and interstitial pneumonia in spite of steroid pulse therapy, increase in the betamethasone dosage, additional intravenous high-dose cyclophosphamide and plasma pheresis. An autopsy showed no lesions such as malignant tumors in the thoracic cavity. This is the first report of chylothorax complicated by dermatomyositis with interstitial pneumonia.

  10. Simulation of the dynamics of laser-cluster interaction

    International Nuclear Information System (INIS)

    Deiss, C.

    2009-01-01

    Ranging in size from a few atoms to several million atoms, clusters form a link between gases and solids. When irradiating clusters with intense femtosecond laser pulses, the production of energetic and highly charged ions, hot electrons, and extreme UV and X-ray photons, gives evidence of a very efficient energy conversion. The size of the system and the multitude of mechanisms at play provide a considerable challenge for the theoretical treatment of the interaction. In this thesis, we have developed a Classical Trajectory Monte Carlo simulation that gives insight into the particle dynamics during the interaction of laser pulses with large argon clusters (with more than 10000 atoms per cluster). Elastic electron-ion scattering, electron-electron scattering, electron-impact ionization and excitation, as well as three-body recombination and Auger decay are included via stochastic events. In a strongly simplified picture, the dynamics of the laser-cluster interaction can be summarized as follows: the intense laser field ionizes the cluster atoms and drives the population of quasi-free electrons. In collision events, further free electrons and high ionic charge states are created. As some electrons leave the cluster, the ions feel a net positive charge, and the cluster ultimately disintegrates in a Coulomb explosion. Even at moderate laser intensities (approx. 10 15 W/cm 2 ), impact ionization produces inner-shell vacancies in the cluster ions that decay by emitting characteristic X-ray radiation. The small population of fast electrons responsible for these ionization events is produced near the cluster poles, where the combination of polarization and charging of the cluster leads to strongly enhanced field strengths. We achieve a good agreement over large parameter ranges between the simulation and X-ray spectroscopy experiments. We also investigate the dependence of X-ray emission on laser intensity, pulse duration and cluster size. We find that in order to

  11. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.

  12. Identifying self-interstitials of bcc and fcc crystals in molecular dynamics

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Warrier, M.; Rao, A. D. P.; Valsakumar, M. C.

    2017-02-01

    Identification of self-interstitials in molecular dynamics (MD) simulations is of critical importance. There exist several criteria for identifying the self-interstitial. Most of the existing methods use an assumed cut-off value for the displacement of an atom from its lattice position to identify the self-interstitial. The results obtained are affected by the chosen cut-off value. Moreover, these chosen cut-off values are independent of temperature. We have developed a novel unsupervised learning algorithm called Max-Space Clustering (MSC) to identify an appropriate cut-off value and its dependence on temperature. This method is compared with some widely used methods such as effective sphere (ES) method and nearest neighbor sphere (NNS) method. The cut-off radius obtained using our method shows a linear variation with temperature. The value of cut-off radius and its temperature dependence is derived for five bcc (Cr, Fe, Mo, Nb, W) and six fcc (Ag, Au, Cu, Ni, Pd, Pt) crystals. It is seen that the ratio of the cut-off values "r" to the lattice constant "a" lies between 0.23 and 0.3 at 300 K and this ratio is on an average smaller for the fcc crystals. Collision cascade simulations are carried out for Primary knock-on Atom (PKA) energies of 5 keV in Fe (at 300 K and 1000 K) and W (at 300 K and 2500 K) and the results are compared using the various methods.

  13. Simulated full-waveform lidar compared to Riegl VZ-400 terrestrial laser scans

    Science.gov (United States)

    Kim, Angela M.; Olsen, Richard C.; Béland, Martin

    2016-05-01

    A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and ab- sorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a Riegl VZ-400 terrestrial laser scanner. The VoxLAD model uses terrestrial LiDAR scanner data to determine Leaf Area Density (LAD) measurements for small volume voxels (20 cm sides) of a single tree canopy. VoxLAD is also used in a non-traditional fashion in this case to generate a voxel model of wood density. Information from the VoxLAD model is used within the LiDAR simulation to determine the probability of LiDAR energy interacting with materials at a given voxel location. The LiDAR simulation is defined to replicate the scanning arrangement of the Riegl VZ-400; the resulting simulated full-waveform LiDAR signals compare favorably to those obtained with the Riegl VZ-400 terrestrial laser scanner.

  14. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy.

    Science.gov (United States)

    Kang, Joon Y; Wu, Chengyuan; Tracy, Joseph; Lorenzo, Matthew; Evans, James; Nei, Maromi; Skidmore, Christopher; Mintzer, Scott; Sharan, Ashwini D; Sperling, Michael R

    2016-02-01

    To describe mesial temporal lobe ablated volumes, verbal memory, and surgical outcomes in patients with medically intractable mesial temporal lobe epilepsy (mTLE) treated with magnetic resonance imaging (MRI)-guided stereotactic laser interstitial thermal therapy (LiTT). We prospectively tracked seizure outcome in 20 patients at Thomas Jefferson University Hospital with drug-resistant mTLE who underwent MRI-guided LiTT from December 2011 to December 2014. Surgical outcome was assessed at 6 months, 1 year, 2 years, and at the most recent visit. Volume-based analysis of ablated mesial temporal structures was conducted in 17 patients with mesial temporal sclerosis (MTS) and results were compared between the seizure-free and not seizure-free groups. Following LiTT, proportions of patients who were free of seizures impairing consciousness (including those with auras only) are as follows: 8 of 15 patients (53%, 95% confidence interval [CI] 30.1-75.2%) after 6 months, 4 of 11 patients (36.4%, 95% CI 14.9-64.8%) after 1 year, 3 of 5 patients (60%, 95% CI 22.9-88.4%) at 2-year follow-up. Median follow-up was 13.4 months after LiTT (range 1.3 months to 3.2 years). Seizure outcome after LiTT suggests an all or none response. Four patients had anterior temporal lobectomy (ATL) after LiTT; three are seizure-free. There were no differences in total ablated volume of the amygdalohippocampus complex or individual volumes of hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, and fusiform gyrus between seizure-free and non-seizure-free patients. Contextual verbal memory performance was preserved after LiTT, although decline in noncontextual memory task scores were noted. We conclude that MRI-guided stereotactic LiTT is a safe alternative to ATL in patients with medically intractable mTLE. Individualized assessment is warranted to determine whether the reduced odds of seizure freedom are worth the reduction in risk, discomfort, and recovery time. Larger prospective

  15. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  16. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-01-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  17. Development of Laser-Induced Fluorescence Diagnostic for the Paul Trap Simulator Experiment

    CERN Document Server

    Chung, Moses; Efthimion, Philip; Gilson, Erik P; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. For the in-situ measurement of the transverse ion density profile in the PTSX device, which is essential for the study of beam mismatch and halo particle production, a laser-induced fluorescence diagnostic system is being developed. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. The installation of the barium ion source and the characterization of the tunable dye laser system are discussed. The design of the collection optics with an intensified CCD camera system is also discussed. Finally, initial test results using the laser-induced fluorescence diagnostic will be presented.

  18. Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature.

    Science.gov (United States)

    Shraiki, Mario; Arba-Mosquera, Samuel

    2011-06-01

    To evaluate ablation algorithms and temperature changes in laser refractive surgery. The model (virtual laser system [VLS]) simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model is comprehensive and directly considers applied correction; corneal geometry, including astigmatism; laser beam characteristics; and ablative spot properties. Pulse lists collected from actual treatments were used to simulate the temperature increase during the ablation process. Ablation efficiency reduction in the periphery resulted in a lower peripheral temperature increase. Steep corneas had lesser temperature increases than flat ones. The maximum rise in temperature depends on the spatial density of the ablation pulses. For the same number of ablative pulses, myopic corrections showed the highest temperature increase, followed by myopic astigmatism, mixed astigmatism, phototherapeutic keratectomy (PTK), hyperopic astigmatism, and hyperopic treatments. The proposed model can be used, at relatively low cost, for calibration, verification, and validation of the laser systems used for ablation processes and would directly improve the quality of the results.

  19. Diagnostics of Particles emitted from a Laser generated Plasma: Experimental Data and Simulations

    Science.gov (United States)

    Costa, Giuseppe; Torrisi, Lorenzo

    2018-01-01

    The charge particle emission form laser-generated plasma was studied experimentally and theoretically using the COMSOL simulation code. The particle acceleration was investigated using two lasers at two different regimes. A Nd:YAG laser, with 3 ns pulse duration and 1010 W/cm2 intensity, when focused on solid target produces a non-equilibrium plasma with average temperature of about 30-50 eV. An Iodine laser with 300 ps pulse duration and 1016 W/cm2 intensity produces plasmas with average temperatures of the order of tens keV. In both cases charge separation occurs and ions and electrons are accelerated at energies of the order of 200 eV and 1 MeV per charge state in the two cases, respectively. The simulation program permits to plot the charge particle trajectories from plasma source in vacuum indicating how they can be deflected by magnetic and electrical fields. The simulation code can be employed to realize suitable permanent magnets and solenoids to deflect ions toward a secondary target or detectors, to focalize ions and electrons, to realize electron traps able to provide significant ion acceleration and to realize efficient spectrometers. In particular it was applied to the study two Thomson parabola spectrometers able to detect ions at low and at high laser intensities. The comparisons between measurements and simulation is presented and discussed.

  20. Three-dimensional simulations of free-electron laser physics

    International Nuclear Information System (INIS)

    McVey, B.D.

    1985-09-01

    A computer code has been developed to simulate three-dimensional free-electron laser physics. A mathematical formulation of the FEL equations is presented, and the numerical solution of the problem is described. Sample results from the computer code are discussed. 23 refs., 6 figs., 2 tabs

  1. Balance point characterization of interstitial fluid volume regulation.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  2. Interstitial cystitis

    Science.gov (United States)

    ... symptoms get better. Reduce or stop consuming caffeine, chocolate, carbonated beverages, citrus drinks, and foods with a ... rarely done anymore Support Groups Some people may benefit from taking part in interstitial cystitis support groups . ...

  3. Interstitial Cystitis

    Science.gov (United States)

    ... relieve symptoms. Diet. Alcohol, tomatoes, spices, carbonated drinks, chocolate, caffeine, citrus fruits and drinks, pickled foods, artificial ... at scheduled times and using relaxation techniques. Physical therapy. People who have interstitial cystitis may have painful ...

  4. Efficient method for transport simulations in quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Maczka Mariusz

    2017-01-01

    Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  5. Interstitial cystitis: painful bladder syndrome

    Directory of Open Access Journals (Sweden)

    R F Sholan

    2018-02-01

    Full Text Available Interstitial cystitis, or painful bladder syndrome, is a chronic inflammatory disease of a bladder of unknown etiology. It negatively affects the quality of life, causes depressive disorders, anxiety, and sexual dysfunction. Despite numerous studies, the etiology of interstitial cystitis is still unclear and it’s considered as painful bladder syndrome with multifactorial origin. According to the US National Health and Nutrition Examination Survey, 470/100 000 people (60/100 000 men, 850/100 000 women are diagnosed with interstitial cystitis. Diagnosis of the disease is difficult and is substantially based on clinical symptoms. Pelvic pain, urinary urgency, frequency and nocturia are the basic complaints in this pathology. The diagnosis requires exclusion of diseases with similar manifestations. So interstitial cystitis is frequently misdiagnosed as urinary tract infection, overactive bladder, urethral obstruction or diverticulosis, chronic prostatitis, bladder cancer, vulvodynia, endometriosis, and chronic pelvic pain. Etiopathogenesis of the disease is uncertain, which makes etiologic treatment impossible. Currently scientific discussions on the causes of disease continue as well as different treatment regimens are offered, but are often ineffective, palliative and temporary. The treatment for intersticial cystitis should focus on restoring normal bladder function, prevention of relapse of symptoms and improvement of patients’ quality of life. The literature review presents current view on the terminology, epidemiology, diagnosis and treatment of interstitial cystitis.

  6. Simulation and initial experiments of a high power pulsed TEA CO2 laser

    Science.gov (United States)

    Torabi, R.; Saghafifar, H.; Koushki, A. M.; Ganjovi, A. A.

    2016-01-01

    In this paper, the output characteristics of a UV pin array pre-ionized TEA CO2 laser have been simulated and compared with the associated experimental data. In our simulation, a new theoretical model has been improved for transient behavior analysis of the discharge current pulse. The laser discharge tube was modeled by a nonlinear RLC electric circuit as a real model for electron density calculation. This model was coupled with a six-temperature model (6TM) in order to simulation dynamic emission processes of the TEA CO2 laser. The equations were solved numerically by the fourth order Runge-Kutta numerical method and some important variables such as current and voltage of the main discharge, resistance of the plasma column and electron density in the main discharge region, were calculated as functions of time. The effects of non-dissociation factor, rotational quantum number and output coupler reflectivity were also studied theoretically. The experimental and simulation results are in good agreement.

  7. Large signal simulation of photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Zali, Aref Rasoulzadeh; Yu, Yi; Moravvej-Farshi, Mohammad Kazem

    2017-01-01

    be modulated at frequencies exceeding 1 THz which is much higher than its corresponding relaxation oscillation frequency. Large signal simulation of the Fano laser is also investigated based on pseudorandom bit sequence at 0.5 Tbit/s. It shows eye patterns are open at such high modulation frequency, verifying...

  8. Interstitial shadow on chest CT is associated with the onset of interstitial lung disease caused by chemotherapeutic drugs

    International Nuclear Information System (INIS)

    Niho, Seiji; Goto, Koichi; Yoh, Kiyotaka; Kim, Y.H.; Ohmatsu, Hironobu; Kubota, Kaoru; Saijo, Nagahiro; Nishiwaki, Yutaka

    2006-01-01

    Pretreatment computerized tomography (CT) films of the chest was studied to clarify the influence of interstitial shadow on developing interstitial lung disease (ILD). Eligible patients were those lung cancer patients who started to receive first-line chemotherapy between October 2001 and March 2004. Patients who received thoracic radiotherapy to the primary lesion, mediastinum, spinal or rib metastases were excluded. We reviewed pretreatment conventional CT and plain X-ray films of the chest. Ground-glass opacity, consolidation or reticular shadow without segmental distribution was defined as interstitial shadow, with this event being graded as mild, moderate or severe. If interstitial shadow was detected on CT films of the chest, but not via plain chest X-ray, it was graded as mild. Patients developing ILD were identified from medial records. A total of 502 patients were eligible. Mild, moderate and severe interstitial shadow was identified in 7, 8 and 5% of patients, respectively. A total of 188 patients (37%) received tyrosine kinase inhibitor (TKI) treatment, namely gefitinib or erlotinib. Twenty-six patients (5.2%) developed ILD either during or after chemotherapy. Multivariate analyses revealed that interstitial shadow on CT films of the chest and treatment history with TKI were associated with the onset of ILD. It is recommended that patients with interstitial shadow on chest CT are excluded from future clinical trials until this issue is further clarified, as it is anticipated that use of chemotherapeutic agents frequently mediate onset of ILD in this context. (author)

  9. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    Science.gov (United States)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  10. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  11. A laser particulate spectrometer for a space simulation facility

    Science.gov (United States)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.; Richmond, R. G.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate contaminants. Detection of the particulates is achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meters/second. The LPS system was designed to operate in the high-vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  12. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    Science.gov (United States)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  13. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    International Nuclear Information System (INIS)

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-01

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  14. Simulation of laser-target interactions in a vacuum

    International Nuclear Information System (INIS)

    Goldman, S.R.; Gitomer, S.L.; Kopp, R.A.; Saltzman, J.S.; Dingus, R.S.

    1985-01-01

    This paper presents numerical simulations for two problem classes. First we study (and compare against one-dimensional analogues) the two dimensional azimuthally symmetric interaction appropriate to a laser pulse energy of order 100 joules, flat-top pulse of width 50 nanoseconds, and wavelength of 0.25 μm, with intensities ranging from 2 x 10 9 W/cm 2 to 2 x 10 12 W/cm 2 . These conditions correspond to an experimental series shot on the Sprite laser at the Rutherford-Appleton Laboratory during the summer of 1985. Next we study the interaction, especially as concerns momentum coupling, for one-dimensional nondiverging geometry, at laser wavelengths of 0.25 μm and 10.6 μm and flat-topped pulsewidths of 1 μsec, with intensities ranging from 10 9 to 10 12 W/cm 2 . In all cases, calculations are for aluminum targets in vacuum

  15. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas

    International Nuclear Information System (INIS)

    Drska, L.; Limpouch, J.; Liska, R.

    1993-01-01

    The interaction of femtosecond laser pulses with fully ionized solid-state density plasmas in the regime of the normal skin effect was investigated by means of numerical simulation. For short wavelength lasers and 120 fs FWHM laser pulses the regime of normal skin effect is shown to hold for peak intensities up to 10 17 W/cm 2 . Basic characteristics of the interaction are revealed and certain departures of the electron distribution function, of the plasma dielectric constant and of laser absorption from simplistic models are pointed out. (author) 1 tab., 4 figs., 14 refs

  16. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  17. Regulation of tumor invasion by interstitial fluid flow

    International Nuclear Information System (INIS)

    Shieh, Adrian C; Swartz, Melody A

    2011-01-01

    The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell–cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals

  18. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  19. [SOPHOCLE (Ophthalmologic Simulator of Laser PHOtocoagulation): contribution to virtual reality].

    Science.gov (United States)

    Rouland, J F; Dubois, P; Chaillou, C; Meseuree, P; Karpf, S; Godin, S; Duquenoy, F

    1995-01-01

    This study was undertaken to teach laser retinal photocoagulation in different disorders using a "virtual eye". Most ophthalmologists routinely use laser photocoagulator. Both indications and laser effects are well-known. However, in various diseases (diabetic retinopathy, age-related-macular degeneration, myopia...) complications rate increase or at least does not decrease. The main reasons are: - ignorance of risk factors, - misuse of the instrument. We developed a new automated device stimulating a real laser photocoagulator. Only slit-lamp exists. The three-mirror lens, the fundus and the retinal photocoagulation impacts are "virtual". The aim of the simulator is to help practitioners to recognize various pathologies almost as in real conditions and to be familiar with different technics of photocoagulation. By using computer assisted learning, a constant evaluation determines the level and the progress of practitioners.

  20. Three-dimensional numerical simulation during laser processing of CFRP

    Science.gov (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro

    2017-09-01

    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  1. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    Science.gov (United States)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  2. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  3. Laser shocks: A tool for experimental simulation of damage into materials

    Energy Technology Data Exchange (ETDEWEB)

    Boustie, M.; Cuq Lelandais, J. P.; Berthe, L.; Ecault, R. [Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France); CEA-DAM Valduc, 21120 Is-sur-Tille (France); Laboratoire Procedes et Ingenierie en Mecanique et Materiaux (CNRS), Arts et Metiers ParisTech, 151 bd de l' Hopital, 75013 PARIS (France); Institut PPRIME, Departement Physique et Mecanique des Materiaux, CNRS-ENSMA-Universite de Poitiers, 1 av Clement Ader, 86961 FUTUROSCOPE Cedex (France)

    2012-07-30

    High power laser irradiation of solids results in a strong shock wave propagation, driving very high amplitude pressure loadings with very short durations. These particular characteristics offer the possibility to study the behaviour of matter under extreme dynamic conditions in continuity with what is possible with the conventional generators of shock (launchers of projectiles, explosives). An advantage of laser shocks is a possible recovery of the shocked samples presenting the metallurgical effects of the shock in most cases. We introduce the principle of the laser shock generation, the characterization of these shocks, the principal mechanisms and effects associated with their propagation in the solids. We show how laser shocks can be a laboratory tool for simulating shock effects at ultra high strain rate, providing a high in information experimental layout for validation of damage modelling on an extended strain rate range compared to conventional shock generators. New data have been obtained with ultra short femtosecond range irradiation. Experimental data gathered through post mortem observation, time resolved velocity measurement are shown along with numerical associated simulations, showing the possibility to predict the damage behaviour of metallic targets under extreme strain rate up to 10{sup 8} s{sup -1}.

  4. Experimental simulation of lightning, interacting explosions and astrophysical jets with pulsed lasers

    International Nuclear Information System (INIS)

    Villagran-Muniz, M; Sobral, H; Navarro-Gonzalez, R; Velazquez, P F; Raga, A C

    2003-01-01

    Tabletop laboratory experiments have been used to simulate natural lightning, interacting explosions and astrophysical jets. When a high-energy laser pulse is focused in air, a laser-induced plasma (LIP) is produced, that generates a shock wave and an adiabatic expansion of the gas. In our work we have used LIPs in order to simulate lightning, for the study of chemical reactions relevant to atmospheric science. Several diagnostics have been applied to our LIPs, such as deflectometry, shadowgraphy and interferometry, which yield full spatial information of the process (electron density and temperature, the position of the shock wave fronts and the expansion of the hot gas), with a time resolution that ranges from nanoseconds to milliseconds. A new diagnostic alternative was implemented for shadowgraphy, which uses either continuous lasers or conventional light sources. The experimental results have been reproduced by hydrodynamic codes that we have developed. With astrophysical applications in mind, we have simulated and diagnosed the interaction of two explosions, with the aforementioned techniques. For this purpose, two LIPs are synchronized and diagnosed spatially and temporarily. Also, by producing the LIP in a glass sphere with a nozzle that ejects a shock wave and hot gas, we are able to simulate astrophysical jets. With such experiments, astrophysical models developed by us have been validated, showing excellent agreement between experiments and numerical simulations

  5. Integration of adaptive optics into highEnergy laser modeling and simulation

    Science.gov (United States)

    2017-06-01

    contain hundreds of actuators with high control bandwidths and low hysteresis, all of which are ideal parameters for accurate reconstruction of higher... Available : https://web.archive.org/web/20110111093235/http: //csis.org/blog/missile-defense-umbrella [10] C. Kopp, “ High energy laser directed energy...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATION OF ADAPTIVE OPTICS INTO HIGH ENERGY LASER MODELING AND SIMULATION by Donald Puent

  6. Atomistic simulations of the formation of -component dislocation loops in α-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cong, E-mail: dai.cong@queensu.ca; Balogh, Levente; Yao, Zhongwen; Daymond, Mark R., E-mail: mark.daymond@queensu.ca

    2016-09-15

    The formation of -component dislocation loops in α-Zr is believed to be responsible for the breakaway irradiation growth experimentally observed under high irradiation fluences. However, while -loop growth is well described by existing models, the atomic mechanisms responsible for the nucleation of -component dislocation loops are still not clear. In the present work, both interstitial and vacancy -type dislocation loops are initially equilibrated at different temperatures. Cascades simulations in the vicinity of the -type loops are then performed by selecting an atom as the primary knock-on atoms (PKAs) with different kinetic energies, using molecular dynamics simulations. No -component dislocation loop was formed in cascades simulations with a 10 keV PKA, but -component interstitial loops were observed after the interaction between discontinuous 50 keV PKAs and pre-existing -type interstitial loops. The comparisons of cascades simulations in volumes having pre-existing -type interstitial and vacancy loops suggest that the reaction between the PKAs and -type interstitial loops is responsible for the formation of -component interstitial loops.

  7. NUMERICAL SIMULATION OF Q-SWITCHED Nd: YAG LASER WITH UNSTABLE RESONATOR AND OUTPUT VARIABLE REFLECTIVITY MIRROR

    Directory of Open Access Journals (Sweden)

    I. N. Dubinkin

    2017-05-01

    Full Text Available The article deals with a method of numerical simulation of laser oscillation in the radially symmetric unstable resonator with an output variable reflectivity mirror (VRM. Research results of the VRM parameters influence on the spatial and energy properties of the laser radiation are obtained. Numerical simulation of laser oscillation in active and passive Q-switching and comparative analysis of the spatial and energy radiation characteristics is done for these modes.

  8. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    International Nuclear Information System (INIS)

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-01-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed

  10. The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Danny, E-mail: danny-perez@lanl.gov; Sandoval, Luis; Voter, Arthur F. [Theoretical Division T-1, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Uberuaga, Blas P. [Materials Science and Technology MST-8, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-28

    Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.

  11. [Effects of two submerged macrophytes on dissolved inorganic nitrogen in overlying water and interstitial water].

    Science.gov (United States)

    Yang, Wen-Bin; Li, Yang; Sun, Gong-Xian

    2014-06-01

    Ceratophyllum demersum (C. demersum) and Vallisneria spiralis L. (V. spiralis L.) were studied as model submerged macrophytes. The effects of the submerged macrophytes on the forms and concentration of the dissolved inorganic nitrogen (DIN) in the overlying water and the interstitial water, as well as the diffusion flux of DIN in the water-sediment interface were investigated by batch simulation experiment. The results indicated that the removal effect of DIN in the overlying water was better than that in the interstitial water by submerged macrophytes. The removal efficiency of DIN in the overlying water and the interstitial water followed the order of NO2(-) -N > NH4(+) -N > NO3(-) -N. The removal rate of DIN by C. demersum was higher than that of V. spiralis L. in the overlying water, while the result was converse in the interstitial water. C. demersum and V. spiralis L. decreased the diffusion flux of NH4(+) -N and NO2(-) -N, and increased the diffusion flux of NO3(-) -N significantly. Consequently, NO3(-) -N replaced NH4(+) -N and became the main form of DIN, which diffused from the interstitial water to the overlying water. The impact of the diffusion flux of NO3(-) -N between C. demersum and V. spiralis L. showed no significant difference, and the result was the same for NH4(+) -N. C. demersum and V. spiralis L. increased the width of variation of the three nitrogen forms to total DIN in the overlying water and the interstitial water, the influence on the ratio of DIN by C. demersum was greater than that of V. spiralis L. in the overlying water, while the result was opposite in the interstitial water. In general, C. demersum had more influence in the overlying water, while V. spiralis L. had more influence in the interstitial water, and the influence of DIN diffusion flux was not significant.

  12. Simulation of Laser Additive Manufacturing and its Applications

    Science.gov (United States)

    Lee, Yousub

    Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer

  13. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  14. The Validity of a Paraxial Approximation in the Simulation of Laser Plasma Interactions

    International Nuclear Information System (INIS)

    Hyole, E. M.

    2000-01-01

    The design of high-power lasers such as those used for inertial confinement fusion demands accurate modeling of the interaction between lasers and plasmas. In inertial confinement fusion, initial laser pulses ablate material from the hohlraum, which contains the target, creating a plasma. Plasma density variations due to plasma motion, ablating material and the ponderomotive force exerted by the laser on the plasma disrupt smooth laser propagation, undesirably focusing and scattering the light. Accurate and efficient computational simulations aid immensely in developing an understanding of these effects. In this paper, we compare the accuracy of two methods for calculating the propagation of laser light through plasmas. A full laser-plasma simulation typically consists of a fluid model for the plasma motion and a laser propagation model. These two pieces interact with each other as follows. First, given the plasma density, one propagates the laser with a refractive index determined by this density. Then, given the laser intensities, the calculation of one time step of the plasma motion provides a new density for the laser propagation. Because this procedure repeats over many time steps, each piece must be performed accurately and efficiently. In general, calculation of the light intensities necessitates the solution of the Helmholtz equation with a variable index of refraction. The Helmholtz equation becomes extremely difficult and time-consuming to solve as the problem size increases. The size of laser-plasma problems of present interest far exceeds current capabilities. To avoid solving the full Helmholtz equation one may use a partial approximation. Generally speaking the partial approximation applies when one expects negligible backscattering of the light and only mild scattering transverse to the direction of light propagation. This approximation results in a differential equation that is first-order in the propagation direction that can be integrated

  15. Laser simulation applying Fox-Li iteration: investigation of reason for non-convergence

    Science.gov (United States)

    Paxton, Alan H.; Yang, Chi

    2017-02-01

    Fox-Li iteration is often used to numerically simulate lasers. If a solution is found, the complex field amplitude is a good indication of the laser mode. The case of a semiconductor laser, for which the medium possesses a self-focusing nonlinearity, was investigated. For a case of interest, the iterations did not yield a converged solution. Another approach was needed to explore the properties of the laser mode. The laser was treated (unphysically) as a regenerative amplifier. As the input to the amplifier, we required a smooth complex field distribution that matched the laser resonator. To obtain such a field, we found what would be the solution for the laser field if the strength of the self focusing nonlinearity were α = 0. This was used as the input to the laser, treated as an amplifier. Because the beam deteriorated as it propagated multiple passes in the resonator and through the gain medium (for α = 2.7), we concluded that a mode with good beam quality could not exist in the laser.

  16. Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations

    International Nuclear Information System (INIS)

    Willaime, F.; Fu, C.C.; Marinica, M.C.; Dalla Torre, J.

    2005-01-01

    The stability and mobility of self-interstitials and small interstitial clusters, I n , in α-Fe is investigated by means of calculations performed in the framework of the density functional theory using the SIESTA code. The mono-, di- and tri-interstitials are shown to be made of (parallel) dumbbells and to migrate by nearest-neighbor translation-rotation jumps, according to Johnson's mechanism. The orientation of the dumbbells becomes energetically more favourable for I 5 and larger clusters. The performance of a semi-empirical potential recently developed for Fe, including ab initio self-interstitial data in the fitted properties, is evaluated over the present results. The superiority over previous semi-empirical potentials is confirmed. Finally the impact of the present results on the formation mechanism of loops, observed experimentally in α-Fe is discussed

  17. Idiopathic interstitial pneumonias: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Yoon, Young Cheol; Suh, Gee Young; Han, Joung Ho; Lee, Kyung Soo

    2002-01-01

    Idiopathic interstitial pneumonias are at present classified as one of four types: usual, nonspecific, acute, or desquamative. The acute form has the worst prognosis, followed by the usual and the nonspecific form; it is in desquamative cases that prognosis is best. At high-resolution CT, usual interstitial pneumonia, the most frequent type, manifests as patchy subpleural areas of ground-glass attenuation, irregular linear opacity, and honeycombing, which the nonspecific type, the second most frequent, appears as subpleural patchy areas of ground-glass attenuation with associated areas of irregular linear opacity. Acute interstitial pneumonia demonstrates extensive bilateral airspace consolidation and patchy or diffuse bilateral areas of ground-glass attenuation in middle and lower lung zones

  18. [Modern Views on Children's Interstitial Lung Disease].

    Science.gov (United States)

    Boĭtsova, E V; Beliashova, M A; Ovsiannikov, D Iu

    2015-01-01

    Interstitial lung diseases (ILD, diffuse lung diseases) are a heterogeneous group of diseases in which a pathological process primarily involved alveoli and perialveolar interstitium, resulting in impaired gas exchange, restrictive changes of lung ventilation function and diffuse interstitial changes detectable by X-ray. Children's interstitial lung diseases is an topical problem ofpediatricpulmonoogy. The article presents current information about classification, epidemiology, clinical presentation, diagnostics, treatment and prognosis of these rare diseases. The article describes the differences in the structure, pathogenesis, detection of various histological changes in children's ILD compared with adult patients with ILD. Authors cite an instance of registers pediatric patients with ILD. The clinical semiotics of ILD, the possible results of objective research, the frequency of symptoms, the features of medical history, the changes detected on chest X-rays, CT semiotics described in detail. Particular attention was paid to interstitial lung diseases, occurring mainly in newborns and children during the first two years of life, such as congenital deficiencies of surfactant proteins, neuroendocrine cell hyperplasia of infancy, pulmonary interstitial glycogenosis. The diagnostic program for children's ILD, therapy options are presented in this article.

  19. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  20. Automated analysis for detecting beams in laser wakefield simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-01-01

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

  1. Numerical simulation of thermal loading produced by shaped high power laser onto engine parts

    International Nuclear Information System (INIS)

    Song Hongwei; Li Shaoxia; Zhang Ling; Yu Gang; Zhou Liang; Tan Jiansong

    2010-01-01

    Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts.

  2. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  3. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    International Nuclear Information System (INIS)

    Desai, S.R.; Ryan, S.M.; Colby, T.V.

    2003-01-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed

  4. Microstructures and phase transformations in interstitial alloys of tantalum

    International Nuclear Information System (INIS)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta 64 C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta 12 O and Ta 2 H

  5. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  6. Simulation of QED effects in ultrahigh intensity laser-plasma interaction

    International Nuclear Information System (INIS)

    Kostyukov, I.; Nerush, E.

    2010-01-01

    Complete text of publication follows. Due to an impressive progress in laser technology, laser pulses with peak intensity of nearly 2 x 10 22 W/cm 2 are now available in laboratory. When the matter is irradiated by so intense laser pulses high energy density plasma is produced. Besides of fundamental interest such plasma is the efficient source of particles and radiation with extreme parameters that opens bright perspectives in developments of advanced particle accelerators, next generation of radiation sources, laboratory modelling of astrophysics phenomena etc. Even high laser intensity the radiation reaction and QED effects become important. One of the QED effects, which recently attracts much attention, is the electron-positron plasma creation in strong laser field. The plasma can be produced via electromagnetic cascades: the seeded charged particles is accelerated in the field of counter-propagating laser pulses, then they emit energetic photons, the photons by turn decay in the laser field and create electron-positron pairs. The pair particles accelerated in the laser field produce new generation of the photons and pairs. For self-consistent study of the electron-positron plasma dynamics in the laser field we develop 2D code based on particle-in-cell and Monte-Carlo methods. The electron, positron and photon dynamics as well as evolution of the plasma and laser fields are calculated by PIC technique while photon emission and pair production are calculated by Monte-Carlo method. We simulate pair production in the field of counter-propagating linearly polarized laser pulses. It is shown that for the laser intensity above threshold the plasma production becomes so intense that the laser pulse are strongly absorbed in the plasma. The laser intensity threshold and the rate of laser field absorption are calculated. Acknowledgements. This work has been supported by federal target 'The scientific and scientific-pedagogical personnel of innovation in Russia' and by

  7. Picosecond dissociation of amyloid fibrils with infrared laser: A nonequilibrium simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man; Roland, Christopher, E-mail: cmroland@ncsu.edu; Sagui, Celeste, E-mail: sagui@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam)

    2015-10-21

    Recently, mid-infrared free-electron laser technology has been developed to dissociate amyloid fibrils. Here, we present a theoretical framework for this type of experiment based on laser-induced nonequilibrium all-atom molecular dynamics simulations. We show that the fibril is destroyed due to the strong resonance between its amide I vibrational modes and the laser field. The effects of laser irradiation are determined by a balance between fibril formation and dissociation. While the overall rearrangements of the fibril finish over short time scales, the interaction between the peptides and the solvent continues over much longer times indicating that the waters play an important role in the dissociation process. Our results thus provide new insights into amyloid fibril dissociation by laser techniques and open up new venues to investigate the complex phenomena associated with amyloidogenesis.

  8. Interstitial Granulomatous Dermatitis (IGD

    Directory of Open Access Journals (Sweden)

    Tiberiu Tebeica

    2017-07-01

    Full Text Available We report the case of a 42 years old male patient suffering from skin changes , which appeared in the last 7-8 years.  Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of lymphocytes and histiocytes dispersed among collagen bundles, with variable numbers of neutrophils scattered throughout. Some histiocytes were clustered in poorly formed granuloma that included rare giant cells, with discrete Palisades and piecemeal collagen degeneration, but without mucin deposition or frank necrobiosis of collagen. The clinical and histologic findings were supportive for interstitial granulomatous dermatitis. Interstitial granulomatous dermatitis (IGD is a poorly understood entity that was regarded by many as belonging to the same spectrum of disease or even synonym with palisaded and neutrophilic granulomatous dermatitis (PNGD. Although IGD and PNGD were usually related to connective tissue disease, mostly rheumatoid arthritis, some patients with typical histologic findings of IGD never develop autoimmune disorders, but they have different underlying conditions, such as metabolic diseases, lymphoproliferative disorders or other malignant tumours. These observations indicate that IGD and PNGD are different disorders with similar manifestations.

  9. Acute interstitial pneumonia

    International Nuclear Information System (INIS)

    Cuervo M, Francisco; Carrillo Bayona, Jorge; Ojeda, Paulina

    2004-01-01

    The paper refers to a 71 year-old patient, to who is diagnosed acute interstitial pneumonia; with square of 20 days of evolution of cough dry emetizant, fever, general uneasiness, migraine, progressive dyspnoea and lost of weight

  10. The interstitial pneumonitis induced by cytostatics

    International Nuclear Information System (INIS)

    Dubrava, M.; Markova, I.; Mistina, L.

    1998-01-01

    The author presents a cause of 9-year old boy with ALL-F2B in the stage of the prevention treatment where in the its course the induced interstitial pneumonitis by cytostatics was developed. The bacterial, virus, mycological and parasitic causes of the interstitial pneumonitis on the basis of the bronchoscopy, BAL, CT, scintigraphy, laboratory and by cultivation were excluded. (authors)

  11. An approach to interstitial lung disease in India

    Directory of Open Access Journals (Sweden)

    J N Pande

    2014-07-01

    Full Text Available Interstitial lung diseases are common and have varied etiology, clinical presentation, clinical course and outcome. They pose a diagnostic challenge to physicians and pulmonologists. Patients present with dry cough, exertional dyspnoea, interstitial lesions on X-ray of the chest and restrictive ventilatory defect on spirometry. A sharp decline in oxygen saturation with exercise is characteristic. Careful evaluation of the history of the patient and physical examination help in narrowing down diagnostic probabilities. HRCT of the chest has emerged as an important tool in the evaluation of these disorders. Idiopathic Interstitial Pneumonias (IIP are a group of conditions which are classified into several types based on pathological features. Bronchoscopic procedures are helpful in diagnosis of certain disorders but are of limited value in classification of IIP which requires surgical biopsy. Usual Interstitial Pneumonia (UIP, also referred to as Idiopathic Pulmonary Fibrosis, has a progressive course and an unfavourable outcome. Certain new drugs have recently become available for treatment of UIP. Our approach towards diagnosis and management of interstitial lung diseases based on personal experience over the past three decades is reported here. Key words: Usual interstitial pneumonia – sarcoidosis – pneumoconiosis – bronchoscopy – lung biopsy 

  12. Analysis of effects of laser profiles on fast electron generation by two-dimensional Particle-In-Cell simulations

    International Nuclear Information System (INIS)

    Hata, M.

    2010-01-01

    Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the

  13. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    Science.gov (United States)

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  14. Lung volumes and emphysema in smokers with interstitial lung abnormalities.

    Science.gov (United States)

    Washko, George R; Hunninghake, Gary M; Fernandez, Isis E; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C; Estépar, Raúl San José; Lynch, David A; Brehm, John M; Andriole, Katherine P; Diaz, Alejandro A; Khorasani, Ramin; D'Aco, Katherine; Sciurba, Frank C; Silverman, Edwin K; Hatabu, Hiroto; Rosas, Ivan O

    2011-03-10

    Cigarette smoking is associated with emphysema and radiographic interstitial lung abnormalities. The degree to which interstitial lung abnormalities are associated with reduced total lung capacity and the extent of emphysema is not known. We looked for interstitial lung abnormalities in 2416 (96%) of 2508 high-resolution computed tomographic (HRCT) scans of the lung obtained from a cohort of smokers. We used linear and logistic regression to evaluate the associations between interstitial lung abnormalities and HRCT measurements of total lung capacity and emphysema. Interstitial lung abnormalities were present in 194 (8%) of the 2416 HRCT scans evaluated. In statistical models adjusting for relevant covariates, interstitial lung abnormalities were associated with reduced total lung capacity (-0.444 liters; 95% confidence interval [CI], -0.596 to -0.292; Ppulmonary disease (COPD) (odds ratio, 0.53; 95% CI, 0.37 to 0.76; P<0.001). The effect of interstitial lung abnormalities on total lung capacity and emphysema was dependent on COPD status (P<0.02 for the interactions). Interstitial lung abnormalities were positively associated with both greater exposure to tobacco smoke and current smoking. In smokers, interstitial lung abnormalities--which were present on about 1 of every 12 HRCT scans--were associated with reduced total lung capacity and a lesser amount of emphysema. (Funded by the National Institutes of Health and the Parker B. Francis Foundation; ClinicalTrials.gov number, NCT00608764.).

  15. Simulations of laser imprint for Nova experiments and for ignition capsules. Revision 1

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Key, M.H.; Remington, B.A.; Rothenberg, J.L.; Wolfrum, E.; Verdon, C.P.; Knauer, J.P.

    1996-12-01

    In direct drive ICF, nonuniformities in laser illumination seed ripples at the ablation front in a process called ''imprint''. These nonuniformities grow during the capsule implosion and, if initially large enough, can penetrate the capsule shell, impede ignition, or degrade burn. Imprint has been simulated for recent experiments performed on the Nova laser at LLNL examining a variety of beam smoothing conditions. Most used laser intensities similar to the early part of an ignition capsule pulse shape, 1 ≅ 10 13 W/cm 2 . The simulations matched most of the measurements of imprint modulation. The effect of imprint upon National Ignition Facility (NIF) direct drive ignition capsules has also been simulated. Imprint is predicted to give modulation comparable to an intrinsic surface finish of ∼10 nm RMS. Modulation growth was examined using the Haan [Phys. Rev. A 39, 5812 (1989)] model, with linear growth factors as a function of spherical harmonic mode number obtained from an analytic dispersion relation. Ablation front amplitudes are predicted to become substantially nonlinear, so that saturation corrections are large. Direct numerical simulations of two-dimensional multimode growth were also performed. The capsule shell is predicted to remain intact, which gives a basis for believing that ignition can be achieved. 27 refs., 10 figs

  16. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    International Nuclear Information System (INIS)

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of 'Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions', are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop '97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  17. Proceedings of the first JAERI-Kansai international workshop on ultrashort-pulse ultrahigh-power lasers and simulation for laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Records of the First JAERI-Kansai International Workshop, which focused on the subject of `Ultrashort-Pulse Ultrahigh-Power Lasers and Simulation for Laser-Plasma Interactions`, are contained in this issue. The First JAERI-Kansai International Workshop was held as Joint ICFA/JAERI-Kansai International Workshop `97 with International Committee for Future Accelerators (ICFA). This report consists of 24 contributed papers. (J.P.N.)

  18. HRCT of diffuse interstitial pneumonia during treatment

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sano, Akira; Imanaka, Kazufumi

    1989-01-01

    HRCT was carried out in twenty patients with diffuse interstitial pneumonia: 13 cases of IIP, 3 of BOOP, 2 of drug-induced pneumonia, 1 of rheumatoid lung and acute interstitial pneumonia of unknown origin. With special attention to inflammatory activity, the patients underwent HRCT periodically during the treatment. Correlative investigation between HRCT image and grade of accumulation in 67 Ga scintigraphy was also performed. Response to steroid therapy was clearly reflected on HRCT image, that was shown as decreasing pulmonary density or thinning of honeycomb wall. HRCT is considered to be useful in assessing the activity of diffuse interstitial pneumonia. (author)

  19. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.

    Science.gov (United States)

    Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki

    2014-01-01

    The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.

  20. Correlation between self-diffusion in Si and the migration mechanisms of vacancies and self-interstitials: An atomistic study

    International Nuclear Information System (INIS)

    Posselt, M.; Gao, F.; Bracht, H.

    2008-01-01

    The migration of point defects in silicon and the corresponding atomic mobility are investigated by comprehensive classical molecular-dynamics simulations using the Stillinger-Weber potential and the Tersoff potential. In contrast to most of the previous studies both the point defect diffusivity and the self-diffusion coefficient per defect are calculated separately so that the diffusion-correlation factor can be determined. Simulations with both the Stillinger-Weber and the Tersoff potential show that vacancy migration is characterized by the transformation of the tetrahedral vacancy to the split vacancy and vice versa and the diffusion-correlation factor f V is about 0.5. This value was also derived by the statistical diffusion theory under the assumption of the same migration mechanism. The mechanisms of self-interstitial migration are more complex. The detailed study, including a visual analysis and investigations with the nudged elastic band method, reveals a variety of transformations between different self-interstitial configurations. Molecular-dynamics simulations using the Stillinger-Weber potential show that the self-interstitial migration is dominated by a dumbbell mechanism, whereas in the case of the Tersoff potential the interstitialcy mechanism prevails. The corresponding values of the correlation factor f I are different, namely, 0.59 and 0.69 for the dumbbell and the interstitialcy mechanisms, respectively. The latter value is nearly equal to that obtained by the statistical theory which assumes the interstitialcy mechanism. Recent analysis of experimental results demonstrated that in the framework of state-of-the-art diffusion and reaction models the best interpretation of point defect data can be given by assuming f I ≅0.6. The comparison with the present atomistic study leads to the conclusion that the self-interstitial migration in Si should be governed by a dumbbell mechanism

  1. Diffusion of interstitials in metallic systems, illustration of a complex study case: aluminum

    Science.gov (United States)

    David, Matthieu; Connétable, Damien

    2017-11-01

    While diffusion mechanisms of interstitial elements in fcc systems are generally well-known, especially in the case of H atoms, we show in this work that even in the case of a simple metallic system (aluminum), the diffusion of interstitials exhibits a wide variety of paths and mechanisms that depend on the specie. We used an approach based on first-principles calculations associated with kinetic Monte-Carlo simulations and a multi-state diffusion formalism to compute the diffusion coefficients of five interstitial elements: hydrogen, boron, carbon, nitrogen and oxygen. For instance, at the atomic scale, whilst we find that C atoms prefer to be located in octahedral sites (labeled o) rather than in tetrahedral positions (labeled t), we find one additional stable position in the lattice (M). The diffusion through these three stable positions are thus studied in detail. In the case of B atoms, for which the tetrahedral site is found unstable, the diffusion path is between o-o sites. Similarly, in the case of oxygen, t positions are found to be the only stable positions (o are unstable) and the path of migration, along t-t direction, is found through a twice degenerated asymmetric transition state. In the case of H and N atoms for which t and o sites are stable, we explain why the only path is along the t-o direction. Finally, we discuss explicit formulas to compute coefficients of diffusion of interstitials in fcc structures.

  2. Percolation simulation of laser-guided electrical discharges.

    Science.gov (United States)

    Sasaki, Akira; Kishimoto, Yasuaki; Takahashi, Eiichi; Kato, Susumu; Fujii, Takashi; Kanazawa, Seiji

    2010-08-13

    A three-dimensional simulation of laser-guided discharges based on percolation is presented. The model includes both local growth of a streamer due to the enhanced electric field at the streamer's tip and propagation of a leader by remote ionization such as that caused by runaway electrons. The stochastic behavior of the discharge through a preformed plasma channel is reproduced by the calculation, which shows complex path with detouring and bifurcation. The probability of guiding is investigated with respect to the ionized, conductive fraction along the channel.

  3. Multiple wavelength spectral system simulating background light noise environment in satellite laser communications

    Science.gov (United States)

    Lu, Wei; Sun, Jianfeng; Hou, Peipei; Xu, Qian; Xi, Yueli; Zhou, Yu; Zhu, Funan; Liu, Liren

    2017-08-01

    Performance of satellite laser communications between GEO and LEO satellites can be influenced by background light noise appeared in the field of view due to sunlight or planets and some comets. Such influences should be studied on the ground testing platform before the space application. In this paper, we introduce a simulator that can simulate the real case of background light noise in space environment during the data talking via laser beam between two lonely satellites. This simulator can not only simulate the effect of multi-wavelength spectrum, but also the effects of adjustable angles of field-of-view, large range of adjustable optical power and adjustable deflection speeds of light noise in space environment. We integrate these functions into a device with small and compact size for easily mobile use. Software control function is also achieved via personal computer to adjust these functions arbitrarily. Keywords:

  4. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  5. Computer simulations of laser hot spots and implosion symmetry kiniform phase plate experiments on Nova

    International Nuclear Information System (INIS)

    Peterson, R. R.; Lindman, E. L.; Delamater, N. D.; Magelssen, G. R.

    2000-01-01

    LASNEX computer code simulations have been performed for radiation symmetry experiments on the Nova laser with vacuum and gas-filled hohlraum targets [R. L. Kauffman et al., Phys. Plasmas 5, 1927 (1998)]. In previous experiments with unsmoothed laser beams, the symmetry was substantially shifted by deflection of the laser beams. In these experiments, laser beams have been smoothed with Kiniform Phase Plates in an attempt to remove deflection of the beams. The experiments have shown that this smoothing significantly improves the agreement with LASNEX calculations of implosion symmetry. The images of laser produced hot spots on the inside of the hohlraum case have been found to differ from LASNEX calculations, suggesting that some beam deflection or self-focusing may still be present or that emission from interpenetrating plasmas is an important component of the images. The measured neutron yields are in good agreement with simulations for vacuum hohlraums but are far different for gas-filled hohlraums. (c) 2000 American Institute of Physics

  6. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  7. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  8. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  9. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  10. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  11. High-resolution CT of lymphoid interstitial pneumonia

    International Nuclear Information System (INIS)

    Vilgrain, V.; Frija, J.; Yana, C.; Couderc, L.J.; David, M.; Clauvel, J.P.; Laval-Jeantet, M.

    1989-01-01

    Three patients with lymphoid interstitial pneumonia (two HIV 1+ patients with chronic lymphadenopathic syndromes and one with a not-characterized autoimmune disease) have been studied with high-resolution computed tomography (HR-CT). This technique reveals septal lines, small reticulonodular opacities, polyhedral micronodular opacities, 'ground-glass' opacities and a dense, subpleural, curved broken line in one patient. The lesions dominate in the bases of the lungs. They are not characteristic for lymphoid interstitial pneumonia. If a patient presents with a chronic lymphadenopathic syndrome, the diagnosis of an opportunistic infection should not be automatically made, since the syndrome can be caused by lymphoid interstitial pneumonia [fr

  12. A comparison in cosmetic outcome between per-operative interstitial breast implants and delayed interstitial breast implants after external beam radiotherapy

    NARCIS (Netherlands)

    Pieters, Bradley R.; Hart, Augustinus A. M.; Russell, Nicola S.; Jansen, Edwin P. M.; Peterse, Johannes L.; Borger, Jacques; Rutgers, Emiel J. Th

    2003-01-01

    Background and purpose: Interstitial implants for brachytherapy boost in the breast conserving therapy of breast cancer can be performed in two ways; implants during the tumor excision (per-operative implants) or after the external beam therapy (delayed interstitial implants). Differences in

  13. Multiphysics simulation of thermal phenomena in direct laser metal powder deposition

    CSIR Research Space (South Africa)

    Pityana, SL

    2016-11-01

    Full Text Available presents on two dimensional multi-physics models to describe the physical mechanism of heat transfer, melting and solidification that take place during and post laser-powder interaction. The simulated transient temperature profile, the geometrical features...

  14. Numerical simulation of effect of laser nonuniformity in interior interface

    International Nuclear Information System (INIS)

    Yu Xiaojin; Wu Junfeng; Ye Wenhua

    2007-01-01

    Using the LARED-S code and referring to the NIF direct-drive DT ignition target, the effect of laser nonuniformity on the interior interface in direct-drive spherical implosion with high convergence ratio was numerically studied. The two-dimensional results show that the implosion with high convergence ratio is sensitive to the nonuniformity of driving laser, and the growth of hydrodynamic instability on interior interface destroys the symmetric-drive and reduces the volume of central hot spot observably. Taking the limit that perturbation amplitude is equal to 1/3 radius of central hot spot, the simulation also gives that the requirements for the laser uniformity for different mode number(less than 12) on simple physical model are between 2.5% -0.25%, and the modes between 8-10 have the most rigorous requirement which is about 0.25%. (authors)

  15. Interstitial lung diseases with fibrosis - the pattern at high resolution

    International Nuclear Information System (INIS)

    Jarzemska, A.; Lasek, W.; Nawrocka, E.; Meder, G.; Zapala, M.

    2003-01-01

    Surgical lung biopsy, either open thoracotomy or video-assisted thoracoscopy is recommended in the diagnosis of interstitial lung diseases (ILD). In some cases, however, the repetitive pattern of radiological features in high-resolution computed tomography is often sufficient to confirm the diagnosis in a non-invasive manner. The purpose of the study was to determine whether patients with ILD can be selected on the basis of the HRCT pattern. Thin-section CT scans were performed in 40 patients with histologically proven idiopathic interstitial pneumonia (26 patients with usual interstitial pneumonia UIP, 2 patients with desquamative interstitial pneumonia DIP, 2 patients with bronchiolitis obliterans organizing pneumonia BOOP, 2 patients with non-specific interstitial pneumonia NSIP, 11 patients with hypersensitivity pneumonitis, and 3 patients with pulmonary histiocytosis X). The location and the intensity of lesions were taken into consideration. Clinical and histopathological findings were compared. HRCT features of interstitial lung diseases such as nodules and cystic spaces in hypersensitivity pneumonitis and pulmonary histiocytosis, and ground-glass opacities in idiopathic interstitial pneumonias (IIP) were statistically significant for differential diagnosis in ILD cases. Combination of honeycombing and ground-glass opacities found in UIP and nodules found in DIP were also statistically significant features in IIP subtypes diagnosis. In some cases, HRCT patterns of hypersensitivity pneumonitis, pulmonary histiocytosis X and IPF combined with clinical findings allowed for the accurate diagnosis without resorting to lung biopsy. Within a group of idiopathic interstitial pneumonia only in usual interstitial pneumonia characteristic pattern in thin-section CT can be defined. In other subgroups some typical features can imply a diagnosis. (author)

  16. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments

    International Nuclear Information System (INIS)

    Dai, Donghua; Gu, Dongdong

    2014-01-01

    Highlights: • Thermal behavior and densification activity during SLM of composites are simulated. • Temperature distributions and melt pool dimensions during SLM are disclosed. • Motion behaviors of gaseous bubbles in laser induced melt pool are elucidated. • Simulation results show good agreement with the obtained experimental results. - Abstract: Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation

  17. Nonlinear plasma wave models in 3D fluid simulations of laser-plasma interaction

    Science.gov (United States)

    Chapman, Thomas; Berger, Richard; Arrighi, Bill; Langer, Steve; Banks, Jeffrey; Brunner, Stephan

    2017-10-01

    Simulations of laser-plasma interaction (LPI) in inertial confinement fusion (ICF) conditions require multi-mm spatial scales due to the typical laser beam size and durations of order 100 ps in order for numerical laser reflectivities to converge. To be computationally achievable, these scales necessitate a fluid-like treatment of light and plasma waves with a spatial grid size on the order of the light wave length. Plasma waves experience many nonlinear phenomena not naturally described by a fluid treatment, such as frequency shifts induced by trapping, a nonlinear (typically suppressed) Landau damping, and mode couplings leading to instabilities that can cause the plasma wave to decay rapidly. These processes affect the onset and saturation of stimulated Raman and Brillouin scattering, and are of direct interest to the modeling and prediction of deleterious LPI in ICF. It is not currently computationally feasible to simulate these Debye length-scale phenomena in 3D across experimental scales. Analytically-derived and/or numerically benchmarked models of processes occurring at scales finer than the fluid simulation grid offer a path forward. We demonstrate the impact of a range of kinetic processes on plasma reflectivity via models included in the LPI simulation code pF3D. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    Science.gov (United States)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  19. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    Science.gov (United States)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  20. Mathematical modeling of laser lipolysis

    Directory of Open Access Journals (Sweden)

    Reynaud Jean

    2008-02-01

    depends on the applied energy, typically 5 cm3 for 3000 J. At last, skin retraction was observed in patients at 6-month follow up. This observation can be easily explained by mathematical modeling showing that the temperature increase inside the lower dermis is sufficient (48–50°C to induce skin tightening Discussion and Conclusion Laser lipolysis can be described by a theoretical model. Fat volume reduction observed in patients is in accordance with model calculations. Due to heat diffusion, temperature elevation is also produced inside the lower reticular dermis. This interesting observation can explain remodeling of the collagenous tissue, with clinically evident skin tightening. In conclusion, while the heat generated by interstitial laser irradiation provides stimulate lipolysis of the fat cells, the collagen and elastin are also stimulated resulting in a tightening in the skin. This mathematical model should serve as a useful tool to simulate and better understand the mechanism of action of the laser lipolysis

  1. Leflunomide-Induced Interstitial Lung Disease: A Case Report

    Directory of Open Access Journals (Sweden)

    Aygül Güzel

    2015-04-01

    Full Text Available Leflunomide (LEF induced interstitial pneumonitis is a very rare condition but potentially fatal. We report a case of LEF induced interstitial pneumonitis. A 63-year-old woman followed-up for 37 years with the diagnosis of rheumatoid arthritis treated with LEF (20 mg/day since 5 months were admitted to our hospital with cough, dyspnea, fever, and dark sputum.Chest radiography represented bilateral alveolar consolidation. High-resolution computed tomography demonstrated diffuse ground-glass appearance and interlobular septal thickening. Since the patient’s clinics and radiologic findings improved dramatically after the cessation of LEF and recieving oral steriod therapy, she was diagnosed as drug-induced interstitial lung disease. In conclusion, when nonspecific clinical signs such as respiratory distress, cough and fever seen during the use of LEF, drug-induced interstitial lung disease should be kept in mind for the differantial diagnosis.

  2. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    Science.gov (United States)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  3. Interstitial integrals in the multiple-scattering model

    International Nuclear Information System (INIS)

    Swanson, J.R.; Dill, D.

    1982-01-01

    We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set

  4. Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, G V; Kovalev, O B [Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Institutskaya Str 4/1, Novosibirsk, 630090 (Russian Federation)

    2009-09-21

    A physicomathematical model of cyclic iron combustion in an oxygen flow during oxygen laser cutting of metal sheets is developed. The combustion front is set into motion by focused laser radiation and a heterogeneous oxidation reaction in oxygen. The burning rate is limited by oxygen supply from the gas phase towards the metal surface, and the interface motion depends on the local temperature. A 3D numerical simulation predicts wavy structures on the metal surface; their linear sizes depend on the scanning speed of the laser beam, the thickness of the produced liquid oxide film and the parameters of the oxygen jet flow. Simulation results help in understanding the mechanism of striation formation during oxygen gas-laser cutting of mild steel and are in qualitative agreement with experimental findings.

  5. Smoking-related interstitial lung diseases; Interstitielle Lungenerkrankungen bei Rauchern

    Energy Technology Data Exchange (ETDEWEB)

    Marten, K. [Technische Univ. Muenchen (Germany). Klinikum rechts der Isar, Inst. fuer Roentgendiagnostik

    2007-03-15

    The most important smoking-related interstitial lung diseases (ILD) are respiratory bronchiolitis, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and Langerhans' cell histiocytosis. Although traditionally considered to be discrete entities, smoking-related ILDs often coexist, thus accounting for the sometimes complex patterns encountered on high-resolution computed tomography (HRCT). Further studies are needed to elucidate the causative role of smoking in the development of pulmonary fibrosis.

  6. A solar simulator-pumped gas laser for the direct conversion of solar energy

    Science.gov (United States)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  7. Time scales of transient enhanced diffusion: Free and clustered interstitials

    Science.gov (United States)

    Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.

    1996-12-01

    Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.

  8. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms.

    Science.gov (United States)

    Tsuchiya, Yuki; Eda, Shima; Kiriyama, Chiho; Asada, Tomoya; Morisaki, Hisao

    2016-07-01

    In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

  9. Di-interstitial defect in silicon revisited

    International Nuclear Information System (INIS)

    Londos, C. A.; Antonaras, G.; Chroneos, A.

    2013-01-01

    Infrared spectroscopy was used to study the defect spectrum of Cz-Si samples following fast neutron irradiation. We mainly focus on the band at 533 cm −1 , which disappears from the spectra at ∼170 °C, exhibiting similar thermal stability with the Si-P6 electron paramagnetic resonance (EPR) spectrum previously correlated with the di-interstitial defect. The suggested structural model of this defect comprises of two self-interstitial atoms located symmetrically around a lattice site Si atom. The band anneals out following a first-order kinetics with an activation energy of 0.88 ± 0.3 eV. This value does not deviate considerably from previously quoted experimental and theoretical values for the di-interstitial defect. The present results indicate that the 533 cm −1 IR band originates from the same structure as that of the Si-P6 EPR spectrum

  10. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  11. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  12. [Nonspecific interstitial pneumonitis: a clinicopathologic entity, histologic pattern or unclassified group of heterogeneous interstitial pneumonitis?].

    Science.gov (United States)

    Morais, António; Moura, M Conceição Souto; Cruz, M Rosa; Gomes, Isabel

    2004-01-01

    Nonspecific interstitial pneumonitis (NSIP) initially described by Katzenstein and Fiorelli in 1994, seems to be a distinct clinicopathologic entity among idiopathic interstitial pneumonitis (IIP). Besides different histologic features from other IIP, NSIP is characterized by a better long-term outcome, associated with a better steroids responsiveness than idiopathic pulmonar fibrosis (IPF), where usually were included. Thus, differentiating NSIP from other IIP, namely IPF is very significant, since it has important therapeutic and prognostic implications. NSIP encloses different pathologies, namely those with inflammatory predominance (cellular subtype) or fibrous predominance (fibrosing subtype). NSIP is reviewed and discussed by the authors, after two clinical cases description.

  13. Numerical simulation of a DFB - fiber laser sensor (part 1

    Directory of Open Access Journals (Sweden)

    Dan SAVASTRU

    2010-06-01

    Full Text Available This paper presents the preliminary results obtained in developing a numerical simulationanalysis of fiber optic bending sensitivity aiming to improve the design of fiber lasers. The developednumerical simulation method relies on an analysis of both the fundamental mode propagation alongan optical fiber and of how bending of this fiber influence the optical radiation losses. The cases ofsimple, undoped and of doped with Er3+ ions optical fibers are considered. The presented results arebased on numerical simulation of eigen-modes of a laser intensity distribution by the use of finiteelement method (FEM developed in the frame of COMSOL software package. The numericalsimulations are performed by considering the cases of both normal, non-deformed optic fiber and ofsymmetrically deformed optic fiber resembling micro-bending of it. Both types of fiber optic bendinglosses are analyzed, namely: the transition loss, associated with the abrupt or rapid change incurvature at the beginning and the end of a bend, and pure bend loss is associated with the loss fromthe bend of constant curvature in between.

  14. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    Science.gov (United States)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  15. Excimer-laser-induced activation of Mg-doped GaN layers

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Liu, W.-F.; Lee, C.-T.

    2004-01-01

    In this study, we investigated the 248 nm excimer-laser-induced activation of the Mg-doped GaN layers. According to the observed photoluminescence results and the x-ray photoelectron spectroscopy measurements, we found that the dissociation of the Mg-H complexes and the formation of hydrogenated Ga vacancies (i.e., V Ga H 2 ) and/or the Ga vacancies occupied by interstitial Mg during the laser irradiation process, led to an increase in the hole concentration

  16. Simulation of condensed matter dynamics in strong femtosecond laser pulses

    International Nuclear Information System (INIS)

    Wachter, G.

    2014-01-01

    Ultrashort custom-tailored laser pulses can be employed to observe and control the motion of electrons in atoms and small molecules on the (sub-) femtosecond time scale. Very recently, efforts are underway to extend these concepts to solid matter. This monograph theoretically explores first applications of electron control by ultrashort laser pulses in three paradigmatic systems of solid-state density: a metal nano-structure (nanometric metal tip), a bulk dielectric (quartz glass), and the buckminsterfullerene molecule (C60) as arguably the smallest possible nano-particle. The electron motion is resolved on the atomic length and time scale by ab-initio simulations based on time-dependent density functional theory. Our quantum simulations are complemented by classical and semi-classical models elucidating the underlying mechanisms. We compare our results to experiments where already available and find good agreement. With increasing laser intensity, we find a transition from vertical photoexcitation to tunneling-like excitation. For nanostructures, that leads to temporally confined electron photoemission and thereby to quantum interferences in the energy spectra of emitted electrons. Similarly, tunneling can be induced between neighboring atoms inside an insulator. This provides a mechanism for ultrafast light-field controlled currents and modification of the optical properties of the solid, promising to eventually realize light-field electronic devices operating on the femtosecond time scale and nanometer length scale. Electron-electron interaction leads to near field enhancement and spatial localization of the non-linear response and is investigated both classically by solving the Maxwell equations near a nanostructure as well as quantum mechanically for the fullerene molecule. For the latter, we discuss scrutiny of the molecular near-field by the attosecond streaking technique. Our results demonstrate that ultrashort laser pulses can be employed to steer the

  17. Advanced sickle cell associated interstitial lung disease presenting ...

    African Journals Online (AJOL)

    Previous studies have reported abnormal pulmonary function and pulmonary hypertension among Nigerians with sickle cell disease, but there is no report of interstitial lung disease among them. We report a Nigerian sickle cell patient who presented with computed tomography proven interstitial lung disease complicated by ...

  18. Multi-dimensional free-electron laser simulation codes: a comparison study

    CERN Document Server

    Biedron, S G; Dejus, Roger J; Faatz, B; Freund, H P; Milton, S V; Nuhn, H D; Reiche, S

    2000-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL.

  19. Multi-dimensional free-electron laser simulation codes: a comparison study

    International Nuclear Information System (INIS)

    Biedron, S. G.; Chae, Y. C.; Dejus, R. J.; Faatz, B.; Freund, H. P.; Milton, S. V.; Nuhn, H.-D.; Reiche, S.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  20. Interstitial impurity interactions and dislocation microdynamics in Mo crystals

    International Nuclear Information System (INIS)

    Kwok, D.N.

    1975-05-01

    The effects of interstitial impurities on the mechanical properties of molybdenum are explored by comparing results obtained for crystals of various interstitial contents controlled by ultra-high vacuum outgassing. Results show a modulus reduction for as-grown samples and for outgassed specimens at low applied stresses. As a function of plastic microstrain, the values of modulus defect for both as-grown and outgassed specimens saturate at the same value. Interstitial impurities act as pinning agents to dislocation bowing, but when all the easy dislocation loops have broken away from local interstitial pins, the modulus defect reaches a constant saturation value. Etch pitting techniques were used to correlate microstrain observations with dislocation generation and motion. It has been found that edge dislocation generation and movement are active in the microstrain region while screw dislocations are relatively inactive until the macrostrain region is reached. Dislocation velocities range from 10 -6 to 10 -3 cm/s and the average distance between interstitial impurity pinning points is found to be approximately 8 x 10 -4 cm. (U.S.)

  1. Effects of γ irradiation of hydra: elimination of interstitial cells from viable hydra

    International Nuclear Information System (INIS)

    Fradkin, M.; Kakis, H.; Campbell, R.D.

    1978-01-01

    Hydra attenuata and H. magnipapillata were γ-irradiated from a cesium source. All doses which had any observable effect (3000 rad and above) resulted in a reduction in the number of interstitial cells and of their differentiated product cells, or in the complete elimination of these cells. Interstitial cells were essentially completely eliminated within 5 days after irradiation doses above 5500 rad, and these hydra died. Irradiation doses of 4200 to 5500 rad resulted in a mixture of effects: some hydra recovered completely, some lost all interstitial cells and died, and some lost interstitial cells but could be propagated, as asexually reproducing clones, by hand feeding them. Hydra of some of these hand-fed clones entirely lacked interstitial cells and did not recover interstitial cells during subsequent culturing. Yet when these hydra were repopulated by interstitial cells from a normal hydra, they were restored to normal. Nerve cells became depleted more slowly than interstitial cells following irradiation, so animals can be obtained which possess nerve but no stem (interstitial) cells. The nerve cells and other derivatives of interstitial cells eventually disappear upon prolonged culture of the hydra. Thus γ irradiation can be used to eliminate interstitial cells from hydra, leaving viable polyps composed only of epithelial cells

  2. Selective Uterine Artery Embolization for Management of Interstitial Ectopic Pregnancy

    International Nuclear Information System (INIS)

    Yang, Seung Boo; Lee, Sang Jin; Joe, Hwan Sung; Goo, Dong Erk; Chang, Yun Woo; Kim, Dong Hun

    2007-01-01

    Interstitial pregnancy is defined as any gestation that develops in the uterine portion of the fallopian tubes lateral to the round ligament. Interstitial pregnancies account for 2-4% of all ectopic pregnancies and have been reported to have an associated 2% to 2.5% maternal mortality rate. The traditional treatment for interstitial pregnancy using surgical cornual resection may cause infertility or uterine rupture in subsequent pregnancies. Recently, the early identification of intact interstitial pregnancy has been made possible in many cases with high resolution transvaginal ultrasound as well as more sensitive assays for betahuman chorionic gonadotropin (β-hCG). The treatment includes: hysteroscopic transcervical currettage, local and systemic methotrexate (MTX) therapy and prostaglandin or potassium chloride injection of the ectopic mass under sonographic guidance. We describe a case of successful treatment of interstitial pregnancy using uterine artery embolization, after failure of methotrexate treatment

  3. Selective Uterine Artery Embolization for Management of Interstitial Ectopic Pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Boo; Lee, Sang Jin; Joe, Hwan Sung; Goo, Dong Erk; Chang, Yun Woo [Soonchunhyang University Gumi Hospital, Gumi (Korea, Republic of); Kim, Dong Hun [Chosun University Hospital, Gwangju (Korea, Republic of)

    2007-04-15

    Interstitial pregnancy is defined as any gestation that develops in the uterine portion of the fallopian tubes lateral to the round ligament. Interstitial pregnancies account for 2-4% of all ectopic pregnancies and have been reported to have an associated 2% to 2.5% maternal mortality rate. The traditional treatment for interstitial pregnancy using surgical cornual resection may cause infertility or uterine rupture in subsequent pregnancies. Recently, the early identification of intact interstitial pregnancy has been made possible in many cases with high resolution transvaginal ultrasound as well as more sensitive assays for betahuman chorionic gonadotropin ({beta}-hCG). The treatment includes: hysteroscopic transcervical currettage, local and systemic methotrexate (MTX) therapy and prostaglandin or potassium chloride injection of the ectopic mass under sonographic guidance. We describe a case of successful treatment of interstitial pregnancy using uterine artery embolization, after failure of methotrexate treatment.

  4. Computer simulations of rare earth sites in glass: experimental tests and applications to laser materials

    International Nuclear Information System (INIS)

    Weber, M.J.

    1984-11-01

    Computer simulations of the microscopic structure of BeF 2 glasses using molecular dynamics are reviewed and compared with x-ray and neutron diffraction, EXAFS, NMR, and optical measurements. Unique information about the site-to-site variations in the local environments of rare earth ions is obtained using optical selective excitation and laser-induced fluorescence line-narrowing techniques. Applications and limitations of computer simulations to the development of laser glasses and to predictions of other static and dynamic properties of glasses are discussed. 35 references, 2 figures, 2 tables

  5. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  6. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  7. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  8. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. G. [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China); College of Science, National University of Defense Technology, Changsha, 410073 (China); Jiang, Q. Y.; Zhan, X.; Chen, Y. D.; Luo, H., E-mail: luohui.luo@163.com [College of OptoElectronic Science and Engineering, National University of Defense Technology, Changsha, 410073 (China); Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073 (China)

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At low pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.

  9. Geant4 simulations on Compton scattering of laser photons on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.

  10. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  11. Detailed computer simulation of damage accumulation in ion irradiated crystalline targets

    International Nuclear Information System (INIS)

    Jaraiz, M.; Arias, J.; Bailon, L.A.; Barbolla, J.J.

    1993-01-01

    A new version for the collision cascade simulation program MARLOWE is presented. This version incorporates damage build-up in full detail, i.e every interstitial and vacancy generated is retained throughout the simulation and can become a target in subsequent collisions, unless they recombine at some stage during the implantation. Vacancy-interstitial recombination is simulated by annihilating those pairs whose radius is less than a specified recombination radius. Also, stopped atoms are moved to their nearest lattice interstitial site if it is not occupied. In this way, a fully physical simulation can be carried out in detail, thus preserving a valuable feature of MARLOWE. To overcome the prohibitive computation time and memory required, a scheme has been followed to handle in a suitable way the data generated as the simulation proceeds. The model is described. Examples of memory and computation time requirements and damage accumulation effects on channelling in ion implantation are also presented. (Author)

  12. Desquamative interstitial pneumonia: A case report

    Directory of Open Access Journals (Sweden)

    Lovrenski Aleksandra

    2014-01-01

    Full Text Available Introduction. Desquamative interstitial pneumonia is one of the rarest idiopathic interstitial pneumonias and the rarest form of smoking-related interstitial lung diseases. It was first described by Liebow in 1965. Histologically, it is characterized by the presence of eosinophilic macrophages uniformly filling airspaces which often contain a finely granular light-brown pigment that does not stain for hemosiderin. The alveolar walls are usually mildly thickened by fibrous tissue and infiltrated by a moderate number of lymphocytes. Case Outline. Our patient was a 56-year-old male, heavy smoker, with bilateral lung infiltrations of unknown etiology and several months of discomfort in the form of dry cough and shortness of breath. Lung function tests showed a moderate restrictive ventilation disorder and a severe reduction of diffusing capacity. Since bronchoscopic specimens did not reveal lung lesion etiology, an open lung biopsy of the lower left pulmonary lobe was performed, and based on the obtained surgical material the pathohistologically diagnosis of desquamative interstitial pneumonia was established. The patient was started on corticosteroid and immunosuppressive therapy, and he ceased smoking. At the last control examination, two years after the onset of symptoms, the patient was feeling well, and high-resolution computed tomography (HRCT scan of the thorax showed regression of pathological changes. Conclusion. Although, as in our case, the majority of DIP patients improve on treatment, some patients still develop progressive irreversible fibrosis despite therapy.

  13. Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Cabezón, Teresa

    2004-01-01

    of biomarkers, the tumor interstitial fluid (TIF) that perfuses the breast tumor microenvironment. We collected TIFs from small pieces of freshly dissected invasive breast carcinomas and analyzed them by two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption....../ionization time-of-flight mass spectrometry, Western immunoblotting, as well as by cytokine-specific antibody arrays. This approach provided for the first time a snapshot of the protein components of the TIF, which we show consists of more than one thousand proteins--either secreted, shed by membrane vesicles...... synthesis, energy metabolism, oxidative stress, the actin cytoskeleton assembly, protein folding, and transport. As expected, the TIF contained several classical serum proteins. Considering that the protein composition of the TIF reflects the physiological and pathological state of the tissue, it should...

  14. Evidence of interstitial microsegregation in iron obtained by ion microscopy

    International Nuclear Information System (INIS)

    Price, C.W.

    1984-01-01

    Segregation of impurity atoms to the strain fields of dislocations and the effective locking of the dislocations by the impurity atmospheres have been suggested earlier by others. The formation of interstitial atmospheres and their effect in iron was first treated mathematically by Cottrell and Bilby (Proc. Phys. Soc.; A62: 49(1949). Hirth and Lothe (Theory of Discolations, McGraw-Hill, New York (1968) reviewed more recent evidence of interstitial effects and theoretical treatments of interstitial dislocation interactions. This paper describes additional evidence of microsegregation of several interstitial elements in iron that were detected using secondary-ion mass spectroscopy (SIMS). 10 references, 2 figures

  15. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Hidalgo, Alberto; Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta; Bordes, Ramon

    2006-01-01

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  16. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  17. Determination of the population of octahedral and tetrahedral interstitials in zirconium hydrides

    International Nuclear Information System (INIS)

    Fedorov, V.M.; Gogava, V.V.; Shilo, S.I.; Biryukova, E.A.

    1983-01-01

    Results of neutron investigations of ZrHsub(1.66), ZrHsub(1.75) and ZrHsub(1.98) zirconium hydrides are presented. Investigations were conducted using plane polycrystal samples by multidetector system of scattered neutron detection. Neutron diffraction method was used to determine the number of interstitial hydrogen atoms in interstitials of the lattice cell in the case of statistic atom distribution. The numbers of interstitial atoms in octahedral interstitials for zirconium hydrides were determined experimentally; the difference of potential energies of hydrogen atoms in octa- and tetrahedral interstitials was determined as well. It is shown that experimentally determined difference of potential energies of hydrogen atoms, occupying octa- and tetrahedral positions in investigated zirconium hydrides results at room temperature in the pretailing occupation of tetrahedral interstitials by hydrogen atoms (85-90%); the occupation number grows with temperature decrease and the ordering of interstitial vacancies with formation of hydrogen superstructure takes place at low temperatures

  18. Simulations of Electron Transport in Laser Hot Spots

    International Nuclear Information System (INIS)

    Brunner, S.; Valeo, E.

    2001-01-01

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background

  19. Experimental and Numerical Simulation Research on Micro-Gears Fabrication by Laser Shock Punching Process

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2015-07-01

    Full Text Available The aim of this paper is to fabricate micro-gears via laser shock punching with Spitlight 2000 Nd-YAG Laser, and to discuss effects of process parameters namely laser energy, soft punch properties and blank-holder on the quality of micro-gears deeply. Results show that dimensional accuracy is the best shocked at 1690 mJ. Tensile fracture instead of shear fracture is the main fracture mode under low laser energy. The soft punch might cause damage to punching quality when too high energy is employed. Appropriate thickness and hardness of soft punch is necessary. Silica gel with 200 µm in thickness is beneficial to not only homogenize energy but also propagate the shock wave. Polyurethane films need more energy than silica gel with the same thickness. In addition, blank-holders with different weight levels are used. A heavier blank-holder is more beneficial to improve the cutting quality. Furthermore, the simulation is conducted to reveal typical stages and the different deformation behavior under high and low pulse energy. The simulation results show that the fracture mode changes under lower energy.

  20. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Science.gov (United States)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  1. MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM

    International Nuclear Information System (INIS)

    Smith, Richard Whiting

    2003-01-01

    Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades

  2. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  3. Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.

    Science.gov (United States)

    Waldow, S M; Russell, G E; Wallner, P E

    1992-01-01

    Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.

  4. Molecular dynamics simulation of shock wave and spallation phenomena in metal foils irradiated by femtosecond laser pulse

    Science.gov (United States)

    Zhakhovsky, Vasily; Demaske, Brian; Inogamov, Nail; Oleynik, Ivan

    2010-03-01

    Femtosecond laser irradiation of metals is an effective technique to create a high-pressure frontal layer of 100-200 nm thickness. The associated ablation and spallation phenomena can be studied in the laser pump-probe experiments. We present results of a large-scale MD simulation of ablation and spallation dynamics developing in 1,2,3μm thick Al and Au foils irradiated by a femtosecond laser pulse. Atomic-scale mechanisms of laser energy deposition, transition from pressure wave to shock, reflection of the shock from the rear-side of the foil, and the nucleation of cracks in the reflected tensile wave, having a very high strain rate, were all studied. To achieve a realistic description of the complex phenomena induced by strong compression and rarefaction waves, we developed new embedded atom potentials for Al and Au based on cold pressure curves. MD simulations revealed the complex interplay between spallation and ablation processes: dynamics of spallation depends on the pressure profile formed in the ablated zone at the early stage of laser energy absorption. It is shown that the essential information such as material properties at high strain rate and spall strength can be extracted from the simulated rear-side surface velocity as a function of time.

  5. Radionuclide study for the interstitial lung disease

    International Nuclear Information System (INIS)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo

    1991-01-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with 81m Kr, distribution of compliance in thoraco-pulmonary system (C) by 81m Kr gas bolus inhalation method, perfusion study (Q) with 99m Tc-MAA, 67 Ga scintigraphy and an assessment of pulmonary epithelial permeability with 99m Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO 2 was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. 67 Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of 67 Ga. 67 Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by 99m Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author)

  6. Computational science simulation of laser materials processing and provision of their irradiation conditions

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu

    2016-01-01

    In laser processing, it is necessary for achieving the intended performance and product, to understand the complex physical courses including melting and solidification phenomena occurring in laser processing, and thus to set proper laser irradiation conditions. This condition optimization work requires an enormous amount of overhead due to repeated efforts, and has become a cause for inhibiting the introduction of laser processing technology into the industrial field that points to the small lot production of many products. JAEA tried to make it possible to quantitatively handle the complex physical course from the laser light irradiation to the fabricating material until the completion of processing, and is under development of the computational science simulation code SPLICE that connects micro behavior and macro behavior through a multi-level scale model. This SPLICE is able to visualize the design space and to reduce the overhead associated with the setting of laser irradiation conditions and the like, which gives the prospect of being effective as a tool for front-loading. This approach has been confirmed to be effective for the welding and fusing process. (A.O.)

  7. [New toxicity of fotemustine: diffuse interstitial lung disease].

    Science.gov (United States)

    Bertrand, M; Wémeau-Stervinou, L; Gauthier, S; Auffret, M; Mortier, L

    2012-04-01

    Fotemustine is an alkylating cytostatic drug belonging to the nitrosourea family and is used in particular in the treatment of disseminated malignant melanoma. Herein, we report a case of interstitial lung disease associated with fotemustine. An 81-year-old man treated with fotemustine for metastatic melanoma presented acute interstitial lung disease 20 days after a fourth course of fotemustine monotherapy. The condition regressed spontaneously, with the patient returning to the clinical, radiological and blood gas status that had preceded fotemustine treatment. After other potential aetiologies had been ruled out, acute fotemustine-induced lung toxicity was considered and this treatment was definitively withdrawn. Other cytostatic agents belonging to the nitrosourea family can cause similar pictures, with a number of cases of interstitial lung disease thus being ascribed to fotemustine and dacarbazine. To our knowledge, this is the first case of interstitial lung disease induced by fotemustine monotherapy. This diagnosis should be considered where respiratory signs appear in melanoma patients undergoing fotemustine treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Radiographic and high resolution CT findings of non-specific interstitial pneumonia/fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, Yasuhiro; Taniguchi, Hiroyuki; Nishiyama, Satoshi [Tosei General Hospital, Seto, Aichi (Japan); Yokoi, Toyoharu; Suzuki, Ryujiro; Noda, Yasunobu; Kato, Toshiyuki; Kaneko, Michie

    1999-01-01

    We evaluated the radiographic and high resolution CT findings in fifteen patients with biopsy proven nonspecific interstitial pneumonia. The most common radiographic findings in NSIP were bilateral infiltrates involving alveolar pattern, interstitial pattern, and mixed alveolar-interstitial pattern, which distributed mainly in the middle and lower lung zones. Loss of lung volumes were common. The predominant findings of linear and reticular opacities on HRCT were peribronchovascular interstitial thickening, parenchymal bands, intralobular interstitial thickening, and traction bronchiectasis. Honeycombing was not noted in any patient on initial CT scans. The predominant findings of increased lung opacity were mixed pattern of ground glass opacity and consolidation. Because these findings mimic those of idiopathic pulmonary fibrosis/usual interstitial pneumonia, distinction between NSIP and IPF/UIP seems to be difficult by radiographic and HRCT findings. The response to corticosteroid therapy was good. At follow up HRCT, the pulmonary abnormalities observed on initial scans had disappeared or were diminished in most cases. Intralobular interstitial thickening and traction bronchiectasis, that have been considered to be an indicator of irreversible fibrosis, occasionally disappeared after corticosteroid therapy. (author)

  9. Fine interstitial clusters as recombinators in decomposing solid solutions under irradiation

    International Nuclear Information System (INIS)

    Trushin, Yu.V.

    1991-01-01

    Behaviour of interstitial clusters and their roll in processes of radiation swelling of metals are described. It is shown that occurrence of coherent advanced precipitations during decomposition of solid solutions under irradiation leads to matrix supersaturation over interstitial atoms. This enhances recombination of unlike defects due to vacancy precipitation on fine interstitial clusters. Evaluation of cluster sizes was conducted

  10. Extracorporeal Membrane Oxygenation for End-Stage Interstitial Lung Disease With Secondary Pulmonary Hypertension at Rest and Exercise: Insights From Simulation Modeling.

    Science.gov (United States)

    Chicotka, Scott; Burkhoff, Daniel; Dickstein, Marc L; Bacchetta, Matthew

    Interstitial lung disease (ILD) represents a collection of lung disorders with a lethal trajectory with few therapeutic options with the exception of lung transplantation. Various extracorporeal membrane oxygenation (ECMO) configurations have been used for bridge to transplant (BTT), yet no optimal configuration has been clearly demonstrated. Using a cardiopulmonary simulation, we assessed different ECMO configurations for patients with end-stage ILD to assess the physiologic deficits and help guide the development of new long-term pulmonary support devices. A cardiopulmonary ECMO simulation was created, and changes in hemodynamics and blood gases were compared for different inflow and outflow anatomic locations and for different sweep gas and blood pump flow rates. The system simulated the physiologic response of patients with severe ILD at rest and during exercise with central ECMO, peripheral ECMO, and with no ECMO. The output parameters were total cardiac output (CO), mixed venous oxygen (O2) saturation, arterial pH, and O2 delivery (DO2)/O2 utilization (VO2) at different levels of exercise. The model described the physiologic state of progressive ILD and showed the relative effects of using various ECMO configurations to support them. It elucidated the optimal device configurations and required physiologic pump performance and provided insight into the physiologic demands of exercise in ILD patients. The simulation program was able to model the pathophysiologic state of progressive ILD with PH and demonstrate how mechanical support devices can be implemented to improve cardiopulmonary function at rest and during exercise. The information generated from simulation can be used to optimize ECMO configuration selection for BTT patients and provide design guidance for new devices to better meet the physiologic demands of exercise associated with normal activities of daily living.

  11. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets

    Science.gov (United States)

    Vyskočil, Jiří; Klimo, Ondřej; Weber, Stefan

    2018-05-01

    Bremsstrahlung emission from interactions of short ultra-intense laser pulses with solid foils is studied using particle-in-cell (PIC) simulations. A module for simulating bremsstrahlung has been implemented in the PIC loop to self-consistently account for the dynamics of the laser–plasma interaction, plasma expansion, and the emission of gamma ray photons. This module made it possible to study emission from thin targets, where refluxing of hot electrons plays an important role. It is shown that the angular distribution of the emitted photons exhibits a four-directional structure with the angle of emission decreasing with the increase of the width of the target. Additionally, a collimated forward flash consisting of high energy photons has been identified in thin targets. The conversion efficiency of the energy of the laser pulse to the energy of the gamma rays rises with both the driving pulse intensity, and the thickness of the target. The amount of gamma rays also increases with the atomic number of the target material, despite a lower absorption of the driving laser pulse. The angular spectrum of the emitted gamma rays is directly related to the increase of hot electron divergence during their refluxing and its measurement can be used in experiments to study this process.

  12. Focal Laser Ablation of Prostate Cancer: Numerical Simulation of Temperature and Damage Distribution

    Directory of Open Access Journals (Sweden)

    Nevoux Pierre

    2011-06-01

    Full Text Available Abstract Background The use of minimally invasive ablative techniques in the management of patients with low grade and localized prostate tumours could represent a treatment option between active surveillance and radical therapy. Focal laser ablation (FLA could be one of these treatment modalities. Dosimetry planning and conformation of the treated area to the tumor remain major issues, especially when, several fibers are required. An effective method to perform pre-treatment planning of this therapy is computer simulation. In this study we present an in vivo validation of a mathematical model. Methods The simulation model is based on finite elements method (FEM to solve the bio-heat and the thermal damage equations. Laser irradiation was performed with a 980 nm laser diode system (5 W, 75 s. Light was transmitted using a cylindrical diffusing fiber inserted inside a preclinical animal prostate cancer model induced in Copenhagen rats. Non-enhanced T2-weighted and dynamic gadolinium-enhanced T1-weighted MR imaging examinations were performed at baseline and 48 hours after the procedure. The model was validated by comparing the simulated necrosis volume to the results obtained in vivo on (MRI and by histological analysis. 3 iso-damage temperatures were considered 43° C, 45° C and 50° C. Results The mean volume of the tissue necrosis, estimated from the histological analyses was 0.974 ± 0.059 cc and 0.98 ± 0.052 cc on the 48 h MR images. For the simulation model, volumes were: 1.38 cc when T = 43° C, 1.1 cc for T = 45°C and 0.99 cc when T = 50 C°. Conclusions In this study, a clear correlation was established between simulation and in vivo experiments of FLA for prostate cancer. Simulation is a promising planning technique for this therapy. It needs further more evaluation to allow to FLA to become a widely applied surgical method.

  13. Defect and dopant kinetics in laser anneals of Si

    International Nuclear Information System (INIS)

    La Magna, A.; Fisicaro, G.; Mannino, G.; Privitera, V.; Piccitto, G.; Svensson, B.G.; Vines, L.

    2008-01-01

    In this work a modeling approach is applied to investigate the kinetics of the defect-dopant system in the extremely far-from-the equilibrium conditions caused by the laser irradiation in Si. A rigorous derivation of the master equations for the evolution of the defect-impurity system is obtained starting from the Boltzmann's formalism. The model derived is not limited by the stringent hypothesis of instantaneous equilibration of the local system energy to the lattice thermal field. This fact allows: (a) the formalization of a reliable theoretical formalism for the study of evolving defect-impurity systems in a non-uniform fast varying thermal field and (b) the generalization of the kinetic parameters (e.g. diffusivity, clustering rate constants, etc.). Early comparisons between simulations and experimental analysis of the processes are discussed. These results indicate the reliability of the energetic calibration for the self-interstitial clusters derived using conventional thermal processes

  14. Laser modification of silica, simulating pulse shape and length

    International Nuclear Information System (INIS)

    Corrales, L. Rene; Moore, Emily

    2009-01-01

    Computer simulations of instantaneous thermal heating due to a laser pulse is modeled as a pulse occurring over 1 or 100 fs, during which time the atoms within a cylinder are given excess kinetic energy to mimic the effect of adding energy locally to a system by a laser. The response of the material under conditions in which a similar amount of energy is dumped within 1 fs versus over a 100 fs pulse with two distinct shapes, square and Gaussian-like, is explored. Key physics disclosed is that with a pulse width of 100 fs, as the energy is being added it begins to dissipate away from region where it is added. With a 1 fs (instantaneous) pulse there is greater initial ballistic behavior than when it is dumped over a 100 fs period. In the latter, there are localized hot spots displaying ballistic behavior.

  15. Theoretical study and simulation for a nanometer laser based on Gauss–Hermite source expansion

    International Nuclear Information System (INIS)

    Gu, Xiaowei

    2013-01-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser. (letter)

  16. Theoretical study and simulation for a nanometer laser based on Gauss-Hermite source expansion

    Science.gov (United States)

    Gu, Xiaowei

    2013-07-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser.

  17. Mathematical simulation of the thermal diffusion in dentine irradiated with Nd:YAG laser using finite difference method

    Science.gov (United States)

    Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.

    2002-06-01

    Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.

  18. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  19. Molecular dynamics simulation of defect formation during energetic Cu deposition

    International Nuclear Information System (INIS)

    Gilmore, Charles M.; Sprague, James A.

    2002-01-01

    The deposition of energetic Cu atoms from 5 to 80 eV onto (0 0 1) Cu was simulated with molecular dynamics. The Cu-Cu interaction potential was a spline of the embedded atom potential developed from equilibrium data, and the universal scattering potential. Incident Cu atoms substituted for first layer substrate atoms by an exchange process at energies as low as 5 eV. Incident Cu atoms of 20 eV penetrated to the second substrate layer, and 20 eV was sufficient energy to produce interstitial defects. Incident atoms of 80 eV penetrated to the third atomic layer, produced interstitials 12 atomic layers into the substrate by focused replacement collision sequences, and produced sputtered atoms with a 16% yield. Interstitial clusters of up to 7 atoms were observed. The observed mechanisms of film growth included: the direct deposition of atoms into film equilibrium atom positions, the exchange of substrate atoms to equilibrium film atoms positions, and the migration of interstitials to equilibrium film atom positions. The relative frequency of each process was a function of incident energy. Since all observed growth mechanisms resulted in film atoms in equilibrium atomic positions, these simulations suggest that stresses in homoepitaxial Cu thin films are due to point defects. Vacancies would produce tensile strain and interstitial atoms would produce compressive strain in the films. It is proposed that immobile interstitial clusters could be responsible for retaining interstitial atoms and clusters in growing metal thin films

  20. Kinetics of interstitial defects in α-Fe: The effect from uniaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Changwoo [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Wang, Qingyu [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Understanding defect kinetics in a stress field is important for multiscale modeling of materials degradation of nuclear materials. By means of molecular dynamics and molecular statics simulations, we calculate formation and migration energies of self-interstitial atoms (SIA) and SIA clusters (up to size of 5 interstitials) in alpha Fe and identify their stable configurations under uniaxial tensile strains. By applying uniaxial stress along [111], <111> oriented single SIA defects become more stable than <110> oriented SIA, which is opposite to stress-free condition. Diffusion of single SIA defects under [111] tensile stress is facilitated along [111] direction and the diffusion becomes one dimensional (1D). For SIA clusters, their diffusion under zero stress has gradual transition from three dimensional (3D) for small clusters to one dimensional (1D) for large clusters. Under the tensile stress along [111], the 3D to 1D transition is accelerated. For large SIA clusters, the stress effect is quickly saturated with less diffusivity enhancement in comparison with small SIA clusters.

  1. Radionuclide study for the interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kenji; Mori, Yutaka; Ujita, Masuo (Jikei Univ., Tokyo (Japan). School of Medicine)

    1991-07-01

    The contribution of pulmonary nuclear medicine was evaluated in 105 patients with interstitial pulmonary diseases (IPD). Ventilation study (V) with {sup 81m}Kr, distribution of compliance in thoraco-pulmonary system (C) by {sup 81m}Kr gas bolus inhalation method, perfusion study (Q) with {sup 99m}Tc-MAA, {sup 67}Ga scintigraphy and an assessment of pulmonary epithelial permeability with {sup 99m}Tc-DTPA aerosol were performed as nuclear medicine procedures. Pulmonary function test (%DLco, vital capacity and functional residual capacity) and blood gas analysis were also examined. Abnormalities in V were larger than that in Q which was high V/Q mismatch finding, in the interstitial pneumonia. Correlation between V/Q mismatch and PaO{sub 2} was, therefore, not significant. %DLco was decreased in cases with larger V/Q mismatches. {sup 67}Ga accumulated in the early stage of interstitial pneumonia when CT or chest X-ray did not show any finding. %DLco was decreased in cases with strong accumulation of {sup 67}Ga. {sup 67}Ga might be useful to evaluate activity of the diseases. Pulmonary epithelial permeability was assessed by {sup 99m}Tc-DTPA inhalation study. This permeability accelerated in idiopathic interstitial fibrosis and sarcoidosis. Pulmonary epithelial permeability may be useful as an indicator for epithelial cell injury. (author).

  2. Microdialysis of the interstitial water space in human skin in vivo

    DEFF Research Database (Denmark)

    Petersen, L J; Kristensen, J K; Bülow, J

    1992-01-01

    The purpose of this study was to evaluate the usefulness of a microdialysis technique for measurement of substances in the interstitial water space in intact human skin. Glucose was selected to validate the method. The cutaneous glucose concentration was measured by microdialysis and compared...... to that in venous blood. Single dialysis fibers (length 20 mm, 2,000 Da molecular weight cutoff) were glued to nylon tubings and inserted in forearm skin by means of a fine needle. Dialysis fibers were inserted in duplicate. Seven subjects were investigated after an overnight fast. Intradermal position...... of the dialysis probes was established by C-mode ultrasound scanning. The implantation trauma lasted 90-135 min as measured by laser Doppler flowmetry. Each dialysis fiber was calibrated in vivo by perfusing it with four to five different glucose concentrations. The perfusion rate was 3 microliters...

  3. Investigations of lymphatic drainage from the interstitial space

    Science.gov (United States)

    Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration

    2017-11-01

    The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.

  4. A study on applying Ra needle interstitial brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yoshida, Shunichi; Komiya, Yoshiaki; Uchida, Ikuhiro; Tashiro, Kazuyoshi

    1999-01-01

    To investigate applicability of Ra needle interstitial brachytherapy, 93 cases of oral squamous carcinoma were examined. The patients underwent Ra needle interstitial brachytherapy as thorough therapy in our hospital. The criteria of applying Ra needle interstitial brachytherapy was diameter of within 5 cm and depth within 2 cm of tumor size. Ra needle interstitial brachytherapy was applied to 82 cases of tongue, 10 cases of oral floor and one case of lower lip carcinomas. The local control rate was 92.5%, and secondary neck metastasis was 32.3% in all cases applied Ra needle interstitial brachytherapy. The results were not bad compared with surgical treatment. However, the 5-year cumulative survival rate was 64.9%, which was not good enough at the result to obtain a good local control rate and secondary neck metastasis rate. The result was relative to low treatment result of local recurrence cases with Ra needle interstitial brachytherapy. To improve the result, it is important to distinguish local recurrence from radioinduced ulcer, and to start early secondary treatment. The cases in which cervical lymph node metastasis was found as the first examination underwent neck dessection after Ra needle interstitial brachytherapy. The 5-year cumulative survival rate was 83.3% in N1 cases and 40.6% in N2 cases, and the result of N2 cases was poorer than N1 cases with a significant difference. The results indicate that a needle having a diameter of within 5 cm, depth of within 2 cm and less than N1 can be applied during Ra needle interstitial brachytherapy for complete cure of cancer. (author)

  5. Interstitial fluid flow in cancer: implications for disease progression and treatment

    International Nuclear Information System (INIS)

    Munson, Jennifer M; Shieh, Adrian C

    2014-01-01

    As cancer progresses, a dynamic microenvironment develops that creates and responds to cellular and biophysical cues. Increased intratumoral pressure and corresponding increases in interstitial flow from the tumor bulk to the healthy stroma is an observational hallmark of progressing cancers. Until recently, the role of interstitial flow was thought to be mostly passive in the transport and dissemination of cancer cells to metastatic sites. With research spanning the past decade, we have seen that interstitial flow has a promigratory effect on cancer cell invasion in multiple cancer types. This invasion is one mechanism by which cancers can resist therapeutics and recur, but the role of interstitial flow in cancer therapy is limited to the understanding of transport of therapeutics. Here we outline the current understanding of the role of interstitial flow in cancer and the tumor microenvironment through cancer progression and therapy. We also discuss the current role of fluid flow in the treatment of cancer, including drug transport and therapeutic strategies. By stating the current understanding of interstitial flow in cancer progression, we can begin exploring its role in therapeutic failure and treatment resistance

  6. A first-principles investigation of interstitial defects in dilute tungsten alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gharaee, Leili; Erhart, Paul, E-mail: erhart@chalmers.se

    2015-12-15

    The thermodynamic properties of intrinsic and extrinsic (Ti, V, Zr, Nb, Hf, Ta, Re) defects in tungsten have been investigated using density functional theory calculations. The formation energies of substitutional defects are discussed with respect to their thermodynamic solubility limits. Several different interstitial configurations have been identified as local minima on the potential energy surface. In addition to dumbbell configurations with orientations along 〈111〉 and 〈110〉, a lower symmetry configuration is described, which is referred to as a bridge interstitial. This interstitial type is found to be the lowest energy configuration for mixed-interstitials containing Ti, V, and Re, and can be up to 0.2 eV lower in energy than the other configurations. According to the calculations Ti, V and Re also trap self-interstitial atoms, which can be produced in substantial numbers during ion irradiation, affecting the mobility of the latter.

  7. Is a linear probe helpful in diagnosing diseases of pulmonary interstitial spaces?

    Directory of Open Access Journals (Sweden)

    Natalia Buda

    2017-06-01

    Full Text Available In a lung ultrasound examination, interstitial lung lesions are visible as numerous B-line artifacts, and are best recorded with the use of a convex probe. Interstitial lung lesions may result from many conditions, including cardiogenic pulmonary oedema, non-cardiogenic pulmonary oedema, or interstitial lung disease. Hence difficulties in the differential diagnostics of the above clinical conditions. This article presents cases of patients suffering from interstitial lung lesions discovered in the course of lung ultrasound examination. The patients were examined with a 3.5–5.0 MHz convex probe and a 7.0–11.0 MHz linear probe. Ultrasound images have been analysed, and differences in the imaging with both probes in patients with interstitial lung lesions have been detailed. The use of a linear probe in patients with interstitial lung lesions (discovered with a convex or a micro-convex probe provides additional information on the source of the origin of the lesions.

  8. Drug-induced interstitial lung diseases. Often forgotten

    International Nuclear Information System (INIS)

    Poschenrieder, F.; Stroszczynski, C.; Hamer, O.W.

    2014-01-01

    Drug-induced interstitial lung diseases (DILD) are probably more common than diagnosed. Due to their potential reversibility, increased vigilance towards DILD is appropriate also from the radiologist's point of view, particularly as these diseases regularly exhibit radiological correlates in high-resolution computed tomography (HRCT) of the lungs. Based on personal experience typical relatively common manifestations of DILD are diffuse alveolar damage (DAD), eosinophilic pneumonia (EP), hypersensitivity pneumonitis (HP), organizing pneumonia (OP), non-specific interstitial pneumonia (NSIP) and usual interstitial pneumonia (UIP). These patterns are presented based on case studies, whereby emphasis is placed on the clinical context. This is to highlight the relevance of interdisciplinary communication and discussion in the diagnostic field of DILD as it is a diagnosis of exclusion or of probability in most cases. Helpful differential diagnostic indications for the presence of DILD, such as an accompanying eosinophilia or increased attenuation of pulmonary consolidations in amiodarone-induced pneumopathy are mentioned and the freely available online database http://www.pneumotox.com is presented. (orig.) [de

  9. An overview of interstitial brachytherapy and hyperthermia

    International Nuclear Information System (INIS)

    Brandt, B.B.; Harney, J.

    1989-01-01

    Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combination with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references

  10. Chronic interstitial lung disease in children

    Directory of Open Access Journals (Sweden)

    Matthias Griese

    2018-02-01

    Full Text Available Children's interstitial lung diseases (chILD are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks.

  11. Heat transfer model and finite element formulation for simulation of selective laser melting

    Science.gov (United States)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  12. HRCT appearances of pulmonary interstitial diseases. The pathologic basis and clinical diagnostic significance

    International Nuclear Information System (INIS)

    Ma Daqing; Li Tieyi; Guan Yansheng; He Wen; Nie Yongkang

    1999-01-01

    Objective: To evaluate the CT appearances, the pathologic basis and diagnostic significance of pulmonary interstitial diseases. methods: 14 isolated lungs with interstitial diseases were obtained at autopsy and surgery. The lungs were inflated and fixed. HRCT and 1 cm thin slice soft X-ray radiograph were performed and then histologic examination was done. HRCT images of 72 cases with interstitial diseases were analysed. The HRCT appearances of 10 cases were followed up for 1.5-7.0 years. Results: According to HRCT-pathologic correlation, pulmonary interstitial diseases had the following HRCT findings: (1) Intralobular interstitial thickening (33 cases, 46%), including fine linear, reticular and radiating appearances and the interface sign. (2) Interlobular septal thickening (24 cases, 33%). (3) Thickening of bronchovesicular bundles (35 cases, 49%), with coarse, blurred or smooth bundle, and nodular shape. (4) Subpleural lines (31 cases, 43%). (5) Ground-glass opacity (22 cases, 31%) with peripheral, diffuse or locular distribution. (6) Honeycombing (27 cases, 38%), having sizes: 5 mm. Of the 10 cases with follow-up, 2 cases became normal on CT and 8 cases progressing to honeycombed lung. Conclusions: The HRCT findings of pulmonary interstitial diseases represent abnormalities of axial, peripheral and septal interstitium. Interstitial fibrosis of the lung can be differentiated from that without fibrosis by HRCT. Ground-glass opacity, intralobular interstitial thickening and subpleural lines are preliminary findings of pulmonary interstitial fibrosis

  13. Simulation of surface cracks measurement in first walls by laser spot array thermography

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Qiu, Jinxin; Liu, Haocheng; Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn

    2016-11-01

    The inspection of surface cracks in first walls (FW) is very important to ensure the safe operation of the fusion reactors. In this paper, a new laser excited thermography technique with using laser spot array source is proposed for the surface cracks imaging and evaluation in the FW with an intuitive and non-contact measurement method. Instead of imaging a crack by scanning a single laser spot and superimposing the local discontinuity images with the present laser excited thermography methods, it can inspect a relatively large area at one measurement. It does not only simplify the measurement system and data processing procedure, but also provide a faster measurement for FW. In order to investigate the feasibility of this method, a numerical code based on finite element method (FEM) is developed to simulate the heat flow and the effect of the crack geometry on the thermal wave fields. An imaging method based on the gradient of the thermal images is proposed for crack measurement with the laser spot array thermography method.

  14. Idiopathic interstitial pneumonias: imaging-pathology correlation

    International Nuclear Information System (INIS)

    Ellis, Stephen M.; Hansell, David M.

    2002-01-01

    The terminology related to idiopathic interstitial pneumonia (IIP) remains confusing and in some cases wholly inaccurate. In addition, a greater understanding of the correlation between high-resolution computed tomography (HRCT) appearances and the corresponding histopathological changes found in the interstitial pneumonias has resulted in a crucial role for HRCT in the investigation of IIPs. The role of the radiologist is becoming increasingly important with a strong emphasis on establishing a diagnosis without resorting to lung biopsy. We aim to clarify the current classification of the IIPs highlighting their clinical, pathological and imaging characteristics in order to assist the radiologist in performing their increasingly important diagnostic role. (orig.)

  15. Ray tracing method for simulation of laser beam interaction with random packings of powders

    Science.gov (United States)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  16. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  17. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    Science.gov (United States)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  18. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    Science.gov (United States)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  19. Interstitial granulomatous dermatitis (IGD)

    NARCIS (Netherlands)

    Tebeica, Tiberiu; Voicu, Cristiana; Patterson, James W.; Mangarov, Hristo; Lotti, T.; Wollina, Uwe; Lotti, Jacopo; França, Katlein; Batashki, Atanas; Tchernev, Georgi

    2017-01-01

    We report the case of a 42 years old male patient suffering from skin changes, which appeared in the last 7-8 years. Two biopsies were performed during the evolution of the lesion. Both showed similar findings that consisted in a busy dermis with interstitial, superficial and deep infiltrates of

  20. Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading

    International Nuclear Information System (INIS)

    Swift, Damian C.; Gammel, J. Tinka; Clegg, Samuel M.

    2004-01-01

    Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the 'constant number density' mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements

  1. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  2. Modeling injected interstitial effects on void swelling in self-ion irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Short, M.P., E-mail: hereiam@mit.edu [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Gaston, D.R. [Idaho National Laboratory (United States); Jin, M. [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology (United States); Shao, L. [Dept. of Nuclear Engineering, Texas A& M University (United States); Garner, F.A. [Radiation Effects Consulting, LLC (United States)

    2016-04-01

    Heavy ion irradiations at high dose rates are often used to simulate slow and expensive neutron irradiation experiments. However, many differences in the resultant modes of damage arise due to unique aspects of heavy ion irradiation. One such difference was recently shown in pure iron to manifest itself as a double peak in void swelling, with both peaks located away from the region of highest displacement damage. In other cases involving a variety of ferritic alloys there is often only a single peak in swelling vs. depth that is located very near the ion-incident surface. We show that these behaviors arise due to a combination of two separate effects: 1) suppression of void swelling due to injected interstitials, and 2) preferential sinking of interstitials to the ion-incident surface, which are very sensitive to the irradiation temperature and displacement rate. Care should therefore be used in collection and interpretation of data from the depth range outside the Bragg peak of ion irradiation experiments, as it is shown to be more complex than previously envisioned. - Highlights: • A model of the spatially dependent point defect kinetics equations with injected interstitials has been implemented. • The results predict a double peak in the void nucleation rate, helping to explain a recent experiment. • The double peak is predicted to be evident within a narrow (+/− 30 °C) temperature window for self-irradiation of pure iron. • The ballistic damage profile may not match the resultant void swelling profile from ion irradiation experiments.

  3. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    Science.gov (United States)

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  4. Measuring interstitial pH and pO2 in mouse tumors.

    Science.gov (United States)

    Jain, Rakesh K; Munn, Lance L; Fukumura, Dai

    2013-07-01

    This protocol outlines methods to measure two extravascular parameters, interstitial pH and partial pressure of oxygen (pO2), in mouse tumors. The method for measuring interstitial pH uses fluorescence ratio imaging microscopy (FRIM) of the pH-sensitive fluorescent dye 2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF). The method for measuring interstitial pO2 is based on the oxygen-dependent quenching of the phosphorescence of albumin-bound palladium meso-tetra(4-carboxyphenyl)porphyrin, and can be used to measure microvascular as well as interstitial pO2. In addition, the two methods can be used sequentially to measure both pH and pO2 in the same tissues.

  5. A molecular-dynamics simulation of displacement cascades in α-iron

    International Nuclear Information System (INIS)

    Kusunoki, Katsuyuki

    2003-01-01

    A molecular-dynamics code has been developed for simulating the early process of radiation-induced defects generation and aggregation during displacement cascades in α-iron. This code reproduces the dynamics of various types of defects such as vacancies, interstitials, and their clusters in a crystal composed of a million atoms. Main procedures and results of the present simulation are as follows. Interactions among atoms were described by a many-body EAM potential. Every simulation was performed under 3D periodical boundary conditions. Cascades were introduced into crystals by giving a kinetic energy to a knock-on atom once at a time toward a crystallographic direction along low index axes i.e. , and axes. The maximum number of Frenkel-type defects was generated for a case when the knock-on direction was along axis. Interstitial atoms surrounding residual vacancies were observed to form several clusters shortly after pair annihilation of the Frenkel-type defects. Fast massive migration of the interstitial clusters was also observed. (author)

  6. Lung lobar volume in patients with chronic interstitial pneumonia

    International Nuclear Information System (INIS)

    Harada, Hisao; Koba, Hiroyuki; Saitoh, Tsukasa; Abe, Shosaku.

    1997-01-01

    We measured lung lobar volume by using helical computed tomography (HCT) in 23 patients with idiopathic interstitial pneumonia (IIP), 7 patients with chronic interstitial pneumonia associated with collagen vascular disease (CVD-IP), and 5 healthy volunteers HCT scanning was done at the maximal inspiratory level and the resting end-expiratory level. To measure lung lobar volume, we traced the lobar margin on HCT images with a digitizer and calculated the lobar volume with a personal computer. The lower lobar volume and several factors influencing it in chronic interstitial pneumonia were studied. At the maximal inspiratory level, the lower lobar volume as a percent of the whole lung volume was 46.8±4.13% (mean ± SD) in the volunteers, 39.5±6.19% in the patients with IIP, and 27.7±7. 86% in the patients with CVD-IP. The lower lobar volumes in the patients were significantly lower than in the volunteers. Patients with IIP in whom autoantibody tests were positive had lower lobar volumes that were very low and were similar to those of patients with CVD-IP. These data suggest that collagen vascular disease may develop in patients with interstitial pneumonia. The patients with IIP who had emphysematous changes on the CT scans had smaller decreases in total lung capacity and lower ratios of forced expiratory volume in one second to forced vital capacity than did those who had no emphysematous changes, those two groups did not differ in the ratio of lower lobar volume to whole lung volume. This suggests that emphysematous change is not factor influencing lower lobar volume in patients with chronic interstitial pneumonia. We conclude that chronic interstitial pneumonia together with very low values for lower lobar volume may be a pulmonary manifestation of collagen vascular disease. (author)

  7. Acute ciprofloxacin-induced crystal nephropathy with granulomatous interstitial nephritis

    Directory of Open Access Journals (Sweden)

    R Goli

    2017-01-01

    Full Text Available Crystal-induced acute kidney injury (AKI is caused by the intratubular precipitation of crystals, which results in obstruction and kidney injury. Ciprofloxacin, a commonly used antibiotic, causes AKI secondary to immune-mediated interstitial injury. Rare mechanisms of ciprofloxacin-induced renal injury include crystalluria, rhabdomyolysis, and granulomatous interstitial nephritis. Clinical and experimental studies have suggested that crystalluria and crystal nephropathy due to ciprofloxacin occur in alkaline urine. Preexisting kidney function impairment, high dose of the medication, and advanced age predispose to this complication. We report a case of ciprofloxacin-induced crystal nephropathy and granulomatous interstitial nephritis in a young patient with no other predisposing factors. The patient responded to conservative treatment without the need for glucocorticoids.

  8. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    Science.gov (United States)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  9. SU-F-19A-12: Split-Ring Applicator with Interstitial Needle for Improved Volumetric Coverage in HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sherertz, T; Ellis, R; Colussi, V; Mislmani, M; Traughber, B; Herrmann, K; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2014-06-15

    Purpose: To evaluate volumetric coverage of a Mick Radionuclear titanium Split-Ring applicator (SRA) with/without interstitial needle compared to an intracavitary Vienna applicator (VA), interstitial-intracavitary VA, and intracavitary ring and tandem applicator (RTA). Methods: A 57 year-old female with FIGO stage IIB cervical carcinoma was treated following chemoradiotherapy (45Gy pelvic and 5.4Gy parametrial boost) with highdose- rate (HDR) brachytherapy to 30Gy in 5 fractions using a SRA. A single interstitial needle was placed using the Ellis Interstitial Cap for the final three fractions to increase coverage of left-sided gross residual disease identified on 3T-MRI. High-risk (HR) clinical target volume (CTV) and intermediate-risk (IR) CTV were defined using axial T2-weighted 2D and 3D MRI sequences (Philips PET/MRI unit). Organs-at-risks (OARs) were delineated on CT. Oncentra planning system was used for treatment optimization satisfying GEC-ESTRO guidelines for target coverage and OAR constraints. Retrospectively, treatment plans (additional 20 plans) were simulated using intracavitary SRA (without needle), intracavitary VA (without needle), interstitial-intracavitary VA, and intracavitary RTA with this same patient case. Plans were optimized for each fraction to maintain coverage to HR-CTV. Results: Interstitial-intracavitary SRA achieved the following combined coverage for external radiation and brachytherapy (EQD2): D90 HR-CTV =94.6Gy; Bladder-2cc =88.9Gy; Rectum-2cc =65.1Gy; Sigmoid-2cc =48.9Gy; Left vaginal wall (VW) =103Gy, Right VW =99.2Gy. Interstitial-intracavitary VA was able to achieve identical D90 HR-CTV =94.6Gy, yet Bladder-2cc =91.9Gy (exceeding GEC-ESTRO recommendations of 2cc<90Gy) and Left VW =120.8Gy and Right VW =115.5Gy. Neither the SRA nor VA without interstitial needle could cover HR-CTV adequately without exceeding dose to Bladder-2cc. Conventional RTA was unable to achieve target coverage for the HR-CTV >80Gy without severely

  10. Numerical simulation of residual stress in laser based additive manufacturing process

    Science.gov (United States)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  11. Molecular dynamics simulations of laser disintegration of amorphous aerosol particles with spatially nonuniform absorption

    International Nuclear Information System (INIS)

    Schoolcraft, Tracy A.; Constable, Gregory S.; Jackson, Bryan; Zhigilei, Leonid V.; Garrison, Barbara J.

    2001-01-01

    A series of molecular dynamics (MD) simulations are performed in order to provide qualitative information on the mechanisms of disintegration of aerosol particles as used in aerosol mass spectrometry. Three generic types of aerosol particles are considered: strongly absorbing particles with homogeneous composition, transparent particles with absorbing inclusion, and absorbing particles with transparent inclusion. To study the effect of the mechanical properties of the aerosol material on the disintegration process, the results for crystalline (brittle) and amorphous (ductile) particles are compared. For large laser fluences, nearly complete dissociation of the absorbing material is observed, whereas the nonabsorbing portions remain fairly intact. Because large fluences can cause photofragmentation of constituent molecules, multiple pulses at low laser fluence and/or lasers with different wavelengths are recommended for the best representative sampling of multicomponent aerosol particles in laser desorption/ionization (LDI) mass spectrometry

  12. Bladder pain syndrome/interstitial cystitis in a Danish population

    DEFF Research Database (Denmark)

    Richter, Benedikte; Hesse, Ulrik; Hansen, Alastair B

    2010-01-01

    To characterize and evaluate a Danish patient population with bladder pain syndrome/interstitial cystitis (BPS/IC), using a working definition for BPS/IC incorporating six variables, and a set of criteria defined by the European Society for the Study of Interstitial Cystitis (ESSIC); to describe...... the clinical course and treatment intensity in relation to these variables....

  13. Theory of the change of elastic constants by interstitials

    International Nuclear Information System (INIS)

    Breuer, N.; Dederichs, P.H.; Lehmann, C.; Leibfried, G.; Scholz, A.

    1975-01-01

    The theory of the change of elastic constants by point-defects, in particular by interstitials, is briefly summarized. The typical effects of spring changes in a defect lattice on the elastic data are discussed qualitatively. Numerical results for the change of elastic constants by self-interstitials and vacancies are given and compared with experimental data for Cu and Al

  14. Pancreas tumor interstitial pressure catheter measurement

    Science.gov (United States)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  15. Computational Simulation of Thermal and Spattering Phenomena and Microstructure in Selective Laser Melting of Inconel 625

    Science.gov (United States)

    Özel, Tuğrul; Arısoy, Yiğit M.; Criales, Luis E.

    Computational modelling of Laser Powder Bed Fusion (L-PBF) processes such as Selective laser Melting (SLM) can reveal information that is hard to obtain or unobtainable by in-situ experimental measurements. A 3D thermal field that is not visible by the thermal camera can be obtained by solving the 3D heat transfer problem. Furthermore, microstructural modelling can be used to predict the quality and mechanical properties of the product. In this paper, a nonlinear 3D Finite Element Method based computational code is developed to simulate the SLM process with different process parameters such as laser power and scan velocity. The code is further improved by utilizing an in-situ thermal camera recording to predict spattering which is in turn included as a stochastic heat loss. Then, thermal gradients extracted from the simulations applied to predict growth directions in the resulting microstructure.

  16. Californium-252 interstitial implants in carcinoma of the tongue

    International Nuclear Information System (INIS)

    Vtyurin, B.M.; Ivanov, V.N.; Medvedev, V.S.; Galantseva, G.F.; Abdulkadyrov, S.A.; Ivanova, L.F.; Petrovskaya, G.A.; Plichko, V.I.

    1985-01-01

    A clinical study using 252 Cf sources in brachytherapy of tumors began in the Research Institute of Medical Radiology of the Academy of Medical Sciences of the USSR in 1973. 252 Cf afterloading cells were utilized by the method of simple afterloading. Dosimetry and radiation protection of medical personnel were developed. To substantiate optimal therapeutic doses of 252 Cf neutrons, a correlation of dose, time, and treatment volume factors with clinical results of 252 Cf interstitial implants in carcinoma of the tongue for 47 patients with a minimum follow-up period of 1 year was studied. Forty-nine interstitial implants have been performed. Seventeen patients received 252 Cf implants alone (Group I), 17 other patients received 252 Cf implants in combination with external radiation (Group II), and 15 patients were treated with interstitial implants for recurrent or residual tumors (Groups III). Complete regression of carcinoma of the tongue was obtained in 48 patients (98%). Thirteen patients (27%) developed radiation necrosis. The therapeutic dose of neutron radiation from 252 Cf sources in interstitial radiotherapy of primary tongue carcinomas (Group I) was found to be 7 to 9 Gy. Optimal therapeutic neutron dose in combined interstitial and external radiotherapy of primary tumors (Group II) was 5 to 6 Gy with an external radiation dose of 40 Gy. For recurrent and residual tumors (Group III), favorable results were obtained with tumor doses of 6.5 to 7 Gy

  17. A flexible platform for simulations of sputtering hollow cathode discharges for laser applications

    NARCIS (Netherlands)

    Mihailova, D.B.; Grozeva, M.; Hagelaar, G.J.M.; Dijk, van J.; Brok, W.J.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The Plasimo modelling platform, extended with a cathode wall sputtering module is used to study the discharge processes and to optimise the design parameters of a sputtering hollow cathode discharge (HCD). We present Plasimo simulations of a HCD used for laser applications. A time dependent

  18. Role of interstitial implantation in gynecological cancer

    International Nuclear Information System (INIS)

    Nori, D.; Hilaris, B.S.

    1987-01-01

    Recurrent cancer at any site carries a gloomy prognosis. Cancer of the cervix that recurs after radical surgery or curative radiation therapy is a perplexing problem confronting both gynecological and radiation oncologists. In the authors' series, 45% of the patients survived disease-free at 1 year and 10% survived without disease at 5 years or longer following interstitial implantation for recurrent cervical cancer. The optimal utilization of this procedure seems to depend on the site of recurrence, the extent of the disease in the pelvis, and the status of para-aortic node involvement. This retrospective analysis enabled the authors to identify the prognostic factors. The most favorable group benefited by this technique were those who presented with either central recurrence or unilateral, localized pelvic side wall recurrent disease. The least morbidity was noticed in those patients with minimal surgical manipulations at the time of the interstitial implantation. The authors recommended that only a limited and essential surgical procedure should accompany interstitial implantation, since the associated morbidity and mortality is high and survival brief

  19. LACAN Code for global simulation of SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Quaegebeur, J.P.; Goldstein, S.

    1991-01-01

    Functions used for the definition of a SILVA separator require quite a lot of dimensional and operating parameters. Sizing a laser isotope separation plant needs the determination of these parameters for optimization. In the LACAN simulation code, each elementary physical process is described by simplified models. An example is given for a uranium isotope separation plant whose separation power is optimized with 6 parameters [fr

  20. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  1. Interstitial Metabolic Monitoring During Hemorrhagic Shock

    National Research Council Canada - National Science Library

    Pamnani, Motilal

    2004-01-01

    .... We hypothesize that decompensation results from potassium-mediated vasodilation and/or loss of cardiac contractility, and thus a method of measuring interstitial potassium should be a crucial part...

  2. Rheumatoid arthritis associated interstitial lung disease: a review

    Directory of Open Access Journals (Sweden)

    Deborah Assayag

    2014-04-01

    Full Text Available Rheumatoid arthritis is a common inflammatory disease affecting about 1% of the population. Interstitial lung disease is a serious and frequent complication of rheumatoid arthritis. Rheumatoid arthritis associated interstitial lung disease (RA-ILD is characterized by several histopathologic subtypes. This article reviews the proposed pathogenesis and risk factors for RA-ILD. We also outline the important steps involved in the work-up of RA-ILD and review the evidence for treatment and prognosis.

  3. The idiopathic interstitial pneumonias: understanding key radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, S. [Department of Radiology, Churchill Hospital, Old Road, Oxford OX3 7LJ (United Kingdom); Benamore, R., E-mail: Rachel.Benamore@orh.nhs.u [Department of Radiology, Churchill Hospital, Old Road, Oxford OX3 7LJ (United Kingdom)

    2010-10-15

    Many radiologists find it challenging to distinguish between the different interstitial idiopathic pneumonias (IIPs). The British Thoracic Society guidelines on interstitial lung disease (2008) recommend the formation of multidisciplinary meetings, with diagnoses made by combined radiological, pathological, and clinical findings. This review focuses on understanding typical and atypical radiological features on high-resolution computed tomography between the different IIPs, to help the radiologist determine when a confident diagnosis can be made and how to deal with uncertainty.

  4. The idiopathic interstitial pneumonias: understanding key radiological features

    International Nuclear Information System (INIS)

    Dixon, S.; Benamore, R.

    2010-01-01

    Many radiologists find it challenging to distinguish between the different interstitial idiopathic pneumonias (IIPs). The British Thoracic Society guidelines on interstitial lung disease (2008) recommend the formation of multidisciplinary meetings, with diagnoses made by combined radiological, pathological, and clinical findings. This review focuses on understanding typical and atypical radiological features on high-resolution computed tomography between the different IIPs, to help the radiologist determine when a confident diagnosis can be made and how to deal with uncertainty.

  5. Bladder pain syndrome/interstitial cystitis in a Danish population: a study using the 2008 criteria of the European Society for the Study of Interstitial Cystitis

    DEFF Research Database (Denmark)

    Richter, B.; Hesse, U.; Hansen, Alastair Bierre

    2010-01-01

    OBJECTIVE To characterize and evaluate a Danish patient population with bladder pain syndrome/interstitial cystitis (BPS/IC), using a working definition for BPS/IC incorporating six variables, and a set of criteria defined by the European Society for the Study of Interstitial Cystitis (ESSIC...

  6. Clinical and Genetic Associations of Objectively Identified Interstitial Changes in Smokers.

    Science.gov (United States)

    Ash, Samuel Y; Harmouche, Rola; Putman, Rachel K; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Onieva Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R

    2017-10-01

    Smoking-related lung injury may manifest on CT scans as both emphysema and interstitial changes. We have developed an automated method to quantify interstitial changes and hypothesized that this measurement would be associated with lung function, quality of life, mortality, and a mucin 5B (MUC5B) polymorphism. Using CT scans from the Genetic Epidemiology of COPD Study, we objectively labeled lung parenchyma as a tissue subtype. We calculated the percentage of the lung occupied by interstitial subtypes. A total of 8,345 participants had clinical and CT scanning data available. A 5% absolute increase in interstitial changes was associated with an absolute decrease in FVC % predicted of 2.47% (P percentage of lung with interstitial changes. Objective interstitial changes on CT scans were associated with impaired lung function, worse quality of life, increased mortality, and more copies of a MUC5B promoter polymorphism, suggesting that these changes may be a marker of susceptibility to smoking-related lung injury, detectable even in those who are healthy by other measures. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  7. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  8. Detection of the free migration of the self-interstitials in magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Lauzier, J; Hillairet, J; Duclos, D; Vieux Champagne, A

    1986-05-01

    This paper describes the first experimental determination of the migration temperature of freely diffusing self-interstitials in magnesium. This observation was made possible by analysis of the elastic modulus and damping variations induced by the pinning of the dislocations by self-interstitials. A marked pinning stage is found between 9 K and 14 K, which is definite evidence for the long-range diffusion of the self-interstitial at these temperatures. Prior data are discussed and reinterpreted in the light of this finding.

  9. Comparison of simulation to absolute X-ray emission of CH plasma created with the Nike laser

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.; Feldman, U.; Klapisch, M. [ARTEP, Inc., Ellicott City, Maryland (contractor to NRL) (United States); Weaver, J.L.; Colombant, D.G.; Mostovych, A.N. [Naval Research Laboratory, Plasma Physics Division, Washington, DC (United States); Seely, J.F. [Naval Research Laboratory, Space Science Division, Washington, DC (United States); Holland, G. [SFA, Inc., Landover, Maryland (contractor to NRL) (United States)

    2006-06-15

    The Nike laser group at the Naval Research Laboratory has an ongoing effort to improve and benchmark the radiation hydrodynamic simulations used to develop pellet designs for inertial confinement fusion. A new post-processor, Virtual Spectro, has been added to the FAST code suite for detailed simulation of non-local thermodynamical equilibrium (non-LTE) spectra, including radiation transport effects and Stark line profile. This new combination enhances our ability to predict the absolute emission of soft X-rays. An absolutely calibrated transmission grating spectrometer and a high resolution grazing incidence spectrometer have been used to collect time integrated and time resolved spectra emitted by CH targets irradiated at laser intensities of about 10 TW/cm{sup 2}. Comparison between these observations and simulations using Virtual Spectro demonstrates excellent agreement (within factor of about 1.5) for the absolute emission. (authors)

  10. Comparison of simulation to absolute X-ray emission of CH plasma created with the Nike laser

    International Nuclear Information System (INIS)

    Busquet, M.; Feldman, U.; Klapisch, M.; Weaver, J.L.; Colombant, D.G.; Mostovych, A.N.; Seely, J.F.; Holland, G.

    2006-01-01

    The Nike laser group at the Naval Research Laboratory has an ongoing effort to improve and benchmark the radiation hydrodynamic simulations used to develop pellet designs for inertial confinement fusion. A new post-processor, Virtual Spectro, has been added to the FAST code suite for detailed simulation of non-local thermodynamical equilibrium (non-LTE) spectra, including radiation transport effects and Stark line profile. This new combination enhances our ability to predict the absolute emission of soft X-rays. An absolutely calibrated transmission grating spectrometer and a high resolution grazing incidence spectrometer have been used to collect time integrated and time resolved spectra emitted by CH targets irradiated at laser intensities of about 10 TW/cm 2 . Comparison between these observations and simulations using Virtual Spectro demonstrates excellent agreement (within factor of about 1.5) for the absolute emission. (authors)

  11. Interstitial microwave hyperthermia treatment investigations

    International Nuclear Information System (INIS)

    Siauve, N; Lormel, C

    2012-01-01

    Microwave ablation also called interstitial hyperthermia is a medical procedure used in the treatment of many cancers, cardiac arrhythmias and other medical conditions. With this medical therapy, an electromagnetic source (antenna) is directly positioned in the target tissue and a sufficient power is injected to necrosis the tissue. The aim of this study is to propose a design procedure and develop the associated tools, for determining the optimal shape, dimensions, type and operating frequency of antenna according to the target volume. In this context, a 3D numerical predictive model of temperature elevation induced by the electric fields and two benches for thermal and electrical tissues properties characterization have been developed. To validate the procedure and the different tools, an experimental bench test which includes interstitial antenna, external microwave generator, phantom that represents the target tissue and measurement system of temperature and electric field has been elaborated.

  12. Simulating the production of free defects in irradiated metals

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1995-01-01

    Under cascade-producing irradiation by high energy neutrons or charged particles, only a small fraction of the initially displaced atoms contribute to the population of free defects that are available to migrate throughout the metal and cause microstructural changes. Although, in principle, computer simulations of free defect production could best be done using molecular dynamics, in practice, the wide ranges of time and distance scales involved can be done only by a combination of atomistic models that employ various levels of approximation. An atomic-scale, multi-model approach has been developed that combines molecular dynamics, binary collision models and stochastic annealing simulation. The annealing simulation is utilized in calibrating binary collision simulations to the results of molecular dynamics calculations, as well as to model the subsequent migration of the defects on more macroscopic time and size scales. The annealing simulation and the method of calibrating the multi-model approach are discussed, and the results of simulations of cascades in copper are presented. The temperature dependence of free defect production following simulated annealing of isolated cascades in copper shows a differential in the fractions of free vacancies and interstitial defects escaping from the cascade above stage V. This differential, a consequence of the direct formation of interstitial clusters in cascades and the relative thermal stability of vacancy and interstitial clusters during subsequent annealing, is the basis for the production bias mechanism of void swelling. (orig.)

  13. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    Science.gov (United States)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  14. Pulmonary scan in evaluating alveolar-interstitial syndrome in ER

    Directory of Open Access Journals (Sweden)

    Giovanni Volpicelli

    2006-10-01

    Full Text Available Diffuse comet-tail artifacts at lung ultrasound are due to thickened interlobular septa and extravascular lung water. This condition is typical of the alveolar-interstitial syndrome due to pulmonary edema, diffuse parenchymal lung disease or ARDS. Aim of our study is to assess the potential of bedside lung ultrasound to diagnose the alveolar-interstitial syndrome in patients admitted to our emergency medicine unit. The ultrasonic feature of multiple and diffuse comet-tail artifacts was investigated during 5 months, in 121 consecutive patients admitted to our unit. Each patient was studied bedside in a supine position, by 8 antero-lateral pulmonary intercostal scans. Ultrasonic results were compared with chest radiograph and clinical outcome. Lung ultrasound showed a sensitivity of 84% and a specificity of 98% in diagnosing the radiologic alveolar-interstitial syndrome. Corresponding figures in the identification of a disease involving lung interstitium were 83% and 96%. These preliminary data show that the study of comet-tail artifacts at lung ultrasound is a method reasonably accurate for diagnosing the alveolar-interstitial syndrome at bedside. This conclusion opens the hypothesis of the usefullness of bedside lung ultrasound in the evaluation of dyspnoeic patients in the emergency setting.

  15. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around

  17. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  18. Interstitial hyperthermia using 8 MHz radiofrequency and stereotaxic brachytherapy for brain tumors

    International Nuclear Information System (INIS)

    Nishimura, Satoshi

    1990-01-01

    As a preliminary study of the interstitial hyperthermia combined with interstitial irradiation (brachytherapy) for the treatment of malignant brain tumors, we performed an experiment of interstitial hyperthermia of brain tissue of dogs. Nine afterloading tubes, four for needle electrodes and five for thermisters, were inserted in the brain tissue of dogs. Rise and stability of temperature were ascertained, and clinical safety was confirmed. Thereafter this combined therapy was applied on seven cases, in which three were malignant gliomas and four were metastatic tumors. Through the guide tubes, 192 Ir thin wires were implanted stereotaxically, and interstitial irradiation was carried out. After removal of 192 Ir wires, needle electrodes were inserted through the same tubes, and also a thermister was guided at the center of electrodes. And interstitial hyperthermia using 8 MHz radiofrequency was carried out. The results of the treatment were evaluated with CT scan based on criteria of the Japan Neurological Society. In cases of malignant gliomas, 2 PRs (partial remission), and 1 NC (no change) were obtained. In cases of metastatic tumors, 1 CR (complete remission), 2 PRs, 1 NC were obtaind. In cases of NCs, progression of tumors have been suppressed for 10 and 17 months, and still alive. As complication, transient worsening of neurological symptoms were observed in four cases (increased paresis: two cases, nausea and vomiting: two cases). The author have had an impression that interstitial hyperthermia combined with interstitial irradiation might become an effective means of treatment of brain tumors. (author)

  19. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  20. Multiphysics modelling and simulation of dry laser cleaning of micro-slots with particle contaminants

    International Nuclear Information System (INIS)

    Yue Liyang; Wang Zengbo; Li Lin

    2012-01-01

    Light could interact differently with thin-film contaminants and particle contaminates because of their different surface morphologies. In the case of dry laser cleaning of small transparent particles, it is well known that particles could function like mini-lenses, causing a localized near-field hot spot effect on the cleaning process. This paper looks into a special, yet important, phenomenon of dry laser cleaning of particles trapped in micro-sized slots. The effects of slot size, particle size and particle aggregate states in the cleaning process have been theoretically investigated, based on a coupled electromagnetic-thermal-mechanical multiphysics modelling and simulation approach. The study is important for the development and optimization of laser cleaning processes for contamination removal from cracks and slots. (paper)

  1. The accumulation of femtosecond laser radiation energy in crystals of lithium fluoride

    Science.gov (United States)

    Dresvyanskiy, V. P.; Glazunov, D. S.; Alekseev, S. V.; Losev, V. F.; Chadraa, B.; Bukhtsooj, O.; Baasankhuu, N.; Zandan, B.; Martynovich, E. F.

    2015-12-01

    We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F3+ color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F3- and F4 centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X3- centers in the result of thermal decomposition of latter on the I-centers and molecules X20. I-centers recombine with F3+ centers and form F2 centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence.

  2. The Simulation of the stabilizing process of glass nanoparticle in optical tweezer using series of laser pulses

    International Nuclear Information System (INIS)

    Ho Quang Quy; Hoang Dinh Hai

    2012-01-01

    In this article the stable region and stabilizing process of dielectric particle in fluid by the optical tweezer using the series of laser pulses are investigated. The influence of the repetition period and number of laser pulses on the radial variance of particle and the so-called stable space-time pillar is simulated and discussed. (author)

  3. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  4. Laser treatment of female stress urinary incontinence: optical, thermal, and tissue damage simulations

    Science.gov (United States)

    Hardy, Luke A.; Chang, Chun-Hung; Myers, Erinn M.; Kennelly, Michael J.; Fried, Nathaniel M.

    2016-02-01

    Treatment of female stress urinary incontinence (SUI) by laser thermal remodeling of subsurface tissues is studied. Light transport, heat transfer, and thermal damage simulations were performed for transvaginal and transurethral methods. Monte Carlo (MC) provided absorbed photon distributions in tissue layers (vaginal wall, endopelvic fascia, urethral wall). Optical properties (n,μa,μs,g) were assigned to each tissue at λ=1064 nm. A 5-mm-diameter laser beam and power of 5 W for 15 s was used, based on previous experiments. MC output was converted into absorbed energy, serving as input for ANSYS finite element heat transfer simulations of tissue temperatures over time. Convective heat transfer was simulated with contact cooling probe set at 0 °C. Thermal properties (κ,c,ρ) were assigned to each tissue layer. MATLAB code was used for Arrhenius integral thermal damage calculations. A temperature matrix was constructed from ANSYS output, and finite sum was incorporated to approximate Arrhenius integral calculations. Tissue damage properties (Ea,A) were used to compute Arrhenius sums. For the transvaginal approach, 37% of energy was absorbed in endopelvic fascia layer with 0.8% deposited beyond it. Peak temperature was 71°C, treatment zone was 0.8-mm-diameter, and almost all of 2.7-mm-thick vaginal wall was preserved. For transurethral approach, 18% energy was absorbed in endopelvic fascia with 0.3% deposited beyond it. Peak temperature was 80°C, treatment zone was 2.0-mm-diameter, and only 0.6 mm of 2.4-mm-thick urethral wall was preserved. A transvaginal approach is more feasible than transurethral approach for laser treatment of SUI.

  5. An interstitial miniature antenna for localized in vivo 31P spectroscopy

    International Nuclear Information System (INIS)

    Hentschel, M.; Wust, P.; Faehling, H.; Richter, R.; Vogl, T.; Semmler, W.; Wolf, K.J.; Felix, R.

    1996-01-01

    Phosphorus spectroscopy can be used to assess response in tumor therapy and to monitor response. Methodical problems of localisation and contamination make it more difficult to interpret and reproduce the spectra. Interstitial and endoluminal spectroscopy antennas placed directly within or close to the tumor could provide help in this problem. We developed an interstitial 31 P MRS antenna together with a tuning network which can be used in thermometry catheters for hyperthermia within an internal lumen of 1.1 mm in diameter. A prototype of this type of miniature antenna suitable for use in Siemens MRI scanners at 1.5 T was described spectroscopically with regard to excitation profile, range and SNR. Results: In terms of quality, the excitation profiles of the interstitial antennas in relation to orientation correspond to those of comparable but considerably larger endocavitary antennas and catheter coils for MR imaging and spectroscopy. Maximum sensitivity was achieved by aligning the coil normal perpendicular to the B 0 field. Signal losses of up to 50% have to be reckoned with when using other orientations. The maximum range of the interstitial antenna was determined using spectroscopy and was found to be 5 mm, i.e. 9 times coil radius. The sensitivity of the studied type of interstitial antenna allows in vivo 31 P spectroscopy to be performed despite the unusually low axial dimension (coil radius r=0.55 mm). The prototype of the described interstitial antenna was used to measure an in vivo spectrum from the back muscle of a rabbit in 10 min. Nevertheless, the detection volume of at least some ml necessary for 31 P spectroscopy results mainly from the large antenna length. Conclusion: The sensitivity of the interstitial antenna needs to be further improved in order to assess treatment response in patients. (orig./MG) [de

  6. Acute Abdomen in Interstitial Ectopic Pregnancy, An Emergency Laparoscopic Treatment

    Directory of Open Access Journals (Sweden)

    E. Picardo

    2014-01-01

    Full Text Available The present case report demonstrates a laparoscopic approach to treat interstitial cornual pregnancy in emergency. Interstitial ectopic pregnancy develops in the uterine portion of the fallopian tube which accounts for 2–4% of all ectopic pregnancies and has the potential to cause life-threatening hemorrhage at rupture. The mortality rate for a woman diagnosed with such a pregnancy is 2–2.5%. Diagnosis of interstitial pregnancy is made by ultrasound. In this case a 32 year-old woman, Gravida 0 Parity 0 Living 0 Ectopic 1, presented to the emergency obstetrical room complaining acute abdominal pain. There was a history of 10 weeks of pregnancy but no pelvic ultrasound scan was performed before the access. A transvaginal ultrasound scan immediately performed demonstrated a gestational sac with viable fetus in the right interstitial region. Moreover there was an ultrasound evidence of hemoperitoneum. She was transferred to the operating room and an emergency laparoscopy surgery was performed. The postoperative course was uneventful and the patient was discharged two days after the surgery. Interstitial pregnancies present a difficult management problem with no absolute standard of care in literature. Laparoscopic technique is under study with favorable results. For our personal point of view a treatment via laparoscopy could be performed both in elective and in emergency cases.

  7. Dislocation climb and interstitial loop growth under cascade damage irradiation

    International Nuclear Information System (INIS)

    Woo, C.H.; Semenov, A.A.

    1993-01-01

    The effects of intracascade clustering and recombination in radiation damage have been considered previously in semiquantitative calculations involving vacancy accumulation at voids, within the concept of production bias. To model void swelling and microstructural evolution quantitatively, similar effects on dislocation climb and interstitial loop growth have to be considered. In this regard, at elevated temperatures (such as in the peak-swelling temperature regime), the concentration of freely migrating vacancies is much higher than that of the interstitials, owing to the evaporation from the primary vacancy clusters (i.e. those produced by intracascade clustering). It is not immediately obvious how the dislocations can be net interstitials sinks, and hence that the observed nucleation and growth of the interstitial loops at elevated temperatures can be correctly predicted as in the conventional theory. To address these basic questions, a rate theory model is formulated in this paper, which describes the dislocation climb and loop growth in the presence of intracascade primary clusters. Within this model, conservation equations for the concentrations and average radii of the two kinds of primary cluster are derived, and the corresponding steady-state concentrations and average radii are calculated. From this, the dislocation climb velocity and interstitial loop growth rate are calculated. On the basis of the results of this calculation, some of the basic questions of production bias are discussed. (Author)

  8. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  9. Nature of interstitially induced lattice strains

    International Nuclear Information System (INIS)

    Emin, D.

    1978-01-01

    The addition of interstitial atoms to a metal lattice has been likened to the addition of extra billiard balls to an array of tangentially touching billiard balls. In such a picture the increased clustering of interstitials can lead to the buildup of larger and larger strain fields which ultimately are associated with the production of broken bonds. Simple models of the strain fields associated with the addition of particles to a lattice in which the force exerted between the added atoms and host atoms is finite have been studied. From these studies one can define situations in which the billiard-ball approach has qualitative validity and those in which it is inappropriate. Basically, those situations in which the displacements of the host atoms can be represented as involving acoustic phonons yield long-range strain fields analogous to those of the billiard-ball model with the radius of the extra billiard ball being determined by the stiffness of the host lattice and the forces between the added atom and the surrounding host atoms. If the displacements produced by the added atoms are represented as involving primarily optical phonons the displacement pattern is short-ranged and not described by the usual elasticity theory. For example, Vegard's law does not apply in these instances. Such concerns arise in considering the strains induced by interstitial helium in tritides

  10. Venous Thromboembolism and Risk of Idiopathic Interstitial Pneumonia A Nationwide Study

    DEFF Research Database (Denmark)

    Sode, Birgitte Margareta; Dahl, Morten; Nielsen, Sune Fallgaard

    2010-01-01

    Rationale: Idiopathic interstitial pneumonia is characterized by pulmonary fibrosis and high mortality. Objectives: We examined the association between ever-diagnosed venous thromboembolism and risk of incident idiopathic interstitial pneumonia. Venous thromboembolism was taken as a proxy...... Danish registries. Measurements and Main Results: Age-standardized incidence rates per 10,000 person-years for idiopathic interstitial pneumonia were higher among those ever diagnosed with venous thromboembolism (1.8; n = 158,676), pulmonary embolism (2.8; n = 70,586), and deep venous thrombosis only (1.......2; n = 88,090), than among control subjects (0.8; n = 7,260,278). Multivariate-adjusted hazard ratios for idiopathic interstitial pneumonia were 1.8 (95% confidence interval [Cl], 1.7-1.9) in those ever diagnosed with venous thromboembolism, 2.4 (95% CI, 2.3-2.6) in those ever diagnosed with pulmonary...

  11. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation

    International Nuclear Information System (INIS)

    Wang Cong; Jiang Lan; Wang Feng; Li Xin; Yuan Yanping; Xiao Hai; Tsai, Hai-Lung; Lu Yongfeng

    2012-01-01

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train. (paper)

  12. Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: experiment and simulations

    Science.gov (United States)

    Møller, Søren H.; Vester-Petersen, Joakim; Nazir, Adnan; Eriksen, Emil H.; Julsgaard, Brian; Madsen, Søren P.; Balling, Peter

    2018-02-01

    Quantitative measurements of the electric near-field distribution of star-shaped gold nanoparticles have been performed by femtosecond laser ablation. Measurements were carried out on and off the plasmon resonance. A detailed comparison with numerical simulations of the electric fields is presented. Semi-quantitative agreement is found, with slight systematic differences between experimentally observed and simulated near-field patterns close to strong electric-field gradients. The deviations are attributed to carrier transport preceding ablation.

  13. Interstitial meiofauna of Namib sandy beaches

    African Journals Online (AJOL)

    1988-03-16

    Mar 16, 1988 ... Zoology Department, Institute for Coastal Research, University of Port Elizabeth, P.O. Box ... Oliff, Gardner, Turner & Sharp (1970) and later Dye, ... Wooldridge, Dye & ...... potential sources of food for interstitial organisms,.

  14. Interstitial Fe in MgO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Svane, A; Masenda, H; Naidoo, D; Bharuth-Ram, K; Fanciulli, M; Gislason, H P; Johnston, K; Langouche, G; Ólafsson, S; Sielemann, R; Weyer, G

    2014-01-01

    Isolated Fe-57 atoms were studied in MgO single-crystals by emission Mossbauer spectroscopy following implantation of Mn-57 decaying to Fe-57. Four Mossbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  15. Interstitial brachytherapy for liver metastases and assessment of response by positron emission tomography: a case report

    Directory of Open Access Journals (Sweden)

    Goura Kishor Rath

    2010-10-01

    Full Text Available For liver metastases (LM, image guided percutaneous ablative procedures such as radiofrequency ablation (RFA, laser induced thermal therapy (LITT and trans-arterial chemo-embolisation (TACE are increasingly being used because they are relatively safer, less invasive and equally effective. CT scan guided interstitial brachytherapy (IBT with a single large dose of radiation by high dose rate (HDR brachytherapy is a novel technique of treating LM and has shown good results. Positron emission tomography (PET scan may provide better information for assessing the response toIBT procedures. We hereby report a case of LM that was treated by HDR IBT and PET scan was done in addition to CT scan for assessing the response.

  16. Quantum diffusion of light interstitials in metals

    International Nuclear Information System (INIS)

    McMullen, T.; Bergersen, B.

    1978-01-01

    A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)

  17. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  18. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1997-01-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies

  19. Morphology of the Interstitial Tissue of Active and Resting Testis of the Guinea Fowl

    OpenAIRE

    Dharani, Palanisamy; Kumary, S. Usha; Sundaram, Venkatesan; Joseph, Cecilia; Ramesh, Geetha

    2017-01-01

    SUMMARY: The morphology of the interstitial tissue of sexually active and resting testis of the guinea fowl were studied. Six adult health birds of active and resting phases of reproductive cycle were used for this study. The interstitial tissue consisted of loose connective tissue, interstitial cells (Leydig cells), few connective cells, blood vessels and adrenergic nerve fibres in the present study in both active and resting testes. The interstitial tissue was compact in sexually active tes...

  20. Dose rate constant and energy spectrum of interstitial brachytherapy sources

    International Nuclear Information System (INIS)

    Chen Zhe; Nath, Ravinder

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125 I and 103 Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S K ) standard for 125 I seeds and has also established an S K standard for 103 Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (Λ) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of Λ and to develop a simple method for a quick and accurate estimation of Λ. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that Λ may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S K and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for Λ was derived for point sources with known photon energy spectra. This approach enabled a systematic study of Λ as a function of energy. Using the measured energy spectra, the calculated Λ for 125 I model 6711 and 6702 seeds and for 192 Ir seed agreed with the AAPM recommended values within ±1%. For the 103 Pd model 200 seed, the agreement was 5% with a recently measured value (within the ±7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for Λ proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known

  1. Transperineal high-dose-rate interstitial radiation therapy in the management of gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itami, Jun; Hara, Ryuseke; Kozuka, Takuyou; Yamashita, Hideomi; Nakajima, Kaori; Shibata, Kouji; Abe, Yoshihisa; Fuse, Masashi; Ito, Masashi [International Medical Center of Japan, Tokyo (Japan). Dept. of Radiation Therapy and Oncology

    2003-11-01

    Background: High-dose-rate interstitial radiation therapy is a newly introduced modality, and its role in the management of gynecologic malignancies remains to be studied. Clinical experience in high-dose-rate interstitial radiation therapy was retrospectively investigated. Patients and Methods: Eight patients with primary and nine with recurrent gynecologic malignancies underwent high-dose-rate interstitial radiation therapy with/without external-beam irradiation. Fractional dose of the high-dose-rate interstitial radiation therapy ranged between 4 and 6 Gy with total doses of 15-54 Gy. Interstitial irradiation was performed twice daily with an interval of > 6 h. Results: 2-year local control rate was 75% for primary treatment and 47% for treatment of recurrence (p = 0.46). Maximum tumor size had a statistically significant impact on local control (p < 0.002). Grade 2 and 4 late complications were seen in five patients, and the incidence was significantly higher in patients with a larger volume enclosed by the prescribed fractional dose of high-dose-rate interstitial radiation therapy. The incidence of grade 2 and 4 complications at 18 months was 78% and 0% with a volume > 100 cm{sup 3} and {<=} 100 cm{sup 3}, respectively (p < 0.04). Conclusion: Although high-dose-rate interstitial radiation therapy is a promising modality, it must be applied cautiously to patients with bulky tumors because of the high incidence of serious complications. (orig.)

  2. Molecular dynamics simulation of cascade damage in gold

    International Nuclear Information System (INIS)

    Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.

    1997-01-01

    High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists

  3. Populations of subplate and interstitial neurons in fetal and adult human telencephalon.

    Science.gov (United States)

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-10-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  4. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    Science.gov (United States)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  5. Postoperative interstitial hernia as a cause of obscure incisional wound site pain

    OpenAIRE

    Modrzejewski, Andrzej; Śmietański, Maciej

    2011-01-01

    An interstitial hernia is one in which the hernia sac is located between the layers of the abdominal wall. The analysis of contemporary literature shows that interstitial hernias are most often seen in children as a type of inguinal hernia and often accompany undescended testis. The hernia sac is usually located between the external-oblique and internal-oblique muscles in a lateral-cephalic direction. The authors present 3 cases of interstitial hernia found during laparoscopic exploration of ...

  6. Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Rosema, A.; Verhoef, W.; Schroote, J.; Snel, J.F.H.

    1991-01-01

    In the Netherlands an operational field instrument for the measurement of laser induced fluorescence of vegetation (LEAF) is developed. In addition, plant physiological and remote sensing research is done to support this new remote sensing instrument. This paper presents a general introduction on the subject of laser-induced fluorescence, including the relation between chlorophyll fluorescence and photosynthesis, spectral characteristics, and previous research. Also the LEAF system is briefly described. Subsequently, the development of a leaf fluorescence model (KMF) and a canopy fluorescence model (FLSAIL) are reported. With these simulation models a sensitivity study is carried out. Fluorescence of 685 nm appears to be most suitable to obtain information on photosynthesis and stress, but is also influenced by canopy structure. Separation of these two effects is studied

  7. The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.

    Science.gov (United States)

    Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R

    2017-08-01

    Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  8. A CURIOUS CASE OF FEVER AND INTERSTITIAL LUNG DISEASE

    OpenAIRE

    Dr. Shahid Mahdi; Dr. Darpanarayan Hazra; Dr. Zainab Mahdi

    2017-01-01

    Antisynthetase syndrome is a rare chronic autoimmune inflammatory myopathy with fever, interstitial lung disease, Raynaud’s phenomenon and polyarthritis. The exact underlying cause of antisynthetase syndrome is not yet known. Diagnosis is made with presence of Jo-1 (Histydyl t RNA synthase) antigen in a patient with underlying interstitial lung disease, myositis, arthritis, Raynaud’s phenomenon and mechanic’s hand. Some of the other antisynthetase anti bodies are PL-7 (antigen – threonyl-tRNA...

  9. Effects of cyclophosphamide on laser immunotherapy for the treatment of metastatic cancer

    Science.gov (United States)

    Bahavar, Cody F.; Acquaviva, Joseph T.; Rabei, Sheyla; Sikes, Allie; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2014-02-01

    Laser immunotherapy (LIT) is an innovative cancer modality that uses laser irradiation and immunological stimulation to treat late-stage, metastatic cancers. The current mode of operation in LIT is through interstitial laser irradiation. Although LIT is still in development, recent clinical trials have shown that it can be used to successfully treat patients with late-stage breast cancer and melanoma. Cyclophosphamide is a chemotherapy drug that suppresses regulatory T cells when used in low doses. In this study tumor-bearing rats were treated with LIT using an 805-nm laser with a power of 2.0 W and low-dose cyclophosphamide. Glycated chitosan was used as an immunological stimulant. The goal was to observe the effects of different doses of cyclophosphamide in addition to LIT on the survival of the tumor-bearing rats.

  10. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  11. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  12. Identification of the interstitial Mn site in ferromagnetic (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Wahl, Ulrich; Augustyns, Valerie; Silva, Daniel; Granadeiro Costa, Angelo Rafael; Houben, K; Edmonds, Kevin W; Gallagher, BL; Campion, RP; Van Bael, MJ; Castro Ribeiro Da Silva, Manuel; Martins Correia, Joao; Esteves De Araujo, Araujo Joao Pedro; Temst, Kristiaan; Vantomme, André; Da Costa Pereira, Lino Miguel

    2015-01-01

    We determined the lattice location of Mn in ferromagnetic (Ga,Mn)As using the electron emission channeling technique. We show that interstitial Mn occupies the tetrahedral site with As nearest neighbors (TAs) both before and after thermal annealing at 200 °C, whereas the occupancy of the tetrahedral site with Ga nearest neighbors (TGa) is negligible. TAs is therefore the energetically favorable site for interstitial Mn in isolated form as well as when forming complexes with substitutional Mn. These results shed new light on the long standing controversy regarding TAs versus TGa occupancy of interstitial Mn in (Ga,Mn)As.

  13. Effect of the chemical pressure by the addition of interstitials in CePd3:

    International Nuclear Information System (INIS)

    Nieva, G.L.

    1988-01-01

    The effect of the 'chemical pressure' on the intermediate valence compound CePd 3 , is studied by means of specific heat measurements with and without magnetic field. The addition of interstitials in the cubic structure on the alloys CePd 3 A H (A = B, Be, Si) is analyzed. At low interstitial concentration the thermal and magnetic properties that characterize the evolution of the Ce valence show a universal behaviour with the volume displaced by the interstitial. For higher concentrations two different behaviours were found in the trivalent state: a) With the larger interstitials, Be and Si, the system evolves toward a long range antiferromagnetic order; b) With the smaller interstitial, B, the system evolves toward a concentrated Kondo state. (Author) [es

  14. Reduction of transient diffusion from 1 endash 5 keV Si+ ion implantation due to surface annihilation of interstitials

    International Nuclear Information System (INIS)

    Agarwal, A.; Gossmann, H.-.; Eaglesham, D.J.; Pelaz, L.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.

    1997-01-01

    The reduction of transient enhanced diffusion (TED) with reduced implantation energy has been investigated and quantified. A fixed dose of 1x10 14 cm -2 Si + was implanted at energies ranging from 0.5 to 20 keV into boron doping superlattices and enhanced diffusion of the buried boron marker layers was measured for anneals at 810, 950, and 1050 degree C. A linearly decreasing dependence of diffusivity enhancement on decreasing Si + ion range is observed at all temperatures, extrapolating to ∼1 for 0 keV. This is consistent with our expectation that at zero implantation energy there would be no excess interstitials from the implantation and hence no TED. Monte Carlo modeling and continuum simulations are used to fit the experimental data. The results are consistent with a surface recombination length for interstitials of <10 nm. The data presented here demonstrate that in the range of annealing temperatures of interest for p-n junction formation, TED is reduced at smaller ion implantation energies and that this is due to increased interstitial annihilation at the surface. copyright 1997 American Institute of Physics

  15. Flock worker's lung: chronic interstitial lung disease in the nylon flocking industry.

    Science.gov (United States)

    Kern, D G; Crausman, R S; Durand, K T; Nayer, A; Kuhn, C

    1998-08-15

    Two young men working at a nylon flocking plant in Rhode Island developed interstitial lung disease of unknown cause. Similar clusters at the same company's Canadian plant were reported previously. To define the extent, clinicopathologic features, and potential causes of the apparent disease outbreak. Case-finding survey and retrospective cohort study. Academic occupational medicine program. All workers employed at the Rhode Island plant on or after 15 June 1990. Symptomatic employees had chest radiography, pulmonary function tests, high-resolution computed tomography, and serologic testing. Those with unexplained radiographic or pulmonary function abnormalities underwent bronchoalveolar lavage, lung biopsy, or both. The case definition of "flock worker's lung" required histologic evidence of interstitial lung disease (or lavage evidence of lung inflammation) not explained by another condition. Eight cases of flock worker's lung were identified at the Rhode Island plant. Three cases were characterized by a high proportion of eosinophils (25% to 40%) in lavage fluid. Six of the seven patients who had biopsy had histologic findings of nonspecific interstitial pneumonia, and the seventh had bronchiolitis obliterans organizing pneumonia. All seven of these patients had peribronchovascular interstitial lymphoid nodules, usually with germinal centers, and most had lymphocytic bronchiolitis and interstitial fibrosis. All improved after leaving work. Review of the Canadian tissue specimens showed many similar histologic findings. Among the 165-member study cohort, a 48-fold or greater increase was seen in the sex-adjusted incidence rate of all interstitial lung disease. Work in the nylon flocking industry poses substantial risk for a previously unrecognized occupational interstitial lung disease. Nylon fiber is the suspected cause of this condition.

  16. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.

  17. Interstitial lung involvement in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    David Vladimirovich Bestaev

    2014-01-01

    Full Text Available Rheumatoid arthritis (RA is a systemic autoimmune rheumatic disease of unknown etiology, characterized by chronic erosive arthritis and extraarticular manifestations. Pulmonary involvement is one of the common extraarticular manifestations of RA and may show itself as bronchial tree lesions, rheumatoid nodules, Caplan's syndrome, and lesions in the pleura or pulmonary interstitium (interstitial lung involvement (ILI. High-resolution computed tomography allows the diagnosis of ILI in RA in nearly 70% of cases although the incidence of ILI may be lower (4 to 30% depending on diagnostic methods and patient selection criteria. There are several histopathological types of ILI, the differential diagnosis of which can be troublesome. Usual interstitial pneumonia (UIP and nonspecific interstitial pneumonia are major types of RA-associated ILI. UIP-pattern ILI has a more severe course than ILI with other histological patterns. The clinical presentation of ILI may be complicated by the likely toxic effect of a number of disease-modifying antirheumatic drugs (DMARDs used to treat RA, such as methotrexate and leflunomide, and biological agents (BAs, tumor necrosis factor-α (TNF-α inhibitors. The pathogenesis of pulmonary involvement in RA and the role of synthetic DMARDs and BAs in the development of ILI call for further investigations.An extraarticular manifestation, such as ILI, affects the choice of treatment policy in patients with RA.The relevance of a study of ILI is beyond question. The paper discusses the state-of-the-art of investigations in this area.

  18. Interstitial prostate brachytherapy. LDR-PDR-HDR

    International Nuclear Information System (INIS)

    Kovacs, Gyoergy; Hoskin, Peter

    2013-01-01

    The first comprehensive overview of interstitial brachytherapy for the management of local or locally advanced prostate cancer. Written by an interdisciplinary team who have been responsible for the successful GEC-ESTRO/EAU Teaching Course. Discusses in detail patient selection, the results of different methods, the role of imaging, and medical physics issues. Prostate brachytherapy has been the subject of heated debate among surgeons and the proponents of the various brachytherapy methods. This very first interdisciplinary book on the subject provides a comprehensive overview of innovations in low dose rate (LDR), high dose rate (HDR), and pulsed dose rate (PDR) interstitial brachytherapy for the management of local or locally advanced prostate cancer. In addition to detailed chapters on patient selection and the use of imaging in diagnostics, treatment guidance, and implantation control, background chapters are included on related medical physics issues such as treatment planning and quality assurance. The results obtained with the different treatment options and the difficult task of salvage treatment are fully discussed. All chapters have been written by internationally recognized experts in their fields who for more than a decade have formed the teaching staff responsible for the successful GEC-ESTRO/EAU Prostate Brachytherapy Teaching Course. This book will be invaluable in informing residents and others of the scientific background and potential of modern prostate brachytherapy. It will also prove a useful source of up-to-date information for those who specialize in prostate brachytherapy or intend to start an interstitial brachytherapy service.

  19. Numerical simulation of optical feedback on a quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khursan, Amin H., E-mail: ameen_2all@yahoo.com [Thi-Qar University, Nassiriya Nanotechnology Research Laboratory (NNRL), Science College (Iraq); Ghalib, Basim Abdullattif [Babylon University, Laser Physics Department, Science College for Women (Iraq); Al-Obaidi, Sabri J. [Al-Mustansiriyah University, Physics Department, Science College (Iraq)

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  20. Previsions of the microstructural evolution of ferritic alloys under irradiation by numerical atomic scale simulations

    International Nuclear Information System (INIS)

    Ngayam Happy, R.

    2010-01-01

    In this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe - CuMnNiSiP - C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed. (author)

  1. Intravascular Large B-Cell Lymphoma Presenting as Interstitial Lung Disease

    Directory of Open Access Journals (Sweden)

    Elham Vali Khojeini

    2014-01-01

    Full Text Available Intravascular large B-cell lymphoma (IVLBL is a rare subtype of diffuse large B-cell lymphoma that resides in the lumen of blood vessels. Patients typically present with nonspecific findings, particularly bizarre neurologic symptoms, fever, and skin lesions. A woman presented with shortness of breath and a chest CT scan showed diffuse interstitial thickening and ground glass opacities suggestive of an interstitial lung disease. On physical exam she was noted to have splenomegaly. The patient died and at autopsy was found to have an IVLBL in her lungs as well as nearly all her organs that were sampled. Although rare, IVLBL should be included in the differential diagnosis of interstitial lung disease and this case underscores the importance of the continuation of autopsies.

  2. Self-interstitials, vacancies and their clusters in silicon and germanium

    International Nuclear Information System (INIS)

    Seeger, A.; Foell, H.; Frank, W.

    1976-01-01

    The paper begins with a survey of knowledge about swirl defects in silicon. In particular, it is shown that recent identification of the A-swirls as dislocation loops of interstitial type strongly supports a previous suggestion that the predominant equilibrium defects controlling self-diffusion in silicon at high temperatures are self-interstitials. This is followed by a brief state-of-the-art report on self-interstitials in silicon, a field in which rapid progress has been made during the past half a decade. The discussion of vacancy-type defects, which stood in the limelight of the preceding conferences, is confined to some examples of recent interest, such as the interaction of vacancy-type defects with hydrogen atoms, positrons and positive muons. (author)

  3. The natural history of interstitial cystitis: a survey of 374 patients.

    Science.gov (United States)

    Koziol, J A; Clark, D C; Gittes, R F; Tan, E M

    1993-03-01

    A survey directed at determining the natural history of interstitial cystitis was conducted at our clinic. Information on demographics, risk factors, symptoms, pain and psychosocial factors was elicited from 374 patients who satisfied the National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases criteria for interstitial cystitis and had all been diagnosed as having interstitial cystitis by a urologist. With regard to demographics, patients were predominantly female (89.8%) and white (94.1%), with a mean age of 53.8 +/- 0.7 years (standard error) and age at the first symptoms of 42.5 +/- 0.8 years. Information on 25 potential risk factors included 44.4% of the women reporting hysterectomy, 38.2% of the patients having strong sensitivities or allergic reactions to medication and only 2.7% being diabetic. With regard to interstitial cystitis symptoms, frequency and urgency were reported by 91.7% and 89.3% of the patients, respectively, while pelvic pain, pelvic pressure and bladder spasms were reported by more than 60% of respondents and burning by 56%. Location and degree of pain were also reported. Urination relieved or lessened interstitial cystitis pain for 73.6% of the patients and medication was effective for 46.8%. Other behaviors (for example hot baths, heating pads, lying down or sitting) were less effective. Conversely, stress, constrictive clothing and intercourse increased interstitial cystitis pain in more than 50% of the patients. In addition, acidic, alcoholic or carbonated beverages, and coffee or tea increased interstitial cystitis pain in more than 50% of the patients. More than 60% of the patients were unable to enjoy usual activities or were excessively fatigued and 53.7% reported depression. Travel, employment, leisure activities and sleeping were adversely affected in more than 80% of the patients. Pain location and degree differed significantly between patients with and without ulcers in the bladder. In addition, there was an

  4. Pulmonary interstitial glycogenosis in the setting of lung growth abnormality: radiographic and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Monette; Vade, Aruna; Lim-Dunham, Jennifer Eden [Loyola University Health System, Department of Radiology, Maywood, IL (United States); Masuda, Emi [Henry Ford Hospital, Department of Radiology, Detroit, MI (United States); Massarani-Wafai, Rasan [Loyola University Health System, Department of Pathology, Maywood, IL (United States)

    2010-09-15

    Pulmonary interstitial glycogenosis (PIG) is a rare pediatric interstitial lung disease. We report a case of a term boy presenting with tachypnea at birth requiring supplemental oxygen. Chest radiographs followed by high-resolution CT (HRCT) demonstrated hyperinflation and diffuse interstitial markings interspersed with multiple cystic spaces. An open lung biopsy demonstrated a minor component of PIG superimposed upon poor alveolarization. PIG in the setting of lung growth abnormality might be more common than previously described. Additionally, radiographic findings associated with most pediatric interstitial lung diseases are nonspecific, and histopathologic correlation is essential for diagnosis. (orig.)

  5. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    International Nuclear Information System (INIS)

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  6. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  7. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  8. Trapping of self-interstitials at manganese atoms in electron-irradiated dilute AlMn alloys

    International Nuclear Information System (INIS)

    Bartels, A.; Dworschak, F.

    1985-01-01

    Dilute AlMn alloys were irradiated isothermally at different temperatures in stage II with 1.8 MeV electrons and the resistivity damage rates were measured as a function of the residual resistivity increase. The results demonstrate that Mn atoms provide deep traps at least up to 150 K for mobile interstitials. A quantitative evaluation of the data with respect to trapping radii is somewhat handicapped by the fact that the resistivity contribution of a Mn-Al interstitial complex was found to be considerably less than the sum of the resistivity contributions of an isolated solute Mn atom and an Al self-interstitial. The results can be explained by a model which assumes that both the trapping radius and the resistivity contribution of solute-self-interstitial complexes increase with the number of trapped interstitials. (author)

  9. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    International Nuclear Information System (INIS)

    Diot, G; Walaszek, H; Kouadri-David, A; Guégan, S; Flifla, J

    2014-01-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave

  10. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    Science.gov (United States)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  11. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  12. A comparison in cosmetic outcome between per-operative interstitial breast implants and delayed interstitial breast implants after external beam radiotherapy

    International Nuclear Information System (INIS)

    Pieters, Bradley R.; Hart, Augustinus A.M.; Russell, Nicola S.; Jansen, Edwin P.M.; Peterse, Johannes L.; Borger, Jacques; Rutgers, Emiel J.Th.

    2003-01-01

    Background and purpose: Interstitial implants for brachytherapy boost in the breast conserving therapy of breast cancer can be performed in two ways; implants during the tumor excision (per-operative implants) or after the external beam therapy (delayed interstitial implants). Differences in cosmetic outcome were investigated. Patients and methods: Cosmetic results in 47 patients having a per-operative implant were compared to 123 patients having a delayed interstitial implant in a matched case-control study. Cosmesis was scored on a four-point-scale varying from 0 (excellent) to 3 (poor). Results: After mean follow-up of 63 months, three observers found no difference in cosmetic outcome between the two groups after adjustment for variables found to be related with cosmesis (difference in mean score 0.50, P=0.26). Implant volume at 100% isodose was not found to differ (P=0.084) between the per-operative group (mean 102 cm 3 , S.D. 34 cm 3 ) and the delayed group (mean 93 cm 3 , S.D. 29 cm 3 ). Conclusions: Performing per-operative implants has not led to smaller implants. The method of performing brachytherapy does not result in marked differences in cosmetic outcome

  13. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    Energy Technology Data Exchange (ETDEWEB)

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  14. Simulation of radiation in laser produced plasmas

    Science.gov (United States)

    Colombant, D. G.; Klapisch, M.; Deniz, A. V.; Weaver, J.; Schmitt, A.

    1999-11-01

    The radiation hydrodynamics code FAST1D(J.H.Gardner,A.J.Schmitt,J.P.Dahlburg,C.J.Pawley,S.E.Bodner,S.P.Obenschain,V.Serlin and Y.Aglitskiy,Phys. Plasmas,5,1935(1998)) was used directly (i.e. without postprocessor) to simulate radiation emitted from flat targets irradiated by the Nike laser, from 10^12 W/cm^2 to 10^13W/cm^2. We use enough photon groups to resolve spectral lines. Opacities are obtained from the STA code(A.Bar-Shalom,J.Oreg,M.Klapisch and T.Lehecka,Phys.Rev.E,59,3512(1999)), and non LTE effects are described with the Busquet model(M.Busquet,Phys.Fluids B,5,4191(1993)). Results are compared to transmission grating spectra in the range 100-600eV, and to time-resolved calibrated filtered diodes (spectral windows around 100, 180, 280 and 450 eV).

  15. Interstitial diffusion in crystal and the Moessbauer effect

    International Nuclear Information System (INIS)

    Dzyublik, A.Ya.

    1976-01-01

    The role of different vibrational states of a crystal is taken into account in the model of interstitial uncorrelated jumps. The relation of the diffusion coefficient for an interstitial with probabilities of jumps is found. The cross section for resonant absorption of γ-quanta by a nucleus of a diffusing atom in a crystal is calculated. The existence of vibrational levels is shown to lead to less broadening and intensity of the Moessbauer line than those predicted by the simple model of jumps. The absorption line shape for atom jumping through octahedral sites in bcc lattice is investigated [ru

  16. Global concepts of bladder pain syndrome (interstitial cystitis)

    DEFF Research Database (Denmark)

    Nordling, Jørgen; Fall, Magnus; Hanno, Philip

    2012-01-01

    Bladder pain syndrome (BPS), commonly referred to as "interstitial cystitis", is no longer considered a rare disorder. It may affect up to 2.7% of the adult female population (Ueda et al. in Int J Urol 10:1-70, 2003) with up to 20% of cases occurring in men.......Bladder pain syndrome (BPS), commonly referred to as "interstitial cystitis", is no longer considered a rare disorder. It may affect up to 2.7% of the adult female population (Ueda et al. in Int J Urol 10:1-70, 2003) with up to 20% of cases occurring in men....

  17. Treatment of intractable interstitial lung injury with alemtuzumab after lung transplantation

    DEFF Research Database (Denmark)

    Kohno, M; Perch, M; Andersen, E

    2011-01-01

    A 44-year-old woman underwent left single-lung transplantation for end-stage emphysema due to α1-antitrypsin deficiency in January 2010. Cyclosporine, azathioprine, and prednisolone were administered for immunosuppression and antithymocyte globulin for induction therapy at the time...... of transplantation. Routine examination of a lung biopsy, 4 months after transplantation, showed nonspecific, diffuse interstitial inflammation with alveolar septal fibrosis. The patient's clinical status and imaging studies, consistent with nonspecific interstitial pneumonitis, which was considered as signs......, posttransplant antirejection drug regimen. We have since successfully treated with alemtuzumab three additional patients who developed interstitial lung injury after lung transplantation, who are also summarized in this report....

  18. Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System

    Science.gov (United States)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.

    2009-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.

  19. Comparison between Japanese and French interstitial brachytherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Nose, Takayuki; Koizumi, Masahiko; Nishiyama, Kinji; Inoue, Toshihiko

    2001-01-01

    Interstitial brachytherapy is the optimal radiotherapy modality for head and neck cancer because the highest dose conformity can be achieved, and implanted tubes can move synchronously with the tumor movement. Compared with radical surgery, interstitial brachytherapy can achieve equivalent local control with less morbidity and less functional deficit. In Japan, because of technical limitations, interstitial brachytherapy has been confined to treatment of small tongue cancers. To improve our head and neck cancer treatment, technical limitations should be eliminated and a wider indication for interstitial brachytherapy should be achieved. In France, interstitial brachytherapy has been technically more developed and widely indicated than in Japan. We analyzed the differences between Japanese (Osaka) and French (Lyon and Nancy) techniques, to improve our interstitial brachytherapy. Implant devices and techniques: French applicators (Longcip 1) are more flexible and more suitable for loop techniques of the soft palate, the base of the tongue, and the vallecula, than applicators available in Japan. Various implant techniques are established especially for the oropharynx in France. Mandibular protection: Lead blocks used in France can more effectively shield the mandible than our silicone spacers. We showed the dosimetric results in an experimental treatment setting. Dose specification: The five-mm dose specification method used in Japan can work only for easy cases, such as small oral tongue cancers and mouth floor cancers. For complicated implants, such as for the oropharynx, the CTV-based dose specification method used in France is essential for sufficient irradiation. Indications: The indication for head and neck interstitial brachytherapy in Japan is limited mostly to small oral tongue cancers. The indication in France is wider, including the oral cavity, the oropharynx, and postoperative cases. We can refine our head and neck cancer treatment if we combine French

  20. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    Science.gov (United States)

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  1. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  2. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  3. Persistent pulmonary interstitial emphysema in a case of Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Abbey, Pooja; Narula, Mahender K.; Anand, Rama; Chandra, Jagdish

    2014-01-01

    We present the case of a 10-month-old boy with multisystem Langerhans cell histiocytosis showing thin-walled lung cysts along with computed tomography (CT) evidence of persistent pulmonary interstitial emphysema (PPIE), in the absence of pneumothorax or pneumomediastinum. Follow-up CT performed after 6 months demonstrated complete resolution of interstitial emphysema

  4. 67Gallium citrate lung scans in interstitial lung disease

    International Nuclear Information System (INIS)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-01-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting

  5. Interstitial pneumonia and pulmonary hypertension associated with suspected ehrlichiosis in a dog

    NARCIS (Netherlands)

    Toom, Marjolein Lisette den; Dobak, Tetyda Paulina; Broens, Els Marion; Valtolina, Chiara

    2016-01-01

    BACKGROUND: In dogs with canine monocytic ehrlichiosis (CME), respiratory signs are uncommon and clinical and radiographic signs of interstitial pneumonia are poorly described. However, in human monocytic ehrlichiosis, respiratory signs are common and signs of interstitial pneumonia are well known.

  6. Disseminated dendriform pulmonary ossification associated with usual interstitial pneumonia: incidence and thin-section CT-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Sung; Chung, Myung Jin [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Seoul (Korea); Han, Joungho [Sungkyunkwan University School of Medicine, Department of Pathology, Seoul (Korea); Chung, Man Pyo [Sungkyunkwan University School of Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Seoul (Korea); Choi, Yong Soo [Sungkyunkwan University School of Medicine, Division of Thoracic Surgery, Seoul (Korea)

    2005-08-01

    The aim of this work was to assess the incidence of disseminated pulmonary dendriform ossification in usual interstitial pneumonia and nonspecific interstitial pneumonia, and to correlate thin-section computed tomography (CT) and histopathologic findings. We retrospectively reviewed thin-section CT and pathologic specimens of biopsy-proven usual interstitial pneumonia (75 patients, 57 men and 18 women, mean age 60 years, range 29-83 years) and nonspecific interstitial pneumonia (44 patients, 9 men and 35 women, mean age 55 years, range 20-73 years). On review of CT and histopathologic specimens, diffuse dendriform ossification was identified in five (four men and one woman, age range 41-68 years, mean 58 years) of 75 patients (6.7%) with usual interstitial pneumonia. It was not seen in any of 44 patients with nonspecific interstitial pneumonia. With thin-section CT (osteoporosis window; window width 818, level 273), disseminated dendriform pulmonary ossification was detected as multiple tiny calcifications in bibasilar subpleural lungs (100% sensitive and 100% specific when compared with histopathologic findings as the gold standard). The thin-section CT finding of multiple tiny calcifications in bibasilar subpleural lungs might be of some help in the differential diagnosis between usual interstitial pneumonia and nonspecific interstitial pneumonia, considering they were not seen in any patients with nonspecific interstitial pneumonia (0%, 0/44) in our series. (orig.)

  7. Disseminated dendriform pulmonary ossification associated with usual interstitial pneumonia: incidence and thin-section CT-pathologic correlation

    International Nuclear Information System (INIS)

    Kim, Tae Sung; Chung, Myung Jin; Han, Joungho; Chung, Man Pyo; Choi, Yong Soo

    2005-01-01

    The aim of this work was to assess the incidence of disseminated pulmonary dendriform ossification in usual interstitial pneumonia and nonspecific interstitial pneumonia, and to correlate thin-section computed tomography (CT) and histopathologic findings. We retrospectively reviewed thin-section CT and pathologic specimens of biopsy-proven usual interstitial pneumonia (75 patients, 57 men and 18 women, mean age 60 years, range 29-83 years) and nonspecific interstitial pneumonia (44 patients, 9 men and 35 women, mean age 55 years, range 20-73 years). On review of CT and histopathologic specimens, diffuse dendriform ossification was identified in five (four men and one woman, age range 41-68 years, mean 58 years) of 75 patients (6.7%) with usual interstitial pneumonia. It was not seen in any of 44 patients with nonspecific interstitial pneumonia. With thin-section CT (osteoporosis window; window width 818, level 273), disseminated dendriform pulmonary ossification was detected as multiple tiny calcifications in bibasilar subpleural lungs (100% sensitive and 100% specific when compared with histopathologic findings as the gold standard). The thin-section CT finding of multiple tiny calcifications in bibasilar subpleural lungs might be of some help in the differential diagnosis between usual interstitial pneumonia and nonspecific interstitial pneumonia, considering they were not seen in any patients with nonspecific interstitial pneumonia (0%, 0/44) in our series. (orig.)

  8. Chromate Dissociation from Primer Paint in Simulated Lung Fluid.

    Science.gov (United States)

    2000-03-01

    and simulated interstitial lung fluid is surface active component (dipalmitoyl lecithin : DPL) in simulated surfactant lung fluid (Dennis, 1982:470...Biology in Health and Disease Vol 84: Surfactant Therapy for Lung Disease. Ed. Bengt Robertson and H. William Taeusch. New York, NY: Mrecel Dekker inc

  9. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    Science.gov (United States)

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucleated uniformly throughout the specimen without incubation, and began to shrink under prolonged irradiation at higher electron beam intensity. At lower beam intensity, however, the {113} interstitial cluster grew stably. These results demonstrate that the {113} interstitial cluster cannot grow without a continuous supply of impurities during electron irradiation. Detailed kinetics of {113} interstitial cluster growth and shrinkage in silicon, including the effects of impurities, are proposed. Then, experimental results are analyzed using rate equations based on these kinetics.

  10. Reversible Lansoprazole-Induced Interstitial Lung Disease Showing Improvement after Drug Cessation

    International Nuclear Information System (INIS)

    Hwang, Kyu Won; Woo, Ok Hee; Yong, Hwan Seok; Shin, Bong Kyung; Shim, Jae Jeong; Kang, Eun Young

    2008-01-01

    Lansoprazole is an acid proton-pump inhibitor that is similar to omeprazole. It is used to treat duodenal or gastric ulcers, H. pylori infection, gastroesophageal reflux disease (GERD) or Zollinger-Ellison syndrome. Common adverse effects of lansoprazole are diarrhea, abdominal pain, skin rash and/or itching. Information from U.S. National Library of Medicine warns that this drug can on rare occasion cause cough or cold-like symptoms. The pathophysiological mechanisms of lansoprazole-related pulmonary symptoms are not yet understood. In particular, there are no known reports regarding lansoprazole-induced interstitial lung diseases. We report here a case of interstitial lung disease (ILD) induced by oral administration of lansoprazole, which showed a pattern of nonspecific interstitial pneumonia (NSIP) as detected from a video-assisted thoracoscopic lung biopsy. We believe that this is the first report of a case of pathologically proven lansoprazole-induced ILD for which a surgical lung biopsy was performed. To the best of our knowledge, this is the first description of DI-ILD caused by lansoprazole. The diagnosis was made by considering the radiological, histopathological and clinical findings, including the close temporal relationship between lansoprazole exposure and symptom severity. Other possible causes were excluded due to a lack of a temporal relationship between the symptoms and work history or prednisolone therapy, and no other history of specific allergen exposure. When there is diffuse interstitial lung disease with an unknown etiology, it is important to remember that drugs can be the cause of pulmonary symptoms and it is crucial to take a careful patient history. If there is a recent history of taking lansoprazole in a patient with clinical and radiological findings of diffuse interstitial lung disease, we recommend stopping the medication to see if there is clinical and radiological improvement. That way, one can avoid using invasive procedures to

  11. Reversible Lansoprazole-Induced Interstitial Lung Disease Showing Improvement after Drug Cessation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyu Won; Woo, Ok Hee; Yong, Hwan Seok; Shin, Bong Kyung; Shim, Jae Jeong; Kang, Eun Young [College of Medicine, Korea University, Guro Hospital, Seoul (Korea, Republic of)

    2008-04-15

    Lansoprazole is an acid proton-pump inhibitor that is similar to omeprazole. It is used to treat duodenal or gastric ulcers, H. pylori infection, gastroesophageal reflux disease (GERD) or Zollinger-Ellison syndrome. Common adverse effects of lansoprazole are diarrhea, abdominal pain, skin rash and/or itching. Information from U.S. National Library of Medicine warns that this drug can on rare occasion cause cough or cold-like symptoms. The pathophysiological mechanisms of lansoprazole-related pulmonary symptoms are not yet understood. In particular, there are no known reports regarding lansoprazole-induced interstitial lung diseases. We report here a case of interstitial lung disease (ILD) induced by oral administration of lansoprazole, which showed a pattern of nonspecific interstitial pneumonia (NSIP) as detected from a video-assisted thoracoscopic lung biopsy. We believe that this is the first report of a case of pathologically proven lansoprazole-induced ILD for which a surgical lung biopsy was performed. To the best of our knowledge, this is the first description of DI-ILD caused by lansoprazole. The diagnosis was made by considering the radiological, histopathological and clinical findings, including the close temporal relationship between lansoprazole exposure and symptom severity. Other possible causes were excluded due to a lack of a temporal relationship between the symptoms and work history or prednisolone therapy, and no other history of specific allergen exposure. When there is diffuse interstitial lung disease with an unknown etiology, it is important to remember that drugs can be the cause of pulmonary symptoms and it is crucial to take a careful patient history. If there is a recent history of taking lansoprazole in a patient with clinical and radiological findings of diffuse interstitial lung disease, we recommend stopping the medication to see if there is clinical and radiological improvement. That way, one can avoid using invasive procedures to

  12. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  13. Pulmonary interstitial emphysema: a case report and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Amoedo, Mauricio Kauark, E-mail: mauricioamoedo@gmail.com [Interventional Radiology, Hospital A.C. Camargo, Sao Paulo, SP (Brazil); Souza, Luciana Volpon Soares; Souza, Antonio Soares [Instituto de Radiodiagnostico Rio Preto (Ultra-X), Sao Jose do Rio Preto, SP (Brazil); Souza Junior, Arthur Soares [Faculdade de Medicina de Sao Jose do Rio Preto (Famerp), SP (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2013-09-15

    Pulmonary interstitial emphysema is a rare condition that generally affects low-weight preterm infants submitted to mechanical ventilation. The prognosis is variable, depending on early diagnosis and treatment. The radiologist plays a key role in this scenario. The authors report a case of persistent pulmonary interstitial emphysema, describing the main characteristics of such entity. (author)

  14. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  15. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    Science.gov (United States)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  16. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  17. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  18. Interstitial radiotherapy

    International Nuclear Information System (INIS)

    Scardino, P.T.; Bretas, F.

    1987-01-01

    The authors now have 20 years of experience with modern techniques of brachytherapy. The large number of patients treated in medical centers around the world and the widespread use of this type of radiotherapy have provided us with substantial information about the indications and contraindications, advantages and disadvantages, pitfalls and complications, as well as the results of these techniques. Although the focus of this review is the experience at Baylor using the combined technique of gold seed implantation plus external beam irradiation, the alternative forms of brachytherapy will be described and compared. The authors' intention is to provide the busy clinician with a succinct and informative review indicating the status of modern interstitial radiotherapy and describing day-to-day approach and results

  19. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    Science.gov (United States)

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; pmotor dysfunction (90% vs. 35%; pesophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  20. Thermodynamics and kinetics of interstitial diffusion in a two-component system

    International Nuclear Information System (INIS)

    McKee, R.A.

    1980-01-01

    Diffusion theory is developed for a two-component system in which only the interstitial element is mobile. A thermodynamic formalism is used in direct parallel with a kinetic theory to construct a mechanism-independent relationship between tracer- and chemical-diffusion coefficients. It is found that D/sup I/=(D-italic*/f)(1+partiallnγ/partiallnC). D/sup I/ is the intrinsic- or chemical-diffusion coefficient for the interstitial, D* is the tracer-diffusion coefficient, f is the correlation factor, and γ is the activity coefficient. This expression accounts for site exclusion, correlation, and drift effects that occur as the interstitial content changes. Generalized phenomenological coefficients that are determined in this analysis can be used for standard representations of diffusion in electric fields and temperature gradients. Moreover, the forms that the phenomenological coefficients take for the interstitial system are the same as those previously derived for vacancy diffusion. A test of this predicted relationship between tracer- and chemical-diffusion coefficients is developed using a comparison between theory and experiment for carbon diffusion in fcc iron

  1. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    Directory of Open Access Journals (Sweden)

    Wang Q

    2012-08-01

    Full Text Available Qian Wang,1 Liping Xie,1 Zhizhu He,2 Derui Di,2 Jing Liu1,21Department of Biomedical Engineering, School of Medicine, Tsinghua University, 2Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaBackground: Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material.Methods: To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation.Results: Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method.Conclusion: Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors

  2. Thermal effects on cavity stability of chromium- and neodymium-doped gadolinium scandium gallium garnet laser under solar-simulator pumping

    Science.gov (United States)

    Kim, Kyong H.; Venable, Demetrius D.; Brown, Lamarr A.; Lee, Ja H.

    1991-01-01

    Results are presented on testing a Cr- and Nd-codoped Gd-Sc-Ga-garnet (Cr:Nd:GSGG) crystal and a Nd:YAG crystal (both of 3.2 mm diam and 76-mm long) for pulsed and CW laser operations using a flashlamp and solar simulator as pumping sources. Results from experiments with the flashlamp show that, at pulse lengths of 0.11, 0.28, and 0.90 ms, the slope efficiency of the Cd:Nd:GSGG crystal was higher than that of the Nd:YAG crystal and increased with pulse width. With the solar simulator, however, the CW laser operation of the Cr:Nd:GSGG crystal was limited to intensities not greater than 1500 solar constants, while the Nd:YAG laser successfully performed for all pump beam intensities available. It was found that the exposure for several minutes of the Cr:Nd:GSGG crystal to pump beam intensity of 3000 solar constants led to its damage by thermal cracking, indicating that a better solar-pumped CW laser performance may be difficult to realize with rod geometry.

  3. 192Ir high dose rate (HDR) interstitial brain implant: optimisation

    International Nuclear Information System (INIS)

    Tyagi, Anuj; Singh, Dinesh; Chitra, S.; Gupta, J.P.

    2001-01-01

    The new modality of stepping source dosimetry system (SSDs) illustrates a remarkable improvement in attaining the uniform and homogeneous dose distribution within the target volume. The technique enables the physicist to correct for a certain amount of misplacement or curvature of implant geometry. The short course of brachytherapy provides good palliation in terms of functional improvements with low and acceptable toxicity in high-grade glioma. With continual refinements of the technique, brachytherapy performed by a skilled brachytherapy team offers an opportunity to improve patient survival and quality of life. Since 1997, micro selectron HDR 192 Ir treatments are done including gynecological, oesophageal, breast, surface mould, soft tissue sarcoma (STS) and brain in our hospital. In this paper, procedure of interstitial brain implant in glioma as implant technique, simulation and treatment planning will be discussed

  4. Pulmonary interstitial emphysema: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Mauricio Kauark Amoedo

    2013-09-01

    Full Text Available Pulmonary interstitial emphysema is a rare condition that generally affects low-weight preterm infants submitted to mechanical ventilation. The prognosis is variable, depending on early diagnosis and treatment. The radiologist plays a key role in this scenario. The authors report a case of persistent pulmonary interstitial emphysema, describing the main characteristics of such entity.

  5. Gastroesophageal Reflux Disease in Children with Interstitial Lung Disease.

    Science.gov (United States)

    Dziekiewicz, M A; Karolewska-Bochenek, K; Dembiński, Ł; Gawronska, A; Krenke, K; Lange, J; Banasiuk, M; Kuchar, E; Kulus, M; Albrecht, P; Banaszkiewicz, A

    2016-01-01

    Gastroesophageal reflux disease is common in adult patients with interstitial lung disease. However, no data currently exist regarding the prevalence and characteristics of the disease in pediatric patients with interstitial lung disease. The aim of the present study was to prospectively assess the incidence of gastroesophageal reflux disease and characterize its features in children with interstitial lung disease. Gastroesophageal reflux disease was established based on 24 h pH-impedance monitoring (MII-pH). Gastroesophageal reflux episodes (GERs) were classified according to widely recognized criteria as acid, weakly acid, weakly alkaline, or proximal. Eighteen consecutive patients (15 boys, aged 0.2-11.6 years) were enrolled in the study. Gastroesophageal reflux disease was diagnosed in a half (9/18) of children. A thousand GERs were detected by MII-pH (median 53.5; IQR 39.0-75.5). Of these, 585 (58.5 %) episodes were acidic, 407 (40.7 %) were weakly acidic, and eight (0.8 %) were weakly alkaline. There were 637 (63.7 %) proximal GERs. The patients in whom gastroesophageal reflux disease was diagnosed had a significantly higher number of proximal and total GERs. We conclude that the prevalence of gastroesophageal reflux disease in children with interstitial lung disease is high; thus, the disease should be considered regardless of presenting clinical symptoms. A high frequency of non-acid and proximal GERs makes the MII-pH method a preferable choice for the detection of reflux episodes in this patient population.

  6. Modelling of initial stages of interstitial solid solution decomposition in bcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Blanter, M S

    1982-01-01

    By means of a model of deformation interaction of interstitial atoms added by interlocking of the nearest positions the configuration of cluster of alien atoms intruded into octahedral ..cap alpha..-Fe, V, Nb and Ta interstitially sites is computerized. The cluster structure is determined by elastic properties, of the crystal lattice of the metal-solvent. Clusters in ..cap alpha..-Fe have a plate form in a plane (001) of half lattice period width, in V, Nb and Ta - of monatomic plate in a plane (110). Clusters of interstitials must be sufficiently stable and arise even in solutions low concentration.

  7. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  8. DRAWING AND LANDSCAPE SIMULATION FOR JAPANESE GARDEN BY USING TERRESTRIAL LASER SCANNER

    Directory of Open Access Journals (Sweden)

    R. Kumazaki

    2015-05-01

    Full Text Available Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

  9. Drawing and Landscape Simulation for Japanese Garden by Using Terrestrial Laser Scanner

    Science.gov (United States)

    Kumazaki, R.; Kunii, Y.

    2015-05-01

    Recently, many laser scanners are applied for various measurement fields. This paper investigates that it was useful to use the terrestrial laser scanner in the field of landscape architecture and examined a usage in Japanese garden. As for the use of 3D point cloud data in the Japanese garden, it is the visual use such as the animations. Therefore, some applications of the 3D point cloud data was investigated that are as follows. Firstly, ortho image of the Japanese garden could be outputted for the 3D point cloud data. Secondly, contour lines of the Japanese garden also could be extracted, and drawing was became possible. Consequently, drawing of Japanese garden was realized more efficiency due to achievement of laborsaving. Moreover, operation of the measurement and drawing could be performed without technical skills, and any observers can be operated. Furthermore, 3D point cloud data could be edited, and some landscape simulations that extraction and placement of tree or some objects were became possible. As a result, it can be said that the terrestrial laser scanner will be applied in landscape architecture field more widely.

  10. Inferring diameters of spheres and cylinders using interstitial water.

    Science.gov (United States)

    Herrera, Sheryl L; Mercredi, Morgan E; Buist, Richard; Martin, Melanie

    2018-06-04

    Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm -1 corresponding to a tube diameter of 180±70 μm. Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm -1 surface-to-volume ratios.

  11. Reactive Granulomatous Dermatitis: A Review of Palisaded Neutrophilic and Granulomatous Dermatitis, Interstitial Granulomatous Dermatitis, Interstitial Granulomatous Drug Reaction, and a Proposed Reclassification.

    Science.gov (United States)

    Rosenbach, Misha; English, Joseph C

    2015-07-01

    The terms "palisaded neutrophilic and granulomatous dermatitis," "interstitial granulomatous dermatitis," and the subset "interstitial granulomatous drug reaction" are a source of confusion. There exists substantial overlap among the entities with few strict distinguishing features. We review the literature and highlight areas of distinction and overlap, and propose a streamlined diagnostic workup for patients presenting with this cutaneous reaction pattern. Because the systemic disease associations and requisite workup are similar, and the etiopathogenesis is poorly understood but likely similar among these entities, we propose the simplified unifying term "reactive granulomatous dermatitis" to encompass these entities. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Diffusion of He interstitial and di-He cluster at grain boundaries in α-Fe

    International Nuclear Information System (INIS)

    Gao, F.; Heinisch, H.L.; Kurtz, R.J.

    2007-01-01

    A systematic molecular dynamics study of the diffusion mechanisms of He interstitial and di-He cluster at two representative interfaces has been carried out in α-Fe. The diffusion coefficient of a He interstitial and the effective migration energies were determined. The He atom diffuses along the Σ11 grain boundary one-dimensionally along specific directions, while it migrates two-dimensionally at low temperatures, and three-dimensionally at higher temperatures, in the Σ3 grain boundary. The di-He interstitial cluster can migrate rapidly along the Σ3 interface at low temperatures, but not at the Σ11 interface. It has been observed that a di-He interstitial cluster can kick out a self interstitial atom (SIA) at high temperatures, forming a He 2 V complex. The SIA migrates rapidly near interfaces, whereas the He 2 V complex is immobile at the temperatures considered. This small cluster may serve as the smallest nucleation for the formation of helium bubbles at interfaces

  13. Interstitial Features at Chest CT Enhance the Deleterious Effects of Emphysema in the COPDGene Cohort.

    Science.gov (United States)

    Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Rahaghi, Farbod N; Sanchez-Ferrero, Gonzalo Vegas; Putman, Rachel K; Hunninghake, Gary M; Onieva, Jorge Onieva; Martinez, Fernando J; Choi, Augustine M; Bowler, Russell P; Lynch, David A; Hatabu, Hiroto; Bhatt, Surya P; Dransfield, Mark T; Wells, J Michael; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R

    2018-06-05

    Purpose To determine if interstitial features at chest CT enhance the effect of emphysema on clinical disease severity in smokers without clinical pulmonary fibrosis. Materials and Methods In this retrospective cohort study, an objective CT analysis tool was used to measure interstitial features (reticular changes, honeycombing, centrilobular nodules, linear scar, nodular changes, subpleural lines, and ground-glass opacities) and emphysema in 8266 participants in a study of chronic obstructive pulmonary disease (COPD) called COPDGene (recruited between October 2006 and January 2011). Additive differences in patients with emphysema with interstitial features and in those without interstitial features were analyzed by using t tests, multivariable linear regression, and Kaplan-Meier analysis. Multivariable linear and Cox regression were used to determine if interstitial features modified the effect of continuously measured emphysema on clinical measures of disease severity and mortality. Results Compared with individuals with emphysema alone, those with emphysema and interstitial features had a higher percentage predicted forced expiratory volume in 1 second (absolute difference, 6.4%; P < .001), a lower percentage predicted diffusing capacity of lung for carbon monoxide (DLCO) (absolute difference, 7.4%; P = .034), a 0.019 higher right ventricular-to-left ventricular (RVLV) volume ratio (P = .029), a 43.2-m shorter 6-minute walk distance (6MWD) (P < .001), a 5.9-point higher St George's Respiratory Questionnaire (SGRQ) score (P < .001), and 82% higher mortality (P < .001). In addition, interstitial features modified the effect of emphysema on percentage predicted DLCO, RVLV volume ratio, 6WMD, SGRQ score, and mortality (P for interaction < .05 for all). Conclusion In smokers, the combined presence of interstitial features and emphysema was associated with worse clinical disease severity and higher mortality than was emphysema alone. In addition, interstitial features

  14. Propagating self-sustained annealing of radiation-induced interstitial complexes

    International Nuclear Information System (INIS)

    Bokov, P M; Selyshchev, P A

    2016-01-01

    A propagating self-sustained annealing of radiation induced defects as a result of thermal-concentration instability is studied. The defects that are considered in the model are complexes. Each of them consists of one atom of impunity and of one interstitial atom. Crystal with defects has extra energy which is transformed into heat during defect annealing. Simulation of the auto-wave of annealing has been performed. The front and the speed of the auto-wave have been obtained. It is shown that annealing occurs in a narrow region of time and space. There are two kinds of such annealing behaviour. In the first case the speed of the auto-wave oscillates near its constant mean value and the front of temperature oscillates in a complex way. In the second case the speed of propagation is constant and fronts of temperature and concentration look like sigmoid functions. (paper)

  15. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  16. Interstitial and adsorbed phosphates in shelf sediments off Visakhapatnam, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma; Raju, G.R.K.

    Spatial distribution of interstitial and adsorbed phosphates in the shelf sediments shows an increasing trend with distance from coastal to inshore region. Maximum concentration ranges of interstitial and adsorbed phosphates are 16-19 and 40-50 mu g...

  17. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  18. Asymptotic study and numerical simulation of laser wave propagation in an inhomogeneous medium; Etude asymptotique et simulation numerique de la propagation laser en milieu inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Doumic, M

    2005-05-15

    To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations. In a first part, we make an asymptotic analysis of the Klein-Gordon equation. We obtain approximated problems, either of Schroedinger or of transport-Schroedinger type. We prove the existence and uniqueness of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation. In a second part, we study the boundary problem for the advection Schroedinger equation, and show what the boundary condition must be so that the problem on our domain should be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition. In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations. (author)

  19. Interstitial Lung Disease in Rheumatoid Arthritis in the Era of Biologics

    Directory of Open Access Journals (Sweden)

    A. Picchianti Diamanti

    2011-01-01

    Full Text Available Interstitial lung disease (ILD represents a severe manifestation in connective tissue diseases (CTD, with an overall incidence of 15%, and it is still a challenge for clinicians evaluation and management. ILD is the most common manifestation of lung involvement in Rheumatoid Arthritis (RA, observed in up to 80% of biopsies, 50% of chest Computed Tomography (CT and only 5% of chest radiographs. Histopatological patterns of ILD in RA may present with different patterns, such as: usual interstitial pneumonia, non specific interstitial pneumonia, desquamative interstitial pneumonia, organizing pneumonia, and eosinophilic infiltration. The incidence of ILD in RA patients is not only related to the disease itself, many drugs may be in fact associated with the development of pulmonary damage. Some reports suggest a causative role for TNFα inhibitors in RA-ILD development/worsening, anyway, no definitive statement can be drawn thus data are incomplete and affected by several variables. A tight control (pulmonary function tests and/or HRCT is mandatory in patients with preexisting ILD, but it should be also performed in those presenting risk factors for ILD and mild respiratory symptoms. Biologic therapy should be interrupted, and, after excluding triggering infections, corticosteroids should be administered.

  20. Dose and volume specification for reporting interstitial therapy

    International Nuclear Information System (INIS)

    1997-01-01

    The ICRU has previously published reports dealing with Dose Specification for Reporting External Beam Therapy with Photons and Electrons (ICRU Report 29, ICRU, 1978), Dose Specification for Reporting External Beam Therapy (ICRU Report 50, ICRU, 1993) and Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology (ICRU Report 38, ICRU, 1985). The present report addresses the problem of absorbed dose specification for report interstitial therapy. Although specific to interstitial therapy, many of the concepts developed in this report are also applicable to certain other kinds of brachytherapy applications. In particular, special cases of intraluminal brachytherapy and plesio-brachytherapy via surface molds employing x or gamma emitters are addressed in this report

  1. Dislocation evolution and properties enhancement of GH2036 by laser shock processing: Dislocation dynamics simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, W.F.; Ren, Y.P.; Xu, S.D.; Liu, F.F. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang 212013 (China); Ren, N.F.; Huang, J.J. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2016-01-27

    This paper systematically investigated the effect of laser shock processing (LSP) on dislocation evolution and microstructure configuration of GH2036 alloy. Surface topography and roughness were tested by Axio CSM 700 microscope. The dislocation configurations were characterized by transmission electron microscope (TEM) and simulated by multi-scale discrete dislocation dynamics (DD) method. The results have confirmed that LSP had a beneficial effect on micro-hardness, which could be increased by 16%, and the surface topography exhibited excellent stability even after thermal cycle. The dislocation density and stress–strain response have strong dependence on laser power intensity. Reasonable agreement between DD simulation and experiments is achieved. The results showed that complex random microstructures can be observed in the shocked surface. The grain refinement mechanism of LSP GH2036 involves dislocation segmentation and twin intersections.

  2. Hydrodynamic effects in laser cutting of biological tissue phantoms

    Science.gov (United States)

    Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.

    2017-11-01

    We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.

  3. Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  4. Nature of the Interstitials in Titanium Dioxide and Their Impact on Transmission Coefficient: Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Lei Li

    2015-01-01

    Full Text Available The ab initio calculations about the properties of the interstitials doping in the rutile TiO2 and their impact on the transport coefficients are reported. As the doping of the Zr or Ti interstitials in the TiO2, the lattice Ti4+ ions acquire the excess electrons so reduced to the Ti3+ or Ti2+ ions. However, the Cu interstitials could not lose enough electrons to reduce the lattice Ti4+ ions. Furthermore, the Ti or Cu interstitials in the ZrO2 also are unable to promote the lattice Zr4+ ions to form the lattice Zr3+ or Zr2+ ions. The high transport coefficients are observed in the defected TiO2 with the Ti or Zr interstitials as the high concentration of the Ti3+ or Ti2+ ions. So, the Zr interstitials are the favorable choice for the extra-doping to improve the transport properties in the TiO2-based resistive random access memory.

  5. Rheumatoid Arthritis (RA) associated interstitial lung disease (ILD).

    LENUS (Irish Health Repository)

    O'Dwyer, David N

    2013-10-01

    Rheumatoid Arthritis (RA) is the most common Connective Tissue Disease (CTD) and represents an increasing burden on global health resources. Interstitial lung disease (ILD) has been recognised as a complication of RA but its potential for mortality and morbidity has arguably been under appreciated for decades. New studies have underscored a significant lifetime risk of ILD development in RA. Contemporary work has identified an increased risk of mortality associated with the Usual Interstitial Pneumonia (UIP) pattern which shares similarity with the most devastating of the interstitial pulmonary diseases, namely Idiopathic Pulmonary Fibrosis (IPF). In this paper, we discuss recent studies highlighting the associated increase in mortality in RA-UIP. We explore associations between radiological and histopathological features of RA-ILD and the prognostic implications of same. We emphasise the need for translational research in this area given the growing burden of RA-ILD. We highlight the importance of the respiratory physician as a key stakeholder in the multidisciplinary management of this disorder. RA-ILD focused research offers the opportunity to identify early asymptomatic disease and define the natural history of this extra articular manifestation. This may provide a unique opportunity to define key regulatory fibrotic events driving progressive disease. We also discuss some of the more challenging and novel aspects of therapy for RA-ILD.

  6. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  7. Pulmonary interstitial emphysema in neonates -reporting of 11 cases

    International Nuclear Information System (INIS)

    Alvares, Beatriz Regina; Santos Mezzacappa, Maria Aparecida dos; Marba, Sergio Tadeu Martins

    1997-01-01

    The present paper relates the radiologic and clinical aspects of pulmonary interstitial emphysema in 11 infants submitted to assisted ventilation. The radiologic diagnosis was made using the classification of Boothroyd and Barson (levels I to III). A prevalence of pulmonary interstitial emphysema of levels II and III was observed in masculine premature infants with hyaline membrane disease and intrauterine pneumonia. Mortality was high and occurred in the infants with advanced levels of the disease. The authors emphasize the importance of early radiologic diagnosis of this condition during the treatment of premature infants submitted to assisted ventilation. (author)

  8. Simulations of drastically reduced SBS with laser pulses composed of a Spike Train of Uneven Duration and Delay (STUD pulses)

    International Nuclear Information System (INIS)

    Hueller, S.; Afeyan, B.

    2013-01-01

    By comparing the impact of established laser smoothing techniques like Random Phase Plates (RPP) and Smoothing by Spectral Dispersion (SSD) to the concept of 'Spike Trains of Uneven Duration and Delay' (STUD pulses) on the amplification of parametric instabilities in laser-produced plasmas, we show with the help of numerical simulations, that STUD pulses can drastically reduce instability growth by orders of magnitude. The simulation results, obtained with the code Harmony in a nonuniformly flowing mm-size plasma for the Stimulated Brillouin Scattering (SBS) instability, show that the efficiency of the STUD pulse technique is due to the fact that successive re-amplification in space and time of parametrically excited plasma waves inside laser hot spots is minimized. An overall mean fluctuation level of ion acoustic waves at low amplitude is established because of the frequent change of the speckle pattern in successive spikes. This level stays orders of magnitude below the levels of ion acoustic waves excited in hot spots of RPP and SSD laser beams. (authors)

  9. Interstitial lung abnormalities are associated with increased mortality in smokers

    DEFF Research Database (Denmark)

    Hoyer, Nils; Wille, Mathilde M W; Thomsen, Laura H

    2018-01-01

    OBJECTIVE: The aim of this study was to investigate whether smokers with incidental findings of interstitial lung abnormalities have an increased mortality during long-term follow-up, and review the contributing causes of death. METHODS: Baseline CT scans of 1990 participants from the Danish Lung...... in this lung cancer screening population of relatively healthy smokers and were associated with mortality regardless of the interstitial morphological phenotype. The increased mortality was partly due to an association with lung cancer and non-pulmonary malignancies....

  10. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  11. /sup 67/Gallium citrate lung scans in interstitial lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Niden, A.H.; Mishkin, F.S.; Khurana, M.M.L.

    1976-02-01

    Patients with diffuse interstitial lung disease often require a lung biopsy to determine the diagnosis and proper therapy. However, once the diagnosis is established, clinical evaluation of symptoms, chest roentgenogram and pulmonary function testing are the only noninvasive means currently available to assess activity of the disease process and response to the therapy. Although these measures appear adequate in the presence of acute active disease in which response to therapy results in readily demonstrable changes in the above parameters, they may be insensitive to subtle changes that can occur in minimally active disease with slowly progressive interstitial pulmonary fibrosis over a period of years. A more sensitive noninvasive technique for identifying these cases with a smoldering diffuse interstitial inflammatory process might greatly improve our ability to effectively manage such patients. With this in mind, the value of gallium lung scan was investigated to assess its ability to predict inflammatory activity in such a clinical setting.

  12. Internal reflection of interstitial atoms from close-packed tungsten faces

    International Nuclear Information System (INIS)

    Dranova, Zh.I.; Mikhajlovskij, I.M.

    1981-01-01

    Use of field-ion microscopy methods has shown that changes in microtopography of tungsten specimens irradiated with 2-5 keV helium atoms are mainly related to the liberation of interstitial atoms on the surface. It is established that the atom liberation on the surface is considerably anisotropic: maximum quantity of atoms is observed in the vicinity of faces (100), (111) and (211) along the sections of zone lines (110) oriented along the edge of the first Brillouin zone. The atom liberation on plane sections of the most dense-packed face (110) was not observed as a rule; atomic steps of the face are interstitial atom sinks. It is concluded on the basis of the results obtained that there is the predominant inner reflection of interstitial atoms from the dense-packed faces and a possible contribution of inner reflection to the surface migration processes activated with the ion bombardment as well as material swelling have been analyzed [ru

  13. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths

    Science.gov (United States)

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-12-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  14. Statin Use Is Associated with Reduced Mortality in Patients with Interstitial Lung Disease

    DEFF Research Database (Denmark)

    Vedel-Krogh, Signe; Nielsen, Sune F; Nordestgaard, Børge G

    2015-01-01

    INTRODUCTION: We hypothesized that statin use begun before the diagnosis of interstitial lung disease is associated with reduced mortality. METHODS: We studied all patients diagnosed with interstitial lung disease in the entire Danish population from 1995 through 2009, comparing statin use versus...... no statin use in a nested 1:2 matched study. RESULTS: The cumulative survival as a function of follow-up time from the date of diagnosis of interstitial lung disease (n = 1,786 + 3,572) and idiopathic lung fibrosis (n = 261 + 522) was higher for statin users versus never users (log-rank: P = 7 · 10......(-9) and P = 0.05). The median survival time in patients with interstitial lung disease was 3.3 years in statin users and 2.1 years in never users. Corresponding values in patients with idiopathic lung fibrosis were 3.4 versus 2.4 years. After multivariable adjustment, the hazard ratio for all...

  15. 1.8kW laser diode pumped YAG laser; Shutsuryoku 1.8kW no handotai laser reiki YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba Corporation, as a participant in Ministry of International Trade and Industry`s `photon measurement and processing technology project` since August, 1997, is engaged in the development of an energy-efficient LD (laser diode) pumped semiconductor YAG (yttrium-aluminum-garnet) laser device to be used for welding and cutting. It is a 5-year project and the goal is a mean output of 10kW and efficiency of 20%. In this article, a simulation program is developed which carries out calculation about element technology items such as the tracking of the beam from the pumping LD and the excitation distribution, temperature distribution, thermal stress distribution, etc., in the YAG rod. An oscillator is constructed, based on the results of the simulation, and it exhibits a world-high class continuous laser performance of a 1.8kW output and 13% efficiency. The record of 13% efficiency is five times higher than that achieved by the conventional lamp-driven YAG laser device. (translated by NEDO)

  16. 020. Coexistence of lung adenocarcinoma and usual interstitial pneumonia: a case report

    Science.gov (United States)

    Baliaka, Aggeliki; Papaemmanouil, Styliani; Spyratos, Dionysis; Zarogoulidis, Paul; Sakkas, Leonidas

    2015-01-01

    Background Usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause. The most common symptoms are progressively increased shortness of breath and dry cough. Some studies suggest an association between usual interstitial pneumonia and lung cancer through different pathogenetic mechanisms. Objective The case presentation of a patient with lung adenocarcinoma and UIP. Methods A 66-year-old male presented with persistent dry cough, hemoptysis and dyspnea. The chest radiographs revealed a mass in the lower lobe of the left lung, measuring 3 cm, as well as diffuse interstitial changes in the same lobe. Two partial lobectomies were performed. Results Histological examination of the mass showed moderately differentiated adenocarcinoma, focally with bronchoalveolar pattern (Immunohistochemical detection of EGFR: positive). The rest lung parenchyma presented histological appearance of UIP. Conclusions According to clinicopathological studies, the prevalence of lung cancer among patients with UIP/IPF varies between 4% and 9%. The overall median survival of IPF-Ca patients is seven months in comparison with IPF only patients (14 months).

  17. Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Oudini, N. [Laboratoire des plasmas de décharges, Centre de Développement des Technologies Avancées, Cité du 20 Aout BP 17 Baba Hassen, 16081 Algiers (Algeria); Taccogna, F. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, via Amendola 122/D, 70126 Bari (Italy); Bendib, A. [Laboratoire d' Electronique Quantique, Faculté de Physique, USTHB, El Alia BP 32, Bab Ezzouar 16111, Algiers (Algeria); Aanesland, A. [Laboratoire de Physique des Plasmas (CNRS, Ecole Polytechnique, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud), École Polytechnique, 91128 Palaiseau Cedex (France)

    2014-06-15

    Laser photo-detachment is used as a method to measure or determine the negative ion density and temperature in electronegative plasmas. In essence, the method consists of producing an electropositive channel (negative ion free region) via pulsed laser photo-detachment within an electronegative plasma bulk. Electrostatic probes placed in this channel measure the change in the electron density. A second pulse might be used to track the negative ion recovery. From this, the negative ion density and temperature can be determined. We study the formation and relaxation of the electropositive channel via a two-dimensional Particle-In-Cell/Mote Carlo collision model. The simulation is mainly carried out in a Hydrogen plasma with an electronegativity of α = 1, with a parametric study for α up to 20. The temporal and spatial evolution of the plasma potential and the electron densities shows the formation of a double layer (DL) confining the photo-detached electrons within the electropositive channel. This DL evolves into two fronts that move in the opposite directions inside and outside of the laser spot region. As a consequence, within the laser spot region, the background and photo-detached electron energy distribution function relaxes/thermalizes via collisionless effects such as Fermi acceleration and Landau damping. Moreover, the simulations show that collisional effects and the DL electric field strength might play a non-negligible role in the negative ion recovery within the laser spot region, leading to a two-temperature negative ion distribution. The latter result might have important effects in the determination of the negative ion density and temperature from laser photo detachment diagnostic.

  18. A comparison between tandem and ovoids and interstitial gynecologic template brachytherapy dosimetry using a hypothetical computer model

    International Nuclear Information System (INIS)

    Hsu, I-Chow J.; Speight, Joycelyn; Hai, Jenny; Vigneault, Eric; Phillips, Theodore; Pouliot, Jean

    2002-01-01

    Purpose: To evaluate the dose distribution within the clinical target volume between two gynecologic brachytherapy systems - the tandem and ovoids and the Syed-Neblett gynecologic template - using a hypothetical computer model. Methods and Materials: Source positions of an intracavitary system (tandem and ovoids) and an interstitial system (GYN template) were digitized into the Nucletron Brachytherapy Planning System. The GYN template is composed of a 13-catheter implant (12 catheters plus a tandem) based on the Syed-Neblett gynecologic template. For the tandem and ovoids, the dwell times of all sources were evenly weighted to produce a pear-shaped isodose distribution. For the GYN template, the dwell times were determined using volume optimization. The prescribed dose was then normalized to point A in the intracavitary system and to a selected isodose line in the interstitial system. The treated volume in the two systems was kept approximately the same, and a cumulative dose-volume histogram of the treated volume was then generated with the Nucletron Brachytherapy Planning System to use for comparison. To evaluate the dose to a hypothetical target, in this case the cervix, a 2-cm-long, 3-cm-diameter cylinder centered along the tandem was digitized as the clinical target volume. The location of this hypothetical cervix was based on the optimal application of the brachytherapy system. A visual comparison of clinical target coverage by the treated volume on three different orthogonal planes through the treated volume was performed. The percentage dose-volume histograms of the target were generated for comparison. Multiple midline points were also placed at 5-mm intervals away from the tandem in the plane of the cervix to simulate the location of potential bladder and rectal dose points. Doses to these normal structures were calculated for comparison. Results: Although both systems covered the hypothetical cervix adequately, the interstitial system had a better

  19. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  20. Three-Dimensional Hydrodynamic Simulations of the Effects of Laser Imprint in OMEGA Implosions

    Science.gov (United States)

    Igumenshchev, I. V.; Campbell, E. M.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Schmitt, A. J.

    2017-10-01

    Illumination of direct-drive implosion targets by the OMEGA laser introduces large-amplitude broadband modulations in the absorbed energy from the largest (target size 900- μm) to smallest (speckle size 2- μm) spatial scales. These modulations ``imprint'' perturbations into a target that are amplified because of the secular and Rayleigh-Taylor growths during acceleration and deceleration of the target. The degradation of performance of room-temperature and cryogenic OMEGA implosions caused by these perturbations were simulated in three dimensions using the code ASTER. The highest-resolution simulations resolve perturbation modes as high as l 200 . The high modes l 50to 100 dominate in the perturbation spectrum during the linear growth, while the late-time nonlinear evolution results in domination of modes with l 30to 50 . Smoothing by spectral dispersion reduces the linear-phase mode amplitudes by a factor of 4 and results in substantial improvements in implosion performance that is in good agreement with measurements. The effects of imprint on implosion performance are compared with the effects of other implosion asymmetries, such as those induced because of laser beam imbalance, mistiming and mispointing, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Electro interstitial scan system: assessment of 10 years of research and development

    Directory of Open Access Journals (Sweden)

    Maarek A

    2012-03-01

    Full Text Available Albert MaarekResearch and Development, LD Technology, Miami, FL, USABackground: Ten years of research and development have allowed an understanding of how the electro interstitial scan (EIS works and what its clinical applications may be.Materials and methods: The EIS is a galvanic skin response device. The measurements are performed by electrical stimulation of the post sympathetic cholinergic fiber with weak DC current and voltage 1.28V applied during 2 minutes and in bipolar mode.Current scientific knowledge: EIS electrical measurements are related to: (1 the concentration of free chloride ions in the interstitial fluid, which affects the transfer of electrical current and the ratio intensity/voltage; (2 the morphology of the interstitial fluid, which is related to the electrical dispersion calculated from the Cole equation (α parameter; (3 electrical stimulation, which causes a change in sweat rate at the passive electrodes – post sympathetic cholinergic fiber electrical stimulation appears to be responsible for activating M2 receptors, which regulate nitric oxide (NO production in the endothelial cell and cause vasodilation and a released sweat response; and (4 the electrochemical redox reactions (electrolysis of the released sweat on electrodes, which are different on the bulk of the metal electrodes (O2 + [4H+] + [4e-] and on the Ag/AgCl disposable electrodes (AgCl precipitation.Results: For each of the EIS clinical results, various explanations were posited, such as: (1 electrical stimulation of the postsympathetic cholinergic fiber-activating NO production in the endothelial cell, which causes vasodilation and a released sweat response (diabetes detection; (2 estimation of interstitial fluid's acid–base balance, which is reflected in an electrochemical reaction on the bulk of the electrodes through the released sweat (prostate cancer detection; (3 estimation of cerebral interstitial fluid chloride ions (detection of ADHD in

  2. Interstitial cells of Cajal in human gut and gastrointestinal disease

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J

    1999-01-01

    This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective of their fun......This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective...

  3. A W−Ne interatomic potential for simulation of neon implantation in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Marie; Juslin, Niklas; Huang, Guiyang [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); P.O. Box 2008, MS-6003, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-08-15

    An interatomic pair potential for W−Ne is developed for atomistic molecular dynamics simulations of neon implantation in tungsten. The new potential predicts point defect energies and binding energies of small clusters that are in good agreement with electronic structure calculations. Molecular dynamics simulations of small neon clusters in tungsten show that trap mutation, in which an interstitial neon cluster displaces a tungsten atom from its lattice site, occurs for clusters of three or more neon atoms. However, near a free surface, trap mutation can occur at smaller sizes, including even a single neon interstitial in close proximity to a (100) or (110) surface.

  4. Interstitial irradiation of rectal carcinoma with rectal template

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Nishiyama, Kinji; Tanaka, Ken; Nakanishi, Makoto; Inoue, Takehiro

    1984-01-01

    Using Iridium-192 wires through a rectal template after Syed, interstitial brachytherapy was conducted in a patient with inoperable adenocarcinoma of the rectum. 67-year-old man with constipation and change in the stool caliber underwent external radiotherapy (4,000cGy/4W) to the whole pelvis including the perineum, followed by interstitial implant using a template, at the Department of Radiology, Osaka University Hospital. Marked tumor regression, marked circumferential fibrosis and a remarkable decline of CEA titers (pre-RT: 35.8ng/ml, post-RT: 6.2ng/ml) were observed until 7 months post-RT. The domestic production of Iridium-192 wires has made possible the intergrated use of brachytherapy in the perineal region in Japan. (author)

  5. Three-dimensional simulations of an XUV free-electron laser

    International Nuclear Information System (INIS)

    Goldstein, J.C.; McVey, B.D.; Newnam, B.E.

    1985-01-01

    Operation of free-electron lasers (FEL) at long optical wavelengths (greater than or equal to 600 nm) has now been successfully demonstrated at several laboratories. To operate an FEL at shorter wavelengths imposes constraints on the brightness of the electron beam which are difficult to achieve. Until recently, it was perceived that only an electron storage ring could satisfy these beam requirements. However, our previous 1-D theoretical calculations revealed that modest improvements in the emittance available from rf-linear accelerators would be sufficient to allow operation of an FEL in the XUV spectral range (greater than or equal to 50 nm). We shall present new theoretical results for the design of a linac-driven XUV FEL derived from an improved simulation model. The model is fully three-dimensional in its treatment of the undulator magnetic field, the optical radiation field, and the motion of electrons in a finite-emittance beam. Furthermore, the model computes self-consistently the motion of the electrons and the amplification, diffraction, and the refraction of the light within the undulator magnet. Propagation of the optical beam and reflection at the mirrors of the optical resonator are incorporated in the model so that a complete laser oscillator solution can be generated. The computed performance parameters of a particular XUV FEL oscillator design will be compared with the output of synchrotron radiation sources. 26 refs., 8 figs

  6. Laser manipulation of atomic and molecular flows

    Science.gov (United States)

    Lilly, Taylor C.

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow

  7. Modeling of 1D motion of interstitial clusters in iron under HVEM irradiation

    International Nuclear Information System (INIS)

    Satoh, Y.; Hamaoka, T.; Matsui, H.

    2007-01-01

    Full text of publication follows: We examined 1D motion of interstitial clusters in Fe under electron irradiation at room temperature using high voltage electron microscopy (HVEM). We found that some impurities have essential effects on the experimental 1D motion behavior. The characteristics of experimental 1D motion were obtained as follows: 1) 1D motion appears as discrete jumps (namely, stepwise positional changes) at irregular intervals. 2) Sometimes a set of several successive jumps occurs between certain two points (back and forth motion). 3) The frequency of 1D jumps is almost proportional to the electron beam intensity, while the distribution of 1D jump distance does not change much with the intensity. Very few 1D jumps are observed with a 200 kV TEM at room temperature. 4) The distance and the frequency of 1D jumps are greatly reduced in a specimen of low purities. Taking account for effects of impurities, we propose a mechanism of the experimental 1D jumps, as follows. Small interstitial clusters are regarded to be essentially mobile as crowdion bundles. Then interstitial clusters in a stationary state are trapped by impurity atom(s), due to elastic interactions between impurities and crowdion bundle. The electron irradiation changes the cluster into a mobile state by a detrapping: for example, the impurity atom is displaced to apart from the crowdion bundle. Then the crowdion bundle makes a free 1D migration until it is trapped by another impurity atom. Because of small activation energy for 1D migration, we cannot observe the detailed 1D random walk process, but a stepwise positional change from an impurity to another impurity. The average size of interstitial clusters observed in the present experiments was around 5 nm, corresponding to a bundle of 300 crowdions. In a rough estimate assuming that an impurity atom on any crowdion in the crowdion bundle prevent the migration of the bundle, the mean free path is about 75 nm and 7.5 nm at the impurity

  8. Ultrastructure of the Interstitial Tissue in the Testis of the Egyptian Dromedary Camel (Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    M. I. Abd-Elaziz, A. M. Kassem, D. M. Zaghloul*, A. E. Derbalah and M. H. Bolefa

    2012-01-01

    Full Text Available The ultrastructural examination of the testicular interstitial tissue of Egyptian dromedary camel was performed to observe the seasonal changes. The activity of the interstitial tissue increased largely in spring. This was indicated by the large number of mature Leydig cells and two to three layers of myofibroblasts around the basal laminae of the seminiferous tubules with large blood vessels in the interstitial tissue. The testicular activity was moderate in winter as indicated by the lower number of immature Leydig cells. The lowest activity was in summer when Leydig cells became inactive with pyknotic nuclei. The cells of interstitial tissue lost their junctions with each other, leaving large intercellular spaces and myofibroblasts transformed to fibrocytes. The testicular activity began again to increase in autumn. The testicular activity of camel, however, did not stop in any season of the year, because even in non-breeding seasons a part of the interstitial tissue of the testis was active.

  9. Molecular dynamics simulations of matrix assisted laser desorption ionization: Matrix-analyte interactions

    International Nuclear Information System (INIS)

    Nangia, Shivangi; Garrison, Barbara J.

    2011-01-01

    There is synergy between matrix assisted laser desorption ionization (MALDI) experiments and molecular dynamics (MD) simulations. To understand analyte ejection from the matrix, MD simulations have been employed. Prior calculations show that the ejected analyte molecules remain solvated by the matrix molecules in the ablated plume. In contrast, the experimental data show free analyte ions. The main idea of this work is that analyte molecule ejection may depend on the microscopic details of analyte interaction with the matrix. Intermolecular matrix-analyte interactions have been studied by focusing on 2,5-dihydroxybenzoic acid (DHB; matrix) and amino acids (AA; analyte) using Chemistry at HARvard Molecular Mechanics (CHARMM) force field. A series of AA molecules have been studied to analyze the DHB-AA interaction. A relative scale of AA molecule affinity towards DHB has been developed.

  10. Modeling and Simulated Annealing Optimization of Surface Roughness in CO2 Laser Nitrogen Cutting of Stainless Steel

    Directory of Open Access Journals (Sweden)

    M. Madić

    2013-09-01

    Full Text Available This paper presents a systematic methodology for empirical modeling and optimization of surface roughness in nitrogen, CO2 laser cutting of stainless steel . The surface roughness prediction model was developed in terms of laser power , cutting speed , assist gas pressure and focus position by using The artificial neural network ( ANN . To cover a wider range of laser cutting parameters and obtain an experimental database for the ANN model development, Taguchi 's L27 orthogonal array was implemented in the experimental plan. The developed ANN model was expressed as an explicit nonlinear function , while the influence of laser cutting parameters and their interactions on surface roughness were analyzed by generating 2D and 3D plots . The final goal of the experimental study Focuses on the determinationof the optimum laser cutting parameters for the minimization of surface roughness . Since the solution space of the developed ANN model is complex, and the possibility of many local solutions is great, simulated annealing (SA was selected as a method for the optimization of surface roughness.

  11. Implementation of a thermomechanical model for the simulation of selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of both heat transfer and solid mechanics. The present work describes continuum modeling of SLM as envisioned for eventual support of part-scale modeling of this fabrication process to determine end-state information such as residual stresses and distortion. The determination of the evolving temperatures is dependent on the material, the state of the material (powder or solid), the specified heating, and the configuration. Similarly, the current configuration is dependent on the temperatures, the powder-solid state, and the constitutive models. A multi-physics numerical formulation is required to solve such problems. This article describes the problem formulation, numerical method, and constitutive parameters necessary to solve such a problem. Additionally, various verification and example problems are simulated in the parallel, multi-physics finite element code Diablo, and the results presented herein.

  12. [Lung transplantation in pulmonary fibrosis and other interstitial lung diseases].

    Science.gov (United States)

    Berastegui, Cristina; Monforte, Victor; Bravo, Carlos; Sole, Joan; Gavalda, Joan; Tenório, Luis; Villar, Ana; Rochera, M Isabel; Canela, Mercè; Morell, Ferran; Roman, Antonio

    2014-09-15

    Interstitial lung disease (ILD) is the second indication for lung transplantation (LT) after emphysema. The aim of this study is to review the results of LT for ILD in Hospital Vall d'Hebron (Barcelona, Spain). We retrospectively studied 150 patients, 87 (58%) men, mean age 48 (r: 20-67) years between August 1990 and January 2010. One hundred and four (69%) were single lung transplants (SLT) and 46 (31%) bilateral-lung transplants (BLT). The postoperative diagnoses were: 94 (63%) usual interstitial pneumonia, 23 (15%) nonspecific interstitial pneumonia, 11 (7%) unclassifiable interstitial pneumonia and 15% miscellaneous. We describe the functional results, complications and survival. The actuarial survival was 87, 70 and 53% at one, 3 and 5 years respectively. The most frequent causes of death included early graft dysfunction and development of chronic rejection in the form of bronchiolitis obliterans (BOS). The mean postoperative increase in forced vital capacity and forced expiratory volume in the first second (FEV1) was similar in SLT and BLT. The best FEV1 was reached after 10 (r: 1-36) months. Sixteen percent of patients returned to work. At some point during the evolution, proven acute rejection was diagnosed histologically in 53 (35%) patients. The prevalence of BOS among survivors was 20% per year, 45% at 3 years and 63% at 5 years. LT is the best treatment option currently available for ILD, in which medical treatment has failed. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  13. Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon.

    Science.gov (United States)

    Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A

    2012-09-01

    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.

  14. Evaluation of plasma disruption simulating short pulse laser irradiation experiments on boronated graphites and CFCs [carbon fibre composites

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der; Klippel, H.T.; Kraaij, G.J.

    1992-12-01

    New experimental and numerical results from disruption heat flux simulations in the millisecond range with laser beams are discussed. For a number of graphites, boronated graphites and carbon fibre composites, the effective enthalpy of ablation is determined as 30 ± 3 MJ/kg, using laser pulses of about -.3 ms. The numerical results predict the experimental results rather well. No effect of boron doping on the ablation enthalpy is found. (author). 9 refs., 4 figs., 1 tab

  15. Measurements and simulation of controlled beamfront motion in the Laser Controlled Collective Accelerator

    International Nuclear Information System (INIS)

    Yao, R.L.; Destler, W.W.; Striffler, C.D.; Rodgers, J.; Scgalov, Z.

    1989-01-01

    In the Laser Controlled Collective Accelerator, an intense electron beam is injected at a current above the vacuum space charge limit into an initially evacuated drift tube. A plasma channel, produced by time-sequenced, multiple laser beam ionization of a solid target on the drift tube wall, provides the necessary neutralization to allow for effective beam propagation. By controlling the rate of production of the plasma channel as a function of time down the drift tube, control of the electron beamfront can be achieved. Recent experimental measurements of controlled beamfront motion in this configuration are presented, along with results of ion acceleration experiments conducted using two different accelerating gradients. These results are compared with numerical simulations of the system in which both controlled beamfront motion and ion acceleration is observed consistent with both design expectations and experimental results. 5 refs., 6 figs

  16. Pulse propagation properties in high-power CO2 laser system for laser fusion

    International Nuclear Information System (INIS)

    Daido, H.; Inoue, M.; Fujita, H.; Matoba, M.; Nakai, S.

    1981-01-01

    The simulation results of nonlinear propagation properties in the CO 2 laser system using a simulation model of the SF 6 saturable absorbers and the CO 2 laser amplifiers agree well with the experimental results. The technical problems of the simultaneous irradiation of the multi-beams to a target are also discussed. (author)

  17. Painful bladder syndrome/interstitial cystitis: Aetiology, evaluation and management

    Directory of Open Access Journals (Sweden)

    William Rourke

    2014-06-01

    Full Text Available Interstitial cystitis or bladder pain syndrome (BPS is often a chronic debilitating condition characterised by predominantly storage symptoms and associated frequently with pelvic pain that varies with bladder filling. The aetiology is uncertain as the condition occurs in the absence of a urinary tract infection or other obvious pathology. Resulting discomfort may vary and ranges from abdominal tenderness to intense bladder spasms. Diagnosis and management of this syndrome may be difficult and is often made by its typical cystoscopic features. This review discusses the diagnosis and management of interstitial cystitis according to the current available best evidence and advises a multimodal approach in its management.

  18. Volkov basis for simulation of interaction of strong laser pulses and solids

    Science.gov (United States)

    Kidd, Daniel; Covington, Cody; Li, Yonghui; Varga, Kálmán

    2018-01-01

    An efficient and accurate basis comprised of Volkov states is implemented and tested for time-dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time propagation than conventional approaches. The Volkov approach can be readily implemented in plane-wave codes by multiplying the potential energy matrix elements with a simple time-dependent phase factor.

  19. Interstitial lung disease: Diagnostic approach

    OpenAIRE

    Kaushik Saha

    2014-01-01

    Interstitial lung disease (ILD) is a final common pathway of a broad heterogeneous group of parenchymal lung disorders. It is characterized by progressive fibrosis of the lung leading to restriction and diminished oxygen transfer. Clinically, the presenting symptoms of ILD are non-specific (cough and progressive dyspnea on exertion) and are often attributed to other diseases, thus delaying diagnosis and timely therapy. Clues from the medical history along with the clinical context and radiolo...

  20. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  1. Some considerations in the splitting of interstitial frank loops formed by irradiation

    International Nuclear Information System (INIS)

    Seshan, K.; Grilhe, J.; Washburn, J.

    1975-05-01

    The splitting of interstitial loops formed by irradiation is considered in detail. It is shown that they may split to form obtuse--angled single shear faults on the intersecting (111) planes. A detailed description of the splitting is given in which the interstitial Frank loop is viewed as being made up of perfect dislocation loop and two shears. The detailed description is then considered in the context of the formation of complex loops as are observed in quenching and irradiation studies. Experimentally observed geometries are explained viz, triangular loops within hexagonal ones etc. The nucleation of a DC' loop in complex interstitial loop formation is shown to be feasible. DC' has the magnitude of a perfect dislocation loop and encloses an intrinsic shear

  2. Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome.

    Science.gov (United States)

    Colaco, Marc; Koslov, David S; Keys, Tristan; Evans, Robert J; Badlani, Gopal H; Andersson, Karl-Erik; Walker, Stephen J

    2014-10-01

    Interstitial cystitis and bladder pain syndrome are terms used to describe a heterogeneous chronic pelvic and bladder pain disorder. Despite its significant prevalence, our understanding of disease etiology is poor. We molecularly characterized interstitial cystitis/bladder pain syndrome and determined whether there are clinical factors that correlate with gene expression. Bladder biopsies from female subjects with interstitial cystitis/bladder pain syndrome and female controls without signs of the disease were collected and divided into those with normal and low anesthetized bladder capacity, respectively. Samples then underwent RNA extraction and microarray assay. Data generated by these assays were analyzed using Omics Explorer (Qlucore, Lund, Sweden), GeneSifter® Analysis Edition 4.0 and Ingenuity® Pathway Analysis to determine similarity among samples within and between groups, and measure differentially expressed transcripts unique to each phenotype. A total of 16 subjects were included in study. Principal component analysis and unsupervised hierarchical clustering showed clear separation between gene expression in tissues from subjects with low compared to normal bladder capacity. Gene expression in tissue from patients with interstitial cystitis/bladder pain syndrome who had normal bladder capacity did not significantly differ from that in controls without interstitial cystitis/bladder pain syndrome. Pairwise analysis revealed that pathways related to inflammatory and immune response were most involved. Microarray analysis provides insight into the potential pathological condition underlying interstitial cystitis/bladder pain syndrome. This pilot study shows that patients with this disorder who have low compared to normal bladder capacity have significantly different molecular characteristics, which may reflect a difference in disease pathophysiology. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc

  3. Effect of single interstitial impurity in iron-based superconductors with sign-changed s-wave pairing symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiang-Long, E-mail: xlyu@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, Da-Yong; Quan, Ya-Min; Zheng, Xiao-Jun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Zou, Liang-Jian, E-mail: zou@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Department of Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-12-15

    Highlights: • Effects of single interstitial impurity are studied in iron-based superconductors. • Bound states within the superconducting gap can be induced. • The interstitial impurity can induce a π phase shift of pairing order parameter. • For strong magnetic scattering the bound-state peak can appear at the Fermi level. - Abstract: We employ the self-consistent Bogoliubov-de Gennes (BdG) formulation to investigate the effect of single interstitial nonmagnetic/magnetic impurity in iron-based superconductors with s ± -wave pairing symmetry. We find that both the nonmagnetic and magnetic impurities can induce bound states within the superconducting (SC) gap and a π phase shift of SC order parameter at the impurity site. However, different from the interstitial-nonmagnetic-impurity case characterized by two symmetric peaks with respect to zero energy, the interstitial magnetic one only induces single bound-state peak. In the strong scattering regime this peak can appear at the Fermi level, which has been observed in the recent scanning tunneling microscope (STM) experiment of Fe(Te,Se) superconductor with interstitial Fe impurities (Yin et al. 2015 [44]). This novel single in-gap peak feature also distinguishes the interstitial case from the substitutional one with two peaks. These results provide important information for comparing the different impurity effects in the iron-based superconductors.

  4. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  5. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    Science.gov (United States)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  6. Numerical simulation of laser shock in the presence of the initial state due to welding

    International Nuclear Information System (INIS)

    Julan, Emricka

    2014-01-01

    Surface treatments as laser shock peening offer the possibility to reduce tensile stresses or to generate compressive stresses in order to prevent crack initiation or reduce crack growth rate in particular in the areas where tension weld residual stresses are present. Laser shock peening may be applied on different metallic components to prevent stress corrosion cracking of Inconel 600 and high cycle thermal fatigue of austenitic stainless steels. The main aim of the PhD thesis is to develop the numerical simulation of laser peening. In the first section, axisymmetrical and 3D numerical models for one or several pulses have been developed in Code Aster and Europlexus softwares. These models were validated by experimental tests carried out in PIMM-ENSAM laboratory. Parameters identification of Johnson-Cook constitutive law was carried out for Inconel 600 at high strain rates. Moreover a new test was proposed which allowed proving the isotropic behavior of Inconel 600 at high strain rates. A modification of the Johnson-Cook constitutive law was also proposed, to take into account in a new way the sensitivity of the law to high strain rates. The second section of the thesis concerns a study on the effect of an initial state of welding on residual stresses after application of laser peening. We could conclude that this initial state has no strong influence on final residual stresses. Finally, a qualitative study on the effect of strain hardening induced by laser peening on fatigue life of stainless steels was undertaken, which shows the advantage of laser peening on shot peening due to smaller strain hardening created by laser peening. (author)

  7. Interstitial Lung Disease due to Siderosis in a Lathe Machine Worker.

    Science.gov (United States)

    Gothi, D; Satija, B; Kumar, S; Kaur, Omkar

    2015-01-01

    Since its first description in 1936, siderosis of lung has been considered a benign pneumoconiosis due to absence of significant clinical symptoms or respiratory impairment. Subsequently, authors have questioned the non-fibrogenic property of iron. However, siderosis causing interstitial lung disease with usual interstitial pneumonia (UIP) pattern has not been described in the past. We report a case of UIP on high resolution computed tomography, proven to be siderosis on transbronchial lung biopsy in a lathe machine worker.

  8. Resistivity studies of interstitial helium mobility in niobium

    International Nuclear Information System (INIS)

    Chen, C.G.; Birnbaum, H.K.; Johnson, A.B. Jr.

    1979-01-01

    The mobility of interstitial helium in Nb and Nb-O alloys was studied in the temperature range of 10-383 K using resistivity measurements. The helium was introduced by radioactive decay of solute tritium (approximately 1 at%). At T < 100 K the resistivity increased due to conversion of tritium trapped at oxygen interstititals to helium. The formation of helium caused a very significant resistance increase at room temperature and above. The results suggest that helium is mobile at temperatures above 295 K and that the precipitation of large helium bubbles occurs along grain boundaries. The mobile helium species may either be single interstitials or small helium clusters. The activation enthalpy for the diffusion of the mobile helium species was estimated to be about 55 kJ/mol (0.66 eV). (Auth.)

  9. Clinical role in biopsy after interstitial irradiation to squamous cell carcinoma of tongue

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoichi [Kanagawa Dental Coll., Yokosuka (Japan)

    1995-03-01

    The clinical role of biopsy after interstitial irradiation therapy was evaluated in 44 patients with squamous cell carcinoma of tongue on which biopsy was done in our hospital. More residual tumors were observed in the induration-positive groups compared to those of the induration-negative groups. No tumor was histologically observed in 71.4% of the induration-positive groups. On the adjacent and covering mucous membranes, epithelial dysplasia was detected in 15 patients, 1 of them was Grade III and 9 were Grade IV. Two patients had recurrence. In the initial stage of interstitial irradiation, reaction of stoma showed decrease of edema, inflammatory cell infiltration, regeneration and dilation of vessels after 6 weeks. The regeneration of collagen fiber increased within 3-14 weeks after irradiation, followed by decrease of its activity. After interstitial irradiation, 2 of 9 Grade IIb patients treated by surgery and 2 by re-interstitial irradiation survived. One of 3 Grade III patients manifested recurrence and was treated by surgery. All patients were alive. Fourteen of 17 Grade IV patients under careful observation were still alive. Eleven of 15 patients treated by total neck dissection after interstitial irradiation survived. Four Grade IV patients showed recurrence. Two-year primary lesion control rate was 91.2% and the survival rate for 5 year was 74.0%. (S.Y.). 54 refs.

  10. Clinical role in biopsy after interstitial irradiation to squamous cell carcinoma of tongue

    International Nuclear Information System (INIS)

    Sato, Tomoichi

    1995-01-01

    The clinical role of biopsy after interstitial irradiation therapy was evaluated in 44 patients with squamous cell carcinoma of tongue on which biopsy was done in our hospital. More residual tumors were observed in the induration-positive groups compared to those of the induration-negative groups. No tumor was histologically observed in 71.4% of the induration-positive groups. On the adjacent and covering mucous membranes, epithelial dysplasia was detected in 15 patients, 1 of them was Grade III and 9 were Grade IV. Two patients had recurrence. In the initial stage of interstitial irradiation, reaction of stoma showed decrease of edema, inflammatory cell infiltration, regeneration and dilation of vessels after 6 weeks. The regeneration of collagen fiber increased within 3-14 weeks after irradiation, followed by decrease of its activity. After interstitial irradiation, 2 of 9 Grade IIb patients treated by surgery and 2 by re-interstitial irradiation survived. One of 3 Grade III patients manifested recurrence and was treated by surgery. All patients were alive. Fourteen of 17 Grade IV patients under careful observation were still alive. Eleven of 15 patients treated by total neck dissection after interstitial irradiation survived. Four Grade IV patients showed recurrence. Two-year primary lesion control rate was 91.2% and the survival rate for 5 year was 74.0%. (S.Y.). 54 refs

  11. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Condensation of helium in interstitial sites of carbon nanotubes bundles

    International Nuclear Information System (INIS)

    Marcone, B.; Orlandini, E.; Toigo, F.; Ancilotto, F.

    2006-01-01

    Helium atoms are believed to be strongly bound within the interstitial channels in bundles of carbon nanotubes. In a recent paper [F. Ancilotto et al., Phys. Rev. B 70, 165422 (2004)] inhomogeneity in the size distribution of nanotube radii was shown to make a system of 4 He atoms in such an environment effectively a four-dimensional Bose gas, thus permitting a Bose-Einstein condensation (BEC) of the adsorbed atoms into the minimum energy state. This surprising result was obtained for a model of noninteracting atoms in a continuum distribution of (virtually) infinite interstitial channels. Here we investigate how the singular thermal properties of the ideal system and the occurrence of BEC are affected by a more realistic modeling of a bundle of nanotubes where (i) the number of nanotubes is finite and where (ii) 4 He atoms adsorbed within the same interstitial channel interact among themselves. Also in this case we observe an anomalous heat capacity close to the ideal condensation temperature, suggesting the persistence of the condensation transition for interacting 4 He atoms, which might be experimentally observed

  13. Warp simulations for capture and control of laser-accelerated proton beams

    International Nuclear Information System (INIS)

    Nuernberg, Frank; Harres, K; Roth, M; Friedman, A; Grote, D P; Logan, B G; Schollmeier, M

    2010-01-01

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that we have used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons outbalances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Beside the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  14. Warp simulations for capture and control of laser-accelerated proton beams

    International Nuclear Information System (INIS)

    Nurnberg, F.; Friedman, A.; Grote, D.P.; Harres, K.; Logan, B.G.; Schollmeier, M.; Roth, M.

    2009-01-01

    The capture of laser-accelerated proton beams accompanied by co-moving electrons via a solenoid field has been studied with particle-in-cell simulations. The main advantages of the Warp simulation suite that was used, relative to envelope or tracking codes, are the possibility of including all source parameters energy resolved, adding electrons as second species and considering the non-negligible space-charge forces and electrostatic self-fields. It was observed that the influence of the electrons is of vital importance. The magnetic effect on the electrons out balances the space-charge force. Hence, the electrons are forced onto the beam axis and attract protons. Besides the energy dependent proton density increase on axis, the change in the particle spectrum is also important for future applications. Protons are accelerated/decelerated slightly, electrons highly. 2/3 of all electrons get lost directly at the source and 27% of all protons hit the inner wall of the solenoid.

  15. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  16. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  17. Interstitial Lung Disease in a 70-Year-Old Man with Ulcerative Colitis.

    Science.gov (United States)

    Collins, Hampton W; Frye, Jeanetta W

    2018-01-01

    Interstitial lung disease is a rare but increasingly recognized extraintestinal manifestation of inflammatory bowel disease that can have devastating consequences if left untreated. We report a case of ulcerative colitis-associated interstitial lung disease presenting with acute hypoxic respiratory failure during an ulcerative colitis flare. Gastroenterologists and pulmonologists should be aware of the numerous bronchopulmonary signs and symptoms that can suggest systemic illness in inflammatory bowel disease.

  18. Do you really know precise radiologic–pathologic correlation of usual interstitial pneumonia?

    Energy Technology Data Exchange (ETDEWEB)

    Johkoh, Takeshi, E-mail: johkoht@aol.com [Department of Radiology, Kinki Central Hospital of Mutual Aid Association of Public School Teachers, Itami (Japan); Sumikawa, Hiromotsu [Department of Radiology, Osaka University Graduate School of Medicine, Suita (Japan); Fukuoka, Junya; Tanaka, Tomonori [Department of Pathology, Nagasaki University Graduate School of Medicine, Toyama (Japan); Fujimoto, Kiminori [Department of Radiology and Center for Diagnostic Imaging, Kurume University School of Medicine, Kurume (Japan); Takahashi, Masashi [Department of Radiology, Shiga Medical University, Otsu (Japan); Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, Suita (Japan); Kondo, Yasuhiro; Taniguchi, Hiroyuki [Department of Respiratory and Allergic Medicine, Tosei General Hospital, Seto (Japan)

    2014-01-15

    Although usual interstitial pneumonia (UIP) is the most common chronic interstitial pneumonia, understanding of pathologic backgrounds of CT findings has still not been enough. Since honeycombing on either scanning microgram or CT is essential for diagnosis of UIP in 2010 ATS-ERS-JRS-ALAT guide line, the role of radiologists has become much more important. We will summarize common and uncommon CT findings with radiologic–pathological correlation.

  19. Do you really know precise radiologic–pathologic correlation of usual interstitial pneumonia?

    International Nuclear Information System (INIS)

    Johkoh, Takeshi; Sumikawa, Hiromotsu; Fukuoka, Junya; Tanaka, Tomonori; Fujimoto, Kiminori; Takahashi, Masashi; Tomiyama, Noriyuki; Kondo, Yasuhiro; Taniguchi, Hiroyuki

    2014-01-01

    Although usual interstitial pneumonia (UIP) is the most common chronic interstitial pneumonia, understanding of pathologic backgrounds of CT findings has still not been enough. Since honeycombing on either scanning microgram or CT is essential for diagnosis of UIP in 2010 ATS-ERS-JRS-ALAT guide line, the role of radiologists has become much more important. We will summarize common and uncommon CT findings with radiologic–pathological correlation.

  20. Molecular dynamics study of interstitial-solute interactions in irradiated Al-based alloys

    International Nuclear Information System (INIS)

    Doan, N.V.; Lam, N.Q.; Dagens, L.; Adda, Y.

    1981-11-01

    The stable configurations and binding energies of interstitial and di-interstitial-solute complexes in Al-Be, Al-Ca, Al-K, Al-Li, Al-Mg and Al-Zn alloys were calculated using the molecular dynamics technique in conjunction with interatomic potentials derived entirely from theoretical considerations and not fitted to any experimental data. All the results reported in this work are thus of first-principles nature