WorldWideScience

Sample records for simplex virus requires

  1. Molecular requirement for sterols in herpes simplex virus entry and infectivity

    Science.gov (United States)

    Herpes simplex virus 1 (HSV-1) required cholesterol for virion-induced membrane fusion. HSV successfully entered DHCR24-/-cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in d...

  2. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry.

    Science.gov (United States)

    Even, Deborah L; Henley, Allison M; Geraghty, Robert J

    2006-08-01

    Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.

  3. Herpes Simplex Virus (Cold Sores)

    Science.gov (United States)

    ... Print Share Cold Sores in Children: About the Herpes Simplex Virus Page Content ​A child's toddler and ... Cold sores (also called fever blisters or oral herpes) start as small blisters that form around the ...

  4. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    International Nuclear Information System (INIS)

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2012-01-01

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU L 26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU L 26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU L 26 is required for this conformational change.

  5. Genital herpes simplex virus infections.

    Science.gov (United States)

    Rosenthal, M S

    1979-09-01

    In recent years, a great increase in interest in genital herpes has been stimulated partly by the rising prevalence of this disease and partly by observations suggesting that genital herpes is a cause of cervical cancer. The clinical pictures produced by genital herpes simplex virus infections are similar in men and women. In contrast to recurrent attacks, initial episodes of infection are generally more extensive, last longer, and are more often associated with regional lymphadenopathy and systemic symptoms. Genital herpes in pregnancy may pose a serious threat to the newborn infant. Although the data suggesting genital herpes simplex virus infection is a cause of cervical cancer are quite extensive, the evidence is largely circumstantial. In spite of these more serious aspects of genital herpes simplex virus infection, episodes of genital herpes are almost always self-limited and benign. Frequent recurrences pose the major therapeutic and management problem. At present, there is no satisfactory treatment for recurrent genital herpes simplex virus in fection. Many of the suggested therapies, although some sound very promising, are potentially dangerous and should be used only under carefully controlled conditions.

  6. Herpes simplex virus following stab phlebectomy.

    Science.gov (United States)

    Hicks, Caitlin W; Lum, Ying Wei; Heller, Jennifer A

    2017-03-01

    Herpes simplex virus infection following surgery is an unusual postoperative phenomenon. Many mechanisms have been suggested, with the most likely explanation related to latent virus reactivation due to a proinflammatory response in the setting of local trauma. Here, we present a case of herpes simplex virus reactivation in an immunocompetent female following a conventional right lower extremity stab phlebectomy. Salient clinical and physical examination findings are described, and management strategies for herpes simplex virus reactivation are outlined. This is the first known case report of herpes simplex virus reactivation following lower extremity phlebectomy.

  7. Release of the herpes simplex virus 1 protease by self cleavage is required for proper conformation of the portal vertex

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kui; Wills, Elizabeth G. [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States); Baines, Joel D., E-mail: jdb11@cornell.edu [Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-20

    We identify an NLS within herpes simplex virus scaffold proteins that is required for optimal nuclear import of these proteins into infected or uninfected nuclei, and is sufficient to mediate nuclear import of GFP. A virus lacking this NLS replicated to titers reduced by 1000-fold, but was able to make capsids containing both scaffold and portal proteins suggesting that other functions can complement the NLS in infected cells. We also show that Vp22a, the major scaffold protein, is sufficient to mediate the incorporation of portal protein into capsids, whereas proper portal immunoreactivity in the capsid requires the larger scaffold protein pU{sub L}26. Finally, capsid angularization in infected cells did not require the HSV-1 protease unless full length pU{sub L}26 was expressed. These data suggest that the HSV-1 portal undergoes conformational changes during capsid maturation, and reveal that full length pU{sub L}26 is required for this conformational change.

  8. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  9. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids ▿

    Science.gov (United States)

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; Conway, James F.; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes. PMID:21411517

  10. Neonatal Herpes Simplex Virus Infection.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-09-01

    Herpes simplex virus (HSV) 1 and HSV-2 infections are highly prevalent worldwide and are characterized by establishing lifelong infection with periods of latency interspersed with periodic episodes of reactivation. Acquisition of HSV by an infant during the peripartum or postpartum period results in neonatal HSV disease, a rare but significant infection that can be associated with severe morbidity and mortality, especially if there is dissemination or central nervous system involvement. Diagnostic and therapeutic advances have led to improvements in mortality and, to a lesser extent, neurodevelopmental outcomes, but room exists for further improvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Neonatal herpes simplex virus infections.

    Science.gov (United States)

    Pinninti, Swetha G; Kimberlin, David W

    2018-04-01

    Neonatal herpes simplex virus (HSV) is an uncommon but devastating infection in the newborn, associated with significant morbidity and mortality. The use of PCR for identification of infected infants and acyclovir for treatment has significantly improved the prognosis for affected infants. The subsequent use of suppressive therapy with oral acyclovir following completion of parenteral treatment of acute disease has further enhanced the long-term prognosis for these infants. This review article will discuss the epidemiology, risk factors and routes of acquisition, clinical presentation, and evaluation of an infant suspected to have the infection, and treatment of proven neonatal HSV disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    Science.gov (United States)

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  13. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1.

    Science.gov (United States)

    Li, You; Zhao, Lei; Wang, Shuai; Xing, Junji; Zheng, Chunfu

    2012-09-01

    Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

  14. Management of herpes simplex virus epithelial keratitis.

    Science.gov (United States)

    Roozbahani, Mehdi; Hammersmith, Kristin M

    2018-04-24

    To review recent advancements in the management of herpes simplex virus (HSV) epithelial keratitis. Trifluridine eye drop, acyclovir (ACV) ointment, ganciclovir gel, and oral ACV are still the main therapeutic agents. Cryopreserved amniotic membrane has been recently used as an adjuvant treatment. Resistance to ACV has become a concerning issue. The animal models of HSV vaccine are able to reduce HSV keratitis. New antivirals are under development. Current cases of HSV epithelial keratitis are manageable with available medications, but new advancements are required to decrease disease burden in the future. HSV vaccine can be revolutionary.

  15. Herpes Simplex Virus-1 and Bell's Palsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-05-01

    Full Text Available The association between herpes simplex virus-1 (HSV-1 infection and Bell palsy was determined in 47 children studied at Children's Hospital at Montefiore, Bronx, NY. Swabs of saliva and conjunctiva were taken for PCR testing.

  16. Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles

    Science.gov (United States)

    Laquerre, Sylvie; Anderson, Dina B.; Argnani, Rafaela; Glorioso, Joseph C.

    1998-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by

  17. A Domain of Herpes Simplex Virus pUL33 Required To Release Monomeric Viral Genomes from Cleaved Concatemeric DNA.

    Science.gov (United States)

    Yang, Kui; Dang, Xiaoqun; Baines, Joel D

    2017-10-15

    Monomeric herpesvirus DNA is cleaved from concatemers and inserted into preformed capsids through the actions of the viral terminase. The terminase of herpes simplex virus (HSV) is composed of three subunits encoded by U L 15, U L 28, and U L 33. The U L 33-encoded protein (pU L 33) interacts with pU L 28, but its precise role in the DNA cleavage and packaging reaction is unclear. To investigate the function of pU L 33, we generated a panel of recombinant viruses with either deletions or substitutions in the most conserved regions of U L 33 using a bacterial artificial chromosome system. Deletion of 11 amino acids (residues 50 to 60 or residues 110 to 120) precluded viral replication, whereas the truncation of the last 10 amino acids from the pU L 33 C terminus did not affect viral replication or the interaction of pU L 33 with pU L 28. Mutations that replaced the lysine at codon 110 and the arginine at codon 111 with alanine codons failed to replicate, and the pU L 33 mutant interacted with pU L 28 less efficiently. Interestingly, genomic termini of the large (L) and small (S) components were detected readily in cells infected with these mutants, indicating that concatemeric DNA was cleaved efficiently. However, the release of monomeric genomes as assessed by pulsed-field gel electrophoresis was greatly diminished, and DNA-containing capsids were not observed. These results suggest that pU L 33 is necessary for one of the two viral DNA cleavage events required to release individual genomes from concatemeric viral DNA. IMPORTANCE This paper shows a role for pU L 33 in one of the two DNA cleavage events required to release monomeric genomes from concatemeric viral DNA. This is the first time that such a phenotype has been observed and is the first identification of a function of this protein relevant to DNA packaging other than its interaction with other terminase components. Copyright © 2017 Yang et al.

  18. 21 CFR 866.3305 - Herpes simplex virus serological assays.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Herpes simplex virus serological assays. 866.3305... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3305 Herpes simplex virus serological assays. (a) Identification. Herpes simplex virus serological assays are devices...

  19. Glutamine supplementation suppresses herpes simplex virus reactivation.

    Science.gov (United States)

    Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I

    2017-06-30

    Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.

  20. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    Science.gov (United States)

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  1. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome.

    Science.gov (United States)

    Muylaert, Isabella; Zhao, Zhiyuan; Andersson, Torbjörn; Elias, Per

    2012-09-28

    We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.

  2. CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication

    Directory of Open Access Journals (Sweden)

    Renée L. Finnen

    2018-05-01

    Full Text Available Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.

  3. Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis.

    Science.gov (United States)

    Devadas, Deepika; Koithan, Thalea; Diestel, Randi; Prank, Ute; Sodeik, Beate; Döhner, Katinka

    2014-11-01

    Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the

  4. Surgical excision for recurrent herpes simplex virus 2 (HSV-2) anogenital infection in a patient with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Arinze, Folasade; Shaver, Aaron; Raffanti, Stephen

    2017-10-01

    Recurrent anogenital herpes simplex virus infections are common in patients with human immunodeficiency virus (HIV), of whom approximately 5% develop resistance to acyclovir. We present a case of a 49-year-old man with HIV who had an 8-year history of recurrent left inguinal herpes simplex virus type 2 ulcerations. He initially responded to oral acyclovir, but developed resistance to acyclovir and eventually foscarnet. The lesion progressed to a large hypertrophic mass that required surgical excision, which led to resolution without recurrences. Our case highlights the importance of surgical excision as a treatment option in refractory herpes simplex virus anogenital infections.

  5. antibodies against Herpes simplex virus

    African Journals Online (AJOL)

    171. 5. Celum, C. L. The Interaction between Herpes Sim- plex Virus and Human Immunodeficiency Virus. Her- pes, 2004; 1: 36A-44A. 6. Brown, Z.A., Selke, S., Zeh, J., Kopelman, J., Maslow,. A., Ashley, R.L., Watts, D.H., Berry, S., Herd, M. and.

  6. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  7. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  8. Preventing herpes simplex virus in the newborn.

    Science.gov (United States)

    Pinninti, Swetha G; Kimberlin, David W

    2014-12-01

    Genital herpes simplex virus (HSV) infections are very common worldwide. Approximately 22% of pregnant women are infected genitally with HSV, and most of them are unaware of this. The most devastating consequence of maternal genital herpes is HSV disease in the newborn. Although neonatal HSV infections remain uncommon, due to the significant morbidity and mortality associated with the infection, HSV infection in the newborn is often considered in the differential diagnosis of ill neonates. This review summarizes the epidemiology and management of neonatal HSV infections and discusses strategies to prevent HSV infection in the newborn. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Accumulation of a soluble form of human nectin-2 is required for exerting the resistance against herpes simplex virus type 2 infection in transfected cells.

    Science.gov (United States)

    Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E

    2016-03-01

    Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.

  10. Herpes simplex encephalitis : from virus to therapy.

    Science.gov (United States)

    Rozenberg, Flore; Deback, Claire; Agut, Henri

    2011-06-01

    Herpes simplex virus (HSV) is the cause of herpes simplex encephalitis (HSE), a devastating human disease which occurs in 2-4 cases per million/year. HSE results either from a primary infection or virus reactivation, in accordance with the common pattern of HSV infection which is a chronic lifelong process. However its pathophysiology remains largely unknown and its poor prognosis is in contrast with the usually good tolerance of most clinical herpetic manifestations. HSE is due to HSV type 1 (HSV-1) in most cases but HSV type 2 (HSV-2) may be also implicated, especially in infants in the context of neonatal herpes. Polymerase chain reaction detection of HSV DNA in cerebrospinal fluid is the diagnosis of choice for HSE. Acyclovir, a nucleoside analogue which inhibits viral DNA polymerase activity, is the reference treatment of HSE while foscarnet constitutes an alternative therapy and the efficacy of cidofovir is currently uncertain in that context. The emergence of HSV resistance to acyclovir, a phenomenon which is mainly observed among immunocompromised patients, is a current concern although no case of HSE due to an acyclovir-resistant HSV strain has been reported to date. Nevertheless the identification and development of novel therapeutic strategies against HSV appears to be a non dispensable objective for future research in virology.

  11. Herpes Simplex Virus: Beyond the Basics.

    Science.gov (United States)

    Kobty, Magidah

    2015-01-01

    One of the most common sexually transmitted infections is the herpes simplex virus (HSV) Type 2. Although the incidence of newborn infection is not as common as in adults, approximately 1,500 neonates are diagnosed annually with HSV infection. HSV can be detrimental to the life of a newborn, with morbidity and mortality rates of up to 65 percent. This article addresses the maternal and fetal complications of HSV and the impact of HSV on the newborn along with diagnostic evaluation methods. In addition, treatment options and evidence-based practices regarding HSV are defined. Despite growing technology and medical treatment for early identification of HSV, this virus remains challenging and can deeply impact the life of an infant and his or her family. Early diagnosis, treatment, and intervention of an infant with HSV are crucial to ensure the livelihood of the newborn.

  12. EPIDEMIOLOGY OF THE HERPES SIMPLEX VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ljiljana Kostadinović

    2002-07-01

    Full Text Available Over 150 sorts of viruses are capable of causing diseases of the respiratory ways. The virus infections have become the cost to be paid for urbanization and industrialization. The acute virus infections jeopardize mankind by their complications with numerous consequences. They open up the way to super infections, they provoke endogenous infections and lead to insufficiency of the vital organs. The viruses penetrate the organism mainly through the respiratory ways, digestive and urinary-sexual organs and skin. Some viruses immediately at the place of their entrance into the organism find receptive cells in which they can multiply (herpes virus and etc.. Some viruses must get through the blood, through the lymph or the nerve fibers to the target organs that they have affinity for.The changes that primarily occur in the mouth with manifest lymphadenopathy of the surrounding area emerge with respect to the type of the acute infection dis-ease.The human herpes viruses are responsible for a great number of diseases in people; that is why it can be said that the infections they induce are a very frequent cause of people's diseases in the world. Man is natural and the only host for the types I and II of the herpes simplex virus (HSV; that is why the infected person is regarded as the source of infection. The infection transmission can be by direct contact or over the contaminated secretions during the sexual intercourse. The age and the socioeconomic status (living conditions, level of medical culture, habits, etc. affect to agreat extent epidemiology of the HSV infection. The HSV distribution in the region of Niš in the five-year period (from 1987 to 1992 was the highest in the early and late summer (June and September.

  13. Identification and typing of herpes simplex viruses with monoclonal antibodies.

    OpenAIRE

    Balachandran, N; Frame, B; Chernesky, M; Kraiselburd, E; Kouri, Y; Garcia, D; Lavery, C; Rawls, W E

    1982-01-01

    Monoclonal antibodies which reacted with type-specific antigens of herpes simplex virus type 2 or with antigens shared by herpes simplex virus types 1 and 2 were used in an indirect immunofluorescence assay to type virus isolates and to detect viral antigens in cells obtained from herpetic lesions. Complete concordance was obtained for 42 isolates typed by endonuclease restriction analysis of viral DNA and by indirect immunofluorescence with monoclonal antibodies. Examination of a limited num...

  14. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Hampar, B.; Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-01-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing

  15. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Hampar, B. (National Institutes of Health, Bethesda, MD); Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-02-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing.

  16. Herpes simplex virus encephalitis: neuroradiological diagnosis

    International Nuclear Information System (INIS)

    Struffert, T.; Reith, W.

    2000-01-01

    Herpes simplex virus encephalitis (HSE) is the most frequent viral encephalitis, as a rule with the starting point and centre within the temporal lobe. If untreated, HSE is usually fatal, thus diagnosis has to be established rapidly. Treatment with Acyclovir should begin as soon possible. As MRI is extremely sensitive in detecting the early inflammatory changes, it should be initially performed, especially as in the early stadium CT may be unspecific. We recommend the following examination protocol: coronar T1-weighted MR imaging before and after administration of gadopentetate dimeglumine, coronar FLAIR sequence and axial T2-weighted imaging. The diagnostic proof is to show the evidence of viral DNA by polymerase chain reaction (PCR) in cerebrospinal liquor. (orig.) [de

  17. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia

    International Nuclear Information System (INIS)

    Vafai, A.; Wellish, M.; Devlin, M.; Gilden, D.H.; Murray, R.S.

    1988-01-01

    Lysates of radiolabeled explants from four human trigeminal ganglia were immunoprecipitated with antibodies to varicella-zoster virus (VZV) and to herpes simplex virus. Both herpes simplex virus- and VZV-specific proteins were detected in lysates of all four ganglia. Absence of reactivity in ganglion explants with monoclonal antibodies suggested that herpes simplex virus and VZV were not reactivated during the culture period. In situ hybridization studies demonstrated the presence of RNA transcripts from the VZV immediate early gene 63. This approach to the detection of herpes simplex virus and VZV expression in human ganglia should facilitate analysis of viral RNA and proteins in human sensory ganglia

  18. Pediatric herpes simplex virus infections: an evidence-based approach to treatment.

    Science.gov (United States)

    Sanders, Jennifer E; Garcia, Sylvia E

    2014-01-01

    Herpes simplex virus is a common virus that causes a variety of clinical presentations ranging from mild to life-threatening. Orolabial and genital herpes are common disorders that can often be managed in an outpatient setting; however, some patients do present to the emergency department with those conditions, and emergency clinicians should be aware of possible complications in the pediatric population. Neonatal herpes is a rare disorder, but prompt recognition and initiation of antiviral therapy is imperative, as the morbidity and mortality of the disease is high. Herpes encephalitis is an emergency that also requires a high index of suspicion to diagnose. Herpes simplex virus is also responsible for a variety of other clinical presentations, including herpes gladiatorum, herpetic whitlow, eczema herpeticum, and ocular herpes. This issue reviews the common clinical presentations of the herpes simplex virus, the life-threatening infections that require expedient identification and management, and recommended treatment regimens.

  19. Clinical and biological differences between recurrent herpes simplex virus and varicella-zoster virus infections

    International Nuclear Information System (INIS)

    Straus, S.E.

    1989-01-01

    The major features that distinguish recurrent herpes simplex virus infections from zoster are illustrated in this article by two case histories. The clinical and epidemiologic features that characterize recurrent herpes simplex virus and varicella-zoster virus infections are reviewed. It is noted that herpesvirus infections are more common and severe in patients with cellular immune deficiency. Each virus evokes both humoral and cellular immune response in the course of primary infection. DNA hybridization studies with RNA probes labelled with sulfur-35 indicate that herpes simplex viruses persist within neurons, and that varicella-zoster virus is found in the satellite cells that encircle the neurons

  20. Herpes Simplex Virus type 2 Infection among Females in Enugu ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 has recently been found to have synergistic effect with human immunodeficiency virus (HIV) and co-infection of the two presents more severe burden to the immunity of the victim. This leads to much morbidity and mortality with negative economic impact. In this study, we set out to determine ...

  1. Sequencing and phylogenetic analysis of Herpes simplex virus type ...

    African Journals Online (AJOL)

    momtaz

    2012-01-19

    Jan 19, 2012 ... Herpes simplex virus type 2 (HSV-2) is the main cause of recurrent genital infection (Slomka, 1996). Most infections are asymptomatic. The virus establishes latent infection in the local ganglia and is reactivated and shed frequently. Antibodies to HSV infections become detectable in serum samples (Koelle ...

  2. The biology of herpes simplex virus infection in humans.

    Science.gov (United States)

    Baringer, J R

    1976-01-01

    Herpes simplex virus is a frequent cause of recurrent ocular, oral, genital or cutaneous eruptions in man. Lesions are highly localized and tend to recur at the same site. Among the most consistent factors provoking recurrence is root section of the trigeminal nerve. Clinical and experimental data suggest that herpes simplex virus is commonly resident within the trigeminal ganglia of man, where it may be responsible for recurrent oral or lip lesions, and is less frequently a resident of the second or third sacral ganglia where it might be responsible for genital eruptions. Generally, the trigeminal virus is type 1 and the sacral virus is type 2; the virus is only rarely recoverable from other sensory ganglia. Factors provoking the reactivation from the virus' latent site and the mechanism for reactivation remain largely unknown. Further study is needed to understand the behavior of HSV and other viruses in nervous system tissue.

  3. Pityriasis Lichenoides Chronica Associated with Herpes Simplex Virus Type 2

    Directory of Open Access Journals (Sweden)

    Antonio Javier González Rodríguez

    2012-01-01

    Full Text Available Introduction. Pityriasis lichenoides is a rare, acquired spectrum of skin conditions of an unknown etiology. Case Report. A 28-year-old man presented with recurrent outbreaks of herpes simplex virus associated with the onset of red-to-brown maculopapules located predominantly in trunk in each recurrence. Positive serologies to herpes simplex virus type 2 were detected. Histopathological examination of one of the lesions was consistent with a diagnosis of pityriasis lichenoides chronica. Discussion. Pityriasis lichenoides is a rare cutaneous entity of an unknown cause which includes different clinical presentations. A number of infectious agents have been implicated based on the clustering of multiple outbreaks and elevated serum titers to specific pathogens (human immunodeficiency virus, cytomegalovirus, Epstein-Barr virus, Toxoplasma gondii, and herpes simplex virus. In our patient, resolution of cutaneous lesions coincided with the administration of antiviral drugs and clinical improvement in each genital herpes recurrence. In conclusion, we report a case in which cutaneous lesions of pityriasis lichenoides chronica and a herpes simplex virus-type 2-mediated disease have evolved concomitantly.

  4. Pneumomediastinum and Pneumothorax Associated with Herpes Simplex Virus (HSV) Pneumonia.

    Science.gov (United States)

    López-Rivera, Fermín; Colón Rivera, Xavier; González Monroig, Hernán A; Garcia Puebla, Juan

    2018-01-30

    BACKGROUND Pneumonia is one of the most common causes of death from infectious disease in the United States (US). Although most cases of community-acquired pneumonia (CAP) are secondary to bacterial infection, up to one-third of cases are secondary to viral infection, most commonly due to rhinovirus and influenza virus. Pneumonia due to herpes simplex virus (HSV) is rare, and there is limited knowledge of the pathogenesis and clinical complications. This report is of a fatal case of HSV pneumonia associated with bilateral pneumothorax and pneumomediastinum. CASE REPORT A 36-year-old homeless male Hispanic patient, who was a chronic smoker, with a history of intravenous drug abuse and a medical history of chronic hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection, not on highly active antiretroviral therapy (HAART), was admitted to hospital as an emergency with a seven-day history of productive purulent cough. The patient was admitted to the medical intensive care unit (MICU) with a diagnosis of CAP, with intubation and mechanical ventilation. Broncho-alveolar lavage (BAL) was performed and was positive for HSV. The patient developed bilateral pneumothorax with pneumomediastinum, which was fatal, despite aggressive clinical management. CONCLUSIONS Pneumonia due to HSV infection is uncommon but has a high mortality. Although HSV pneumonia has been described in immunocompromised patients, further studies are required to determine the pathogenesis, early detection, identification of patients who are at risk and to determine the most effective approaches to prophylaxis and treatment for HSV pneumonia.

  5. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  6. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  7. Pathogenesis of herpes simplex virus infections of the cornea

    NARCIS (Netherlands)

    J. Maertzdorf (Jeroen)

    2002-01-01

    textabstractThe identification of human herpes virus (HHV) infections can be traced back to ancient Greece where Herpes simplex vims (HSV) infections in humans were first documented. Hippocrates used the word "herpes", meaning to creep or crawl, to describe spreading skin lesions. Although the

  8. Determination of human herpes simplex virus in clear cerebrospinal ...

    African Journals Online (AJOL)

    The purpose of this study was to test CSF obtained from different regions of Rwanda for herpes simplex viruses (HSV) type 1 and 2 using a commercial multiplex PCR kit. CSF samples were obtained from patients with clinical suspicion of meningitis and encephalitis which may be caused by different microorganisms ...

  9. Two step culture for production of recombinant herpes simplex virus ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 (HSV-2) was the major cause of genital herpes in humans. The HSV-2 glycoprotein D (gD2) had been proved to be a potentially effective vaccine for treatment of genital herpes. The present study was to develop a two step culture to express the recombinant gD2 protein using the immobilized ...

  10. Monoclonal antibodies to Herpes Simplex Virus Type 2

    International Nuclear Information System (INIS)

    McLean-Pieper, C.S.

    1982-01-01

    In this thesis the production and characterisation of monoclonal antibodies to Herpes Simplex Virus Type 2 is described. The development of a suitable radioimmunoassay for the detection of anti-HSV-2 antibodies, and the selection of an optimal immunisation schedule, is given. Three assay systems are described and their reliability and sensitivity compared. (Auth.)

  11. Recurrent herpes simplex virus keratitis in a young Nigerian male ...

    African Journals Online (AJOL)

    A comprehensive case history and slit lamp examination revealed the presence of dendritic ulcer in the left eye of the patient. The patient was diagnosed with recurrent herpes simplex virus keratitis. An aggressive multi-treatment plan involving the use of antiviral, antibiotics, and anti inflammatory drugs was administered to ...

  12. Determination of human herpes simplex virus in clear cerebrospinal ...

    African Journals Online (AJOL)

    MICROBIO TA

    simplex viruses (HSV) type 1 and 2 using a commercial multiplex PCR kit. ... CSF and is the method most widely used for diagno- sing viral CNS .... of HSV-2 and purple– proportion of samples with dual infection (both HSV-1 and HSV-2).

  13. Radiation enhanced reactivation of herpes simplex virus: effect of caffeine.

    Science.gov (United States)

    Hellman, K B; Lytle, C D; Bockstahler, L E

    1976-09-01

    Ultaviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since cafeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation.

  14. Radiation enhaced reactivation of herpes simplex virus: effect of caffeine

    International Nuclear Information System (INIS)

    Hellman, K.B.; Lytle, C.D.; Bockstahler, L.E.

    1976-01-01

    Ultraviolet enhanced (Weigle) reactivation of UV-irradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cell monolayers was decreased by caffeine. X-ray enhanced reactivation of UV-irradiated virus in X-irradiated monolayers (X-ray reactivation) and UV- or X-ray-inactivated capacity of the cells to support unirradiated virus plaque formation were unaffected by caffeine. The results suggest that a caffeine-sensitive process is necessary for the expression of Weigle reactivation for herpes virus. Since caffeine did not significantly affect X-ray reactivation, different mechanisms may be responsible for the expression of Weigle reactivation and X-ray reactivation

  15. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  16. The molecular basis of herpes simplex virus latency

    Science.gov (United States)

    Nicoll, Michael P; Proença, João T; Efstathiou, Stacey

    2012-01-01

    Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency. PMID:22150699

  17. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    Science.gov (United States)

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  18. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  19. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication.

    Science.gov (United States)

    Edwards, Terri G; Bloom, David C; Fisher, Chris

    2018-03-15

    The ATM and Rad3-related (ATR) protein kinase and its downstream effector Chk1 are key sensors and organizers of the DNA damage response (DDR) to a variety of insults. Previous studies of herpes simplex virus 1 (HSV-1) showed no evidence for activation of the ATR pathway. Here we demonstrate that both Chk1 and ATR were phosphorylated by 3 h postinfection (h.p.i.). Activation of ATR and Chk1 was observed using 4 different HSV-1 strains in multiple cell types, while a specific ATR inhibitor blocked activation. Mechanistic studies point to early viral gene expression as a key trigger for ATR activation. Both pATR and pChk1 localized to the nucleus within viral replication centers, or associated with their periphery, by 3 h.p.i. Significant levels of pATR and pChk1 were also detected in the cytoplasm, where they colocalized with ICP4 and ICP0. Proximity ligation assays confirmed that pATR and pChk1 were closely and specifically associated with ICP4 and ICP0 in both the nucleus and cytoplasm by 3 h.p.i., but not with ICP8 or ICP27, presumably in a multiprotein complex. Chemically distinct ATR and Chk1 inhibitors blocked HSV-1 replication and infectious virion production, while inhibitors of ATM, Chk2, and DNA-dependent protein kinase (DNA-PK) did not. Together our data show that HSV-1 activates the ATR pathway at early stages of infection and that ATR and Chk1 kinase activities play important roles in HSV-1 replication fitness. These findings indicate that the ATR pathway may provide insight for therapeutic approaches. IMPORTANCE Viruses have evolved complex associations with cellular DNA damage response (DDR) pathways, which sense troublesome DNA structures formed during infection. The first evidence for activation of the ATR pathway by HSV-1 is presented. ATR is activated, and its downstream target Chk1 is robustly phosphorylated, during early stages of infection. Both activated proteins are found in the nucleus associated with viral replication compartments and in

  20. Computed tomography in young children with herpes simplex virus encephalitis

    International Nuclear Information System (INIS)

    Sugimoto, T.; Woo, M.; Okazaki, H.; Nishida, N.; Hara, T.; Yasuhara, A.; Kasahara, M.; Kobayashi, Y.

    1985-01-01

    Computed tomographic (CT) scans were obtained from eight infants and young children with herpes simplex virus encephalitis. In two cases the initial scan showed diffuse edematous changes as a mass effect without laterality. Unilateral localized low attenuation in the initial scan was evident 4 days after the onset in one patient, and high attenuation in the initial scan appeared on the 6th day in another patient, but in general, it was not possible to establish an early diagnosis of herpes simplex virus encephalitis from CT scan. In the longitudinal study the calcification with ventriculomegaly appeared in 3 of 5 survivors, and gyriform calcification in 2 of 3 patients, respectively. The appearance of multicystic encephalomalacia was evident in one patient 6 months after the onset of neonatal herpes simplex encephalitis. It is shown that the CT findings of neonates and young children with herpes simplex encephalitis are different from those of older children and adults, and the importance of longitudinal CT studies was stressed in clarifying the pathophysiology of the central nervous system involvement in survivors. (orig.)

  1. Genital herpes simplex virus infections in adults.

    Science.gov (United States)

    Mertz, G; Corey, L

    1984-02-01

    With the decline in prevalence of childhood-acquired oral-labial herpes simplex type 1 infections in some populations and the increasing incidence of genital herpes infections in adults, clinicians are more likely to see patients with severe primary, first-episode genital herpes infections. Complications of these primary infections may include aseptic meningitis and urine retention secondary to sacral radiculopathy or autonomic dysfunction. Presented are the clinical course of first-episode and recurrent infections, complications, diagnostic laboratory methods, and results of controlled clinical trials evaluating the efficacy of topical, intravenous, and oral preparations of acyclovir.

  2. Herpes simplex virus bronchiolitis in a cannabis user

    Directory of Open Access Journals (Sweden)

    Daniel H. Libraty

    2014-01-01

    Full Text Available Herpes simplex virus (HSV lower respiratory tract infections in adults are uncommon. We present a case of HSV bronchiolitis and pneumonitis in an immunocompetent individual, likely linked to chronic habitual marijuana use and a herpetic orolabial ulcer. The case serves as a reminder to consider HSV as a potential unusual cause of lower respiratory tract infection/inflammation in individuals with chronic habitual marijuana use.

  3. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Science.gov (United States)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  4. Identification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and Demonstration that it Interacts with ICP8, the Major DNA Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1992-10-20

    R . 1974 . Recovery of herpes simplex virus from human sacral gangl ions. N. Engl. J. Med. 291 :828-830. Baringer, J.R . 1975. Herpes simplex virus...AII’I fORCE MEDICAL C(NTEIt Title of Dissertation : "Ideatification and Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and...Demonstration that It Interacts with reps. the Major DNA Binding Protein of Herpes Simplex Virus" Name of Candidate: Lisa Shelton Doctor of

  5. A case of urinary retention in the early stages of herpes simplex virus type-1 encephalitis.

    Science.gov (United States)

    Fukuoka, Takuya; Nakazato, Yoshihiko; Miyake, Akifumi; Tamura, Naotoshi; Araki, Nobuo; Yamamoto, Toshimasa

    2017-06-01

    A 70-year-old man developed urinary retention in the early stages of herpes simplex virus (HSV) type-1 encephalitis. A nerve conduction study suggested latent myeloradiculitis. This is the first report of human herpes simplex virus-1 encephalitis followed by urinary retention at early stage from the onset like the Elsberg syndrome. Although relatively few similar cases have been reported, we consider that urinary retention is common in HSV-1 encephalitis, in which disturbances of consciousness usually require bladder catheterization from the onset. We further emphasize that urinary retention may occasionally occur in early stages of HSV-1 encephalitis, with a significant possibility of recovery. Copyright © 2017. Published by Elsevier B.V.

  6. RNA interference inhibits herpes simplex virus type 1 isolated from saliva samples and mucocutaneous lesions.

    Science.gov (United States)

    Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de

    2014-01-01

    The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.

  7. Association between psychopathic disorder and serum antibody to herpes simplex virus (type 1).

    Science.gov (United States)

    Cleobury, J F; Skinner, G R; Thouless, M E; Wildy, P

    1971-02-20

    The sera of a small of patients has been examined for herpes simplex virus antibody. Three clinically-defined groups of patients were compared: (a) aggressive psychopaths, (b) psychiatric controls, and (c) general hospital patients. The first group had an unusually high average kinetic neutralization constant against type 1 herpes simplex virus.

  8. Recidiverende erythema multiforme udløst af herpes simplex-virus

    DEFF Research Database (Denmark)

    Vestergård Grejsen, Dorthe; Henningsen, Emil

    2012-01-01

    We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described.......We describe two cases of recurrent erythema multiforme, both associated to infection with herpes simplex virus. The importance of subclinical herpes is illustrated. Antiviral and additional treatment is described....

  9. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  10. Herpes simplex virus 1 pneumonia: conventional chest radiograph pattern

    International Nuclear Information System (INIS)

    Umans, U.; Golding, R.P.; Duraku, S.; Manoliu, R.A.

    2001-01-01

    The aim of this study was to describe the findings on plain chest radiographs in patients with herpes simplex virus pneumonia (HSVP). The study was based on 17 patients who at a retrospective search have been found to have a monoinfection with herpes simplex virus. The diagnosis was established by isolation of the virus from material obtained during fiberoptic bronchoscopy (FOB) which also included broncho-alveolar lavage and tissue sampling. Fourteen patients had a chest radiograph performed within 24 h of the date of the FOB. Two radiographs showed no abnormalities of the lung parenchyma. The radiographs of the other 12 patients showed lung opacification, predominantly lobar or more extensive and always bilateral. Most patients presented with a mixed airspace and interstitial pattern of opacities, but 11 of 14 showed at least an airspace consolidation. Lobar, segmental, or subsegmental atelectasis was present in 7 patients, and unilateral or bilateral pleural effusion in 8 patients, but only in 1 patient was it a large amount. In contradiction to the literature which reports a high correlation between HSVP and acute respiratory distress syndrome (ARDS), 11 of 14 patients did not meet the pathophysiological criteria for ARDS. The radiologist may suggest the diagnosis of HSVP when bilateral airspace consolidation or mixed opacities appear in a susceptible group of patients who are not thought to have ARDS or pulmonary edema. The definite diagnosis of HSV pneumonia can be established only on the basis of culture of material obtained by broncho-alveolar lavage. (orig.)

  11. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1994-01-01

    Baringer, J.R. 1974. Recovery of herpes simplex virus from human sacral ganglions. N. Eng!. J. Med. 291:828-830. Baringer, J.R. 1976. The biology of herpes ...UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA~Binding Protein of Herpes Simplex Virus" beyond brief...Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA-Binding Protein of Herpes Simplex Virus Allen G. Albright Doctor of

  12. Burning mouth syndrome due to herpes simplex virus type 1.

    Science.gov (United States)

    Nagel, Maria A; Choe, Alexander; Traktinskiy, Igor; Gilden, Don

    2015-04-01

    Burning mouth syndrome is characterised by chronic orofacial burning pain. No dental or medical cause has been found. We present a case of burning mouth syndrome of 6 months duration in a healthy 65-year-old woman, which was associated with high copy numbers of herpes simplex virus type 1 (HSV-1) DNA in the saliva. Her pain resolved completely after antiviral treatment with a corresponding absence of salivary HSV-1 DNA 4 weeks and 6 months later. 2015 BMJ Publishing Group Ltd.

  13. Exploiting Herpes Simplex Virus Entry for Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Deepak Shukla

    2013-06-01

    Full Text Available Herpes Simplex virus (HSV is associated with a variety of diseases such as genital herpes and numerous ocular diseases. At the global level, high prevalence of individuals who are seropositive for HSV, combined with its inconspicuous infection, remains a cause for major concern. At the molecular level, HSV entry into a host cell involves multiple steps, primarily the interaction of viral glycoproteins with various cell surface receptors, many of which have alternate substitutes. The molecular complexity of the virus to enter a cell is also enhanced by the existence of different modes of viral entry. The availability of many entry receptors, along with a variety of entry mechanisms, has resulted in a virus that is capable of infecting virtually all cell types. While HSV uses a wide repertoire of viral and host factors in establishing infection, current therapeutics aimed against the virus are not as diversified. In this particular review, we will focus on the initial entry of the virus into the cell, while highlighting potential novel therapeutics that can control this process. Virus entry is a decisive step and effective therapeutics can translate to less virus replication, reduced cell death, and detrimental symptoms.

  14. Inhibition of herpes simplex virus replication by tobacco extracts.

    Science.gov (United States)

    Hirsch, J M; Svennerholm, B; Vahlne, A

    1984-05-01

    Herpes simplex virus type 1 (HSV-1) has been associated with the genesis of leukoplakias, epithelial atypia, and oral cancer. Tobacco habits, such as snuff dipping, are also definitely correlated with this type of lesion. The normal cytolytic HSV-1 infection can, after in vitro inactivation, transform cells. Extracts of snuff were prepared and assayed for their ability to inhibit HSV-1 replication. Plaque formation assays of HSV-1 in the presence of snuff extract showed that a reduced number of plaques was formed. Different batches of one brand of snuff were tested for inhibition of herpes simplex virus (HSV) production. More than 99% inhibition of 24-hr HSV production was obtained with undiluted batches. The 1:5 dilutions of snuff had an inhibitory effect of 85% and 1:25 dilutions, 39%. In agreement, the attachment of the virus to the host cell and penetration of the virus to the cell nuclei were found to be inhibited as was the synthesis of viral DNA. Nicotine had an inhibitory effect, while aromatic additions to snuff were found to have no major inhibitory effect on HSV replication. Snuff extracts were prepared from different brands of snuff reported to contain high and low quantities of tobacco-specific N-nitrosamines. Brands with reported high levels of tobacco-specific N-nitrosamines had significantly greater ability to inhibit HSV replication. In conclusion, this study has shown that extracts of snuff have inhibitory effects on the production of cytolytic HSV-1 infections. A chronic snuff dipper keeps tobacco in the mouth for the major part of the day. Thus, virus shed in the oral cavity in connection with a reactivated latent HSV-1 infection has great possibilities of being affected by snuff or derivatives of snuff. It is suggested that an interaction between tobacco products and HSV-1 might be involved in the development of dysplastic lesions in the oral cavity.

  15. Unusual Initial Presentation of Herpes Simplex Virus as Inguinal Lymphadenopathy

    Directory of Open Access Journals (Sweden)

    Sarah A. Fleming

    2015-01-01

    Full Text Available Genital herpes simplex virus (HSV infections are a common cause of inguinal lymphadenopathy. However, surgical excision of enlarged inguinal nodes is almost never performed to initially diagnose genital herpes simplex virus, due to the distinct external presentation of genital herpetic vesicles that usually occur with the first symptoms of infection. Therefore, the histologic and immunophenotypic features of HSV-associated inguinal lymphadenopathy are unfamiliar to most pathologists. The current report describes the lymph node pathology of two immunocompetent patients, whose initial HSV diagnosis was established through surgical excision of enlarged inguinal lymph nodes. Histologic examination showed features consistent with viral lymphadenopathy, including florid follicular hyperplasia, monocytoid B-cell hyperplasia, and paracortical hyperplasia without extensive necrosis. Immunohistochemical stains for HSV antigens, using polyclonal anti-HSV I and II antibodies, demonstrate strong immunoreactivity for HSV in a small number of cells in the subcapsular sinuses, especially in areas with monocytoid B-cell hyperplasia. Rare scattered HSV-positive cells also are identified in paracortical areas and germinal centers. We conclude that an initial diagnosis of genital HSV infection may be established by inguinal lymph node biopsy.

  16. Neonatal herpes simplex virus infection: epidemiology and treatment.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Autophagy interaction with herpes simplex virus type-1 infection

    Science.gov (United States)

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  18. Structural basis for the antibody neutralization of Herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Chung; Lin, Li-Ling [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Chan, Woan-Eng [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ko, Tzu-Ping [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Lai, Jiann-Shiun [Development Center for Biotechnology, New Taipei City 221, Taiwan (China); Ministry of Economic Affairs, Taipei 100, Taiwan (China); Wang, Andrew H.-J., E-mail: ahjwang@gate.sinica.edu.tw [Academia Sinica, Taipei 115, Taiwan (China); Academia Sinica, Taipei 115, Taiwan (China); Taipei Medical University, Taipei 110, Taiwan (China)

    2013-10-01

    The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317 Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.

  19. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  20. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus.

    Science.gov (United States)

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-03-01

    The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these features with Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus-16 positivity. Herpes Simplex virus was positive in six (9%) cases and this was not statistically significant. The number of Epstein Barr virus positive cases was 23 (35%) and it was statistically significant. Human Papilloma virus positivity in 14 cases (21%) was statistically significant. Except basal cell degeneration in Herpes Simplex virus positive cases, we did not observe any significant correlation between virus positivity and demographic or histopathological features. However an increased risk of Epstein Barr virus and Human Papilloma virus infection was noted in oral lichen planus cases. Taking into account the oncogenic potential of both viruses, oral lichen planus cases should be detected for the presence of these viruses.

  1. Latency in vitro using irradiated Herpes simplex virus

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Human embryonic fibroblasts infected with u.v.-irradiated herpes simplex virus type 2 (HSV-2, strain 186) and maintained at 40.5 0 C did not yield detectable virus. Virus synthesis was induced by temperature shift-down to 36.5 0 C. The induced virus grew very poorly and was inactivated very rapidly at 40.5 0 C. Non-irradiated virus failed to establish latency at 40.5 0 C in infected cells. Enhanced reactivation of HSV-2 was observed when latently infected cultures were superinfected with human cytomegalovirus (HCMV) or irradiated with a small dose of u.v. light at the time of temperature shift-down. HCMV did not enhance synthesis of HSV-2 during a normal growth cycle but did enhance synthesis of u.v.-irradiated HSV-2. These observations suggest that in this in vitro latency system, some HSV genomes damaged by u.v. irradiation were maintained in a non-replicating state without being destroyed or significantly repaired. (author)

  2. Radioimmunoassay of Herpes simplex virus antibody: correlation with ganglionic infection

    International Nuclear Information System (INIS)

    Forghani, B.; Klassen, T.; Baringer, J.R.

    1977-01-01

    Results of herpes simplex virus (HSV) isolation from a series of human post-mortem trigeminal thoracic and sacral ganglia were correlated with HSV antibody type(s) detected in the sera by radioimmunoassay (RIA). HSV type I was isolated from trigeminal ganglia of 44 out of 90 individuals, from thoracic ganglia of 1 out of 25, and from sacral ganglia of 1 out of 68 cases. HSV type was recovered from sacral ganglia of 8 out of 68 individuals. In all cases in which an HSV was isolated from ganglia and was available for testing, homologous, type-specific antibody was demonstrable, and in a few instances antibody to the heterologous HSV was also detected. In those individuals in which HSV type I was isolated from trigeminal ganglia and HSV type 2 from sacral ganglia, antibody to both virus types was present in the sera, indicating that simultaneous latent infections with each of the two viruses can occur, and that antibody is produced to each virus independently. Antibody to HSV type 1, 2 or both types was demonstrated in 8 out of 10 cases in which virus isolation attempts were negative, suggesting either a higher sensitivity of RIA for detecting HSV infection, or the presence of latent HSV at some other site in the body which was not sampled. (author)

  3. Virus specific antigens in mammalian cells infected with herpes simplex virus

    Science.gov (United States)

    Watson, D. H.; Shedden, W. I. H.; Elliot, A.; Tetsuka, T.; Wildy, P.; Bourgaux-Ramoisy, D.; Gold, E.

    1966-01-01

    Antisera to specific proteins in herpes simplex infected cells were produced by immunization of rabbits with infected rabbit kidney cells. These antisera were highly virus specific and produced up to twelve lines in immunodiffusion tests against infected cell extracts. Acrylamide electrophoresis and immunoelectrophoresis revealed up to ten virus specific proteins of varying size. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4288648

  4. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate.

    OpenAIRE

    Coen, D M; Kosz-Vnenchak, M; Jacobson, J G; Leib, D A; Bogard, C L; Schaffer, P A; Tyler, K L; Knipe, D M

    1989-01-01

    Herpes simplex virus infection of mammalian hosts involves lytic replication at a primary site, such as the cornea, translocation by axonal transport to sensory ganglia and replication, and latent infection at a secondary site, ganglionic neurons. The virus-encoded thymidine kinase, which is a target for antiviral drugs such as acyclovir, is not essential for lytic replication yet evidently is required at the secondary site for replication and some phase of latent infection. To determine the ...

  5. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis

    Science.gov (United States)

    Phadke, Varun K.; Friedman-Moraco, Rachel J.; Quigley, Brian C.; Farris, Alton B.; Norvell, J. P.

    2016-01-01

    Abstract Background: Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. Methods: We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. Results: A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Conclusions: Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease. PMID:27759636

  6. Herpes Simplex Virus Infection Mimicking Bullous Disease in an Immunocompromised Patient

    Directory of Open Access Journals (Sweden)

    Anne L.Y. Lecluse

    2010-06-01

    Full Text Available Immunodeficient patients are at risk of developing extended or atypical herpes simplex virus infections, which can be easily misdiagnosed. We present the case of a 79-year-old, treatment-induced (oral corticosteroid, immunocompromised female with an extensive atypical herpes simplex virus infection. This patient presented with multiple erosions and vesicles on the trunk with a subacute onset. The clinical differential diagnosis was herpes simplex infection, herpes zoster infection, pemphigus vulgaris or bullous pemphigoid. Due to the atypical clinical presentation and negative Tzanck test, suspicion of viral infection was low. High-dose steroid treatment was initiated. Subsequent histopathology, however, showed a herpes simplex virus infection. After discontinuing steroid treatment and initiating antiviral treatment, the patient recovered within a week. Emphasis must be placed on the importance of clinical awareness of extended and clinically atypical herpes simplex infections in immunocompromised patients. A negative Tzanck test does not rule out the possibility of a herpes infection.

  7. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  8. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    Science.gov (United States)

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  9. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  10. Superficial herpes simplex virus wound infection following lung transplantation.

    Science.gov (United States)

    Karolak, Wojtek; Wojarski, Jacek; Zegleń, Sławomir; Ochman, Marek; Urlik, Maciej; Hudzik, Bartosz; Wozniak-Grygiel, Elzbieta; Maruszewski, Marcin

    2017-08-01

    Surgical site infections (SSIs) are infections of tissues, organs, or spaces exposed by surgeons during performance of an invasive procedure. SSIs are classified into superficial, which are limited to skin and subcutaneous tissues, and deep. The incidence of deep SSIs in lung transplant (LTx) patients is estimated at 5%. No reports have been published as to the incidence of superficial SSIs specifically in LTx patients. Common sense would dictate that the majority of superficial SSIs would be bacterial. Uncommonly, fungal SSIs may occur, and we believe that no reports exist as to the incidence of viral wound infections in LTx patients, or in any solid organ transplant patients. We report a de novo superficial wound infection with herpes simplex virus following lung transplantation, its possible source, treatment, and resolution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Neonatal herpes simplex virus infections: where are we now?

    Science.gov (United States)

    Thompson, Clara; Whitley, Richard

    2011-01-01

    Neonatal herpes simplex virus (HSV) infection continues to cause significant morbidity and mortality despite advances in diagnosis and treatment. Prior to antiviral therapy, 85% of patients with disseminated HSV disease and 50% of patients with central nervous system disease died within 1 year. The advent of antiviral therapy has dramatically improved the prognosis of neonatal HSV with initially vidarabine and subsequently acyclovir increasing the survival rate of infected neonates and improving long-term developmental outcomes. More recently, polymerase chain reaction has allowed earlier identification of HSV infection and provided a quantitative guide to treatment. Current advances in the treatment of neonatal HSV infections are looking toward the role of prolonged oral suppression therapy in reducing the incidence of recurrent disease. Of concern, however, are increasing reports of acyclovir-resistant HSV isolates in patients following prolonged therapy.

  12. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  13. The Laboratory Diagnosis of Herpes Simplex Virus Infections

    Directory of Open Access Journals (Sweden)

    Ameeta Singh

    2005-01-01

    Full Text Available Herpes simplex virus (HSV types 1 and 2 cause genital herpes infections and are the most common cause of genital ulcer disease in industrialized nations. Although these infections are very common, the majority of them remain underdiagnosed because they are asymptomatic or unrecognized. A clinical diagnosis of genital herpes should always be confirmed by laboratory testing; this can be accomplished through the use of direct tests for viral isolation, the detection of antigen or, more recently, the detection of HSV DNA using molecular diagnostic techniques. Testing for serotypes is recommended because of the different prognostic and counselling implications. Type-specific HSV serology is becoming more readily available and will enhance the ability to make the diagnosis and guide clinical management in select patients.

  14. Genome sequence of herpes simplex virus 1 strain KOS.

    Science.gov (United States)

    Macdonald, Stuart J; Mostafa, Heba H; Morrison, Lynda A; Davido, David J

    2012-06-01

    Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain.

  15. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    Science.gov (United States)

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  16. A Fusogenic Oncolytic Herpes Simplex Virus for Therapy of Advanced Ovarian Cancer

    National Research Council Canada - National Science Library

    Zhang, Xiaoliu

    2004-01-01

    The tasks that were originally planned for the first year of this 3 year project are to demonstrate that the fusogenic oncolytic herpes simplex viruses are potent anti-tumor agents for advanced ovarian cancer...

  17. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  18. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2005-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICPO mutants in prostate cancer cells given the relationship between ICPO and two tumor...

  19. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2006-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICP0 mutants in prostate cancer cells given the relationship between ICP0 and two tumor...

  20. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  1. Herpes simplex virus type 2: Cluster of unrelated cases in an intensive care unit.

    Science.gov (United States)

    Troché, Gilles; Marque Juillet, Stephanie; Burrel, Sonia; Boutolleau, David; Bédos, Jean-Pierre; Legriel, Stephane

    2016-10-01

    Herpes simplex viruses, which are associated with various clinical manifestations, can be transmitted to critically ill patients from other patients or health care staff. We report an apparent outbreak of mucocutaneous herpes simplex virus 2 infections (5 cases in 10 weeks). An epidemiologic investigation and genotype analysis showed no connections among the 5 cases. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Atypical oral presentation of herpes simplex virus infection in a patient after orthotopic liver transplantation.

    Science.gov (United States)

    Burke, E M; Karp, D L; Wu, T C; Corio, R L

    1994-01-01

    An atypical oral presentation of herpes simplex virus infection in a 49-year-old woman after orthotopic liver transplantation is reported. Clinically, the differential diagnosis included chronic hyperplastic candidiasis, nodular leukoplakia of undetermined etiology, and malignant neoplasm. An excisional biopsy revealed herpesvirus infection, and immunoperoxidase staining confirmed herpes simplex virus infection. This report describes the clinical and histologic appearance of these lesions and the course and treatment of the patient.

  3. Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral lichen planus

    OpenAIRE

    Yildirim, Benay; Sengüven, Burcu; Demir, Cem

    2011-01-01

    Objectives: The aim of the present study was to assess the prevalence of Herpes Simplex virus, Epstein Barr virus and Human Papilloma virus -16 in oral lichen planus cases and to evaluate whether any clinical variant, histopathological or demographic feature correlates with these viruses. Study Design: The study was conducted on 65 cases. Viruses were detected immunohistochemically. We evaluated the histopathological and demographic features and statistically analysed correlation of these...

  4. Hospital risk management of cutaneous herpes simplex virus infection.

    Science.gov (United States)

    Zhu, F; Zhang, J; Feng, J; Yang, H

    2016-10-01

    The epidemiology of cutaneous herpes simplex infection (CHSI) has dramatically changed over the past several decades. Valaciclovir is one of a new generation of antiviral medications that has expanded treatment options for the most common cutaneous manifestations of herpes simplex virus. However, the efficacy and safety of formulations with different doses of valaciclovir remain unclear. To carry out hospital risk management by ascertaining the incidence and risk of CHSI in patients during treatment with varying doses of valaciclovir. The PubMed, MEDLINE and Web of Science electronic databases were systematically searched from database inception to date of searching. Efficacy of drug treatment was measured by average easement score (AES). Safety was characterized as the proportion of patients with drug adverse reactions (DARs) such as fever, dizziness, headache, anxiety, irritability and yellowing of the skin. Outcomes for continuous and dichotomous data were estimated by standard mean difference (SMD) and risk ratio (RR), respectively. Five randomized controlled trials involving 1753 randomized participants for efficacy assessment and 1874 randomized participants for safety assessment were identified. Valaciclovir dose increasing from 1000 mg/day improved AES only moderately, but significantly promoted the incidence of DARs. Twice-daily treatment showed no increase in therapeutic effect but greatly increased DAR incidence. The valaciclovir dose that produced a reduction in AES was 1000 mg/day: SMD = -0.73 (95% CI -0.98 to 0.48; P < 0.01) and RR = 0.95 (95% CI 0.81-1.09; P < 0.002). Increasing the daily dose of valaciclovir does not substantially improve therapeutic efficacy for CHSI but may raise DAR incidence. Drug doses of 1000 and 2000 mg/day show no significant difference in efficacy scores, but the latter exhibits a higher incidence of DARs. The dose-dependent, long-term efficacy and safety of valaciclovir remain to be explored. © 2016 British Association of

  5. Detection of Herpes Simplex Virus DNA in Pseudoexfoliation Syndrome

    Directory of Open Access Journals (Sweden)

    Masoomeh Eghtedari

    2009-06-01

    Full Text Available Background: Pseudoexfoliation syndrome is one of the mostcommon identifiable causes of open angle glaucoma. It hasunknown etiology and pathogenesis. Infection, possibly viral,is one of the proposed pathogenic mechanisms in this condition.In the present study the presence of herpes simplex virus(HSV in specimens of anterior lens capsule of patients withpseudoexfoliation syndrome has been assessed.Methods: The presence of HSV- DNA was searched by usingpolymerase chain reaction method in specimens of anteriorlens capsule (5 mm diameter of 50 patients with pseudoexfoliationsyndrome (study group and 50 age-matchedpatients without the disease (control group who underwentcataract or combined cataract and glaucoma surgery duringa one-year (2006-2007 period in Khalili Hospital, Shiraz,Iran. The results were compared statistically with Chisquaretest and independent samples t test using SPSS software(version 11.5.Results: HSV type I DNA was detected in 18% of the patientsin the study group compared with 2% in the control group (Chisquare test, P = 0.008. The difference between the ranges ofintraocular pressure in the two groups was not statistically significant.Conclusion: The presence of HSV type I DNA suggests thepossible relationship between the virus and pseudoexfoliationsyndrome. It may be a treatable etiology in this multi-factorialdisorder and may help to future management of patients; especiallyto prevent some of the complications in this syndrome.

  6. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  7. Preparation of herpes simplex virus-infected primary neurons for transmission electron microscopy.

    Science.gov (United States)

    Miranda-Saksena, Monica; Boadle, Ross; Cunningham, Anthony L

    2014-01-01

    Transmission electron microscopy (TEM) provides the resolution necessary to identify both viruses and subcellular components of cells infected with many types of viruses, including herpes simplex virus. Recognized as a powerful tool in both diagnostic and research-based virology laboratories, TEM has made possible the identification of new viruses and has contributed to the elucidation of virus life cycle and virus-host cell interaction. Whilst there are many sample preparation techniques for TEM, conventional processing using chemical fixation and resin embedding remains a useful technique, available in virtually all EM laboratories, for studying virus/cell ultrastructure. In this chapter, we describe the preparation of herpes simplex virus-infected primary neurons, grown on plastic cover slips, to allow sectioning of neurons and axons in their growth plane. This technique allows TEM examination of cell bodies, axons, growth cones, and varicosities, providing powerful insights into virus-cell interaction.

  8. [Herpes simplex virus and malignancies of female genital organs].

    Science.gov (United States)

    Cokić-Damjanović, J; Horvat, E; Balog, A

    2001-01-01

    Primary herpes simplex virus (HSV) infections of female genital tract usually end with remission, while the virus remains in the organism--almost in the sacral ganglion in a latent form, protected from humoral and cellular immunity. Stress induces the virus and the result is recurrent genital infection. Frequent exacerbations damage some parts of vital cellular structures without cytolysis, but stimulate malignant transformations. Vulvar (portio vaginalis uteri) and endometrial tumor tissue samples were analyzed for HSV by direct and indirect fluorescent antibody technique (FAT). Pre and postoperative sera samples were analyzed for presence of anti-HSV antibodies--IgM and IgG by Elisa-Enzygnost method. Acellular filtrates obtained by ultrasonic destruction of malignant tissues were used as inoculum for rabbit corneal scarification. Out of 63 tissue samples, 42 were positive for HSV antigen i.e. 67.3%. According to location 50% of vulvar, 76% PVU and 65% of endometrial tissues were positive. This antigen induces production of virus specific antibodies. Two types of antigens are known: the so-called T-antigen persisting in the cell nucleus and cell-surface antigen--product of the viral genome and can be evidenced by immunofluorescence method. Anti HSV antibodies were present in 63 preoperative serum samples and belonged to IgG group, but not one to IgM, implying a long and chronic course of infection excluding acute primary. Out of 38 postoperative serums the titer of antibodies decreased in 36 evidently, but in two samples remained unchanged. Two samples of endometrial and one from PVU origin contained HSV antigen type one. In the remaining 16 samples HSV 2 antigen was present. Rabbit corneal scarification was the proof of complete infectious virus in malignant tissues. Acellular filtrate of malignant tissues served as inoculum. Corneas of examined rabbits showed a mild inflammation after 24 hours which disappeared in the next 24 hours. We could not isolate the

  9. Piroxicam inhibits herpes simplex virus type 1 infection in vitro.

    Science.gov (United States)

    Astani, A; Albrecht, U; Schnitzler, P

    2015-05-01

    Piroxicam is a potent, nonsteroidal, anti-inflammatory agent (NSAID) which also exhibits antipyretic activity. The antiviral effect of piroxicam against herpes simplex virus type 1 (HSV-1) was examined in vitro on RC-37 monkey kidney cells using a plaque reduction assay. Piroxicam was dissolved in ethanol or dimethylsulfoxide (DMSO) and the 50% inhibitory concentration (IC50) was determined at 4 μg/ml and 75 μg/ml, respectively. The IC50 for the standard antiherpetic drug acyclovir was determined at 1.6 μM. At non-cytotoxic concentrations of these piroxicam solutions, plaque formation was significantly reduced by 62.4% for ethanolic piroxicam and 72.8% for piroxicam in DMSO. The mode of antiviral action of these drugs was assessed by time-on-addition assays. No antiviral effect was observed when cells were incubated with piroxicam prior to infection with HSV-1 or when HSV-1 infected cells were treated with dissolved piroxicam. Herpesvirus infection was, however, significantly inhibited when HSV-1 was incubated with piroxicam prior to the infection of cells. These results indicate that piroxicam affected the virus before adsorption, but not after penetration into the host cell, suggesting that piroxicam exerts a direct antiviral effect on HSV-1. Free herpesvirus was sensitive to piroxicam in a concentration-dependent manner and the inhibition of HSV-1 appears to occur before entering the cell but not after penetration of the virus into the cell. Considering the lipophilic nature of piroxicam, which enables it to penetrate the skin, it might be suitable for topical treatment of herpetic infections.

  10. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    International Nuclear Information System (INIS)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-01-01

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1 phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1

  11. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivites of virus functions.

    Science.gov (United States)

    Eglin, R P; Gugerli, P; Wildy, P

    1980-07-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).

  12. Ultraviolet irradiation of herpes simplex virus (type 1): delayed transcription and comparative sensitivities of virus functions

    International Nuclear Information System (INIS)

    Eglin, R.P.; Gugerli, P.; Wildy, P.

    1980-01-01

    The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription; unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II). (U.K.)

  13. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    Science.gov (United States)

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  14. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  15. Ribonucleotides Linked to DNA of Herpes Simplex Virus Type 1

    Science.gov (United States)

    Hirsch, Ivan; Vonka, Vladimír

    1974-01-01

    Cells of a continuous cell line derived from rabbit embryo fibroblasts were infected with herpes simplex type 1 virus (HSV-1) and maintained in the presence of either [5-3H]uridine or [methyl-3H]thymidine or 32PO43−. Nucleocapsids were isolated from the cytoplasmic fraction, partially purified, and treated with DNase and RNase. From the pelleted nucleocapsids, DNA was extracted and purified by centrifugation in sucrose and cesium sulfate gradients. The acid-precipitable radioactivity of [5-3H]uridine-labeled DNA was partially susceptible to pancreatic RNase and alkaline treatment; the susceptibility to the enzyme decreased with increasing salt concentration. No drop of activity of DNA labeled with [3H]thymidine was observed either after RNase or alkali treatment. Base composition analysis of [5-3H]uridine-labeled DNA showed that the radioactivity was recovered as uracil and cytosine. In the cesium sulfate gradient, the purified [5-3H]uridine-labeled DNA banded at the same position as the 32P-labeled DNA. The present data tend to suggest that ribonucleotide sequences are present in HSV DNA, that they are covalently attached to the viral DNA, and that they can form double-stranded structures. PMID:4364894

  16. DNA immunization against experimental genital herpes simplex virus infection.

    Science.gov (United States)

    Bourne, N; Stanberry, L R; Bernstein, D I; Lew, D

    1996-04-01

    A nucleic acid vaccine, expressing the gene encoding herpes simplex virus (HSV) type 2 glycoprotein D (gD2) under control of the cytomegalovirus immediate-early gene promoter, was used to immunize guinea pigs against genital HSV-2 infection. The vaccine elicited humoral immune responses comparable to those seen after HSV-2 infection. Immunized animals exhibited protection from primary genital HSV-2 disease with little or no development of vesicular skin lesions and significantly reduced HSV-2 replication in the genital tract. After recovery from primary infection, immunized guinea pigs experienced significantly fewer recurrences and had significantly less HSV-2 genomic DNA detected in the sacral dorsal root ganglia compared with control animals. Thus, immunization reduced the burden of latent infection resulting from intravaginal HSV-2 challenge, and a nucleic acid vaccine expressing the HSV-2 gD2 antigen protected guinea pigs against genital herpes, limiting primary infection and reducing the magnitude of latent infection and the frequency of recurrent disease.

  17. [Meningoradiculitis caused by herpes simplex virus type 2].

    Science.gov (United States)

    Bollen, A E; Venema, A W; Veldkamp, K E

    2007-10-27

    A 24-year-old immune-competent woman was admitted to hospital with a three-day history of fever and headache. On examination bilateral facial nerve palsy, lumbosacral radicular pain, reduced sacral sensibility and urinary retention were found. Open perianal lesions were suspect for genital herpes. The symptoms were compatible with a meningoradiculitis including a sacral polyradiculitis. On testing, cerebrospinal fluid was found to be abnormal with a lymphocytic cell reaction. Polymerase chain reaction (PCR) of cerebrospinal fluid and of the perianal lesions was positive for herpes simplex virus type 2 (HSV-2). An MRI scan showed colouration of part of the cauda equina. The patient was treated by intravenous injections of acyclovir 10 mg/kg t.i.d. for 21 days, after which she completely recovered. HSV-2 infection of the nervous system can cause lymphocytic, and sometimes recurrent meningitis as well as sacral polyradiculitis. It may also occur without any symptomatic genital herpes infection. A positive result from a PCR test of the cerebrospinal fluid confirms this diagnosis. Treatment with acyclovir should be started as soon as possible.

  18. Genital herpes simplex virus infections: clinical manifestations, course, and complications.

    Science.gov (United States)

    Corey, L; Adams, H G; Brown, Z A; Holmes, K K

    1983-06-01

    The clinical course and complications of 268 patients with first episodes and 362 with recurrent episodes of genital herpes infection were reviewed. Symptoms of genital herpes were more severe in women than in men. Primary first-episode genital herpes was accompanied by systemic symptoms (67%), local pain and itching (98%), dysuria (63%), and tender adenopathy (80%). Patients presented with several bilaterally distributed postular ulcerative lesions that lasted a mean of 19.0 days. Herpes simplex virus was isolated from the urethra, cervix, and pharynx of 82%, 88%, and 13% of women with first-episode primary genital herpes, and the urethra and pharynx of 28% and 7% of men. Complications included aseptic meningitis (8%), sacral autonomic nervous system dysfunction (2%), development of extragenital lesions (20%), and secondary yeast infections (11%). Recurrent episodes were characterized by small vesicular or ulcerative unilaterally distributed lesions that lasted a mean of 10.1 days. Systemic symptoms were uncommon and 25% of recurrent episodes were asymptomatic. The major concerns of patients were the frequency of recurrences and fear of transmitting infection to partners or infants.

  19. Transmission of herpes simplex virus type 2 among factory workers in Ethiopia

    NARCIS (Netherlands)

    Kebede, Yenew; Dorigo-Zetsma, Wendelien; Mengistu, Yohannes; Mekonnen, Yared; Schaap, Ab; Wolday, Dawit; Sanders, Eduard J.; Messele, Tsehaynesh; Coutinho, Roel A.; Dukers, Nicole H. T. M.

    2004-01-01

    The herpes simplex virus type 2 (HSV-2) and human immunodeficiency virus (HIV) epidemics are believed to fuel each other, especially in sub-Saharan countries. In Ethiopia during 1997 - 2002, a retrospective study was conducted to examine risk factors for infection and transmission of HSV-2, in a

  20. Differential in situ hybridization for herpes simplex virus typing in routine skin biopsies

    NARCIS (Netherlands)

    Botma, H. J.; Dekker, H.; van Amstel, P.; Cairo, I.; van den Berg, F. M.

    1995-01-01

    A herpes simplex virus (HSV) type 2 specific recombinant plasmid probe designated pH2S3 was constructed from non-HSV-1 crossreactive regions of the HSV-2 genome. DNA in situ hybridization on in vitro reconstructed tissue samples of sheep collagen matrix impregnated with herpes virus-infected human

  1. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  2. Whole Blood Polymerase Chain Reaction in a Neonate with Disseminated Herpes Simplex Virus Infection and Liver Failure

    Directory of Open Access Journals (Sweden)

    Jennifer A. Scoble

    2013-10-01

    Full Text Available A late preterm neonate born by cesarean section with intact membranes presented at 9 days of life with shock and liver failure. Surface cultures were negative but whole blood polymerase chain reaction was positive for herpes simplex virus type 2, underscoring the value of this test in early diagnosis of perinatally acquired disseminated herpes simplex virus infection without skin lesions.

  3. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    Science.gov (United States)

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  4. Estudio de sensibilidad antiviral de Virus Herpes simplex en pacientes trasplantados Antiviral sensitivity of Herpes simplex virus in immunocompromised patients

    Directory of Open Access Journals (Sweden)

    H. Illán

    2004-06-01

    Full Text Available La resistencia de virus Herpes simplex (VHS a Aciclovir (ACV ocurre en aproximadamente un 5% de los pacientes inmunocomprometidos. El tratamiento con análogos de nucleósidos, provoca la aparición de cepas VHS-ACV resistentes (ACVr. El mecanismo responsable de la resistencia a ACV son las mutaciones en los genes que codifican las enzimas timidina quinasa y/o ADN- polimerasa. En un estudio de aislamientos clinicos de pacientes inmunodeficientes, se encontró que el 96% de los VHS ACVr son debidos a una baja producción o ausencia de la enzima y un4% son cepas con alteración de la especificidad por el sustrato, casi no se obtuvieron cepas mutantes en la ADN-polimerasa (15. Los análogos de Pirofosfatos generan resistencia por mutación en el gen de la ADN-polimerasa. En este trabajo se presenta la metodología empleada para el estudio de los perfiles de sensibilidad a ACV y a Foscarnet (PFA en una población de inmunosuprimidos. Se estudiaron 46 aislamientos de VHS en fibroblastos humanos, provenientes de muestras de trasplantados con lesiones vesiculares. De los 46 aislamientos, 26 resultaron VHS-1 y 20 VHS-2, tipificados por Inmunofluorescencia (IF con anticuerpos monoclonales. Posteriormente se amplificaron y se les determinó su perfíl de sensibilidad en células Vero, utilizando 100 Dosis infectivas en cultivo de tejidos 50% (DICT50 de cada cepa viral y las drogas antivirales en diferentes concentraciones. La concentración inhibitoria 50%(CI50 se calculó a partir del porcentaje de inhibición del efecto citopático en función de la concentración de la droga. Ninguno de los aislamientos resultó resistente al PFA y solo dos de ellos, uno de VHS-1 y uno de VHS-2, fueron resistentesa ACV.The Herpes simplex Virus (HSV resistance to acyclovir (ACV occurs in a 5% of the inmunocompromised patients, approximately. The treatment with analogs of nucleosides, causes the appearance of resistent HSV-ACV stocks(ACVr which can be produced by

  5. Burden of herpes simplex virus encephalitis in the United States.

    Science.gov (United States)

    Modi, S; Mahajan, Abhimanyu; Dharaiya, D; Varelas, P; Mitsias, P

    2017-06-01

    Herpes simplex virus encephalitis (HSVE) is a disease of public health concern, but its burden on the healthcare of United States has not been adequately assessed recently. We aimed to define the incidence, complications and outcomes of HSVE in the recent decade by analyzing data from a nationally representative database. Healthcare Cost and Utilization Project databases were utilized to identify patients with primary discharge diagnosis of HSVE. Annual hospitalization rate was estimated and several preselected inpatient complications were identified. Regression analyses were used to identify mortality predictors. Key epidemiological factors were compared with those from other countries. Total 4871 patients of HSVE were included in our study. The annual hospitalization rate was 10.3 ± 2.2 cases/million in neonates, 2.4 ± 0.3 cases/million in children and 6.4 ± 0.4 cases/million in adults. Median age was 57 years and male:female incidence ratio was 1:1. Rates of some central nervous system complications were seizures (38.4%), status epilepticus (5.5%), acute respiratory failure (20.1%), ischemic stroke (5.6%) and intracranial hemorrhage (2.7%), all of which were significantly associated with mortality. In-hospital mortality in neonates, children and adults were 6.9, 1.2 and 7.7%, respectively. HSVE still remains a potentially lethal infectious disease with high morbidity and mortality. Most recent epidemiological data in this study may help understanding this public health disease, and the patient outcome data may have prognostic significance.

  6. Imaging findings of neonatal herpes simplex virus type 2 encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Vossough, Arastoo; Zimmerman, Robert A.; Bilaniuk, Larissa T.; Schwartz, Erin M. [University of Pennsylvania, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2008-04-15

    The CT, MR, and diffusion-weighted initial and follow-up imaging findings in neonatal herpes simplex virus type 2 (HSV-2) encephalitis were assessed. The clinical, laboratory and imaging findings in 12 patients (eight girls and four boys) with proven neonatal HSV-2 encephalitis with follow-up were retrospectively reviewed. Patterns of brain involvement and distribution of lesions were studied and the contribution of diffusion-weighted imaging to the imaging diagnosis of this disease was explored. A total of 24 CT and 22 MRI studies were performed with a mean follow-up time of 38 months. Neonatal HSV-2 encephalitis can be multifocal or limited to only the temporal lobes, brainstem, or cerebellum. The deep gray matter structures were involved in 57% of patients, and hemorrhage was seen in more than half of the patients. CT images were normal or showed mild abnormalities in the early stages of the disease. Conventional MR images may be normal in the early stages of the disease. Lesions were initially seen only by diffusion-weighted imaging in 20% of the patients and this modality showed a substantially more extensive disease distribution in an additional 50% of patients. In 40% of patients, watershed distribution ischemic changes were observed in addition to areas of presumed direct herpetic necrosis. Neonatal HSV-2 encephalitis has a variable imaging appearance. Diffusion-weighted MRI is an important adjunct in the imaging evaluation of this disease. Watershed distribution ischemia in areas remote from the primary herpetic lesions may be seen. (orig.)

  7. Ganciclovir nucleotides accumulate in mitochondria of rat liver cells expressing the herpes simplex virus thymidine kinase gene

    NARCIS (Netherlands)

    van der Eb, Marjolijn M.; Geutskens, Sacha B.; van Kuilenburg, André B. P.; van Lenthe, Henk; van Dierendonck, Jan-Hein; Kuppen, Peter J. K.; van Ormondt, Hans; van de Velde, Cornelis J. H.; Wanders, Ronald J. A.; van Gennip, Albert H.; Hoeben, Rob C.

    2003-01-01

    BACKGROUND: Ganciclovir exhibits broad-spectrum activity against DNA viruses such as cytomegaloviruses, herpes simplex viruses, varicella-zoster virus, Epstein-Barr virus and human herpes virus-6. Ganciclovir is widely applied for anti-herpetic treatment, cytomegalovirus prophylaxis after organ

  8. Oncolytic virotherapy using herpes simplex virus: how far have we come?

    Directory of Open Access Journals (Sweden)

    Sokolowski NAS

    2015-11-01

    Full Text Available Nicolas AS Sokolowski,1 Helen Rizos,2 Russell J Diefenbach1 1Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, 2Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia Abstract: Oncolytic virotherapy exploits the properties of human viruses to naturally cause cytolysis of cancer cells. The human pathogen herpes simplex virus (HSV has proven particularly amenable for use in oncolytic virotherapy. The relative safety of HSV coupled with extensive knowledge on how HSV interacts with the host has provided a platform for manipulating HSV to enhance the targeting and killing of human cancer cells. This has culminated in the approval of talimogene laherparepvec for the treatment of melanoma. This review focuses on the development of HSV as an oncolytic virus and where the field is likely to head in the future. Keywords: herpes simplex virus, cancer, immunity, combination therapy, oncolysis

  9. Mediators and mechanisms of herpes simplex virus entry into ocular cells.

    Science.gov (United States)

    Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-06-01

    The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.

  10. The "Knife-Cut Sign" Revisited: A Distinctive Presentation of Linear Erosive Herpes Simplex Virus Infection in Immunocompromised Patients.

    Science.gov (United States)

    Cohen, Philip R

    2015-10-01

    The "knife-cut sign" is a distinctive presentation of linear erosive herpes simplex virus infection in immunocompromised patients. To describe a man whose herpes simplex virus infection-related skin lesions demonstrated the "knife-cut sign" and to review the characteristics of reported immunosuppressed individuals with "knife-cut" cutaneous herpes simplex virus lesions. A man with multiple myeloma and post-stem cell transplant cutaneous graft-versus-host disease managed with systemic prednisone and sirolimus developed disseminated cutaneous herpes simplex virus infection with virus-associated linear ulcers of the inguinal folds and the area between his ear and scalp; the lesions at both sites had a distinctive "knife-cut" appearance. Using the PubMed database, an extensive literature search was performed on herpes simplex virus, immunocompromised patient, and "knife-cut sign". Herpes simplex virus infection-associated skin lesions that demonstrate the "knife-cut sign" present in patients who are immunosuppressed secondary to either an underlying medical condition or a systemic therapy or both. The distinctive virus-related cutaneous lesions appear as linear ulcers and fissures in intertriginous areas, such as the folds in the inguinal area, the vulva, and the abdomen; in addition, other sites include beneath the breast, within the gluteal cleft, and the area between the ear and the scalp. Not only herpes simplex virus-2, but also herpes simplex virus-1 has been observed as the causative viral serotype; indeed, herpes simplex virus-1 has been associated with genital and inframammary lesions in addition to those above the neck. Direct fluorescent antibody testing is a rapid method for confirming the clinically suspected viral infection; however, since false-negative direct fluorescent antibody testing occurred in some of the patients, it may be prudent to also perform viral cultures and possibly lesional skin biopsies to establish the diagnosis. The herpes simplex

  11. Antiviral Activity of Crude Hydroethanolic Extract from Schinus terebinthifolia against Herpes simplex Virus Type 1.

    Science.gov (United States)

    Nocchi, Samara Requena; Companhoni, Mychelle Vianna Pereira; de Mello, João Carlos Palazzo; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Carollo, Carlos Alexandre; Silva, Denise Brentan; Ueda-Nakamura, Tânia

    2017-04-01

    Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia , its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo . Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units. Georg Thieme Verlag KG Stuttgart · New York.

  12. Liquid-phase and solid-phase radioimmunoassay with herpes simplex virus type 1 nucleocapsids

    International Nuclear Information System (INIS)

    Bystricka, M.; Rajcani, J.; Libikova, H.; Sabo, A.; Foeldes, O.; Sadlon, J.

    1985-01-01

    Liquid-phase radioimmunoassay and solid-phase radioimmunoassay are described using 125 I-labelled or immobilized nucleocapsids (NC) of herpes simplex virus (HSV) type1. These techniques appeared sensitive and specific for quantitation of HSV-NC antigens and corresponding antibodies. (author)

  13. Herpes Simplex Virus (HSV-1 Encephalitis Mimicking Glioblastoma: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Burke A. Cunha

    2014-12-01

    Full Text Available Glioblastoma multiforme (GBM often presents as a brain mass with encephalitis. In a patient with GBM, subsequent presentation with new onset encephalitis may be due to another GBM or Herpes simplex virus 1 (HSV-1 encephalitis. We present a case of HSV-1 encephalitis mimicking GBM in a patient with previous GBM.

  14. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography

    NARCIS (Netherlands)

    Hospers, GAP; Calogero, Anna; van Waarde, A; Doze, P; Vaalburg, W; Mulder, NH; de Vries, EFJ

    2000-01-01

    9-[(1-[F-18]Fluoro-3-hydroxy-2-propoxy)methyl]guanine ([F-18]FHPG) wasevaluated as a tracer for noninvasive positron emission tomography (PET) imaging of herpes simplex virus type 1 thymidine kinase (HSV-tk) gene expression. C6 rat glioma cells with and without the HSV-tk gene were incubated with

  15. Seroprevalences of herpes simplex virus type 1 and type 2 among pregnant women in the Netherlands

    NARCIS (Netherlands)

    Gaytant, Michael A.; Steegers, Eric A. P.; van Laere, Marloes; Semmekrot, Ben A.; Groen, Jan; Weel, Jan F.; van der Meijden, Willem I.; Boer, Kees; Galama, Jochem M. D.

    2002-01-01

    BACKGROUND: In the Netherlands 73% of cases of neonatal herpes are caused by herpes simplex virus type 1 (HSV-1), whereas in the United States a majority are caused by HSV type 2 (HSV-2). GOAL To understand this difference we undertook a seroepidemiological study on the prevalence of HSV-1 and HSV-2

  16. 75 FR 59611 - Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays...

    Science.gov (United States)

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2009-N-0344] Microbiology Devices; Reclassification of Herpes Simplex Virus Types 1 and 2 Serological Assays; Confirmation of Effective Date AGENCY: Food and Drug Administration, HHS. ACTION: Direct...

  17. 76 FR 48715 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... CFR part 866 is amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 0 1. The authority...

  18. 75 FR 59670 - Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus Serological...

    Science.gov (United States)

    2010-09-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2010-N-0429] Immunology and Microbiology Devices; Reclassification of the Herpes Simplex Virus... proposed that 21 CFR part 866 be amended as follows: PART 866--IMMUNOLOGY AND MICROBIOLOGY DEVICES 1. The...

  19. Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene

    NARCIS (Netherlands)

    Chalmers, D; Ferrand, C; Apperley, JF; Melo, JV; Ebeling, S; Newton, [No Value; Duperrier, A; Hagenbeek, A; Garrett, E; Tiberghien, P; Garin, M

    Introduction of the Herpes simplex virus thymidine kinase (HSV-tk) gene into target cells renders them susceptible to killing by ganciclovir (GCV). We are studying the use of HSV-tk-transduced T lymphocytes in the context of hematopoietic stem cell transplantation. We have previously shown, in vitro

  20. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  1. Herpes Simplex Virus Infection in a University Health Population: Clinical Manifestations, Epidemiology, and Implications

    Science.gov (United States)

    Horowitz, Robert; Aierstuck, Sara; Williams, Elizabeth A.; Melby, Bernette

    2010-01-01

    Objective: The authors described clinical presentations of oral and genital herpes simplex virus (HSV) infections in a university health population and implications of these findings. Participants and Methods: Using a standardized data collection tool, 215 records of patients with symptomatic culture-positive HSV infections were reviewed. Results:…

  2. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.G.R.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  3. Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  4. Characterization of glycoprotein C of HSZP strain of herpes simplex virus 1

    NARCIS (Netherlands)

    Oravcova, [No Value; Kudelova, M; Mlcuchova, J; Matis, J; Bystricka, M; Westra, DF; Welling-Wester, S; Rajcani, J

    Sequences of UL44 genes of strains HSZP, KOS and 17 of herpes simplex virus 1 (HSV-1) were determined and the amino acid sequences of corresponding glycoproteins (gC) were deduced. In comparison with the 17 strain, the HSZP strain showed specific changes in 3 nucleotides and in 2 amino acids (aa 139

  5. Seroprevalence of IgG Antibodies to Herpes Simplex Virus Type-1 in ...

    African Journals Online (AJOL)

    Background: Herpes simplex virus type-1 (HSV-1) can cause chronic ulcerative infection in immunosuppressed children leading to latency with subsequent reactivate in the conjunctiva resulting in scarring, thickening of the cornea and blindness. They are also common cause of fatal sporadic encephalitis in 70% of ...

  6. Anti-herpes simplex virus activity of extracts from the culinary herbs ...

    African Journals Online (AJOL)

    This study demonstrates anti-herpes simplex virus activity of dichloromethane and methanol extracts of Ocimum sanctum L., Ocimum basilicum L. and Ocimum americanum L. Green monkey kidney cells were protected from HSV-2 infection by the dichloromethane extract of O. americanum L. and the methanol extract of O.

  7. Concomitant herpes simplex virus colitis and hepatitis in a man with ulcerative colitis: Case report and review of the literature.

    Science.gov (United States)

    Phadke, Varun K; Friedman-Moraco, Rachel J; Quigley, Brian C; Farris, Alton B; Norvell, J P

    2016-10-01

    Herpesvirus infections often complicate the clinical course of patients with inflammatory bowel disease; however, invasive disease due to herpes simplex virus is distinctly uncommon. We present a case of herpes simplex virus colitis and hepatitis, review all the previously published cases of herpes simplex virus colitis, and discuss common clinical features and outcomes. We also discuss the epidemiology, clinical manifestations, diagnosis, and management of herpes simplex virus infections, focusing specifically on patients with inflammatory bowel disease. A 43-year-old man with ulcerative colitis, previously controlled with an oral 5-aminosalicylic agent, developed symptoms of a colitis flare that did not respond to treatment with systemic corticosteroid therapy. One week later he developed orolabial ulcers and progressive hepatic dysfunction, with markedly elevated transaminases and coagulopathy. He underwent emergent total colectomy when imaging suggested bowel micro-perforation. Pathology from both the colon and liver was consistent with herpes simplex virus infection, and a viral culture of his orolabial lesions and a serum polymerase chain reaction assay also identified herpes simplex virus. He was treated with systemic antiviral therapy and made a complete recovery. Disseminated herpes simplex virus infection with concomitant involvement of the colon and liver has been reported only 3 times in the published literature, and to our knowledge this is the first such case in a patient with inflammatory bowel disease. The risk of invasive herpes simplex virus infections increases with some, but not all immunomodulatory therapies. Optimal management of herpes simplex virus in patients with inflammatory bowel disease includes targeted prophylactic therapy for patients with evidence of latent infection, and timely initiation of antiviral therapy for those patients suspected to have invasive disease.

  8. Acute Liver Failure from Herpes Simplex Virus in an Immunocompetent Patient Due to Direct Inoculation of the Peritoneum.

    Science.gov (United States)

    Chaudhary, Dhruv; Ahmed, Shifat; Liu, Nanlong; Marsano-Obando, Luis

    2017-01-01

    Herpes simplex virus (HSV) hepatitis is a rare cause of acute liver failure (ALF). It carries a mortality rate of 80% if untreated, thus early identification and treatment are critical. Without high clinical suspicion, HSV hepatitis is difficult to diagnose. A 48-year-old Hispanic female presented with a 4-day history of abdominal pain and a vaginal cuff tear requiring laparoscopic repair. She subsequently developed postsurgical disseminated HSV, resulting in ALF. Acyclovir was initiated, but she was resistant to treatment. She was given additional foscarnet and responded without requiring a liver transplant.

  9. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn

    OpenAIRE

    Muller, William J.; Jones, Cheryl A.; Koelle, David M.

    2010-01-01

    Immunologic “immaturity” is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolat...

  10. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    Science.gov (United States)

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  11. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at the Mucosa

    Directory of Open Access Journals (Sweden)

    Sarah J. Kopp

    2012-01-01

    Full Text Available Infection of susceptible cells by herpes simplex virus (HSV requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.

  12. A Strategy for O-Glycoproteomics of Enveloped Viruses-the O-Glycoproteome of Herpes Simplex Virus Type 1

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2015-01-01

    present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B...

  13. Disseminated cutaneous Herpes Simplex Virus-1 in a woman with rheumatoid arthritis receiving Infliximab: A case report

    Directory of Open Access Journals (Sweden)

    Justice Elizabeth

    2008-08-01

    Full Text Available Abstract Introduction We present the case of a 49-year-old woman with a seronegative rheumatoid arthritis who developed pustular psoriasis whilst on etanercept and subsequently developed disseminated herpes simplex on infliximab. Case presentation Our patient presented with an inflammatory arthritis which failed to respond to both methotrexate and leflunomide, and sulphasalazine treatment led to side effects. She was started on etanercept but after 8 months of treatment developed scaly pustular lesions on her palms and soles typical of pustular psoriasis. Following the discontinuation of etanercept, our patient required high doses of oral prednisolone to control her inflammatory arthritis. A second biologic agent, infliximab, was introduced in addition to low-dose methotrexate and 15 mg of oral prednisolone. However, after just 3 infusions of infliximab, she was admitted to hospital with a fever, widespread itchy vesicular rash and worsening inflammatory arthritis. Fluid from skin vesicles examined by polymerase chain reaction showed Herpes Simplex Virus type 1. Blood cultures were negative and her chest X-ray was normal. Her infliximab was discontinued and she was started on acyclovir, 800 mg five times daily for 2 weeks. She made a good recovery with improvement in her skin within 48 hours. She continued for 2 months on a prophylactic dose of 400 mg bd. Her rheumatoid arthritis became increasingly active and a decision was made to introduce adalimumab alongside acyclovir. Acyclovir prophylaxis has been continued but the dose tapered so that she is taking only 200 mg of acyclovir on alternate days. There has been no recurrence of Herpes Simplex Virus lesions despite increasing adalimumab to 40 mg weekly 3 months after starting treatment. Conclusion We believe this to be the first reported case of widespread cutaneous Herpes Simplex Virus type 1 infection following treatment with infliximab. We discuss the clinical manifestations of Herpes

  14. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's Sarcoma-associated herpesvirus by herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Lv Zhigang

    2011-10-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS, primary effusion lymphoma (PEL and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1 was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV. Results By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1/signal transducer and activator of transcription 3 (STAT3 or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K/protein kinase B (PKB, also called AKT pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN and glycogen synthase kinase-3β (GSK-3β. PTEN/PI3K/AKT/GSK-3β pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK mitogen-activated protein kinase (MAPK pathway also partially contributed to HSV-1-induced KSHV replication. Conclusions HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection.

  15. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    Science.gov (United States)

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The

  16. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    International Nuclear Information System (INIS)

    Millette, R. L.; Klaiber, R.

    1980-01-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with [355]methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units

  17. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    International Nuclear Information System (INIS)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of [ 3 H]-labeled HSV-1-superinfected cells

  18. Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue

    International Nuclear Information System (INIS)

    Meyers, Craig; Andreansky, Samita S.; Courtney, Richard J.

    2003-01-01

    We have investigated the interactions and consequences of superinfecting and coreplication of human papillomavirus (HPV) and herpes simplex virus (HSV) in human epithelial organotypic (raft) culture tissues. In HPV-positive tissues, HSV infection and replication induced significant cytopathic effects (CPE), but the tissues were able to recover and maintain a certain degree of tissue integrity and architecture. HPV31b not only maintained the episomal state of its genomic DNA but also maintained its genomic copy number even during times of extensive HSV-induced CPE. E2 transcripts encoded by HPV31b were undetectable even though HPV31b replication was maintained in HSV- infected raft tissues. Expression of HPV31b oncogenes (E6 and E7) was also repressed but to a lesser degree than was E2 expression. The extent of CPE induced by HSV is dependent on the magnitude of HPV replication and gene expression at the time of HSV infection. During active HSV infection, HPV maintains its genomic copy number even though genes required for its replication were repressed. These studies provide new insight into the complex interaction between two common human sexually transmitted viruses in an in vitro system, modeling their natural host tissue in vivo

  19. JST Thesaurus Headwords and Synonyms: herpes simplex virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term herpes simplex virus 名詞 一般 * * * ...* 単純ヘルペスウイルス タンジュンヘルペスウイルス タンジュンヘルペスーイルス Thesaurus2015 200906069987991310 C LS07 UNKNOWN_2 herpes simplex virus

  20. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease

    OpenAIRE

    Petro, Christopher; Gonz?lez, Pablo A; Cheshenko, Natalia; Jandl, Thomas; Khajoueinejad, Nazanin; B?nard, Ang?le; Sengupta, Mayami; Herold, Betsy C; Jacobs, William R

    2015-01-01

    eLife digest Herpes simplex virus 2 (or HSV-2) infects millions of people worldwide and is the leading cause of genital diseases. The virus initially infects skin cells, but then spreads to nerve cells where it persists for life. Often, the virus remains in a dormant state for long periods of time and does not cause any symptoms. However, HSV-2 can periodically re-activate, leading to repeated infections; this can be life-threatening in patients who suffer from a weak immune system. There is ...

  1. The pathogenicity of thymidine kinase-deficient mutants of herpes simplex virus in mice.

    Science.gov (United States)

    Field, H J; Wildy, P

    1978-10-01

    The pathogenicity for mice of two mutants of herpes simplex virus (type 1 and type 2), which fail to induce thymidine kinase, were compared with their respective parent strains. The mutants were much less virulent than the parents following either intracerebral or peripheral inoculation. The replication of the virus at the site of inoculation and its progression into the nervous system were studied. Following a very large inoculum in the ear, the type 1 mutant was found to establish a latent infection in the cervical dorsal root ganglia. Mice inoculated intracerebrally with small doses of the mutant viruses were solidly immune to challenge with lethal doses of the parent strain.

  2. Herpes Simplex Virus Suppressive Therapy in Herpes Simplex Virus-2/Human Immunodeficiency Virus-1 Coinfected Women Is Associated With Reduced Systemic CXCL10 But Not Genital Cytokines.

    Science.gov (United States)

    Andersen-Nissen, Erica; Chang, Joanne T; Thomas, Katherine K; Adams, Devin; Celum, Connie; Sanchez, Jorge; Coombs, Robert W; McElrath, M Juliana; Baeten, Jared M

    2016-12-01

    Herpes simplex virus type-2 (HSV-2) may heighten immune activation and increase human immunodeficiency virus 1 (HIV-1) replication, resulting in greater infectivity and faster HIV-1 disease progression. An 18-week randomized, placebo-controlled crossover trial of 500 mg valacyclovir twice daily in 20 antiretroviral-naive women coinfected with HSV-2 and HIV-1 was conducted and HSV-2 suppression was found to significantly reduce both HSV-2 and HIV-1 viral loads both systemically and the endocervical compartment. To determine the effect of HSV-2 suppression on systemic and genital mucosal inflammation, plasma specimens, and endocervical swabs were collected weekly from volunteers in the trial and cryopreserved. Plasma was assessed for concentrations of 31 cytokines and chemokines; endocervical fluid was eluted from swabs and assayed for 14 cytokines and chemokines. Valacyclovir significantly reduced plasma CXCL10 but did not significantly alter other cytokine concentrations in either compartment. These data suggest genital tract inflammation in women persists despite HSV-2 suppression, supporting the lack of effect on transmission seen in large scale efficacy trials. Alternative therapies are needed to reduce persistent mucosal inflammation that may enhance transmission of HSV-2 and HIV-1.

  3. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  4. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  5. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Kang, Misun [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); Rho, Jaerang, E-mail: jrrho@cnu.ac.kr [Department of Microbiology, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); BK21 Bio Brain Center, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of); GRAST, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejon 305-764 (Korea, Republic of)

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  6. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.

    Science.gov (United States)

    Shipley, Mackenzie M; Mangold, Colleen A; Kuny, Chad V; Szpara, Moriah L

    2017-12-01

    Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitro IMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare

  7. [Neonatal facial palsy: identification of herpes simplex virus 1 in cerebrospinal fluid. Case report].

    Science.gov (United States)

    Lubián López, Simón; Pérez Guerrero, Juan J; Salazar Oliva, Patricia; Benavente Fernández, Isabel

    2018-06-01

    Neonatal facial palsy is very uncommon and is generally diagnosed at birth. We present the first published case of neonatal facial palsy with identification of herpes simplex virus 1 in cerebrospinal fluid. A 35-day-old male was presented at the Emergency Department with mouth deviation to the left and impossibility of full closure of the right eye. There were no symptoms of infection or relevant medical history. Physical examination was compatible with peripheral facial palsy. Studies performed at admission were normal (blood count, biochemical analysis and coagulation blood tests and cerebrospinal fluid analysis). The patient was admitted on oral prednisolone and intravenous aciclovir. Cranial magnetic resonance was normal. Polymerase chain reaction test for herpes simplex virus 1 in cerebrospinal fluid was reported positive after 48 hours of admission. Patient followed good evolution and received prednisolone for 7 days and acyclovir for 21 days. At discharge, neurological examination was normal. Sociedad Argentina de Pediatría.

  8. Indirect micro-immunofluorescence test for detecting type-specific antibodies to herpes simplex virus.

    Science.gov (United States)

    Forsey, T; Darougar, S

    1980-02-01

    A rapid indirect micro-immunofluorescence test capable of detecting and differentiating type-specific antibodies to herpes simplex virus is described. The test proved highly sensitive and, in 80 patients with active herpes ocular infection, antibody was detected in 94%. No anti-herpes antibody was detected in a control group of 20 patients with adenovirus infections. Testing of animal sera prepared against herpes simplex virus types 1 and 2 and of human sera from cases of ocular and genital herpes infections showed that the test can differentiate antibodies to the infecting serotypes. Specimens of whole blood, taken by fingerprick, and eye secretions, both collected on cellulose sponges, could be tested by indirect micro-immunofluorescence. Anti-herpes IgG, IgM, and IgA can also be detected.

  9. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  10. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Directory of Open Access Journals (Sweden)

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  11. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Science.gov (United States)

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  12. Herpes Simplex Virus-1 DNA Primase: A Remarkably Inaccurate yet Selective Polymerase

    Czech Academy of Sciences Publication Activity Database

    Urban, M.; Joubert, Nicolas; Hocek, Michal; Alexander, R. E.; Kuchta, R. D.

    2009-01-01

    Roč. 48, č. 46 (2009), s. 10866-10881 ISSN 0006-2960 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550902 Grant - others:NIH(US) AI059764 Institutional research plan: CEZ:AV0Z40550506 Keywords : HSV-1 * herpes simplex virus-1 * Pyr * pyrimidine Subject RIV: CC - Organic Chemistry Impact factor: 3.226, year: 2009

  13. Comparative studies of types 1 and 2 herpes simplex virus infection of cultured normal keratinocytes.

    OpenAIRE

    Su, S J; Wu, H H; Lin, Y H; Lin, H Y

    1995-01-01

    AIMS--To investigate the differences in biological properties, multiplication patterns, and cytopathic effects between type 1 and type 2 herpes simplex virus (HSV) through the replication of HSV in cultured normal human keratinocytes. METHODS--Keratinocytes were obtained from surgical specimens of normal gingiva, cervix, trunk skin, and newborn foreskin. They were cultured in serum free, chemically defined, culture medium and infected with a pool of HSV collected from clinical specimens. RESU...

  14. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    OpenAIRE

    Christine Kaestle; Alexandra Winkeler; Raphaela Richter; Heinrich Sauer; Jürgen Hescheler; Cornel Fraefel; Maria Wartenberg; Andreas H. Jacobs

    2011-01-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fl...

  15. Computed Tomography Perfusion Usefulness in Early Imaging Diagnosis of Herpes Simplex Virus Encephalitis

    International Nuclear Information System (INIS)

    Marco de Lucas, E.; Mandly, Gonzalez A.; Gutierrez, A.; Sanchez, E.; Arnaiz, J.; Piedra, T.; Rodriguez, E.; Diez, C.

    2006-01-01

    An early diagnosis is crucial in herpes simplex virus encephalitis patients in order to institute acyclovir therapy and reduce mortality rates. Magnetic resonance imaging (MRI) is considered the gold standard for evaluation of these patients, but is frequently not available in the emergency setting. We report the first case of a computed tomography (CT) perfusion study that helped to establish a prompt diagnosis revealing abnormal increase of blood flow in the affected temporoparietal cortex at an early stage

  16. Herpes simplex virus type 2 latency in the footpad of mice: effect of acycloguanosine on the recovery of virus.

    Science.gov (United States)

    Al-Saadi, S A; Gross, P; Wildy, P

    1988-02-01

    Herpes simplex virus type 2 has been reactivated from the latent state in the footpad and dorsal root ganglia of acycloguanosine-treated BALB/c mice. Virus was also recovered from the footpad tissue but not from the ganglia of denervated, latently infected mice. Treatment in vitro of explanted footpad cultures with acycloguanosine or phosphonoacetic acid did not affect the rate of virus reactivation. In all the isolates examined the virus was found to be acycloguanosine-sensitive. Recovery of virus from footpad tissue of mice after a long period of acycloguanosine treatment supports the theory that virus had been truly latent in the footpad and not in a state of persistent infection.

  17. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation.

    Science.gov (United States)

    Kennedy, Peter G E; Rovnak, Joel; Badani, Hussain; Cohrs, Randall J

    2015-07-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an 'end-less' state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is increasing

  18. A comparison of herpes simplex virus type 1 and varicella-zoster virus latency and reactivation

    Science.gov (United States)

    Kennedy, Peter G. E.; Rovnak, Joel; Badani, Hussain

    2015-01-01

    Herpes simplex virus type 1 (HSV-1; human herpesvirus 1) and varicella-zoster virus (VZV; human herpesvirus 3) are human neurotropic alphaherpesviruses that cause lifelong infections in ganglia. Following primary infection and establishment of latency, HSV-1 reactivation typically results in herpes labialis (cold sores), but can occur frequently elsewhere on the body at the site of primary infection (e.g. whitlow), particularly at the genitals. Rarely, HSV-1 reactivation can cause encephalitis; however, a third of the cases of HSV-1 encephalitis are associated with HSV-1 primary infection. Primary VZV infection causes varicella (chickenpox) following which latent virus may reactivate decades later to produce herpes zoster (shingles), as well as an increasingly recognized number of subacute, acute and chronic neurological conditions. Following primary infection, both viruses establish a latent infection in neuronal cells in human peripheral ganglia. However, the detailed mechanisms of viral latency and reactivation have yet to be unravelled. In both cases latent viral DNA exists in an ‘end-less’ state where the ends of the virus genome are joined to form structures consistent with unit length episomes and concatemers, from which viral gene transcription is restricted. In latently infected ganglia, the most abundantly detected HSV-1 RNAs are the spliced products originating from the primary latency associated transcript (LAT). This primary LAT is an 8.3 kb unstable transcript from which two stable (1.5 and 2.0 kb) introns are spliced. Transcripts mapping to 12 VZV genes have been detected in human ganglia removed at autopsy; however, it is difficult to ascribe these as transcripts present during latent infection as early-stage virus reactivation may have transpired in the post-mortem time period in the ganglia. Nonetheless, low-level transcription of VZV ORF63 has been repeatedly detected in multiple ganglia removed as close to death as possible. There is

  19. Crystal Structure of the N-Terminal Half of the Traffic Controller UL37 from Herpes Simplex Virus 1

    Energy Technology Data Exchange (ETDEWEB)

    Koenigsberg, Andrea L.; Heldwein, Ekaterina E.; Sandri-Goldin, Rozanne M.

    2017-08-02

    Inner tegument protein UL37 is conserved among all three subfamilies of herpesviruses. Studies of UL37 homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), have suggested that UL37 plays an essential albeit poorly defined role in intracellular capsid trafficking. At the same time, HSV and PRV homologs cannot be swapped, which suggests that in addition to a conserved function, UL37 homologs also have divergent virus-specific functions. Accurate dissection of UL37 functions requires detailed maps in the form of atomic-resolution structures. Previously, we reported the crystal structure of the N-terminal half of UL37 (UL37N) from PRV. Here, we report the crystal structure of HSV-1 UL37N. Comparison of the two structures reveals that UL37 homologs differ in their overall shapes, distributions of surface charges, and locations of projecting loops. In contrast, the previously identified R2 surface region is structurally conserved. We propose that within the N-terminal half of UL37, functional conservation is centered within the R2 surface region, whereas divergent structural elements pinpoint regions mediating virus-specific functions and may engage different binding partners. Together, the two structures can now serve as templates for a structure-guided exploration of both conserved and virus-specific functions of UL37.

    IMPORTANCEThe ability to move efficiently within host cell cytoplasm is essential for replication in all viruses. It is especially important in the neuroinvasive alphaherpesviruses, such as human herpes simplex virus 1 (HSV-1), HSV-2, and veterinarian pseudorabies virus (PRV), that infect the peripheral nervous system and have to travel long distances along axons. Capsid movement in these viruses is controlled by capsid-associated tegument proteins, yet their specific roles have not yet been defined. Systematic exploration of the roles of tegument proteins in capsid trafficking requires

  20. Facial nerve palsy after reactivation of herpes simplex virus type 1 in diabetic mice.

    Science.gov (United States)

    Esaki, Shinichi; Yamano, Koji; Katsumi, Sachiyo; Minakata, Toshiya; Murakami, Shingo

    2015-04-01

    Bell's palsy is highly associated with diabetes mellitus (DM). Either the reactivation of herpes simplex virus type 1 (HSV-1) or diabetic mononeuropathy has been proposed to cause the facial paralysis observed in DM patients. However, distinguishing whether the facial palsy is caused by herpetic neuritis or diabetic mononeuropathy is difficult. We previously reported that facial paralysis was aggravated in DM mice after HSV-1 inoculation of the murine auricle. In the current study, we induced HSV-1 reactivation by an auricular scratch following DM induction with streptozotocin (STZ). Controlled animal study. Diabetes mellitus was induced with streptozotocin injection in only mice that developed transient facial nerve paralysis with HSV-1. Recurrent facial palsy was induced after HSV-1 reactivation by auricular scratch. After DM induction, the number of cluster of differentiation 3 (CD3)(+) T cells decreased by 70% in the DM mice, and facial nerve palsy recurred in 13% of the DM mice. Herpes simplex virus type 1 deoxyribonucleic acid (DNA) was detected in the facial nerve of all of the DM mice with palsy, and HSV-1 capsids were found in the geniculate ganglion using electron microscopy. Herpes simplex virus type 1 DNA was also found in some of the DM mice without palsy, which suggested the subclinical reactivation of HSV-1. These results suggested that HSV-1 reactivation in the geniculate ganglion may be the main causative factor of the increased incidence of facial paralysis in DM patients. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Herpes simplex virus infection in pregnancy and in neonate: status of art of epidemiology, diagnosis, therapy and prevention

    Directory of Open Access Journals (Sweden)

    Barucca Valentina

    2009-04-01

    Full Text Available Abstract Herpes simplex virus (HSV infection is one of the most common viral sexually transmitted diseases worldwide. The first time infection of the mother may lead to severe illness in pregnancy and may be associated with virus transmission from mother to foetus/newborn. Since the incidence of this sexually transmitted infection continues to rise and because the greatest incidence of herpes simplex virus infections occur in women of reproductive age, the risk of maternal transmission of the virus to the foetus or neonate has become a major health concern. On these purposes the Authors of this review looked for the medical literature and pertinent publications to define the status of art regarding the epidemiology, the diagnosis, the therapy and the prevention of HSV in pregnant women and neonate. Special emphasis is placed upon the importance of genital herpes simplex virus infection in pregnancy and on the its prevention to avoid neonatal HSV infections.

  2. Herpes Simplex Virus-2 Esophagitis in a Young Immunocompetent Adult

    Directory of Open Access Journals (Sweden)

    Deepak K. Kadayakkara

    2016-01-01

    Full Text Available Herpes simplex esophagitis (HSE is commonly identified in immunosuppressed patients. It is rare among immunocompetent patients and almost all of the reported cases are due to HSV-1 infection. HSV-2 esophagitis is extremely rare. We report the case of a young immunocompetent male who presented with dysphagia, odynophagia, and epigastric pain. Endoscopy showed multitudes of white nummular lesions in the distal esophagus initially suspected to be candida esophagitis. However, classic histopathological findings of multinucleated giant cells with eosinophilic intranuclear inclusions and positive HSV-2 IgM confirmed the diagnosis of HSV-2 esophagitis. The patient rapidly responded to acyclovir treatment. Although HSV-2 is predominantly associated with genital herpes, it can cause infections in other parts of the body previously attributed to only HSV-1 infection.

  3. Herpes simplex virus produces larger plaques when assayed on ultraviolet irradiated CV1 cells

    International Nuclear Information System (INIS)

    Coohill, T.P.; Babich, M.A.; Taylor, W.D.; Snipes, W.

    1980-01-01

    Plaque development for either untreated or UV treated irradiated Herpes simplex virus Type 1 was faster when assayed on UV irradiated CV1 cells. This Large Plaque Effect only occurred if a minimum delay of 12h between cell irradiation and viral inoculation was allowed. Shorter delays gave plaques that were smaller than controls (unirradiated virus-unirradiated cells). The effect was maximal for a 48-h delay and remained unchanged for delays as long as 84h. The effect was greatest for cell exposures of 10Jm -2 . (author)

  4. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  5. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    Science.gov (United States)

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  6. Herpes simplex virus glycoprotein D relocates nectin-1 from intercellular contacts.

    Science.gov (United States)

    Bhargava, Arjun K; Rothlauf, Paul W; Krummenacher, Claude

    2016-12-01

    Herpes simplex virus (HSV) uses the cell adhesion molecule nectin-1 as a receptor to enter neurons and epithelial cells. The viral glycoprotein D (gD) is used as a non-canonical ligand for nectin-1. The gD binding site on nectin-1 overlaps with a functional adhesive site involved in nectin-nectin homophilic trans-interaction. Consequently, when nectin-1 is engaged with a cellular ligand at cell junctions, the gD binding site is occupied. Here we report that HSV gD is able to disrupt intercellular homophilic trans-interaction of nectin-1 and induce a rapid redistribution of nectin-1 from cell junctions. This movement does not require the receptor's interaction with the actin-binding adaptor afadin. Interaction of nectin-1 with afadin is also dispensable for virion surfing along nectin-1-rich filopodia. Cells seeded on gD-coated surfaces also fail to accumulate nectin-1 at cell contact. These data indicate that HSV gD affects nectin-1 locally through direct interaction and more globally through signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  8. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.

    Science.gov (United States)

    Zhu, Yali; Song, Liping; Stroud, Jason; Parris, Deborah S

    2008-01-01

    Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function. Virtually all of the WT pol was bound at the exo site to AP-containing primer-templates (P/Ts) at equilibrium, and the pre-steady-state rate of excision by WT pol was higher on AP-containing than on matched DNA. However, several factors influencing polymerization work synergistically with exo activity to prevent HSV-1 pol from engaging in TLS. Although the pre-steady-state catalytic rate constant for insertion of dATP opposite a T or AP site was similar, ground-state-binding affinity of dATP for insertion opposite an AP site was reduced 3-9-fold. Single-turnover running-start experiments demonstrated a reduced proportion of P/Ts extended to the AP site compared to the preceding site during processive synthesis by WT or exo- pol. Only the exo- pol engaged in TLS, though inefficiently and without burst kinetics, suggesting a much slower rate-limiting step for extension beyond the AP site.

  9. Cellular expression of gH confers resistance to herpes simplex virus type-1 entry

    International Nuclear Information System (INIS)

    Scanlan, Perry M.; Tiwari, Vaibhav; Bommireddy, Susmita; Shukla, Deepak

    2003-01-01

    Entry of herpes simplex virus-1 (HSV-1) into cells requires a concerted action of four viral glycoproteins gB, gD, and gH-gL. Previously, cell surface expression of gD had been shown to confer resistance to HSV-1 entry. To investigate any similar effects caused by other entry glycoproteins, gB and gH-gL were coexpressed with Nectin-1 in Chinese hamster ovary (CHO) cells. Interestingly, cellular expression of gB had no effect on HSV-1(KOS) entry. In contrast, entry was significantly reduced in cells expressing gH-gL. This effect was further analyzed by expressing gH and gL separately. Cells expressing gL were normally susceptible, whereas gH-expressing cells were significantly resistant. Further experiments suggested that the gH-mediated interference phenomenon was not specific to any particular gD receptor and was also observed in gH-expressing HeLa cells. Moreover, contrary to a previous report, gL-independent cell surface expression of gH was detected in stably transfected CHO cells, possibly implicating cell surface gH in the interference phenomenon. Thus, taken together these findings indicate that cellular expression of gH interferes with HSV-1 entry

  10. Nelfinavir Impairs Glycosylation of Herpes Simplex Virus 1 Envelope Proteins and Blocks Virus Maturation

    Directory of Open Access Journals (Sweden)

    Soren Gantt

    2015-01-01

    Full Text Available Nelfinavir (NFV is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs. Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1 in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.

  11. Herpes simplex-virus type 1 påvist hos patient med herpes zoster

    DEFF Research Database (Denmark)

    Danielsen, Patricia Louise; Schønning, Kristian; Larsen, Helle Kiellberg

    2012-01-01

    In this case report we present an otherwise healthy 63 year-old male patient with herpes zoster corresponding to the 2nd left branch of the trigeminal nerve. Real time-polymerase chain reaction analyses were positive for both herpes simplex virus (HSV) type 1 and varicella zoster virus (VZV......). The most probable explanation is that this reflects asymptomatic, latent expression of HSV-1 in a herpes zoster patient with no clinical relevance. Another hypothesis is that reactivation of a neurotropic herpes virus can reactivate another neurotropic virus if both types are present in the same ganglion....... If co-infection with HSV/VZV is suspected the treatment regimen for herpes zoster will sufficiently treat a possible HSV infection also....

  12. Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells

    Science.gov (United States)

    Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436

  13. A molecular method for typing Herpes simplex virus isolates as an alternative to immunofluorescence methods

    Directory of Open Access Journals (Sweden)

    Abraham A

    2009-01-01

    Full Text Available Background: Typing of Herpes simplex virus (HSV isolates is required to identify the virus isolated in culture. The methods available for this include antigen detection by immunofluorescence (IF assays and polymerase chain reaction (PCR. This study was undertaken to standardize a molecular method for typing of HSV and compare it with a commercial IF reagent for typing. Objectives: To compare a molecular method for typing HSV isolates with a monoclonal antibody (MAb based IF test. Study design : This cross-sectional study utilized four reference strains and 42 HSV isolates obtained from patients between September 1998 and September 2004. These were subjected to testing using an MAb-based IF test and a PCR that detects the polymerase ( pol gene of HSV isolates. Results: The observed agreement of the MAb IF assay with the pol PCR was 95.7%. Fifty four point eight percent (23/42 of isolates tested by IF typing were found to be HSV-1, 40.5% (17/42 were HSV-2, and two (4.8% were untypable using the MAb IF assay. The two untypable isolates were found to be HSV-2 using the pol PCR. In addition, the cost per PCR test for typing is estimated to be around Rs 1,300 (USD 30, whereas the cost per MAb IF test is about Rs 1,500 (USD 35 including all overheads (reagents, instruments, personnel time, and consumables. Conclusion: The pol PCR is a cheaper and more easily reproducible method for typing HSV isolates as compared to the IF test. It could replace the IF-based method for routine typing of HSV isolates as availability of PCR machines (thermal cyclers is now more widespread than fluorescence microscopes in a country like India.

  14. Herpes simplex virus replication compartments can form by coalescence of smaller compartments

    International Nuclear Information System (INIS)

    Taylor, Travis J; McNamee, Elizabeth E.; Day, Cheryl; Knipe, David M.

    2003-01-01

    Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures

  15. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    Huang Jialing; Lazear, Helen M.; Friedman, Harvey M.

    2011-01-01

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  16. Acute lymphocytic crisis following herpes simplex type 1 virus hepatitis in a nonimmunocompromised man: a case report

    Directory of Open Access Journals (Sweden)

    Plastiras Sotiris

    2009-08-01

    Full Text Available Abstract Introduction An increase in circulating lymphocytes can be seen following infections such as infectious mononucleosis and pertussis, or in lymphoproliferative disorders such as acute and chronic lymphocytic leukemia. Acute lymphocytic crisis following herpes simplex virus hepatitis has not been described in the literature. Case presentation A 52-year-old man was admitted to our hospital reporting low-grade fever for the previous seven days, and fatigue. During the fifth day of hospitalization, the patient developed a lymphocytic crisis and, after further tests the patient was diagnosed as having herpes simplex virus hepatitis. Conclusion This case report shows that herpes simplex virus type 1 is a possible cause of an acute lymphocytic crisis similar to other well known infectious agents such as Epstein–Barr virus, cytomegalovirus, human immunodeficiency virus, human herpes virus type 6, adenovirus, toxoplasma and human T-cell lymphotropic virus. Furthermore, this case report expands the clinical spectrum of herpes simplex virus hepatitis, since it is reported in a nonimmunocompromised patient presenting with atypical acute lymphocytic syndrome.

  17. Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Goddard, J.G.; Lin, C.H.

    1980-01-01

    Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic. (orig.)

  18. Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture.

    Science.gov (United States)

    Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J

    2014-07-15

    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Presage of oncolytic virotherapy for oral cancer with herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yura

    2017-05-01

    Full Text Available A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1 produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.

  20. Eritema multiforme ampollar extenso asociado a infección por virus herpes simplex Extended Bullous Erythema Multiforme Associated To Herpes Simplex Virus Infection

    Directory of Open Access Journals (Sweden)

    A Elgueta-Noy

    2009-12-01

    Full Text Available El Eritema Multiforme (EM es una reacción cutánea aguda generalmente benigna y autolimitada, asociada a la infección por Virus Herpes Simplex (HSV. Se caracteriza por lesiones polimorfas y tipo diana en extremidades y mucosas. Presentamos un paciente de 22 años con pápulas, vesículas y ampollas, que evoluciona con un 90% de la superficie corporal comprometida en tres semanas. Se realizó una reacción de polimerasa en cadena para HSV, resultando positiva en una costra. La biopsia de piel y la tinción de inmunohistoquímica positiva para linfocitos T CD4, fueron compatibles con EM ampollar asociado a HSV. Destacamos la importancia de la correlación clínico patológica, apoyada por el estudio virológico, en el diagnóstico de este caso de presentación atípica. Los hallazgos de laboratorio confirmaron lo descrito en la literatura respecto de la patogenia del EM asociado a HSV.Erythema Multiforme (EM is a generally benign and self-limited acute cutaneous reaction, associated with Herpes Simplex Virus (HSV infection. It is characterized by polymorphic "target" lesions in extremities and mucosal tissues. We report a 22-year old patient with papules, vesicles and blisters, which evolved to cover 90% of the body in three weeks. We performed a PCR study for HSV, which was positive in a crust. A skin biopsy and positive immunohistochemical stain for LT CD4+ were compatible with bullous EM associated with HSV. We underline the importance of pathological clinical correlation, reinforced by a virological study, in the diagnosis of this case with atypical symptoms. The laboratory findings confirmed literature descriptions with respect to the pathogenicity of EM associated with HSV.

  1. A 9 year-old girl with herpes simplex virus type 2 acute retinal necrosis treated with intravitreal foscarnet.

    Science.gov (United States)

    King, John; Chung, Mina; DiLoreto, David A

    2007-01-01

    A 9-year-old girl presented with a 2-week history of redness in the left eye. Examination revealed vitritis, retinal whitening, vasculitis, and optic nerve head edema. Polymerase chain reaction testing of the aqueous fluid revealed herpes simplex virus type 2. The retinitis was controlled with intravenous acyclovir and intravitreal foscarnet. The clinical course was complicated by retinal neovascularization and vitreous hemorrhage, which was treated by pars plana vitrectomy and endolaser. While there are few case reports of herpes simplex virus type 2 retinitis in children, this one is unique for the following reasons: it is the first reported case of herpes simplex virus type 2 retinitis in a child less than 10 years old without a previous history of neonatal infection or central nervous system involvement; no other children have been reported to have been treated with intravitreal foscarnet; and retinal neovascularization complicated the recovery.

  2. Genital herpes simplex virus infection: clinical course and attempted therapy.

    Science.gov (United States)

    Davis, L G; Keeney, R E

    1981-06-01

    The epidemiology, clinical course, diagnosis, and attempted treatments of herpes genitalis are reviewed. Herpes genitalis is an increasingly common sexually transmitted disease for which there is no effective treatment. It can occur in either sex and is mot commonly first found in patients 14 to 29 years old. Initial exposure to the virus may result in prolonged local symptoms (pain, itching, discharge) and signs (ulcerative lesions) as well as fever, malaise, myalgias, and fatigue. After the initial exposure, the virus may be found in a latent stage in the dorsal nerve root ganglia in the sacral area, and recurrences of disease may ensue. The frequency and clinical course of recurrent genital herpes can be of varying duration and severity. Although antiviral substances, immune potentiators, topical surfactants, and photodynamic inactivation have been used to treat genital herpes infections, there is no proven effective therapy.

  3. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1.

    Science.gov (United States)

    Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N

    2009-01-01

    Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.

  4. A lymphoblastoid response of human foetal lymphocytes to ultraviolet-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Westmoreland, D.

    1980-01-01

    Cultures of foetal lymphocytes were exposed to u.v.-irradiated herpes simplex virus (HSV). The cells responded with increased 6- 3 H-thymidine incorporation, the formation of clumps of enlarged lymphoblastoid cells and cell division. This response was first detected 3 to 4 days after exposure to virus material and was shown to be virus-dose dependent. The ability to stimulate foetal cells was considerably more u.v. resistant than infectivity. Two isolates of HSV type 2 (4663 and 37174), which had a high 'transforming' ability, produced large numbers of non-infectious particles (particle: infectivity ratios in excess of 10 4 ). The cells, which responded to u.v.-irradiated HSV with blastoid transformation, were associated with the non-E-rosetting (T-cell-depleted) subpopulation. (author)

  5. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus.

    Science.gov (United States)

    Field, H J; Darby, G; Wildy, P

    1980-07-01

    Mutants of HSV which are resistant to acyclovir (acycloguanosine) have been isolated following serial passages of several herpes simplex virus (HSV) strains in the presence of the drug. The majority of the mutants isolated are defective in induction of thymidine kinase (TK) and this is consistent with the observation that independently isolated TK- viruses are naturally resistant to ACV. One mutant is described (SC16 R9C2) which is resistant in biochemically transformed cells which express HSV TK. This suggests that its resistance resides at a level other than TK. It is also resistant to phosphonoacetic acid, suggesting that the DNA polymerase locus may be involved. A further mutant is described [Cl (101) P2C5] which induces normal levels of TK, although the nature of resistance of this virus is not yet elucidated.

  6. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization

    International Nuclear Information System (INIS)

    Taylor, Travis J; Knipe, David M.

    2003-01-01

    The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two α-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted α-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted α-helix was dispensable for the interaction of ICP8 with the U L 9 origin-binding protein. We propose that this C-terminal α-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites

  7. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective

    Science.gov (United States)

    Vadlapudi, Aswani D.; Vadlapatla, Ramya K.; Mitra, Ashim K.

    2015-01-01

    Herpes simplex virus (HSV) infections can be treated efficiently by the application of antiviral drugs. The herpes family of viruses is responsible for causing a wide variety of diseases in humans. The standard therapy for the management of such infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valaciclovir and famciclovir. Though effective, long term prophylaxis with the current drugs leads to development of drug-resistant viral isolates, particularly in immunocompromised patients. Moreover, some drugs are associated with dose-limiting toxicities which limit their further utility. Therefore, there is a need to develop new antiherpetic compounds with different mechanisms of action which will be safe and effective against emerging drug resistant viral isolates. Significant advances have been made towards the design and development of novel antiviral therapeutics during the last decade. As evident by their excellent antiviral activities, pharmaceutical companies are moving forward with several new compounds into various phases of clinical trials. This review provides an overview of structure and life cycle of HSV, progress in the development of new therapies, update on the advances in emerging therapeutics under clinical development and related recent patents for the treatment of Herpes simplex virus infections. PMID:23331181

  8. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    Science.gov (United States)

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  9. Advances in study of perpes simplex virus type 1-thymidine kinase reporter gene imaging

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Yongxue

    2007-01-01

    Radionuclide reporter gene imaging is an effect way to provide qualitative and quantitative information for gene therapy. There are three systems of reporter gene including kinase reporter gene. perpes simplex virus type 1-thymidine kinase (HSV1-tk) has perfect physical and chemical characteristic which is suit for imaging as reporter gene. It has been widely investigated and intensively researched. Two substrates of HSV1-tk are purine nucleosite derivant and acyclovir derivant, which can also be used as reporter probes of HSV1-tk. (authors)

  10. Treatment of rat gliomas with recombinant retrovirus harboring Herpes simplex virus thymidine kinase suicide gene

    International Nuclear Information System (INIS)

    Hlavaty, J.; Hlubinova, K.; Altanerova, V.; Liska, J.; Altaner, C.

    1997-01-01

    The retrovirus vector containing Herpes simplex virus type 1 thymidine kinase (HSVtk) gene was constructed. The vector was transfected into the packaging cell line PG13. It was shown that individual transfected cells differ in the production of recombinant retrovirus and in their susceptibility to be killed by ganciclovir. Recombinant retrovirus with a gibbon envelope was able to transduced the HSVtk gene into rat glioma cells. In vivo studies confirmed the ability of intraperitoneal ganciclovir administration to influence subcutaneous and intracerebral tumors developed after injection of C 6 rat glioma cells with subsequent injection of HSVtk retrovirus producing cells. (author)

  11. Herpes simplex virus vectors overexpressing the glucose transporter gene protect against seizure-induced neuron loss.

    OpenAIRE

    Lawrence, M S; Ho, D Y; Dash, R; Sapolsky, R M

    1995-01-01

    We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypo...

  12. Analysis of nucleotide sequence variations in herpes simplex virus types 1 and 2, and varicella-zoster virus

    International Nuclear Information System (INIS)

    Chiba, A.; Suzutani, T.; Koyano, S.; Azuma, M.; Saijo, M.

    1998-01-01

    To analyze the difference in the degree of divergence between genes from identical herpes virus species, we examined the nucleotide sequence of genes from the herpes simplex virus type 1 (HSV-l ) strains VR-3 and 17 encoding thymidine kinase (TK), deoxyribonuclease (DNase), protein kinase (PK; UL13) and virion-associated host shut off (vhs) protein (UL41). The frequency of nucleotide substitutions per 1 kb in TK gene was 2.5 to 4.3 times higher than those in the other three genes. To prove that the polymorphism of HSV-1 TK gene is common characteristic of herpes virus TK genes, we compared the diversity of TK genes among eight HSV-l , six herpes simplex virus type 2 (HSV-2) and seven varicella-zoster virus (VZV) strains. The average frequency of nucleotide substitutions per 1 kb in the TK gene of HSV-l strains was 4-fold higher than that in the TK gene of HSV-2 strains. The VZV TK gene was highly conserved and only two nucleotide changes were evident in VZV strains. However, the rate of non-synonymous substitutions in total nucleotide substitutions was similar among the TK genes of the three viruses. This result indicated that the mutational rates differed, but there were no significant differences in selective pressure. We conclude that HSV-l TK gene is highly diverged and analysis of variations in the gene is a useful approach for understanding the molecular evolution of HSV-l in a short period. (authors)

  13. Computational sensing of herpes simplex virus using a cost-effective on-chip microscope

    KAUST Repository

    Ray, Aniruddha

    2017-07-03

    Caused by the herpes simplex virus (HSV), herpes is a viral infection that is one of the most widespread diseases worldwide. Here we present a computational sensing technique for specific detection of HSV using both viral immuno-specificity and the physical size range of the viruses. This label-free approach involves a compact and cost-effective holographic on-chip microscope and a surface-functionalized glass substrate prepared to specifically capture the target viruses. To enhance the optical signatures of individual viruses and increase their signal-to-noise ratio, self-assembled polyethylene glycol based nanolenses are rapidly formed around each virus particle captured on the substrate using a portable interface. Holographic shadows of specifically captured viruses that are surrounded by these self-assembled nanolenses are then reconstructed, and the phase image is used for automated quantification of the size of each particle within our large field-of-view, ~30 mm2. The combination of viral immuno-specificity due to surface functionalization and the physical size measurements enabled by holographic imaging is used to sensitively detect and enumerate HSV particles using our compact and cost-effective platform. This computational sensing technique can find numerous uses in global health related applications in resource-limited environments.

  14. Enhanced replication of herpes simplex virus type 1 in human cells

    International Nuclear Information System (INIS)

    Miller, C.S.; Smith, K.O.

    1991-01-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate [MMS], methyl methanethiosulfonate [MMTS], ultraviolet light [UV], or gamma radiation [GR]) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes

  15. The potential application of a transcriptionally regulated oncolytic herpes simplex virus for human cancer therapy

    Science.gov (United States)

    Miao, L; Fraefel, C; Sia, K C; Newman, J P; Mohamed-Bashir, S A; Ng, W H; Lam, P Y P

    2014-01-01

    Background: Emerging studies have shown the potential benefit of arming oncolytic viruses with therapeutic genes. However, most of these therapeutic genes are placed under the regulation of ubiquitous viral promoters. Our goal is to generate a safer yet potent oncolytic herpes simplex virus type-1 (HSV-1) for cancer therapy. Methods: Using bacterial artificial chromosome (BAC) recombineering, a cell cycle-regulatable luciferase transgene cassette was replaced with the infected cell protein 6 (ICP6) coding region (encoded for UL39 or large subunit of ribonucleotide reductase) of the HSV-1 genome. These recombinant viruses, YE-PC8, were further tested for its proliferation-dependent luciferase gene expression. Results: The ability of YE-PC8 to confer proliferation-dependent transgene expression was demonstrated by injecting similar amount of viruses into the tumour-bearing region of the brain and the contralateral normal brain parenchyma of the same mouse. The results showed enhanced levels of luciferase activities in the tumour region but not in the normal brain parenchyma. Similar findings were observed in YE-PC8-infected short-term human brain patient-derived glioma cells compared with normal human astrocytes. intratumoural injection of YE-PC8 viruses resulted in 77% and 80% of tumour regression in human glioma and human hepatocellular carcinoma xenografts, respectively. Conclusion: YE-PC8 viruses confer tumour selectivity in proliferating cells and may be developed further as a feasible approach to treat human cancers. PMID:24196790

  16. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries.

    Science.gov (United States)

    Jalouli, Jamshid; Jalouli, Miranda M; Sapkota, Dipak; Ibrahim, Salah O; Larsson, Per-Anders; Sand, Lars

    2012-02-01

    Oral squamous cell carcinoma (OSCC) is a major health problem in many parts of the world, and the major causative agents are thought to be the use of alcohol and tobacco. Oncogenic viruses have also been suggested to be involved in OSCC development. This study investigated the prevalence of human papillomaviruses (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) in 155 OSCC from eight different countries from different ethnic groups, continents and with different socioeconomic backgrounds. 41 A total of OSCCs were diagnosed in the tongue (26%) and 23 in the floor of the mouth (15%); the other 91 OSCCs were diagnosed in other locations (59%). The patients were also investigated regarding the use of alcohol and smoking and smokeless tobacco habits. Tissue samples were obtained from formalin-fixed, paraffin-embedded samples of the OSCC. DNA was extracted and the viral genome was examined by single, nested and semi-nested PCR assays. Sequencing of double-stranded DNA from the PCR product was carried out. Following sequencing of the HPV-, HSV- and EBV-positive PCR products, 100% homology between the sampels was found. Of all the 155 OSCCs examined, 85 (55%) were positive for EBV, 54 (35%) for HPV and 24 (15%) for HSV. The highest prevalence of HPV was seen in Sudan (65%), while HSV (55%) and EBV (80%) were most prevalent in the UK. In 34% (52/155) of all the samples examined, co-infection by two (46/155=30%) or three (6/155=4%) virus specimens was detected. The most frequent double infection was HPV with EBV in 21% (32/155) of all OSCCs. There was a statistically significant higher proportion of samples with HSV (p=0.026) and EBV (p=0.015) in industrialized countries (Sweden, Norway, UK and USA) as compared to developing countries (Sudan, India, Sri Lanka and Yemen). Furthermore, there was a statistically significant higher co-infection of HSV and EBV in samples from industrialized countries (p=0.00031). No firm conclusions could be drawn regarding the

  17. Radioimmunoassay for herpes simplex virus (HSV) thymidine kinase

    International Nuclear Information System (INIS)

    McGuirt, P.V.; Keller, P.M.; Elion, G.B.

    1982-01-01

    A sensitive RIA for HSV-1 thymidine kinase (TK) has been developed. This assay is based on competition for the binding site of a rabbit antibody against purified HSV-1 TK, between a purified 3 H-labeled HSV-1 TK and a sample containing an unknown amount of viral TK. The assay is capable of detecting 8 ng or more of the HSV enzyme. Purified HSV-1 TK denatured to <1% of its original kinase activity is as effective in binding to the antibody as is native HSV-1 TK. Viral TK is detectable at ranges of 150-460 ng/mg protein of cell extract from infected cells or cells transformed by HSV or HSV genetic material. HSV-2 TK appears highly cross-reactive, VZV TK is slightly less so, and the vaccinia TK shows little or no cross-reactivity. This RIA may serve as a tool for monitoring the expression of the HSV TK during an active herpes virus infection, a latent ganglionic infection, or in neoplastic cells which may have arisen by viral transformation

  18. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management.

    Science.gov (United States)

    Bradshaw, Michael J; Venkatesan, Arun

    2016-07-01

    Herpetic infections have plagued humanity for thousands of years, but only recently have advances in antiviral medications and supportive treatments equipped physicians to combat the most severe manifestations of disease. Prompt recognition and treatment can be life-saving in the care of patients with herpes simplex-1 virus encephalitis, the most commonly identified cause of sporadic encephalitis worldwide. Clinicians should be able to recognize the clinical signs and symptoms of the infection and familiarize themselves with a rational diagnostic approach and therapeutic modalities, as early recognition and treatment are key to improving outcomes. Clinicians should also be vigilant for the development of acute complications, including cerebral edema and status epilepticus, as well as chronic complications, including the development of autoimmune encephalitis associated with antibodies to the N-methyl-D-aspartate receptor and other neuronal cell surface and synaptic epitopes. Herein, we review the pathophysiology, differential diagnosis, and clinical and radiological features of herpes simplex virus-1 encephalitis in adults, including a discussion of the most common complications and their treatment. While great progress has been made in the treatment of this life-threatening infection, a majority of patients will not return to their previous neurologic baseline, indicating the need for further research efforts aimed at improving the long-term sequelae.

  19. Identification and characterization of 20 immunocompetent patients with simultaneous varicella zoster and herpes simplex virus infection.

    Science.gov (United States)

    Giehl, K A; Müller-Sander, E; Rottenkolber, M; Degitz, K; Volkenandt, M; Berking, C

    2008-06-01

    It has been shown that varicella zoster virus (VZV) and herpes simplex virus (HSV) can co-localize to the same sensory ganglion. However, only a few case reports on VZV/HSV co-infections exist. Objective To identify and characterize patients with concurrent VZV and HSV infection at the same body site. In 1718 patients, the presence of VZV and HSV in suspicious skin lesions was investigated by polymerase chain reaction analysis. Clinical characteristics of co-infected patients were compared with matched control patients infected with either VZV or HSV. The data are discussed in the context of an extensive review of the literature. Twenty (1.2%) of 1718 patients were infected with both VZV and HSV at the same body site. The mean age was 54 years (range, 2-83). The clinical diagnosis was zoster in 65%, herpes simplex in 20%, varicella in 10% and erythema multiforme in 5% of cases. The trigeminus region was affected in 60% and the trunk in 25%. Involvement of the head was most commonly associated with a severe course of disease and with older age. Simultaneous VZV/HSV infection is rare but can occur in immunocompetent patients, which is often overlooked. The majority of cases is localized to the trigeminus region and affects elderly people.

  20. Identification of structural protein-protein interactions of herpes simplex virus type 1.

    Science.gov (United States)

    Lee, Jin H; Vittone, Valerio; Diefenbach, Eve; Cunningham, Anthony L; Diefenbach, Russell J

    2008-09-01

    In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.

  1. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    Science.gov (United States)

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  2. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    Science.gov (United States)

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  3. Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D.

    Science.gov (United States)

    Awasthi, Sita; Shaw, Carolyn; Friedman, Harvey

    2014-12-01

    No vaccines are approved for prevention or treatment of genital herpes. The focus of genital herpes vaccine trials has been on prevention using herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) alone or combined with glycoprotein B. These prevention trials did not achieve their primary end points. However, subset analyses reported some positive outcomes in each study. The most recent trial was the Herpevac Trial for Women that used gD2 with monophosphoryl lipid A and alum as adjuvants in herpes simplex virus type 1 (HSV-1) and HSV-2 seronegative women. Unexpectedly, the vaccine prevented genital disease by HSV-1 but not HSV-2. Currently, HSV-1 causes more first episodes of genital herpes than HSV-2, highlighting the importance of protecting against HSV-1. The scientific community is conflicted between abandoning vaccine efforts that include gD2 and building upon the partial successes of previous trials. We favor building upon success and present approaches to improve outcomes of gD2-based subunit antigen vaccines.

  4. Isolation of herpes simplex virus from the genital tract during symptomatic recurrence on the buttocks.

    Science.gov (United States)

    Kerkering, Katrina; Gardella, Carolyn; Selke, Stacy; Krantz, Elizabeth; Corey, Lawrence; Wald, Anna

    2006-10-01

    To estimate the frequency of isolation of herpes simplex virus (HSV) from the genital tract when recurrent herpes lesions were present on the buttocks. Data were extracted from a prospectively observed cohort attending a research clinic for genital herpes infections between 1975 and 2001. All patients with a documented herpes lesion on the buttocks, upper thigh or gluteal cleft ("buttock recurrence") and concomitant viral cultures from genital sites including the perianal region were eligible. We reviewed records of 237 subjects, 151 women and 86 men, with a total of 572 buttock recurrences. Of the 1,592 days with genital culture information during a buttock recurrence, participants had concurrent genital lesions on 311 (20%, 95% confidence interval [CI] 14-27%) of these days. Overall, HSV was isolated from the genital region on 12% (95% CI 8-17%) of days during a buttock recurrence. In the absence of genital lesions, HSV was isolated from the genital area on 7% (95% CI 4%-11%) of days during a buttock recurrence and, among women, from the vulvar or cervical sites on 1% of days. Viral shedding of herpes simplex virus from the genital area is a relatively common occurrence during a buttock recurrence of genital herpes, even without concurrent genital lesions, reflecting perhaps reactivation from concomitant regions of the sacral neural ganglia. Patients with buttock herpes recurrences should be instructed about the risk of genital shedding during such recurrences. II-2.

  5. Rise in seroprevalence of herpes simplex virus type 1 among highly sexual active homosexual men and an increasing association between herpes simplex virus type 2 and HIV over time (1984-2003)

    NARCIS (Netherlands)

    Smit, Colette; Pfrommer, Christiaan; Mindel, Adrian; Taylor, Janette; Spaargaren, Joke; Berkhout, Ben; Coutinho, Roel; Dukers, Nicole H. T. M.

    2007-01-01

    OBJECTIVES: Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) are both highly prevalent. The rate of genital HSV-1 transmission is reportedly increasing over time. HSV-2 is considered to be an important risk factor for HIV transmission. We therefore studied changes in the HSV-1 and HSV-2

  6. Asymptomatic Herpes Simplex Virus Infection in Iranian Mothers and Their Newborns.

    Science.gov (United States)

    Tavakoli, Ahmad; Monavari, Seyed Hamidreza; Bokharaei-Salim, Farah; Mollaei, Hamidreza; Abedi-Kiasari, Bahman; Fallah, Fatemeh Hoda; Mortazavi, Helya Sadat

    2017-02-01

    This study aims to determine the prevalence of herpes simplex virus (HSV) infection among pregnant women as well as congenital infection of their newborns in Tehran. One hundred samples of blood sera from pregnant women were analyzed for the presence of HSV specific antibodies. Umbilical cord blood samples from the newborns were analyzed for the presence of HSV DNA using real-time PCR. HSV IgG and IgM antibodies were found in 97% and 2% of pregnant women, respectively. Of all the 100 cord blood samples, 6 were positive for HSV DNA in which 2 cases were from mothers who had detectable IgM. It was notable that all corresponding mothers of six HSV positive infants had detectable IgG antibodies in their sera. It was demonstrated that the presence of HSV DNA in cord blood of newborns could be a risk marker for maternal-fetal transmission of the virus in asymptomatic pregnant women.

  7. Oncolytic Herpes Simplex Virus Vectors Fully Retargeted to Tumor- Associated Antigens.

    Science.gov (United States)

    Uchida, Hiroaki; Hamada, Hirofumi; Nakano, Kenji; Kwon, Heechung; Tahara, Hideaki; Cohen, Justus B; Glorioso, Joseph C

    2018-01-01

    Oncolytic virotherapy is a novel therapeutic modality for malignant diseases that exploits selective viral replication in cancer cells. Herpes simplex virus (HSV) is a promising agent for oncolytic virotherapy due to its broad cell tropism and the identification of mutations that favor its replication in tumor over normal cells. However, these attenuating mutations also tend to limit the potency of current oncolytic HSV vectors that have entered clinical studies. As an alternative, vector retargeting to novel entry receptors has the potential to achieve tumor specificity at the stage of virus entry, eliminating the need for replication-attenuating mutations. Here, we summarize the molecular mechanism of HSV entry and recent advances in the development of fully retargeted HSV vectors for oncolytic virotherapy. Retargeted HSV vectors offer an attractive platform for the creation of a new generation of oncolytic HSV with improved efficacy and specificity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A random PCR screening system for the identification of type 1 human herpes simplex virus.

    Science.gov (United States)

    Yu, Xuelian; Shi, Bisheng; Gong, Yan; Zhang, Xiaonan; Shen, Silan; Qian, Fangxing; Gu, Shimin; Hu, Yunwen; Yuan, Zhenghong

    2009-10-01

    Several viral diseases exhibit measles-like symptoms. Differentiation of suspected cases of measles with molecular epidemiological techniques in the laboratory is useful for measles surveillance. In this study, a random PCR screening system was undertaken for the identification of isolates from patients with measles-like symptoms who exhibited cytopathic effects, but who had negative results for measles virus-specific reverse transcription (RT)-PCR and indirect immunofluorescence assays. Sequence analysis of random amplified PCR products showed that they were highly homologous to type 1 human herpes simplex virus (HSV-1). The results were further confirmed by an HSV-1-specific TaqMan real-time PCR assay. The random PCR screening system described in this study provides an efficient procedure for the identification of unknown viral pathogens. Measles-like symptoms can also be caused by HSV-1, suggesting the need to include HSV-1 in differential diagnoses of measles-like diseases.

  9. Evasion of Cytosolic DNA-Stimulated Innate Immune Responses by Herpes Simplex Virus 1.

    Science.gov (United States)

    Zheng, Chunfu

    2018-03-15

    Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway. Copyright © 2018 American Society for Microbiology.

  10. Antiviral activities of Radix Isatidis polysaccharide against type II herpes simplex virus in vitro

    Directory of Open Access Journals (Sweden)

    Chunmei WANG

    2018-03-01

    Full Text Available Abstract This study investigated the antiviral activities of Radix Isatidis polysaccharide (RIP against type II herpes simplex virus (HSV-2 in vitro. RIP was prepared from the Radix Isatidis root. The toxicity of RIP on Vero cells was detected. The direct killing effect of RIP on HSV-2, inhibitory effect of RIP on HSV-2 replication and inhibitory effect of RIP on HSV-2 adsorption were determined. Results showed that, RIP in concentration range of 25-800 mg/L had no toxic effect on Vero cells. RIP with different concentrations could not directly inactivate the HSV-2. The effective rates on inhibition of HSV-2 replication and adsorption in 800 mg/L RIP group were 71.57% and 48.37%, respectively, which were the highest among different groups. In conclusion, RIP has the antiviral effect against HSV-2 in vitro. This effect mainly occurs in inhibiting the virus duplication and adsorption.

  11. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Shestakov, Andrey; Hancock, Robert E. W

    2013-01-01

    We have evaluated the potential of four synthetic peptides (denoted HH-2, 1002, 1006, 1018) with a distant relationship to the host defense peptide bovine bactenecin dodecapeptide for their ability to prevent genital infections with herpes simplex virus type 2 (HSV-2) in mice. All four peptides...... infectious doses of HSV-2. These data show that peptides HH-2 and 1018 have antiviral properties and can be used to prevent genital herpes infection in mice. (C) 2013 Elsevier B.V. All rights reserved....... was introduced in human semen. Two of the peptides proved especially effective in reducing HSV-2 infection also in vivo. When admixed with virus prior to inoculation, both HH-2 and 1018 reduced viral replication and disease development in a genital model of HSV-2 infection in mice, and also when using very high...

  12. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    Science.gov (United States)

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  13. Antiviral activity of an extract of Cordia salicifolia on herpes simplex virus type 1.

    Science.gov (United States)

    Hayashi, K; Hayashi, T; Morita, N; Niwayama, S

    1990-10-01

    A partially purified extract (COL 1-6) from whole plant of Cordia salicifolia showed an inhibitory effect on herpes simplex virus type 1 (HSV-1). The activity of COL 1-6 on different steps of HSV-1 replication in HeLa cells was investigated. Under single-cycle replication conditions, COL 1-6 exerted a greater than 99.9% inhibition in virus yield when added to the cells 3 h or 1.5 h before infection, and even when added 8 h after infection the extract still caused a greater than 99% inhibition. The extract has been shown to have a direct virucidal activity. And also, analysis of early events following infection showed that COL 1-6 affected viral penetration in HeLa cells but did not interfere with adsorption to the cells.

  14. Characterization of herpes simplex virus 2 primary microRNA Transcript regulation.

    Science.gov (United States)

    Tang, Shuang; Bosch-Marce, Marta; Patel, Amita; Margolis, Todd P; Krause, Philip R

    2015-05-01

    In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These

  15. Identification of three redundant segments responsible for herpes simplex virus 1 ICP0 to fuse with ND10 nuclear bodies.

    Science.gov (United States)

    Zheng, Yi; Gu, Haidong

    2015-04-01

    Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a key regulator in both lytic and latent infections. In lytic infection, an important early event is the colocalization of ICP0 to nuclear domain 10 (ND10), the discrete nuclear bodies that impose restrictions on viral expression. ICP0 contains an E3 ubiquitin ligase that degrades promyelocytic leukemia protein (PML) and Sp100, two major components of ND10, and disperses ND10 to alleviate repression. We previously reported that the association between ICP0 and ND10 is a dynamic process that includes three steps: adhesion, fusion, and retention. ICP0 residues 245 to 474, defined as ND10 entry signal (ND10-ES), is a region required for the fusion step. Without ND10-ES, ICP0 adheres at the ND10 surface but fails to enter. In the present study, we focus on characterizing ND10-ES. Here we report the following. (i) Fusion of ICP0 with ND10 relies on specific sequences located within ND10-ES. Replacement of ND10-ES by the corresponding region from ORF61 of varicella-zoster virus did not rescue ND10 fusion. (ii) Three tandem ND10 fusion segments (ND10-FS1, ND10-FS2, and ND10-FS3), encompassing 200 amino acids within ND10-ES, redundantly facilitate fusion. Each of the three segments is sufficient to independently drive the fusion process, but none of the segments by themselves are necessary for ND10 fusion. Only when all three segments are deleted is fusion blocked. (iii) The SUMO interaction motif located within ND10-FS2 is not required for ND10 fusion but is required for the complete degradation of PML, suggesting that PML degradation and ND10 fusion are regulated by different molecular mechanisms. ND10 nuclear bodies are part of the cell-intrinsic antiviral defenses that restrict viral gene expression upon virus infection. As a countermeasure, infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) localizes to ND10s, degrades the ND10 organizer, and disperses ND10 components in order to

  16. Disparities in herpes simplex virus type 2 infection between black and white men who have sex with men in Atlanta, GA.

    Science.gov (United States)

    Okafor, Netochukwu; Rosenberg, Eli S; Luisi, Nicole; Sanchez, Travis; del Rio, Carlos; Sullivan, Patrick S; Kelley, Colleen F

    2015-09-01

    HIV disproportionately affects black men who have sex with men, and herpes simplex virus type 2 is known to increase acquisition of HIV. However, data on racial disparities in herpes simplex virus type 2 prevalence and risk factors are limited among men who have sex with men in the United States. InvolveMENt was a cohort study of black and white HIV-negative men who have sex with men in Atlanta, GA. Univariate and multivariate cross-sectional associations with herpes simplex virus type 2 seroprevalence were assessed among 455 HIV-negative men who have sex with men for demographic, behavioural and social determinant risk factors using logistic regression. Seroprevalence of herpes simplex virus type 2 was 23% (48/211) for black and 16% (38/244) for white men who have sex with men (p = 0.05). Education, poverty, drug/alcohol use, incarceration, circumcision, unprotected anal intercourse, and condom use were not associated with herpes simplex virus type 2. In multivariate analyses, black race for those ≤25 years, but not >25 years, and number of sexual partners were significantly associated. Young black men who have sex with men are disproportionately affected by herpes simplex virus type 2, which may contribute to disparities in HIV acquisition. An extensive assessment of risk factors did not explain this disparity in herpes simplex virus type 2 infection suggesting differences in susceptibility or partner characteristics. © The Author(s) 2014.

  17. Herpes simplex virus types 1 and 2 induce shutoff of host protein synthesis by different mechanisms in Friend erythroleukemia cells

    International Nuclear Information System (INIS)

    Hill, T.M.; Sinden, R.R.; Sadler, J.R.

    1983-01-01

    Herpes simplex virus type 1 (HSV-1) and HSV-2 disrupt host protein synthesis after viral infection. We have treated both viral types with agents which prevent transcription of the viral genome and used these treated viruses to infect induced Friend erythroleukemia cells. By measuring the changes in globin synthesis after infection, we have determined whether expression of the viral genome precedes the shutoff of host protein synthesis or whether the inhibitor molecule enters the cells as part of the virion. HSV-2-induced shutoff of host protein synthesis was insensitive to the effects of shortwave (254-nm) UV light and actinomycin D. Both of the treatments inhibited HSV-1-induced host protein shutoff. Likewise, treatment of HSV-1 with the cross-linking agent 4,5',8-trimethylpsoralen and longwave (360-nm) UV light prevented HSV-1 from inhibiting cellular protein synthesis. Treatment of HSV-2 with 4,5',8-trimethylpsoralen did not affect the ability of the virus to interfere with host protein synthesis, except at the highest doses of longwave UV light. It was determined that the highest longwave UV dosage damaged the HSV-2 virion as well as cross-linking the viral DNA. The results suggest that HSV-2 uses a virion-associated component to inhibit host protein synthesis and that HSV-1 requires the expression of the viral genome to cause cellular protein synthesis shutoff

  18. Strong decline in herpes simplex virus antibodies over time among young homosexual men is associated with changing sexual behavior

    NARCIS (Netherlands)

    Dukers, N. H.; Bruisten, S. M.; van den Hoek, J. A.; de Wit, J. B.; van Doornum, G. J.; Coutinho, R. A.

    2000-01-01

    The objective of this study was to evaluate whether the change in sexual behavior among homosexual men observed after the start of the acquired immunodeficiency syndrome epidemic resulted in a change in herpes simplex virus (HSV) seroprevalence in this group over time. In a cross-sectional study,

  19. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    Science.gov (United States)

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  20. [F-18]FHPG positron emission tomography for detection of herpes simplex virus (HSV) in experimental HSV encephalitis

    NARCIS (Netherlands)

    Buursma, AR; de Vries, EFJ; Garssen, J; Kegler, D; van Waarde, A; Schirm, J; Hospers, GAP; Mulder, NH; Vaalburg, W; Klein, HC

    Herpes simplex virus type 1 (HSV-1) is one of the most common causes of sporadic encephalitis. The initial clinical course of HSV encephalitis (HSE) is highly variable, and the infection may be rapidly fatal. For effective treatment with antiviral medication, an early diagnosis of HSE is crucial.

  1. Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro

    NARCIS (Netherlands)

    Jones, CA; Fernandez, M; Herc, K; Bosnjak, L; Miranda-Saksena, M; Boadle, RA; Cunningham, A

    2003-01-01

    Dendritic cells (DC) are critical for stimulation of naive T cells. Little is known about the effect of herpes simplex virus type 2 (HSV-2) infection on DC structure or function or if the observed effects of HSV-1 on human DC are reproduced in murine DC. Here, we demonstrate that by 12 h

  2. Construction of rat cell lines that contain potential morphologically transforming regions of the herpes simplex virus type 2 genome

    NARCIS (Netherlands)

    van den Berg, F. M.; van Amstel, P. J.; Walboomers, J. M.

    1985-01-01

    Hybrid recombinant plasmids were constructed; they were composed of the herpes simplex virus type 2 (HSV2) thymidine kinase (tk) gene and DNA sequences of HSV2 that have been reported to induce morphological and/or oncogenic transformation of rodent cells in culture. Several plasmids were made in

  3. Studies on virus-induced cell fusion. Progress report, August 1, 1975--April 30, 1976. [Herpes simplex

    Energy Technology Data Exchange (ETDEWEB)

    Person, S.

    1976-01-01

    Progress is reported on the following research projects: mechanism of cell fusion induced by fusion-causing mutants of herpes simplex virus type I; quantitative assays for kinetics of cell fusion; neutral sphingoglycolipids in wild type and mutant infected cells; effects of alteration in oligosaccharide metabolism on cell fusion; and blocking of fusion by ..beta..-galactosidase and NH/sub 4/Cl. (HLW)

  4. Reduction of /sup 51/Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Habermehl, K.O.; Diefenthal, W.; Hampl, H.

    1979-01-01

    Infection of different strains of tissue culture cells with herpes simplex virus type 1(HSV-1) resulted in a reduced /sup 51/Cr-permeability. A stability of the cellular membrane to Triton X-100, toxic sera and HSV-specific complement-mediated immune-cytolysis could be observed simultaneously. The results differed with respect to the cell strain used in the experiments.

  5. Atypical presentations of genital herpes simplex virus in HIV-1 and HIV-2 effectively treated by imiquimod.

    Science.gov (United States)

    McKendry, Anna; Narayana, Srinivasulu; Browne, Rita

    2015-05-01

    Atypical presentations of genital herpes simplex virus have been described in HIV. We report two cases with hypertrophic presentations which were effectively treated with imiquimod, one of which is the first reported case occurring in a patient with HIV-2. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

    Directory of Open Access Journals (Sweden)

    Francisco J. Ibáñez

    2017-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS, as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP and negatively by tin protoporphirin (SnPP. Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+, carbon monoxide (CO and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV, influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2 infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP, we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2 recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

  7. DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Schmeisser, Falko; Pedersen, Robin; Woerner, Amy; Weir, Jerry P.

    2004-01-01

    Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2

  8. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus.

    Science.gov (United States)

    Han, Jun; Chadha, Pooja; Meckes, David G; Baird, Nicholas L; Wills, John W

    2011-09-01

    The UL11 tegument protein of herpes simplex virus plays a critical role in the secondary envelopment; however, the mechanistic details remain elusive. Here, we report a new function of UL11 in the budding process in which it directs efficient acquisition of glycoprotein E (gE) via a direct interaction. In vitro binding assays showed that the interaction required only the first 28, membrane-proximal residues of the cytoplasmic tail of gE, and the C-terminal 26 residues of UL11. A second, weaker binding site was also found in the N-terminal half of UL11. The significance of the gE-UL11 interaction was subsequently investigated with viral deletion mutants. In the absence of the gE tail, virion packaging of UL11, but not other tegument proteins such as VP22 and VP16, was reduced by at least 80%. Reciprocally, wild-type gE packaging was also drastically reduced by about 87% in the absence of UL11, and this defect could be rescued in trans by expressing U(L)11 at the U(L)35 locus. Surprisingly, a mutant that lacks the C-terminal gE-binding site of UL11 packaged nearly normal amounts of gE despite its strong interaction with the gE tail in vitro, indicating that the interaction with the UL11 N terminus may be important. Mutagenesis studies of the UL11 N terminus revealed that the association of UL11 with membrane was not required for this function. In contrast, the UL11 acidic cluster motif was found to be critical for gE packaging and was not replaceable with foreign acidic clusters. Together, these results highlight an important role of UL11 in the acquisition of glycoprotein-enriched lipid bilayers, and the findings may also have important implications for the role of UL11 in gE-mediated cell-to-cell spread.

  9. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding.

    Science.gov (United States)

    Johnston, Christine; Corey, Lawrence

    2016-01-01

    Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Induction of uterine cancer with inactivated herpes simplex virus, types 1 and 2

    International Nuclear Information System (INIS)

    Wentz, W.B.; Reagan, J.W.; Heggie, A.D.; Fu, Y.S.; Anthony, D.D.

    1981-01-01

    A series of studies were performed to evaluate the oncogenic potential of inactivated herpes simplex viruses types 1 (HSV-1) and 2 (HSV-2) in the mouse cervix. HSV-1 or HSV-2 prepared in HEp-2 cell cultures and inactivated by exposure to formalin or ultraviolet light was applied to the mouse cervix for periods ranging from 20 to 90 weeks. Control mice were exposed for the same period to control fluids. Vaginal cytologic preparations from all animals were examined weekly to detect epithelial abnormalities. Animals were sacrificed and histopathological studies were carried out when cellular changes seen on vaginal smears resembled those indicative of premalignant or malignant changes as previously established in a similar model system using coal tar hydrocarbons. Other animals were exposed for periods up to 90 weeks, or until there was cellular evidence of invasive cancer. Cytologic and histologic materials were coded and evaluated without knowledge of whether they were from virus-exposed or control animals. Premalignant and malignant cervical lesions similar to those that occur in women were encountered in 78 to 90% of the virus-exposed animals. All controls were normal. Invasive cancer was detected in 24 to 60% of the animals and dysplasia was found in 18 to 66%. The yield of invasive cancer was twice as great after exposure to ultraviolet-inactivated HSV-2 as compared with formalin-inactivated virus. Various histologic grades of carcinoma of the cervix and endometrium were found. No primary lesions were found in the vagina or ovaries

  11. Current Concepts for Genital Herpes Simplex Virus Infection: Diagnostics and Pathogenesis of Genital Tract Shedding

    Science.gov (United States)

    Corey, Lawrence

    2015-01-01

    SUMMARY Herpes simplex virus 2 (HSV-2) is a DNA virus that is efficiently transmitted through intimate genital tract contact and causes persistent infection that cannot be eliminated. HSV-2 may cause frequent, symptomatic self-limited genital ulcers, but in most persons infection is subclinical. However, recent studies have demonstrated that the virus is frequently shed from genital surfaces even in the absence of signs or symptoms of clinical disease and that the virus can be transmitted during these periods of shedding. Furthermore, HSV-2 shedding is detected throughout the genital tract and may be associated with genital tract inflammation, which likely contributes to increased risk of HIV acquisition. This review focuses on HSV diagnostics, as well as what we have learned about the importance of frequent genital HSV shedding for (i) HSV transmission and (ii) genital tract inflammation, as well as (iii) the impact of HSV-2 infection on HIV acquisition and transmission. We conclude with discussion of future areas of research to push the field forward. PMID:26561565

  12. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  13. Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2'-deoxyuridine and near UV light

    International Nuclear Information System (INIS)

    Manak, M.M.; Aurelian, L.; Ts'o, P.O.

    1981-01-01

    The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10

  14. Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis.

    Science.gov (United States)

    Borderie, Vincent M; Gineys, Raquel; Goldschmidt, Pablo; Batellier, Laurence; Laroche, Laurent; Chaumeil, Christine

    2012-11-01

    To assess the clinical relevance of tear anti-herpes simplex virus (HSV) antibody measurement for the diagnosis of herpes simplex keratitis. Records of 364 patients clinically suspect of HSV-related keratitis who had tear anti-HSV IgG assessment (tear-quantified anti-HSV IgG/filtrated IgG ratio) in our institution between January 2000 and August 2008 were retrospectively analyzed. Patients were classified into 4 groups as follows: group 1, anti-HSV IgG negative in serum and tears; group 2, anti-HSV IgG negative in tears and positive in serum; group 3, anti-HSV IgG nonsignificantly positive in tears and positive in serum; and group 4, anti-HSV IgG significantly positive in serum and tears. Randomly selected patient charts from each group were reviewed for clinical data. The prevalence of anti-HSV IgG in blood increased with age from >70% before 20 years to 95% after 70 years. The prevalence of anti-HSV IgG in tears increased with age from 20% before 20 years to >50% after 70 years. The presence (either significant or not) of anti-HSV IgG in tears was significantly associated with decreased corneal sensation, presence of stromal opacities, and with neurotrophic keratitis. Logistic regression showed no significant association between age and clinical signs except for herpetic ulcers and herpetic necrotizing keratitis. Tear production of anti-HSV IgG increases with age, and it is associated with sequelae of herpes simplex keratitis. Conversely, it is poorly associated with clinical signs of acute herpes simplex keratitis.

  15. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  16. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1.

    Science.gov (United States)

    Wudiri, George A; Nicola, Anthony V

    2017-07-15

    Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24 -/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSV des ) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSV chol and HSV des were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24 -/- fibroblasts released ∼1 log less infectious HSV des and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSV chol ) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle. IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the

  17. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses.

    Science.gov (United States)

    Lemieux, Bertrand; Li, Ying; Kong, Huimin; Tang, Yi-Wei

    2012-06-01

    The first near instrument-free, inexpensive and simple molecular diagnostic device (IsoAmp HSV, BioHelix Corp., MA, USA) recently received US FDA clearance for use in the detection of herpes simplex viruses (HSV) in genital and oral lesion specimens. The IsoAmp HSV assay uses isothermal helicase-dependent amplification in combination with a disposable, hermetically-sealed, vertical-flow strip identification. The IsoAmp HSV assay has a total test-to-result time of less than 1.5 h by omitting the time-consuming nucleic acid extraction. The diagnostic sensitivity and specificity are comparable to PCR and are superior to culture-based methods. The near instrument-free, rapid and simple characteristics of the IsoAmp HSV assay make it potentially suitable for point-of-care testing.

  18. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV......-2 in the CSF was determined by polymerase chain reaction (PCR), and patients were diagnosed as encephalitis or meningitis according to predefined clinical criteria by retrospective data information from consecutive clinical journals. The annual crude incidence rate of HSV-2 CNS disease was 0.26 per...... 100,000. 43 (88%) had meningitis of whom 8 (19%) had recurring lymphocytic meningitis. Six patients (12%) had encephalitis. 11 of 49 patients (22%) had sequelae recorded during follow-up. None died as a result of HSV-2 CNS disease. Thus, the clinical presentation of HSV-2 infection of the CNS...

  19. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2

    International Nuclear Information System (INIS)

    Muggeridge, Martin I.; Grantham, Michael L.; Johnson, F. Brent

    2004-01-01

    Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and one nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis

  20. Kyrieleis plaques associated with Herpes Simplex Virus type 1 acute retinal necrosis

    Directory of Open Access Journals (Sweden)

    Neha Goel

    2016-04-01

    Full Text Available We report the case of a 55-year-old immunocompetent male who presented with features typical of acute retinal necrosis (ARN. Polymerase chain reaction of the aqueous tap was positive for Herpes Simplex Virus (HSV – 1. Following therapy with intravenous Acyclovir, followed by oral Acyclovir and steroids, there was marked improvement in the visual acuity and clinical picture. At one week after initiation of treatment, Kyrieleis plaques were observed in the retinal arteries. They became more prominent despite resolution of the vitritis, retinal necrosis and vasculitis and persisted till six weeks of follow-up, when fluorescein angiography was performed. The appearance of this segmental retinal periarteritis also known as Kyrieleis plaques has not been described in ARN due to HSV-1 earlier.

  1. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  2. Deoxypyrimidine kinases of herpes simplex viruses types 1 and 2: comparison of serological and structural properties.

    Science.gov (United States)

    Thouless, M E; Wildy, P

    1975-02-01

    The kinetics of formation, the stability at 40 degrees C and the serological properties of thymidine kinase and deoxycytidine kinase activities induced by herpes simplex virus have been examined. The results are consistent with the hypothesis that both activities are carried on the same molecule-a deoxypyrimidine kinase. Mutants deficient in deoxypyrimidine kinase have been used to produce, by absorption of general antisera, deoxypyrimidine kinase-specific antisera. Using immunoprecipitation and SDS-polyacrylamide gel electrophoresis, only one size of polypeptide (mol. wt. 42400 plus or minus 200) has been found, constituting the type 2 enzyme. This is close to published values for the type i enzyme but co-electrophoresis demonstrated that the polypeptide of the type i enzyme was slightly bigger.

  3. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2011-08-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases.

  4. Analysis of the herpes simplex virus type 1 UL6 gene in patients with stromal keratitis

    International Nuclear Information System (INIS)

    Ellison, Aaron R.; Yang Li; Cevallos, A. Vicky; Margolis, Todd P.

    2003-01-01

    Recent work suggests that herpes simplex virus (HSV) stromal keratitis in the mouse is caused by autoreactive T lymphocytes triggered by a 16 amino acid region of the HSV UL6 protein (aa299-314) , Science 279, 1344-1347). In the present study we sought to determine whether genetic variation of this presumed autoreactive UL6 epitope is responsible for different pathogenic patterns of human HSV keratitis. To accomplish this, we sequenced the HSV UL6 gene from ocular isolates of 10 patients with necrotizing stromal keratitis, 7 patients with recurrent epithelial keratitis, and 8 patients with other forms of HSV keratitis. The sequences obtained predicted identical UL6(299-314) epitopes for all 25 viral isolates. Furthermore, the upstream sequence of all isolates was free of insertions, deletions, and stop codons. We conclude that different pathogenic patterns of human HSV keratitis occur independent of genetic variation of the HSV UL6 (299-314) epitope

  5. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated?

    Science.gov (United States)

    Al-Dujaili, Lena J; Clerkin, Patrick P; Clement, Christian; McFerrin, Harris E; Bhattacharjee, Partha S; Varnell, Emily D; Kaufman, Herbert E; Hill, James M

    2012-01-01

    Most humans are infected with herpes simplex virus (HSV) type 1 in early childhood and remain latently infected throughout life. While most individuals have mild or no symptoms, some will develop destructive HSV keratitis. Ocular infection with HSV-1 and its associated sequelae account for the majority of corneal blindness in industrialized nations. Neuronal latency in the peripheral ganglia is established when transcription of the viral genome is repressed (silenced) except for the latency-associated transcripts and microRNAs. The functions of latency-associated transcripts have been investigated since 1987. Roles have been suggested relating to reactivation, establishment of latency, neuronal protection, antiapoptosis, apoptosis, virulence and asymptomatic shedding. Here, we review HSV-1 latent infections, reactivation, recurrent disease and antiviral therapies for the ocular HSV diseases. PMID:21861620

  6. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    Science.gov (United States)

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ultraviolet-irradiated urocanic acid suppresses delayed-type hypersensitivity to herpes simplex virus in mice

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.; Simpson, T.J.

    1986-01-01

    Ultraviolet radiation is known to induce a transient defect in epidermal antigen presentation which leads to the generation of antigen-specific suppression of the delayed-type hypersensitivity (DTH) response. The putative receptor in skin for the primary event in UV-suppression is urocanic acid (UCA) which may then interact locally, or systemically, with antigen presenting cells or initiate a cascade of events resulting in suppression. We present the first direct evidence that UCA, when irradiated with a dose (96 mJ/cm2) of UVB radiation known to suppress the DTH response to herpes simplex virus, type 1 (HSV-1) in mice, can induce suppression following epidermal application or s.c. injection of the irradiated substance. This suppression is transferable with nylon wool-passed spleen cells

  8. In vitro virucidal activity of a styrylpyrone derivative against herpes simplex virus strain KOS-1

    Science.gov (United States)

    Moses, Micheal; Nor, Norefrina Shafinaz Md.; Ibrahim, Nazlina

    2014-09-01

    In this study, styrylpyrone derivative (SPD) extracted from Goniothalamus umbrosus root was tested against herpes simplex virus (HSV) strain KOS-1. Firstly, the cytotoxicity of SPD on Vero cells was tested and the value of cytotoxic concentration, CC50, was 44 μM (8.88 μg/mL), and the 50% Effective Concentration, EC50, was 3.35 μM (0.67 μg/mL). Selectivity index of SPD against HSV Kos-1 was more than 13 indicating potential as antiviral agent. Three treatments were used in the antiviral test; 1) post-treatment, 2) pre-treatment, and 3) virucidal. The results revealed that the post-treatment was more effective in inhibiting viral replication compared to pre-treatment. The findings indicated that the SPD from G. umbrosus has good potential for prospective nature-based antiviral drug.

  9. Transient urinary retention and chronic neuropathic pain associated with genital herpes simplex virus infection.

    Science.gov (United States)

    Haanpää, Maija; Paavonen, Jorma

    2004-10-01

    Genital herpes (GH) causes genital ulcer disease, severe transient pain, and often paresthesias. Whether or not GH can cause urinary retention or chronic neuropathic pain is not well known. We present two immunocompetent patients with GH associated with neuropathic symptoms. We also review the literature on GH and associated neurologic problems. Patient 1 had primary herpes simplex virus (HSV)-2 infection with transient urinary retention and chronic bilateral neuropathic pain in the sacral area. Patient 2 had recurrent HSV-1 associated with unitaleral chronic neuropathic pain in the sacral area. Although transient urinary retention associated with GH is not uncommon, chronic neuropathic pain has not been reported previously. Our cases show that chronic neuropathic pain, that is "pain initiated or caused by a primary lesion or dysfunction in the nervous system," can follow genital HSV infection.

  10. Unusual presentation of herpes simplex virus infection in a boxer: 'Boxing glove herpes'.

    Science.gov (United States)

    García-García, Begoña; Galache-Osuna, Cristina; Coto-Segura, Pablo; Suárez-Casado, Héctor; Mallo-García, Susana; Jiménez, Jorge Santos-Juanes

    2013-02-01

    Herein, we describe a patient with lesions of cutaneous herpes simplex virus 1 (HSV-1) infection over the knuckles of both hands in the context of an outbreak among boxers. Interestingly, the infection had an unusually long duration (4 weeks), and was not acquired directly through skin-to-skin contact, as it usually does among athletes (herpes gladiatorum). In our case, transmission was acquired through the use of shared boxing gloves contaminated by HSV-1. To the best of our knowledge, herpes gladiatorum, or wrestler's herpes, has not been described previously in boxers and infection over the knuckles is not commonly reported. © 2011 The Authors. Australasian Journal of Dermatology © 2011 The Australasian College of Dermatologists.

  11. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    Science.gov (United States)

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To

  12. Quantitative Evaluation of Protein Heterogeneity within Herpes Simplex Virus 1 Particles.

    Science.gov (United States)

    El Bilali, Nabil; Duron, Johanne; Gingras, Diane; Lippé, Roger

    2017-05-15

    Several virulence genes have been identified thus far in the herpes simplex virus 1 genome. It is also generally accepted that protein heterogeneity among virions further impacts viral fitness. However, linking this variability directly with infectivity has been challenging at the individual viral particle level. To address this issue, we resorted to flow cytometry (flow virometry), a powerful approach we recently employed to analyze individual viral particles, to identify which tegument proteins vary and directly address if such variability is biologically relevant. We found that the stoichiometry of the U L 37, ICP0, and VP11/12 tegument proteins in virions is more stable than the VP16 and VP22 tegument proteins, which varied significantly among viral particles. Most interestingly, viruses sorted for their high VP16 or VP22 content yielded modest but reproducible increases in infectivity compared to their corresponding counterparts containing low VP16 or VP22 content. These findings were corroborated for VP16 in short interfering RNA experiments but proved intriguingly more complex for VP22. An analysis by quantitative Western blotting revealed substantial alterations of virion composition upon manipulation of individual tegument proteins and suggests that VP22 protein levels acted indirectly on viral fitness. These findings reaffirm the interdependence of the virion components and corroborate that viral fitness is influenced not only by the genome of viruses but also by the stoichiometry of proteins within each virion. IMPORTANCE The ability of viruses to spread in animals has been mapped to several viral genes, but other factors are clearly involved, including virion heterogeneity. To directly probe whether the latter influences viral fitness, we analyzed the protein content of individual herpes simplex virus 1 particles using an innovative flow cytometry approach. The data confirm that some viral proteins are incorporated in more controlled amounts, while

  13. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    DEFF Research Database (Denmark)

    Rasmussen, Simon B; Jensen, Søren B; Nielsen, Christoffer

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...... interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV...

  14. Evaluation of mixed infection cases with both herpes simplex virus types 1 and 2.

    Science.gov (United States)

    Kaneko, Hisatoshi; Kawana, Takashi; Ishioka, Ken; Ohno, Shigeaki; Aoki, Koki; Suzutani, Tatsuo

    2008-05-01

    Herpes simplex virus type 1 (HSV-1) is isolated principally from the upper half of the body innervated by the trigeminal ganglia whereas herpes simplex virus type 2 (HSV-2) is generally isolated from the lower half of the body innervated by the sacral ganglia. However, recent reports suggest that HSV-1 and HSV-2 can each infect both the upper and lower half of the body causing a variety of symptoms and there is a possibility that HSV-1 and HSV-2 infections can occur simultaneously with both causing symptoms. HSV type in clinical isolates from 87 patients with genital herpes and 57 with ocular herpes was determined by the polymerase chain reaction (PCR), and six cases of mixed infection with both HSV-1 and HSV-2 were identified. Of the six cases, three were patients with genital herpes and three were ocular herpes patients. Analysis of the copy number of the HSV-1 and HSV-2 genome by a quantitative real time PCR demonstrated that HSV-1 was dominant at a ratio of approximately 100:1 in the ocular infections. In contrast, the HSV-2 genome was present at a 4-40 times higher frequency in isolates from genital herpes patients. There was no obvious difference between the clinical course of mixed infection and those of single HSV-1 or HSV-2 infections. This study indicated that the frequency of mixed infection with both HSV-1 and HSV-2 is comparatively higher than those of previous reports. The genome ratio of HSV-1 and HSV-2 reflects the preference of each HSV type for the target organ.

  15. Association of Chlamydia trachomatis Infection and Herpes Simplex Virus Type 2 Serostatus With Genital Human Papillomavirus Infection in Men: The HPV in Men Study

    NARCIS (Netherlands)

    Alberts, Catharina Johanna; Schim van der Loeff, Maarten F.; Papenfuss, Mary R.; da Silva, Roberto José Carvalho; Villa, Luisa Lina; Lazcano-Ponce, Eduardo; Nyitray, Alan G.; Giuliano, Anna R.

    2013-01-01

    Background: Studies in women indicate that some sexually transmitted infections promote human papillomavirus (HPV) persistence and carcinogenesis. Little is known about this association in men; therefore, we assessed whether Chlamydia trachomatis (CT) infection and herpes simplex virus type 2

  16. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV.

    Science.gov (United States)

    Kopp, Sarah J; Ranaivo, Hantamalala R; Wilcox, Douglas R; Karaba, Andrew H; Wainwright, Mark S; Muller, William J

    2014-12-01

    Outcomes of neonates with herpes simplex virus (HSV) encephalitis are worse after infection with HSV-2 when compared with HSV-1. The proteins herpes virus entry mediator (HVEM) and nectin-1 mediate HSV entry into susceptible cells. Prior studies have shown receptor-dependent differences in pathogenesis that depend on route of inoculation and host developmental age. We investigated serotype-related differences in HSV disease and their relationship to entry receptor availability in a mouse model of encephalitis. Mortality was attenuated in 7-d-old, wild-type (WT) mice inoculated with HSV-1(F) when compared with HSV-2(333). No serotype-specific differences were seen after inoculation of adult mice. HSV-1 pathogenesis was also attenuated relative to HSV-2 in newborn but not adult mice lacking HVEM or nectin-1. HSV-2 requires nectin-1 for encephalitis in adult but not newborn mice; in contrast, nectin-1 was important for HSV-1 pathogenesis in both age groups. Early viral replication was independent of age, viral serotype, or mouse genotype, suggesting host responses influence outcomes. In this regard, significantly greater amounts of inflammatory mediators were detected in brain homogenates from WT newborns 2 d after infection compared with adults and receptor-knockout newborns. Dysregulation of inflammatory responses induced by infection may influence the severity of HSV encephalitis.

  17. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D

    International Nuclear Information System (INIS)

    Stiles, Katie M.; Milne, Richard S.B.; Cohen, Gary H.; Eisenberg, Roselyn J.; Krummenacher, Claude

    2008-01-01

    During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated. Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry

  18. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1

    Directory of Open Access Journals (Sweden)

    Guilherme Rabelo Coelho

    2015-01-01

    Full Text Available The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae. There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV.

  19. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Science.gov (United States)

    Cripe, Timothy P; Chen, Chun-Yu; Denton, Nicholas L; Haworth, Kellie B; Hutzen, Brian; Leddon, Jennifer L; Streby, Keri A; Wang, Pin-Yi; Markert, James M; Waters, Alicia M; Gillespie, George Yancey; Beierle, Elizabeth A; Friedman, Gregory K

    2015-01-01

    Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors. PMID:26436135

  20. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1.

    Science.gov (United States)

    Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J

    2011-07-20

    Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Timothy P Cripe

    Full Text Available Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.

  2. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ogawa Yuzo

    2006-08-01

    Full Text Available Abstract Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1. Freely diffusible hydrogen peroxide (H2O2 is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.

  3. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1).

    Science.gov (United States)

    Coelho, Guilherme Rabelo; Mendonça, Ronaldo Zucatelli; Vilar, Karina de Senna; Figueiredo, Cristina Adelaide; Badari, Juliana Cuoco; Taniwaki, Noemi; Namiyama, Gisleine; de Oliveira, Maria Isabel; Curti, Suely Pires; Evelyn Silva, Patricia; Negri, Giuseppina

    2015-01-01

    The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).

  4. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin

    International Nuclear Information System (INIS)

    Lymberopoulos, Maria H.; Pearson, Angela

    2007-01-01

    UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went from clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection

  5. Structural analysis of herpes simplex virus by optical super-resolution imaging

    Science.gov (United States)

    Laine, Romain F.; Albecka, Anna; van de Linde, Sebastian; Rees, Eric J.; Crump, Colin M.; Kaminski, Clemens F.

    2015-01-01

    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.

  6. Recent advances in vaccine development for herpes simplex virus types I and II.

    Science.gov (United States)

    Coleman, Jeffrey L; Shukla, Deepak

    2013-04-01

    Despite recent advances in vaccine design and strategies, latent infection with herpes simplex virus (HSV) remains a formidable challenge. Approaches involving live-attenuated viruses and inactivated viral preparations were popular throughout the twentieth century. In the past ten years, many vaccine types, both prophylactic or therapeutic, have contained a replication-defective HSV, viral DNA or glycoproteins. New research focused on the mechanism of immune evasion by the virus has involved developing vaccines with various gene deletions and manipulations combined with the use of new and more specific adjuvants. In addition, new "prime-boost" methods of strengthening the vaccine efficacy have proven effective, but there have also been flaws with some recent strategies that appear to have compromised vaccine efficacy in humans. Given the complicated lifecycle of HSV and its unique way of spreading from cell-to-cell, it can be concluded that the development of an ideal vaccine needs new focus on cell-mediated immunity, better understanding of the latent viral genome and serious consideration of gender-based differences in immunity development among humans. This review summarizes recent developments made in the field and sheds light on some potentially new ways to conquer the problem including development of dual-action prophylactic microbicides that prohibit viral entry and, in addition, induce a strong antigen response.

  7. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  8. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  9. The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle.

    Science.gov (United States)

    Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L

    2015-10-01

    The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor

  10. Genetic recombination of Herpes simplex virus, the role of the host cell and UV-irradiation of the virus

    International Nuclear Information System (INIS)

    Dasgupta, U.B.; Summers, W.C.; Yale Univ., New Haven, CT; Yale Univ., New Haven, CT

    1980-01-01

    Recombination frequencies for two sets of genetic markers of Herpes simplex virus were determined in various host cells with and without ultraviolet irradiation of the virus. UV irradiation increased the recombination frequency in all the cell types studied in direct proportion to the unrepaired lethal damage. In human skin fibroblasts derived from a patient with xeroderma pigmentosum (XP) of complementation group A, a given dose of UV stimulated recombination more than that in fibroblasts from normal individuals. On the other hand, UV stimulation of HSV recombination was slightly less than normal in fibroblasts derived from a patient with a variant form XP and from an ataxia telangiectasia patient. Caffeine, an agent known to inhibit repair of UV damage, reduced recombination in most of the cell types studied but did not suppress the UV-induced increase in recombination. These findings suggest that for virus DNA with the same number of unrepaired UV-lesions, each of the tested cell types promoted HSV-recombination to an equivalent extent. (orig.) [de

  11. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Directory of Open Access Journals (Sweden)

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  12. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  13. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  14. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  15. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    Science.gov (United States)

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of ultrasound on herpes simplex virus infection in cell culture

    Directory of Open Access Journals (Sweden)

    Iwai Soichi

    2011-09-01

    Full Text Available Abstract Background Ultrasound has been shown to increase the efficiency of gene expression from retroviruses, adenoviruses and adeno-associated viruses. The effect of ultrasound to stimulate cell membrane permeabilization on infection with an oncolytic herpes simplex virus type 1 (HSV-1 was examined. Results Vero monkey kidney cells were infected with HSV-1 and exposed to 1 MHz ultrasound after an adsorption period. The number of plaques was significantly greater than that of the untreated control. A combination of ultrasound and microbubbles further increased the plaque number. Similar results were obtained using a different type of HSV-1 and oral squamous cell carcinoma (SCC cells. The appropriate intensity, duty cycle and time of ultrasound to increase the plaque number were 0.5 W/cm2, 20% duty cycle and 10 sec, respectively. Ultrasound with microbubbles at an intensity of 2.0 W/cm2, at 50% duty cycle, or for 40 sec reduced cell viability. Conclusion These results indicate that ultrasound promotes the entry of oncolytic HSV-1 into cells. It may be useful to enhance the efficiency of HSV-1 infection in oncolytic virotherapy.

  17. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  18. Persistent genital herpes simplex virus-2 shedding years following the first clinical episode.

    Science.gov (United States)

    Phipps, Warren; Saracino, Misty; Magaret, Amalia; Selke, Stacy; Remington, Mike; Huang, Meei-Li; Warren, Terri; Casper, Corey; Corey, Lawrence; Wald, Anna

    2011-01-15

    Patients with newly acquired genital herpes simplex virus 2 (HSV-2) infection have virus frequently detected at the genital mucosa. Rates of genital shedding initially decrease over time after infection, but data on long-term viral shedding are lacking. For this study, 377 healthy adults with history of symptomatic genital HSV-2 infection collected anogenital swabs for HSV-2 DNA polymerase chain reaction for at least 30 consecutive days. Time since first genital herpes episode was significantly associated with reduced genital shedding. Total HSV shedding occurred on 33.6% of days in participants <1 year, 20.6% in those 1-9 years, and 16.7% in those ≥10 years from first episode. Subclinical HSV shedding occurred on 26.2% of days among participants <1 year, 13.1% in those 1-9 years, and 9.3% in those ≥10 years from first episode. On days with HSV detection, mean quantity was 4.9 log₁₀ copies/mL for those <1 year, 4.7 log₁₀ copies/mL among those 1-9 years, and 4.6 log₁₀ copies/mL among those ≥10 years since first episode. Rates of total and subclinical HSV-2 shedding decrease after the first year following the initial clinical episode. However, viral shedding persists at high rates and copy numbers years after infection, and therefore may pose continued risk of HSV-2 transmission to sexual partners.

  19. Early events in herpes simplex virus lifecycle with implications for an infection of lifetime.

    Science.gov (United States)

    Salameh, Sarah; Sheth, Urmi; Shukla, Deepak

    2012-01-01

    Affecting a large percentage of human population herpes simplex virus (HSV) types -1 and -2 mainly cause oral, ocular, and genital diseases. Infection begins with viral entry into a host cell, which may be preceded by viral "surfing" along filopodia. Viral glycoproteins then bind to one or more of several cell surface receptors, such as herpesvirus entry mediator (HVEM), nectin-1, 3-O sulfated heparan sulfate (3-OS HS), paired immunoglobulin-like receptor α, and non-muscle myosin-IIA. At least five viral envelope glycoproteins participate in entry and these include gB, gC, gD and gH-gL. Post-entry, these glycoproteins may also facilitate cell-to-cell spread of the virus, which helps in the evasion of physical barriers as well as several components of the innate and adaptive immune responses. The spread may be facilitated by membrane fusion, movement across tight junctions, transfer across neuronal synapses, or the recruitment of actin-containing structures. This review summarizes some of the recent advances in our understanding of HSV entry and cell-to-cell spread.

  20. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Saito, Y.; Price, R.W.; Rottenberg, D.A.; Fox, J.J.; Su, T.L.; Watanabe, K.A.; Philips, F.S.

    1982-01-01

    2'-Fluoro-5-methyl-1-ν-D-arabinosyluracil (FMAU) labeled with carbon-14 was used to image herpes simplex virus type 1-infected regions of rat brain by quantitative autoradiography. FMAU is a potent antiviral pyrimidine nucleoside which is selectively phosphorylated by virus-coded thymidine kinase. When the labeled FMAU was administered 6 hours before the rats were killed, the selective uptake and concentration of the drug and its metabolites by infected cells (defined by immunoperoxidase staining of viral antigens) allowed quantitative definition and mapping of HSV-1-infected structures in autoradiograms of brain sections. These results shown that quantitative autoradiography can be used to characterize the local metabolism of antiviral drugs by infected cells in vivo. They also suggest that the selective uptake of drugs that exploit viral thymidine kinase for their antiviral effect can, by appropriate labeling, be used in conjunction with clinical neuroimaging techniques to define infected regions of human brain, thereby providing a new approach to the diagnosis of herpes encephalitis in man

  1. Herpes Simplex Virus Type 2 Myelitis: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Raffaele Nardone

    2017-05-01

    Full Text Available Non-traumatic myelopathies can result from a wide spectrum of conditions including inflammatory, ischemic, and metabolic disorders. Here, we describe the case of a 60-year old immunocompetent woman who developed acute back pain followed by rapidly ascending flaccid tetraparesis, a C6 sensory level, and sphincter dysfunction within 8 h. Acyclovir and steroids were started on day 2 and herpes simplex virus type 2 (HSV-2 was confirmed by polymerase chain reaction in cerebrospinal fluid. Magnetic resonance imaging revealed a bilateral anterior horn tractopathy expanding from C2 to T2 and cervicothoracic cord swelling. Screening for paraneoplastic antibodies and cancer was negative. Neurophysiology aided in the work-up by corroborating root involvement. Recovery was poor despite early initiation of antiviral treatment, adjuvant anti-inflammatory therapy, and neurorehabilitation efforts. The clinical course, bilateral affection of the anterior horns, and early focal atrophy on follow-up magnetic resonance imaging take a necrotizing myelitis potentially caused by intraneuronal spread of the virus into consideration. Further, we summarize the literature on classical and rare presentations of HSV-2 myeloradiculitis in non-immunocompromised patients and raise awareness for the limited treatment options for a condition with frequent devastating outcome.

  2. Virologic and immunologic evidence of multifocal genital herpes simplex virus 2 infection.

    Science.gov (United States)

    Johnston, Christine; Zhu, Jia; Jing, Lichen; Laing, Kerry J; McClurkan, Christopher M; Klock, Alexis; Diem, Kurt; Jin, Lei; Stanaway, Jeffrey; Tronstein, Elizabeth; Kwok, William W; Huang, Meei-Li; Selke, Stacy; Fong, Youyi; Magaret, Amalia; Koelle, David M; Wald, Anna; Corey, Lawrence

    2014-05-01

    Genital herpes simplex virus (HSV) reactivation is thought to be anatomically and temporally localized, coincident with limited ganglionic infection. Short, subclinical shedding episodes are the most common form of HSV-2 reactivation, with host clearance mechanisms leading to rapid containment. The anatomic distribution of shedding episodes has not been characterized. To precisely define patterns of anatomic reactivation, we divided the genital tract into a 22-region grid and obtained daily swabs for 20 days from each region in 28 immunocompetent, HSV-2-seropositive persons. HSV was detected via PCR, and sites of asymptomatic HSV shedding were subjected to a biopsy procedure within 24 h. CD4(+) and CD8(+) T cells were quantified by immunofluorescence, and HSV-specific CD4(+) T cells were identified by intracellular cytokine cytometry. HSV was detected in 868 (7%) of 11,603 genital swabs at a median of 12 sites per person (range, 0 to 22). Bilateral HSV detection occurred on 83 (67%) days with shedding, and the median quantity of virus detected/day was associated with the number of sites positive (P sacral ganglia. In addition, genital biopsy specimens from sites of asymptomatic HSV shedding have increased numbers of CD8(+) T cells compared to control tissue, and HSV-specific CD4(+) T cells are found at sites of asymptomatic shedding. These findings suggest that widespread asymptomatic genital HSV-2 shedding is associated with a targeted host immune response and contributes to chronic inflammation throughout the genital tract.

  3. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants

    Directory of Open Access Journals (Sweden)

    Bedia Dinc

    Full Text Available OBJECTIVE: Human cytomegalovirus (CMV is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2 and human papillomavirus (HPV are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. METHODS: One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8 applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8 were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. RESULTS: Three patients (3/134; 2.2% were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %. CONCLUSION: HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  4. Molecular detection of cytomegalovirus, herpes simplex virus 2, human papillomavirus 16-18 in Turkish pregnants.

    Science.gov (United States)

    Dinc, Bedia; Bozdayi, Gulendam; Biri, Aydan; Kalkanci, Ayse; Dogan, Bora; Bozkurt, Nuray; Rota, Seyyal

    2010-01-01

    Human cytomegalovirus (CMV) is the most common cause of viral intrauterine infections in the world. Herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) are the main agents of viral sexually transmitted diseases, which cause genital ulcers and genital warts, respectively. HPV infection has been linked to the majority of the anogenital malignancies. The aim of this study was to detect the existence of CMV, HSV-2 and HPV type 16-18 in Turkish pregnants by using sensitive molecular assays. One hundred thirty-four women (18-41 years old; mean age ± SD: 27 ± 8) applied to outpatient clinic of Obstetrics and Gynecology, in between 18th - 22nd weeks of their pregnancy and a control group of 99 healthy women (15-39 years old; mean age ± SD: 24 ± 8) were included in the study. Cervical smear samples were used for DNA extraction. CMV, HSV-2 and HPV 16-18 detections were carried out by real time PCR and in house PCR method, respectively. Three patients (3/134; 2.2%) were found to be positive for each HPV and HSV-2. Dual infection with HPV and HSV was found in just one patient. HPV 18 was detected in all positive samples. CMV was found to be positive in two patients (2/134; 1.4 %). HPV, HSV and CMV must be screened due to high prevalence of these viruses in pregnants by using sensitive molecular methods.

  5. Biophysical characterization and membrane interaction of the two fusion loops of glycoprotein B from herpes simplex type I virus.

    Directory of Open Access Journals (Sweden)

    Annarita Falanga

    Full Text Available The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes.

  6. Diagnosis of Herpes Simplex Encephalitis by ELISA Using Antipeptide Antibodies Against Type-Common Epitopes of Glycoprotein B of Herpes Simplex Viruses.

    Science.gov (United States)

    Bhullar, Shradha S; Chandak, Nitin H; Baheti, Neeraj N; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-01-01

    Herpes simplex encephalitis (HSE) represents one of the most severe infectious diseases of the central nervous system (CNS). As effective antiviral drugs are available, an early, rapid, and reliable diagnosis has become important. The objective of this article was to develop a sensitive ELISA protocol for herpes simplex viruses (HSV) antigen detection and quantitation by assessing the usefulness of antipeptide antibodies against potential peptides of HSV glycoprotein B (gB). A total of 180 cerebrospinal fluid (CSF) samples of HSE and non-HSE patients were analyzed using a panel of antipeptide antibodies against synthetic peptides of HSV glycoprotein gB. The cases of confirmed and suspected HSE showed 80% and 51% positivity for antipeptide against synthetic peptide QLHDLRF and 77% and 53% positivity for antipeptide against synthetic peptide MKALYPLTT, respectively for the detection of HSV antigen in CSF. The concentration of HSV antigen was found to be higher in confirmed HSE as compared to suspected HSE group and the viral load correlated well with antigen concentration obtained using the two antipeptides in CSF of confirmed HSE group. This is the first article describing the use of antibodies obtained against synthetic peptides derived from HSV in diagnostics of HSE using patients' CSF samples.

  7. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed

  8. Herpes simplex virus: 'to disclose or not to disclose.' An exploration of the multi-disciplinary team's role in advising patients about disclosure when diagnosed with genital herpes simplex virus.

    Science.gov (United States)

    Caulfield, Pauline; Willis, Diane

    2017-07-01

    The first UK prosecution for genital herpes simplex virus (HSV) transmission in 2011 attracted strong criticism from medical experts. To address the dearth of research on the topic, this study aimed to explore the nature of advice given to patients by the multidisciplinary team (MDT) in the West of Scotland on HSV disclosure to partners. Ten semi-structured interviews with members of the MDT were conducted and the interviews were analysed using Burnard's Thematic Content Analysis. Four themes emerged which explored practitioners' knowledge of HSV and their feelings regarding the emotional aspects of the diagnosis on clients including the challenges of discussing disclosure. Within this framework, participants' attitudes to the legal prosecution were also surveyed. This study revealed that participants had good knowledge about HSV. Furthermore, participants believed disclosure to be the patient's choice and had not altered their practice to advise disclosure to all partners in accordance with local protocol. However, there was a general consensus that disclosure was not required due to the prevalence of HSV and prevalence was used to dissipate emotional reactions to HSV diagnosis.

  9. Macrophages and cytokines in the early defence against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Ellermann-Eriksen Svend

    2005-08-01

    Full Text Available Abstract Herpes simplex virus (HSV type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites

  10. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  11. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

    Science.gov (United States)

    Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D

    2017-04-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.

    Science.gov (United States)

    Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M

    2017-08-16

    High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  13. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  14. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    Science.gov (United States)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  15. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    International Nuclear Information System (INIS)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-01-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity

  16. Herpes simplex virus type 1 is the leading cause of genital herpes in New Brunswick.

    Science.gov (United States)

    Garceau, Richard; Leblanc, Danielle; Thibault, Louise; Girouard, Gabriel; Mallet, Manon

    2012-01-01

    Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L'Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to 39 years of age and in 32% of patients ≥40 years of age. The difference in rates of HSV1 infection between the 10 to 39 years of age group and the ≥40 years of age group was statistically significant (Pgenital site. Significant rate differences were demonstrated between the groups 10 to 39 years of age and ≥40 years of age. Little is known about the role of herpes simplex virus (HSV) type 1 (HSV1) in the epidemiology of genital herpes in Canada. Data on herpes viral cultures for two consecutive years obtained from L’Hôpital Dr GL Dumont, which performs all the viral culture testing in New Brunswick, were reviewed. It was hypothesized that HSV1 was the main cause of genital herpes in New Brunswick. Samples of genital origin sent to the laboratory for HSV culture testing between July 2006 and June 2008 were analyzed. Samples from an unspecified or a nongenital source were excluded from analysis. Multiple positive samples collected from the same patient were pooled into a single sample. HSV was isolated from 764 different patients. HSV1 was isolated in 62.6% of patients (male, 55%; female, 63.8%). HSV1 was isolated in 73.2% of patients 10 to

  17. Influence of exogeneous histone on DNA, RNA and protein synthesis in cells inoculated with Herpes simplex virus

    International Nuclear Information System (INIS)

    Praskov, D.; Kavaklova, L.; Todorov, S.; Tsilka, S.; Petrova, S.

    1976-01-01

    The influence of exogeneous total histone from nucleated red cells on the incorporation of basal DNA and RNA precursors and proteins in FL cells inoculated with serotype I herpes simplex virus was followed up during the infectious process. In comparison with the purely viral infection, in the presence of exogeneous histone, there was repression in the incorporation of all three labelled precursors: 3 H-thymidine, 3 H-uridine and 14 C-leucine. This repression correlates with as high as 90% decrease in infectious virus yield. (author)

  18. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  19. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  20. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development.

    Science.gov (United States)

    Lee, Amanda J; Ashkar, Ali A

    2012-02-01

    Herpes simplex virus (HSV)-2 is the predominant cause of genital herpes and has been implicated in HIV infection and transmission. Thus far, vaccines developed against HSV-2 have been clinically ineffective in preventing infection. This review aims to summarize the innate and adaptive immune responses against HSV-2 and examines the current status of vaccine development. Both innate and adaptive immune responses are essential for an effective primary immune response and the generation of immunity. The innate response involves Toll-like receptors, natural killer cells, plasmacytoid dendritic cells, and type I, II, and III interferons. The adaptive response requires a balance between CD4+ and CD8+ T-cells for optimal viral clearance. T-regulatory cells may be involved, although their exact function has yet to be determined. Current vaccine development involves the use of HSV-2 peptides or attenuated/replication-defective HSV-2 to generate adaptive anti-HSV-2 immune responses, however the generation of innate responses may also be an important consideration. Although vaccine development has primarily focused on the adaptive response, arguments for innate involvement are emerging. A greater understanding of the innate and adaptive processes underlying the response to HSV-2 infection will provide the foundation for the development of an effective vaccine.

  1. Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy

    Science.gov (United States)

    Talaei Zanjani, Negar; Miranda-Saksena, Monica; Valtchev, Peter; Hueston, Linda; Diefenbach, Eve; Sairi, Fareed; Gomes, Vincent G.

    2015-01-01

    A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections. PMID:26643336

  2. Clinical courses of herpes simplex virus-induced urethritis in men.

    Science.gov (United States)

    Ito, Shin; Yasuda, Mitsuru; Kondo, Hiromi; Yamada, Yoshiteru; Nakane, Keita; Mizutani, Kosuke; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Nakano, Masahiro; Deguchi, Takashi

    2017-10-01

    We retrieved clinical data of 13 men having herpes simplex virus (HSV)-induced non-gonococcal urethritis (NGU) without visible herpetic lesions. They visited a clinic in Sendai, Japan, between April 2013 and December 2015. All the men complained of dysuria. Meatitis was observed in 9 of the 13 men. Mononuclear cells were observed in the urethral smears from 9 men. The 13 men were treated with azithromycin or sitafloxacin regimen. First-voided urine (FVU) specimens became negative for HSV in 8 of the 10 men who returned to the clinic after antibacterial treatment, and urethritis symptoms were alleviated. However, herpetic lesions were observed at the follow-up visits in 3 men, and 2 of them were still positive for HSV in their FVU. HSV could be a cause of acute urethritis without causing visible herpetic lesions. The shedding of HSV from the urethra would spontaneously cease with alleviation of urethritis symptoms in most cases of HSV-induced NGU without antiviral therapy. However, new herpetic lesions could be developed in some cases. Early antiviral therapy is beneficial for patients with HSV infections. The development of meatitis and the mononuclear cell response in the urethral smear could be helpful to diagnose HSV-induced NGU. Therefore, we should presumptively initiate anti-HSV therapy for patients with signs and symptoms suggestive of HSV-induced NGU at their first presentation. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Clinical Characteristics of Herpes Simplex Virus Urethritis Compared With Chlamydial Urethritis Among Men.

    Science.gov (United States)

    Ong, Jason J; Morton, Anna N; Henzell, Helen R; Berzins, Karen; Druce, Julian; Fairley, Christopher K; Bradshaw, Catriona S; Read, Tim Rh; Hocking, Jane S; Chen, Marcus Y

    2017-02-01

    The aim of this study was to ascertain the clinical characteristics associated with herpes simplex virus (HSV) urethritis in men and to compare those with chlamydial urethritis. We compared clinical and laboratory data from men diagnosed with polymerase chain reaction confirmed HSV urethritis with those of men with chlamydial urethritis presenting to Melbourne Sexual Health Centre between 2000 and 2015. Eighty HSV urethritis cases were identified: 55 (68%, 95% confidence interval, 58-78) were by HSV-1 and 25 (32%, 95% confidence interval, 22-42) by HSV-2. Compared with chlamydial urethritis, men with HSV urethritis were significantly more likely to report severe dysuria (20% vs 0%, P < 0.01) or constitutional symptoms (15% vs 0%, P < 0.01). Men with HSV urethritis were significantly more likely to have meatitis (62% vs 23%, P < 0.01), genital ulceration (37% vs 0%, P < 0.01), or inguinal lymphadenopathy (30% vs 0%, P < 0.01) but less likely to have urethral discharge (32% vs 69%, P < 0.01). There was no significant difference in the proportion of men who had raised (≥5) polymorphonuclear leukocytes per high-powered field between the two groups (P = 0.46). The clinical presentation of HSV urethritis in men may differ from those of chlamydial urethritis and guide testing for HSV in men presenting with non-gonococcal urethritis.

  4. HERPES SIMPLEX VIRUS IN SALIVA OF PATIENTS WITH BELL'S PALSY

    Directory of Open Access Journals (Sweden)

    M.H. Harirchian

    2008-04-01

    Full Text Available Acute idiopathic peripheral facial paralysis (Bell's palsy is the most common disorder of the facial nerve. Most patients recover completely, although some have permanent disfiguring facial weakness. Many studies have attempted to identify an infectious etiology for this disease. Although the cause of Bell's palsy remains unknown, recent studies suggest a possible association with Herpes Simplex Virus-1(HSV-1 infection. In this case-control study we investigated the presence of DNA of HSV in the saliva of 26 patients with Bells palsy in first and second weeks of disorder compared to normal population who were matched in sex, age, as well as history of diabetes mellitus, hypertension and labial herpes. In the case group 3 and 7 patients had positive polymerase chain reaction (PCR for HSV in first and second weeks of disease respectively compared to 4 in controls. It means that there was not any relationship between Bell's palsy and HSV in saliva either in first or in second week. Two and 6 of positive results from the sample of first and second weeks were from patients with severe (grade 4-6 Bell's palsy. Although the positive results were more in second week in patient group and more in severe palsies, but a significant relationship between Bell's palsy or its severity and positive PCR for HSV was not detected (P >0.05.

  5. Herpes simplex virus-1 evasion of CD8+ T cell accumulation contributes to viral encephalitis.

    Science.gov (United States)

    Koyanagi, Naoto; Imai, Takahiko; Shindo, Keiko; Sato, Ayuko; Fujii, Wataru; Ichinohe, Takeshi; Takemura, Naoki; Kakuta, Shigeru; Uematsu, Satoshi; Kiyono, Hiroshi; Maruzuru, Yuhei; Arii, Jun; Kato, Akihisa; Kawaguchi, Yasushi

    2017-10-02

    Herpes simplex virus-1 (HSV-1) is the most common cause of sporadic viral encephalitis, which can be lethal or result in severe neurological defects even with antiviral therapy. While HSV-1 causes encephalitis in spite of HSV-1-specific humoral and cellular immunity, the mechanism by which HSV-1 evades the immune system in the central nervous system (CNS) remains unknown. Here we describe a strategy by which HSV-1 avoids immune targeting in the CNS. The HSV-1 UL13 kinase promotes evasion of HSV-1-specific CD8+ T cell accumulation in infection sites by downregulating expression of the CD8+ T cell attractant chemokine CXCL9 in the CNS of infected mice, leading to increased HSV-1 mortality due to encephalitis. Direct injection of CXCL9 into the CNS infection site enhanced HSV-1-specific CD8+ T cell accumulation, leading to marked improvements in the survival of infected mice. This previously uncharacterized strategy for HSV-1 evasion of CD8+ T cell accumulation in the CNS has important implications for understanding the pathogenesis and clinical treatment of HSV-1 encephalitis.

  6. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase

    International Nuclear Information System (INIS)

    Haberkorn, Uwe; Khazaie, Khashayarsha; Morr, Iris; Altmann, Annette; Mueller, Markus; Kaick, Gerhard van

    1998-01-01

    Assessment of suicide enzyme activity would have considerable impact on the planning and the individualization of suicide gene therapy of malignant tumors. This may be done by determining the pharmacokinetics of specific substrates. We generated ganciclovir (GCV)-sensitive human mammary carcinoma cell lines after transfection with a retroviral vector bearing the herpes simplex virus thymidine kinase (HSV-tk) gene. Thereafter, uptake measurements and HPLC analyses were performed up to 48 h in an HSV-tk-expressing cell line and in a wild-type cell line using tritiated GCV. HSV-tk-expressing cells showed higher GCV uptake and phosphorylation than control cells, whereas in wild-type MCF7 cells no phosphorylated GCV was detected. In bystander experiments the total GCV uptake was related to the amount of HSV-tk-expressing cells. Furthermore, the uptake of GCV correlated closely with the growth inhibition (r=0.92). Therefore, the accumulation of specific substrates may serve as an indicator of the HSV-tk activity and of therapy outcome. Inhibition and competition experiments demonstrated slow transport of GCV by the nucleoside carriers. The slow uptake and low affinity to HSV-tk indicate that GCV is not an ideal substrate for the nucleoside transport systems or for HSV-tk. This may be the limiting factor for therapy success, necessitating the search for better substrates of HSV-tk

  7. Rapid host immune response and viral dynamics in herpes simplex virus-2 infection

    Science.gov (United States)

    Schiffer, Joshua T; Corey, Lawrence

    2014-01-01

    Herpes Simplex Virus-2 (HSV-2) is episodically shed throughout the human genital tract. While high viral load correlates with development of genital ulcers, shedding also commonly occurs even when ulcers are not present, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs despite diverse and complementary host and viral mechanisms within ganglionic tissue that predispose towards latency, suggesting that viral replication may be constantly occurring in a small minority of neurons within the ganglia. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-specific T cells persist at prior sites of genital tract reactivation, and in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. Shedding episodes vary greatly in duration and severity within a single person over time: this heterogeneity appears best explained by variation in the densities of host immunity across the genital tract. The fact that immune responses usually control viral replication in genital skin prior to development of lesions provides optimism that enhancing such responses could lead to effective vaccines and immunotherapies. PMID:23467247

  8. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    Science.gov (United States)

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Screening and identification of host factors interacting with UL14 of herpes simplex virus 1.

    Science.gov (United States)

    Wu, Fuqing; Xing, Junji; Wang, Shuai; Li, Meili; Zheng, Chunfu

    2011-08-01

    The UL14 protein of herpes simplex virus type 1 (HSV-1) is highly conserved in herpesvirus family. However, its exact function during the HSV-1 replication cycle is little known. In the present study, a high throughput yeast two-hybrid system was employed to screen the cellular factors interacting with UL14, and five target candidates were yielded: (1) TSC22 domain family protein 3 (TSC22D3); (2) Mediator of RNA polymerase II transcription subunit 8 isoform 1(MED8); (3) Runt-related transcription factor 3 (RUNX3); (4) Arrestin beta-2 (ARRB2); (5) Cereblon (CRBN). Indirect immunofluorescent assay showed that both TSC22D3 and MED8 co-localized with UL14. Co-immunoprecipitation assay demonstrated that UL14 could be immunoprecipitated by TSC22D3, suggesting that UL14 interacted with TSC22D3 under physiological condition. In summary, this study opened up new avenues toward delineating the function and physiological significance of UL14 during the HSV-1 replication cycle.

  10. Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus.

    Science.gov (United States)

    Field, Hugh J; Biswas, Subhajit

    2011-02-01

    A new class of chemical inhibitors has been discovered that interferes with the process of herpesvirus DNA replication. To date, the majority of useful herpesvirus antivirals are nucleoside analogues that block herpesvirus DNA replication by targeting the DNA polymerase. The new helicase-primase inhibitors (HPI) target a different enzyme complex that is also essential for herpesvirus DNA replication. This review will place the HPI in the context of previous work on the nucleoside analogues. Several promising highly potent HPI will be described with a particular focus on the identification of drug-resistance mutations. Several HPI have good pharmacological profiles and are now at the outset of phase II clinical trials. Provided there are no safety issues to stop their progress, this new class of compound will be a major advance in the herpesvirus antiviral field. Furthermore, HPI are likely to have a major impact on the therapy and prevention of herpes simplex virus and varicella zoster in both immunocompetent and immunocompromised patients alone or in combination with current nucleoside analogues. The possibility of acquired drug-resistance to HPI will then become an issue of great practical importance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Association Between Unprotected Ultraviolet Radiation Exposure and Recurrence of Ocular Herpes Simplex Virus

    Science.gov (United States)

    Ludema, Christina; Cole, Stephen R.; Poole, Charles; Smith, Jennifer S.; Schoenbach, Victor J.; Wilhelmus, Kirk R.

    2014-01-01

    Studies have suggested that exposure to ultraviolet (UV) light may increase risk of herpes simplex virus (HSV) recurrence. Between 1993 and 1997, the Herpetic Eye Disease Study (HEDS) randomized 703 participants with ocular HSV to receipt of acyclovir or placebo for prevention of ocular HSV recurrence. Of these, 308 HEDS participants (48% female and 85% white; median age, 49 years) were included in a nested study of exposures thought to cause recurrence and were followed for up to 15 months. We matched weekly UV index values from the National Oceanic and Atmospheric Administration to each participant's study center and used marginal structural Cox models to account for time-varying psychological stress and contact lens use and selection bias from dropout. There were 44 recurrences of ocular HSV, yielding an incidence of 4.3 events per 1,000 person-weeks. Weighted hazard ratios comparing persons with ≥8 hours of time outdoors to those with less exposure were 0.84 (95% confidence interval (CI): 0.27, 2.63) and 3.10 (95% CI: 1.14, 8.48) for weeks with a UV index of <4 and ≥4, respectively (ratio of hazard ratios = 3.68, 95% CI: 0.43, 31.4). Though results were imprecise, when the UV index was higher (i.e., ≥4), spending 8 or more hours per week outdoors was associated with increased risk of ocular HSV recurrence. PMID:24142918

  12. Topical treatment of herpes simplex virus infection with enzymatically created siRNA swarm.

    Science.gov (United States)

    Paavilainen, Henrik; Lehtinen, Jenni; Romanovskaya, Alesia; Nygårdas, Michaela; Bamford, Dennis H; Poranen, Minna M; Hukkanen, Veijo

    2017-01-01

    Herpes simplex virus (HSV) is a common human pathogen. Despite current antivirals, it causes a significant medical burden. Drug resistant strains exist and they are especially prevalent in immunocompromised patients and in HSV eye infections. New treatment modalities are needed. BALB/c mice were corneally infected with HSV and subsequently treated with a swarm of enzymatically created, Dicer-substrate small interfering RNA (siRNA) molecules that targeted the HSV gene UL29. Two infection models were used, one in which the infection was predominantly peripheral and another in which it spread to the central nervous system. Mouse survival, as well as viral spread, load, latency and peripheral shedding, was studied. The anti-HSV-UL29 siRNA swarm alleviated HSV infection symptoms, inhibited viral shedding and replication and had a favourable effect on mouse survival. Treatment with anti-HSV-UL29 siRNA swarm reduced symptoms and viral spread in HSV infection of mice and also inhibited local viral replication in mouse corneas.

  13. VP22 herpes simplex virus protein can transduce proteins into stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil); Rebelato, E. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Demasi, M.A.; Sogayar, M.C. [Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-02-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations.

  14. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Peter, E-mail: pewild@access.uzh.ch [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Oliveira, Anna Paula de [Institute of Virology, University of Zuerich (Switzerland); Sonda, Sabrina [Institute for Parasitology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Ackermann, Mathias; Tobler, Kurt [Institute of Virology, University of Zuerich (Switzerland)

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  15. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    International Nuclear Information System (INIS)

    Knipe, David M.

    2015-01-01

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression

  16. Antiviral and immunological effects of tenofovir microbicide in vaginal herpes simplex virus 2 infection.

    Science.gov (United States)

    Vibholm, Line; Reinert, Line S; Søgaard, Ole S; Paludan, Søren R; Østergaard, Lars; Tolstrup, Martin; Melchjorsen, Jesper

    2012-11-01

    The anti-HIV microbicide, tenofovir (TFV) gel, has been shown to decrease HIV-1 acquisition by 39% and reduce herpes simplex virus 2 (HSV-2) transmission by 51%. We evaluated the effect of a 1% TFV gel on genital HSV-2 infection in a mouse vaginal challenge model. In vitro plaque assays and luminex multiplex bead analysis were used, respectively, to measure postinfection vaginal viral shedding (day 1) and cytokine secretion (day 2). To further investigate the anti-HSV-2 properties, we evaluated the direct antiviral effect of TFV and the oral prodrug tenofovir disoproxil fumerate (TDF) in cell culture. Compared to placebo-treated mice, TFV-treated mice had significantly lower clinical scores, developed later genital lesions, and showed reduced vaginal viral shedding. Furthermore, the levels of IFN-γ, IL-2, TNF-α, and other cytokines were altered in the vaginal fluid following topical tenofovir treatment and subsequent HSV-2 challenge. Finally, we found that both TFV and TDF inhibited HSV-2 infection in vitro; TDF showed a 50-fold greater potency than TFV. In conclusion, we confirmed that the microbicide TFV had direct anti-HSV-2 effects in a murine vaginal challenge model. Therefore, this model would be suitable for evaluating present and future microbicide candidates. Furthermore, the present study warrants further investigation of TDF in microbicides.

  17. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    Science.gov (United States)

    Roos, Wouter H.; Radtke, Kerstin; Kniesmeijer, Edward; Geertsema, Hylkje; Sodeik, Beate; Wuite, Gijs J. L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA. PMID:19487681

  18. Refractory lymphedema of the hand: an unusual presentation of recurrent herpes simplex virus infection

    Directory of Open Access Journals (Sweden)

    Ali Majdzadeh

    2016-07-01

    Full Text Available Introduction: Herpes Simplex Virus (HSV infection of the hand resulting in lymphatic complications such as lymphangitis and lymphedema is exceedingly uncommon. Although these complications typically resolve in 21 days, they can be persistent and may not resolve even with antiviral use, thereby mimicking dyshidrotic eczema or a bacterial event and often being misdiagnosed and inappropriately treated as such. We report a case of frequently recurring HSV infection of the hand over a long period of time resulting in refractory lymphedema which did not resolve with antiviral treatment. We further endeavor to raise awareness about this highly unusual presentation of HSV infection. A comprehensive review of the literature was conducted for similar cases using PubMed and Medline. Case Report: This is the first reported case with nearly a decade-long interval between the onset of primary HSV infection and the development of chronic lymphedema. Although valacyclovir significantly reduced the episodic aggravation of the lymphedema, it did not entirely resolve it. Similar cases of persistent lymphedema also included a long history of untreated and recurrent HSV infection of the hand, suggesting that this lymphatic outcome may be circumvented by prompt treatment with antivirals. Conclusion: This case report not only presents a highly uncommon lymphatic manifestation and unusual timeline of exacerbation of the very common HSV infection, but also highlights the importance and benefits of early initiation of antiviral therapy and the prevention of reactivation.

  19. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  20. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa.

    Science.gov (United States)

    Tata, Sunitha; Johnston, Christine; Huang, Meei-Li; Selke, Stacy; Magaret, Amalia; Corey, Lawrence; Wald, Anna

    2010-02-15

    Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; Pgenital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.

  1. Molecular diagnostics and newborns at risk for genital herpes simplex virus.

    Science.gov (United States)

    Chua, Caroline; Arnolds, Marin; Niklas, Victoria

    2015-05-01

    Herpes simplex virus (HSV) infection in the newborn carries a high mortality rate and can result in lifelong neurologic impairment. The severity of HSV infection in the newborn has always dictated conservative management when prodromal symptoms or active genital lesions (or those suggestive of genital herpes) are present during labor and delivery. The risk of intrapartum infection, however, is related to the presence or absence of maternal immunity (neutralizing antibody) to HSV. The most significant risk of transmission is in first-episode primary infections with active lesions at delivery. Recent recommendations from the American Academy of Pediatrics Committees on Infectious Diseases and the Fetus and Newborn use rapid serologic and virologic screening in the management of asymptomatic infants born to mothers with active genital herpes. The revised guidelines highlight infants at greatest risk for HSV disease but do not apply to asymptomatic infants born to mothers with a history of HSV but no genital lesions at delivery. The current guidelines also stipulate that maternal serologic screening and molecular assays for HSV in newborn blood and cerebrospinal fluid must be available and reported in a timely fashion. Copyright 2015, SLACK Incorporated.

  2. Comparison of immunoassays for differentiation of herpes simplex virus type 1 and 2 antibodies

    International Nuclear Information System (INIS)

    Klapper, Paul E.; Valley, Pam J.; Cleator, Gerham M.; Mandall, D.; Qutub, Mohammed O.

    2006-01-01

    To asses the commercial available enzyme-linked immunosorbent assays (ELISA) for differentiation of herpes simplex virus type 1 (Hs-1) and type 2 (HSV-2) antibodies. The study was performed between January 1997 to November 2002 in the Division ofVirology,Department of Pathological Sciences, Central Manchester Healthcare Trust and University of Manchester, Manchester, United Kingdom. Assays based upon type-specific glycoprotein G-1 (gG-1) for HSV-1, and glycoprotein G-2 (gG-2) from HSV-2 were evaluated to differentiate between HSV-1 and HSV-2 antibodies. Using 5 different ELISA tests, 2 panels of serum samples were tested. Panel one consisted of 88 sera, selected from the serum bank of the Clinical Virology Laboratory, Manchester Royal Infirmary; panel 2 comprised of 90 sera selected from samples collected from Bangladeshi female commercial workers.The data of this study showed that a high rate of gG-1 based immunoassays ranged from 87.9-100% for sensitivity and 51.5-100% specificity. Although there are several immunoassays were claimed to differentiate between HSV-1 and HSV-2 antibodies, selection of these assays should be carefully interpreted with the overall clinical framework provided by detailed sexual history and genital examination. (author)

  3. Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings From a Randomized Trial.

    Science.gov (United States)

    Bernstein, David I; Wald, Anna; Warren, Terri; Fife, Kenneth; Tyring, Stephen; Lee, Patricia; Van Wagoner, Nick; Magaret, Amalia; Flechtner, Jessica B; Tasker, Sybil; Chan, Jason; Morris, Amy; Hetherington, Seth

    2017-03-15

    Genital herpes simplex virus type 2 (HSV-2) infection causes recurrent lesions and frequent viral shedding. GEN-003 is a candidate therapeutic vaccine containing HSV-2 gD2∆TMR and ICP4.2, and Matrix-M2 adjuvant. Persons with genital herpes were randomized into 3 dose cohorts to receive 3 intramuscular doses 21 days apart of 10 µg, 30 µg, or 100 µg of GEN-003, antigens without adjuvant, or placebo. Participants obtained genital swab specimens twice daily for HSV-2 detection and monitored genital lesions for 28-day periods at baseline and at intervals after the last dose. One hundred and thirty-four persons received all 3 doses. Reactogenicity was associated with adjuvant but not with antigen dose or dose number. No serious adverse events were attributed to GEN-003. Compared with baseline, genital HSV-2 shedding rates immediately after dosing were reduced with GEN-003 (from 13.4% to 6.4% for 30 μg [P genital HSV shedding and lesion rates. NCT01667341 (funded by Genocea). © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Attitudes and Willingness to Assume Risk of Experimental Therapy to Eradicate Genital Herpes Simplex Virus Infection.

    Science.gov (United States)

    Oseso, Linda; Magaret, Amalia S; Jerome, Keith R; Fox, Julie; Wald, Anna

    2016-09-01

    Current treatment of genital herpes is focused on ameliorating signs and symptoms but is not curative. However, as potential herpes simplex virus (HSV) cure approaches are tested in the laboratory, we aimed to assess the interest in such studies by persons with genital herpes and the willingness to assume risks associated with experimental therapy. We constructed an anonymous online questionnaire that was posted on websites that provide information regarding genital herpes. The questions collected demographic and clinical information on adults who self-reported as having genital herpes, and assessed attitudes toward and willingness to participate in HSV cure clinical research. Seven hundred eleven participants provided sufficient responses to be included in the analysis. Sixty-six percent were women; the median age was 37 years, and the median time since genital HSV diagnosis was 4.7 years. The willingness to participate in trials increased from 59.0% in phase 1 to 68.5% in phase 2, and 81.2% in phase 3 trials, and 40% reported willingness to participate even in the absence of immediate, personal benefits. The most desirable outcome was the elimination of risk for transmission to sex partner or neonate. The mean perceived severity of receiving a diagnosis of genital HSV-2 was 4.2 on a scale of 1 to 5. Despite suppressive therapy available, persons with genital herpes are interested in participating in clinical research aimed at curing HSV, especially in more advanced stages of development.

  5. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012.

    Directory of Open Access Journals (Sweden)

    Katharine J Looker

    Full Text Available Herpes simplex virus type 1 (HSV-1 commonly causes orolabial ulcers, while HSV-2 commonly causes genital ulcers. However, HSV-1 is an increasing cause of genital infection. Previously, the World Health Organization estimated the global burden of HSV-2 for 2003 and for 2012. The global burden of HSV-1 has not been estimated.We fitted a constant-incidence model to pooled HSV-1 prevalence data from literature searches for 6 World Health Organization regions and used 2012 population data to derive global numbers of 0-49-year-olds with prevalent and incident HSV-1 infection. To estimate genital HSV-1, we applied values for the proportion of incident infections that are genital.We estimated that 3709 million people (range: 3440-3878 million aged 0-49 years had prevalent HSV-1 infection in 2012 (67%, with highest prevalence in Africa, South-East Asia and Western Pacific. Assuming 50% of incident infections among 15-49-year-olds are genital, an estimated 140 million (range: 67-212 million people had prevalent genital HSV-1 infection, most of which occurred in the Americas, Europe and Western Pacific.The global burden of HSV-1 infection is huge. Genital HSV-1 burden can be substantial but varies widely by region. Future control efforts, including development of HSV vaccines, should consider the epidemiology of HSV-1 in addition to HSV-2, and especially the relative contribution of HSV-1 to genital infection.

  6. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    Science.gov (United States)

    Chentoufi, Aziz Alami; BenMohamed, Lbachir

    2012-01-01

    Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed. PMID:23320014

  7. Herpes simplex virus in postradiation cervical smears. A morphologic and immunocytochemical study

    International Nuclear Information System (INIS)

    Longatto Filho, A.; Maeda, M.Y.; Oyafuso, M.S.; Kanamura, C.T.; Alves, V.A.

    1990-01-01

    From January 1987 to August 1988, cytomorphologic criteria of both herpes simplex virus (HSV) and radiation effects were observed in Papanicolaou smears from 3 of 1,340 patients who had received radiotherapy for squamous cell carcinoma of the cervix. Avidin-biotin immunoperoxidase staining, using a rabbit IgG polyclonal HSV antibody, confirmed the presence of HSV antigen in those three postradiation smears. Both multinucleated molded cells and epithelial cells that lacked cytopathic effects were positive for HSV. Three other postradiation smears from these cases were similarly positive for HSV antigen; the one preradiation smear was negative. In situ hybridization and immunoperoxidase studies on sections from the preradiation biopsies were negative: severely altered neoplastic cells showed no reactivity. The absence of HSV markers in the preradiation specimens suggests that the HSV infections were secondary to the radiotherapy; further studies are needed to prove this association and to assess the possible mechanisms. These cases clearly indicate that the overlapping features of radiation and viral effects (such as multinucleation) may be present simultaneously

  8. Diagnosis of genital herpes simplex virus infection in the clinical laboratory

    Science.gov (United States)

    2014-01-01

    Since the type of herpes simplex virus (HSV) infection affects prognosis and subsequent counseling, type-specific testing to distinguish HSV-1 from HSV-2 is always recommended. Although PCR has been the diagnostic standard method for HSV infections of the central nervous system, until now viral culture has been the test of choice for HSV genital infection. However, HSV PCR, with its consistently and substantially higher rate of HSV detection, could replace viral culture as the gold standard for the diagnosis of genital herpes in people with active mucocutaneous lesions, regardless of anatomic location or viral type. Alternatively, antigen detection—an immunofluorescence test or enzyme immunoassay from samples from symptomatic patients--could be employed, but HSV type determination is of importance. Type-specific serology based on glycoprotein G should be used for detecting asymptomatic individuals but widespread screening for HSV antibodies is not recommended. In conclusion, rapid and accurate laboratory diagnosis of HSV is now become a necessity, given the difficulty in making the clinical diagnosis of HSV, the growing worldwide prevalence of genital herpes and the availability of effective antiviral therapy. PMID:24885431

  9. Mucosal Herpes Immunity and Immunopathology to Ocular and Genital Herpes Simplex Virus Infections

    Directory of Open Access Journals (Sweden)

    Aziz Alami Chentoufi

    2012-01-01

    Full Text Available Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2 are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed.

  10. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  11. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  12. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    Directory of Open Access Journals (Sweden)

    Christine Kaestle

    2011-05-01

    Full Text Available Vectors derived from herpes simplex virus type 1 (HSV-1 have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fluorescent protein (HSV-GFP. After infection or microscopy-guided vector injection of glioma spheroids at various spheroid sizes, injection pressures and injection times, the extent of HSV-1 vector–mediated gene expression was investigated via laser scanning microscopy. Infection of spheroids with HSV-GFP demonstrated a maximal depth of vector-mediated GFP expression at 70 to 80 μm. A > 80% transduction efficiency was reached only in small spheroids with a diameter of 90%. The results demonstrated that vector-mediated gene expression in glioma spheroids was strongly dependent on the mode of vector application—injection pressure and injection time being the most important parameters. The assessment of these vector application parameters in tissue models will contribute to the development of safe and efficient gene therapy protocols for clinical application.

  13. VP22 herpes simplex virus protein can transduce proteins into stem cells

    International Nuclear Information System (INIS)

    Gabanyi, I.; Lojudice, F.H.; Kossugue, P.M.; Rebelato, E.; Demasi, M.A.; Sogayar, M.C.

    2013-01-01

    The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations

  14. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    Science.gov (United States)

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  15. Herpes simplex virus proctitis in homosexual men. Clinical, sigmoidoscopic, and histopathological features.

    Science.gov (United States)

    Goodell, S E; Quinn, T C; Mkrtichian, E; Schuffler, M D; Holmes, K K; Corey, L

    1983-04-14

    Acute herpes simplex virus (HSV) infection was detected in 23 of 102 consecutively examined, sexually active male homosexuals who presented with anorectal pain, discharge, tenesmus, or hematochezia, as compared with 3 of 75 homosexual men without gastrointestinal symptoms (P less than 0.01). Findings that were significantly more frequent in men with HSV proctitis than in men with proctitis due to other infectious causes included fever (48 per cent), difficulty in urinating (48 per cent), sacral paresthesias (26 per cent), inguinal lymphadenopathy (57 per cent), severe anorectal pain (100 per cent), tenesmus (100 per cent), constipation (78 per cent), perianal ulcerations (70 per cent), and the presence of diffuse ulcerative or discrete vesicular or pustular lesions in the distal 5 cm of the rectum (50 per cent). Serologic evidence indicated that 85 per cent of the men with symptomatic HSV proctitis were having their first episode of HSV-2 infection. The diagnosis of HSV proctitis is suggested by the presence of severe anorectal pain, difficulty in urinating, sacral paresthesias or pain, and diffuse ulceration of the distal rectal mucosa.

  16. [Distribution of herpes simplex virus type 1 and 2 genomes in the human spinal ganglia].

    Science.gov (United States)

    Obara, Y

    1994-09-01

    Herpes simplex virus (HSV) is well known for its propensity to cause recurrent oral or genital mucosal infections in humans. HSV-1 is involved primarily in oral lesions, whereas HSV-2 is more frequently involved in genital lesions. Based on this, it is thought that HSV-1 may produce latent infections in trigeminal ganglia, and HSV-2 in the sacral ganglia. However the distribution pattern of latent HSV-1 and HSV-2 infections in spinal ganglia remains unknown. Using the polymerase chain reaction we detected latent herpes HSV-1 and HSV-2 in human spinal ganglia obtained from autopsy material. A pair of primers which were specific for a part of the HSV-1 and HSV-2 DNA polymerase domain were employed. HSV-1 and HSV-2 DNAs were detected in 11 of 40 (28%) and 15 of 40 (38%) cervical ganglia, respectively, 52 of 103 (50%) and 47 of 103 (46%) thoracic ganglia, 16 of 53 (30%) and 17 of 53 (32%) lumbar ganglia, and 3 of 20 (15%) and 3 of 20 (15%) sacral ganglia. These findings suggest that latent HSV-1 and HSV-2 infections have a widespread distribution from the cervical ganglia to sacral ganglia. Importantly this study demonstrated latent HSV-1 infection of both the lumbar and sacral ganglia for the first time.

  17. Unlabeled probes for the detection and typing of herpes simplex virus.

    Science.gov (United States)

    Dames, Shale; Pattison, David C; Bromley, L Kathryn; Wittwer, Carl T; Voelkerding, Karl V

    2007-10-01

    Unlabeled probe detection with a double-stranded DNA (dsDNA) binding dye is one method to detect and confirm target amplification after PCR. Unlabeled probes and amplicon melting have been used to detect small deletions and single-nucleotide polymorphisms in assays where template is in abundance. Unlabeled probes have not been applied to low-level target detection, however. Herpes simplex virus (HSV) was chosen as a model to compare the unlabeled probe method to an in-house reference assay using dual-labeled, minor groove binding probes. A saturating dsDNA dye (LCGreen Plus) was used for real-time PCR. HSV-1, HSV-2, and an internal control were differentiated by PCR amplicon and unlabeled probe melting analysis after PCR. The unlabeled probe technique displayed 98% concordance with the reference assay for the detection of HSV from a variety of archived clinical samples (n = 182). HSV typing using unlabeled probes was 99% concordant (n = 104) to sequenced clinical samples and allowed for the detection of sequence polymorphisms in the amplicon and under the probe. Unlabeled probes and amplicon melting can be used to detect and genotype as few as 10 copies of target per reaction, restricted only by stochastic limitations. The use of unlabeled probes provides an attractive alternative to conventional fluorescence-labeled, probe-based assays for genotyping and detection of HSV and might be useful for other low-copy targets where typing is informative.

  18. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    Science.gov (United States)

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A miniaturized and integrated gel post platform for multiparameter PCR detection of herpes simplex viruses from raw genital swabs.

    Science.gov (United States)

    Manage, Dammika P; Lauzon, Jana; Atrazhev, Alexey; Morrissey, Yuen C; Edwards, Ann L; Stickel, Alexander J; Crabtree, H John; Pabbaraju, Kanti; Zahariadis, George; Yanow, Stephanie K; Pilarski, Linda M

    2012-05-07

    Herpes simplex virus (HSV) is one of the most prevalent viruses, with acute and recurrent infections in humans. The current gold standard for the diagnosis of HSV is viral culture which takes 2-14 days and has low sensitivity. In contrast, DNA amplification by polymerase chain reaction (PCR) can be performed within 1-2 h. We here describe a multiparameter PCR assay to simultaneously detect HSV-1 and HSV-2 DNA templates, together with integrated positive and negative controls, with product detection by melting curve analysis (MCA), in an array of semi-solid polyacrylamide gel posts. Each gel post is 0.67 μL in volume, and polymerized with all the components required for PCR. Both PCR and MCA can currently be performed in one hour and 20 min. Unprocessed genital swabs collected in universal transport medium were directly added to the reagents before or after polymerization, diffusing from atop the gel posts. The gel post platform detects HSV templates in as little as 2.5 nL of raw sample. In this study, 45 genital swab specimens were tested blindly as a preliminary validation of this platform. The concordance of PCR on gel posts with conventional PCR was 91%. The primer sequestration method introduced here (wherein different primers are placed in different sets of posts) enables the simultaneous detection of multiple pathogens for the same sample, together with positive and negative controls, on a single chip. This platform accepts unprocessed samples and is readily adaptable to detection of multiple different pathogens or biomarkers for point-of-care diagnostics.

  20. High level expression and secretion of truncated forms of herpes simplex virus type I and type 2 glycoprotein D by the methylotrophic yeast Pichia pastoris

    NARCIS (Netherlands)

    van Kooij, A; Middel, J; Jakab, F; Elfferich, P; Koedijk, DGAM; Feijlbrief, M; Scheffer, AJ; Degener, JE; The, TH; Scheek, RM; Welling, GW; Welling-Wester, S

    Herpes simplex virus type I and 2 (HSV-1 and -2) glycoproteins D (gD-1 and gD-2) play a role in the entry of the virus into the host cell. Availability of substantial amounts of these proteins, or large fragments thereof. will he needed to allow studies at the molecular level. We studied the potency

  1. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  2. Genetic Diversity within Alphaherpesviruses: Characterization of a Novel Variant of Herpes Simplex Virus 2.

    Science.gov (United States)

    Burrel, Sonia; Désiré, Nathalie; Marlet, Julien; Dacheux, Laurent; Seang, Sophie; Caumes, Eric; Bourhy, Hervé; Agut, Henri; Boutolleau, David

    2015-12-01

    Very low levels of variability have been reported for the herpes simplex virus 2 (HSV-2) genome. We recently described a new genetic variant of HSV-2 (HSV-2v) characterized by a much higher degree of variability for the UL30 gene (DNA polymerase) than observed for the HG52 reference strain. Retrospective screening of 505 clinical isolates of HSV-2 by a specific real-time PCR assay targeting the UL30 gene led to the identification of 13 additional HSV-2v isolates, resulting in an overall prevalence of 2.8%. Phylogenetic analyses on the basis of microsatellite markers and gene sequences showed clear differences between HSV-2v and classical HSV-2. Thirteen of the 14 patients infected with HSV-2v originated from West or Central Africa, and 9 of these patients were coinfected with HIV. These results raise questions about the origin of this new virus. Preliminary results suggest that HSV-2v may have acquired genomic segments from chimpanzee alphaherpesvirus (ChHV) by recombination. This article deals with the highly topical question of the origin of this new HSV-2 variant identified in patients with HIV coinfection originating mostly from West or Central Africa. HSV-2v clearly differed from classical HSV-2 isolates in phylogenetic analyses and may be linked to simian ChHV. This new HSV-2 variant highlights the possible occurrence of recombination between human and simian herpesviruses under natural conditions, potentially presenting greater challenges for the future. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection.

    Science.gov (United States)

    Skeate, Joseph G; Porras, Tania B; Woodham, Andrew W; Jang, Julie K; Taylor, Julia R; Brand, Heike E; Kelly, Thomas J; Jung, Jae U; Da Silva, Diane M; Yuan, Weiming; Kast, W Martin

    2016-02-01

    Herpes simplex virus (HSV) was originally implicated in the aetiology of cervical cancer, and although high-risk human papillomavirus (HPV) is now the accepted causative agent, the epidemiological link between HSV and HPV-associated cancers persists. The annexin A2 heterotetramer (A2t) has been shown to mediate infectious HPV type 16 (HPV16) uptake by human keratinocytes, and secretory leukocyte protease inhibitor (SLPI), an endogenous A2t ligand, inhibits HPV16 uptake and infection. Interestingly, HSV infection induces a sustained downregulation of SLPI in epithelial cells, which we hypothesized promotes HPV16 infection through A2t. Here, we show that in vitro infection of human keratinocytes with HSV-1 or HSV-2, but not with an HSV-1 ICP4 deletion mutant that does not downregulate SLPI, leads to a >70% reduction of SLPI mRNA and a >60% decrease in secreted SLPI protein. Consequently, we observed a significant increase in the uptake of HPV16 virus-like particles and gene transduction by HPV16 pseudovirions (two- and 2.5-fold, respectively) in HSV-1- and HSV-2-infected human keratinocyte cell cultures compared with uninfected cells, whereas exogenously added SLPI reversed this effect. Using a SiMPull (single-molecule pulldown) assay, we demonstrated that endogenously secreted SLPI interacts with A2t on epithelial cells in an autocrine/paracrine manner. These results suggested that ongoing HSV infection and resultant downregulation of local levels of SLPI may impart a greater susceptibility for keratinocytes to HPV16 infection through the host cell receptor A2t, providing a mechanism that may, in part, provide an explanation for the aetiological link between HSV and HPV-associated cancers.

  4. Virologic and Immunologic Evidence of Multifocal Genital Herpes Simplex Virus 2 Infection

    Science.gov (United States)

    Zhu, Jia; Jing, Lichen; Laing, Kerry J.; McClurkan, Christopher M.; Klock, Alexis; Diem, Kurt; Jin, Lei; Stanaway, Jeffrey; Tronstein, Elizabeth; Kwok, William W.; Huang, Meei-li; Selke, Stacy; Fong, Youyi; Magaret, Amalia; Koelle, David M.; Wald, Anna; Corey, Lawrence

    2014-01-01

    ABSTRACT Genital herpes simplex virus (HSV) reactivation is thought to be anatomically and temporally localized, coincident with limited ganglionic infection. Short, subclinical shedding episodes are the most common form of HSV-2 reactivation, with host clearance mechanisms leading to rapid containment. The anatomic distribution of shedding episodes has not been characterized. To precisely define patterns of anatomic reactivation, we divided the genital tract into a 22-region grid and obtained daily swabs for 20 days from each region in 28 immunocompetent, HSV-2-seropositive persons. HSV was detected via PCR, and sites of asymptomatic HSV shedding were subjected to a biopsy procedure within 24 h. CD4+ and CD8+ T cells were quantified by immunofluorescence, and HSV-specific CD4+ T cells were identified by intracellular cytokine cytometry. HSV was detected in 868 (7%) of 11,603 genital swabs at a median of 12 sites per person (range, 0 to 22). Bilateral HSV detection occurred on 83 (67%) days with shedding, and the median quantity of virus detected/day was associated with the number of sites positive (P genital tract and are associated with a localized cellular infiltrate that was demonstrated to be HSV specific in 3 cases. These data provide evidence that asymptomatic HSV-2 shedding contributes to chronic inflammation throughout the genital tract. IMPORTANCE This detailed report of the anatomic patterns of genital HSV-2 shedding demonstrates that HSV-2 reactivation can be detected at multiple bilateral sites in the genital tract, suggesting that HSV establishes latency throughout the sacral ganglia. In addition, genital biopsy specimens from sites of asymptomatic HSV shedding have increased numbers of CD8+ T cells compared to control tissue, and HSV-specific CD4+ T cells are found at sites of asymptomatic shedding. These findings suggest that widespread asymptomatic genital HSV-2 shedding is associated with a targeted host immune response and contributes to chronic

  5. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    International Nuclear Information System (INIS)

    O'Donnell, Christopher D.; Kovacs, Maria; Akhtar, Jihan; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-01-01

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed, isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.

  6. Diagnostic imaging of herpes simplex virus encephalitis using a radiolabeled antiviral drug: autoradiographic assessment in an animal model

    International Nuclear Information System (INIS)

    Saito, Y.; Rubenstein, R.; Price, R.W.; Fox, J.J.; Watanabe, K.A.

    1984-01-01

    To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ([14C]FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional [14C]FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness of the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application

  7. Experimental Oral Herpes Simplex Virus-1 (HSV-1 Co-infection in Simian Immunodeficiency Virus (SIV-Infected Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Meropi Aravantinou

    2017-12-01

    Full Text Available Herpes simplex virus 1 and 2 (HSV-1/2 similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.

  8. Seroprevalences of varicella-zoster virus, herpes simplex virus and cytomegalovirus in a cross-sectional study in Mexico.

    Science.gov (United States)

    Conde-Glez, Carlos; Lazcano-Ponce, Eduardo; Rojas, Rosalba; DeAntonio, Rodrigo; Romano-Mazzotti, Luis; Cervantes, Yolanda; Ortega-Barria, Eduardo

    2013-10-17

    We estimated the seroprevalences of varicella-zoster virus (VZV), herpes simplex virus (HSV) and cytomegalovirus (CMV) in this cross-sectional database study. Serum samples collected during the National Health and Nutrition survey (ENSANUT 2006) were obtained from subjects aged 1-70 years between January and October 2010. Serological assays for the determination of antibodies against VZV, HSV and CMV were performed. The overall seroprevalences of VZV, HSV-1, HSV-2 and CMV were 85.8%, 80.9%, 9.9% and 89.2%, respectively. Seroprevalences of VZV, HSV-1 and CMV were comparable between males and females. For HSV-2, although the seroprevalence rate was higher in females when compared to males, this difference in seroprevalence was not statistically significant. Seroprevalence rates for VZV, HSV-1, HSV-2 and CMV increased with age (p-value<.0001). Differences in seroprevalence rate for VZV by socioeconomic status (SES) were significant (p-value<0001). Results of the serological analyses reported high VZV seroprevalence, indicating high transmission in the Mexican population with children and adolescents at risk of acquiring VZV. Global HSV-1 seroprevalence was high, especially in adults. HSV-1 and HSV-2 seroprevalences were consistently higher in women than men, particularly for HSV-2. CMV seroprevalence was higher in Mexico when compared to developed countries. Seroepidemiological data on VZV supports the fact that varicella vaccination may serve as an alternative effective solution to reduce transmission in the Mexican population. For CMV and HSV, since no vaccines are available, activities to reduce transmission are important to reduce the risk of complications and therefore need to be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Variability of human immunodeficiency virus-1 in the female genital reservoir during genital reactivation of herpes simplex virus type 2.

    Science.gov (United States)

    LeGoff, J; Roques, P; Jenabian, M-A; Charpentier, C; Brochier, C; Bouhlal, H; Gresenguet, G; Frost, E; Pepin, J; Mayaud, P; Belec, L

    2015-09-01

    Clinical and subclinical genital herpes simplex virus type 2 (HSV-2) reactivations have been associated with increases in human immunodeficiency virus (HIV)-1 genital shedding. Whether HSV-2 shedding contributes to the selection of specific genital HIV-1 variants remains unknown. We evaluated the genetic diversity of genital and blood HIV-1 RNA and DNA in 14 HIV-1/HSV-2-co-infected women, including seven with HSV-2 genital reactivation, and seven without as controls. HIV-1 DNA and HIV-1 RNA env V1-V3 sequences in paired blood and genital samples were compared. The HSV-2 selection pressure on HIV was estimated according to the number of synonymous substitutions (dS), the number of non-synonymous substitutions (dN) and the dS/dN ratio within HIV quasi-species. HIV-1 RNA levels in cervicovaginal secretions were higher in women with HSV-2 replication than in controls (p0.02). Plasma HIV-1 RNA and genital HIV-1 RNA and DNA were genetically compartmentalized. No differences in dS, dN and the dS/dN ratio were observed between the study groups for either genital HIV-1 RNA or plasma HIV-1 RNA. In contrast, dS and dN in genital HIV-1 DNA were significantly higher in patients with HSV-2 genital reactivation (p genital HIV-1 DNA was slightly higher in patients with HSV-2 genital replication, indicating a trend for purifying selection (p 0.056). HSV-2 increased the genetic diversity of genital HIV-1 DNA. These observations confirm molecular interactions between HSV-2 and HIV-1 at the genital tract level. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  11. Serum herpes simplex antibodies

    Science.gov (United States)

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  12. Neurons versus herpes simplex virus: the innate immune interactions that contribute to a host–pathogen standoff

    Science.gov (United States)

    Rosato, Pamela C; Leib, David A

    2015-01-01

    Herpes simplex virus (HSV) is a prevalent neurotropic virus, which establishes lifelong latent infections in the neurons of sensory ganglia. Despite our long-standing knowledge that HSV predominately infects sensory neurons during its life cycle, little is known about the neuronal antiviral response to HSV infection. Recent studies show that while sensory neurons have impaired intrinsic immunity to HSV infection, paracrine IFN signaling can potentiate a potent antiviral response. Additionally, antiviral autophagy plays an important role in neuronal control of HSV infection. Here we review the literature of antiviral signaling and autophagy in neurons, the mechanisms by which HSV can counteract these responses, and postulate how these two pathways may synergize to mediate neuronal control of HSV infection and yet result in lifelong persistence of the virus. PMID:26213562

  13. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation......, it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN...... responses in astrocytes. Tlr3-/- mice were hypersusceptible to HSV-2 infection in the CNS after vaginal inoculation. HSV-2 exhibited broader neurotropism in Tlr3-/- mice than it did in WT mice, with astrocytes being most abundantly infected. Tlr3-/- mice did not exhibit a global defect in innate immune...

  14. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  15. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection.

    Science.gov (United States)

    Buckingham, Erin M; Carpenter, John E; Jackson, Wallen; Zerboni, Leigh; Arvin, Ann M; Grose, Charles

    2015-01-06

    Autophagy is a process by which misfolded and damaged proteins are sequestered into autophagosomes, before degradation in and recycling from lysosomes. We have extensively studied the role of autophagy in varicella-zoster virus (VZV) infection, and have observed that vesicular cells are filled with >100 autophagosomes that are easily detectable after immunolabeling for the LC3 protein. To confirm our hypothesis that increased autophagosome formation was not secondary to a block, we examined all conditions of VZV infection as well as carrying out two assessments of autophagic flux. We first investigated autophagy in human skin xenografts in the severe combined immunodeficiency (SCID) mouse model of VZV pathogenesis, and observed that autophagosomes were abundant in infected human skin tissues. We next investigated autophagy following infection with sonically prepared cell-free virus in cultured cells. Under these conditions, autophagy was detected in a majority of infected cells, but was much less than that seen after an infected-cell inoculum. In other words, inoculation with lower-titered cell-free virus did not reflect the level of stress to the VZV-infected cell that was seen after inoculation of human skin in the SCID mouse model or monolayers with higher-titered infected cells. Finally, we investigated VZV-induced autophagic flux by two different methods (radiolabeling proteins and a dual-colored LC3 plasmid); both showed no evidence of a block in autophagy. Overall, therefore, autophagy within a VZV-infected cell was remarkably different from autophagy within an HSV-infected cell, whose genome contains two modifiers of autophagy, ICP34.5 and US11, not present in VZV.

  16. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-01-01

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  17. Epstein-Barr virus and herpes simplex infection assessment in schizophrenia and bipolar patients compared to healthy subjects

    Directory of Open Access Journals (Sweden)

    Amir Asoode

    2016-05-01

    Full Text Available Background and Aim: Some viruses (including herpes viruses due to  neurotropic properties and latency  are considered as a possible factor in many central nervous system disorders, including schizophrenia and bipolar disorder. The aim of the current study was to assess the level of IgG antibodies against Herpes Simplex virus (HSV and Epstein-Barr virus (EBV in these diseases. Materials and Methods: In this case-control study, a total of 92 serum samples including those of 46  patients admitted to Iran Psychiatric Hospital and 46 samples of the healthy personnel of Tehran University of Medical Sciences, as a control group, were assessed. The level of IgG antibodies against HSV 1 & 2 and EBV were tested using ELISA kits and  the presence or absence of EBV genome (active infection was examined by Real-time PCR.  Finally, the obtained. Data were analyzed by means of IBM SPSS( V:22 software using Chi square test and T- test. Results: Prevalence of HSV 1 & 2 antibodies in patients with schizophrenia and bipolar disorder (case group. and healthy individuals (control group. were 80/4% and 82/6% ,respectively. The results showed no significant difference in HSV 1 & 2 antibody regarding P value (P= 0.79. Prevalence of EBV antibodies in patients with schizophrenia and bipolar disorder and healthy controls were 100% and 89/1%, respectively. The results showed significant differences between the two groups in terms of anti-EBV antibody titers with P value of  0.02. Besides,  in order to detect the genome of EBV virus, Real-time PCR was u sedon 87 samples with positive EBV antibodies in which no EBV genome was detected. Conclusion: The findings showed a significant association between EBV infection with schizophrenia and bipolar disorder, but there was no significant association between herpes simplex viruses with the mentioned diseases.

  18. Potent efficacy signals from systemically administered oncolytic herpes simplex virus (HSV1716 in hepatocellular carcinoma xenograft models

    Directory of Open Access Journals (Sweden)

    Braidwood L

    2014-10-01

    Full Text Available Lynne Braidwood, Kirsty Learmonth, Alex Graham, Joe Conner Virttu Biologics Ltd, Department of Neurology, Southern General Hospital, Glasgow, UK Abstract: Oncolytic herpes simplex virus (HSV1716, lacking the neurovirulence factor ICP34.5, has highly selective replication competence for cancer cells and has been used in clinical studies of glioma, melanoma, head and neck squamous cell carcinoma, pediatric non-central nervous system solid tumors, and malignant pleural mesothelioma. To date, 88 patients have received HSV1716 and the virus is well tolerated, with selective replication in tumor cells and no spread to surrounding normal tissue. We assessed the potential value of HSV1716 in preclinical studies with two human hepatocellular carcinoma cell lines, HuH7 and HepG2-luc. HSV1716 displayed excellent replication kinetics in vitro in HepG2-luc cells, a cell line engineered to express luciferase, and virus-mediated cell killing correlated with loss of light emissions from the cells. In vivo, the HepG2-luc cells readily formed light-emitting xenografts that were easily visualized by an in vivo imaging system and efficiently eliminated by HSV1716 oncolysis after intratumoral injection. HSV1716 also demonstrated strong efficacy signals in subcutaneous HuH7 xenografts in nude mice after intravenous administration of virus. In the HuH7 model, the intravenously injected virus replicated prolifically immediately after efficient tumor localization, resulting in highly significant reductions in tumor growth and enhanced survival. Our preclinical results demonstrate excellent tumor uptake of HSV1716, with prolific replication and potent oncolysis. These observations warrant a clinical study of HSV1716 in hepatocellular carcinoma. Keywords: oncolytic herpes simplex virus, HSV1716, hepatocellular carcinoma, xenografts, efficacy 

  19. Laryngopharyngeal reflux and herpes simplex virus type 2 are possible risk factors for adult-onset recurrent respiratory papillomatosis (prospective case-control study).

    Science.gov (United States)

    Formánek, M; Jančatová, D; Komínek, P; Matoušek, P; Zeleník, K

    2017-06-01

    The human papillomavirus (HPV) causes recurrent respiratory papillomatosis (RRP). Although HPV prevalence is high, the incidence of papillomatosis is low. Thus, factors other than HPV infection probably contribute to RRP. This study investigated whether patients with papillomatosis are more often infected with herpes simplex virus type 2 and chlamydia trachomatis (ChT) and whether laryngopharyngeal reflux (LPR) occurs in this group of patients more often. Prospective case-control study. Department of Otorhinolaryngology of University Hospital. The study included 20 patients with adult-onset RRP and 20 adult patients with vocal cord cyst and no pathology of laryngeal mucosa (control group). Immunohistochemical analysis of pepsin, HPV, herpes simplex virus type 2 and ChT was performed in biopsy specimens of laryngeal papillomas and of healthy laryngeal mucosa (control group) obtained from medial part of removed vocal cord cyst during microlaryngoscopy procedures. Pathologic LPR (pepsin in tissue) was diagnosed in 8/20 (40.0%) patients with papillomatosis and in 0/20 control patients (P = .003). Herpes simplex virus type 2 was present in 9/20 (45.0%) patients with papillomatosis and in 0/20 control patients (P = .001). Five specimens were positive for both pepsin and herpes simplex virus type 2. No samples were positive for ChT. There were no significant differences between groups for age, body mass index, diabetes mellitus and gastrooesophageal reflux disease. Tobacco exposure was not more frequent in RRP group either (P = .01). Results show that LPR and herpes simplex virus type 2 are significantly more often present in patients with RRP. LPR and herpes simplex virus type 2 might activate latent HPV infection and thereby be possible risk factors for RRP. © 2016 John Wiley & Sons Ltd.

  20. Acute retinal necrosis results in low vision in a young patient with a history of herpes simplex virus encephalitis.

    Science.gov (United States)

    Shahi, Sanjeet K

    2017-05-01

    Acute retinal necrosis (ARN), secondary to herpes simplex encephalitis, is a rare syndrome that can present in healthy individuals, as well as immuno-compromised patients. Most cases are caused by a secondary infection from the herpes virus family, with varicella zoster virus being the leading cause of this syndrome. Potential symptoms include blurry vision, floaters, ocular pain and photophobia. Ocular findings may consist of severe uveitis, retinal vasculitis, retinal necrosis, papillitis and retinal detachment. Clinical manifestations of this disease may include increased intraocular pressure, optic disc oedema, optic neuropathy and sheathed retinal arterioles. A complete work up is essential to rule out cytomegalovirus retinitis, herpes simplex encephalitis, herpes virus, syphilis, posterior uveitis and other conditions. Depending on the severity of the disease, the treatment options consist of anticoagulation therapy, cycloplegia, intravenous acyclovir, systemic steroids, prophylactic laser photocoagulation and pars plana vitrectomy with silicon oil for retinal detachment. An extensive history and clinical examination is crucial in making the correct diagnosis. Also, it is very important to be aware of low vision needs and refer the patients, if expressing any sort of functional issues with completing daily living skills, especially reading. In this article, we report one case of unilateral ARN 20 years after herpetic encephalitis. © 2016 Optometry Australia.

  1. Seroprevalencia de la infección por el virus herpes simplex tipo 2 en tres grupos poblacionales de la Ciudad de México Herpes simplex virus type 2 seroprevalence among three female population groups from Mexico City

    Directory of Open Access Journals (Sweden)

    Carlos J Conde-González

    2003-01-01

    Full Text Available OBJETIVO: Determinar la seroprevalencia de infección por el virus herpes simplex tipo 2 y los factores epidemiológicos asociados a ella, en tres grupos de población femenina de la Ciudad de México. MATERIAL Y MÉTODOS: Estudio transversal efectuado en el año 2000, que incluyó mujeres de la Ciudad de México diagnosticadas con cáncer de mama, cáncer cervical , y mujeres de población general negativas al Papanicolaou. Todas las participantes proporcionaron su consentimiento informado para responder un cuestionario sociodemográfico y de vida sexual, y permitir la toma de una muestra sanguínea. La presencia de anticuerpos contra el virus herpes simplex tipo 2 entre las mujeres se realizó por la técnica de "Western blot"específica para el virus herpes simplex tipo 2; las asociaciones entre estos resultados y los datos de la encuesta se analizaron estadísticamente, de manera cruda y ajustada. RESULTADOS: Las mujeres concáncer cervical tuvieron una seroprevalencia de infección por el virus herpes simplex tipo 2 de 46.8% (191/408; las de población general negativas al Papanicolaou de 29.3% (214/730, y aquellas con cáncer de mama de 22.6% (29/128. Las variables asociadas significativamente a la seropositividad contra este virus fueron la edad creciente, el aumento en el número de parejas sexuales, tener cáncer cervical, y entre las mujeres con esa patología, el inicio antes de los 21 años de edad de la actividad sexual y el estar divorciadas o separadas. CONCLUSIONES: Los hallazgos observados revelaron diferencias estadísticas en la seroprevalencia del virus herpes, de acuerdo con los grupos poblacionales estudiados. La frecuencia global de la infección viral entre las participantes las sitúa en un riesgo intermedio, en comparación con otros grupos poblacionales que en México son de alto y bajo riesgo (trabajadoras sexuales y estudiantes universitarias, respectivamente, analizados en años recientes. Las principales caracter

  2. Herpes simplex virus type 2 glycoprotein H interacts with integrin αvβ3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells.

    Science.gov (United States)

    Cheshenko, Natalia; Trepanier, Janie B; González, Pablo A; Eugenin, Eliseo A; Jacobs, William R; Herold, Betsy C

    2014-09-01

    Herpes simplex virus (HSV) entry requires multiple interactions at the cell surface and activation of a complex calcium signaling cascade. Previous studies demonstrated that integrins participate in this process, but their precise role has not been determined. These studies were designed to test the hypothesis that integrin αvβ3 signaling promotes the release of intracellular calcium (Ca2+) stores and contributes to viral entry and cell-to-cell spread. Transfection of cells with small interfering RNA (siRNA) targeting integrin αvβ3, but not other integrin subunits, or treatment with cilengitide, an Arg-Gly-Asp (RGD) mimetic, impaired HSV-induced Ca2+ release, viral entry, plaque formation, and cell-to-cell spread of HSV-1 and HSV-2 in human cervical and primary genital tract epithelial cells. Coimmunoprecipitation studies and proximity ligation assays indicated that integrin αvβ3 interacts with glycoprotein H (gH). An HSV-2 gH-null virus was engineered to further assess the role of gH in the virus-induced signaling cascade. The gH-2-null virus bound to cells and activated Akt to induce a small Ca2+ response at the plasma membrane, but it failed to trigger the release of cytoplasmic Ca2+ stores and was impaired for entry and cell-to-cell spread. Silencing of integrin αvβ3 and deletion of gH prevented phosphorylation of focal adhesion kinase (FAK) and the transport of viral capsids to the nuclear pore. Together, these findings demonstrate that integrin signaling is activated downstream of virus-induced Akt signaling and facilitates viral entry through interactions with gH by activating the release of intracellular Ca2+ and FAK phosphorylation. These findings suggest a new target for HSV treatment and suppression. Herpes simplex viruses are the leading cause of genital disease worldwide, the most common infection associated with neonatal encephalitis, and a major cofactor for HIV acquisition and transmission. There is no effective vaccine. These

  3. The psychosocial impact of serological diagnosis of asymptomatic herpes simplex virus type 2 infection.

    Science.gov (United States)

    Rosenthal, S L; Zimet, G D; Leichliter, J S; Stanberry, L R; Fife, K H; Tu, W; Bernstein, D I

    2006-04-01

    To evaluate the impact of a positive herpes simplex virus type 2 (HSV-2) serological test on psychosocial functioning among people with no known history of genital herpes. Individuals (age 14-30 years) without a history of genital herpes were recruited from an urban university setting and sexually transmitted diseases (STD), primary care, and adolescent clinics. Participants completed a questionnaire addressing psychological functioning, psychosocial adjustment, and perceived quality of sex and were offered free HSV-2 antibody testing. 33 HSV-2 positive people and 60 HSV-2 negative people demographically matched from the same source of recruitment were re-evaluated at a 3 month follow up visit. HSV-2 positive participants also completed a genital herpes quality of life (GHQOL) measure. Of the 33 who were HSV-2 seropositive, four did not recall their diagnosis. In comparing those who were HSV-2 positive with those who were negative, repeated measures analysis of variance indicated there were no significant differences over time on any of the measures. None the less, many HSV-2 positive individuals indicated that the diagnosis had a notable impact on their quality of life. Also, among the HSV-2 positive people, lower GHQOL at the 3 month follow up was predicted by higher interpersonal sensitivity (r = -0.44, p<0.05), lower social support (r = 0.40, p<0.05), and quality of sex (r = 0.62, p<0.01) at baseline. A diagnosis of asymptomatic HSV-2 infection does not appear to cause significant lasting psychological difficulties. Those for whom the diagnosis had the greatest impact were interpersonally vulnerable before the diagnosis. These results suggest that assessment of interpersonal distress may be important to include as part of pretest and post-test counselling.

  4. Impact of a Rapid Herpes Simplex Virus PCR Assay on Duration of Acyclovir Therapy.

    Science.gov (United States)

    Van, Tam T; Mongkolrattanothai, Kanokporn; Arevalo, Melissa; Lustestica, Maryann; Dien Bard, Jennifer

    2017-05-01

    Herpes simplex virus (HSV) infections of the central nervous system (CNS) are associated with significant morbidity and mortality rates in children. This study assessed the impact of a direct HSV (dHSV) PCR assay on the time to result reporting and the duration of acyclovir therapy for children with signs and symptoms of meningitis and encephalitis. A total of 363 patients with HSV PCR results from cerebrospinal fluid (CSF) samples were included in this retrospective analysis, divided into preimplementation and postimplementation groups. For the preimplementation group, CSF testing was performed using a laboratory-developed real-time PCR assay; for the postimplementation group, CSF samples were tested using a direct sample-to-answer assay. All CSF samples were negative for HSV. Over 60% of patients from both groups were prescribed acyclovir. The average HSV PCR test turnaround time for the postimplementation group was reduced by 14.5 h (23.6 h versus 9.1 h; P < 0.001). Furthermore, 79 patients (43.6%) in the postimplementation group had dHSV PCR results reported <4 h after specimen collection. The mean time from specimen collection to acyclovir discontinuation was 17.1 h shorter in the postimplementation group (31.1 h versus 14 h; P < 0.001). The median duration of acyclovir therapy was also significantly reduced in the postimplementation group (29.2 h versus 14.3 h; P = 0.01). Our investigation suggests that implementation of rapid HSV PCR testing can decrease turnaround times and the duration of unnecessary acyclovir therapy. Copyright © 2017 American Society for Microbiology.

  5. Clinical relevance of herpes simplex virus viremia in Intensive Care Unit patients.

    Science.gov (United States)

    Lepiller, Q; Sueur, C; Solis, M; Barth, H; Glady, L; Lefebvre, F; Fafi-Kremer, S; Schneider, F; Stoll-Keller, F

    2015-07-01

    To determine the clinical relevance of herpes simplex virus (HSV) viremia episodes in critically ill adult patients. 1556 blood samples obtained for HSV PCR analysis in Intensive Care Unit (ICU) patients over 4 years were retrospectively analyzed, focusing on the comprehensive analysis of 88 HSV-viremic patients. HSV DNA was detected in 11.8% of samples from the ICU. HSV viral loads remained below 5×10(2) copies/ml in 68.2% of patients and exceeded 10(4) copies/ml in 7.9%. Episodes of HSV-viremia correlated with immunosuppressed status and mechanical ventilation in 79.5% and 65.9% of patients, respectively. Only a subset of patients exhibited HSV-related organ damage, including pneumonia and hepatitis (10.2% and 2.3%, respectively). The mortality rate in HSV-viremic patients was not significantly increased compared to the overall mortality rate in the ICU (27.3% vs. 22.9%, p = 0.33). Only patients with high HSV viral loads tended to have a higher, though non-significant, death rate (57.1%, p = 0.14). Our results suggest HSV viremia is common in ICU patients, potentially favored by immunocompromised status and mechanical ventilation. The global impact of HSV-viremia on mortality in the ICU was low. Quantifying HSV DNA may help identifying patients at-risk of severe HSV-induced symptoms. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Population-based surveillance of neonatal herpes simplex virus infection in Australia, 1997-2011.

    Science.gov (United States)

    Jones, Cheryl A; Raynes-Greenow, Camille; Isaacs, David

    2014-08-15

    Neonatal herpes simplex virus (HSV) infection is uncommon, but mortality after disseminated disease and morbidity after encephalitis are high. For the last decade, increased dose and duration of acyclovir has been advised to prevent disease progression and recurrence. We sought to determine prospectively the epidemiologic, clinical, and secular trends of this condition in Australia. This was prospective national active surveillance for neonatal HSV disease through the Australian Paediatric Surveillance Unit from 1997 to 2011. Case notification triggered a questionnaire requesting de-identified data from the pediatric clinician. We identified 131 confirmed cases of neonatal HSV disease in 15 years from 261 notifications (95% response). The reported incidence (3.27 cases per 100 000 live births overall; 95% confidence interval [CI], 2.73-3.86) was stable. Overall mortality was 18.8% (95% CI, 12.1-25.5); the mortality rate was significantly lower in the latter part of the study period, 2005-2011, compared with 1997-2004 (P = .04). There were significantly more young mothers (<20 years of age) compared with Australian birth record data (18.5% vs 4.8%; P < .001). HSV-1 infection was more common than HSV-2 (62.7% vs 37.3%; P < .001), and the rate of HSV-1 infections increased significantly over the surveillance period (P < .05). From 2002, most infants received high-dose acyclovir. The time from symptom onset to initiation of therapy in survivors did not change over time. Mortality from neonatal HSV infection has fallen but remains high. HSV-1 is the major serotype causing neonatal disease in Australia. Young mothers represent an important target group for prevention. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Herpes Simplex Virus Type 1 Infects Enteric Neurons and Triggers Gut Dysfunction via Macrophage Recruitment.

    Science.gov (United States)

    Brun, Paola; Qesari, Marsela; Marconi, Peggy C; Kotsafti, Andromachi; Porzionato, Andrea; Macchi, Veronica; Schwendener, Reto A; Scarpa, Marco; Giron, Maria C; Palù, Giorgio; Calistri, Arianna; Castagliuolo, Ignazio

    2018-01-01

    Herpes Simplex Virus type 1 (HSV-1), a neurotropic pathogen widespread in human population, infects the enteric nervous system (ENS) in humans and rodents and causes intestinal neuromuscular dysfunction in rats. Although infiltration of inflammatory cells in the myenteric plexus and neurodegeneration of enteric nerves are common features of patients suffering from functional intestinal disorders, the proof of a pathogenic link with HSV-1 is still unsettled mainly because the underlying mechanisms are largely unknown. In this study we demonstrated that following intragastrical administration HSV-1 infects neurons within the myenteric plexus resulting in functional and structural alterations of the ENS. By infecting mice with HSV-1 replication-defective strain we revealed that gastrointestinal neuromuscular anomalies were however independent of viral replication. Indeed, enteric neurons exposed to UV-inactivated HSV-1 produced monocyte chemoattractant protein-1 (MCP-1/CCL2) to recruit activated macrophages in the longitudinal muscle myenteric plexus. Infiltrating macrophages produced reactive oxygen and nitrogen species and directly harmed enteric neurons resulting in gastrointestinal dysmotility. In HSV-1 infected mice intestinal neuromuscular dysfunctions were ameliorated by in vivo administration of (i) liposomes containing dichloromethylene bisphosphonic acid (clodronate) to deplete tissue macrophages, (ii) CCR2 chemokine receptor antagonist RS504393 to block the CCL2/CCR2 pathway, (iii) Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and AR-C 102222 to quench production of nitrogen reactive species produced via iNOS. Overall these data demonstrate that HSV-1 infection makes enteric neurons recruit macrophages via production of a specific chemoattractant factor. The resulting inflammatory reaction is mandatory for intestinal dysmotility. These findings provide insights into the neuro-immune communication that occurs in the ENS following HSV-1 infection

  8. High Rates of Herpes Simplex Virus Type 2 Infection in Homeless Women: Informing Public Health Strategies.

    Science.gov (United States)

    Kelly, J Daniel; Cohen, Jennifer; Grimes, Barbara; Philip, Susan S; Weiser, Sheri D; Riley, Elise D

    2016-08-01

    Homeless and unstably housed women living in an urban setting are at risk for sexually transmitted diseases, yet the seroprevalence and correlates of herpes simplex virus type 2 (HSV-2) specific to impoverished women are poorly understood. Between April and October 2010, we conducted a cross-sectional analysis of sociodemographic, structural, and behavioral factors associated with prevalent HSV-2 infection (recent and historical infections) within a community-recruited cohort of homeless and unstably housed women. Logistic regression modeling was used to identify independent sociobehavioral correlates of HSV-2 infection. Among 213 women (114 HIV positive and 99 HIV negative), the median age was 49, 48% were African American, and 63% had completed high school. HSV-2 seroprevalence was 88%, and only 17% of infected women were aware of their infection. In adjusted analysis, odds of HSV-2 infection were significantly higher for those reporting at-risk drinking (adjusted odds ratio [AOR] = 7.04; 95% confidence interval [CI] = 1.59, 67.91), heterosexual orientation (AOR = 4.56; 95% CI = 1.81, 11.69), and for those who were HIV positive (AOR = 3.64; 95% CI = 1.43, 10.30). Odds of HSV-2 infection decreased as current income increased (AOR for each $500 monthly increase = 0.90; 95% CI = 0.78, 0.997). There is an extremely high seroprevalence of HSV-2 infection among homeless and unstably housed women, and most are unaware of their HSV-2 status. Screening all unstably housed women for HSV-2 infection, with additional counseling for sexual risk and alcohol use, may lead to the identification of more infections and be a first step in reducing additional disease transmission.

  9. Herpes Simplex Virus Type 1 Infects Enteric Neurons and Triggers Gut Dysfunction via Macrophage Recruitment

    Directory of Open Access Journals (Sweden)

    Paola Brun

    2018-03-01

    Full Text Available Herpes Simplex Virus type 1 (HSV-1, a neurotropic pathogen widespread in human population, infects the enteric nervous system (ENS in humans and rodents and causes intestinal neuromuscular dysfunction in rats. Although infiltration of inflammatory cells in the myenteric plexus and neurodegeneration of enteric nerves are common features of patients suffering from functional intestinal disorders, the proof of a pathogenic link with HSV-1 is still unsettled mainly because the underlying mechanisms are largely unknown. In this study we demonstrated that following intragastrical administration HSV-1 infects neurons within the myenteric plexus resulting in functional and structural alterations of the ENS. By infecting mice with HSV-1 replication-defective strain we revealed that gastrointestinal neuromuscular anomalies were however independent of viral replication. Indeed, enteric neurons exposed to UV-inactivated HSV-1 produced monocyte chemoattractant protein-1 (MCP-1/CCL2 to recruit activated macrophages in the longitudinal muscle myenteric plexus. Infiltrating macrophages produced reactive oxygen and nitrogen species and directly harmed enteric neurons resulting in gastrointestinal dysmotility. In HSV-1 infected mice intestinal neuromuscular dysfunctions were ameliorated by in vivo administration of (i liposomes containing dichloromethylene bisphosphonic acid (clodronate to deplete tissue macrophages, (ii CCR2 chemokine receptor antagonist RS504393 to block the CCL2/CCR2 pathway, (iii Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME and AR-C 102222 to quench production of nitrogen reactive species produced via iNOS. Overall these data demonstrate that HSV-1 infection makes enteric neurons recruit macrophages via production of a specific chemoattractant factor. The resulting inflammatory reaction is mandatory for intestinal dysmotility. These findings provide insights into the neuro-immune communication that occurs in the ENS following HSV-1

  10. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  11. Circumcision status and incident herpes simplex virus type 2 infection, genital ulcer disease, and HIV infection

    Science.gov (United States)

    Mehta, Supriya D.; Moses, Stephen; Parker, Corette B.; Agot, Kawango; Maclean, Ian; Bailey, Robert C.

    2013-01-01

    Objective We assessed the protective effect of medical male circumcision (MMC) against HIV, herpes simplex virus type 2 (HSV-2), and genital ulcer disease (GUD) incidence. Design Two thousand, seven hundred and eighty-seven men aged 18–24 years living in Kisumu, Kenya were randomly assigned to circumcision (n=1391) or delayed circumcision (n =1393) and assessed by HIV and HSV-2 testing and medical examinations during follow-ups at 1, 3, 6, 12, 18, and 24 months. Methods Cox regression estimated the risk ratio of each outcome (incident HIV, GUD, HSV-2) for circumcision status and multivariable models estimated HIV risk associated with HSV-2, GUD, and circumcision status as time-varying covariates. Results HIV incidence was 1.42 per 100 person-years. Circumcision was 62% protective against HIV [risk ratio =0.38; 95% confidence interval (CI) 0.22–0.67] and did not change when controlling for HSV-2 and GUD (risk ratio =0.39; 95% CI 0.23–0.69). GUD incidence was halved among circumcised men (risk ratio =0.52; 95% CI 0.37–0.73). HSV-2 incidence did not differ by circumcision status (risk ratio =0.94; 95% CI 0.70–1.25). In the multivariable model, HIV seroconversions were tripled (risk ratio =3.44; 95% CI 1.52–7.80) among men with incident HSV-2 and seven times greater (risk ratio =6.98; 95% CI 3.50–13.9) for men with GUD. Conclusion Contrary to findings from the South African and Ugandan trials, the protective effect of MMC against HIV was independent of GUD and HSV-2, and MMC had no effect on HSV-2 incidence. Determining the causes of GUD is necessary to reduce associated HIV risk and to understand how circumcision confers protection against GUD and HIV PMID:22382150

  12. Genital Herpes Simplex Virus Type 2 Shedding Among Adults With and Without HIV Infection in Uganda.

    Science.gov (United States)

    Phipps, Warren; Nakku-Joloba, Edith; Krantz, Elizabeth M; Selke, Stacy; Huang, Meei-Li; Kambugu, Fred; Orem, Jackson; Casper, Corey; Corey, Lawrence; Wald, Anna

    2016-02-01

    Despite the high prevalence of herpes simplex virus type 2 (HSV-2) in sub-Saharan Africa, the natural history of infection among Africans is not well characterized. We evaluated the frequency of genital HSV shedding in HIV-seropositive and HIV-seronegative men and women in Uganda. Ninety-three HSV-2-seropositive Ugandan adults collected anogenital swab specimens for HSV DNA quantification by polymerase chain reaction 3 times daily for 6 weeks. HSV-2 was detected from 2484 of 11 283 swab specimens collected (22%), with a median quantity of 4.3 log10 HSV copies/mL (range, 2.2-8.9 log10 HSV copies/mL). Genital lesions were reported on 749 of 3875 days (19%), and subclinical HSV shedding was detected from 1480 of 9113 swab specimens (16%) collected on days without lesions. Men had higher rates of total HSV shedding (relative risk [RR], 2.0 [95% confidence interval {CI}, 1.3-2.9]; P genital lesions (RR, 2.1 [95% CI, 1.2-3.4]; P = .005), compared with women. No differences in shedding rates or lesion frequency were observed based on HIV serostatus. HSV-2 shedding frequency and quantity are high among HSV-2-seropositive adults in sub-Saharan Africa, including persons with and those without HIV infection. Shedding rates were particularly high among men, which may contribute to the high prevalence of HSV-2 and early acquisition among African women. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    Science.gov (United States)

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical

  14. Characterization of a major late herpes simplex virus type 1 mRNA.

    Science.gov (United States)

    Costa, R H; Devi, B G; Anderson, K P; Gaylord, B H; Wagner, E K

    1981-05-01

    A major, late 6-kilobase (6-kb) mRNa mapping in the large unique region of herpes simplex virus type 1 (HSV-1) was characterized by using two recombinant DNA clones, one containing EcoRI fragment G (0.190 to 0.30 map units) in lambda. WES.B (L. Enquist, M. Madden, P. Schiop-Stansly, and G. Vandl Woude, Science 203:541-544, 1979) and one containing HindIII fragment J (0.181 to 0.259 map units) in pBR322. This 6-kb mRNA had its 3' end to the left of 0.231 on the prototypical arrangement of the HSV-1 genome and was transcribed from right to left. It was bounded on both sides by regions containing a large number of distinct mRNA species, and its 3' end was partially colinear with a 1.5-kb mRNA which encoded a 35,000-dalton polypeptide. The 6-kb mRNA encoded a 155,000-dalton polypeptide which was shown to be the only one of this size detectable by hybrid-arrested translation encoded by late polyadenylated polyribosomal RNA. The S1 nuclease mapping experiments indicated that there were no introns in the coding sequence for this mRNA and that its 3' end mapped approximately 800 nucleotides to the left of the BglII site at 0.231, whereas its 5' end extended very close to the BamHI site at 0.266.

  15. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis.

    Science.gov (United States)

    Muzammil; Jayanthi, D; Faizuddin, Mohamed; Noor Ahamadi, H M

    2017-05-01

    Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P viruses in the pathogenesis of chronic periodontitis. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Human Antiviral Protein IFIX Suppresses Viral Gene Expression during Herpes Simplex Virus 1 (HSV-1) Infection and Is Counteracted by Virus-induced Proteasomal Degradation.

    Science.gov (United States)

    Crow, Marni S; Cristea, Ileana M

    2017-04-01

    The interferon-inducible protein X (IFIX), a member of the PYHIN family, was recently recognized as an antiviral factor against infection with herpes simplex virus 1 (HSV-1). IFIX binds viral DNA upon infection and promotes expression of antiviral cytokines. How IFIX exerts its host defense functions and whether it is inhibited by the virus remain unknown. Here, we integrated live cell microscopy, proteomics, IFIX domain characterization, and molecular virology to investigate IFIX regulation and antiviral functions during HSV-1 infection. We find that IFIX has a dynamic localization during infection that changes from diffuse nuclear and nucleoli distribution in uninfected cells to discrete nuclear puncta early in infection. This is rapidly followed by a reduction in IFIX protein levels. Indeed, using immunoaffinity purification and mass spectrometry, we define IFIX interactions during HSV-1 infection, finding an association with a proteasome subunit and proteins involved in ubiquitin-proteasome processes. Using synchronized HSV-1 infection, microscopy, and proteasome-inhibition experiments, we demonstrate that IFIX co-localizes with nuclear proteasome puncta shortly after 3 h of infection and that its pyrin domain is rapidly degraded in a proteasome-dependent manner. We further demonstrate that, in contrast to several other host defense factors, IFIX degradation is not dependent on the E3 ubiquitin ligase activity of the viral protein ICP0. However, we show IFIX degradation requires immediate-early viral gene expression, suggesting a viral host suppression mechanism. The IFIX interactome also demonstrated its association with transcriptional regulatory proteins, including the 5FMC complex. We validate this interaction using microscopy and reciprocal isolations and determine it is mediated by the IFIX HIN domain. Finally, we show IFIX suppresses immediate-early and early viral gene expression during infection. Altogether, our study demonstrates that IFIX antiviral

  17. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    Science.gov (United States)

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  18. Acyclovir-resistant herpes simplex virus 1 infection early after allogeneic hematopoietic stem cell transplantation with T-cell depletion.

    Science.gov (United States)

    Akahoshi, Yu; Kanda, Junya; Ohno, Ayumu; Komiya, Yusuke; Gomyo, Ayumi; Hayakawa, Jin; Harada, Naonori; Kameda, Kazuaki; Ugai, Tomotaka; Wada, Hidenori; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-Ichi; Kikuchi, Misato; Nakasone, Hideki; Kako, Shinichi; Shiraki, Kimiyasu; Kanda, Yoshinobu

    2017-07-01

    We previously reported that oral low-dose acyclovir (200 mg/day) for the prevention of herpes simplex virus (HSV) infections after allogenic hematopoietic stem cell transplantation (HSCT) is effective without the emergence of acyclovir-resistant HSV infections. However, HSV infections are of significant concern because the number of allogeneic HSCT with T-cell depletion, which is a risk factor of the emergence of drug-resistant HSV infections, has been increasing. We experienced a 25-year-old female who received allogenic HSCT from an unrelated donor with 1-antigen mismatch using anti-thymocyte globulin. Despite acyclovir prophylaxis (200 mg/day), she developed the right palatal ulcer that was positive for HSV-1 specific antigen by fluorescent antibody on day 20 and developed new hypoglossal and tongue ulcers on day 33. Replacement of acyclovir with foscarnet improved her ulcers. We isolated 2 acyclovir-resistant and foscarnet-sensitive strains from the right palatal and hypoglossal ulcers, which had the same frame shift mutation in the thymidine kinase genes. The rate of proliferation of the isolate from the hypoglossal ulcer was faster than that from the right palatal ulcer in the plaque reduction assay. HSV strains that acquired acyclovir-resistant mutations at the right palatal ulcer with larger plaque might spread to the hypoglossal ulcer as the secondary site of infection because of better growth property. Second-line antiviral agents should be considered when we suspect treatment failure of HSV infection, especially in HSCT with T-cell depletion. Further studies are required whether low-dose acyclovir prophylaxis leads to the emergence of virological resistance. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1 ▿

    Science.gov (United States)

    Conn, Kristen L.; Hendzel, Michael J.; Schang, Luis M.

    2011-01-01

    The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes. PMID:21994445

  20. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    Science.gov (United States)

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  1. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

    Science.gov (United States)

    Taylor, Kathryne E.

    2015-01-01

    ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

  2. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    Directory of Open Access Journals (Sweden)

    Weir Jerry P

    2007-05-01

    Full Text Available Abstract Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2 BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors.

  3. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  4. Oral ulcers in children under chemotherapy: clinical characteristics and their relation with Herpes Simplex Virus type 1 and Candida albicans.

    Science.gov (United States)

    Sepúlveda, Ester; Brethauer, Ursula; Rojas, Jaime; Fernández, Eduardo; Le Fort, Patricia

    2005-04-01

    The objective of this study was to determine the clinical characteristics of oral ulcers in pediatric oncology patients undergoing chemotherapy and their relation with the presence of Herpes Simplex Virus (HSV) type 1 and Candida albicans. The sample consisted of 20 ulcerative lesions from 15 children treated with chemotherapy in the Pediatric Service of the Regional Hospital of Concepción, Chile. Two calibrated clinicians performed clinical diagnosis of the ulcers and registered general data from the patients (age, general diagnosis, absolute neutrophil count, and number of days after chemotherapy) and clinical characteristic of the ulcers: number, size, location, presence or absence of pain and inflammatory halo, edge characteristics, and exudate type. Additional to clinical diagnosis, culture for Candida albicans (C) and polymerase chain reaction (PCR) for Herpes Simplex Virus type 1 was performed. Ten ulcers occurred in patients with acute lymphoblastic leukemia, five in patients with acute myeloblastic leukemia and five in patients with other neoplastic diseases. Eight ulcers were HSV (+) / C (-), 6 HSV (-) / C (-), 4 HSV (+) / C (+) and 2 HSV (-) / C (+). Preferential location was the hard palate. Most lesions were multiple, painful, with inflammatory halo, irregular edges and fibrinous exudate. The average size was 6,5 millimeters, and the mean number of days after chemotherapy was 7.5 days. Oral ulcers in children with oncological diseases did not present a specific clinical pattern. They were strongly associated with HSV.

  5. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    International Nuclear Information System (INIS)

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-01-01

    Research highlights: → We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. → Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. → Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7 -/- cells (autophagy-defective cells) derived from an atg7 -/- knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  6. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    Science.gov (United States)

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  7. Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region

    DEFF Research Database (Denmark)

    Norberg, Peter; Olofsson, Sigvard; Tarp, Mads Agervig

    2007-01-01

    Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for O-glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed......-glycosylation not only for the two most commonly expressed N-acetyl-d-galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively O-glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin...

  8. The genome of herpesvirus papio 2 is closely related to the genomes of human herpes simplex viruses.

    Science.gov (United States)

    Bigger, John E; Martin, David W

    2003-06-01

    Infection of baboons (Papio species) with herpesvirus papio 2 (HVP-2) produces a disease that is clinically similar to herpes simplex virus (HSV-1 and HSV-2) infection of humans. The development of a primate model of simplexvirus infection based on HVP-2 would provide a powerful resource to study virus biology and test vaccine strategies. In order to characterize the molecular biology of HVP-2 and justify further development of this model system we have constructed a physical map of the HVP-2 genome. The results of these studies have identified the presence of 26 reading frames that closely resemble HSV homologues. Furthermore, the HVP-2 genome shares a collinear arrangement with the genome of HSV. These studies further validate the development of the HVP-2 model as a surrogate system to study the biology of HSV infections.

  9. Enhanced resistance to herpes simplex virus type 1 infection in transgenic mice expressing a soluble form of herpesvirus entry mediator

    International Nuclear Information System (INIS)

    Ono, Etsuro; Yoshino, Saori; Amagai, Keiko; Taharaguchi, Satoshi; Kimura, Chiemi; Morimoto, Junko; Inobe, Manabu; Uenishi, Tomoko; Uede, Toshimitsu

    2004-01-01

    Herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family used as a cellular receptor by virion glycoprotein D (gD) of herpes simplex virus (HSV). Both human and mouse forms of HVEM can mediate entry of HSV-1 but have no entry activity for pseudorabies virus (PRV). To assess the antiviral potential of HVEM in vivo, three transgenic mouse lines expressing a soluble form of HVEM (HVEMIg) consisting of an extracellular domain of murine HVEM and the Fc portion of human IgG1 were generated. All of the transgenic mouse lines showed marked resistance to HSV-1 infection when the mice were challenged intraperitoneally with HSV-1, but not to PRV infection. The present results demonstrate that HVEMIg is able to exert a significant antiviral effect against HSV-1 infection in vivo

  10. Discovery and preliminary structure-activity relationship of the marine natural product manzamines as herpes simplex virus type-1 inhibitors.

    Science.gov (United States)

    Palem, Jayavardhana R; Mudit, Mudit; Hsia, Shao-Chung V; Sayed, Khalid A El

    2017-01-01

    Herpes simplex virus type-1 (HSV-1) is a member of alpha-herpesviridae family and is known to cause contagious human infections. The marine habitat is a rich source of structurally unique bioactive secondary metabolites. A small library of marine natural product classes 1-10 has been screened to discover a new hit entity active against HSV-1. Manzamine A showed potent activity against HSV-1 via targeting the viral gene ICP0. Manzamine A is a β-carboline alkaloid isolated from the Indo-Pacific sponge Acanthostrongylophora species. Currently, acyclovir is the drug of choice for HSV-1 infections. Compared with 50 µM acyclovir, manzamine A at 1 µM concentration produced potent repressive effects on viral replication and release of infectious viruses in SIRC cells in recent studies. The potent anti-HSV-1 activity of manzamine A prompted a preliminary structure-activity relationship study by testing targeted manzamines. These included 8-hydroxymanzamine A (11), to test the effect of the C-8 hydroxy substitution at the β-carboline moiety; manzamine E (12), to assess the importance of substitution at the azacyclooctane ring; and ircinal A (13), to determine whether the β-carboline ring is required for the activity. Manzamine A was chemically transformed to its salt forms, manzamine A monohydrochloride (14) and manzamine A monotartrate (15), to test whether improving water solubility and hydrophilicity will positively affect the activity. Compounds were tested for activity against HSV-1 using fluorescent microscopy and plaque assay. The results showed the reduced anti-HSV-1 activity of 11, suggesting that C-8 hydroxy substitution might adversely affect the activity. Similarly, manzamines 12 and 13 showed no activity against HSV-1, indicating the preference of the unsubstituted azacylcooctane and β-carboline rings to the activity. Anti-HSV-1 activity was significantly improved for the manzamine A salts 14 and 15, suggesting that improving the overall water solubility

  11. Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis.

    Directory of Open Access Journals (Sweden)

    Rafik Menasria

    Full Text Available The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1 encephalitis (HSE. To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2 x 10(6 plaque forming units. Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P < 0.05 and "Ly6C hi" inflammatory monocytes (P < 0.001 significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P < 0.05 for inflammatory monocytes compared to non-infected controls to reach baseline levels on day 10 following infection. The percentage of "Ly6C low" patrolling monocytes significantly increased (P < 0.01 at a later time point (day 8, which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus

  12. HIV and herpes simplex virus type 2 epidemiological synergy: misguided observational evidence? A modelling study.

    Science.gov (United States)

    Omori, Ryosuke; Nagelkerke, Nico; Abu-Raddad, Laith J

    2017-12-04

    To investigate whether observational studies of HIV and herpes simplex virus type 2 (HSV-2) infections have the capacity to assess the HIV/HSV-2 epidemiological synergy. An individual-based Monte Carlo model was used to simulate HIV/HSV-2 epidemics in two scenarios: no HIV/HSV-2 biological interaction and HSV-2 seropositivity enhancing HIV acquisition. Cross-sectional observational studies were simulated by sampling individuals from the population to assess resulting crude and adjusted ORs of the HIV/HSV-2 association. Meta-analyses were conducted to estimate the pooled mean ORs. Impact of under-reporting of sexual behaviour and miscapture of high-risk individuals was assessed through sensitivity analyses. Assuming no HIV/HSV-2 biological interaction, the crude HIV/HSV-2 OR ranged between 1.38 and 9.93, with a pooled mean of 6.45 (95% CI 5.81 to 7.17). Adjustment for the number of sexual partners over last year, over lifetime and for both partner numbers simultaneously reduced the mean OR to 5.45 (95% CI 4.90 to 6.06), 3.70 (95% CI 3.32 to 4.12) and 3.54 (95% CI 3.17 to 3.94), respectively. Assuming HIV/HSV-2 biological interaction, the crude OR ranged between 3.44 and 9.95, with a pooled mean of 8.05 (95% CI 7.14 to 9.07). The adjustments reduced the mean OR to 7.00 (95% CI 6.21 to 7.90), 3.76 (95% CI 3.32 to 4.25) and 3.68 (95% CI 3.25 to 4.17), respectively. Under-reporting of partners reduced the confounder-adjustment effects. Miscapture of high-risk individuals considerably lowered the estimated ORs. It is difficult to control for sexual-behaviour confounding in observational studies. The observed HIV/HSV-2 association appears more consistent with two infections sharing the same mode of transmission, rather than with HSV-2 enhancing HIV acquisition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Herpes simplex virus dances with amyloid precursor protein while exiting the cell.

    Directory of Open Access Journals (Sweden)

    Shi-Bin Cheng

    2011-03-01

    Full Text Available Herpes simplex type 1 (HSV1 replicates in epithelial cells and secondarily enters local sensory neuronal processes, traveling retrograde to the neuronal nucleus to enter latency. Upon reawakening newly synthesized viral particles travel anterograde back to the epithelial cells of the lip, causing the recurrent cold sore. HSV1 co-purifies with amyloid precursor protein (APP, a cellular transmembrane glycoprotein and receptor for anterograde transport machinery that when proteolyzed produces A-beta, the major component of senile plaques. Here we focus on transport inside epithelial cells of newly synthesized virus during its transit to the cell surface. We hypothesize that HSV1 recruits cellular APP during transport. We explore this with quantitative immuno-fluorescence, immuno-gold electron-microscopy and live cell confocal imaging. After synchronous infection most nascent VP26-GFP-labeled viral particles in the cytoplasm co-localize with APP (72.8+/-6.7% and travel together with APP inside living cells (81.1+/-28.9%. This interaction has functional consequences: HSV1 infection decreases the average velocity of APP particles (from 1.1+/-0.2 to 0.3+/-0.1 µm/s and results in APP mal-distribution in infected cells, while interplay with APP-particles increases the frequency (from 10% to 81% motile and velocity (from 0.3+/-0.1 to 0.4+/-0.1 µm/s of VP26-GFP transport. In cells infected with HSV1 lacking the viral Fc receptor, gE, an envelope glycoprotein also involved in viral axonal transport, APP-capsid interactions are preserved while the distribution and dynamics of dual-label particles differ from wild-type by both immuno-fluorescence and live imaging. Knock-down of APP with siRNA eliminates APP staining, confirming specificity. Our results indicate that most intracellular HSV1 particles undergo frequent dynamic interplay with APP in a manner that facilitates viral transport and interferes with normal APP transport and distribution. Such dynamic

  14. NFκB-mediated activation of the cellular FUT3, 5 and 6 gene cluster by herpes simplex virus type 1.

    Science.gov (United States)

    Nordén, Rickard; Samuelsson, Ebba; Nyström, Kristina

    2017-11-01

    Herpes simplex virus type 1 has the ability to induce expression of a human gene cluster located on chromosome 19 upon infection. This gene cluster contains three fucosyltransferases (encoded by FUT3, FUT5 and FUT6) with the ability to add a fucose to an N-acetylglucosamine residue. Little is known regarding the transcriptional activation of these three genes in human cells. Intriguingly, herpes simplex virus type 1 activates all three genes simultaneously during infection, a situation not observed in uninfected tissue, pointing towards a virus specific mechanism for transcriptional activation. The aim of this study was to define the underlying mechanism for the herpes simplex virus type 1 activation of FUT3, FUT5 and FUT6 transcription. The transcriptional activation of the FUT-gene cluster on chromosome 19 in fibroblasts was specific, not involving adjacent genes. Moreover, inhibition of NFκB signaling through panepoxydone treatment significantly decreased the induction of FUT3, FUT5 and FUT6 transcriptional activation, as did siRNA targeting of p65, in herpes simplex virus type 1 infected fibroblasts. NFκB and p65 signaling appears to play an important role in the regulation of FUT3, FUT5 and FUT6 transcriptional activation by herpes simplex virus type 1 although additional, unidentified, viral factors might account for part of the mechanism as direct interferon mediated stimulation of NFκB was not sufficient to induce the fucosyltransferase encoding gene cluster in uninfected cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Characterization and detection of Vero cells infected with Herpes Simplex Virus type 1 using Raman spectroscopy and advanced statistical methods.

    Science.gov (United States)

    Salman, A; Shufan, E; Zeiri, L; Huleihel, M

    2014-07-01

    Herpes viruses are involved in a variety of human disorders. Herpes Simplex Virus type 1 (HSV-1) is the most common among the herpes viruses and is primarily involved in human cutaneous disorders. Although the symptoms of infection by this virus are usually minimal, in some cases HSV-1 might cause serious infections in the eyes and the brain leading to blindness and even death. A drug, acyclovir, is available to counter this virus. The drug is most effective when used during the early stages of the infection, which makes early detection and identification of these viral infections highly important for successful treatment. In the present study we evaluated the potential of Raman spectroscopy as a sensitive, rapid, and reliable method for the detection and identification of HSV-1 viral infections in cell cultures. Using Raman spectroscopy followed by advanced statistical methods enabled us, with sensitivity approaching 100%, to differentiate between a control group of Vero cells and another group of Vero cells that had been infected with HSV-1. Cell sites that were "rich in membrane" gave the best results in the differentiation between the two categories. The major changes were observed in the 1195-1726 cm(-1) range of the Raman spectrum. The features in this range are attributed mainly to proteins, lipids, and nucleic acids. Copyright © 2014. Published by Elsevier Inc.

  16. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    Full Text Available Oncolytic engineered herpes simplex viruses (HSVs possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.

  17. Role of neutralizing antibodies and T-cells in pathogenesis of herpes simplex virus infection in congenitally athymic mice.

    Science.gov (United States)

    Kapoor, A K; Buckmaster, A; Nash, A A; Field, H J; Wildy, P

    1982-11-01

    Congenitally athymic nude mice were infected with 10(4) p.f.u. herpes simplex type 1 (strain SC16). Following the passive transfer of neutralizing monoclonal antibodies (AP7, AP8 and AP12) it was observed that AP7 alone reduced the virus infectivity in the nervous system; AP8 and AP12 failed to protect mice probably due to poor in vivo binding to the neutralization site on the virus. Latent ganglionic infection could be established in nude mice following adoptive transfer of optimum number (2 x 10(7) cells/mouse) of immune lymph node cells from day 7 herpes virus-infected hairy immunocompetent donor mice. Moreover, in some of the immune lymph node cell protected nudes, latency could be maintained even in complete absence of neutralizing antibodies. Results of ear-ablation experiments revealed that removal of primary source of infection after day 5 of infection reduced the amount of virus in the ganglia and spinal cord. Acute neurological infection was not detected following transfer of protective anti-gp-D neutralizing antibody (LP2) in combination with removal of infected pinna. These data suggest that continuous seeding of virus occurs in related ganglia via the axonal route from infected ear pinna. It appears that local T-cell-mediated immune mechanisms are involved in maintenance of latency.

  18. Efficacy of N-methanocarbathymidine against genital herpes simplex virus type 2 shedding and infection in guinea pigs.

    Science.gov (United States)

    Bernstein, David I; Bravo, Fernando J; Pullum, Derek A; Shen, Hui; Wang, Mei; Rahman, Aquilur; Glazer, Robert I; Cardin, Rhonda D

    2015-02-01

    Current approved nucleoside therapies for genital herpes simplex virus (HSV) infections are effective but improved therapies are needed for treatment of both acute and recurrent diseases. The effects of N-methanocarbathymidine were evaluated and compared to acyclovir using guinea pig models of acute and recurrent infection. For acute disease following intravaginal inoculation of 10(6 )pfu HSV-2 (MS strain), animals were treated intraperitoneally beginning 24 h post-infection, and the effects on disease severity, vaginal virus replication, subsequent recurrences, and latent virus loads were evaluated. For evaluation of recurrent infection, animals were treated for 21 days beginning 14 days after infection and disease recurrence and recurrent shedding were evaluated. Treatment of the acute disease with N-methanocarbathymidine significantly reduced the severity of acute disease and decreased acute vaginal virus shedding more effectively than acyclovir. Significantly, none of the animals developed visible disease in the high-dose N-methanocarbathymidine group and this was the only group in which the number of days with recurrent virus shedding was reduced. Treatment of recurrent disease was equivalent to acyclovir when acyclovir was continuously supplied in the drinking water. N-methanocarbathymidine was effective as therapy for acute and recurrent genital HSV-2 disease in the guinea pig models. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Simultaneous detection of and differentiation between herpes simplex and varicella-zoster viruses with two fluorescent probes in the same test system.

    Science.gov (United States)

    Brumback, B G; Farthing, P G; Castellino, S N

    1993-12-01

    Specimens from skin lesions were examined simultaneously for herpes simplex virus (HSV) and varicella-zoster virus (VZV) by direct specimen testing and shell vial culture in single-test systems. For direct testing, cells in a single specimen well were stained with a combination direct-indirect immunofluorescence stain by using two fluorescent tags. A total of 203 fresh specimens were tested in parallel. Of these, 100 specimens contained too few cells for the direct VZV comparison and 91 contained too few cells for the HSV comparison. After these specimens were eliminated, the sensitivities and specificities, respectively, of the dual direct test were 86.1 and 97.3% for HSV compared with single culture and 92.2 and 100% for VZV compared with single direct testing. Shell vial monolayers in the combined cultures were stained for both viruses by the same method. A total of 305 fresh specimens were cultured in parallel by dual- and single-culture methods. The sensitivities and specificities, respectively, of the combined culture compared with separate cultures were 100 and 98.4% for HSV and 87.9 and 99.2% for VZV. The combined methods gave a performance comparable to those of single tests, required less specimen volume, and were less costly to perform.

  20. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Henderson, E.E.; Long, W.K.

    1981-01-01

    The efficacy of using an infected centers assay, employing herpes simplex virus-infected, Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) as components, to study host cell reactivation has been explored. Herpes simplex virus type 1 (HSV-1) was shown through the infected centers assay to have detectable but varying ability to lytically infect LCLs established from chromosomal breakage syndromes or closely related genetic disorders. The rate of HSV inactivation by ultraviolet (uv) irradiation was faster in LCLs established from Cockaynes's syndrome than in normal LCLs, and faster still in LCLs established from xeroderma pigmentosum. These results indicate that Cockayne's syndrome, while having what appears to be quantitatively normal levels of uv-induced DNA repair replication, shows decreased ability to host cell reactivated uv-damaged HSV. In direct contrast, X-irradiated HSV showed identical survival when assayed on normal LCLs or LCLs established from ataxia telangiectasia showing increased sensitivity to X irradiation as measured by colony formation. Through the infected centers assay, it has also been possible to demonstrate low levels of multiplicity reactivation of mutagen-damaged HSV in permanently proliferating LCLs

  1. Detergent extraction of herpes simplex virus type 1 glycoprotein D by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography

    NARCIS (Netherlands)

    Welling-Wester, S; Feijlbrief, M; Koedijk, DGAM; Welling, GW

    1998-01-01

    Detergents (surfactants) are the key reagents in the extraction and purification of integral membrane proteins. Zwitterionic and non-ionic detergents were used for the extraction of recombinant glycoprotein D (gD-1) of herpes simplex virus type 1 (HSV-1) from insect cells infected with recombinant

  2. Kinetic analysis of synthetic analogues of linear-epitope peptides of glycoprotein D of herpes simplex virus type 1 by surface plasmon resonance

    NARCIS (Netherlands)

    Lasonder, E; Schellekens, GA; Koedijk, DGAM; Damhof, RA; WellingWester, S; Feijlbrief, M; Scheffer, AJ; Welling, GW

    1996-01-01

    The interaction between mAb A16 and glycoprorein D (gD) of herpes simplex virus type 1 was analyzed by studying the kinetics of binding with a surface-plasmon-resonance biosensor. mAb A16 belongs to group VII antibodies, which recognize residues 11-19 of gD. In a previous study, three critical

  3. F-18-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression : in-vitro comparison with other PET tracers

    NARCIS (Netherlands)

    Buursma, AR; Rutgers, [No Value; Hospers, GAP; Mulder, NH; Vaalburg, W; de Vries, EFJ

    Objective The herpes simplex virus thymidine kinase (HSVtk) gene has frequently been applied as a reporter gene for monitoring transgene expression in animal models. In clinical gene therapy protocols, however, extremely low expression levels of the transferred gene are generally observed.

  4. Herpes simplex virus type 2 seropositivity among urban adults in Africa - Results from two cross-sectional surveys in Addis Ababa, Ethiopia

    NARCIS (Netherlands)

    Mihret, Wude; Rinke de Wit, Tobias F.; Petros, Beyene; Mekonnen, Yared; Tsegaye, Aster; Wolday, Dawit; Beyene, Asfaw; Aklilu, Mathias; Sanders, Eduard; Fontanet, Arnaud L.

    2002-01-01

    BACKGROUND: Although several surveys investigating the epidemiology of herpes simplex virus type 2 (HSV-2) infection using type-specific immunologic assays have been carried out in Africa, none has examined the risk factors for HSV-2 infection in a representative sample from an urban adult

  5. [C-11]FMAU and [F-18]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections

    NARCIS (Netherlands)

    de Vries, EFJ; van Waarde, A; Harmsen, MC; Mulder, NH; Vaalburg, W; Hospers, GAP

    [C-11]-2'-Fluoro-5-methyl-1-beta-D-arabinofuranosyluracil ([C-11]FMAU) and [F-18]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([F-18]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk)

  6. Comparison of two enzyme-linked immunosorbent assays and one rapid immunoblot assay for detection of herpes simplex virus type 2-specific antibodies in serum

    NARCIS (Netherlands)

    Groen, J; Van Dijk, G; Niesters, H G; Van Der Meijden, W I; Osterhaus, A D

    The sensitivities and specificities of three immunoassays for the detection of herpes simplex virus type 2 (HSV-2)-specific immunoglobulin G antibodies in serum, including the one-strip rapid immunoblot assay (RIBA; Chiron Corporation) and two indirect enzyme immunosorbent assays (EIA; Gull

  7. T-CELL RESPONSES TO SYNTHETIC PEPTIDES OF HERPES-SIMPLEX VIRUS TYPE-1 GLYCOPROTEIN-D IN NATURALLY INFECTED INDIVIDUALS

    NARCIS (Netherlands)

    DAMHOF, RA; DRIJFHOUT, JW; SCHEFFER, AJ; WILTERDINK, JB; WELLING, GW; WELLINGWESTER, S

    1993-01-01

    To locate T cell determinants of glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1), proliferation assays of lymphocytes obtained from 10 healthy HSV-seropositive individuals were performed using 34 overlapping gD peptides as antigens. Despite large differences between individual responses

  8. Herpes simplex virus type 1 and type 2 in the Netherlands : seroprevalence, risk factors and changes during a 12-year period

    NARCIS (Netherlands)

    Woestenberg, Petra J; Tjhie, Jeroen H T; de Melker, Hester E; van der Klis, Fiona R M; van Bergen, Jan E A M; van der Sande, Marianne A B; van Benthem, Birgit H B

    2016-01-01

    BACKGROUND: Genital herpes results in considerable morbidity, including risk of neonatal herpes, and is increasingly being caused by Herpes Simplex Virus (HSV) type 1. Possibly children are less often HSV-1 infected, leaving them susceptible until sexual debut. We assessed changes in the Dutch HSV-1

  9. Herpes simplex virus type 1 and type 2 in the Netherlands: seroprevalence, risk factors and changes during a 12-year period

    NARCIS (Netherlands)

    Woestenberg, Petra J.; Tjhie, Jeroen H. T.; de Melker, Hester E.; van der Klis, Fiona R. M.; van Bergen, Jan E. A. M.; van der Sande, Marianne A. B.; van Benthem, Birgit H. B.

    2016-01-01

    Genital herpes results in considerable morbidity, including risk of neonatal herpes, and is increasingly being caused by Herpes Simplex Virus (HSV) type 1. Possibly children are less often HSV-1 infected, leaving them susceptible until sexual debut. We assessed changes in the Dutch HSV-1 and HSV-2

  10. Performance of the Epstein-Barr Virus and Herpes Simplex Virus Immunoglobulin M Assays on the Liaison Platform with Sera from Patients Displaying Acute Parvovirus B19 Infection▿

    Science.gov (United States)

    Costa, Elisa; Tormo, Nuria; Clari, María Ángeles; Bravo, Dayana; Muñoz-Cobo, Beatriz; Navarro, David

    2009-01-01

    Acute parvovirus B19 infection has been reported to cause false-positive results frequently in the Epstein-Barr (EBV) and herpes simplex virus (HSV) immunoglobulin M (IgM) assays from DiaSorin performed on the Liaison platform. We tested 65 sera from patients with a presumptive or conclusive diagnosis of acute parvovirus B19 infection in both assays and obtained no false-positive results in the EBV IgM test and 10.4% nonspecific reactivities in the HSV IgM assay. Our data support the specificity of both assays in this clinical setting. PMID:19571110

  11. IL-12 Expressing oncolytic herpes simplex virus promotes anti-tumor activity and immunologic control of metastatic ovarian cancer in mice.

    Science.gov (United States)

    Thomas, Eric D; Meza-Perez, Selene; Bevis, Kerri S; Randall, Troy D; Gillespie, G Yancey; Langford, Catherine; Alvarez, Ronald D

    2016-10-27

    Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8 + T cell response in the omentum and peritoneal cavity. All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8 + T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with

  12. Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160.

    Science.gov (United States)

    Polpitiya Arachchige, Sachith; Henke, Wyatt; Pramanik, Ankita; Kalamvoki, Maria; Stephens, Edward B

    2018-01-15

    Virus-encoded proteins that impair or shut down specific host cell functions during replication can be used as probes to identify potential proteins/pathways used in the replication of viruses from other families. We screened nine proteins from herpes simplex virus 1 (HSV-1) for the ability to enhance or restrict human immunodeficiency virus type 1 (HIV-1) replication. We show that several HSV-1 proteins (glycoprotein M [gM], US3, and UL24) potently restricted the replication of HIV-1. Unlike UL24 and US3, which reduced viral protein synthesis, we observed that gM restriction of HIV-1 occurred through interference with the processing and transport of gp160, resulting in a significantly reduced level of mature gp120/gp41 released from cells. Finally, we show that an HSV-1 gM mutant lacking the majority of the C-terminal domain (HA-gM[Δ345-473]) restricted neither gp160 processing nor the release of infectious virus. These studies identify proteins from heterologous viruses that can restrict viruses through novel pathways. IMPORTANCE HIV-1 infection of humans results in AIDS, characterized by the loss of CD4 + T cells and increased susceptibility to opportunistic infections. Both HIV-1 and HSV-1 can infect astrocytes and microglia of the central nervous system (CNS). Thus, the identification of HSV-1 proteins that directly restrict HIV-1 or interfere with pathways required for HIV-1 replication could lead to novel antiretroviral strategies. The results of this study show that select viral proteins from HSV-1 can potently restrict HIV-1. Further, our results indicate that the gM protein of HSV-1 restricts HIV-1 through a novel pathway by interfering with the processing of gp160 and its incorporation into virus maturing from the cell. Copyright © 2018 American Society for Microbiology.

  13. Replication-deficient mutant Herpes Simplex Virus-1 targets professional antigen presenting cells and induces efficient CD4+ T helper responses.

    OpenAIRE

    Fiorentini, Simona; Marconi, Peggy; Avolio, Manuela; Marini, Elena; Garrafa, Emirena; Caracciolo, Sonia; Rossi, Daniele; Bozac, Alexandra; Becker, Pablo D; Gentili, Francesca; Facchetti, Fabio; Guzman, Carlos A; Manservigi, Roberto; Caruso, Arnaldo

    2007-01-01

    Both neutralizing antibodies and cytotoxic T-cells are necessary to control a viral infection. However, vigorous T helper responses are essential for their elicitation and maintenance. Here we show that a recombinant replication-deficient Herpes Simplex Virus (HSV)-1 vector encoding the Human Immunodeficiency Virus (HIV)-1 matrix protein p17 (T0-p17) was capable of infecting professional antigen presenting cells (APCs) in vitro and in vivo. The injection of T0-p17 in the mouse dermis generate...

  14. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response.

    Science.gov (United States)

    Nash, A A; Phelan, J; Wildy, P

    1981-04-01

    An adoptive transfer system was used to investigate the H-2 restriction of delayed-type hypersensitivity (DTH) to herpes simplex virus. A successful DTH transfer was achieved when donor and recipient were compatible at the I-A region, with K and D region compatibility unnecessary. However, the rapid clearance of infectious virus from the inoculation site was found only when the donor and recipients were compatible at H-2K (and presumably D) and I-A regions.

  15. Public TCR Use by Herpes Simplex Virus-2-Specific Human CD8 CTLs

    NARCIS (Netherlands)

    Dong, Lichun; Li, Penny; Oenema, Tjitske; McClurkan, Christopher L.; Koelle, David M.

    2010-01-01

    Recombination of germline TCR alpha and beta genes generates polypeptide receptors for MHC peptide. Ag exposure during long-term herpes simplex infections may shape the T cell repertoire over time. We investigated the CD8 T cell response to HSV-2 in chronically infected individuals by sequencing the

  16. Quantitative autoradiographic mapping of focal herpes simplex virus encephalitis using a radiolabeled antiviral drug

    International Nuclear Information System (INIS)

    Price, R.

    1984-01-01

    A method of mapping herpes simplex viral infection comprising administering a radiolabeled antiviral active 5-substituted 1-(2'-deoxy-2'-substituted-D-arabinofuranosyl) pyrimidine nucleoside to the infected subject, and scanning the area in which the infection is to be mapped for the radiolabel

  17. Use of λgt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    International Nuclear Information System (INIS)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-01-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector λgt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the λgt11 vector, the cloned proteins were expressed in Escherichia coli as β-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of [ 14 C]glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved

  18. Presence of human papilloma virus, herpes simplex virus and Epstein-Barr virus DNA in oral biopsies from Sudanese patients with regard to toombak use.

    Science.gov (United States)

    Jalouli, Jamshid; Ibrahim, Salah O; Sapkota, Dipak; Jalouli, Miranda M; Vasstrand, Endre N; Hirsch, Jan M; Larsson, Per-Anders

    2010-09-01

    Using PCR/DNA sequencing, we investigated the prevalence of human papillomavirus (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) DNA in brush biopsies obtained from 150 users of Sudanese snuff (toombak) and 25 non-users of toombak in formalin-fixed paraffin-embedded tissue samples obtained from 31 patients with oral dysplasias (25 toombak users and 6 non-users), and from 217 patients with oral cancers (145 toombak users and 72 non-users). In the brush tissue samples from toombak users, HPV was detected in 60 (40%), HSV in 44 (29%) and EBV in 97 (65%) of the samples. The corresponding figures for the 25 samples from non-users were 17 (68%) positive for HPV, 6 (24%) positive for HSV and 21 (84%) for EBV. The formalin-fixed samples with oral dysplasias were all negative for HPV. In the 145 oral cancer samples from toombak users, HPV was detected in 39 (27%), HSV in 15 (10%) and EBV in 53 (37%) of the samples. The corresponding figures for the samples from non-users were 15 (21%) positive for HPV, 5 (7%) for HSV and 16 (22%) for EBV. These findings illustrate that prevalence of HSV, HPV and EBV infections are common and may influence oral health and cancer development. It is not obvious that cancer risk is increased in infected toombak users. These observations warrant further studies involving toombak-associated oral lesions, to uncover the possible mechanisms of these viral infections in the development of oral cancer, and the influence of toombak on these viruses. © 2010 John Wiley & Sons A/S.

  19. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  20. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology

    Directory of Open Access Journals (Sweden)

    Jessica M Hogestyn

    2018-01-01

    Full Text Available Human herpesviruses (HVs have developed ingenious mechanisms that enable them to traverse the defenses of the central nervous system (CNS. The ability of HVs to enter a state of latency, a defining characteristic of this viral family, allows them to persist in the human host indefinitely. As such, HVs represent the most frequently detected pathogens in the brain. Under constant immune pressure, these infections are largely asymptomatic in healthy hosts. However, many neurotropic HVs have been directly connected with CNS pathology in the context of other stressors and genetic risk factors. In this review, we discuss the potential mechanisms by which neurotropic HVs contribute to neurodegenerative disease (NDD pathology by highlighting two prominent members of the HV family, herpes simplex virus 1 (HSV-1 and human herpesvirus 6 (HHV-6. We (i introduce the infectious pathways and replicative cycles of HSV-1 and HHV-6 and then (ii review the clinical evidence supporting associations between these viruses and the NDDs Alzheimer's disease (AD and multiple sclerosis (MS, respectively. We then (iii highlight and discuss potential mechanisms by which these viruses exert negative effects on neurons and glia. Finally, we (iv discuss how these viruses could interact with other disease-modifying factors to contribute to the initiation and/or progression of NDDs.

  1. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  2. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene.

    Science.gov (United States)

    Sedlackova, Lenka; Perkins, Keith D; Meyer, Julia; Strain, Anna K; Goldman, Oksana; Rice, Stephen A

    2010-03-01

    During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.

  3. Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates.

    Science.gov (United States)

    Stengel, Gudrun; Kuchta, Robert D

    2011-01-01

    The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (∼0.2 to 0.6 kb) were significantly shorter than leading strand products (∼2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not

  4. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication.

    Science.gov (United States)

    Passer, Brent J; Cheema, Tooba; Zhou, Bingsen; Wakimoto, Hiroaki; Zaupa, Cecile; Razmjoo, Mani; Sarte, Jason; Wu, Shulin; Wu, Chin-lee; Noah, James W; Li, Qianjun; Buolamwini, John K; Yen, Yun; Rabkin, Samuel D; Martuza, Robert L

    2010-05-15

    Oncolytic herpes simplex virus-1 (oHSV) vectors selectively replicate in tumor cells, where they kill through oncolysis while sparing normal cells. One of the drawbacks of oHSV vectors is their limited replication and spread to neighboring cancer cells. Here, we report the outcome of a high-throughput chemical library screen to identify small-molecule compounds that augment the replication of oHSV G47Delta. Of the 2,640-screened bioactives, 6 compounds were identified and subsequently validated for enhanced G47Delta replication. Two of these compounds, dipyridamole and dilazep, interfered with nucleotide metabolism by potently and directly inhibiting the equilibrative nucleoside transporter-1 (ENT1). Replicative amplification promoted by dipyridamole and dilazep were dependent on HSV mutations in ICP6, the large subunit of ribonucleotide reductase. Our results indicate that ENT1 antagonists augment oHSV replication in tumor cells by increasing cellular ribonucleoside activity. (c)2010 AACR.

  5. Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37.

    Science.gov (United States)

    Kelly, Barbara J; Diefenbach, Eve; Fraefel, Cornel; Diefenbach, Russell J

    2012-01-20

    The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Poor neurological sequelae of herpes simplex virus encephalitis in an infant despite adequate antiviral and adjunct corticosteroid therapy

    Directory of Open Access Journals (Sweden)

    Ratna B Basak

    2011-01-01

    Full Text Available A 2-month-old infant presented to our emergency department with fever, altered consciousness, and focal seizures of acute onset. He had vesicular skin lesions over the right preauricular region. CT brain showed a large hypodense lesion involving the left temporo-parietal region, left basal ganglia and left thalamus. MRI brain revealed bilateral multifocal corticomedullary lesions suggestive of encephalitis. CSF-PCR was positive for herpes simplex virus (HSV type I. He was treated with standard dose intravenous acyclovir for 15 days along with a trial of pulse methylprednisolone, but was readmitted within a week with features of an early relapse. The infant survived but developed significant neurological sequelae. Although treatment of HSV is available, the neurological outcome is guarded even with adequate antiviral therapy. Adjunct corticosteroid therapy did not appear to attenuate the neurological sequelae.

  7. Herpes Simplex Virus Hepatitis: A Presentation of Multi-Institutional Cases to Promote Early Diagnosis and Management of the Disease

    Directory of Open Access Journals (Sweden)

    Ashwinee Natu

    2017-01-01

    Full Text Available Objective. To compare three cases of Herpes simplex virus (HSV hepatitis to increase early diagnosis of the disease. Case  1. A 23-year-old man with Crohn’s disease and oral HSV. HSV hepatitis was diagnosed clinically and he improved with acyclovir. Case  2. An 18-year-old G1P0 woman with transaminitis. Despite early empiric acyclovir therapy, she died due to fulminant liver failure. Case  3. A 65-year-old woman who developed transaminitis after liver transplant. Diagnosis was confirmed by biopsy and she had resolution of acute liver failure with acyclovir. Conclusion. It is imperative that clinicians be aware of patients at high risk for developing HSV hepatitis to increase timely diagnosis and prevent morbidity and fatality.

  8. Immunological markers of frequently recurrent genital herpes simplex virus and their response to hypnotherapy: a pilot study.

    Science.gov (United States)

    Fox, P A; Henderson, D C; Barton, S E; Champion, A J; Rollin, M S; Catalan, J; McCormack, S M; Gruzelier, J

    1999-11-01

    Patients were recruited for hypnotherapy from a clinic for patients with frequently recurrent genital herpes simplex virus (rgHSV). Psychological and immunological parameters were measured 6 weeks prior to hypnotherapy and 6 weeks afterwards, during which time each patient kept a diary of symptoms of rgHSV. Following hypnotherapy there was a significant overall reduction in the number of reported episodes of rgHSV, accompanied by an increase in the numbers of CD3 and CD8 lymphocytes, which may represent a non specific effect of hypnosis. The improvers showed significant rises in natural killer (NK) cell counts, HSV specific lymphokine activated killer (LAK) activity, and reduced levels of anxiety when compared to non-improvers. NK cell numbers and HSV specific LAK activity may therefore be important in the reduction in rgHSV following hypnotherapy.

  9. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2.

    Science.gov (United States)

    Vilhelmova, N; Jacquet, R; Quideau, S; Stoyanova, A; Galabov, A S

    2011-02-01

    The effects of combinations of three nonahydroxyterphenoyl-bearing C-glucosidic ellagitannins (castalagin, vescalagin and grandinin) with acyclovir (ACV) on the replication of type-1 and type-2 herpes simplex viruses in MDBK cells were tested by the focus-forming units reduction test. Ellagitannins included in these combinations possess a high individual antiviral activity: selectivity index of castalagin and vescalagin versus HSV-1 was similar to that of ACV, and relatively lower against HSV-2. The three-dimensional analytical approach of Prichard and Shipman was used to evaluate the impact of drug-drug interactions. The combination effects of ellagitannins with acyclovir were markedly synergistic. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2018-04-01

    Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.

  11. Rapid localized spread and immunologic containment define Herpes simplex virus-2 reactivation in the human genital tract.

    Science.gov (United States)

    Schiffer, Joshua T; Swan, David; Al Sallaq, Ramzi; Magaret, Amalia; Johnston, Christine; Mark, Karen E; Selke, Stacy; Ocbamichael, Negusse; Kuntz, Steve; Zhu, Jia; Robinson, Barry; Huang, Meei-Li; Jerome, Keith R; Wald, Anna; Corey, Lawrence

    2013-04-16

    Herpes simplex virus-2 (HSV-2) is shed episodically, leading to occasional genital ulcers and efficient transmission. The biology explaining highly variable shedding patterns, in an infected person over time, is poorly understood. We sampled the genital tract for HSV DNA at several time intervals and concurrently at multiple sites, and derived a spatial mathematical model to characterize dynamics of HSV-2 reactivation. The model reproduced heterogeneity in shedding episode duration and viral production, and predicted rapid early viral expansion, rapid late decay, and wide spatial dispersion of HSV replication during episodes. In simulations, HSV-2 spread locally within single ulcers to thousands of epithelial cells in genital epithelium. DOI:http://dx.doi.org/10.7554/eLife.00288.001.

  12. The Changing Epidemiology of Herpes Simplex Virus Type 1 Infection: The Associated Effects on the Incidence of Ocular Herpes

    Directory of Open Access Journals (Sweden)

    Abedi Kiasari, B.

    2016-07-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 with a worldwide distribution has been reported in all human populations, resulting in a clinical spectrum of infections. Although HSV type 2 (HSV-2 is known as the most common cause of genital herpes, an increasing number of cases with genital herpes are caused by HSV-1. The present study aimed to discuss the changes in the epidemiology of HSV-1 infection including the decline in the general incidence of HSV-1 infection in childhood and the increased rate of genital herpes, caused by HSV-1. Moreover, changes in the epidemiology of ocular herpes, i.e., the reduced rate of primary ocular herpes in children and increased incidence of ocular HSV infection in adults, were discussed.

  13. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    Science.gov (United States)

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  14. Seroprevalence of herpes simplex virus 2 among Hispanics in the USA: National Health and Nutrition Examination Survey, 2007-2008.

    Science.gov (United States)

    Molina, M; Romaguera, R A; Valentine, J; Tao, G

    2011-07-01

    To examine the seroprevalence of herpes simplex virus type 2 (HSV-2) among Hispanics in the USA, we used the cross-sectional, nationally representative National Health and Nutrition Examination Survey to compare the seroprevalence of HSV-2 between Hispanic persons of Mexican heritage and non-Mexican heritage aged 14-44 years, from survey years 2007-2008. The overall HSV-2 seroprevalence among Hispanics aged 14-44 years was 17.5% (95% confidence interval [CI], 15.2, 20.1) in the USA. HSV-2 seroprevalence was significantly lower among Mexican Americans than among other Hispanics (11.7% vs. 27.8%, P heritage and non-Mexican heritage suggested that targeting specific subgroups of Hispanics for preventive interventions may be a strategy to reduce the transmission of HSV-2 and HIV among Hispanics in the USA.

  15. Properties of Cells Carrying the Herpes Simplex Virus Type 2 Thymidine Kinase Gene: Mechanisms of Reversion to a Thymidine Kinase-Negative Phenotype

    Science.gov (United States)

    Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.

    1980-01-01

    We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205

  16. The Tudor domain protein Spindlin1 is involved in intrinsic antiviral defense against incoming hepatitis B Virus and herpes simplex virus type 1.

    Directory of Open Access Journals (Sweden)

    Aurélie Ducroux

    2014-09-01

    Full Text Available Hepatitis B virus infection (HBV is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infection. Here we identified Spindlin1, a cellular Tudor-domain protein, as an HBx interacting partner. We further demonstrated that Spindlin1 is recruited to the cccDNA and inhibits its transcription in the context of infection. Spindlin1 knockdown induced an increase in HBV transcription and in histone H4K4 trimethylation at the cccDNA, suggesting that Spindlin1 impacts on epigenetic regulation. Spindlin1-induced transcriptional inhibition was greater for the HBV virus deficient for the expression of HBx than for the HBV WT virus, suggesting that HBx counteracts Spindlin1 repression. Importantly, we showed that the repressive role of Spindlin1 is not limited to HBV transcription but also extends to other DNA virus that replicate within the nucleus such as Herpes Simplex Virus type 1 (HSV-1. Taken together our results identify Spindlin1 as a critical component of the intrinsic antiviral defense and shed new light on the function of HBx in HBV infection.

  17. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting

    Science.gov (United States)

    Müller, Oliver; Ivanova, Lyudmila; Bialy, Dagmara; Pohlmann, Anja; Binz, Anne; Hegemann, Maike; Viejo-Borbolla, Abel; Rosenhahn, Bodo; Bauerfeind, Rudolf; Sodeik, Beate

    2017-01-01

    Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells. PMID:29284065

  18. Improving the diagnosis of meningitis due to enterovirus and herpes simplex virus I and II in a tertiary care hospital

    Science.gov (United States)

    2013-01-01

    Background Enterovirus and herpes simplex viruses are common causes of lymphocytic meningitis. The purpose of this study was to analyse the impact of the use molecular testing for Enteroviruses and Herpes simplex viruses I and II in all suspected cases of viral meningitis. Methods From November 18, 2008 to November 17, 2009 (phase II, intervention), all patients admitted with suspected viral meningitis (with pleocytosis) had a CSF sample tested using a nucleic acid amplification test (NAAT). Data collected during this period were compared to those from the previous one-year period, i.e. November 18, 2007 to November 17, 2008 (phase I, observational), when such tests were available but not routinely used. Results In total, 2,536 CSF samples were assessed, of which 1,264 were from phase I, and 1,272 from phase II. Of this total, a NAAT for Enterovirus was ordered in 123 cases during phase I (9.7% of the total phase I sample) and in 221 cases in phase II (17.4% of the total phase II sample). From these, Enterovirus was confirmed in 35 (28.5%, 35/123) patients during phase I and 71 (32.1%, 71/221) patients during phase II (p = 0.107). The rate of diagnosis of meningitis by HSV I and II did not differ between the groups (13 patients, 6.5% in phase I and 13, 4.7% in phase II) (p = 1.0), from 200 cases in phase I and 274 cases in phase II. Conclusions The number of cases diagnosed with enteroviral meningitis increased during the course of this study, leading us to believe that the strategy of performing NAAT for Enterovirus on every CSF sample with pleocytosis is fully justified. PMID:24138798

  19. Targeting Herpes Simplex Virus-1 gD by a DNA Aptamer Can Be an Effective New Strategy to Curb Viral Infection

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2017-12-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 is an important factor for vision loss in developed countries. A challenging aspect of the ocular infection by HSV-1 is that common treatments, such as acyclovir, fail to provide effective topical remedies. Furthermore, it is not very clear whether the viral glycoproteins, required for HSV-1 entry into the host, can be targeted for an effective therapy against ocular herpes in vivo. Here, we demonstrate that HSV-1 envelope glycoprotein gD, which is essential for viral entry and spread, can be specifically targeted by topical applications of a small DNA aptamer to effectively control ocular infection by the virus. Our 45-nt-long DNA aptamer showed high affinity for HSV-1 gD (binding affinity constant [Kd] = 50 nM, which is strong enough to disrupt the binding of gD to its cognate host receptors. Our studies showed significant restriction of viral entry and replication in both in vitro and ex vivo studies. In vivo experiments in mice also resulted in loss of ocular infection under prophylactic treatment and statistically significant lower infection under therapeutic modality compared to random DNA controls. Thus, our studies validate the possibility that targeting HSV-1 entry glycoproteins, such as gD, can locally reduce the spread of infection and define a novel DNA aptamer-based approach to control HSV-1 infection of the eye.

  20. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  1. Comparative study of inactivation of herpes simplex virus types 1 and 2 by commonly used antiseptic agents

    International Nuclear Information System (INIS)

    Croughan, W.S.; Behbehani, A.M.

    1988-01-01

    A comparative study of the different reactions of herpes simplex virus types 1 and 2 to Lysol, Listerine, bleach, rubbing alcohol, Alcide disinfectant (Alcide Corp., Westport, Conn.), and various pHs, temperatures, and UV light exposures was performed. Both types of stock virus (titers of approximately 10(6) and 10(5.5) for types 1 and 2, respectively) were inactivated by 0.5% Lysol in 5 min; by Listerine (1:1 mixtures) in 5 min; by 2000 ppm (2000 microliters/liter) of bleach in 10 min; by rubbing alcohol (1:1 mixtures) at zero time; by Alcide disinfectant (0.2 ml of virus plus 2.0 ml of Alcide) at zero time; by pHs 3, 5, and 11 in 10 min; and by a temperature of 56 degrees C in 30 min. A germicidal lamp at a distance of 48 cm failed to completely inactivate the two types in 15 min. Type 1 showed slightly more resistance to Listerine and bleach and significantly more resistance to heat; moreover, pH 9 did not affect the infectivity of either type after 10 min

  2. Glucosamine metabolism of herpes simplex virus infected cells. Inhibition of glycosylation by tunicamycin and 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Olofsson, S.; Lycke, E.

    1980-01-01

    The formation of glucosamine-containing cell surface glycoproteins of herpes simplex virus (HSV) infected BMK cells was studied. Tunicamycin (TM) and 2-deoxy-D-glucose (DG) were used as inhibitors. With both inhibitors the multiplication of HSV was inhibited. DG markedly reduced cellular uptake of radioactively labelled glucosamine while TM interfered with the processing of glucosamine into TCA-insoluble material. Gel filtration chromatography on Sephadex G50 gel of cell surface material released by trypsin and further prepared by digestion with pronase indicated that TM and DG reduced the apparent high molecular weights of virus induced surface glycoproteins. In presence of DG the accumulation of a class of glucosamine-containing heterosaccharides (MW less than 3000) not present on DG-free HSV infected cells was observed. IN TM treated cells virtually all surface heterosaccharides with molecular weights exceeding 3000 and containing glucosamine disappeared. Moreover, a component compatible with a lipid-linked oligosaccharide present in DG treated cells was not observed in HSV infected TM treated cells. The results exemplifies some different steps in glucosamine metabolism of virus-induced cell surface glycoproteins differently affected by tunicamycin and 2-deoxy-D-glucose. (author)

  3. A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.

    Science.gov (United States)

    Liu, Yuehong; Li, Shufeng

    2015-01-01

    Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.

  4. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains.

    Science.gov (United States)

    Colgrove, Robert C; Liu, Xueqiao; Griffiths, Anthony; Raja, Priya; Deluca, Neal A; Newman, Ruchi M; Coen, Donald M; Knipe, David M

    2016-01-01

    A collection of genomic DNA sequences of herpes simplex virus (HSV) strains has been defined and analyzed, and some information is available about genomic stability upon limited passage of viruses in culture. The nature of genomic change upon extensive laboratory passage remains to be determined. In this report we review the history of the HSV-1 KOS laboratory strain and the related KOS1.1 laboratory sub-strain, also called KOS (M), and determine the complete genomic sequence of an early passage stock of the KOS laboratory sub-strain and a laboratory stock of the KOS1.1 sub-strain. The genomes of the two sub-strains are highly similar with only five coding changes, 20 non-coding changes, and about twenty non-ORF sequence changes. The coding changes could potentially explain the KOS1.1 phenotypic properties of increased replication at high temperature and reduced neuroinvasiveness. The study also provides sequence markers to define the provenance of specific laboratory KOS virus stocks. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    Science.gov (United States)

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  6. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  7. Transient neuropathic bladder following herpes simplex genitalis.

    Science.gov (United States)

    Riehle, R A; Williams, J J

    1979-08-01

    A case of transient bladder dysfunction and urinary retention concomitant with herpes genitalis is presented. The protean manifestations of the herpes simplex virus, the similar neurotropic behavior of simplex and zoster, and the neurologic sequelae of the cutaneous simplex eruption are discussed. The possibility of sacral radiculopathy after herpes genitalis must be considered when evaluating acute or episodic neurogenic bladders.

  8. Genital herpes simplex.

    OpenAIRE

    Tummon, I. S.; Dudley, D. K.; Walters, J. H.

    1981-01-01

    Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and canc...

  9. The immunomodulator, ammonium trichloro[1,2-ethanediolato-O,O']-tellurate, suppresses the propagation of herpes simplex virus 2 by reducing the infectivity of the virus progeny.

    Science.gov (United States)

    Sheinboim, D; Hindiyeh, M; Mendelson, E; Albeck, M; Sredni, B; Dovrat, S

    2015-07-01

    Persistent investigations for the identification of novel anti-herpetic drugs are being conducted worldwide, as current treatment options are sometimes insufficient. The immunomodulator, ammonium trichloro[1,2‑ethanediolato‑O,O']‑tellurate (AS101), a non‑toxic tellurium (Ⅳ) compound, has been shown to exhibit anti‑viral activity against a variety of viruses in cell cultures and in animal models. In the present study, the anti‑viral activity of AS101 against herpes simplex virus (HSV)‑1 and 2 was investigated in vitro. The results demonstrated that AS101 significantly restricted HSV‑2-induced plaque formation and reduced the infectivity of the HSV‑2 yield, while HSV‑1 was affected to a lesser extent. The incubation of mature HSV‑1 and HSV‑2 viruses with AS101 had no effect on viral infectivity, indicating that the compound interrupts de novo viral synthesis. The addition of AS101 at up to 9 h post‑infection had almost the same effect as did the addition of the drug together with the virus (it maintained 80% of its total anti‑viral capacity). Quantitative PCR and immunofluoresence staining of viral structural proteins revealed that the viral DNA and protein synthesis stages were not interrupted by the administration of AS101. By contrast, in the presence of the compound, significantly fewer viable viruses (≥2 log reduction) were recovered from the AS10‑treated cell cultures. Of note, when we determined the viability of the intracellular virus, formed in the presence of the compound, a less severe (≤1 log) effect was observed. Taken together, these data strongly suggest that AS101 primarily interferes with late stages of viral replication, such as viral particle envelopment or egress, leading to the production of a defective virus progeny.

  10. Analysis of contributions of herpes simplex virus type 1 UL43 protein ...

    African Journals Online (AJOL)

    Purpose: To investigate whether UL43 protein, which is highly conserved in alpha- and gamma herpes viruses, and a non-glycosylated transmembrane protein, is involved in virus entry and virus-induced cell fusion. Methods: Mutagenesis was accomplished by a markerless two-step Red recombination mutagenesis system ...

  11. Analysis of colorectal cancer and polyp for presence herpes simplex virus and cytomegalovirus DNA sequences by polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Sahar Mehrabani khasraghi

    2016-05-01

    Full Text Available Introduction: In recent years, it was demonstrated that there is a clear association between the complicated course of colorectal cancer (CRC and the presence of herpes viruses. Despite a great number of published reports, the exact pathogenic role of herpes viruses remains unclear in these patients. The purpose of this study is to explore the prevalence of herpes simplex virus (HSV and cytomegalovirus (CMV in patients with CRC and polyp in comparison with healthy subjects using the polymerase chain reaction (PCR method. Methods: In this case-control study, 15 biopsies of patients with CRC and 20 colorectal polyp sample were selected. From each patient, two tissue samples were obtained: one sample from malignant tissue, and the other from normal colorectal tissue in an area located 15 cm away from the malignant tissue. Furthermore, 35 samples from healthy people as controls were selected. After DNA extraction, PCR was used to determine HSV and CMV genomes by specific primers. A statistical analysis was performed using the chi-square test. Results: Five CRC patients (33.3% had HSV DNA detected in both the malignant and the matched normal tissue. Five CRC patients (33.3% and seven polyp patients (35.0% had CMV DNA detected in both the malignant and the matched normal tissue. HSV DNA was found in 20% and CMV DNA in 37.1% of samples from healthy people as a control group. Thus, no significant association was observed between the prevalence of HSV and CMV, and an incidence of CRC and polyps according to the location of the samples as compared with the control group. Conclusion: The findings demonstrated that there is no direct molecular evidence to support the association between HSV and CMV and human colorectal malignancies. However, the results from this study do not exclude a possible oncogenic role of these viruses in the neoplastic development of colon cells.

  12. Blocking of PDL-1 interaction enhances primary and secondary CD8 T cell response to herpes simplex virus-1 infection.

    Directory of Open Access Journals (Sweden)

    Rudragouda Channappanavar

    Full Text Available The blocking of programmed death ligand-1 (PDL-1 has been shown to enhance virus-specific CD8 T cell function during chronic viral infections. Though, how PDL-1 blocking at the time of priming affects the quality of CD8 T cell response to acute infections is not well understood and remains controversial. This report demonstrates that the magnitude of the primary and secondary CD8 T cell responses to herpes simplex virus-1 (HSV-1 infection is subject to control by PDL-1. Our results showed that after footpad HSV-1 infection, PD-1 expression increases on immunodominant SSIEFARL peptide specific CD8 T cells. Additionally, post-infection, the level of PDL-1 expression also increases on CD11c+ dendritic cells. Intraperitoneal administration of anti-PDL-1 monoclonal antibody given one day prior to and three days after cutaneous HSV-1 infection, resulted in a marked increase in effector and memory CD8 T cell response to SSIEFARL peptide. This was shown by measuring the quantity and quality of SSIEFARL-specific CD8 T cells by making use of ex-vivo assays that determine antigen specific CD8 T cell function, such as intracellular cytokine assay, degranulation assay to measure cytotoxicity and viral clearance. Our results are discussed in terms of the beneficial effects of blocking PDL-1 interactions, while giving prophylactic vaccines, to generate a more effective CD8 T cell response to viral infection.

  13. Rapid, highly sensitive detection of herpes simplex virus-1 using multiple antigenic peptide-coated superparamagnetic beads.

    Science.gov (United States)

    Ran, Ying-Fen; Fields, Conor; Muzard, Julien; Liauchuk, Viktoryia; Carr, Michael; Hall, William; Lee, Gil U

    2014-12-07

    A sensitive, rapid, and label free magnetic bead aggregation (MBA) assay has been developed that employs superparamagnetic (SPM) beads to capture, purify, and detect model proteins and the herpes simplex virus (HSV). The MBA assay is based on monitoring the aggregation state of a population of SPM beads using light scattering of individual aggregates. A biotin-streptavidin MBA assay had a femtomolar (fM) level sensitivity for analysis times less than 10 minutes, but the response of the assay becomes nonlinear at high analyte concentrations. A MBA assay for the detection of HSV-1 based on a novel peptide probe resulted in the selective detection of the virus at concentrations as low as 200 viral particles (vp) per mL in less than 30 min. We define the parameters that determine the sensitivity and response of the MBA assay, and the mechanism of enhanced sensitivity of the assay for HSV. The speed, relatively low cost, and ease of application of the MBA assay promise to make it useful for the identification of viral load in resource-limited and point-of-care settings where molecular diagnostics cannot be easily implemented.

  14. The Us2 gene product of herpes simplex virus 2 is a membrane-associated ubiquitin-interacting protein.

    Science.gov (United States)

    Kang, Ming-Hsi; Roy, Bibhuti B; Finnen, Renée L; Le Sage, Valerie; Johnston, Susan M; Zhang, Hui; Banfield, Bruce W

    2013-09-01

    The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.

  15. Contribution of MS-based proteomics to the understanding of Herpes Simplex Virus type 1 interaction with host cells

    Directory of Open Access Journals (Sweden)

    Enrique eSantamaría

    2012-03-01

    Full Text Available Like other DNA viruses, Herpes Simplex Virus type 1 (HSV-1 replicates and proliferates in host cells continuously modulating the host molecular environment. Following a sophisticated temporal expression pattern, HSV-1 encodes at least 89 multifunctional proteins that interplay with and modify the host cell proteome. During the last decade, advances in mass spectrometry applications coupled to the development of proteomic separation methods have allowed to partially monitor the impact of HSV-1 infection in human cells. In this review, we discuss the current use of different proteome fractionation strategies to define HSV-1 targets on two major application areas: i viral protein interactomics to decipher viral protein interactions in host cells and ii differential quantitative proteomics to analyse the virally induced changes in the cellular proteome. Moreover, we will also discuss the potential application of high throughput proteomic approaches to study global proteome dynamics and also post-translational modifications in HSV-1-infected cells, what will greatly improved our molecular knowledge of HSV-1 infection.

  16. Application of polymerase chain reaction to differentiate herpes simplex virus 1 and 2 serotypes in culture negative intraocular aspirates

    Directory of Open Access Journals (Sweden)

    Shyamal G

    2005-01-01

    Full Text Available Purpose: To standardize and apply a polymerase chain reaction (PCR on the glycoprotein D gene to differentiate Herpes simplex virus (HSV 1 & 2 serotypes in culture negative intraocular specimens. Methods: Twenty-one intraocular fluids collected from 19 patients were subjected to cultures for HSV and uniplex PCR (uPCR for DNA polymerase gene. To differentiate HSV serotypes, as 1 & 2, a seminested PCR (snPCR targeting the glycoprotein D gene was standardised and applied onto 21 intraocular fluids. The specificity of the snPCR was verified by application onto ATCC strains of HSV 1 and 2, clinical isolates and DNA sequencing of the amplified products. All specimens were also tested for the presence of cytomegalovirus (CMV and varicella zoster virus (VZV by nucleic acid amplification methods. Results: Four of the 21 intraocular fluids were positive for HSV by uPCR. snPCR detected HSV in three additional specimens (total of seven specimens, and identified three as HSV 1 and four as HSV 2. DNA sequencing of PCR products showed 100% homology with the standard strains of HSV 1 and 2 respectively. None of the samples were positive in culture. Among the other patients, CMV DNA was detected in two and VZV DNA in five others. Conclusions: The standardized snPCR can be applied directly onto the culture negative specimens for rapid differentiation of HSV serotypes.

  17. Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection

    International Nuclear Information System (INIS)

    Fang, L.; Ward, M.G.; Welsh, P.A.; Budgeon, L.R.; Neely, E.B.; Howett, M.K.

    2003-01-01

    Recent epidemiological studies have found that women infected with both herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) type 16 or HPV-18 are at greater risk of developing cervical carcinoma compared to women infected with only one virus. However, it remains unclear if HSV-2 is a cofactor for cervical cancer or if HPV and HSV-2 interact in any way. We have studied the effect of HSV-2 infection on HPV-11 gene expression in an in vitro double-infection assay. HPV transcripts were down-regulated in response to HSV-2 infection. Two HSV-2 vhs mutants failed to reduce HPV-16 E1-circumflexE4 transcripts. We also studied the effect of HSV-2 infection on preexisting experimental papillomas in a vaginal epithelial xenograft model. Doubly infected grafts demonstrated papillomatous transformation and the classical cytopathic effect from HSV-2 infection. HPV and HSV DNA signals were mutually exclusive. These studies may have therapeutic applications for HPV infections and related neoplasms

  18. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2015-01-01

    Full Text Available Herpes simplex virus 1 (HSV-1 capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i The number of R7041(∆US3 capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii The mean number of R7041(∆US3 virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii 98% of R7041(∆US3 virions were in the perinuclear space; (iv The number of R7041(∆US3 capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3 yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3 virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  19. Efficacy of Brazilian Propolis against Herpes Simplex Virus Type 1 Infection in Mice and Their Modes of Antiherpetic Efficacies

    Directory of Open Access Journals (Sweden)

    Tomomi Shimizu

    2011-01-01

    Full Text Available Ethanol extracts (AF-06, 07, and 08, 10 mg/kg of Brazilian propolis were administered orally to cutaneously herpes simplex virus type 1 (HSV-1-infected mice three times daily on days 0 to 6 after infection to evaluate their efficacies against HSV-1 infection and significantly limited development of herpetic skin lesions. AF-07 and 08 significantly reduced virus titers in brain and/or skin on day 4 without toxicity, but AF-08 had no anti-HSV-1 activity in vitro. AF-06 and 08 significantly enhanced delayed-type hypersensitivity (DTH to inactivated HSV-1 antigen in infected mice. Oral AF-08-administration significantly augmented interferon (IFN-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice, while direct exposure of splenocytes of infected mice to AF-06 significantly elevated IFN-γ production in vitro. Thus, AF-08 might have components that are active in vivo even after oral administration and those of AF-06 might be active only in vitro. Because DTH is a major host defense for intradermal HSV-1 infection, augmentation of DTH response by AF-06 or 08, directly or indirectly, respectively, may contribute to their efficacies against HSV-1 infection. In addition, AF-06 and 07 possibly contain anti-HSV-1 components contributing to their efficacies. Such biological activities of Brazilian propolis may be useful to analyze its pharmacological actions.

  20. PREVALENCE OF HERPES SIMPLEX VIRUS TYPE 2 AND RISK FACTORS ASSOCIATED WITH THIS INFECTION IN WOMEN IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Thais Duquia Moraes Caldeira

    2013-09-01

    Full Text Available SUMMARY The herpes simplex virus type 2 (HVS-2 is the most prevalent infection worldwide. It is a cofactor in the acquisition of human immunodeficiency virus (HIV and the persistence of human papillomavirus (HPV. This study evaluated the prevalence of HSV-2, using the polymerase chain reaction (PCR, and associated factors in patients treated at the Federal University of Rio Grande (FURG and Basic Health Units (BHU in Rio Grande, Brazil. The observed prevalence of HSV-2 was 15.6%. Among the 302 women studied, 158 had received assistance in BHU and 144 were treated at FURG. The prevalence of HSV-2 in these groups was 10.8% and 20.8%, respectively, RR 1.9 and p = 0.012. Knowledge about the Pap smear, and the presence of lesions showed no association with HSV-2 infection. Multivariate analysis showed that the variable that most influenced the risk of HSV-2 infection was the presence of HIV infection, with a relative risk of 1.9 and p = 0.04. Discussion: Genital ulcers are an important entry point for HIV, and condom use is an important strategy to reduce transmission of HIV and HSV-2.

  1. Herpes simplex virus 2 modulates apoptosis and stimulates NF-κB nuclear translocation during infection in human epithelial HEp-2 cells

    International Nuclear Information System (INIS)

    Yedowitz, Jamie C.; Blaho, John A.

    2005-01-01

    Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5 hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNFα plus cycloheximide treatment. (v) NF-κB translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1

  2. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies

    NARCIS (Netherlands)

    Ikoma, M; Liljeqvist, JA; Glazenburg, KL; The, TH; Welling-Wester, S; Groen, J.

    Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of

  3. DNA-binding site of major regulatory protein alpha 4 specifically associated with promoter-regulatory domains of alpha genes of herpes simplex virus type 1.

    OpenAIRE

    Kristie, T M; Roizman, B

    1986-01-01

    Herpes simplex virus type 1 genes form at least five groups (alpha, beta 1, beta 2, gamma 1, and gamma 2) whose expression is coordinately regulated and sequentially ordered in a cascade fashion. Previous studies have shown that functional alpha 4 gene product is essential for the transition from alpha to beta protein synthesis and have suggested that alpha 4 gene expression is autoregulatory. We have previously reported that labeled DNA fragments containing promoter-regulatory domains of thr...

  4. Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice.

    Science.gov (United States)

    Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua

    2017-02-15

    Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised

  5. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry

    International Nuclear Information System (INIS)

    Spear, Patricia G.; Manoj, Sharmila; Yoon, Miri; Jogger, Cheryl R.; Zago, Anna; Myscofski, Dawn

    2006-01-01

    One of the herpes simplex virus envelope glycoproteins, designated gD, is the principal determinant of cell recognition for viral entry. Other viral glycoproteins, gB, gH and gL, cooperate with gD to mediate the membrane fusion that is required for viral entry and cell fusion. Membrane fusion is triggered by the binding of gD to one of its receptors. These receptors belong to three different classes of cell surface molecules. This review summarizes recent findings on the structure and function of gD. The results presented indicate that gD may assume more than one conformation, one in the absence of receptor, another when gD is bound to the herpesvirus entry mediator, a member of the TNF receptor family, and a third when gD is bound to nectin-1, a cell adhesion molecule in the immunoglobulin superfamily. Finally, information and ideas are presented about a membrane-proximal region of gD that is required for membrane fusion, but not for receptor binding, and that may have a role in activating the fusogenic activity of gB, gH and gL

  6. The use of human cornea organotypic cultures to study herpes simplex virus type 1 (HSV-1)-induced inflammation.

    Science.gov (United States)

    Drevets, Peter; Chucair-Elliott, Ana; Shrestha, Priyadarsini; Jinkins, Jeremy; Karamichos, Dimitrios; Carr, Daniel J J

    2015-10-01

    To determine the utility of human organotypic cornea cultures as a model to study herpes simplex virus type 1 (HSV-1)-induced inflammation and neovascularization. Human organotypic cornea cultures were established from corneas with an intact limbus that were retrieved from donated whole globes. One cornea culture was infected with HSV-1 (10(4) plaque-forming units), while the other cornea from the same donor was mock-infected. Supernatants were collected at intervals post-culture with and without infection to determine viral titer (by plaque assay) and pro-angiogenic and proinflammatory cytokine concentration by suspension array analysis. In some experiments, the cultured corneas were collected and evaluated for HSV-1 antigens by immunohistochemical means. Another set of experiments measured susceptibility of human three-dimensional cornea fibroblast constructs, in the presence and absence of TGF-β1, to HSV-1 infection in terms of viral replication and the inflammatory response to infection as a comparison to the organotypic cornea cultures. Organotypic cornea cultures and three-dimensional fibroblast constructs exhibited varying degrees of susceptibility to HSV-1. Fibroblast constructs were more susceptible to infection in terms of infectious virus recovered in a shorter period of time. There were changes in the levels of select pro-angiogenic or proinflammatory cytokines that were dictated as much by the cultures producing them as by whether they were infected with HSV-1 or treated with TGF-β1. Organotypic cornea and three-dimensional fibroblast cultures are likely useful for the identification and short-term study of novel antiviral compounds and virus replication, but are limited in the study of the local immune response to infection.

  7. Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells

    Science.gov (United States)

    Tiwari, Vaibhav; Oh, Myung-Jin; Kovacs, Maria; Shukla, Shripaad Y.; Valyi-Nagy, Tibor; Shukla, Deepak

    2009-01-01

    Herpes simplex virus 1 (HSV-1) demonstrates a unique ability to infect a variety of host cell types. Retinal pigment epithelial (RPE) cells form the outermost layer of the retina and provide a potential target for viral invasion and permanent vision impairment. Here we examine the initial cellular and molecular mechanisms that facilitate HSV-1 invasion of human RPE cells. High-resolution confocal microscopy demonstrated initial interaction of green fluorescent protein (GFP)-tagged virions with filopodia-like structures present on cell surfaces. Unidirectional movement of the virions on filopodia to the cell body was detected by live cell imaging of RPE cells, which demonstrated susceptibility to pH-dependent HSV-1 entry and replication. Use of RT-PCR indicated expression of nectin-1, herpes virus entry mediator (HVEM) and 3-O-sulfotransferase-3 (as a surrogate marker for 3-O-sulfated heparan sulfate). HVEM and nectin-1 expression was subsequently verified by flow cytometry. Nectin-1 expression in murine retinal tissue was also demonstrated by immunohistochemistry. Antibodies against nectin-1, but not HVEM, were able to block HSV-1 infection. Similar blocking effects were seen with a small interfering RNA construct specifically directed against nectin-1, which also blocked RPE cell fusion with HSV-1 glycoprotein-expressing Chinese hamster ovary (CHO-K1) cells. Anti-nectin-1 antibodies and F-actin depolymerizers were also successful in blocking the cytoskeletal changes that occur upon HSV-1 entry into cells. Our findings shed new light on the cellular and molecular mechanisms that help the virus to enter the cells of the inner eye. PMID:18803666

  8. Herpes simplex virus type 2-associated recurrent aseptic (Mollaret's meningitis in genitourinary medicine clinic: a case report

    Directory of Open Access Journals (Sweden)

    Abou-Foul AK

    2014-03-01

    Full Text Available Ahmad K Abou-Foul, Thajunisha M Buhary, Sedki L Gayed Department of Genitourinary Medicine, Royal Blackburn Hospital, East Lancashire Hospitals NHS Trust, Blackburn, UK Introduction: Cases of idiopathic recurrent benign aseptic meningitis were first described by Mollaret. Today, herpes simplex virus (HSV is considered the cause of most cases of Mollaret's meningitis. Case report: A 40-year-old male was referred to our genitourinary medicine clinic with recurrent genital herpetic lesions. He had HSV-2-positive genital ulcers 8 years earlier. One year after the first infection, he developed severe recurrent attacks of headache associated with meningitis symptoms. The results of all radiological and biochemical tests were normal, but the patient reported a correlation between his attacks and genital herpes flare-ups. We diagnosed the patient with Mollaret's meningitis and started him on continuous suppressive acyclovir therapy, which resulted in marked clinical improvement. Discussion: Mollaret's meningitis is a rare form of idiopathic recurrent aseptic meningitis that has a sudden onset, short duration, and spontaneous remission with unpredictable recurrence. We believe that the presence of concurrent or recurrent mucocutaneous herpetic lesions can aid its diagnosis, prior to which, affected patients usually have many unnecessary investigations and treatments. Therefore, detailed sexual history should be sought in all patients with aseptic meningitis, and clinicians should also ask about history of recurrent headaches in all patients with recurrent herpetic anogenital lesions. Continuous suppressive acyclovir therapy may reduce the frequency and severity of attacks and can dramatically improve lifestyle. Keywords: HSV-2 virus, acyclovir, Mollaret's meningitis, recurrent aseptic meningitis, HSV-2 virus, viral meningitis, acyclovir

  9. Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism.

    Science.gov (United States)

    Bertke, Andrea S; Patel, Amita; Krause, Philip R

    2007-06-01

    Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2.

  10. The effects of ultraviolet light on host cell reactivation and plaque size of Herpes simplex virus type 1 in C3H/10T1/2 mouse cells

    International Nuclear Information System (INIS)

    Montes, J.G.; Taylor, W.D.

    1986-01-01

    Herpes simplex virus-type 1 (HSV-1) plaque-forming ability and plaque size were measured on (C3H/10T1/2) cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus, as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others, C3H/10T1/2 cells have been transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation. (author)

  11. TLR2 and TLR9 Synergistically Control Herpes Simplex Virus Infection in the Brain

    DEFF Research Database (Denmark)

    Sørensen, Louise Nørgaard; Reinert, Line; Malmgaard, Lene

    2008-01-01

    Viruses are recognized by the innate immune system through pattern recognition receptors (PRRs). For instance, HSV virions and genomic DNA are recognized by TLR2 and TLR9, respectively. Although several viruses and viral components have been shown to stimulate cells through TLRs, only very few st...

  12. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression.

    Science.gov (United States)

    Bastian, Thomas W; Rice, Stephen A

    2009-01-01

    Previous studies have shown that the herpes simplex virus type 1 (HSV-1) immediate-early protein ICP22 alters the phosphorylation of the host cell RNA polymerase II (Pol II) during viral infection. In this study, we have engineered several ICP22 plasmid and virus mutants in order to map the ICP22 sequences that are involved in this function. We identify a region in the C-terminal half of ICP22 (residues 240 to 340) that is critical for Pol II modification and further show that the N-terminal half of the protein (residues 1 to 239) is not required. However, immunofluorescence analysis indicates that the N-terminal half of ICP22 is needed for its localization to nuclear body structures. These results demonstrate that ICP22's effects on Pol II do not require that it accumulate in nuclear bodies. As ICP22 is known to enhance viral late gene expression during infection of certain cultured cells, including human embryonic lung (HEL) cells, we used our engineered viral mutants to map this function of ICP22. It was found that mutations in both the N- and C-terminal halves of ICP22 result in similar defects in viral late gene expression and growth in HEL cells, despite having distinctly different effects on Pol II. Thus, our results genetically uncouple ICP22's effects on Pol II from its effects on viral late gene expression. This suggests that these two functions of ICP22 may be due to distinct activities of the protein.

  13. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  14. Tolerance and immunity in mice infected with herpes simplex virus: studies on the mechanism of tolerance to delayed-type hypersensitivity.

    Science.gov (United States)

    Nash, A A; Phelan, J; Gell, P G; Wildy, P

    1981-06-01

    Tolerance to delayed-type hypersensitivity is produced in mice following an intravenous injection of herpes simplex virus. This form of tolerance is produced early on, following simultaneous injections of virus subcutaneously and intravenously, and is long lasting (greater than 100 days). The early tolerance mechanism is resistant to high doses of cyclophosphamide and is not transferable by serum or spleen cells taken after 7 days. However, spleen cells taken at 14 days onwards inhibit the induction of delayed hypersensitivity when transferred to normal syngeneic recipients. These cells are T lymphocytes and are specific for the herpes type used in the induction.

  15. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes.

    Science.gov (United States)

    Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi

    2009-03-01

    Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.

  16. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  17. [The lysate and recombinant antigens in ELISA-test-systems for diagnostic of herpes simplex].

    Science.gov (United States)

    Ganova, L A; Kovtoniuk, G V; Korshun, L N; Kiseleva, E K; Tereshchenko, M I; Vudmaska, M I; Moĭsa, L N; Shevchuk, V A; Spivak, N Ia

    2014-08-01

    The lysate and recombinant antigens of various production included informula of ELISA-test-systems were analyzed. The ELISA-test-systems are used for detection of IgG to Herpes simplex virus type I and II. For testing the panel of serums PTH 201 (BBI Inc.) were used. The samples of this panel contain antibodies to Herpes simplex virus type I and II in mixed titers. The 69 serums of donors were used too (17 samples had IgG to Herpes simplex virus type I, 23 samples to Herpes simplex virus type II and 29 samples had no antibodies to Herpes simplex virus). The diagnostic capacity of mixture of recombinant antigens gG1 Herpes simplex virus type I and gG2 Herpes simplex virus type II (The research-and-production complex "DiaprofMed") was comparable with mixture of lysate antigen Herpes simplex virus type I and II (Membrane) EIE Antigen ("Virion Ltd."). In the test-systems for differentiation of IgG to Herpes simplex virus type I the recombinant antigen gG1 Herpes simplex virus type I proved to be comparable with commercial analogue Herpes simplex virus-1 gG1M ("Viral Therapeutics Inc."'). At the same time, capacity to detect IgG to Herpes simplex virus type II in recombinant protein gG2 Herpes simplex virus type II is significantly higher than in its analogue Herpes simplex virus-2 gG2c ("Viral Therapeutics Inc.").

  18. Identification of an immunodominant epitope in glycoproteins B and G of herpes simplex viruses (HSVs) using synthetic peptides as antigens in assay of antibodies to HSV in herpes simplex encephalitis patients.

    Science.gov (United States)

    Bhullar, S S; Chandak, N H; Baheti, N N; Purohit, H J; Taori, G M; Daginawala, H F; Kashyap, R S

    2014-01-01

    Herpes simplex encephalitis (HSE) is a severe viral infection of the central nervous system (CNS). Assay of antibody response is widely used in diagnostics of HSE. The aim of this study was to identify an immunodominant epitope determining the antibody response to herpes simplex viruses (HSVs) in cerebrospinal fluid (CSF) of HSE patients. The synthetic peptides that resembled type-common as well as type-specific domains of glycoproteins B (gB) and G (gG) of these viruses were evaluated for binding with IgM and IgG antibodies in CSF samples from HSE and non-HSE patients in ELISA. The QLHDLRF peptide, derived from gB of HSV was found to be an immunodominant epitope in the IgM and IgG antibody response. The patients with confirmed and suspected HSE showed in ELISA against this peptide 26% and 23% positivities for IgM, 43% and 37% positivities for IgG and 17% and 15% for both IgM and IgG antibodies, respectively. The total positivities of 86% and 75% for both IgM and IgG antibodies were obtained in the patients with confirmed and suspected HSE, respectively. These results demonstrate that a synthetic peptide-based diagnostics of HSE can be an efficient and easily accessible alternative. This is the first report describing the use of synthetic peptides derived from HSVs in diagnostics of HSE using patientsʹ CSF samples.

  19. Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the Herpes simplex virus type-1 immediate early protein ICP0.

    Science.gov (United States)

    Antrobus, Robin; Boutell, Chris

    2008-10-01

    The Herpes simplex virus type-1 (HSV-1) regulatory protein ICP0, a RING-finger E3 ubiquitin ligase, stimulates the onset of viral lytic replication and the reactivation of quiescent viral genomes from latency. Like many ubiquitin ligases ICP0 induces its own ubiquitination, a process that can lead to its proteasome-dependent degradation. ICP0 counteracts this activity by recruiting the cellular ubiquitin-specific protease USP7/HAUSP. Here we show that ICP0 can also interact with a previously unidentified isoform of USP7 (termed here USP7(beta)). This isoform is not a predominantly ubiquitinated, SUMO-modified, or phosphorylated species of USP7 but is constitutively expressed in a number of different cell types. Like USP7, USP7(beta) binds specifically to an electrophilic ubiquitin probe, indicating that it contains an accessible catalytic core with potential ubiquitin-protease activity. The interaction formed between ICP0 and USP7(beta) requires ICP0 to have an intact USP7-binding domain and results in its susceptibility to ICP0-mediated degradation during HSV-1 infection.

  20. Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane.

    Science.gov (United States)

    Farnsworth, Aaron; Wisner, Todd W; Webb, Michael; Roller, Richard; Cohen, Gary; Eisenberg, Roselyn; Johnson, David C

    2007-06-12

    Herpesviruses must traverse the nuclear envelope to gain access to the cytoplasm and, ultimately, to exit cells. It is believed that herpesvirus nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane (NM). To reach the cytoplasm these enveloped particles must fuse with the outer NM and the unenveloped capsids then acquire a second envelope in the trans-Golgi network. Little is known about the process by which herpesviruses virions fuse with the outer NM. Here we show that a herpes simplex virus (HSV) mutant lacking both the two putative fusion glycoproteins gB and gH failed to cross the nuclear envelope. Enveloped virions accumulated in the perinuclear space or in membrane vesicles that bulged into the nucleoplasm (herniations). By contrast, mutants lacking just gB or gH showed only minor or no defects in nuclear egress. We concluded that either HSV gB or gH can promote fusion between the virion envelope and the outer NM. It is noteworthy that fusion associated with HSV entry requires the cooperative action of both gB and gH, suggesting that the two types of fusion (egress versus entry) are dissimilar processes.