WorldWideScience

Sample records for simple sequence repeat-based

  1. Novel expressed sequence tag- simple sequence repeats (EST ...

    African Journals Online (AJOL)

    Using different bioinformatic criteria, the SUCEST database was used to mine for simple sequence repeat (SSR) markers. Among 42,189 clusters, 1,425 expressed sequence tag- simple sequence repeats (EST-SSRs) were identified in silico. Trinucleotide repeats were the most abundant SSRs detected. Of 212 primer pairs ...

  2. Simple sequence repeat (SSR)-based genetic variability among ...

    African Journals Online (AJOL)

    The objective of this study was to compare if simple sequence repeat (SSR) markers could correctly identify peanut genotypes with difference in specific leaf weight (SLW) and relative water content (RWC). Four peanut genotypes and two water regimes (FC and 1/3 available water; 1/3 AW) were arranged in factorial ...

  3. simple sequence repeat (SSR)

    African Journals Online (AJOL)

    In the present study, 78 mapped simple sequence repeat (SSR) markers representing 11 linkage groups of adzuki bean were evaluated for transferability to mungbean and related Vigna spp. 41 markers amplified characteristic bands in at least one Vigna species. The transferability percentage across the genotypes ranged ...

  4. Optimization of sequence alignment for simple sequence repeat regions

    Directory of Open Access Journals (Sweden)

    Ogbonnaya Francis C

    2011-07-01

    Full Text Available Abstract Background Microsatellites, or simple sequence repeats (SSRs, are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs. SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. Findings To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type. When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. Conclusions The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic

  5. Simple sequence repeat marker development and genetic mapping ...

    Indian Academy of Sciences (India)

    polymorphic SSR (simple sequence repeats) markers from libraries enriched for GA, CAA and AAT repeats, as well as 6 ... ers for quinoa was the development of a genetic linkage map ...... Weber J. L. 1990 Informativeness of human (dC-dA)n.

  6. Simple sequence repeat marker loci discovery using SSR primer.

    Science.gov (United States)

    Robinson, Andrew J; Love, Christopher G; Batley, Jacqueline; Barker, Gary; Edwards, David

    2004-06-12

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. With the increase in the availability of DNA sequence information, an automated process to identify and design PCR primers for amplification of SSR loci would be a useful tool in plant breeding programs. We report an application that integrates SPUTNIK, an SSR repeat finder, with Primer3, a PCR primer design program, into one pipeline tool, SSR Primer. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. The results are parsed to Primer3 for locus-specific primer design. The script makes use of a Web-based interface, enabling remote use. This program has been written in PERL and is freely available for non-commercial users by request from the authors. The Web-based version may be accessed at http://hornbill.cspp.latrobe.edu.au/

  7. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers.

    Science.gov (United States)

    Gao, Chunsheng; Xin, Pengfei; Cheng, Chaohua; Tang, Qing; Chen, Ping; Wang, Changbiao; Zang, Gonggu; Zhao, Lining

    2014-01-01

    Cannabis sativa L. is an important economic plant for the production of food, fiber, oils, and intoxicants. However, lack of sufficient simple sequence repeat (SSR) markers has limited the development of cannabis genetic research. Here, large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed to obtain more informative genetic markers, and to assess genetic diversity in cannabis (Cannabis sativa L.). Based on the cannabis transcriptome, 4,577 SSRs were identified from 3,624 ESTs. From there, a total of 3,442 complementary primer pairs were designed as SSR markers. Among these markers, trinucleotide repeat motifs (50.99%) were the most abundant, followed by hexanucleotide (25.13%), dinucleotide (16.34%), tetranucloetide (3.8%), and pentanucleotide (3.74%) repeat motifs, respectively. The AAG/CTT trinucleotide repeat (17.96%) was the most abundant motif detected in the SSRs. One hundred and seventeen EST-SSR markers were randomly selected to evaluate primer quality in 24 cannabis varieties. Among these 117 markers, 108 (92.31%) were successfully amplified and 87 (74.36%) were polymorphic. Forty-five polymorphic primer pairs were selected to evaluate genetic diversity and relatedness among the 115 cannabis genotypes. The results showed that 115 varieties could be divided into 4 groups primarily based on geography: Northern China, Europe, Central China, and Southern China. Moreover, the coefficient of similarity when comparing cannabis from Northern China with the European group cannabis was higher than that when comparing with cannabis from the other two groups, owing to a similar climate. This study outlines the first large-scale development of SSR markers for cannabis. These data may serve as a foundation for the development of genetic linkage, quantitative trait loci mapping, and marker-assisted breeding of cannabis.

  8. Development of simple sequence repeat (SSR) markers that are ...

    African Journals Online (AJOL)

    Simple sequence repeats (SSRs) markers were developed through data mining of 3,803 expressed sequence tags (ESTs) previously published. A total of 144 di- to penta-type SSRs were identified and they were screened for polymorphism between two turnip cultivars, 'Tsuda' and 'Yurugi Akamaru'. Out of 90 EST-SSRs for ...

  9. simple sequence repeat (SSR) markers in genetic analysis of

    African Journals Online (AJOL)

    Yomi

    2012-08-28

    1998). Cross- species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15:1275-1287.

  10. Comparative effectiveness of inter-simple sequence repeat and ...

    African Journals Online (AJOL)

    A study to compare the effectiveness of inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) profiling was carried out with a total of 65 DNA samples using 12 species of Indian Garcinia. ISSR and RAPD profiling were performed with 19 and 12 primers, respectively. ISSR markers ...

  11. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    Science.gov (United States)

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  12. Identification of apple cultivars on the basis of simple sequence repeat markers.

    Science.gov (United States)

    Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y

    2014-09-12

    DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.

  13. Simple sequence repeat (SSR) markers are effective for identifying ...

    African Journals Online (AJOL)

    DNA was extracted from newly formed leaves and amplified using 21 simple sequence repeat (SSR) markers (NH001c, NH002b, NH005b, NH007b, NH008b, NH009b, NH011b, NH013b, NH012a, NH014a, NH015a, NH017a, KA4b, KA5, KA14, KA16, KB16, KU10, BGA35, BGT23b and HGA8b). The data was analyzed by ...

  14. SSRscanner: a program for reporting distribution and exact location of simple sequence repeats.

    Science.gov (United States)

    Anwar, Tamanna; Khan, Asad U

    2006-02-20

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. These repeated DNA sequences are found in both prokaryotes and eukaryotes. They are distributed almost at random throughout the genome, ranging from mononucleotide to trinucleotide repeats. They are also found at longer lengths (> 6 repeating units) of tracts. Most of the computer programs that find SSRs do not report its exact position. A computer program SSRscanner was written to find out distribution, frequency and exact location of each SSR in the genome. SSRscanner is user friendly. It can search repeats of any length and produce outputs with their exact position on chromosome and their frequency of occurrence in the sequence. This program has been written in PERL and is freely available for non-commercial users by request from the authors. Please contact the authors by E-mail: huzzi99@hotmail.com.

  15. Always look on both sides: phylogenetic information conveyed by simple sequence repeat allele sequences.

    Directory of Open Access Journals (Sweden)

    Stéphanie Barthe

    Full Text Available Simple sequence repeat (SSR markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily, mutations in the target sequences follow the stepwise mutation model (SMM. Generally speaking, PCR amplicon sizes are used as direct indicators of the number of SSR repeats composing an allele with the data analysis either ignoring the extent of allele size differences or assuming that there is a direct correlation between differences in amplicon size and evolutionary distance. However, without precisely knowing the kind and distribution of polymorphism within an allele (SSR and the associated flanking region (FR sequences, it is hard to say what kind of evolutionary message is conveyed by such a synthetic descriptor of polymorphism as DNA amplicon size. In this study, we sequenced several SSR alleles in multiple populations of three divergent tree genera and disentangled the types of polymorphisms contained in each portion of the DNA amplicon containing an SSR. The patterns of diversity provided by amplicon size variation, SSR variation itself, insertions/deletions (indels, and single nucleotide polymorphisms (SNPs observed in the FRs were compared. Amplicon size variation largely reflected SSR repeat number. The amount of variation was as large in FRs as in the SSR itself. The former contributed significantly to the phylogenetic information and sometimes was the main source of differentiation among individuals and populations contained by FR and SSR regions of SSR markers. The presence of mutations occurring at different rates within a marker's sequence offers the opportunity to analyse evolutionary events occurring on various timescales, but at the same time calls for caution in the interpretation of SSR marker data when the distribution of within

  16. MSDB: A Comprehensive Database of Simple Sequence Repeats.

    Science.gov (United States)

    Avvaru, Akshay Kumar; Saxena, Saketh; Sowpati, Divya Tej; Mishra, Rakesh Kumar

    2017-06-01

    Microsatellites, also known as Simple Sequence Repeats (SSRs), are short tandem repeats of 1-6 nt motifs present in all genomes, particularly eukaryotes. Besides their usefulness as genome markers, SSRs have been shown to perform important regulatory functions, and variations in their length at coding regions are linked to several disorders in humans. Microsatellites show a taxon-specific enrichment in eukaryotic genomes, and some may be functional. MSDB (Microsatellite Database) is a collection of >650 million SSRs from 6,893 species including Bacteria, Archaea, Fungi, Plants, and Animals. This database is by far the most exhaustive resource to access and analyze SSR data of multiple species. In addition to exploring data in a customizable tabular format, users can view and compare the data of multiple species simultaneously using our interactive plotting system. MSDB is developed using the Django framework and MySQL. It is freely available at http://tdb.ccmb.res.in/msdb. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Expressed Sequence Tag-Simple Sequence Repeat (EST-SSR Marker Resources for Diversity Analysis of Mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Natalie L. Dillon

    2014-01-01

    Full Text Available In this study, a collection of 24,840 expressed sequence tags (ESTs generated from five mango (Mangifera indica L. cDNA libraries was mined for EST-based simple sequence repeat (SSR markers. Over 1,000 ESTs with SSR motifs were detected from more than 24,000 EST sequences with di- and tri-nucleotide repeat motifs the most abundant. Of these, 25 EST-SSRs in genes involved in plant development, stress response, and fruit color and flavor development pathways were selected, developed into PCR markers and characterized in a population of 32 mango selections including M. indica varieties, and related Mangifera species. Twenty-four of the 25 EST-SSR markers exhibited polymorphisms, identifying a total of 86 alleles with an average of 5.38 alleles per locus, and distinguished between all Mangifera selections. Private alleles were identified for Mangifera species. These newly developed EST-SSR markers enhance the current 11 SSR mango genetic identity panel utilized by the Australian Mango Breeding Program. The current panel has been used to identify progeny and parents for selection and the application of this extended panel will further improve and help to design mango hybridization strategies for increased breeding efficiency.

  18. simple sequence repeats (EST-SSR)

    African Journals Online (AJOL)

    Yomi

    2012-01-19

    Jan 19, 2012 ... 212 primer pairs selected, based on repeat patterns of n≥8 for di-, tri-, tetra- and penta-nucleotide repeat ... Cluster analysis revealed a high genetic similarity among the sugarcane (Saccharum spp.) breeding lines which could reduce the genetic gain in ..... The multiple allele characteristic of SSR com-.

  19. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    Science.gov (United States)

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  20. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Kyllo, J.H.; Collins, M.M.; Vetter, K.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1996-03-29

    Genetic screening techniques using simple sequence repeat polymorphisms were applied to investigate the molecular nature of congenital isolated adrenocorticotropic hormone (ACTH) deficiency. We hypothesize that this rare cause of hypocortisolism shared by a brother and sister with two unaffected sibs and unaffected parents is inherited as an autosomal recessive single gene mutation. Genes involved in the hypothalamic-pituitary axis controlling cortisol sufficiency were investigated for a causal role in this disorder. Southern blotting showed no detectable mutations of the gene encoding pro-opiomelanocortin (POMC), the ACTH precursor. Other candidate genes subsequently considered were those encoding neuroendocrine convertase-1, and neuroendocrine convertase-2 (NEC-1, NEC-2), and corticotropin releasing hormone (CRH). Tests for linkage were performed using polymorphic di- and tetranucleotide simple sequence repeat markers flanking the reported map locations for POMC, NEC-1, NEC-2, and CRH. The chromosomal haplotypes determined by the markers flanking the loci for POMC, NEC-1, and NEC-2 were not compatible with linkage. However, 22 individual markers defining the chromosomal haplotypes flanking CRH were compatible with linkage of the disorder to the immediate area of this gene of chromosome 8. Based on these data, we hypothesize that the ACTH deficiency in this family is due to an abnormality of CRH gene structure or expression. These results illustrate the useful application of high density genetic maps constructed with simple sequence repeat markers for inclusion/exclusion studies of candidate genes in even very small nuclear families segregating for unusual phenotypes. 25 refs., 5 figs., 2 tabs.

  1. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.)

    Science.gov (United States)

    Background: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed S...

  2. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Wang, Zan; Yan, Hongwei; Fu, Xinnian; Li, Xuehui; Gao, Hongwen

    2013-04-01

    Efficient and robust molecular markers are essential for molecular breeding in plant. Compared to dominant and bi-allelic markers, multiple alleles of simple sequence repeat (SSR) markers are particularly informative and superior in genetic linkage map and QTL mapping in autotetraploid species like alfalfa. The objective of this study was to enrich SSR markers directly from alfalfa expressed sequence tags (ESTs). A total of 12,371 alfalfa ESTs were retrieved from the National Center for Biotechnology Information. Total 774 SSR-containing ESTs were identified from 716 ESTs. On average, one SSR was found per 7.7 kb of EST sequences. Tri-nucleotide repeats (48.8 %) was the most abundant motif type, followed by di-(26.1 %), tetra-(11.5 %), penta-(9.7 %), and hexanucleotide (3.9 %). One hundred EST-SSR primer pairs were successfully designed and 29 exhibited polymorphism among 28 alfalfa accessions. The allele number per marker ranged from two to 21 with an average of 6.8. The PIC values ranged from 0.195 to 0.896 with an average of 0.608, indicating a high level of polymorphism of the EST-SSR markers. Based on the 29 EST-SSR markers, assessment of genetic diversity was conducted and found that Medicago sativa ssp. sativa was clearly different from the other subspecies. The high transferability of those EST-SSR markers was also found for relative species.

  3. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    Science.gov (United States)

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  4. Differential effects of simple repeating DNA sequences on gene expression from the SV40 early promoter.

    Science.gov (United States)

    Amirhaeri, S; Wohlrab, F; Wells, R D

    1995-02-17

    The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.

  5. Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass

    DEFF Research Database (Denmark)

    Pivorienė, O; Pašakinskienė, I; Brazauskas, G

    2008-01-01

    The aim of this study was to identify and characterize new ISSR markers and their loci in the genome of perennial ryegrass. A subsample of the VrnA F2 mapping family of perennial ryegrass comprising 92 individuals was used to develop a linkage map including inter-simple sequence repeat markers...... demonstrated a 70% similarity to the Hordeum vulgare germin gene GerA. Inter-SSR mapping will provide useful information for gene targeting, quantitative trait loci mapping and marker-assisted selection in perennial ryegrass....

  6. Development of expressed sequence tag-simple sequence repeat markers for genetic characterization and population structure analysis of Praxelis clematidea (Asteraceae).

    Science.gov (United States)

    Wang, Q Z; Huang, M; Downie, S R; Chen, Z X

    2016-05-23

    Invasive plants tend to spread aggressively in new habitats and an understanding of their genetic diversity and population structure is useful for their management. In this study, expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed for the invasive plant species Praxelis clematidea (Asteraceae) from 5548 Stevia rebaudiana (Asteraceae) expressed sequence tags (ESTs). A total of 133 microsatellite-containing ESTs (2.4%) were identified, of which 56 (42.1%) were hexanucleotide repeat motifs and 50 (37.6%) were trinucleotide repeat motifs. Of the 24 primer pairs designed from these 133 ESTs, 7 (29.2%) resulted in significant polymorphisms. The number of alleles per locus ranged from 5 to 9. The relatively high genetic diversity (H = 0.2667, I = 0.4212, and P = 100%) of P. clematidea was related to high gene flow (Nm = 1.4996) among populations. The coefficient of population differentiation (GST = 0.2500) indicated that most genetic variation occurred within populations. A Mantel test suggested that there was significant correlation between genetic distance and geographical distribution (r = 0.3192, P = 0.012). These results further support the transferability of EST-SSR markers between closely related genera of the same family.

  7. Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference

    Directory of Open Access Journals (Sweden)

    Park Jongsun

    2008-01-01

    Full Text Available Abstract Background Simple sequence repeats (SSRs have been successfully used for various genetic and evolutionary studies in eukaryotic systems. The eukaryotic model organism Neurospora crassa is an excellent system to study evolution and biological function of SSRs. Results We identified and characterized 2749 SSRs of 963 SSR types in the genome of N. crassa. The distribution of tri-nucleotide (nt SSRs, the most common SSRs in N. crassa, was significantly biased in exons. We further characterized the distribution of 19 abundant SSR types (AST, which account for 71% of total SSRs in the N. crassa genome, using a Poisson log-linear model. We also characterized the size variation of SSRs among natural accessions using Polymorphic Index Content (PIC and ANOVA analyses and found that there are genome-wide, chromosome-dependent and local-specific variations. Using polymorphic SSRs, we have built linkage maps from three line-cross populations. Conclusion Taking our computational, statistical and experimental data together, we conclude that 1 the distributions of the SSRs in the sequenced N. crassa genome differ systematically between chromosomes as well as between SSR types, 2 the size variation of tri-nt SSRs in exons might be an important mechanism in generating functional variation of proteins in N. crassa, 3 there are different levels of evolutionary forces in variation of amino acid repeats, and 4 SSRs are stable molecular markers for genetic studies in N. crassa.

  8. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia

    Directory of Open Access Journals (Sweden)

    Junjie Cui

    2017-06-01

    Full Text Available Bitter gourd (Momordica charantia is widely cultivated as a vegetable and medicinal herb in many Asian and African countries. After the sequencing of the cucumber (Cucumis sativus, watermelon (Citrullus lanatus, and melon (Cucumis melo genomes, bitter gourd became the fourth cucurbit species whose whole genome was sequenced. However, a comprehensive analysis of simple sequence repeats (SSRs in bitter gourd, including a comparison with the three aforementioned cucurbit species has not yet been published. Here, we identified a total of 188,091 and 167,160 SSR motifs in the genomes of the bitter gourd lines ‘Dali-11’ and ‘OHB3-1,’ respectively. Subsequently, the SSR content, motif lengths, and classified motif types were characterized for the bitter gourd genomes and compared among all the cucurbit genomes. Lastly, a large set of 138,727 unique in silico SSR primer pairs were designed for bitter gourd. Among these, 71 primers were selected, all of which successfully amplified SSRs from the two bitter gourd lines ‘Dali-11’ and ‘K44’. To further examine the utilization of unique SSR primers, 21 SSR markers were used to genotype a collection of 211 bitter gourd lines from all over the world. A model-based clustering method and phylogenetic analysis indicated a clear separation among the geographic groups. The genomic SSR markers developed in this study have considerable potential value in advancing bitter gourd research.

  9. Fingerprinting for discriminating tea germplasm using inter-simple sequence repeat (ISSR) markers

    International Nuclear Information System (INIS)

    Liu, B.Y.; Li, Y.Y.; Wang, P.S.; Wang, L.Y.; Wang, P.S.

    2012-01-01

    For the discrimination of tea germplasm at the inter-specific level, 134 tea varieties preserved in the China National Germplasm Tea Repositories (CNGTR) were analyzed using inter simple sequence repeat (ISSR) markers. Eighteen primers were chosen from 60 screened for ISSR amplification, generating 99.4% polymorphic bands. The mean Nei's gene diversity (H) and the overall mean Shannon's Information index (I) were 0.396 and 0.578, respectively, indicating a wide gene pool. Using the presence, sometimes absence of unique ISSR markers, it was possible to discriminate 32 of the genotypes tested. No single primer could discriminate all the 134 genotypes. However, UBC811 provided rich band patterns and it can discriminate 35 genotypes. The combination of two and three primers could discriminate 99 and 121 genotypes, respectively. Furthermore, the combination of band patterns or the DNA fingerprinting based on specific ISSR markers generated by UBC811, UBC835, ISSR2 and ISSR3 could discriminate all 134 genotypes tested. ISSR markers also provide a powerful tool to discriminate tea germplasm at the inter-specific level. (author)

  10. Genetic diversity studies in pea (Pisum sativum L.) using simple sequence repeat markers.

    Science.gov (United States)

    Kumari, P; Basal, N; Singh, A K; Rai, V P; Srivastava, C P; Singh, P K

    2013-03-13

    The genetic diversity among 28 pea (Pisum sativum L.) genotypes was analyzed using 32 simple sequence repeat markers. A total of 44 polymorphic bands, with an average of 2.1 bands per primer, were obtained. The polymorphism information content ranged from 0.657 to 0.309 with an average of 0.493. The variation in genetic diversity among these cultivars ranged from 0.11 to 0.73. Cluster analysis based on Jaccard's similarity coefficient using the unweighted pair-group method with arithmetic mean (UPGMA) revealed 2 distinct clusters, I and II, comprising 6 and 22 genotypes, respectively. Cluster II was further differentiated into 2 subclusters, IIA and IIB, with 12 and 10 genotypes, respectively. Principal component (PC) analysis revealed results similar to those of UPGMA. The first, second, and third PCs contributed 21.6, 16.1, and 14.0% of the variation, respectively; cumulative variation of the first 3 PCs was 51.7%.

  11. ChloroSSRdb: a repository of perfect and imperfect chloroplastic simple sequence repeats (cpSSRs) of green plants.

    Science.gov (United States)

    Kapil, Aditi; Rai, Piyush Kant; Shanker, Asheesh

    2014-01-01

    Simple sequence repeats (SSRs) are regions in DNA sequence that contain repeating motifs of length 1-6 nucleotides. These repeats are ubiquitously present and are found in both coding and non-coding regions of genome. A total of 534 complete chloroplast genome sequences (as on 18 September 2014) of Viridiplantae are available at NCBI organelle genome resource. It provides opportunity to mine these genomes for the detection of SSRs and store them in the form of a database. In an attempt to properly manage and retrieve chloroplastic SSRs, we designed ChloroSSRdb which is a relational database developed using SQL server 2008 and accessed through ASP.NET. It provides information of all the three types (perfect, imperfect and compound) of SSRs. At present, ChloroSSRdb contains 124 430 mined SSRs, with majority lying in non-coding region. Out of these, PCR primers were designed for 118 249 SSRs. Tetranucleotide repeats (47 079) were found to be the most frequent repeat type, whereas hexanucleotide repeats (6414) being the least abundant. Additionally, in each species statistical analyses were performed to calculate relative frequency, correlation coefficient and chi-square statistics of perfect and imperfect SSRs. In accordance with the growing interest in SSR studies, ChloroSSRdb will prove to be a useful resource in developing genetic markers, phylogenetic analysis, genetic mapping, etc. Moreover, it will serve as a ready reference for mined SSRs in available chloroplast genomes of green plants. Database URL: www.compubio.in/chlorossrdb/ © The Author(s) 2014. Published by Oxford University Press.

  12. Analysis of sequence diversity through internal transcribed spacers and simple sequence repeats to identify Dendrobium species.

    Science.gov (United States)

    Liu, Y T; Chen, R K; Lin, S J; Chen, Y C; Chin, S W; Chen, F C; Lee, C Y

    2014-04-08

    The Orchidaceae is one of the largest and most diverse families of flowering plants. The Dendrobium genus has high economic potential as ornamental plants and for medicinal purposes. In addition, the species of this genus are able to produce large crops. However, many Dendrobium varieties are very similar in outward appearance, making it difficult to distinguish one species from another. This study demonstrated that the 12 Dendrobium species used in this study may be divided into 2 groups by internal transcribed spacer (ITS) sequence analysis. Red and yellow flowers may also be used to separate these species into 2 main groups. In particular, the deciduous characteristic is associated with the ITS genetic diversity of the A group. Of 53 designed simple sequence repeat (SSR) primer pairs, 7 pairs were polymorphic for polymerase chain reaction products that were amplified from a specific band. The results of this study demonstrate that these 7 SSR primer pairs may potentially be used to identify Dendrobium species and their progeny in future studies.

  13. Genome-Wide Characterization of Simple Sequence Repeat (SSR) Loci in Chinese Jujube and Jujube SSR Primer Transferability

    Science.gov (United States)

    Xiao, Jing; Zhao, Jin; Liu, Mengjun; Liu, Ping; Dai, Li; Zhao, Zhihui

    2015-01-01

    Chinese jujube (Ziziphus jujuba), an economically important species in the Rhamnaceae family, is a popular fruit tree in Asia. Here, we surveyed and characterized simple sequence repeats (SSRs) in the jujube genome. A total of 436,676 SSR loci were identified, with an average distance of 0.93 Kb between the loci. A large proportion of the SSRs included mononucleotide, dinucleotide and trinucleotide repeat motifs, which accounted for 64.87%, 24.40%, and 8.74% of all repeats, respectively. Among the mononucleotide repeats, A/T was the most common, whereas AT/TA was the most common dinucleotide repeat. A total of 30,565 primer pairs were successfully designed and screened using a series of criteria. Moreover, 725 of 1,000 randomly selected primer pairs were effective among 6 cultivars, and 511 of these primer pairs were polymorphic. Sequencing the amplicons of two SSRs across three jujube cultivars revealed variations in the repeats. The transferability of jujube SSR primers proved that 35/64 SSRs could be transferred across family boundary. Using jujube SSR primers, clustering analysis results from 15 species were highly consistent with the Angiosperm Phylogeny Group (APGIII) System. The genome-wide characterization of SSRs in Chinese jujube is very valuable for whole-genome characterization and marker-assisted selection in jujube breeding. In addition, the transferability of jujube SSR primers could provide a solid foundation for their further utilization. PMID:26000739

  14. Assessment of Cultivar Distinctness in Alfalfa: A Comparison of Genotyping-by-Sequencing, Simple-Sequence Repeat Marker, and Morphophysiological Observations

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2016-07-01

    Full Text Available Cultivar registration agencies typically require morphophysiological trait-based distinctness of candidate cultivars. This requirement is difficult to achieve for cultivars of major perennial forages because of their genetic structure and ever-increasing number of registered material, leading to possible rejection of agronomically valuable cultivars. This study aimed to explore the value of molecular markers applied to replicated bulked plants (three bulks of 100 independent plants each per cultivar to assess alfalfa ( L. subsp. cultivar distinctness. We compared genotyping-by-sequencing information based on 2902 polymorphic single-nucleotide polymorphism (SNP markers (>30 reads per DNA sample with morphophysiological information based on 11 traits and with simple-sequence repeat (SSR marker information from 41 polymorphic markers for their ability to distinguish 11 alfalfa landraces representative of the germplasm from northern Italy. Three molecular criteria, one based on cultivar differences for individual SSR bands and two based on overall SNP marker variation assessed either by statistically significant cultivar differences on principal component axes or discriminant analysis, distinctly outperformed the morphophysiological criterion. Combining the morphophysiological criterion with either molecular marker method increased discrimination among cultivars, since morphophysiological diversity was unrelated to SSR marker-based diversity ( = 0.04 and poorly related to SNP marker-based diversity ( = 0.23, < 0.15. The criterion based on statistically significant SNP allele frequency differences was less discriminating than morphophysiological variation. Marker-based distinctness, which can be assessed at low cost and without interactions with testing conditions, could validly substitute for (or complement morphophysiological distinctness in alfalfa cultivar registration schemes. It also has interest in sui generis registration systems aimed at

  15. Molecular Characterization of Cultivated Bromeliad Accessions with Inter-Simple Sequence Repeat (ISSR Markers

    Directory of Open Access Journals (Sweden)

    Yongming Yu

    2012-05-01

    Full Text Available Bromeliads are of great economic importance in flower production; however little information is available with respect to genetic characterization of cultivated bromeliads thus far. In the present study, a selection of cultivated bromeliads was characterized via inter-simple sequence repeat (ISSR markers with an emphasis on genetic diversity and population structure. Twelve ISSR primers produced 342 bands, of which 287 (~84% were polymorphic, with polymorphic bands per primer ranging from 17 to 34. The Jaccard’s similarity ranged from 0.08 to 0.89 and averaged ~0.30 for the investigated bromeliads. The Bayesian-based approach, together with the un-weighted paired group method with arithmetic average (UPGMA-based clustering and the principal coordinate analysis (PCoA, distinctly grouped the bromeliads from Neoregelia, Guzmania, and Vriesea into three separately clusters, well corresponding with their botanical classifications; whereas the bromeliads of Aechmea other than the recently selected hybrids were not well assigned to a cluster. Additionally, ISSR marker was proven efficient for the identification of hybrids and bud sports of cultivated bromeliads. The findings achieved herein will further our knowledge about the genetic variability within cultivated bromeliads and therefore facilitate breeding for new varieties of cultivated bromeliads in future as well.

  16. Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (Phaseolus vulgaris L. Bacterial Artificial Chromosome End Sequences for Genome Characterization and Genetic–Physical Map Integration

    Directory of Open Access Journals (Sweden)

    Juana M. Córdoba

    2010-11-01

    Full Text Available Microsatellite markers or simple sequence repeat (SSR loci are useful for diversity characterization and genetic–physical mapping. Different in silico microsatellite search methods have been developed for mining bacterial artificial chromosome (BAC end sequences for SSRs. The overall goal of this study was genome characterization based on SSRs in 89,017 BAC end sequences (BESs from the G19833 common bean ( L. library. Another objective was to identify new SSR taking into account three tandem motif identification programs (Automated Microsatellite Marker Development [AMMD], Tandem Repeats Finder [TRF], and SSRLocator [SSRL]. Among the microsatellite search engines, SSRL identified the highest number of SSRs; however, when primer design was attempted, the number dropped due to poor primer design regions. Automated Microsatellite Marker Development software identified many SSRs with valuable AT/TA or AG/TC motifs, while TRF found fewer SSRs and produced no primers. A subgroup of 323 AT-rich, di-, and trinucleotide SSRs were selected from the AMMD results and used in a parental survey with DOR364 and G19833, of which 75 could be mapped in the corresponding population; these represented 4052 BAC clones. Together with 92 previously mapped BES- and 114 non-BES-derived markers, a total of 280 SSRs were included in the polymerase chain reaction (PCR-based map, integrating a total of 8232 BAC clones in 162 contigs from the physical map.

  17. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi and related species

    Directory of Open Access Journals (Sweden)

    Odvody Gary N

    2008-11-01

    Full Text Available Abstract Background A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites to detect differences at the DNA level. Results Among the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55% with dinucleotide repeats and 6 (11% with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40% and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis, sugar cane (P. sacchari, pearl millet (Sclerospora graminicola and rose (Peronospora sparsa indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34

  18. Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species.

    Science.gov (United States)

    Perumal, Ramasamy; Nimmakayala, Padmavathi; Erattaimuthu, Saradha R; No, Eun-Gyu; Reddy, Umesh K; Prom, Louis K; Odvody, Gary N; Luster, Douglas G; Magill, Clint W

    2008-11-29

    A recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level. Among the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis), sugar cane (P. sacchari), pearl millet (Sclerospora graminicola) and rose (Peronospora sparsa) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 Peronosclerospora, Peronospora and Sclerospora

  19. Using inter simple sequence repeat (ISSR) markers to study genetic ...

    African Journals Online (AJOL)

    enoh

    2012-04-10

    Apr 10, 2012 ... Genetic relationships among the cultivars was assessed by using six inter simple sequence ... polymorphism breeders of this species in order to find the ..... well as the high level of heterozygosity due to the cross- pollinating ...

  20. Analysis of genetic relationships and identification of lily cultivars based on inter-simple sequence repeat markers.

    Science.gov (United States)

    Cui, G F; Wu, L F; Wang, X N; Jia, W J; Duan, Q; Ma, L L; Jiang, Y L; Wang, J H

    2014-07-29

    Inter-simple sequence repeat (ISSR) markers were used to discriminate 62 lily cultivars of 5 hybrid series. Eight ISSR primers generated 104 bands in total, which all showed 100% polymorphism, and an average of 13 bands were amplified by each primer. Two software packages, POPGENE 1.32 and NTSYSpc 2.1, were used to analyze the data matrix. Our results showed that the observed number of alleles (NA), effective number of alleles (NE), Nei's genetic diversity (H), and Shannon's information index (I) were 1.9630, 1.4179, 0.2606, and 0.4080, respectively. The highest genetic similarity (0.9601) was observed between the Oriental x Trumpet and Oriental lilies, which indicated that the two hybrids had a close genetic relationship. An unweighted pair-group method with arithmetic means dendrogram showed that the 62 lily cultivars clustered into two discrete groups. The first group included the Oriental and OT cultivars, while the Asiatic, LA, and Longiflorum lilies were placed in the second cluster. The distribution of individuals in the principal component analysis was consistent with the clustering of the dendrogram. Fingerprints of all lily cultivars built from 8 primers could be separated completely. This study confirmed the effect and efficiency of ISSR identification in lily cultivars.

  1. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.).

    Science.gov (United States)

    Cloutier, Sylvie; Miranda, Evelyn; Ward, Kerry; Radovanovic, Natasa; Reimer, Elsa; Walichnowski, Andrzej; Datla, Raju; Rowland, Gordon; Duguid, Scott; Ragupathy, Raja

    2012-08-01

    Flax is an important oilseed crop in North America and is mostly grown as a fibre crop in Europe. As a self-pollinated diploid with a small estimated genome size of ~370 Mb, flax is well suited for fast progress in genomics. In the last few years, important genetic resources have been developed for this crop. Here, we describe the assessment and comparative analyses of 1,506 putative simple sequence repeats (SSRs) of which, 1,164 were derived from BAC-end sequences (BESs) and 342 from expressed sequence tags (ESTs). The SSRs were assessed on a panel of 16 flax accessions with 673 (58 %) and 145 (42 %) primer pairs being polymorphic in the BESs and ESTs, respectively. With 818 novel polymorphic SSR primer pairs reported in this study, the repertoire of available SSRs in flax has more than doubled from the combined total of 508 of all previous reports. Among nucleotide motifs, trinucleotides were the most abundant irrespective of the class, but dinucleotides were the most polymorphic. SSR length was also positively correlated with polymorphism. Two dinucleotide (AT/TA and AG/GA) and two trinucleotide (AAT/ATA/TAA and GAA/AGA/AAG) motifs and their iterations, different from those reported in many other crops, accounted for more than half of all the SSRs and were also more polymorphic (63.4 %) than the rest of the markers (42.7 %). This improved resource promises to be useful in genetic, quantitative trait loci (QTL) and association mapping as well as for anchoring the physical/genetic map with the whole genome shotgun reference sequence of flax.

  2. Genome-wide identification and validation of simple sequence repeats (SSRs) from Asparagus officinalis.

    Science.gov (United States)

    Li, Shufen; Zhang, Guojun; Li, Xu; Wang, Lianjun; Yuan, Jinhong; Deng, Chuanliang; Gao, Wujun

    2016-06-01

    Garden asparagus (Asparagus officinalis), an important vegetable cultivated worldwide, can also serve as a model dioecious plant species in the study of sex determination and sex chromosome evolution. However, limited DNA marker resources have been developed and used for this species. To expand these resources, we examined the DNA sequences for simple sequence repeats (SSRs) in 163,406 scaffolds representing approximately 400 Mbp of the A. officinalis genome. A total of 87,576 SSRs were identified in 59,565 scaffolds. The most abundant SSR repeats were trinucleotide and tetranucleotide, accounting for 29.2 and 29.1% of the total SSRs, respectively, followed by di-, penta-, hexa-, hepta-, and octanucleotides. The AG motif was most common among dinucleotides and was also the most frequent motif in the entire A. officinalis genome, representing 14.7% of all SSRs. A total of 41,917 SSR primers pairs were designed to amplify SSRs. Twenty-two genomic SSR markers were tested in 39 asparagus accessions belonging to ten cultivars and one accession of Asparagus setaceus for determination of genetic diversity. The intra-species polymorphism information content (PIC) values of the 22 genomic SSR markers were intermediate, with an average of 0.41. The genetic diversity between the ten A. officinalis cultivars was low, and the UPGMA dendrogram was largely unrelated to cultivars. It is here suggested that the sex of individuals is an important factor influencing the clustering results. The information reported here provides new information about the organization of the microsatellites in A. officinalis genome and lays a foundation for further genetic studies and breeding applications of A. officinalis and related species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of Simple Sequence Repeats (SSR) markers in Setaria italica (Poaceae) and cross-amplification in related species.

    Science.gov (United States)

    Lin, Heng-Sheng; Chiang, Chih-Yun; Chang, Song-Bin; Kuoh, Chang-Sheng

    2011-01-01

    Foxtail millet is one of the world's oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (N(a)), the average heterozygosities observed (H(o)) and expected (H(e)) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae.

  4. Development and Characterization of Simple Sequence Repeat (SSR) Markers Based on RNA-Sequencing of Medicago sativa and In silico Mapping onto the M. truncatula Genome

    Science.gov (United States)

    Wang, Zan; Yu, Guohui; Shi, Binbin; Wang, Xuemin; Qiang, Haiping; Gao, Hongwen

    2014-01-01

    Sufficient codominant genetic markers are needed for various genetic investigations in alfalfa since the species is an outcrossing autotetraploid. With the newly developed next generation sequencing technology, a large amount of transcribed sequences of alfalfa have been generated and are available for identifying SSR markers by data mining. A total of 54,278 alfalfa non-redundant unigenes were assembled through the Illumina HiSeqTM 2000 sequencing technology. Based on 3,903 unigene sequences, 4,493 SSRs were identified. Tri-nucleotide repeats (56.71%) were the most abundant motif class while AG/CT (21.7%), AGG/CCT (19.8%), AAC/GTT (10.3%), ATC/ATG (8.8%), and ACC/GGT (6.3%) were the subsequent top five nucleotide repeat motifs. Eight hundred and thirty- seven EST-SSR primer pairs were successfully designed. Of these, 527 (63%) primer pairs yielded clear and scored PCR products and 372 (70.6%) exhibited polymorphisms. High transferability was observed for ssp falcata at 99.2% (523) and 71.7% (378) in M. truncatula. In addition, 313 of 527 SSR marker sequences were in silico mapped onto the eight M. truncatula chromosomes. Thirty-six polymorphic SSR primer pairs were used in the genetic relatedness analysis of 30 Chinese alfalfa cultivated accessions generating a total of 199 scored alleles. The mean observed heterozygosity and polymorphic information content were 0.767 and 0.635, respectively. The codominant markers not only enriched the current resources of molecular markers in alfalfa, but also would facilitate targeted investigations in marker-trait association, QTL mapping, and genetic diversity analysis in alfalfa. PMID:24642969

  5. Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers.

    Science.gov (United States)

    Zhou, L X; Xiao, Y; Xia, W; Yang, Y D

    2015-12-08

    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.

  6. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2011-01-01

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in the L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.

  7. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers

    Directory of Open Access Journals (Sweden)

    Gao Zhihong

    2010-07-01

    Full Text Available Abstract Background Expressed Sequence Tag (EST has been a cost-effective tool in molecular biology and represents an abundant valuable resource for genome annotation, gene expression, and comparative genomics in plants. Results In this study, we constructed a cDNA library of Prunus mume flower and fruit, sequenced 10,123 clones of the library, and obtained 8,656 expressed sequence tag (EST sequences with high quality. The ESTs were assembled into 4,473 unigenes composed of 1,492 contigs and 2,981 singletons and that have been deposited in NCBI (accession IDs: GW868575 - GW873047, among which 1,294 unique ESTs were with known or putative functions. Furthermore, we found 1,233 putative simple sequence repeats (SSRs in the P. mume unigene dataset. We randomly tested 42 pairs of PCR primers flanking potential SSRs, and 14 pairs were identified as true-to-type SSR loci and could amplify polymorphic bands from 20 individual plants of P. mume. We further used the 14 EST-SSR primer pairs to test the transferability on peach and plum. The result showed that nearly 89% of the primer pairs produced target PCR bands in the two species. A high level of marker polymorphism was observed in the plum species (65% and low in the peach (46%, and the clustering analysis of the three species indicated that these SSR markers were useful in the evaluation of genetic relationships and diversity between and within the Prunus species. Conclusions We have constructed the first cDNA library of P. mume flower and fruit, and our data provide sets of molecular biology resources for P. mume and other Prunus species. These resources will be useful for further study such as genome annotation, new gene discovery, gene functional analysis, molecular breeding, evolution and comparative genomics between Prunus species.

  8. Development of Simple Sequence Repeats (SSR Markers in Setaria italica (Poaceae and Cross-Amplification in Related Species

    Directory of Open Access Journals (Sweden)

    Chih-Yun Chiang

    2011-11-01

    Full Text Available Foxtail millet is one of the world’s oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21% and CAT (46.15%. The average number of alleles (Na, the average heterozygosities observed (Ho and expected (He are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae.

  9. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  10. THE USE OF INTER SIMPLE SEQUENCE REPEATS (ISSR) IN DISTINGUISHING NEIGHBORING DOUGLAS-FIR TREES AS A MEANS TO IDENTIFYING TREE ROOTS WITH ABOVE-GROUND BIOMASS

    Science.gov (United States)

    We are attempting to identify specific root fragments from soil cores with individual trees. We successfully used Inter Simple Sequence Repeats (ISSR) to distinguish neighboring old-growth Douglas-fir trees from one another, while maintaining identity among each tree's parts. W...

  11. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  12. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    Directory of Open Access Journals (Sweden)

    Huaiyong Luo

    Full Text Available The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.

  13. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    Science.gov (United States)

    Luo, Huaiyong; Wang, Xiaojie; Zhan, Gangming; Wei, Guorong; Zhou, Xinli; Zhao, Jing; Huang, Lili; Kang, Zhensheng

    2015-01-01

    The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.

  14. Genetic diversity and population structure analysis in Perilla frutescens from Northern areas of China based on simple sequence repeats.

    Science.gov (United States)

    Ma, S J; Sa, K J; Hong, T K; Lee, J K

    2017-09-21

    In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.

  15. Genetic diversity among Puccinia melanocephala isolates from Brazil assessed using simple sequence repeat markers.

    Science.gov (United States)

    Peixoto-Junior, R F; Creste, S; Landell, M G A; Nunes, D S; Sanguino, A; Campos, M F; Vencovsky, R; Tambarussi, E V; Figueira, A

    2014-09-26

    Brown rust (causal agent Puccinia melanocephala) is an important sugarcane disease that is responsible for large losses in yield worldwide. Despite its importance, little is known regarding the genetic diversity of this pathogen in the main Brazilian sugarcane cultivation areas. In this study, we characterized the genetic diversity of 34 P. melanocephala isolates from 4 Brazilian states using loci identified from an enriched simple sequence repeat (SSR) library. The aggressiveness of 3 isolates from major sugarcane cultivation areas was evaluated by inoculating an intermediately resistant and a susceptible cultivar. From the enriched library, 16 SSR-specific primers were developed, which produced scorable alleles. Of these, 4 loci were polymorphic and 12 were monomorphic for all isolates evaluated. The molecular characterization of the 34 isolates of P. melanocephala conducted using 16 SSR loci revealed the existence of low genetic variability among the isolates. The average estimated genetic distance was 0.12. Phenetic analysis based on Nei's genetic distance clustered the isolates into 2 major groups. Groups I and II included 18 and 14 isolates, respectively, and both groups contained isolates from all 4 geographic regions studied. Two isolates did not cluster with these groups. It was not possible to obtain clusters according to location or state of origin. Analysis of disease severity data revealed that the isolates did not show significant differences in aggressiveness between regions.

  16. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  17. Evaluation of genetic diversity amongst Descurainia sophia L. genotypes by inter-simple sequence repeat (ISSR) marker.

    Science.gov (United States)

    Saki, Sahar; Bagheri, Hedayat; Deljou, Ali; Zeinalabedini, Mehrshad

    2016-01-01

    Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.

  18. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers.

    Science.gov (United States)

    Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong

    2018-01-01

    Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E  = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.

  19. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum.

    Science.gov (United States)

    Cheng, Jiaowen; Zhao, Zicheng; Li, Bo; Qin, Cheng; Wu, Zhiming; Trejo-Saavedra, Diana L; Luo, Xirong; Cui, Junjie; Rivera-Bustamante, Rafael F; Li, Shuaicheng; Hu, Kailin

    2016-01-07

    The sequences of the full set of pepper genomes including nuclear, mitochondrial and chloroplast are now available for use. However, the overall of simple sequence repeats (SSR) distribution in these genomes and their practical implications for molecular marker development in Capsicum have not yet been described. Here, an average of 868,047.50, 45.50 and 30.00 SSR loci were identified in the nuclear, mitochondrial and chloroplast genomes of pepper, respectively. Subsequently, systematic comparisons of various species, genome types, motif lengths, repeat numbers and classified types were executed and discussed. In addition, a local database composed of 113,500 in silico unique SSR primer pairs was built using a homemade bioinformatics workflow. As a pilot study, 65 polymorphic markers were validated among a wide collection of 21 Capsicum genotypes with allele number and polymorphic information content value per marker raging from 2 to 6 and 0.05 to 0.64, respectively. Finally, a comparison of the clustering results with those of a previous study indicated the usability of the newly developed SSR markers. In summary, this first report on the comprehensive characterization of SSR motifs in pepper genomes and the very large set of SSR primer pairs will benefit various genetic studies in Capsicum.

  20. The first genetic map of a synthesized allohexaploid Brassica with A, B and C genomes based on simple sequence repeat markers.

    Science.gov (United States)

    Yang, S; Chen, S; Geng, X X; Yan, G; Li, Z Y; Meng, J L; Cowling, W A; Zhou, W J

    2016-04-01

    We present the first genetic map of an allohexaploid Brassica species, based on segregating microsatellite markers in a doubled haploid mapping population generated from a hybrid between two hexaploid parents. This study reports the first genetic map of trigenomic Brassica. A doubled haploid mapping population consisting of 189 lines was obtained via microspore culture from a hybrid H16-1 derived from a cross between two allohexaploid Brassica lines (7H170-1 and Y54-2). Simple sequence repeat primer pairs specific to the A genome (107), B genome (44) and C genome (109) were used to construct a genetic linkage map of the population. Twenty-seven linkage groups were resolved from 274 polymorphic loci on the A genome (109), B genome (49) and C genome (116) covering a total genetic distance of 3178.8 cM with an average distance between markers of 11.60 cM. This is the first genetic framework map for the artificially synthesized Brassica allohexaploids. The linkage groups represent the expected complement of chromosomes in the A, B and C genomes from the original diploid and tetraploid parents. This framework linkage map will be valuable for QTL analysis and future genetic improvement of a new allohexaploid Brassica species, and in improving our understanding of the genetic control of meiosis in new polyploids.

  1. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers.

    Science.gov (United States)

    Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo

    2017-01-01

    Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections

  2. Generating markers based on biotic stress of protein system in and tandem repeats sequence for Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari N; Siti Norhayati Ismail

    2014-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and is well distributed in Asia region. The species has multipurpose use from root to shoot and is an economically important crop, which generates wide interest in understanding genetic diversity of the species. Knowledge on DNA-based markers has become a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. In this work, both targeted genes and tandem repeat sequences were used for DNA fingerprinting in Aquilaria sp. A total of 100 ISSR (inter simple sequence repeat) primers and 50 combination pairs of specific primers derived from conserved region of a specific protein known as system in were optimized. 38 ISSR primers were found affirmative for polymorphism evaluation study and were generated from both specific and degenerate ISSR primers. And one utmost combination of system in primers showed significant results in distinguishing the Aquilaria sp. In conclusion, polymorphism derived from ISSR profiling and targeted stress genes of protein system in proved as a powerful approach for identification and molecular classification of Aquilaria sp. which will be useful for diversification in identifying any mutant lines derived from nature. (author)

  3. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Dey, Indranil; Rath, Pramod C.

    2005-01-01

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7 A (AG) 7 } dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [ 32 P]3.3 DNA. The d {(GA) 7 A (AG) 7 } mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [ 32 P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [ 32 P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  4. Development of novel simple sequence repeat markers in bitter gourd (Momordica charantia L.) through enriched genomic libraries and their utilization in analysis of genetic diversity and cross-species transferability.

    Science.gov (United States)

    Saxena, Swati; Singh, Archana; Archak, Sunil; Behera, Tushar K; John, Joseph K; Meshram, Sudhir U; Gaikwad, Ambika B

    2015-01-01

    Microsatellite or simple sequence repeat (SSR) markers are the preferred markers for genetic analyses of crop plants. The availability of a limited number of such markers in bitter gourd (Momordica charantia L.) necessitates the development and characterization of more SSR markers. These were developed from genomic libraries enriched for three dinucleotide, five trinucleotide, and two tetranucleotide core repeat motifs. Employing the strategy of polymerase chain reaction-based screening, the number of clones to be sequenced was reduced by 81 % and 93.7 % of the sequenced clones contained in microsatellite repeats. Unique primer-pairs were designed for 160 microsatellite loci, and amplicons of expected length were obtained for 151 loci (94.4 %). Evaluation of diversity in 54 bitter gourd accessions at 51 loci indicated that 20 % of the loci were polymorphic with the polymorphic information content values ranging from 0.13 to 0.77. Fifteen Indian varieties were clearly distinguished indicative of the usefulness of the developed markers. Markers at 40 loci (78.4 %) were transferable to six species, viz. Momordica cymbalaria, Momordica subangulata subsp. renigera, Momordica balsamina, Momordica dioca, Momordica cochinchinesis, and Momordica sahyadrica. The microsatellite markers reported will be useful in various genetic and molecular genetic studies in bitter gourd, a cucurbit of immense nutritive, medicinal, and economic importance.

  5. Simple sequence repeats and compositional bias in the bipartite Ralstonia solanacearum GMI1000 genome

    Directory of Open Access Journals (Sweden)

    Vandamme Peter

    2003-03-01

    Full Text Available Abstract Background Ralstonia solanacearum is an important plant pathogen. The genome of R. solananearum GMI1000 is organised into two replicons (a 3.7-Mb chromosome and a 2.1-Mb megaplasmid and this bipartite genome structure is characteristic for most R. solanacearum strains. To determine whether the megaplasmid was acquired via recent horizontal gene transfer or is part of an ancestral single chromosome, we compared the abundance, distribution and compositon of simple sequence repeats (SSRs between both replicons and also compared the respective compositional biases. Results Our data show that both replicons are very similar in respect to distribution and composition of SSRs and presence of compositional biases. Minor variations in SSR and compositional biases observed may be attributable to minor differences in gene expression and regulation of gene expression or can be attributed to the small sample numbers observed. Conclusions The observed similarities indicate that both replicons have shared a similar evolutionary history and thus suggest that the megaplasmid was not recently acquired from other organisms by lateral gene transfer but is a part of an ancestral R. solanacearum chromosome.

  6. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.

  7. De novo Transcriptome Sequencing Reveals a Considerable Bias in the Incidence of Simple Sequence Repeats towards the Downstream of ‘Pre-miRNAs’ of Black Pepper

    Science.gov (United States)

    Joy, Nisha; Asha, Srinivasan; Mallika, Vijayan; Soniya, Eppurathu Vasudevan

    2013-01-01

    Next generation sequencing has an advantageon transformational development of species with limited available sequence data as it helps to decode the genome and transcriptome. We carried out the de novo sequencing using illuminaHiSeq™ 2000 to generate the first leaf transcriptome of black pepper (Piper nigrum L.), an important spice variety native to South India and also grown in other tropical regions. Despite the economic and biochemical importance of pepper, a scientifically rigorous study at the molecular level is far from complete due to lack of sufficient sequence information and cytological complexity of its genome. The 55 million raw reads obtained, when assembled using Trinity program generated 2,23,386 contigs and 1,28,157 unigenes. Reports suggest that the repeat-rich genomic regions give rise to small non-coding functional RNAs. MicroRNAs (miRNAs) are the most abundant type of non-coding regulatory RNAs. In spite of the widespread research on miRNAs, little is known about the hair-pin precursors of miRNAs bearing Simple Sequence Repeats (SSRs). We used the array of transcripts generated, for the in silico prediction and detection of ‘43 pre-miRNA candidates bearing different types of SSR motifs’. The analysis identified 3913 different types of SSR motifs with an average of one SSR per 3.04 MB of thetranscriptome. About 0.033% of the transcriptome constituted ‘pre-miRNA candidates bearing SSRs’. The abundance, type and distribution of SSR motifs studied across the hair-pin miRNA precursors, showed a significant bias in the position of SSRs towards the downstream of predicted ‘pre-miRNA candidates’. The catalogue of transcripts identified, together with the demonstration of reliable existence of SSRs in the miRNA precursors, permits future opportunities for understanding the genetic mechanism of black pepper and likely functions of ‘tandem repeats’ in miRNAs. PMID:23469176

  8. Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles

    Directory of Open Access Journals (Sweden)

    Oussama Ahrazem

    2012-05-01

    Full Text Available Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  9. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2015-01-01

    We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants. PMID:26407159

  10. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Directory of Open Access Journals (Sweden)

    Charlotte Rehm

    Full Text Available In prokaryotes simple sequence repeats (SSRs with unit sizes of 1-5 nucleotides (nt are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4 structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc, Xanthomonas axonopodis pv. citri str. 306 (Xac, and Nostoc sp. strain PCC7120 (Ana. In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  11. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Science.gov (United States)

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  12. Characterization of expressed sequence tag-derived simple sequence repeat markers for Aspergillus flavus: emphasis on variability of isolates from the southern United States.

    Science.gov (United States)

    Wang, Xinwang; Wadl, Phillip A; Wood-Jones, Alicia; Windham, Gary; Trigiano, Robert N; Scruggs, Mary; Pilgrim, Candace; Baird, Richard

    2012-12-01

    Simple sequence repeat (SSR) markers were developed from Aspergillus flavus expressed sequence tag (EST) database to conduct an analysis of genetic relationships of Aspergillus isolates from numerous host species and geographical regions, but primarily from the United States. Twenty-nine primers were designed from 362 tri-nucleotide EST-SSR sequences. Eighteen polymorphic loci were used to genotype 96 Aspergillus species isolates. The number of alleles detected per locus ranged from 2 to 24 with a mean of 8.2 alleles. Haploid diversity ranged from 0.28 to 0.91. Genetic distance matrix was used to perform principal coordinates analysis (PCA) and to generate dendrograms using unweighted pair group method with arithmetic mean (UPGMA). Two principal coordinates explained more than 75 % of the total variation among the isolates. One clade was identified for A. flavus isolates (n = 87) with the other Aspergillus species (n = 7) using PCA, but five distinct clusters were present when the others taxa were excluded from the analysis. Six groups were noted when the EST-SSR data were compared using UPGMA. However, the latter PCA or UPGMA comparison resulted in no direct associations with host species, geographical region or aflatoxin production. Furthermore, there was no direct correlation to visible morphological features such as sclerotial types. The isolates from Mississippi Delta region, which contained the largest percentage of isolates, did not show any unusual clustering except for isolates K32, K55, and 199. Further studies of these three isolates are warranted to evaluate their pathogenicity, aflatoxin production potential, additional gene sequences (e.g., RPB2), and morphological comparisons.

  13. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling

    Directory of Open Access Journals (Sweden)

    Sunirmal Sheet

    2018-03-01

    Full Text Available Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in the plant breeding program for cultivar development. Hence, the genetic deviations and relations among 8 Morus alba plants, and one Morus lhou plant, of different cultivars collected from South Korea were investigated using 10 random amplified polymorphic DNA (RAPD and 10 inter-simple sequence repeat (ISSR markers in the present study. The ISSR markers exhibited a higher polymorphism (63.42% among mulberry genotypes in comparison to RAPD markers. Furthermore, the similarity coefficient was estimated for both markers and found to be varying between 0.183 and 0.814 for combined pooled data of ISSR and RAPD. The phenogram drawn using the UPGMA cluster method based on combined pooled data of RAPD and ISSR markers divided the nine mulberry genotypes into two divergent major groups and the two individual independent accessions. The distant relationship between Dae-Saug (SM1 and SangchonJo Sang Saeng (SM5 offers a possibility of utilizing them in mulberry cultivar improvement of Morus species of South Korea.

  14. Length and repeat-sequence variation in 58 STRs and 94 SNPs in two Spanish populations.

    Science.gov (United States)

    Casals, Ferran; Anglada, Roger; Bonet, Núria; Rasal, Raquel; van der Gaag, Kristiaan J; Hoogenboom, Jerry; Solé-Morata, Neus; Comas, David; Calafell, Francesc

    2017-09-01

    We have genotyped the 58 STRs (27 autosomal, 24 Y-STRs and 7 X-STRs) and 94 autosomal SNPs in Illumina ForenSeq™ Primer Mix A in 88 Spanish Roma (Gypsy) samples and 143 Catalans. Since this platform is based in massive parallel sequencing, we have used simple R scripts to uncover the sequence variation in the repeat region. Thus, we have found, across 58 STRs, 541 length-based alleles, which, after considering repeat-sequence variation, became 804 different alleles. All loci in both populations were in Hardy-Weinberg equilibrium. F ST between both populations was 0.0178 for autosomal SNPs, 0.0146 for autosomal STRs, 0.0101 for X-STRs and 0.1866 for Y-STRs. Combined a priori statistics showed quite large; for instance, pooling all the autosomal loci, the a priori probabilities of discriminating a suspect become 1-(2.3×10 -70 ) and 1-(5.9×10 -73 ), for Roma and Catalans respectively, and the chances of excluding a false father in a trio are 1-(2.6×10 -20 ) and 1-(2.0×10 -21 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simple Sequence Repeat Analysis of Selected NSIC-registered Coffee Varieties in the Philippines

    Directory of Open Access Journals (Sweden)

    Daisy May C. Santos

    2016-06-01

    Full Text Available Coffee (Coffea sp. is an important commercial crop worldwide. Three species of coffee are used as beverage, namely Coffea arabica, C. canephora, and C. liberica. Coffea arabica L. is the most cultivated among the three coffee species due to its taste quality, rich aroma, and low caffeine content. Despite its inferior taste and aroma, C. canephora Pierre ex A. Froehner, which has the highest caffeine content, is the second most widely cultivated because of its resistance to coffee diseases. On the other hand, C. liberica W.Bull ex Hierncomes is characterized by its very strong taste and flavor. The Philippines used to be a leading exporter of coffee until coffee rust destroyed the farms in Batangas, home of the famous Kapeng Barako. The country has been attempting to revive the coffee industry by focusing on the production of specialty coffee with registered varieties on the National Seed Industry Council (NSIC. Correct identification and isolation of pure coffee beans are the main factors that determine coffee’s market value. Local farms usually misidentify and mix coffee beans of different varieties, leading to the depreciation of their value. This study used simple sequence repeat (SSR markers to evaluate and distinguish Philippine NSIC-registered coffee species and varieties. The neighbor-joining tree generated using PAUP showed high bootstrap support, separating C. arabica, C. canephora, and C. liberica from each other. Among the twenty primer pairs used, seven were able to distinguish C. arabica, nine for C. liberica, and one for C. canephora.

  16. Inter-Simple Sequence Repeat (ISSR Markers to Study Genetic Diversity Among Cotton Cultivars in Associated with Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Ali Akbar ABDI

    2012-11-01

    Full Text Available Developing salt-tolerant crops is very important as a significant proportion of cultivated land is salt-affected. Screening and selection of salt tolerant genotypes of cotton using DNA molecular markers not only introduce tolerant cultivars useful for hybridization and breeding programs but also detect DNA regions involved in mechanism of salinity tolerance. To study this, 28 cotton cultivars, including 8 Iranian cotton varieties were grown in pots under greenhouse condition and three salt treatments were imposed with salt solutions (0, 70 and 140 mM NaCl. Eight agronomic traits including root length, root fresh weight, root dry weight, chlorophyll and fluorescence index, K+ and Na+ contents in shoot (above ground biomass, and K+/Na+ ratio were measured. Cluster analysis of cultivars based on measured agronomic traits, showed �Cindose� and �Ciacra� as the most tolerant cultivars, and �B-557� and �43347� as the most sensitive cultivars of salt damage. A total of 65 polymorphic DNA fragments were generated at 14 inter-simple sequence repeat (ISSR loci. Plants of 28 cultivars of cotton grouped into three clusters based on ISSR markers. Regression analysis of markers in relation with traits data showed that 23, 33 and 30 markers associated with the measured traits in three salt treatments respectively. These markers might help breeders in any marker assisted selection program in order to improving cotton cultivars against salt stress.

  17. Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species.

    Science.gov (United States)

    Rai, Manoj K; Phulwaria, Mahendra; Shekhawat, N S

    2013-08-01

    Present study demonstrated the cross-genera transferability of 23 simple sequence repeat (SSR) primer pairs developed for guava (Psidium guajava L.) to four new targets, two species of eucalypts (Eucalyptus citriodora, Eucalyptus camaldulensis), bottlebrush (Callistemon lanceolatus) and clove (Syzygium aromaticum), belonging to the family Myrtaceae and subfamily Myrtoideae. Off the 23 SSR loci assayed, 18 (78.2%) gave cross-amplification in E. citriodora, 14 (60.8%) in E. camaldulensis and 17-17 (73.9%) in C. lanceolatus and S. aromaticum. Eight primer pairs were found to be transferable to all four species. The number of alleles detected at each locus ranged from one to nine, with an average of 4.8, 2.6, 4.5 and 4.6 alleles in E. citriodora, E. camaldulensis, C. lanceolatus and S. aromaticum, respectively. The high levels of cross-genera transferability of guava SSRs may be applicable for the analysis of intra- and inter specific genetic diversity of target species, especially in E. citriodora, C. lanceolatus and S. aromaticum, for which till date no information about EST-derived as well as genomic SSR is available.

  18. Genetic characterization of autochthonous grapevine cultivars from Eastern Turkey by simple sequence repeats (SSRs

    Directory of Open Access Journals (Sweden)

    Sadiye Peral Eyduran

    2016-01-01

    Full Text Available In this research, two well-recognized standard grape cultivars, Cabernet Sauvignon and Merlot, together with eight historical autochthonous grapevine cultivars from Eastern Anatolia in Turkey, were genetically characterized by using 12 pairs of simple sequence repeat (SSR primers in order to evaluate their genetic diversity and relatedness. All of the used SSR primers produced successful amplifications and revealed DNA polymorphisms, which were subsequently utilized to evaluate the genetic relatedness of the grapevine cultivars. Allele richness was implied by the identification of 69 alleles in 8 autochthonous cultivars with a mean value of 5.75 alleles per locus. The average expected heterozygosity and observed heterozygosity were found to be 0.749 and 0.739, respectively. Taking into account the generated alleles, the highest number was recorded in VVC2C3 and VVS2 loci (nine and eight alleles per locus, respectively, whereas the lowest number was recorded in VrZAG83 (three alleles per locus. Two main clusters were produced by using the unweighted pair-group method with arithmetic mean dendrogram constructed on the basis of the SSR data. Only Cabernet Sauvignon and Merlot cultivars were included in the first cluster. The second cluster involved the rest of the autochthonous cultivars. The results obtained during the study illustrated clearly that SSR markers have verified to be an effective tool for fingerprinting grapevine cultivars and carrying out grapevine biodiversity studies. The obtained data are also meaningful references for grapevine domestication.

  19. A simple and efficient method for assembling TALE protein based on plasmid library.

    Science.gov (United States)

    Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying

    2013-01-01

    DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.

  20. Analysis of simple sequence repeats in rice bean (Vigna umbellata using an SSR-enriched library

    Directory of Open Access Journals (Sweden)

    Lixia Wang

    2016-02-01

    Full Text Available Rice bean (Vigna umbellata Thunb., a warm-season annual legume, is grown in Asia mainly for dried grain or fodder and plays an important role in human and animal nutrition because the grains are rich in protein and some essential fatty acids and minerals. With the aim of expediting the genetic improvement of rice bean, we initiated a project to develop genomic resources and tools for molecular breeding in this little-known but important crop. Here we report the construction of an SSR-enriched genomic library from DNA extracted from pooled young leaf tissues of 22 rice bean genotypes and developing SSR markers. In 433,562 reads generated by a Roche 454 GS-FLX sequencer, we identified 261,458 SSRs, of which 48.8% were of compound form. Dinucleotide repeats were predominant with an absolute proportion of 81.6%, followed by trinucleotides (17.8%. Other types together accounted for 0.6%. The motif AC/GT accounted for 77.7% of the total, followed by AAG/CTT (14.3%, and all others accounted for 12.0%. Among the flanking sequences, 2928 matched putative genes or gene models in the protein database of Arabidopsis thaliana, corresponding with 608 non-redundant Gene Ontology terms. Of these sequences, 11.2% were involved in cellular components, 24.2% were involved molecular functions, and 64.6% were associated with biological processes. Based on homolog analysis, 1595 flanking sequences were similar to mung bean and 500 to common bean genomic sequences. Comparative mapping was conducted using 350 sequences homologous to both mung bean and common bean sequences. Finally, a set of primer pairs were designed, and a validation test showed that 58 of 220 new primers can be used in rice bean and 53 can be transferred to mung bean. However, only 11 were polymorphic when tested on 32 rice bean varieties. We propose that this study lays the groundwork for developing novel SSR markers and will enhance the mapping of qualitative and quantitative traits and marker

  1. Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers.

    Science.gov (United States)

    Obaid, Ramiz; Abu-Qaoud, Hassan; Arafeh, Rami

    2014-09-03

    Eight accessions of olive trees from three common varieties in Palestine, Nabali Baladi, Nabali Mohassan and Surri, were genetically evaluated using five simple sequence repeat (SSR) markers. A total of 17 alleles from 5 loci were observed in which 15 (88.2%) were polymorphic and 2 (11.8%) were monomorphic. An average of 3.4 alleles per locus was found ranging from 2.0 alleles with the primers GAPU-103 and DCA-9 to 5.0 alleles with U9932 and DCA-16. The smallest amplicon size observed was 50 bp with the primer DCA-16, whereas the largest one (450 bp) with the primer U9932. Cluster analysis with the unweighted pair group method with arithmetic average (UPGMA) showed three clusters: a cluster with four accessions from the 'Nabali Baladi' cultivar, another cluster with three accessions that represents the 'Nabali Mohassen' cultivar and finally the 'Surri' cultivar. The similarity coefficient for the eight olive tree samples ranged from a maximum of 100% between two accessions from Nabali Baladi and also in two other samples from Nabali Mohassan, to a minimum similarity coefficient (0.315) between the Surri and two Nabali Baladi accessions. The results in this investigation clearly highlight the genetic dissimilarity between the three main olive cultivars that have been misidentified and mixed up in the past, based on conventional morphological characters.

  2. Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers.

    Science.gov (United States)

    Li, Wei; Feng, Yanxia; Sun, Haiyan; Deng, Yuanyu; Yu, Hanshou; Chen, Huaigu

    2014-11-01

    Understanding the genetic structure of Gaeumannomyces graminis var. tritici is essential for the establishment of efficient disease control strategies. It is becoming clear that microsatellites, or simple sequence repeats (SSRs), play an important role in genome organization and phenotypic diversity, and are a large source of genetic markers for population genetics and meiotic maps. In this study, we examined the G. graminis var. tritici genome (1) to analyze its pattern of SSRs, (2) to compare it with other plant pathogenic filamentous fungi, such as Magnaporthe oryzae and M. poae, and (3) to identify new polymorphic SSR markers for genetic diversity. The G. graminis var. tritici genome was rich in SSRs; a total 13,650 SSRs have been identified with mononucleotides being the most common motifs. In coding regions, the densities of tri- and hexanucleotides were significantly higher than in noncoding regions. The di-, tri-, tetra, penta, and hexanucleotide repeats in the G. graminis var. tritici genome were more abundant than the same repeats in M. oryzae and M. poae. From 115 devised primers, 39 SSRs are polymorphic with G. graminis var. tritici isolates, and 8 primers were randomly selected to analyze 116 isolates from China. The number of alleles varied from 2 to 7 and the expected heterozygosity (He) from 0.499 to 0.837. In conclusion, SSRs developed in this study were highly polymorphic, and our analysis indicated that G. graminis var. tritici is a species with high genetic diversity. The results provide a pioneering report for several applications, such as the assessment of population structure and genetic diversity of G. graminis var. tritici.

  3. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L.

    Science.gov (United States)

    Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire

    2012-01-01

    Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604

  4. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  5. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  6. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.; Kö ser, Claudio U.; Ross, Nicholas E.; Archer, John A.C.

    2010-01-01

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  7. Inter Simple Sequence Repeat DNA (ISSR) Polymorphism Utility in Haploid Nicotiana Alata Irradiated Plants for Finding Markers Associated with Gamma Irradiation and Salinity

    International Nuclear Information System (INIS)

    El-Fiki, A.; Adly, M.; El-Metabteb, G.

    2017-01-01

    Nicotiana alata is an ornamental plant. It is a member of family Solanasea. Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. Wild Nicotiana species, as a store house of genes for several diseases and pests, in addition to genes for several important phytochemicals and quality traits which are not present in cultivated varieties. Inter simple sequence repeat DNA (ISSR) analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different treated haploid plant lets were amplified using five specific primers. All primers were polymorphic. A total of 209 bands were amplified of which 135 (59.47%) polymorphic across the radiation treatments. Whilst, the level of polymorphism among the salinity treatments were 181 (85.6 %). Whereas, the polymorphism among the combined effects between gamma radiation doses and salinity concentrations were 283 ( 73.95% ). Treatments relationships were estimated through cluster analysis (UPGMA) based on ISSR data

  8. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  9. Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers.

    Science.gov (United States)

    Xu, Jing-Yuan; Zhu, Yan; Yi, Ze; Wu, Gang; Xie, Guo-Yong; Qin, Min-Jian

    2018-01-01

    "Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Analysis of genetic diversity of Sclerotinia sclerotiorum from eggplant by mycelial compatibility, random amplification of polymorphic DNA (RAPD and simple sequence repeat (SSR analyses

    Directory of Open Access Journals (Sweden)

    Fatih Mehmet Tok

    2016-09-01

    Full Text Available The genetic diversity and pathogenicity/virulence among 60 eggplant Sclerotinia sclerotiorum isolates collected from six different geographic regions of Turkey were analysed using mycelial compatibility groupings (MCGs, random amplified polymorphic DNA (RAPD and simple sequence repeat (SSR polymorphism. By MCG tests, the isolates were classified into 22 groups. Out of 22 MCGs, 36% were represented each by a single isolate. The isolates showed great variability for virulence regardless of MCG and geographic origin. Based on the results of RAPD and SSR analyses, 60 S. sclerotiorum isolates representing 22 MCGs were grouped in 2 and 3 distinct clusters, respectively. Analyses using RAPD and SSR markers illustrated that cluster groupings or genetic distance of S. sclerotiorum populations from eggplant were not distinctly relative to the MCG, geographical origin and virulence diversity. The patterns obtained revealed a high heterogeneity of genetic composition and suggested the occurrence of clonal and sexual reproduction of S. sclerotiorum on eggplant in the areas surveyed.

  11. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map.

    Science.gov (United States)

    Tar'an, B; Warkentin, T D; Tullu, A; Vandenberg, A

    2007-01-01

    Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea (Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. 'ICCV96029' and 'CDC Frontier'. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain's test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.

  12. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus.

    Science.gov (United States)

    Biswas, Manosh Kumar; Chai, Lijun; Mayer, Christoph; Xu, Qiang; Guo, Wenwu; Deng, Xiuxin

    2012-05-01

    The aim of this study was to develop a large set of microsatellite markers based on publicly available BAC-end sequences (BESs), and to evaluate their transferability, discriminating capacity of genotypes and mapping ability in Citrus. A set of 1,281 simple sequence repeat (SSR) markers were developed from the 46,339 Citrus clementina BAC-end sequences (BES), of them 20.67% contained SSR longer than 20 bp, corresponding to roughly one perfect SSR per 2.04 kb. The most abundant motifs were di-nucleotide (16.82%) repeats. Among all repeat motifs (TA/AT)n is the most abundant (8.38%), followed by (AG/CT)n (4.51%). Most of the BES-SSR are located in the non-coding region, but 1.3% of BES-SSRs were found to be associated with transposable element (TE). A total of 400 novel SSR primer pairs were synthesized and their transferability and polymorphism tested on a set of 16 Citrus and Citrus relative's species. Among these 333 (83.25%) were successfully amplified and 260 (65.00%) showed cross-species transferability with Poncirus trifoliata and Fortunella sp. These cross-species transferable markers could be useful for cultivar identification, for genomic study of Citrus, Poncirus and Fortunella sp. Utility of the developed SSR marker was demonstrated by identifying a set of 118 markers each for construction of linkage map of Citrus reticulata and Poncirus trifoliata. Genetic diversity and phylogenetic relationship among 40 Citrus and its related species were conducted with the aid of 25 randomly selected SSR primer pairs and results revealed that citrus genomic SSRs are superior to genic SSR for genetic diversity and germplasm characterization of Citrus spp.

  13. Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats.

    Science.gov (United States)

    Gibbs, M; Dawson, D A; McCamley, C; Wardle, A F; Armour, J A; Burke, T

    1997-12-01

    The total number of microsatellite loci is considered to be at least 10-fold lower in avian species than in mammalian species. Therefore, efficient large-scale cloning of chicken microsatellites, as required for the construction of a high-resolution linkage map, is facilitated by the construction of libraries using an enrichment strategy. In this study, a plasmid library enriched for tandem repeats was constructed from chicken genomic DNA by hybridization selection. Using this technique the proportion of recombinant clones that cross-hybridized to probes containing simple tandem repeats was raised to 16%, compared with < 0.1% in a non-enriched library. Primers were designed from 121 different sequences. Polymerase chain reaction (PCR) analysis of two chicken reference pedigrees enabled 72 loci to be localized within the collaborative chicken genetic map, and at least 30 of the remaining loci have been shown to be informative in these or other crosses.

  14. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    Science.gov (United States)

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-07-17

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.

  15. Genetic diversity analysis of cyanogenic potential (CNp) of root among improved genotypes of cassava using simple sequence repeat markers.

    Science.gov (United States)

    Moyib, O K; Mkumbira, J; Odunola, O A; Dixon, A G

    2012-12-01

    Cyanogenic potential (CNp) of cassava constitutes a serious problem for over 500 million people who rely on the crop as their main source of calories. Genetic diversity is a key to successful crop improvement for breeding new improved variability for target traits. Forty-three improved genotypes of cassava developed by International Institute of Tropical Agriculture (ITA), Ibadan, were characterized for CNp trait using 35 Simple Sequence.Repeat (SSR) markers. Essential colorimetry picric test was used for evaluation of CNp on a color scale of 1 to 14. The CNp scores obtained ranged from 3 to 9, with a mean score of 5.48 (+/- 0.09) based on Statistical Analysis System (SAS) package. TMS M98/ 0068 (4.0 +/- 0.25) was identified as the best genotype with low CNp while TMS M98/0028 (7.75 +/- 0.25) was the worst. The 43 genotypes were assigned into 7 phenotypic groups based on rank-sum analysis in SAS. Dissimilarity analysis representatives for windows generated a phylogenetic tree with 5 clusters which represented hybridizing groups. Each of the clusters (except 4) contained low CNp genotypes that could be used for improving the high CNp genotypes in the same or near cluster. The scatter plot of the genotypes showed that there was little or no demarcation for phenotypic CNp groupings in the molecular groupings. The result of this study demonstrated that SSR markers are powerful tools for the assessment of genetic variability, and proper identification and selection of parents for genetic improvement of low CNp trait among the IITA cassava collection.

  16. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Directory of Open Access Journals (Sweden)

    Graner Andreas

    2008-10-01

    Full Text Available Abstract Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences regions in uncharacterised genomic sequences. The restriction that a particular

  17. Prediction of potential drug targets based on simple sequence properties

    Directory of Open Access Journals (Sweden)

    Lai Luhua

    2007-09-01

    Full Text Available Abstract Background During the past decades, research and development in drug discovery have attracted much attention and efforts. However, only 324 drug targets are known for clinical drugs up to now. Identifying potential drug targets is the first step in the process of modern drug discovery for developing novel therapeutic agents. Therefore, the identification and validation of new and effective drug targets are of great value for drug discovery in both academia and pharmaceutical industry. If a protein can be predicted in advance for its potential application as a drug target, the drug discovery process targeting this protein will be greatly speeded up. In the current study, based on the properties of known drug targets, we have developed a sequence-based drug target prediction method for fast identification of novel drug targets. Results Based on simple physicochemical properties extracted from protein sequences of known drug targets, several support vector machine models have been constructed in this study. The best model can distinguish currently known drug targets from non drug targets at an accuracy of 84%. Using this model, potential protein drug targets of human origin from Swiss-Prot were predicted, some of which have already attracted much attention as potential drug targets in pharmaceutical research. Conclusion We have developed a drug target prediction method based solely on protein sequence information without the knowledge of family/domain annotation, or the protein 3D structure. This method can be applied in novel drug target identification and validation, as well as genome scale drug target predictions.

  18. Genetic Diversity of Arabica Coffee (Coffea arabica L. in Nicaragua as Estimated by Simple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Mulatu Geleta

    2012-01-01

    Full Text Available Coffea arabica L. (arabica coffee, the only tetraploid species in the genus Coffea, represents the majority of the world’s coffee production and has a significant contribution to Nicaragua’s economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei’s gene diversity (HT and the within-population gene diversity (HS were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (FST=0.13; P<0.001. The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety.

  19. Genetic variability in Brazilian populations of Biomphalaria straminea complex detected by simple sequence repeat anchored polymerase chain reaction amplification

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta L

    2001-01-01

    Full Text Available Biomphalaria glabrata, B. tenagophila and B. straminea are intermediate hosts of Schistosoma mansoni, in Brazil. The latter is of epidemiological importance in the northwest of Brazil and, due to morphological similarities, has been grouped with B. intermedia and B. kuhniana in a complex named B. straminea. In the current work, we have standardized the simple sequence repeat anchored polymerase chain reaction (SSR-PCR technique, using the primers (CA8RY and K7, to study the genetic variability of these species. The similarity level was calculated using the Dice coefficient and genetic distance using the Nei and Li coefficient. The trees were obtained by the UPGMA and neighbor-joining methods. We have observed that the most related individuals belong to the same species and locality and that individuals from different localities, but of the same species, present clear heterogeneity. The trees generated using both methods showed similar topologies. The SSR-PCR technique was shown to be very efficient in intrapopulational and intraspecific studies of the B. straminea complex snails.

  20. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple

    Science.gov (United States)

    2012-01-01

    Background Apple is an economically important fruit crop worldwide. Developing a genetic linkage map is a critical step towards mapping and cloning of genes responsible for important horticultural traits in apple. To facilitate linkage map construction, we surveyed and characterized the distribution and frequency of perfect microsatellites in assembled contig sequences of the apple genome. Results A total of 28,538 SSRs have been identified in the apple genome, with an overall density of 40.8 SSRs per Mb. Di-nucleotide repeats are the most frequent microsatellites in the apple genome, accounting for 71.9% of all microsatellites. AT/TA repeats are the most frequent in genomic regions, accounting for 38.3% of all the G-SSRs, while AG/GA dimers prevail in transcribed sequences, and account for 59.4% of all EST-SSRs. A total set of 310 SSRs is selected to amplify eight apple genotypes. Of these, 245 (79.0%) are found to be polymorphic among cultivars and wild species tested. AG/GA motifs in genomic regions have detected more alleles and higher PIC values than AT/TA or AC/CA motifs. Moreover, AG/GA repeats are more variable than any other dimers in apple, and should be preferentially selected for studies, such as genetic diversity and linkage map construction. A total of 54 newly developed apple SSRs have been genetically mapped. Interestingly, clustering of markers with distorted segregation is observed on linkage groups 1, 2, 10, 15, and 16. A QTL responsible for malic acid content of apple fruits is detected on linkage group 8, and accounts for ~13.5% of the observed phenotypic variation. Conclusions This study demonstrates that di-nucleotide repeats are prevalent in the apple genome and that AT/TA and AG/GA repeats are the most frequent in genomic and transcribed sequences of apple, respectively. All SSR motifs identified in this study as well as those newly mapped SSRs will serve as valuable resources for pursuing apple genetic studies, aiding the apple breeding

  1. Study of simple sequence repeat (SSR) polymorphism for biotic ...

    African Journals Online (AJOL)

    home

    2013-10-02

    Oct 2, 2013 ... G. Siva Kumar1, K. Aruna Kumari1*, Ch. V. Durga Rani1, R. M. Sundaram2, S. Vanisree3, Md. ..... review by Jena and Mackill (2008) provided the list of .... repeat protein and is a member of a resistance gene cluster on rice.

  2. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  3. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of ustilago.

    Science.gov (United States)

    Menzies, J G; Bakkeren, G; Matheson, F; Procunier, J D; Woods, S

    2003-02-01

    ABSTRACT In the smut fungi, few features are available for use as taxonomic criteria (spore size, shape, morphology, germination type, and host range). DNA-based molecular techniques are useful in expanding the traits considered in determining relationships among these fungi. We examined the phylogenetic relationships among seven species of Ustilago (U. avenae, U. bullata, U. hordei, U. kolleri, U. nigra, U. nuda, and U. tritici) using inter-simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs) to compare their DNA profiles. Fifty-four isolates of different Ustilago spp. were analyzed using ISSR primers, and 16 isolates of Ustilago were studied using AFLP primers. The variability among isolates within species was low for all species except U. bullata. The isolates of U. bullata, U. nuda, and U. tritici were well separated and our data supports their speciation. U. avenae and U. kolleri isolates did not separate from each other and there was little variability between these species. U. hordei and U. nigra isolates also showed little variability between species, but the isolates from each species grouped together. Our data suggest that U. avenae and U. kolleri are monophyletic and should be considered one species, as should U. hordei and U. nigra.

  4. SeqEntropy: genome-wide assessment of repeats for short read sequencing.

    Directory of Open Access Journals (Sweden)

    Hsueh-Ting Chu

    Full Text Available BACKGROUND: Recent studies on genome assembly from short-read sequencing data reported the limitation of this technology to reconstruct the entire genome even at very high depth coverage. We investigated the limitation from the perspective of information theory to evaluate the effect of repeats on short-read genome assembly using idealized (error-free reads at different lengths. METHODOLOGY/PRINCIPAL FINDINGS: We define a metric H(k to be the entropy of sequencing reads at a read length k and use the relative loss of entropy ΔH(k to measure the impact of repeats for the reconstruction of whole-genome from sequences of length k. In our experiments, we found that entropy loss correlates well with de-novo assembly coverage of a genome, and a score of ΔH(k>1% indicates a severe loss in genome reconstruction fidelity. The minimal read lengths to achieve ΔH(k<1% are different for various organisms and are independent of the genome size. For example, in order to meet the threshold of ΔH(k<1%, a read length of 60 bp is needed for the sequencing of human genome (3.2 10(9 bp and 320 bp for the sequencing of fruit fly (1.8×10(8 bp. We also calculated the ΔH(k scores for 2725 prokaryotic chromosomes and plasmids at several read lengths. Our results indicate that the levels of repeats in different genomes are diverse and the entropy of sequencing reads provides a measurement for the repeat structures. CONCLUSIONS/SIGNIFICANCE: The proposed entropy-based measurement, which can be calculated in seconds to minutes in most cases, provides a rapid quantitative evaluation on the limitation of idealized short-read genome sequencing. Moreover, the calculation can be parallelized to scale up to large euakryotic genomes. This approach may be useful to tune the sequencing parameters to achieve better genome assemblies when a closely related genome is already available.

  5. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  6. Genetic variation in Rhodomyrtus tomentosa (Kemunting) populations from Malaysia as revealed by inter-simple sequence repeat markers.

    Science.gov (United States)

    Hue, T S; Abdullah, T L; Abdullah, N A P; Sinniah, U R

    2015-12-14

    Kemunting (Rhodomyrtus tomentosa) from the Myrtaceae family, is native to Malaysia. It is widely used in traditional medicine to treat various illnesses and possesses significant antibacterial properties. In addition, it has great potential as ornamental in landscape design. Genetic variability studies are important for the rational management and conservation of genetic material. In the present study, inter-simple sequence repeat markers were used to assess the genetic diversity of 18 R. tomentosa populations collected from ten states of Peninsular Malaysia. The 11 primers selected generated 173 bands that ranged in size from 1.6 kb to 130 bp, which corresponded to an average of 15.73 bands per primer. Of these bands, 97.69% (169 in total) were polymorphic. High genetic diversity was documented at the species level (H(T) = 0.2705; I = 0.3973; PPB = 97.69%) but there was a low diversity at population level (H(S) = 0.0073; I = 0 .1085; PPB = 20.14%). The high level of genetic differentiation revealed by G(ST) (73%) and analysis of molecular variance (63%), together with the limited gene flow among population (N(m) = 0.1851), suggests that the populations examined are isolated. Results from an unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis clearly grouped the populations into two geographic groups. This clear grouping can also be demonstrated by the significant Mantel test (r = 0.581, P = 0.001). We recommend that all the R. tomentosa populations be preserved in conservation program.

  7. Diversity and genetic stability in banana genotypes in a breeding program using inter simple sequence repeats (ISSR) markers.

    Science.gov (United States)

    Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S

    2017-02-23

    Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.

  8. APE1 incision activity at abasic sites in tandem repeat sequences.

    Science.gov (United States)

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  9. Development of Highly Informative Genome-Wide Single Sequence Repeat Markers for Breeding Applications in Sesame and Construction of a Web Resource: SisatBase

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2017-08-01

    Full Text Available The sequencing of the full nuclear genome of sesame (Sesamum indicum L. provides the platform for functional analyses of genome components and their application in breeding programs. Although the importance of microsatellites markers or simple sequence repeats (SSR in crop genotyping, genetics, and breeding applications is well established, only a little information exist concerning SSRs at the whole genome level in sesame. In addition, SSRs represent a suitable marker type for sesame molecular breeding in developing countries where it is mainly grown. In this study, we identified 138,194 genome-wide SSRs of which 76.5% were physically mapped onto the 13 pseudo-chromosomes. Among these SSRs, up to three primers pairs were supplied for 101,930 SSRs and used to in silico amplify the reference genome together with two newly sequenced sesame accessions. A total of 79,957 SSRs (78% were polymorphic between the three genomes thereby suggesting their promising use in different genomics-assisted breeding applications. From these polymorphic SSRs, 23 were selected and validated to have high polymorphic potential in 48 sesame accessions from different growing areas of Africa. Furthermore, we have developed an online user-friendly database, SisatBase (http://www.sesame-bioinfo.org/SisatBase/, which provides free access to SSRs data as well as an integrated platform for functional analyses. Altogether, the reference SSR and SisatBase would serve as useful resources for genetic assessment, genomic studies, and breeding advancement in sesame, especially in developing countries.

  10. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut

    Directory of Open Access Journals (Sweden)

    Shirasawa Kenta

    2012-06-01

    Full Text Available Abstract Background Peanut (Arachis hypogaea is an autogamous allotetraploid legume (2n = 4x = 40 that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers. Results The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2% of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed. Conclusions In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp.

  11. Identification, variation and transcription of pneumococcal repeat sequences

    Science.gov (United States)

    2011-01-01

    Background Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. Results Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. Conclusions BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/. PMID:21333003

  12. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

    Science.gov (United States)

    Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D

    2015-05-01

    Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats.

    Science.gov (United States)

    Pissard, A; Ghislain, M; Bertin, P

    2006-01-01

    The Andean tuber-bearing species, Oxalis tuberosa Mol., is a vegetatively propagated crop cultivated in the uplands of the Andes. Its genetic diversity was investigated in the present study using the inter-simple sequence repeat (ISSR) technique. Thirty-two accessions originating from South America (Argentina, Bolivia, Chile, and Peru) and maintained in vitro were chosen to represent the ecogeographic diversity of its cultivation area. Twenty-two primers were tested and 9 were selected according to fingerprinting quality and reproducibility. Genetic diversity analysis was performed with 90 markers. Jaccard's genetic distance between accessions ranged from 0 to 0.49 with an average of 0.28 +/- 0.08 (mean +/- SD). Dendrogram (UPGMA (unweighted pair-group method with arithmetic averaging)) and factorial correspondence analysis (FCA) showed that the genetic structure was influenced by the collection site. The two most distant clusters contained all of the Peruvian accessions, one from Bolivia, none from Argentina or Chile. Analysis by country revealed that Peru presented the greatest genetic distances from the other countries and possessed the highest intra-country genetic distance (0.30 +/- 0.08). This suggests that the Peruvian oca accessions form a distinct genetic group. The relatively low level of genetic diversity in the oca species may be related to its predominating reproduction strategy, i.e., vegetative propagation. The extent and structure of the genetic diversity of the species detailed here should help the establishment of conservation strategies.

  14. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    Directory of Open Access Journals (Sweden)

    Izabella Baranowska Körberg

    Full Text Available The white spotting locus (S in dogs is colocalized with the MITF (microphtalmia-associated transcription factor gene. The phenotypic effects of the four S alleles range from solid colour (S to extreme white spotting (s(w. We have investigated four candidate mutations associated with the s(w allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  15. Isolation and Optimization of Inter-Simple Sequence Repeat (ISSR) Technique For Pleurotus Sajor Caju Towards Environmental Study in Support of the Country's Nuclear Power Programme

    International Nuclear Information System (INIS)

    Rosnani Abdul Rashid; Azhar Mohamad; Mat Rasol Awang; Hassan Hamdani Mutaat; Shaiful Azuar Mohamad; Affrida Abu Hasan; Mohd Meswan Maskom; Siti Khadijah Mohd Nahar

    2013-01-01

    Mushroom can be used as a biological indicator in assessing radiological impact on the environment. Radiological effect would be reflected through morphological changes as well as those changes at molecular level. For this purpose, a preliminary work was conducted, which included DNA isolation, optimization of PCR parameters for Inter-Simple Sequence Repeat (ISSR) and primers screening on Pleurotus sajor caju mushroom strains from Nuclear Malaysia's Sterifeed Mushrooms Collection Centre. In this work, DNA isolation technique from cap and stalk of fruit body were optimized and quantified. It was found that stalk produced highest amount of genomic DNA at 304.01 ng/ μl and cap at 149.00 ng/ μl. A total of 100 ISSR primers were tested and 51 primers were successfully amplified. These primers will be used further for dose response evaluation and molecular profiling in mushroom species. (author)

  16. Repeated-Sprint Sequences During Female Soccer Matches Using Fixed and Individual Speed Thresholds.

    Science.gov (United States)

    Nakamura, Fábio Y; Pereira, Lucas A; Loturco, Irineu; Rosseti, Marcelo; Moura, Felipe A; Bradley, Paul S

    2017-07-01

    Nakamura, FY, Pereira, LA, Loturco, I, Rosseti, M, Moura, FA, and Bradley, PS. Repeated-sprint sequences during female soccer matches using fixed and individual speed thresholds. J Strength Cond Res 31(7): 1802-1810, 2017-The main objective of this study was to characterize the occurrence of single sprint and repeated-sprint sequences (RSS) during elite female soccer matches, using fixed (20 km·h) and individually based speed thresholds (>90% of the mean speed from a 20-m sprint test). Eleven elite female soccer players from the same team participated in the study. All players performed a 20-m linear sprint test, and were assessed in up to 10 official matches using Global Positioning System technology. Magnitude-based inferences were used to test for meaningful differences. Results revealed that irrespective of adopting fixed or individual speed thresholds, female players produced only a few RSS during matches (2.3 ± 2.4 sequences using the fixed threshold and 3.3 ± 3.0 sequences using the individually based threshold), with most sequences composing of just 2 sprints. Additionally, central defenders performed fewer sprints (10.2 ± 4.1) than other positions (fullbacks: 28.1 ± 5.5; midfielders: 21.9 ± 10.5; forwards: 31.9 ± 11.1; with the differences being likely to almost certainly associated with effect sizes ranging from 1.65 to 2.72), and sprinting ability declined in the second half. The data do not support the notion that RSS occurs frequently during soccer matches in female players, irrespective of using fixed or individual speed thresholds to define sprint occurrence. However, repeated-sprint ability development cannot be ruled out from soccer training programs because of its association with match-related performance.

  17. DNA fingerprinting based on simple sequence repeat (SSR ...

    African Journals Online (AJOL)

    New varieties of sugarcane are protected using morphological descriptors, which have limitations in identifying morphologically similar cultivars. Development of a reliable DNA fingerprint system for identification of new varieties would contribute greatly to the breeding of these species. Microsatellite markers are tools with ...

  18. Multineuronal Spike Sequences Repeat with Millisecond Precision

    Directory of Open Access Journals (Sweden)

    Koki eMatsumoto

    2013-06-01

    Full Text Available Cortical microcircuits are nonrandomly wired by neurons. As a natural consequence, spikes emitted by microcircuits are also nonrandomly patterned in time and space. One of the prominent spike organizations is a repetition of fixed patterns of spike series across multiple neurons. However, several questions remain unsolved, including how precisely spike sequences repeat, how the sequences are spatially organized, how many neurons participate in sequences, and how different sequences are functionally linked. To address these questions, we monitored spontaneous spikes of hippocampal CA3 neurons ex vivo using a high-speed functional multineuron calcium imaging technique that allowed us to monitor spikes with millisecond resolution and to record the location of spiking and nonspiking neurons. Multineuronal spike sequences were overrepresented in spontaneous activity compared to the statistical chance level. Approximately 75% of neurons participated in at least one sequence during our observation period. The participants were sparsely dispersed and did not show specific spatial organization. The number of sequences relative to the chance level decreased when larger time frames were used to detect sequences. Thus, sequences were precise at the millisecond level. Sequences often shared common spikes with other sequences; parts of sequences were subsequently relayed by following sequences, generating complex chains of multiple sequences.

  19. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. RePS: a sequence assembler that masks exact repeats identified from the shotgun data

    DEFF Research Database (Denmark)

    Wang, Jun; Wong, Gane Ka-Shu; Ni, Peixiang

    2002-01-01

    We describe a sequence assembler, RePS (repeat-masked Phrap with scaffolding), that explicitly identifies exact 20mer repeats from the shotgun data and removes them prior to the assembly. The established software is used to compute meaningful error probabilities for each base. Clone......-end-pairing information is used to construct scaffolds that order and orient the contigs. We show with real data for human and rice that reasonable assemblies are possible even at coverages of only 4x to 6x, despite having up to 42.2% in exact repeats. Udgivelsesdato: 2002-May...

  1. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  2. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species.

    Science.gov (United States)

    Zhang, Yanzhen; Ma, Ji; Yang, Bingxian; Li, Ruyi; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Zhang, Lin

    2014-05-01

    Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~110kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inter-simple sequence repeat (ISSR) markers in the evaluation of ...

    African Journals Online (AJOL)

    shawkat

    2013-02-13

    Feb 13, 2013 ... 666 Afr. J. Biotechnol. Table 1. Number and types of the ISSR bands as well as the total polymorphism percentages generated in six Capsicum hybrids. Primer code. Sequence. Monomorphic band. Polymorphic band. Total band. Polymorphism. (%). Unique. Shared. HB 1. (CAA)5. 4. 0. 1. 5. 20. HB 2. (CAG) ...

  4. TRDistiller: a rapid filter for enrichment of sequence datasets with proteins containing tandem repeats.

    Science.gov (United States)

    Richard, François D; Kajava, Andrey V

    2014-06-01

    The dramatic growth of sequencing data evokes an urgent need to improve bioinformatics tools for large-scale proteome analysis. Over the last two decades, the foremost efforts of computer scientists were devoted to proteins with aperiodic sequences having globular 3D structures. However, a large portion of proteins contain periodic sequences representing arrays of repeats that are directly adjacent to each other (so called tandem repeats or TRs). These proteins frequently fold into elongated fibrous structures carrying different fundamental functions. Algorithms specific to the analysis of these regions are urgently required since the conventional approaches developed for globular domains have had limited success when applied to the TR regions. The protein TRs are frequently not perfect, containing a number of mutations, and some of them cannot be easily identified. To detect such "hidden" repeats several algorithms have been developed. However, the most sensitive among them are time-consuming and, therefore, inappropriate for large scale proteome analysis. To speed up the TR detection we developed a rapid filter that is based on the comparison of composition and order of short strings in the adjacent sequence motifs. Tests show that our filter discards up to 22.5% of proteins which are known to be without TRs while keeping almost all (99.2%) TR-containing sequences. Thus, we are able to decrease the size of the initial sequence dataset enriching it with TR-containing proteins which allows a faster subsequent TR detection by other methods. The program is available upon request. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    Science.gov (United States)

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  6. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    Science.gov (United States)

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  7. Use of the LUS in sequence allele designations to facilitate probabilistic genotyping of NGS-based STR typing results.

    Science.gov (United States)

    Just, Rebecca S; Irwin, Jodi A

    2018-05-01

    Some of the expected advantages of next generation sequencing (NGS) for short tandem repeat (STR) typing include enhanced mixture detection and genotype resolution via sequence variation among non-homologous alleles of the same length. However, at the same time that NGS methods for forensic DNA typing have advanced in recent years, many caseworking laboratories have implemented or are transitioning to probabilistic genotyping to assist the interpretation of complex autosomal STR typing results. Current probabilistic software programs are designed for length-based data, and were not intended to accommodate sequence strings as the product input. Yet to leverage the benefits of NGS for enhanced genotyping and mixture deconvolution, the sequence variation among same-length products must be utilized in some form. Here, we propose use of the longest uninterrupted stretch (LUS) in allele designations as a simple method to represent sequence variation within the STR repeat regions and facilitate - in the nearterm - probabilistic interpretation of NGS-based typing results. An examination of published population data indicated that a reference LUS region is straightforward to define for most autosomal STR loci, and that using repeat unit plus LUS length as the allele designator can represent greater than 80% of the alleles detected by sequencing. A proof of concept study performed using a freely available probabilistic software demonstrated that the LUS length can be used in allele designations when a program does not require alleles to be integers, and that utilizing sequence information improves interpretation of both single-source and mixed contributor STR typing results as compared to using repeat unit information alone. The LUS concept for allele designation maintains the repeat-based allele nomenclature that will permit backward compatibility to extant STR databases, and the LUS lengths themselves will be concordant regardless of the NGS assay or analysis tools

  8. Potentials and limitations of histone repeat sequences for phylogenetic reconstruction of Sophophora.

    Science.gov (United States)

    Baldo, A M; Les, D H; Strausbaugh, L D

    1999-11-01

    Simplified DNA sequence acquisition has provided many new data sets that are useful for phylogenetic reconstruction, including single- and multiple-copy nuclear and organellar genes. Although transcribed regions receive much attention, nontranscribed regions have recently been added to the repertoire of sequences suitable for phylogenetic studies, especially for closely related taxa. We evaluated the efficacy of a small portion of the histone repeat for phylogenetic reconstruction among Drosophila species. Histone repeats in invertebrates offer distinct advantages similar to those of widely used ribosomal repeats. First, the units are tandemly repeated and undergo concerted evolution. Second, histone repeats include both highly conserved coding and variable intergenic regions. This composition facilitates application of "universal" primers spanning potentially informative sites. We examined a small region of the histone repeat, including the intergenic spacer segments of coding regions from the divergently transcribed H2A and H2B histone genes. The spacer (about 230 bp) exists as a mosaic with highly conserved functional motifs interspersed with rapidly diverging regions; the former aid in alignment of the spacer. There are no ambiguities in alignment of coding regions. Coding and noncoding regions were analyzed together and separately for phylogenetic information. Parsimony, distance, and maximum-likelihood methods successfully retrieve the corroborated phylogeny for the taxa examined. This study demonstrates the resolving power of a small histone region which may now be added to the growing collection of phylogenetically useful DNA sequences.

  9. Characterization of the Genetic Diversity of Acid Lime (Citrus aurantifolia (Christm.) Swingle) Cultivars of Eastern Nepal Using Inter-Simple Sequence Repeat Markers.

    Science.gov (United States)

    Munankarmi, Nabin Narayan; Rana, Neesha; Bhattarai, Tribikram; Shrestha, Ram Lal; Joshi, Bal Krishna; Baral, Bikash; Shrestha, Sangita

    2018-06-12

    Acid lime ( Citrus aurantifolia (Christm.) Swingle) is an important fruit crop, which has high commercial value and is cultivated in 60 out of the 77 districts representing all geographical landscapes of Nepal. A lack of improved high-yielding varieties, infestation with various diseases, and pests, as well as poor management practices might have contributed to its extremely reduced productivity, which necessitates a reliable understanding of genetic diversity in existing cultivars. Hereby, we aim to characterize the genetic diversity of acid lime cultivars cultivated at three different agro-ecological gradients of eastern Nepal, employing PCR-based inter-simple sequence repeat (ISSR) markers. Altogether, 21 polymorphic ISSR markers were used to assess the genetic diversity in 60 acid lime cultivars sampled from different geographical locations. Analysis of binary data matrix was performed on the basis of bands obtained, and principal coordinate analysis and phenogram construction were performed using different computer algorithms. ISSR profiling yielded 234 amplicons, of which 87.18% were polymorphic. The number of amplified fragments ranged from 7⁻18, with amplicon size ranging from ca. 250⁻3200 bp. The Numerical Taxonomy and Multivariate System (NTSYS)-based cluster analysis using the unweighted pair group method of arithmetic averages (UPGMA) algorithm and Dice similarity coefficient separated 60 cultivars into two major and three minor clusters. Genetic diversity analysis using Popgene ver. 1.32 revealed the highest percentage of polymorphic bands (PPB), Nei’s genetic diversity (H), and Shannon’s information index (I) for the Terai zone (PPB = 69.66%; H = 0.215; I = 0.325), and the lowest of all three for the high hill zone (PPB = 55.13%; H = 0.173; I = 0.262). Thus, our data indicate that the ISSR marker has been successfully employed for evaluating the genetic diversity of Nepalese acid lime cultivars and has furnished valuable information on

  10. Simple Sequence Repeat (SSR Genetic Linkage Map of D Genome Diploid Cotton Derived from an Interspecific Cross between Gossypium davidsonii and Gossypium klotzschianum

    Directory of Open Access Journals (Sweden)

    Joy Nyangasi Kirungu

    2018-01-01

    Full Text Available The challenge in tetraploid cotton cultivars is the narrow genetic base and therefore, the bottleneck is how to obtain interspecific hybrids and introduce the germplasm directly from wild cotton to elite cultivars. Construction of genetic maps has provided insight into understanding the genome structure, interrelationships between organisms in relation to evolution, and discovery of genes that carry important agronomic traits in plants. In this study, we generated an interspecific hybrid between two wild diploid cottons, Gossypium davidsonii and Gossypium klotzschianum, and genotyped 188 F2:3 populations in order to develop a genetic map. We screened 12,560 SWU Simple Sequence Repeat (SSR primers and obtained 1000 polymorphic markers which accounted for only 8%. A total of 928 polymorphic primers were successfully scored and only 728 were effectively linked across the 13 chromosomes, but with an asymmetrical distribution. The map length was 1480.23 cM, with an average length of 2.182 cM between adjacent markers. A high percentage of the markers on the map developed, and for the physical map of G. raimondii, exhibited highly significant collinearity, with two types of duplication. High level of segregation distortion was observed. A total of 27 key genes were identified with diverse roles in plant hormone signaling, development, and defense reactions. The achievement of developing the F2:3 population and its genetic map constructions may be a landmark in establishing a new tool for the genetic improvement of cultivars from wild plants in cotton. Our map had an increased recombination length compared to other maps developed from other D genome cotton species.

  11. Anisakis simplex complex: ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats.

    Science.gov (United States)

    Mladineo, Ivona; Trumbić, Željka; Radonić, Ivana; Vrbatović, Anamarija; Hrabar, Jerko; Bušelić, Ivana

    2017-03-01

    The genus Anisakis includes nine species which, due to close morphological resemblance even in the adult stage, have previously caused many issues in their correct identification. Recently observed interspecific hybridisation in sympatric areas of two closely related species, Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, has raised concerns whether a F1 hybrid generation is capable of overriding the breeding barrier, potentially giving rise to more resistant/pathogenic strains infecting humans. To assess the ecological significance of anisakid genotypes in the Adriatic Sea, an allopatric area for the two above-mentioned species, we analysed data from PCR-RFLP genotyping of the ITS region and the sequence of the cytochrome oxidase 2 (cox2) mtDNA locus to discern the parental genotype and maternal haplotype of the individuals. Furthermore, using in silico genome-wide screening of the A. simplex database for polymorphic simple sequence repeats or microsatellites in non-coding regions, we randomly selected potentially informative loci that were tested and optimised for multiplex PCR. The first panel of microsatellites developed for Anisakis was shown to be highly polymorphic, sensitive and amplified in both A. simplex s.s. and A. pegreffii. It was used to inspect genetic differentiation of individuals showing mito-nuclear mosaicism which is characteristic for both species. The observed low level of intergroup heterozygosity suggests that existing mosaicism is likely a retention of an ancestral polymorphism rather than a recent recombination event. This is also supported by allopatry of pure A. simplex s.s. and A. pegreffii in the geographical area under study. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  12. D20S16 is a complex interspersed repeated sequence: Genetic and physical analysis of the locus

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, D.W.; Krawchuk, M.D.; Howard, T.D. [Wake Forest Univ., Winston-Salem, NC (United States)] [and others

    1995-01-20

    The genomic structure of the D20S16 locus has been evaluated using genetic and physical methods. D20S16, originally detected with the probe CRI-L1214, is a highly informative, complex restriction fragment length polymorphism consisting of two separate allelic systems. The allelic systems have the characteristics of conventional VNTR polymorphisms and are separated by recombination ({theta} = 0.02, Z{sub max} = 74.82), as demonstrated in family studies. Most of these recombination events are meiotic crossovers and are maternal in origin, but two, including deletion of the locus in a cell line from a CEPH family member, occur without evidence for exchange of flanking markers. DNA sequence analysis suggests that the basis of the polymorphism is variable numbers of a 98-bp sequence tandemly repeated with 87 to 90% sequence similarity between repeats. The 98-bp repeat is a dimer of 49 bp sequence with 45 to 98% identity between the elements. In addition, nonpolymorphic genomic sequences adjacent to the polymorphic 98-bp repeat tracts are also repeated but are not polymorphic, i.e., show no individual to individual variation. Restriction enzyme mapping of cosmids containing the CRI-L1214 sequence suggests that there are multiple interspersed repeats of the CRI-L1214 sequence on chromosome 20. The results of dual-color fluorescence in situ hybridization experiments with interphase nuclei are also consistent with multiple repeats of an interspersed sequence on chromosome 20. 23 refs., 6 figs.

  13. Use of short tandem repeat sequences to study Mycobacterium leprae in leprosy patients in Malawi and India.

    Directory of Open Access Journals (Sweden)

    Saroj K Young

    2008-04-01

    Full Text Available Inadequate understanding of the transmission of Mycobacterium leprae makes it difficult to predict the impact of leprosy control interventions. Genotypic tests that allow tracking of individual bacterial strains would strengthen epidemiological studies and contribute to our understanding of the disease.Genotyping assays based on variation in the copy number of short tandem repeat sequences were applied to biopsies collected in population-based epidemiological studies of leprosy in northern Malawi, and from members of multi-case households in Hyderabad, India. In the Malawi series, considerable genotypic variability was observed between patients, and also within patients, when isolates were collected at different times or from different tissues. Less within-patient variability was observed when isolates were collected from similar tissues at the same time. Less genotypic variability was noted amongst the closely related Indian patients than in the Malawi series.Lineages of M. leprae undergo changes in their pattern of short tandem repeat sequences over time. Genetic divergence is particularly likely between bacilli inhabiting different (e.g., skin and nerve tissues. Such variability makes short tandem repeat sequences unsuitable as a general tool for population-based strain typing of M. leprae, or for distinguishing relapse from reinfection. Careful use of these markers may provide insights into the development of disease within individuals and for tracking of short transmission chains.

  14. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.

    Science.gov (United States)

    Zhang, Meiping; Rong, Ying; Lee, Mi-Kyung; Zhang, Yang; Stelly, David M; Zhang, Hong-Bin

    2015-10-01

    Cotton is the world's leading textile fiber crop and is also grown as a bioenergy and food crop. Knowledge of the phylogeny of closely related species and the genome origin and evolution of polyploid species is significant for advanced genomics research and breeding. We have reconstructed the phylogeny of the cotton genus, Gossypium L., and deciphered the genome origin and evolution of its five polyploid species by restriction fragment analysis of repeated sequences. Nuclear DNA of 84 accessions representing 35 species and all eight genomes of the genus were analyzed. The phylogenetic tree of the genus was reconstructed using the parsimony method on 1033 polymorphic repeated sequence restriction fragments. The genome origin of its polyploids was determined by calculating the diploid-polyploid restriction fragment correspondence (RFC). The tree is consistent with the morphological classification, genome designation and geographic distribution of the species at subgenus, section and subsection levels. Gossypium lobatum (D7) was unambiguously shown to have the highest RFC with the D-subgenomes of all five polyploids of the genus, while the common ancestor of Gossypium herbaceum (A1) and Gossypium arboreum (A2) likely contributed to the A-subgenomes of the polyploids. These results provide a comprehensive phylogenetic tree of the cotton genus and new insights into the genome origin and evolution of its polyploid species. The results also further demonstrate a simple, rapid and inexpensive method suitable for phylogenetic analysis of closely related species, especially congeneric species, and the inference of genome origin of polyploids that constitute over 70 % of flowering plants.

  15. Simple sequence proteins in prokaryotic proteomes

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2006-06-01

    Full Text Available Abstract Background The structural and functional features associated with Simple Sequence Proteins (SSPs are non-globularity, disease states, signaling and post-translational modification. SSPs are also an important source of genetic and possibly phenotypic variation. Analysis of 249 prokaryotic proteomes offers a new opportunity to examine the genomic properties of SSPs. Results SSPs are a minority but they grow with proteome size. This relationship is exhibited across species varying in genomic GC, mutational bias, life style, and pathogenicity. Their proportion in each proteome is strongly influenced by genomic base compositional bias. In most species simple duplications is favoured, but in a few cases such as Mycobacteria, large families of duplications occur. Amino acid preference in SSPs exhibits a trend towards low cost of biosynthesis. In SSPs and in non-SSPs, Alanine, Glycine, Leucine, and Valine are abundant in species widely varying in genomic GC whereas Isoleucine and Lysine are rich only in organisms with low genomic GC. Arginine is abundant in SSPs of two species and in the non-SSPs of Xanthomonas oryzae. Asparagine is abundant only in SSPs of low GC species. Aspartic acid is abundant only in the non-SSPs of Halobacterium sp NRC1. The abundance of Serine in SSPs of 62 species extends over a broader range compared to that of non-SSPs. Threonine(T is abundant only in SSPs of a couple of species. SSPs exhibit preferential association with Cell surface, Cell membrane and Transport functions and a negative association with Metabolism. Mesophiles and Thermophiles display similar ranges in the content of SSPs. Conclusion Although SSPs are a minority, the genomic forces of base compositional bias and duplications influence their growth and pattern in each species. The preferences and abundance of amino acids are governed by low biosynthetic cost, evolutionary age and base composition of codons. Abundance of charged amino acids Arginine

  16. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    Science.gov (United States)

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae

  17. A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Directory of Open Access Journals (Sweden)

    Glass John I

    2010-07-01

    Full Text Available Abstract Background Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, Mollicutes. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT. Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins. Results Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the Mollicutes. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the

  18. In situ detection of tandem DNA repeat length

    Energy Technology Data Exchange (ETDEWEB)

    Yaar, R.; Szafranski, P.; Cantor, C.R.; Smith, C.L. [Boston Univ., MA (United States)

    1996-11-01

    A simple method for scoring short tandem DNA repeats is presented. An oligonucleotide target, containing tandem repeats embedded in a unique sequence, was hybridized to a set of complementary probes, containing tandem repeats of known lengths. Single-stranded loop structures formed on duplexes containing a mismatched (different) number of tandem repeats. No loop structure formed on duplexes containing a matched (identical) number of tandem repeats. The matched and mismatched loop structures were enzymatically distinguished and differentially labeled by treatment with S1 nuclease and the Klenow fragment of DNA polymerase. 7 refs., 4 figs.

  19. Tandemly repeated sequence in 5'end of mtDNA control region of ...

    African Journals Online (AJOL)

    Extensive length variability was observed in 5' end sequence of the mitochondrial DNA control region of the Japanese Spanish mackerel (Scomberomorus niphonius). This length variability was due to the presence of varying numbers of a 56-bp tandemly repeated sequence and a 46-bp insertion/deletion (indel).

  20. PCR-based approach to SINE isolation: simple and complex SINEs.

    Science.gov (United States)

    Borodulina, Olga R; Kramerov, Dmitri A

    2005-04-11

    Highly repeated copies of short interspersed elements (SINEs) occur in eukaryotic genomes. The distribution of each SINE family is usually restricted to some genera, families, or orders. SINEs have an RNA polymerase III internal promoter, which is composed of boxes A and B. Here we propose a method for isolation of novel SINE families based on genomic DNA PCR with oligonucleotide identical to box A as a primer. Cloning of the size-heterogeneous PCR-products and sequencing of their terminal regions allow determination of SINE structure. Using this approach, two novel SINE families, Rhin-1 and Das-1, from the genomes of great horseshoe bat (Rhinolophus ferrumequinum) and nine-banded armadillo (Dasypus novemcinctus), respectively, were isolated and studied. The distribution of Rhin-1 is restricted to two of six bat families tested. Copies of this SINE are characterized by frequent internal insertions and significant length (200-270 bp). Das-1 being only 90 bp in length is one of the shortest SINEs known. Most of Das-1 nucleotide sequences demonstrate significant similarity to alanine tRNA which appears to be an evolutionary progenitor of this SINE. Together with three other known SINEs (ID, Vic-1, and CYN), Das-1 constitutes a group of simple SINEs. Interestingly, three SINE families of this group are alanine tRNA-derived. Most probably, this tRNA gave rise to short and simple but successful SINEs several times during mammalian evolution.

  1. The Flushtration Count Illusion: Attribute substitution tricks our interpretation of a simple visual event sequence.

    Science.gov (United States)

    Thomas, Cyril; Didierjean, André; Kuhn, Gustav

    2018-04-17

    When faced with a difficult question, people sometimes work out an answer to a related, easier question without realizing that a substitution has taken place (e.g., Kahneman, 2011, Thinking, fast and slow. New York, Farrar, Strauss, Giroux). In two experiments, we investigated whether this attribute substitution effect can also affect the interpretation of a simple visual event sequence. We used a magic trick called the 'Flushtration Count Illusion', which involves a technique used by magicians to give the illusion of having seen multiple cards with identical backs, when in fact only the back of one card (the bottom card) is repeatedly shown. In Experiment 1, we demonstrated that most participants are susceptible to the illusion, even if they have the visual and analytical reasoning capacity to correctly process the sequence. In Experiment 2, we demonstrated that participants construct a biased and simplified representation of the Flushtration Count by substituting some attributes of the event sequence. We discussed of the psychological processes underlying this attribute substitution effect. © 2018 The British Psychological Society.

  2. In Silico Genome Comparison and Distribution Analysis of Simple Sequences Repeats in Cassava

    Directory of Open Access Journals (Sweden)

    Andrea Vásquez

    2014-01-01

    Full Text Available We conducted a SSRs density analysis in different cassava genomic regions. The information obtained was useful to establish comparisons between cassava’s SSRs genomic distribution and those of poplar, flax, and Jatropha. In general, cassava has a low SSR density (~50 SSRs/Mbp and has a high proportion of pentanucleotides, (24,2 SSRs/Mbp. It was found that coding sequences have 15,5 SSRs/Mbp, introns have 82,3 SSRs/Mbp, 5′ UTRs have 196,1 SSRs/Mbp, and 3′ UTRs have 50,5 SSRs/Mbp. Through motif analysis of cassava’s genome SSRs, the most abundant motif was AT/AT while in intron sequences and UTRs regions it was AG/CT. In addition, in coding sequences the motif AAG/CTT was also found to occur most frequently; in fact, it is the third most used codon in cassava. Sequences containing SSRs were classified according to their functional annotation of Gene Ontology categories. The identified SSRs here may be a valuable addition for genetic mapping and future studies in phylogenetic analyses and genomic evolution.

  3. Roles of genes and Alu repeats in nonlinear correlations of HUMHBB DNA sequence

    International Nuclear Information System (INIS)

    Xiao Yi; Huang Yanzhao

    2004-01-01

    DNA sequences of different species and different portion of the DNA of the same species may have completely different correlation properties, but the origin of these correlations is still not very clear and is currently being investigated, especially in different particular cases. We report here a study of the DNA sequence of human beta globin region (HUMHBB) which has strong linear and nonlinear correlations. We studied the roles of two of the typical elements of DNA sequence, genes and Alu repeats, in the nonlinear correlations of HUMHBB. We find that there exist strong nonlinear correlations between the exons or introns in different genes and between the Alu repeats. They may be one of the major sources of the nonlinear correlations in HUMBHB

  4. Identification of Variable-Number Tandem-Repeat (VNTR) Sequences in Acinetobacter baumannii and Interlaboratory Validation of an Optimized Multiple-Locus VNTR Analysis Typing Scheme▿†

    Science.gov (United States)

    Pourcel, Christine; Minandri, Fabrizia; Hauck, Yolande; D'Arezzo, Silvia; Imperi, Francesco; Vergnaud, Gilles; Visca, Paolo

    2011-01-01

    Acinetobacter baumannii is an important opportunistic pathogen responsible for nosocomial outbreaks, mostly occurring in intensive care units. Due to the multiplicity of infection sources, reliable molecular fingerprinting techniques are needed to establish epidemiological correlations among A. baumannii isolates. Multiple-locus variable-number tandem-repeat analysis (MLVA) has proven to be a fast, reliable, and cost-effective typing method for several bacterial species. In this study, an MLVA assay compatible with simple PCR- and agarose gel-based electrophoresis steps as well as with high-throughput automated methods was developed for A. baumannii typing. Preliminarily, 10 potential polymorphic variable-number tandem repeats (VNTRs) were identified upon bioinformatic screening of six annotated genome sequences of A. baumannii. A collection of 7 reference strains plus 18 well-characterized isolates, including unique types and representatives of the three international A. baumannii lineages, was then evaluated in a two-center study aimed at validating the MLVA assay and comparing it with other genotyping assays, namely, macrorestriction analysis with pulsed-field gel electrophoresis (PFGE) and PCR-based sequence group (SG) profiling. The results showed that MLVA can discriminate between isolates with identical PFGE types and SG profiles. A panel of eight VNTR markers was selected, all showing the ability to be amplified and good amounts of polymorphism in the majority of strains. Independently generated MLVA profiles, composed of an ordered string of allele numbers corresponding to the number of repeats at each VNTR locus, were concordant between centers. Typeability, reproducibility, stability, discriminatory power, and epidemiological concordance were excellent. A database containing information and MLVA profiles for several A. baumannii strains is available from http://mlva.u-psud.fr/. PMID:21147956

  5. Assessment of in silico BAC-based simple sequence repeat (SSR ...

    African Journals Online (AJOL)

    Tomato landraces are less sensitive to environmental stresses and grown mainly under rain fed conditions. They are still grown in small farms due to quality and special demand of consumers. These landraces are valuable sources of genetic traits, and plant breeders can use breeding programs for crop improvement.

  6. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  7. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing.

    Science.gov (United States)

    Pope, Bernard J; Hammet, Fleur; Nguyen-Dumont, Tu; Park, Daniel J

    2018-01-01

    Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.

  8. Tandemly repeated sequence in 5'end of mtDNA control region of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... chain reaction (PCR). Japanese Spanish ... mainly covered general ecology and fishery biology. No study concerning the ... Conserved sequence blocks and the repeat units are indicated by boxes. performed using the exact ...

  9. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Bhattacharya, Monolekha; Das, Amit Kumar

    2011-01-01

    Highlights: ► The regulatory sequences recognized by TcrX have been identified. ► The regulatory region comprises of inverted repeats segregated by 30 bp region. ► The mode of binding of TcrX with regulatory sequence is unique. ► In silico TcrX–DNA docked model binds one of the inverted repeats. ► Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has not been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by ∼30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.

  10. Outlier Loci and Selection Signatures of Simple Sequence Repeats (SSRs) in Flax (Linum usitatissimum L.).

    Science.gov (United States)

    Soto-Cerda, Braulio J; Cloutier, Sylvie

    2013-01-01

    Genomic microsatellites (gSSRs) and expressed sequence tag-derived SSRs (EST-SSRs) have gained wide application for elucidating genetic diversity and population structure in plants. Both marker systems are assumed to be selectively neutral when making demographic inferences, but this assumption is rarely tested. In this study, three neutrality tests were assessed for identifying outlier loci among 150 SSRs (85 gSSRs and 65 EST-SSRs) that likely influence estimates of population structure in three differentiated flax sub-populations ( F ST  = 0.19). Moreover, the utility of gSSRs, EST-SSRs, and the combined sets of SSRs was also evaluated in assessing genetic diversity and population structure in flax. Six outlier loci were identified by at least two neutrality tests showing footprints of balancing selection. After removing the outlier loci, the STRUCTURE analysis and the dendrogram topology of EST-SSRs improved. Conversely, gSSRs and combined SSRs results did not change significantly, possibly as a consequence of the higher number of neutral loci assessed. Taken together, the genetic structure analyses established the superiority of gSSRs to determine the genetic relationships among flax accessions, although the combined SSRs produced the best results. Genetic diversity parameters did not differ statistically ( P  > 0.05) between gSSRs and EST-SSRs, an observation partially explained by the similar number of repeat motifs. Our study provides new insights into the ability of gSSRs and EST-SSRs to measure genetic diversity and structure in flax and confirms the importance of testing for the occurrence of outlier loci to properly assess natural and breeding populations, particularly in studies considering only few loci.

  11. Complete chloroplast genome sequence of a major economic species, Ziziphus jujuba (Rhamnaceae).

    Science.gov (United States)

    Ma, Qiuyue; Li, Shuxian; Bi, Changwei; Hao, Zhaodong; Sun, Congrui; Ye, Ning

    2017-02-01

    Ziziphus jujuba is an important woody plant with high economic and medicinal value. Here, we analyzed and characterized the complete chloroplast (cp) genome of Z. jujuba, the first member of the Rhamnaceae family for which the chloroplast genome sequence has been reported. We also built a web browser for navigating the cp genome of Z. jujuba ( http://bio.njfu.edu.cn/gb2/gbrowse/Ziziphus_jujuba_cp/ ). Sequence analysis showed that this cp genome is 161,466 bp long and has a typical quadripartite structure of large (LSC, 89,120 bp) and small (SSC, 19,348 bp) single-copy regions separated by a pair of inverted repeats (IRs, 26,499 bp). The sequence contained 112 unique genes, including 78 protein-coding genes, 30 transfer RNAs, and four ribosomal RNAs. The genome structure, gene order, GC content, and codon usage are similar to other typical angiosperm cp genomes. A total of 38 tandem repeats, two forward repeats, and three palindromic repeats were detected in the Z. jujuba cp genome. Simple sequence repeat (SSR) analysis revealed that most SSRs were AT-rich. The homopolymer regions in the cp genome of Z. jujuba were verified and manually corrected by Sanger sequencing. One-third of mononucleotide repeats were found to be erroneously sequenced by the 454 pyrosequencing, which resulted in sequences of 1-4 bases shorter than that by the Sanger sequencing. Analyzing the cp genome of Z. jujuba revealed that the IR contraction and expansion events resulted in ycf1 and rps19 pseudogenes. A phylogenetic analysis based on 64 protein-coding genes showed that Z. jujuba was closely related to members of the Elaeagnaceae family, which will be helpful for phylogenetic studies of other Rosales species. The complete cp genome sequence of Z. jujuba will facilitate population, phylogenetic, and cp genetic engineering studies of this economic plant.

  12. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence

    NARCIS (Netherlands)

    Semenova, E.V.; Jore, M.M.; Westra, E.R.; Oost, van der J.; Brouns, S.J.J.

    2011-01-01

    Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)/Cas (CRISPR-associated sequences) systems provide adaptive immunity against viruses when a spacer sequence of small CRISPR RNA (crRNA) matches a protospacer sequence in the viral genome. Viruses that escape CRISPR/Cas

  13. Molecular characterizations of somatic hybrids developed between Pleurotus florida and Lentinus squarrosulus through inter-simple sequence repeat markers and sequencing of ribosomal RNA-ITS gene.

    Science.gov (United States)

    Mallick, Pijush; Chattaraj, Shruti; Sikdar, Samir Ranjan

    2017-10-01

    The 12 pfls somatic hybrids and 2 parents of Pleurotus florida and Lentinus s quarrosulus were characterized by ISSR and sequencing of rRNA-ITS genes. Five ISSR primers were used and amplified a total of 54 reproducible fragments with 98.14% polymorphism among all the pfls hybrid populations and parental strains. UPGMA-based cluster exhibited a dendrogram with three major groups between the parents and pfls hybrids. Parent P . florida and L . squarrosulus showed different degrees of genetic distance with all the hybrid lines and they showed closeness to hybrid pfls 1m and pfls 1h , respectively. ITS1(F) and ITS4(R) amplified the rRNA-ITS gene with 611-867 bp sequence length. The nucleotide polymorphisms were found in the ITS1, ITS2 and 5.8S rRNA region with different number of bases. Based on rRNA-ITS sequence, UPGMA cluster exhibited three distinct groups between L. squarrosulus and pfls 1p , pfls 1m and pfls 1s , and pfls 1e and P. florida .

  14. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus

    Science.gov (United States)

    Singh, Swati; Gupta, Sanchita; Mani, Ashutosh; Chaturvedi, Anoop

    2012-01-01

    Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function. PMID:22368382

  15. Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae.

    Science.gov (United States)

    Oggioni, M R; Claverys, J P

    1999-10-01

    A survey of all Streptococcus pneumoniae GenBank/EMBL DNA sequence entries and of the public domain sequence (representing more than 90% of the genome) of an S. pneumoniae type 4 strain allowed identification of 108 copies of a 107-bp-long highly repeated intergenic element called RUP (for repeat unit of pneumococcus). Several features of the element, revealed in this study, led to the proposal that RUP is an insertion sequence (IS)-derivative that could still be mobile. Among these features are: (1) a highly significant homology between the terminal inverted repeats (IRs) of RUPs and of IS630-Spn1, a new putative IS of S. pneumoniae; and (2) insertion at a TA dinucleotide, a characteristic target of several members of the IS630 family. Trans-mobilization of RUP is therefore proposed to be mediated by the transposase of IS630-Spn1. To account for the observation that RUPs are distributed among four subtypes which exhibit different degrees of sequence homogeneity, a scenario is invoked based on successive stages of RUP mobility and non-mobility, depending on whether an active transposase is present or absent. In the latter situation, an active transposase could be reintroduced into the species through natural transformation. Examination of sequences flanking RUP revealed a preferential association with ISs. It also provided evidence that RUPs promote sequence rearrangements, thereby contributing to genome flexibility. The possibility that RUP preferentially targets transforming DNA of foreign origin and subsequently favours disruption/rearrangement of exogenous sequences is discussed.

  16. t2prhd: a tool to study the patterns of repeat evolution

    Directory of Open Access Journals (Sweden)

    Pénzes Zsolt

    2008-01-01

    Full Text Available Abstract Background The models developed to characterize the evolution of multigene families (such as the birth-and-death and the concerted models have also been applied on the level of sequence repeats inside a gene/protein. Phylogenetic reconstruction is the method of choice to study the evolution of gene families and also sequence repeats in the light of these models. The characterization of the gene family evolution in view of the evolutionary models is done by the evaluation of the clustering of the sequences with the originating loci in mind. As the locus represents positional information, it is straightforward that in the case of the repeats the exact position in the sequence should be used, as the simple numbering according to repeat order can be misleading. Results We have developed a novel rapid visual approach to study repeat evolution, that takes into account the exact repeat position in a sequence. The "pairwise repeat homology diagram" visualizes sequence repeats detected by a profile HMM in a pair of sequences and highlights their homology relations inferred by a phylogenetic tree. The method is implemented in a Perl script (t2prhd available for downloading at http://t2prhd.sourceforge.net and is also accessible as an online tool at http://t2prhd.brc.hu. The power of the method is demonstrated on the EGF-like and fibronectin-III-like (Fn-III domain repeats of three selected mammalian Tenascin sequences. Conclusion Although pairwise repeat homology diagrams do not carry all the information provided by the phylogenetic tree, they allow a rapid and intuitive assessment of repeat evolution. We believe, that t2prhd is a helpful tool with which to study the pattern of repeat evolution. This method can be particularly useful in cases of large datasets (such as large gene families, as the command line interface makes it possible to automate the generation of pairwise repeat homology diagrams with the aid of scripts.

  17. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  18. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    2006-12-18

    Dec 18, 2006 ... Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these ...

  19. SIMPLE SEQUENCE REPEAT MARKERS ASSOCIATED WITH ...

    African Journals Online (AJOL)

    ACSS

    2016-02-20

    Feb 20, 2016 ... Deployment of host resistance remains the most cost effective strategy for management of foliar and grain diseases, especially for resource constrained farmers. There is paucity of information on dual resistance in sorghum to both diseases. The objective of this study was to identify SSR markers associated ...

  20. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Prakash

    2006-12-18

    Dec 18, 2006 ... mutation rates have been observed in microsatellites when they are cultured ...... which are falling in the microsatellite rich or poor region are given in the ... regulation of microsatellite evolution (birth, mutation and death).

  1. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Prakash

    nithineacetyltransferase/N-acetylglutamatesynthase, acetylglutamatekinase, acetylornithineaminotransferas e, ornithinecarbamoyltransferase, argininerepressor tyrosinerecombinase, cytidylatekinase, GTP-. bindingproteinEngA. PE 5. 6-phosphogluconatedehydrogenase, Ndh, shortchaindehydrogenase, ModA. Lppe ...

  2. Association Analysis of Simple Sequence Repeat (SSR Markers with Agronomic Traits in Tall Fescue (Festuca arundinacea Schreb..

    Directory of Open Access Journals (Sweden)

    Yanhong Lou

    Full Text Available Tall fescue is widely used in temperate regions throughout the world as a dominant forage grass as well as a turfgrass, in pastoral and turf industry. However, the utilization of tall fescue was limited because of its leaf roughness, poor regeneration ability and poor stress resistance. New cultivars were desirable in modern pastoral industries exceed the potential of existing cultivars. Therefore, well understanding the agronomic traits and describing germplasms would help to overcome these constraints, and morphological evaluation of tall fescue germplasm is the key component in selecting rational parents for hybridization breeding. However, describing the morphological traits of tall fescue germplasm is costly and time-consuming. Fortunately, biotechnology approaches can supplement conventional breeding efforts for tall fescue improvement. Association mapping, as a powerful approach to identify association between agronomic traits and molecular markers has been widely used for enhancing the utilization, conservation and management of the tall fescue germplasms. Therefore, in the present research, 115 tall fescue accessions from different origins (25 accessions are cultivars; 31 accessions from America; 32 accessions from European; 7 accessions from Africa; 20 accessions from Asia, were evaluated for agronomic traits and genetic diversity with 90 simple sequence repeat (SSR markers. The panel displayed significant variation in spike count per plant (SCP and spike weight (SW. However, BCS performed the lowest CV among all the observed agronomic traits. Three subpopulations were identified within the collections but no obvious relative kinship (K was found. The GLM model was used to describe the association between SSR and agronomic traits. Fifty-one SSR markers associated with agronomic traits were observed. Twelve single-associated markers were associated with PH; six single-associated markers were associated with BCS; eight single

  3. Feasibilty of zein proteins, simple sequence repeats and phenotypic ...

    African Journals Online (AJOL)

    Widespread adoption of quality protein maize (QPM), especially among tropical farming systems has been slow mainly due to the slow process of generating varieties with acceptable kernel quality and adaptability to different agroecological contexts. A molecular based foreground selection system for opaque 2 (o2), the ...

  4. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  5. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  6. Tools for analyzing genetic variants from sequencing data Case study: short tandem repeats

    OpenAIRE

    Gymrek, Melissa

    2016-01-01

    This was presented as a BitesizeBio Webinar entitled "Tools for analyzing genetic variants from sequencing data Case study: short tandem repeats"Accompanying scripts can be accessed on github:https://github.com/mgymrek/mgymrek-bitesizebio-webinar 

  7. Bioinformatics tools for development of fast and cost effective simple ...

    African Journals Online (AJOL)

    Bioinformatics tools for development of fast and cost effective simple sequence repeat ... comparative mapping and exploration of functional genetic diversity in the ... Already, a number of computer programs have been implemented that aim at ...

  8. Gene mining a marama bean expressed sequence tags (ESTs ...

    African Journals Online (AJOL)

    The authors reported the identification of genes associated with embryonic development and microsatellite sequences. The future direction will entail characterization of these genes using gene over-expression and mutant assays. Key words: Namibia, simple sequence repeats (SSR), data mining, homology searches, ...

  9. The characterization of a new set of EST-derived simple sequence repeat (SSR markers as a resource for the genetic analysis of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Borba Tereza CO

    2011-05-01

    Full Text Available Abstract Background Over recent years, a growing effort has been made to develop microsatellite markers for the genomic analysis of the common bean (Phaseolus vulgaris to broaden the knowledge of the molecular genetic basis of this species. The availability of large sets of expressed sequence tags (ESTs in public databases has given rise to an expedient approach for the identification of SSRs (Simple Sequence Repeats, specifically EST-derived SSRs. In the present work, a battery of new microsatellite markers was obtained from a search of the Phaseolus vulgaris EST database. The diversity, degree of transferability and polymorphism of these markers were tested. Results From 9,583 valid ESTs, 4,764 had microsatellite motifs, from which 377 were used to design primers, and 302 (80.11% showed good amplification quality. To analyze transferability, a group of 167 SSRs were tested, and the results showed that they were 82% transferable across at least one species. The highest amplification rates were observed between the species from the Phaseolus (63.7%, Vigna (25.9%, Glycine (19.8%, Medicago (10.2%, Dipterix (6% and Arachis (1.8% genera. The average PIC (Polymorphism Information Content varied from 0.53 for genomic SSRs to 0.47 for EST-SSRs, and the average number of alleles per locus was 4 and 3, respectively. Among the 315 newly tested SSRs in the BJ (BAT93 X Jalo EEP558 population, 24% (76 were polymorphic. The integration of these segregant loci into a framework map composed of 123 previously obtained SSR markers yielded a total of 199 segregant loci, of which 182 (91.5% were mapped to 14 linkage groups, resulting in a map length of 1,157 cM. Conclusions A total of 302 newly developed EST-SSR markers, showing good amplification quality, are available for the genetic analysis of Phaseolus vulgaris. These markers showed satisfactory rates of transferability, especially between species that have great economic and genomic values. Their diversity

  10. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  11. Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs).

    Science.gov (United States)

    Liu, Fenyun; Kariyawasam, Subhashinie; Jayarao, Bhushan M; Barrangou, Rodolphe; Gerner-Smidt, Peter; Ribot, Efrain M; Knabel, Stephen J; Dudley, Edward G

    2011-07-01

    Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)-was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.

  12. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  13. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Science.gov (United States)

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  14. Cis-acting regulatory sequences promote high-frequency gene conversion between repeated sequences in mammalian cells.

    Science.gov (United States)

    Raynard, Steven J; Baker, Mark D

    2004-01-01

    In mammalian cells, little is known about the nature of recombination-prone regions of the genome. Previously, we reported that the immunoglobulin heavy chain (IgH) mu locus behaved as a hotspot for mitotic, intrachromosomal gene conversion (GC) between repeated mu constant (Cmu) regions in mouse hybridoma cells. To investigate whether elements within the mu gene regulatory region were required for hotspot activity, gene targeting was used to delete a 9.1 kb segment encompassing the mu gene promoter (Pmu), enhancer (Emu) and switch region (Smu) from the locus. In these cell lines, GC between the Cmu repeats was significantly reduced, indicating that this 'recombination-enhancing sequence' (RES) is necessary for GC hotspot activity at the IgH locus. Importantly, the RES fragment stimulated GC when appended to the same Cmu repeats integrated at ectopic genomic sites. We also show that deletion of Emu and flanking matrix attachment regions (MARs) from the RES abolishes GC hotspot activity at the IgH locus. However, no stimulation of ectopic GC was observed with the Emu/MARs fragment alone. Finally, we provide evidence that no correlation exists between the level of transcription and GC promoted by the RES. We suggest a model whereby Emu/MARS enhances mitotic GC at the endogenous IgH mu locus by effecting chromatin modifications in adjacent DNA.

  15. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  16. An infinitely expandable cloning strategy plus repeat-proof PCR for working with multiple shRNA.

    Directory of Open Access Journals (Sweden)

    Glen John McIntyre

    Full Text Available Vector construction with restriction enzymes (REs typically involves the ligation of a digested donor fragment (insert to a reciprocally digested recipient fragment (vector backbone. Creating a suitable cloning plan becomes increasingly difficult for complex strategies requiring repeated insertions such as constructing multiple short hairpin RNA (shRNA expression vectors for RNA interference (RNAi studies. The problem lies in the reduced availability of suitable RE recognition sites with an increasing number of cloning events and or vector size. This report details a technically simple, directional cloning solution using REs with compatible cohesive ends that are repeatedly destroyed and simultaneously re-introduced with each round of cloning. Donor fragments can be made by PCR or sub-cloned from pre-existing vectors and inserted ad infinitum in any combination. The design incorporates several cloning cores in order to be compatible with as many donor sequences as possible. We show that joining sub-combinations made in parallel is more time-efficient than sequential construction (of one cassette at a time for any combination of 4 or more insertions. Screening for the successful construction of combinations using Taq polymerase based PCR became increasingly difficult with increasing number of repeated sequence elements. A Pfu polymerase based PCR was developed and successfully used to amplify combinations of up to eleven consecutive hairpin expression cassettes. The identified PCR conditions can be beneficial to others working with multiple shRNA or other repeated sequences, and the infinitely expandable cloning strategy serves as a general solution applicable to many cloning scenarios.

  17. Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).

    Science.gov (United States)

    Martin, Andrew C R

    2014-01-01

    The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.

  18. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing.

    Science.gov (United States)

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2016-01-01

    Flax ( Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.

  19. Creation and structure determination of an artificial protein with three complete sequence repeats

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Motoyasu, E-mail: adachi.motoyasu@jaea.go.jp; Shimizu, Rumi; Kuroki, Ryota [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Blaber, Michael [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Florida State University, Tallahassee, FL 32306-4300 (United States)

    2013-11-01

    An artificial protein with three complete sequence repeats was created and the structure was determined by X-ray crystallography. The structure showed threefold symmetry even though there is an amino- and carboxy-terminal. The artificial protein with threefold symmetry may be useful as a scaffold to capture small materials with C3 symmetry. Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine–glycine sequences of Symfoil-4P are replaced with glutamine–glycine (Symfoil-QG) or serine–glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of

  20. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  1. Sequencing, Characterization, and Comparative Analyses of the Plastome of Caragana rosea var. rosea

    Directory of Open Access Journals (Sweden)

    Mei Jiang

    2018-05-01

    Full Text Available To exploit the drought-resistant Caragana species, we performed a comparative study of the plastomes from four species: Caragana rosea, C. microphylla, C. kozlowii, and C. Korshinskii. The complete plastome sequence of the C. rosea was obtained using the next generation DNA sequencing technology. The genome is a circular structure of 133,122 bases and it lacks inverted repeat. It contains 111 unique genes, including 76 protein-coding, 30 tRNA, and four rRNA genes. Repeat analyses obtained 239, 244, 258, and 246 simple sequence repeats in C. rosea, C. microphylla, C. kozlowii, and C. korshinskii, respectively. Analyses of sequence divergence found two intergenic regions: trnI-CAU-ycf2 and trnN-GUU-ycf1, exhibiting a high degree of variations. Phylogenetic analyses showed that the four Caragana species belong to a monophyletic clade. Analyses of Ka/Ks ratios revealed that five genes: rpl16, rpl20, rps11, rps7, and ycf1 and several sites having undergone strong positive selection in the Caragana branch. The results lay the foundation for the development of molecular markers and the understanding of the evolutionary process for drought-resistant characteristics.

  2. Effects of loading sequences and size of repeated stress block of loads on fatigue life calculated using fatigue functions

    International Nuclear Information System (INIS)

    Schott, G.

    1989-01-01

    It is well-known that collective form, stress intensity and loading sequence of individual stresses as well as size of repeated stress blocks can influence fatigue life, significantly. The basic variant of the consecutive Woehler curve concept will permit these effects to be involved into fatigue life computation. The paper presented will demonstrate that fatigue life computations using fatigue functions reflect the loading sequence effect with multilevel loading precisely and provide reliable fatigue life data. Effects of size of repeated stress block and loading sequence on fatigue life as observed with block program tests can be reproduced using the new computation method. (orig.) [de

  3. (SSR) and inter simple sequence repeat (ISSR)

    African Journals Online (AJOL)

    MRT

    2012-07-12

    Jul 12, 2012 ... E-mail: msheidai@yahoo.com, msheidai@sbu.ac.ir. Tel: +98 ... Stewart, 1997; Van Esbroeck and Bowman, 1998; Kumar et al., 2003 ..... Isabel N, Tremblay L, Michaud M, Tremblay FM, Bousquet J (1993). RAPDs as an aid to ...

  4. Characterization and compilation of polymorphic simple sequence repeat (SSR markers of peanut from public database

    Directory of Open Access Journals (Sweden)

    Zhao Yongli

    2012-07-01

    Full Text Available Abstract Background There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L. genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. Findings We compiled 1,343 SSR markers as detecting polymorphism (14.5% within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5% was the most abundant followed by AAG (12.1%, AAT (10.9%, and AT (10.3%.The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. Conclusions The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders.

  5. Detection of Sequence Polymorphism in Rubus Occidentalis L. Monomorphic Microsatellite Markers by High Resolution Melting

    Science.gov (United States)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. Development of microsatellite primers through the identification of appropriate repeate...

  6. Inter- and intra-strain variability of tandem repeats in Mycoplasma pneumoniae based on next-generation sequencing data.

    Science.gov (United States)

    Zhang, Jing; Song, Xiaohong; Ma, Marella J; Xiao, Li; Kenri, Tsuyoshi; Sun, Hongmei; Ptacek, Travis; Li, Shaoli; Waites, Ken B; Atkinson, T Prescott; Shibayama, Keigo; Dybvig, Kevin; Feng, Yanmei

    2017-02-01

    To characterize inter- and intra-strain variability of variable-number tandem repeats (VNTRs) in Mycoplasma pneumoniae to determine the optimal multilocus VNTR analysis scheme for improved strain typing. Whole genome assemblies and next-generation sequencing data from diverse M. pneumoniae isolates were used to characterize VNTRs and their variability, and to compare the strain discriminability of new VNTR and existing markers. We identified 13 VNTRs including five reported previously. These VNTRs displayed different levels of inter- and intra-strain copy number variations. All new markers showed similar or higher discriminability compared with existing VNTR markers and the P1 typing system. Our study provides novel insights into VNTR variations and potential new multilocus VNTR analysis schemes for improved genotyping of M. pneumoniae.

  7. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae inferred from genomic in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    Full Text Available The subfamily Triatominae, vectors of Chagas disease, comprises 140 species characterized by a highly homogeneous chromosome number. We analyzed the chromosomal distribution and evolution of repeated sequences in Triatominae genomes by Genomic in situ Hybridization using Triatoma delpontei and Triatoma infestans genomic DNAs as probes. Hybridizations were performed on their own chromosomes and on nine species included in six genera from the two main tribes: Triatomini and Rhodniini. Genomic probes clearly generate two different hybridization patterns, dispersed or accumulated in specific regions or chromosomes. The three used probes generate the same hybridization pattern in each species. However, these patterns are species-specific. In closely related species, the probes strongly hybridized in the autosomal heterochromatic regions, resembling C-banding and DAPI patterns. However, in more distant species these co-localizations are not observed. The heterochromatic Y chromosome is constituted by highly repeated sequences, which is conserved among 10 species of Triatomini tribe suggesting be an ancestral character for this group. However, the Y chromosome in Rhodniini tribe is markedly different, supporting the early evolutionary dichotomy between both tribes. In some species, sex chromosomes and autosomes shared repeated sequences, suggesting meiotic chromatin exchanges among these heterologous chromosomes. Our GISH analyses enabled us to acquire not only reliable information about autosomal repeated sequences distribution but also an insight into sex chromosome evolution in Triatominae. Furthermore, the differentiation obtained by GISH might be a valuable marker to establish phylogenetic relationships and to test the controversial origin of the Triatominae subfamily.

  8. SA-SSR: a suffix array-based algorithm for exhaustive and efficient SSR discovery in large genetic sequences.

    Science.gov (United States)

    Pickett, B D; Karlinsey, S M; Penrod, C E; Cormier, M J; Ebbert, M T W; Shiozawa, D K; Whipple, C J; Ridge, P G

    2016-09-01

    Simple Sequence Repeats (SSRs) are used to address a variety of research questions in a variety of fields (e.g. population genetics, phylogenetics, forensics, etc.), due to their high mutability within and between species. Here, we present an innovative algorithm, SA-SSR, based on suffix and longest common prefix arrays for efficiently detecting SSRs in large sets of sequences. Existing SSR detection applications are hampered by one or more limitations (i.e. speed, accuracy, ease-of-use, etc.). Our algorithm addresses these challenges while being the most comprehensive and correct SSR detection software available. SA-SSR is 100% accurate and detected >1000 more SSRs than the second best algorithm, while offering greater control to the user than any existing software. SA-SSR is freely available at http://github.com/ridgelab/SA-SSR CONTACT: perry.ridge@byu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Bin Han

    Full Text Available Microsatellites or simple sequence repeats (SSRs are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR; 70,564 (23.9% were found to be monomorphic and 224,703 (76.1% were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3% amplified one locus, 8 (17.8% amplified multiple identical loci, and 13 (28.9% did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising

  10. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  11. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  12. Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation

    DEFF Research Database (Denmark)

    Nordin, Angelica; Akimoto, Chizuru; Wuolikainen, Anna

    2017-01-01

    A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting R...

  13. Isolation of human simple repeat loci by hybridization selection.

    Science.gov (United States)

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  14. A theory that may explain the Hayflick limit--a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts.

    Science.gov (United States)

    Naveilhan, P; Baudet, C; Jabbour, W; Wion, D

    1994-09-01

    A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.

  15. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  16. Kangaroo – A pattern-matching program for biological sequences

    Directory of Open Access Journals (Sweden)

    Betel Doron

    2002-07-01

    Full Text Available Abstract Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats.

  17. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.

    Science.gov (United States)

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.

  18. Revisiting the TALE repeat.

    Science.gov (United States)

    Deng, Dong; Yan, Chuangye; Wu, Jianping; Pan, Xiaojing; Yan, Nieng

    2014-04-01

    Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.

  19. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  20. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.

    Science.gov (United States)

    Broxson, Christopher; Beckett, Joshua; Tornaletti, Silvia

    2011-05-17

    Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.

  1. Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.)

    DEFF Research Database (Denmark)

    Studer, Bruno; Asp, Torben; Frei, Ursula

    2008-01-01

    An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was te...

  2. Analysis of oligonucleotide array experiments with repeated measures using mixed models

    Directory of Open Access Journals (Sweden)

    Getchell Thomas V

    2004-12-01

    Full Text Available Abstract Background Two or more factor mixed factorial experiments are becoming increasingly common in microarray data analysis. In this case study, the two factors are presence (Patients with Alzheimer's disease or absence (Control of the disease, and brain regions including olfactory bulb (OB or cerebellum (CER. In the design considered in this manuscript, OB and CER are repeated measurements from the same subject and, hence, are correlated. It is critical to identify sources of variability in the analysis of oligonucleotide array experiments with repeated measures and correlations among data points have to be considered. In addition, multiple testing problems are more complicated in experiments with multi-level treatments or treatment combinations. Results In this study we adopted a linear mixed model to analyze oligonucleotide array experiments with repeated measures. We first construct a generalized F test to select differentially expressed genes. The Benjamini and Hochberg (BH procedure of controlling false discovery rate (FDR at 5% was applied to the P values of the generalized F test. For those genes with significant generalized F test, we then categorize them based on whether the interaction terms were significant or not at the α-level (αnew = 0.0033 determined by the FDR procedure. Since simple effects may be examined for the genes with significant interaction effect, we adopt the protected Fisher's least significant difference test (LSD procedure at the level of αnew to control the family-wise error rate (FWER for each gene examined. Conclusions A linear mixed model is appropriate for analysis of oligonucleotide array experiments with repeated measures. We constructed a generalized F test to select differentially expressed genes, and then applied a specific sequence of tests to identify factorial effects. This sequence of tests applied was designed to control for gene based FWER.

  3. Complete plastid genome sequencing of Trochodendraceae reveals a significant expansion of the inverted repeat and suggests a Paleogene divergence between the two extant species.

    Directory of Open Access Journals (Sweden)

    Yan-xia Sun

    Full Text Available The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales, and Gunneridae (core eudicots, but complete plastome analyses do not resolve the relationships among these groups with strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the same unusual ∼4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8 that are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30 million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict species, both of which are of conservation concern.

  4. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  5. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    Science.gov (United States)

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  6. Rate-determining Step of Flap Endonuclease 1 (FEN1) Reflects a Kinetic Bias against Long Flaps and Trinucleotide Repeat Sequences.

    Science.gov (United States)

    Tarantino, Mary E; Bilotti, Katharina; Huang, Ji; Delaney, Sarah

    2015-08-21

    Flap endonuclease 1 (FEN1) is a structure-specific nuclease responsible for removing 5'-flaps formed during Okazaki fragment maturation and long patch base excision repair. In this work, we use rapid quench flow techniques to examine the rates of 5'-flap removal on DNA substrates of varying length and sequence. Of particular interest are flaps containing trinucleotide repeats (TNR), which have been proposed to affect FEN1 activity and cause genetic instability. We report that FEN1 processes substrates containing flaps of 30 nucleotides or fewer at comparable single-turnover rates. However, for flaps longer than 30 nucleotides, FEN1 kinetically discriminates substrates based on flap length and flap sequence. In particular, FEN1 removes flaps containing TNR sequences at a rate slower than mixed sequence flaps of the same length. Furthermore, multiple-turnover kinetic analysis reveals that the rate-determining step of FEN1 switches as a function of flap length from product release to chemistry (or a step prior to chemistry). These results provide a kinetic perspective on the role of FEN1 in DNA replication and repair and contribute to our understanding of FEN1 in mediating genetic instability of TNR sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Characterization of Liaoning cashmere goat transcriptome: sequencing, de novo assembly, functional annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    Full Text Available Liaoning cashmere goat is a famous goat breed for cashmere wool. In order to increase the transcriptome data and accelerate genetic improvement for this breed, we performed de novo transcriptome sequencing to generate the first expressed sequence tag dataset for the Liaoning cashmere goat, using next-generation sequencing technology.Transcriptome sequencing of Liaoning cashmere goat on a Roche 454 platform yielded 804,601 high-quality reads. Clustering and assembly of these reads produced a non-redundant set of 117,854 unigenes, comprising 13,194 isotigs and 104,660 singletons. Based on similarity searches with known proteins, 17,356 unigenes were assigned to 6,700 GO categories, and the terms were summarized into three main GO categories and 59 sub-categories. 3,548 and 46,778 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Comparative analysis revealed that 42,254 unigenes were aligned to 17,532 different sequences in NCBI non-redundant nucleotide databases. 97,236 (82.51% unigenes were mapped to the 30 goat chromosomes. 35,551 (30.17% unigenes were matched to 11,438 reported goat protein-coding genes. The remaining non-matched unigenes were further compared with cattle and human reference genes, 67 putative new goat genes were discovered. Additionally, 2,781 potential simple sequence repeats were initially identified from all unigenes.The transcriptome of Liaoning cashmere goat was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the Liaoning cashmere goat transcriptome. The potential simple sequence repeats provide a material basis for future genetic linkage and quantitative trait loci analyses.

  8. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Science.gov (United States)

    M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan

    2009-01-01

    The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...

  9. Finding minimal action sequences with a simple evaluation of actions

    Science.gov (United States)

    Shah, Ashvin; Gurney, Kevin N.

    2014-01-01

    Animals are able to discover the minimal number of actions that achieves an outcome (the minimal action sequence). In most accounts of this, actions are associated with a measure of behavior that is higher for actions that lead to the outcome with a shorter action sequence, and learning mechanisms find the actions associated with the highest measure. In this sense, previous accounts focus on more than the simple binary signal of “was the outcome achieved?”; they focus on “how well was the outcome achieved?” However, such mechanisms may not govern all types of behavioral development. In particular, in the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if they simply lead to a salient outcome because biological reinforcement signals occur too quickly to evaluate the consequences of an action beyond an indication of the outcome's occurrence. Thus, action discovery mechanisms focus on the simple evaluation of “was the outcome achieved?” and not “how well was the outcome achieved?” Notwithstanding this impoverishment of information, can the process of action discovery find the minimal action sequence? We address this question by implementing computational mechanisms, referred to in this paper as no-cost learning rules, in which each action that leads to the outcome is associated with the same measure of behavior. No-cost rules focus on “was the outcome achieved?” and are consistent with action discovery. No-cost rules discover the minimal action sequence in simulated tasks and execute it for a substantial amount of time. Extensive training, however, results in extraneous actions, suggesting that a separate process (which has been proposed in action discovery) must attenuate learning if no-cost rules participate in behavioral development. We describe how no-cost rules develop behavior, what happens when attenuation is disrupted, and relate the new mechanisms to wider computational and biological context. PMID:25506326

  10. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures.

    Directory of Open Access Journals (Sweden)

    Diego U Ferreiro

    2008-05-01

    Full Text Available Repeat-proteins are made up of near repetitions of 20- to 40-amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasi-one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete "domain" (the stability and cooperativity of the repeating array can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (DeltaG(water and the cooperativity of denaturation (m-value, which do not ordinarily apply for globular proteins. We show how the parameters for the "coarse-grained" description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are "poised" at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions.

  11. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  12. Multiplexed microsatellite recovery using massively parallel sequencing

    Science.gov (United States)

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  13. Automation tools for accelerator control a network based sequencer

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  14. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Flanking Variation Influences Rates of Stutter in Simple Repeats

    Directory of Open Access Journals (Sweden)

    August E. Woerner

    2017-11-01

    Full Text Available It has been posited that the longest uninterrupted stretch (LUS of tandem repeats, as defined by the number of exactly matching repeating motif units, is a better predictor of rates of stutter than the parental allele length (PAL. While there are cases where this hypothesis is likely correct, such as the 9.3 allele in the TH01 locus, there can be situations where it may not apply as well. For example, the PAL may capture flanking indel variations while remaining insensitive to polymorphisms in the repeat, and these haplotypic changes may impact the stutter rate. To address this, rates of stutter were contrasted against the LUS as well as the PAL on different flanking haplotypic backgrounds. This study shows that rates of stutter can vary substantially depending on the flanking haplotype, and while there are cases where the LUS is a better predictor of stutter than the PAL, examples to the contrary are apparent in commonly assayed forensic markers. Further, flanking variation that is 7 bp from the repeat region can impact rates of stutter. These findings suggest that non-proximal effects, such as DNA secondary structure, may be impacting the rates of stutter in common forensic short tandem repeat markers.

  16. Model-based quality assessment and base-calling for second-generation sequencing data.

    Science.gov (United States)

    Bravo, Héctor Corrada; Irizarry, Rafael A

    2010-09-01

    Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in

  17. Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv].

    Science.gov (United States)

    Zhang, Shuo; Tang, Chanjuan; Zhao, Qiang; Li, Jing; Yang, Lifang; Qie, Lufeng; Fan, Xingke; Li, Lin; Zhang, Ning; Zhao, Meicheng; Liu, Xiaotong; Chai, Yang; Zhang, Xue; Wang, Hailong; Li, Yingtao; Li, Wen; Zhi, Hui; Jia, Guanqing; Diao, Xianmin

    2014-01-28

    Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail millet fast becoming a novel model for investigating plant architecture, drought tolerance and C4 photosynthesis of grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering the entire genome are required for diversity, mapping and functional genomics studies in this model species. A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the genotype 'Yugu1' by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of 788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67. The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei's genetic distance of the SSR data, showed that these SSR markers are highly polymorphic and effective. A large set of highly polymorphic SSR markers were successfully and efficiently developed based on genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR markers and their placement on the physical map represent a valuable resource for studying diversity, constructing genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely related species.

  18. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  19. Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers.

    Science.gov (United States)

    Igwe, David Okeh; Afiukwa, Celestine Azubike; Ubi, Benjamin Ewa; Ogbu, Kenneth Idika; Ojuederie, Omena Bernard; Ude, George Nkem

    2017-11-17

    Assessment of genetic diversity of Vigna unguiculata (L.) Walp (cowpea) accessions using informative molecular markers is imperative for their genetic improvement and conservation. Use of efficacious molecular markers to obtain the required knowledge of the genetic diversity within the local and regional germplasm collections can enhance the overall effectiveness of cowpea improvement programs, hence, the comparative assessment of Inter-simple sequence repeat (ISSR) and Start codon targeted (SCoT) markers in genetic diversity of V. unguiculata accessions from different regions in Nigeria. Comparative analysis of the genetic diversity of eighteen accessions from different locations in Nigeria was investigated using ISSR and SCoT markers. DNA extraction was done using Zymogen Kit according to its manufacturer's instructions followed by amplifications with ISSR and SCoT and agarose gel electrophoresis. The reproducible bands were scored for analyses of dendrograms, principal component analysis, genetic diversity, allele frequency, polymorphic information content, and population structure. Both ISSR and SCoT markers resolved the accessions into five major clusters based on dendrogram and principal component analyses. Alleles of 32 and 52 were obtained with ISSR and SCoT, respectively. Numbers of alleles, gene diversity and polymorphic information content detected with ISSR were 9.4000, 0.7358 and 0.7192, while SCoT yielded 11.1667, 0.8158 and 0.8009, respectively. Polymorphic loci were 70 and 80 in ISSR and SCoT, respectively. Both markers produced high polymorphism (94.44-100%). The ranges of effective number of alleles (Ne) were 1.2887 ± 0.1797-1.7831 ± 0.2944 and 1.7416 ± 0.0776-1.9181 ± 0.2426 in ISSR and SCoT, respectively. The Nei's genetic diversity (H) ranged from 0.2112 ± 0.0600-0.4335 ± 0.1371 and 0.4111 ± 0.0226-0.4778 ± 0.1168 in ISSR and SCoT, respectively. Shannon's information index (I) from ISSR and SCoT were 0

  20. Disk-based compression of data from genome sequencing.

    Science.gov (United States)

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Inter simple sequence repeats (ISSR) and random amplified ...

    African Journals Online (AJOL)

    21 of 30 random amplified polymorphic DNA (RAPD) primers produced 220 reproducible bands with average of 10.47 bands per primer and 80.12% of polymorphism. OPR02 primer showed the highest number of effective allele (Ne), Shannon index (I) and genetic diversity (H). Some of the cultivars had specific bands, ...

  2. Comparative effectiveness of inter-simple sequence repeat and ...

    African Journals Online (AJOL)

    iisr

    2013-10-10

    Oct 10, 2013 ... with marijuana (Cannabis sativa L). Figures 1 and 2 represent the banding pattern by Garcinia species indi- cating considerable level of polymorphism. In ISSR profiling, largest number of monomorphic bands were produced by primers 810 and 815 (3 bands), whereas primers 816 and 848a produced only ...

  3. Effects of GABA[subscript A] Modulators on the Repeated Acquisition of Response Sequences in Squirrel Monkeys

    Science.gov (United States)

    Campbell, Una C.; Winsauer, Peter J.; Stevenson, Michael W.; Moerschbaecher, Joseph M.

    2004-01-01

    The present study investigated the effects of positive and negative GABA[subscript A] modulators under three different baselines of repeated acquisition in squirrel monkeys in which the monkeys acquired a three-response sequence on three keys under a second-order fixed-ratio (FR) schedule of food reinforcement. In two of these baselines, the…

  4. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform

    DEFF Research Database (Denmark)

    Fordyce, Sarah Louise; Avila Arcos, Maria del Carmen; Rockenbauer, Eszter

    2011-01-01

    repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method...

  5. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Directory of Open Access Journals (Sweden)

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  6. Verification of simple illuminance based measures for indication of discomfort glare from windows

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth; Heiselberg, Per Kvols; Bryn, Ida

    2015-01-01

    predictions of discomfort glare from windows already in the early design stage when decisions regarding the façade are taken. This study focus on verifying if simple illuminance based measures like vertical illuminance at eye level or horizontal illuminance at the desk are correlated with the perceived glare...... reported by 44 test subjects in a repeated measure design occupant survey and if the reported glare corresponds with the predictions from the simple Daylight Glare Probability (DGPs) model. Large individual variations were seen in the occupants’ assessment of glare in the present study. Yet, the results...... confirm that there is a statistically significant correlation between both vertical eye illuminance and horizontal illuminance at the desk and the occupants’ perception of glare in a perimeter zone office environment, which is promising evidence towards utilizing such simple measures for indication...

  7. A simple artificial life model explains irrational behavior in human decision-making.

    Directory of Open Access Journals (Sweden)

    Carolina Feher da Silva

    Full Text Available Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.

  8. A simple artificial life model explains irrational behavior in human decision-making.

    Science.gov (United States)

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.

  9. The Complete Chloroplast Genome Sequences of the Medicinal Plant Forsythia suspensa (Oleaceae

    Directory of Open Access Journals (Sweden)

    Wenbin Wang

    2017-10-01

    Full Text Available Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae. The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp region, and a small single-copy (SSC; 17,811 bp region interspersed between inverted repeat (IRa/b; 25,717 bp regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8% and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%, and 54 simple sequence repeats (SSRs with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species.

  10. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    Science.gov (United States)

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  11. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  12. Comparison of the degree of homology of DNA and quantity of repeated sequences in an intact plant and cell structure

    International Nuclear Information System (INIS)

    Solov'yan, V.T.; Kunaleh, V.A.; Shumnyl, V.K.; Vershinin, A.V.

    1986-01-01

    This paper attempts to assess the quantity of repeated sequences and degree of homology of DNA in the intact plant and two lines of callus tissue of Rauwolfia serpentina Benth maintained for 20 years, which differ among themselves in the level of biosynthesis of the pharmacologically valuable alkaloid ajmaline. The tritium-labeled repeats of plants and calli were used in direct and reverse hybridization on nitrocellulose filters. Hybridization of H 3-labeled repeats with phage 17 DNA was used as control. The radioactivity of filters after washing was measured in a liquid scintillation counter

  13. A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison)

    DEFF Research Database (Denmark)

    Benkel, Bernhard F.; Smith, Amanda; Christensen, Knud

    2012-01-01

    In this report we present the results of the analysis of approximately 2.7 Mb of genomic information for the American mink (Neovison vison) derived through BAC end sequencing. Our study, which encompasses approximately 1/1000th of the mink genome, suggests that simple sequence repeats (SSRs...

  14. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    Science.gov (United States)

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  15. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  16. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming.

    Science.gov (United States)

    Lin, Geng-Ming; Lai, Yu-Heng; Audira, Gilbert; Hsiao, Chung-Der

    2017-11-06

    Green algae, Chlorella ellipsoidea , Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5-0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.

  17. Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data.

    Science.gov (United States)

    Liu, San-Xu; Hou, Wei; Zhang, Xue-Yan; Peng, Chang-Jun; Yue, Bi-Song; Fan, Zhen-Xin; Li, Jing

    2018-07-18

    The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (lobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (Pgenome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.

  18. Suppression of Repeat-Intensive False Targets Based on Temporal Pulse Diversity

    Directory of Open Access Journals (Sweden)

    Gang Lu

    2013-01-01

    Full Text Available This paper considers the problem of suppressing the repeat-intensive false targets produced by a deception electronic attack (EA system equipped with a Digital Radio Frequency Memory (DRFM device. Different from a conventional repeat jammer, this type of jamming intensively retransmits the intercepted signal stored in a DRFM to the victim radar in a very short time-delay interval relative to a radar pulse wide. A multipeak matched-filtering output is then produced other than the merely expected true target. An electronic protection (EP algorithm based on the space time block code (STBC is proposed to suppress the adverse effects of this jammer. By transmitting a pulse sequence generated from the STBC in succession and the following cancellation process applied upon the received signal, this algorithm performs successfully in a single antenna system provided that the target models are nonfluctuating or slow fluctuating and the pulse repetition frequency (PRF is comparatively high. The performance in white and correlated Gaussian disturbance is evaluated by means of Monte Carlo simulations.

  19. LookSeq: a browser-based viewer for deep sequencing data.

    Science.gov (United States)

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P

    2009-11-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.

  20. High resolution melting detects sequence polymorphism in rubus occidentalis L. monomorphic microsatellite markers

    Science.gov (United States)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. However, primer pairs designed from the regions that flank SSRs often generate fragment...

  1. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  2. Triplet repeat sequences in human DNA can be detected by hybridization to a synthetic (5'-CGG-3')17 oligodeoxyribonucleotide

    DEFF Research Database (Denmark)

    Behn-Krappa, A; Mollenhauer, J; Doerfler, W

    1993-01-01

    The seemingly autonomous amplification of naturally occurring triplet repeat sequences in the human genome has been implicated in the causation of human genetic disease, such as the fragile X (Martin-Bell) syndrome, myotonic dystrophy (Curshmann-Steinert), spinal and bulbar muscular atrophy...

  3. Development of SSR markers for a Tibetan medicinal plant, Lancea tibetica (Phrymaceae), based on RAD sequencing.

    Science.gov (United States)

    Tian, Zunzhe; Zhang, Faqi; Liu, Hairui; Gao, Qingbo; Chen, Shilong

    2016-11-01

    Lancea tibetica (Phrymaceae), a Tibetan medicinal plant, is endemic to the Qinghai-Tibet Plateau. The over-exploitation of wild L. tibetica has led to the destruction of many populations. To enhance protection and management, biological research, especially population genetic studies, should be carried out on L. tibetica . Simple sequence repeat (SSR) markers of L. tibetica were developed to analyze population diversity. Four thousand four hundred and forty-one SSR loci were identified for L. tibetica based on restriction-site associated DNA (RAD) sequencing on the Illumina HiSeq platform. One hundred SSR loci were arbitrarily selected for primer design, and 38 of them were successfully amplified. These markers were tested on 56 individuals from three populations of L. tibetica , and 10 markers displayed polymorphisms. The total number of alleles per locus ranged from three to eight, and observed and expected heterozygosities ranged from 0.200 to 1.000 and 0.683 to 0.879, respectively. We tested for cross-amplification of these 10 markers in the related species L. hirsuta and found that nine could be successfully amplified. The SSR markers characterized here are the first to be developed and tested in L. tibetica . They will be useful for future population genetic studies on L. tibetica and closely related species.

  4. R-loops: targets for nuclease cleavage and repeat instability.

    Science.gov (United States)

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  5. Capillary electrophoresis fragment analysis and clone sequencing in detection of dynamic mutations of spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Yuan-yuan CHEN

    2018-04-01

    Full Text Available Objective To estimate the accuracy and stability of capillary electrophoresis fragment analysis and clone sequencing in detecting dynamic mutations of spinocerebellar ataxia (SCA. Methods Capillary electrophoresis fragment analysis and clone sequencing were used in detecting trinucleotide repeated sequence of 14 SCA patients (3 cases of SCA2, 2 cases of SCA7, 7 cases of SCA8 and 2 cases of SCA17. Results Capillary electrophoresis fragment analysis of 3 SCA2 cases showed the expanded cytosine-adenine-guanine (CAG repeats were 31, 30 and 32, and the copy numbers of 3 clone sequencing for 3 colonies in each case were 37/40/40, 37/38/39 and 38/39/40 respectively. Capillary electrophoresis fragment analysis of 2 SCA7 cases showed the expanded CAG repeats were 57 and 34, and the copy numbers of repeats were 69, 74, 75 in 3 colonies of one case, and was 45 in the other case. For the 7 SCA8 cases with the expanded cytosine-thymine-adenine (CTA/cytosine-thymine-guanine (CTG repeats of 99, 111, 104, 92, 89, 104 and 75, the results of clone sequencing were 97, 116, 104, 90, 90, 102 and 76 respectively. For 2 SCA17 cases with the short/expanded CAG repeats of 37/50 and 36/45, the results of clone sequencing were 51/50/52 and 45/44 for 3 and 2 colonies. Conclusions Although the higher mobility of polymerase chain reaction (PCR products containing dynamic mutation in the capillary electrophoresis fragment analysis might cause the deviation for analysis of copy numbers, the deviation was predictable and the results were repeatable. The clone sequencing results showed obvious instability, especially for SCA2 and SCA7 genes, which might owing to their simple CAG repeats. Consequently, clone sequencing is not suited for detection of dynamic mutation, not to mention the quantitative criteria of dynamic mutation sequencing. DOI: 10.3969/j.issn.1672-6731.2018.03.008

  6. The Pentapeptide Repeat Proteins

    OpenAIRE

    Vetting, Matthew W.; Hegde, Subray S.; Fajardo, J. Eduardo; Fiser, Andras; Roderick, Steven L.; Takiff, Howard E.; Blanchard, John S.

    2006-01-01

    The Pentapeptide Repeat Protein (PRP) family has over 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F]-[S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Myc...

  7. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    Science.gov (United States)

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  8. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    Science.gov (United States)

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  9. [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].

    Science.gov (United States)

    Zhang, Fan; Zhang, Bing; Xiang, Hua; Hu, Songnian

    2009-11-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a widespread system that provides acquired resistance against phages in bacteria and archaea. Here we aim to genome-widely analyze the CRISPR in extreme halophilic archaea, of which the whole genome sequences are available at present time. We used bioinformatics methods including alignment, conservation analysis, GC content and RNA structure prediction to analyze the CRISPR structures of 7 haloarchaeal genomes. We identified the CRISPR structures in 5 halophilic archaea and revealed a conserved palindromic motif in the flanking regions of these CRISPR structures. In addition, we found that the repeat sequences of large CRISPR structures in halophilic archaea were greatly conserved, and two types of predicted RNA secondary structures derived from the repeat sequences were likely determined by the fourth base of the repeat sequence. Our results support the proposal that the leader sequence may function as recognition site by having palindromic structures in flanking regions, and the stem-loop secondary structure formed by repeat sequences may function in mediating the interaction between foreign genetic elements and CAS-encoded proteins.

  10. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...... recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match...... with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure...

  11. Assembly of Repeat Content Using Next Generation Sequencing Data

    Energy Technology Data Exchange (ETDEWEB)

    labutti, Kurt; Kuo, Alan; Grigoriev, Igor; Copeland, Alex

    2014-03-17

    Repetitive organisms pose a challenge for short read assembly, and typically only unique regions and repeat regions shorter than the read length, can be accurately assembled. Recently, we have been investigating the use of Pacific Biosciences reads for de novo fungal assembly. We will present an assessment of the quality and degree of repeat reconstruction possible in a fungal genome using long read technology. We will also compare differences in assembly of repeat content using short read and long read technology.

  12. Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine.

    Science.gov (United States)

    Lesser, Mark R; Parchman, Thomas L; Buerkle, C Alex

    2012-05-01

    With the advent of next generation sequencing technologies, transcriptome level sequence collections are arising as prominent resources for the discovery of gene-based molecular markers. In a previous study more than 15,000 simple sequence repeats (SSRs) in expressed sequence tag (EST) sequences resulting from 454 pyrosequencing of Pinus contorta cDNA were identified. From these we developed PCR primers for approximately 4000 candidate SSRs. Here, we tested 184 of these SSRs for successful amplification across P. contorta and eight other pine species and examined patterns of polymorphism and allelic variability for a subset of these SSRs. Cross-species transferability was high, with high percentages of loci producing PCR products in all species tested. In addition, 50% of the loci we screened across panels of individuals from three of these species were polymorphic and allelically diverse. We examined levels of diversity in a subset of these SSRs by collecting genotypic data across several populations of Pinus ponderosa in northern Wyoming. Our results indicate the utility of mining pyrosequenced EST collections for gene-based SSRs and provide a source of molecular markers that should bolster evolutionary genetic investigations across the genus Pinus. © 2011 Blackwell Publishing Ltd.

  13. Alu repeats as markers for forensic DNA analyses

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Kass, D.H. [Louisiana State Univ., New Orleans, LA (United States)] [and others

    1994-01-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 98.9% nucleotide identity with the HS subfamily consensus sequence, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 inch and 3 inch unique flanking DNA sequences from each HS Alu that allow the locus to be assayed for the presence or absence of the Alu repeat. The dimorphic HS Alu sequences probably inserted in the human genome after the radiation of modem humans (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project. HS Alu family member insertions differ from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) in that polymorphisms due to Alu insertions arise as a result of a unique event which has occurred only one time in the human population and spread through the population from that point. Therefore, individuals that share HS Alu repeats inherited these elements from a common ancestor. Most VNTR and RFLP polymorphisms may arise multiple times in parallel within a population.

  14. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1.

    Science.gov (United States)

    Franco, Bernardo; González-Cerón, Gabriela; Servín-González, Luis

    2003-11-01

    The functionality of direct and inverted repeat sequences inside the cis acting locus of transfer (clt) of the Streptomyces plasmid pJV1 was determined by testing the effect of different deletions on plasmid transfer. The results show that the single most important element for pJV1 clt function is a series of evenly spaced 9 bp long direct repeats which match the consensus CCGCACA(C/G)(C/G), since their deletion caused a dramatic reduction in plasmid transfer. The presence of these repeats in the absence of any other clt sequences allowed plasmid transfer to occur at a frequency that was at least two orders of magnitude higher than that obtained in the complete absence of clt. A database search revealed regions with a similar organization, and in the same position, in Streptomyces plasmids pSN22 and pSLS, which have transfer proteins homologous to those of pJV1.

  15. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers.

    Directory of Open Access Journals (Sweden)

    Huihui Yu

    Full Text Available Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs and simple sequence repeats (SSRs, thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs from low-coverage sequences of a recombinant inbred line (RIL population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.

  16. Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology.

    Science.gov (United States)

    Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi

    2012-07-02

    Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  17. Transcriptome analysis of carnation (Dianthus caryophyllus L. based on next-generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Tanase Koji

    2012-07-01

    Full Text Available Abstract Background Carnation (Dianthus caryophyllus L., in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380 of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  18. Inter simple sequence repeat (ISSR) markers as reproducible and ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... and in many instances, segregation is a matter of opinion. (Takeuchi et al., 2000). ... The leaves were ground in liquid nitrogen in a .... 1000. 500. 100. Figure 1. ISSR-PCR band profiles generated by the primer ISSR-2 with the.

  19. Inter simple sequence repeat (ISSR) analysis of Ethiopian white ...

    African Journals Online (AJOL)

    Oumer

    2015-05-06

    May 6, 2015 ... flowers are quite distinctive and mainly self-pollinating but can be occasionally ... AFLP, amplified fragment length polymorphism. Author(s) agree that this ... Lupine plants growing on an individual farmers plot of land were considered as ..... PROTA (plant resources of tropical Africa /ressourcesvégétales de.

  20. Simple sequence repeat (SSR) markers analysis of genetic diversity ...

    African Journals Online (AJOL)

    hope&shola

    2012-04-24

    Apr 24, 2012 ... erucic acid in the oil and low glucosinolate content in the meal has made rapeseed a valuable source of high quality oil for people and nutritional protein for live-stock. (Qiu et al., 2006). Previous studies have demonstrated that yellow seeds have a thinner seed coat than black seeds in the same genetic ...

  1. Coexistence of 3G repeaters with LTE base stations.

    Science.gov (United States)

    Yeo, Woon-Young; Lee, Sang-Min; Hwang, Gyung-Ho; Kim, Jae-Hoon

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters.

  2. The last half-repeat of transcription activator-like effector (TALE) is dispensable and thereby TALE-based technology can be simplified.

    Science.gov (United States)

    Zheng, Chong-Ke; Wang, Chun-Lian; Zhang, Xiao-Ping; Wang, Fu-Jun; Qin, Teng-Fei; Zhao, Kai-Jun

    2014-09-01

    To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  3. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome

    Science.gov (United States)

    Gill, Navdeep; Buti, Matteo; Kane, Nolan; Bellec, Arnaud; Helmstetter, Nicolas; Berges, Hélène; Rieseberg, Loren H.

    2014-01-01

    Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence. PMID:24833511

  4. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L. Genome

    Directory of Open Access Journals (Sweden)

    Navdeep Gill

    2014-04-01

    Full Text Available Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.

  5. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  6. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.

    Science.gov (United States)

    Xu, Jiajia; Li, Yuanyuan; Ma, Xiuling; Ding, Jianfeng; Wang, Kai; Wang, Sisi; Tian, Ye; Zhang, Hui; Zhu, Xin-Guang

    2013-09-01

    Setaria viridis is an emerging model species for genetic studies of C4 photosynthesis. Many basic molecular resources need to be developed to support for this species. In this paper, we performed a comprehensive transcriptome analysis from multiple developmental stages and tissues of S. viridis using next-generation sequencing technologies. Sequencing of the transcriptome from multiple tissues across three developmental stages (seed germination, vegetative growth, and reproduction) yielded a total of 71 million single end 100 bp long reads. Reference-based assembly using Setaria italica genome as a reference generated 42,754 transcripts. De novo assembly generated 60,751 transcripts. In addition, 9,576 and 7,056 potential simple sequence repeats (SSRs) covering S. viridis genome were identified when using the reference based assembled transcripts and the de novo assembled transcripts, respectively. This identified transcripts and SSR provided by this study can be used for both reverse and forward genetic studies based on S. viridis.

  7. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    Science.gov (United States)

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  8. Digital storage of repeated signals

    International Nuclear Information System (INIS)

    Prozorov, S.P.

    1984-01-01

    An independent digital storage system designed for repeated signal discrimination from background noises is described. The signal averaging is performed off-line in the real time mode by means of multiple selection of the investigated signal and integration in each point. Digital values are added in a simple summator and the result is recorded the storage device with the volume of 1024X20 bit from where it can be output on an oscillograph, a plotter or transmitted to a compUter for subsequent processing. The described storage is reliable and simple device on one base of which the systems for the nuclear magnetic resonapce signal acquisition in different experiments are developed

  9. A hybrid swarm population of Pinus densiflora x P. sylvestris hybrids inferred from sequence analysis of chloroplast DNA and morphological characters

    Science.gov (United States)

    To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China and to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSR), needles and seeds from P. densiflora, P. syl...

  10. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  11. Realizing all reduced syzygy sequences in the planar three-body problem

    International Nuclear Information System (INIS)

    Moeckel, Richard; Montgomery, Richard

    2015-01-01

    The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences. Each homotopy class corresponds to a unique ‘reduced’ syzygy sequence. We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum, repeatedly come very close to triple collision, and have lots of ‘stutters’—repeated syzygies of the same type, which cancel out up to homotopy. The heart of the proof stems from the work by one of us on symbolic dynamics arising out of the central configurations after the triple collision is blown up using McGehee's method. We end with a list of open problems. (paper)

  12. Development of polymorphic genic-SSR markers by cDNA library sequencing in boxwood, Buxus spp. (Buxaceae)

    Science.gov (United States)

    Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...

  13. A sequence-dependent rigid-base model of DNA

    Science.gov (United States)

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  14. A sequence-dependent rigid-base model of DNA.

    Science.gov (United States)

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can

  15. Development and evaluation of expressed sequence tag-derived microsatellite markers for hop genotyping

    Czech Academy of Sciences Publication Activity Database

    Patzak, J.; Matoušek, Jaroslav

    2011-01-01

    Roč. 55, č. 4 (2011), s. 761-765 ISSN 0006-3134 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052 Institutional research plan: CEZ:AV0Z50510513 Keywords : cluster analysis * dendrogram * Humulus lupulus * simple sequence repeat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.974, year: 2011

  16. SIRW: A web server for the Simple Indexing and Retrieval System that combines sequence motif searches with keyword searches.

    Science.gov (United States)

    Ramu, Chenna

    2003-07-01

    SIRW (http://sirw.embl.de/) is a World Wide Web interface to the Simple Indexing and Retrieval System (SIR) that is capable of parsing and indexing various flat file databases. In addition it provides a framework for doing sequence analysis (e.g. motif pattern searches) for selected biological sequences through keyword search. SIRW is an ideal tool for the bioinformatics community for searching as well as analyzing biological sequences of interest.

  17. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    Science.gov (United States)

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic

  18. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  19. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    Science.gov (United States)

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  20. Discrimination of Shark species by simple PCR of 5S rDNA repeats

    OpenAIRE

    Pinhal, Danillo [UNESP; Gadig, Otto Bismarck Fazzano [UNESP; Wasko, Adriane Pinto [UNESP; Oliveira, Claudio [UNESP; Ron, Ernesto; Foresti, Fausto [UNESP; Martins, Cesar [UNESP

    2008-01-01

    Sharks are suffering from intensive exploitation by worldwide fisheries leading to a severe decline in several populations in the last decades. The lack of biological data on a species-specific basis, associated with a k-strategist life history make it difficult to correctly manage and conserve these animals. The aim of the present study was to develop a DNA-based procedure to discriminate shark species by means of a rapid, low cost and easily applicable PCR analysis based on 5S rDNA repeat u...

  1. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order.

    Science.gov (United States)

    Wang, Ying; Zhan, Di-Feng; Jia, Xian; Mei, Wen-Li; Dai, Hao-Fu; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal

  2. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae.

    Directory of Open Access Journals (Sweden)

    Isabel A S Bonatelli

    Full Text Available Microsatellite markers (also known as SSRs, Simple Sequence Repeats are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  3. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae).

    Science.gov (United States)

    Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M

    2015-01-01

    Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.

  4. Sequence determinants of human microsatellite variability

    Directory of Open Access Journals (Sweden)

    Jakobsson Mattias

    2009-12-01

    Full Text Available Abstract Background Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. Results Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length, under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. Conclusions These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.

  5. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.

    Science.gov (United States)

    Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji

    2012-12-01

    In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. The Role of the Y-Chromosome in the Establishment of Murine Hybrid Dysgenesis and in the Analysis of the Nucleotide Sequence Organization, Genetic Transmission and Evolution of Repeated Sequences.

    Science.gov (United States)

    Nallaseth, Ferez Soli

    The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1

  7. Development, characterization and cross species amplification of polymorphic microsatellite markers from expressed sequence tags of turmeric (Curcuma longa L.).

    Science.gov (United States)

    Siju, S; Dhanya, K; Syamkumar, S; Sasikumar, B; Sheeja, T E; Bhat, A I; Parthasarathy, V A

    2010-02-01

    Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST-SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.

  8. Detection, characterization and evolution of internal repeats in Chitinases of known 3-D structure.

    Directory of Open Access Journals (Sweden)

    Manigandan Sivaji

    Full Text Available Chitinase proteins have evolved and diversified almost in all organisms ranging from prokaryotes to eukaryotes. During evolution, internal repeats may appear in amino acid sequences of proteins which alter the structural and functional features. Here we deciphered the internal repeats from Chitinase and characterized the structural similarities between them. Out of 24 diverse Chitinase sequences selected, six sequences (2CJL, 2DSK, 2XVP, 2Z37, 3EBV and 3HBE did not contain any internal repeats of amino acid sequences. Ten sequences contained repeats of length <50, and the remaining 8 sequences contained repeat length between 50 and 100 residues. Two Chitinase sequences, 1ITX and 3SIM, were found to be structurally similar when analyzed using secondary structure of Chitinase from secondary and 3-Dimensional structure database of Protein Data Bank. Internal repeats of 3N17 and 1O6I were also involved in the ligand-binding site of those Chitinase proteins, respectively. Our analyses enhance our understanding towards the identification of structural characteristics of internal repeats in Chitinase proteins.

  9. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing.

    Science.gov (United States)

    Raveendar, Sebastin; Na, Young-Wang; Lee, Jung-Ro; Shim, Donghwan; Ma, Kyung-Ho; Lee, Sok-Young; Chung, Jong-Wook

    2015-07-20

    Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.

  10. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis

    Directory of Open Access Journals (Sweden)

    Hsiao Yu-Yun

    2011-01-01

    Full Text Available Abstract Background Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC end sequences (BESs can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding. Results We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively, at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6% were predicted to represent protein-encoding regions, whereas 1,272 (23.0% contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively, whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6% of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species. Conclusion Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive

  11. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  12. BAC end sequencing of Pacific white shrimp Litopenaeus vannamei: a glimpse into the genome of Penaeid shrimp

    Science.gov (United States)

    Zhao, Cui; Zhang, Xiaojun; Liu, Chengzhang; Huan, Pin; Li, Fuhua; Xiang, Jianhai; Huang, Chao

    2012-05-01

    Little is known about the genome of Pacific white shrimp ( Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 pairedends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.

  13. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  14. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  15. Efficient and exact sampling of simple graphs with given arbitrary degree sequence.

    Directory of Open Access Journals (Sweden)

    Charo I Del Genio

    Full Text Available Uniform sampling from graphical realizations of a given degree sequence is a fundamental component in simulation-based measurements of network observables, with applications ranging from epidemics, through social networks to Internet modeling. Existing graph sampling methods are either link-swap based (Markov-Chain Monte Carlo algorithms or stub-matching based (the Configuration Model. Both types are ill-controlled, with typically unknown mixing times for link-swap methods and uncontrolled rejections for the Configuration Model. Here we propose an efficient, polynomial time algorithm that generates statistically independent graph samples with a given, arbitrary, degree sequence. The algorithm provides a weight associated with each sample, allowing the observable to be measured either uniformly over the graph ensemble, or, alternatively, with a desired distribution. Unlike other algorithms, this method always produces a sample, without back-tracking or rejections. Using a central limit theorem-based reasoning, we argue, that for large , and for degree sequences admitting many realizations, the sample weights are expected to have a lognormal distribution. As examples, we apply our algorithm to generate networks with degree sequences drawn from power-law distributions and from binomial distributions.

  16. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  17. Development of SSR Markers Based on Transcriptome Sequencing and Association Analysis with Drought Tolerance in Perennial Grass Miscanthus from China

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2017-05-01

    Full Text Available Drought has become a critical environmental stress affecting on plant in temperate area. As one of the promising bio-energy crops to sustainable biomass production, the genus Miscanthus has been widely studied around the world. However, the most widely used hybrid cultivar among this genus, Miscanthus × giganteus is proved poor drought tolerance compared to some parental species. Here we mainly focused on Miscanthus sinensis, which is one of the progenitors of M. × giganteus providing a comparable yield and well abiotic stress tolerance in some places. The main objectives were to characterize the physiological and photosynthetic respond to drought stress and to develop simple sequence repeats (SSRs markers associated with drought tolerance by transcriptome sequencing within an originally collection of 44 Miscanthus genotypes from southwest China. Significant phenotypic differences were observed among genotypes, and the average of leaf relative water content (RWC were severely affected by drought stress decreasing from 88.27 to 43.21%, which could well contribute to separating the drought resistant and drought sensitive genotype of Miscanthus. Furthermore, a total of 16,566 gene-associated SSRs markers were identified based on Illumina RNA sequencing under drought conditions, and 93 of them were randomly selected to validate. In total, 70 (75.3% SSRs were successfully amplified and the generated loci from 30 polymorphic SSRs were used to estimate the genetic differentiation and population structure. Finally, two optimum subgroups of the population were determined by structure analysis and based on association analysis, seven significant associations were identified including two markers with leaf RWC and five markers with photosynthetic traits. With the rich sequencing resources annotation, such associations would serve an efficient tool for Miscanthus drought response mechanism study and facilitate genetic improvement of drought resistant for

  18. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong; Yan, Chuangye; Pan, Xiaojing; Mahfouz, Magdy M.; Wang, Jiawei; Zhu, Jiankang; Shi, Yi Gong; Yan, Nieng

    2012-01-01

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair

  19. Characterization of genic microsatellite markers derived from expressed sequence tags in Pacific abalone ( Haliotis discus hannai)

    Science.gov (United States)

    Li, Qi; Shu, Jing; Zhao, Cui; Liu, Shikai; Kong, Lingfeng; Zheng, Xiaodong

    2010-01-01

    Simple sequence repeat (SSR) markers were developed from the expressed sequence tags (ESTs) of Pacific abalone ( Haliotis discus hannai). Repeat motifs were found in 4.95% of the ESTs at a frequency of one repeat every 10.04 kb of EST sequences, after redundancy elimination. Seventeen polymorphic EST-SSRs were developed. The number of alleles per locus varied from 2-17, with an average of 6.8 alleles per locus. The expected and observed heterozygosities ranged from 0.159 to 0.928 and from 0.132 to 0.922, respectively. Twelve of the 17 loci (70.6%) were successfully amplified in H. diversicolor. Seventeen loci segregated in three families, with three showing the presence of null alleles (17.6%). The adequate level of variability and low frequency of null alleles observed in H. discus hannai, together with the high rate of transportability across Haliotis species, make this set of EST-SSR markers an important tool for comparative mapping, marker-assisted selection, and evolutionary studies, not only in the Pacific abalone, but also in related species.

  20. Efficacy of repeated 5-fluorouracil needling for failing and failed filtering surgeries based on simple gonioscopic examination

    Directory of Open Access Journals (Sweden)

    Rashad MA

    2012-12-01

    Full Text Available Mohammad A RashadOphthalmology Department, Faculty of Medicine, Ain Shams University, Cairo, EgyptPurpose: To evaluate the success rate of a modified bleb needling technique in eyes with previous glaucoma surgery that had elevated intraocular pressure.Methods: A retrospective study of 24 eyes of 24 patients that underwent repeated bleb needling performed for failing and failed blebs on slit lamp with 5-fluorouracil (5-FU injections on demand. This was performed after gonioscopic examination to define levels of filtration block.Results: There was significant reduction of mean IOP from 36.91 mmHg to 14.73 mmHg at the final follow-up (P < 0.001. The overall success rate was 92%.Conclusion: Repeated needling with adjunctive 5-FU proved a highly effective, safe alternative to revive filtration surgery rather than another medication or surgery.Keywords: bleb, failure, 5-FU, needling, gonioscopy

  1. TRStalker: an efficient heuristic for finding fuzzy tandem repeats.

    Science.gov (United States)

    Pellegrini, Marco; Renda, M Elena; Vecchio, Alessio

    2010-06-15

    Genomes in higher eukaryotic organisms contain a substantial amount of repeated sequences. Tandem Repeats (TRs) constitute a large class of repetitive sequences that are originated via phenomena such as replication slippage and are characterized by close spatial contiguity. They play an important role in several molecular regulatory mechanisms, and also in several diseases (e.g. in the group of trinucleotide repeat disorders). While for TRs with a low or medium level of divergence the current methods are rather effective, the problem of detecting TRs with higher divergence (fuzzy TRs) is still open. The detection of fuzzy TRs is propaedeutic to enriching our view of their role in regulatory mechanisms and diseases. Fuzzy TRs are also important as tools to shed light on the evolutionary history of the genome, where higher divergence correlates with more remote duplication events. We have developed an algorithm (christened TRStalker) with the aim of detecting efficiently TRs that are hard to detect because of their inherent fuzziness, due to high levels of base substitutions, insertions and deletions. To attain this goal, we developed heuristics to solve a Steiner version of the problem for which the fuzziness is measured with respect to a motif string not necessarily present in the input string. This problem is akin to the 'generalized median string' that is known to be an NP-hard problem. Experiments with both synthetic and biological sequences demonstrate that our method performs better than current state of the art for fuzzy TRs and that the fuzzy TRs of the type we detect are indeed present in important biological sequences. TRStalker will be integrated in the web-based TRs Discovery Service (TReaDS) at bioalgo.iit.cnr.it. Supplementary data are available at Bioinformatics online.

  2. Evaluation of tandem repeats for MLVA typing of Streptococcus uberis isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Lamoureux Jérémy

    2006-11-01

    Full Text Available Abstract Background Streptococcus uberis is a common cause of bovine mastitis and recommended control measures, based on improved milking practice, teat dipping and antibiotic treatment at drying-off, are poorly efficient against this environmental pathogen. A simple and efficient typing method would be helpful in identifying S.uberis sources, virulent strains and cow to cow transmission. The potential of MLVA (Multiple Loci VNTR Analysis; VNTR, Variable Number of Tandem Repeats for S. uberis mastitis isolates genotyping was investigated. Results The genomic sequence of Streptococcus uberis (strain 0104J was analyzed for potential variable number tandem repeats (VNTRs. Twenty-five tandem repeats were identified and amplified by PCR with DNA samples from 24 S. uberis strains. A set of seven TRs were found to be polymorphic and used for MLVA typing of 88 S. uberis isolates. A total of 82 MLVA types were obtained with 22 types among 26 strains isolated from the milk of mastitic cows belonging to our experimental herd, and 61 types for 62 epidemiologically unrelated strains, i.e. collected in different herds and areas. Conclusion The MLVA method can be applied to S. uberis genotyping and constitutes an interesting complement to existing typing methods. This method, which is easy to perform, low cost and can be used in routine, could facilitate investigations of the epidemiology of S. uberis mastitis in dairy cows.

  3. CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.

    Science.gov (United States)

    Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun

    2012-09-15

    To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.

  4. Automated genotyping of dinucleotide repeat markers

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Hoffman, E.P. [Carnegie Mellon Univ., Pittsburgh, PA (United States)]|[Univ. of Pittsburgh, PA (United States)

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  5. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  6. "The devil's in the detail": Release of an expanded, enhanced and dynamically revised forensic STR Sequence Guide.

    Science.gov (United States)

    Phillips, C; Gettings, K Butler; King, J L; Ballard, D; Bodner, M; Borsuk, L; Parson, W

    2018-05-01

    The STR sequence template file published in 2016 as part of the considerations from the DNA Commission of the International Society for Forensic Genetics on minimal STR sequence nomenclature requirements, has been comprehensively revised and audited using the latest GRCh38 genome assembly. The list of forensic STRs characterized was expanded by including supplementary autosomal, X- and Y-chromosome microsatellites in less common use for routine DNA profiling, but some likely to be adopted in future massively parallel sequencing (MPS) STR panels. We outline several aspects of sequence alignment and annotation that required care and attention to detail when comparing sequences to GRCh37 and GRCh38 assemblies, as well as the necessary matching of MPS-based allele descriptions to previously established repeat region structures described in initial sequencing studies of the less well known forensic STRs. The revised sequence guide is now available in a dynamically updated FTP format from the STRidER website with a date-stamped change log to allow users to explore their own MPS data with the most up-to-date forensic STR sequence information compiled in a simple guide. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W

    Czech Academy of Sciences Publication Activity Database

    Gong, Z.; Wu, Y.; Koblížková, Andrea; Torres, G.A.; Wang, K.; Iovene, M.; Neumann, Pavel; Zhang, W.; Novák, Petr; Buell, C.R.; Macas, Jiří; Jiang, J.

    2012-01-01

    Roč. 24, č. 9 (2012), s. 3559-3574 ISSN 1040-4651 R&D Projects: GA MŠk(CZ) LH11058 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : repetitive sequences * plant satellite repeats * Arabidopsis thaliana * rice centromere * wild potatoes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.251, year: 2012

  8. Interstitial telomere-like repeats in the Arabidopsis thaliana genome.

    Science.gov (United States)

    Uchida, Wakana; Matsunaga, Sachihiro; Sugiyama, Ryuji; Kawano, Shigeyuki

    2002-02-01

    Eukaryotic chromosomal ends are protected by telomeres, which are thought to play an important role in ensuring the complete replication of chromosomes. On the other hand, non-functional telomere-like repeats in the interchromosomal regions (interstitial telomeric repeats; ITRs) have been reported in several eukaryotes. In this study, we identified eight ITRs in the Arabidopsis thaliana genome, each consisting of complete and degenerate 300- to 1200-bp sequences. The ITRs were grouped into three classes (class IA-B, class II, and class IIIA-E) based on the degeneracy of the telomeric repeats in ITRs. The telomeric repeats of the two ITRs in class I were conserved for the most part, whereas the single ITR in class II, and the five ITRs in class III were relatively degenerated. In addition, degenerate ITRs were surrounded by common sequences that shared 70-100% homology to each other; these are named ITR-adjacent sequences (IAS). Although the genomic regions around ITRs in class I lacked IAS, those around ITRs in class II contained IAS (IASa), and those around five ITRs in class III had nine types of IAS (IASb, c, d, e, f, g, h, i, and j). Ten IAS types in classes II and III showed no significant homology to each other. The chromosomal locations of ITRs and IAS were not category-related, but most of them were adjacent to, or part of, a centromere. These results show that the A. thaliana genome has undergone chromosomal rearrangements, such as end-fusions and segmental duplications.

  9. In Silico Mining of Microsatellites in Coding Sequences of the Date Palm (Arecaceae Genome, Characterization, and Transferability

    Directory of Open Access Journals (Sweden)

    Frédérique Aberlenc-Bertossi

    2014-01-01

    Full Text Available Premise of the study: To complement existing sets of primarily dinucleotide microsatellite loci from noncoding sequences of date palm, we developed primers for tri- and hexanucleotide microsatellite loci identified within genes. Due to their conserved genomic locations, the primers should be useful in other palm taxa, and their utility was tested in seven other Phoenix species and in Chamaerops, Livistona, and Hyphaene. Methods and Results: Tandem repeat motifs of 3–6 bp were searched using a simple sequence repeat (SSR–pipeline package in coding portions of the date palm draft genome sequence. Fifteen loci produced highly consistent amplification, intraspecific polymorphisms, and stepwise mutation patterns. Conclusions: These microsatellite loci showed sufficient levels of variability and transferability to make them useful for population genetic, selection signature, and interspecific gene flow studies in Phoenix and other Coryphoideae genera.

  10. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  11. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Application of inter simple sequence repeat (ISSR marker) to detect ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Assessment of environmental contamination on ecology (plant) at molecular and population levels is important in risk quantification and remediation study. ..... assessment of cadmium-contaminated soil on plant DNA damage.

  13. Using inter simple sequence repeat (ISSR) markers to study genetic ...

    African Journals Online (AJOL)

    This study shows that ISSR-PCR analysis is quick, reliable and produces sufficient polymorphisms for large-scale DNA fingerprinting purposes. The total of 111 bands of which 60 were polymorphic, (with 54.04%) was amplified by the six primers, an average of seven bands per primer. The total number of amplified ...

  14. The use of simple sequence repeats markers to study genetic ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... of varietal development (Dreher et al., 2000; Welz and. Geigerb, 2002). These techniques utilize molecular mar- kers linked to quantitative trait loci (QTLs) that confer resistance to diseases. In Kenya, gray leaf spot caused by Cercospora zeae- maydis (Theon and Daniels) results in significant yield losses of ...

  15. Suitability of a selected set of simple sequence repeats (SSR ...

    African Journals Online (AJOL)

    Jane

    2011-07-13

    Jul 13, 2011 ... and lodging susceptibility, O. glaberrima is being ... grown in deep water, including coastal mangrove areas .... Rice genotypes used in the study, species, country of origin and ecosystem as referenced in .... South America.

  16. Applications of inter simple sequence repeat (ISSR) rDNA in ...

    African Journals Online (AJOL)

    bika

    2015-04-22

    Apr 22, 2015 ... respectively. These markers were used to estimate genetic similarity among the varieties using ... the degree of species preference plants for snails' life. (Kader ..... countries 80% of all human illness is associated with polluted ...

  17. Inter Simple Sequence Repeat (ISSR) analysis of wild and cultivated ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... for 2 h at constant voltage of 100 V. The gel picture was taken after staining with ethidium ..... systems will provide a useful tool in the future design of collection strategies for ... The drop in diversity is substantially greater for genes involved in .... confirm the occurrence and distribution of wild rice species.

  18. Use of simple sequence repeat (SSR) markers for screening blue ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... 4Ukiriguru Agricultural Research Institute, P. O. Box 1433 Mwanza, Tanzania. Received 25 May ... blue disease in Tanzania may potentially be due to the .... using Hoechst dye and the quality of the DNA samples was checked ...

  19. Development of a simple sequence repeat (SSR) marker set to ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-23

    Aug 23, 2010 ... varieties. Tuber seeds of most of these varieties are not produced and distributed in an organized way ... races from Canary Islands using 19 SSR markers. The ... The aim of the current study was to determine a set of.

  20. Polymorphism of the simple sequence repeat (AAC)5 in the ...

    Indian Academy of Sciences (India)

    2013-12-04

    Dec 4, 2013 ... SSRs could be present in coding and noncoding regions, contributing to genome dynamics and evolution. Previous studies by our research group detected molecular and cytogenetic riboso- mal DNA (rDNA) polymorphisms in Old Portuguese bread and durum wheat cultivars. Considering the rRNA genes.

  1. Applications of inter simple sequence repeat (ISSR) rDNA in ...

    African Journals Online (AJOL)

    bika

    2015-04-22

    Apr 22, 2015 ... for studying genetic variations of L. natalensis snails in Egypt. L. natalensis snails ... Molecular techniques such as random amplified polymorphic ... during collection, water temperature, conductivity and pH were recorded and ...

  2. a stable simple sequence repeat marker for resistance to white ...

    African Journals Online (AJOL)

    ACSS

    between resistant and susceptible materials in parental and advanced generations. ... efforts de sélection de variétés de tabac résistantes à la moisissure blanche. A cet effet, deux ... dominant monogenic type of resistance is being used in ...

  3. Use of simple sequence repeat (SSR) markers for screening blue ...

    African Journals Online (AJOL)

    Blue disease of cotton is an economically important disease of the crop first described from the Central African Republic and spread to other countries. Brazil and other South American countries record crop losses of up to 80% from infection but no cases of the disease have been reported in Tanzania. Resistance to the ...

  4. Evaluation of genetic diversity in rice using simple sequence repeats ...

    African Journals Online (AJOL)

    The genetic diversity of 64 rice genotypes using 20 SSR primers on chromosome number 7-12 was investigated. DNA was extracted by modified cetyl trimethyl ammonium bromide (CTAB) method. The banding pattern was recorded in the form of 0-1 data sheet which was analyzed using unweighted pair group method with ...

  5. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  6. Reduction and technical simplification of testing protocol for walking based on repeatability analyses: An Interreg IVa pilot study

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2010-12-01

    Full Text Available The aim of this study was to define the most appropriate gait measurement protocols to be used in our future studies in the Mobility in Ageing project. A group of young healthy volunteers took part in the study. Each subject carried out a 10-metre walking test at five different speeds (preferred, very slow, very fast, slow, and fast. Each walking speed was repeated three times, making a total of 15 trials which were carried out in a random order. Each trial was simultaneously analysed by three observers using three different technical approaches: a stop watch, photo cells and electronic kinematic dress. In analysing the repeatability of the trials, the results showed that of the five self-selected walking speeds, three of them (preferred, very fast, and very slow had a significantly higher repeatability of the average walking velocity, step length and cadence than the other two speeds. Additionally, the data showed that one of the three technical methods for gait assessment has better metric characteristics than the other two. In conclusion, based on repeatability, technical and organizational simplification, this study helped us to successfully define a simple and reliable walking test to be used in the main study of the project.

  7. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  8. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications

    DEFF Research Database (Denmark)

    Isaksen, Jonas L.; Mohebbi, Ali; Puthusserypady, Sadasivan

    2017-01-01

    to predict the chance of completion and accuracy score. Results: No specific pseudorandom sequence showed superior accuracy on the group basis. When isolating the individual performances with the highest accuracy, time consumption per identification was not significantly increased. The Accuracy Score aids...... is a laborious process. Aims: This study aimed to suggest an efficient method for choosing the optimal stimulus sequence based on a fast test and simple measures to increase the performance and minimize the time consumption for research trials. Methods: A total of 21 healthy subjects were included in an online...... wheelchair control task and completed the same task using stimuli based on the m-code, the gold-code, and the Barker-code. Correct/incorrect identification and time consumption were obtained for each identification. Subject-specific templates were characterized and used in a forward-step first-order model...

  9. A Simple Model for Complex Fabrication of MEMS based Pressure Sensor: A Challenging Approach

    Directory of Open Access Journals (Sweden)

    Himani SHARMA

    2010-08-01

    Full Text Available In this paper we have presented the simple model for complex fabrication of MEMS based absolute micro pressure sensor. This kind of modeling is extremely useful for determining its complexity in fabrication steps and provides complete information about process sequence to be followed during manufacturing. Therefore, the need for test iteration decreases and cost, time can be reduced significantly. By using DevEdit tool (part of SILVACO tool, a behavioral model of pressure sensor have been presented and implemented.

  10. Local repeat sequence organization of an intergenic spacer

    Indian Academy of Sciences (India)

    The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it ...

  11. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype.

    Directory of Open Access Journals (Sweden)

    Stephen C Collins

    2010-03-01

    Full Text Available Fragile X syndrome (FXS is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract.To more thoroughly evaluate the frequency of conventional mutations in FXS-like patients, we used an array-based method to sequence FMR1 in 51 unrelated males exhibiting several features characteristic of FXS but with normal CGG-repeat tracts of FMR1. One patient was identified with a deletion in FMR1, but none of the patients were found to have other conventional mutations.These data suggest that missense mutations in FMR1 are not a common cause of the FXS phenotype in patients who have normal-length CGG-repeat tracts. However, screening for small deletions of FMR1 may be of clinically utility.

  12. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.

    Science.gov (United States)

    Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter

    2018-01-01

    Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.

  13. Gene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir.

    Directory of Open Access Journals (Sweden)

    Andrea Giordano

    Full Text Available BACKGROUND: Paspalum dilatatum Poir. (common name dallisgrass is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. RESULTS: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues (stems, roots, leaves and inflorescences at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet (Setaria italica genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats (SSRs. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34% being polymorphic between sexual and apomictic biotypes. CONCLUSIONS: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression

  14. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  15. Repeat-aware modeling and correction of short read errors.

    Science.gov (United States)

    Yang, Xiao; Aluru, Srinivas; Dorman, Karin S

    2011-02-15

    High-throughput short read sequencing is revolutionizing genomics and systems biology research by enabling cost-effective deep coverage sequencing of genomes and transcriptomes. Error detection and correction are crucial to many short read sequencing applications including de novo genome sequencing, genome resequencing, and digital gene expression analysis. Short read error detection is typically carried out by counting the observed frequencies of kmers in reads and validating those with frequencies exceeding a threshold. In case of genomes with high repeat content, an erroneous kmer may be frequently observed if it has few nucleotide differences with valid kmers with multiple occurrences in the genome. Error detection and correction were mostly applied to genomes with low repeat content and this remains a challenging problem for genomes with high repeat content. We develop a statistical model and a computational method for error detection and correction in the presence of genomic repeats. We propose a method to infer genomic frequencies of kmers from their observed frequencies by analyzing the misread relationships among observed kmers. We also propose a method to estimate the threshold useful for validating kmers whose estimated genomic frequency exceeds the threshold. We demonstrate that superior error detection is achieved using these methods. Furthermore, we break away from the common assumption of uniformly distributed errors within a read, and provide a framework to model position-dependent error occurrence frequencies common to many short read platforms. Lastly, we achieve better error correction in genomes with high repeat content. The software is implemented in C++ and is freely available under GNU GPL3 license and Boost Software V1.0 license at "http://aluru-sun.ece.iastate.edu/doku.php?id = redeem". We introduce a statistical framework to model sequencing errors in next-generation reads, which led to promising results in detecting and correcting errors

  16. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims).

    Science.gov (United States)

    Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E

    2017-07-21

    The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in

  17. Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp).

    Science.gov (United States)

    Garcia, S A L; Van der Lee, T A J; Ferreira, C F; Te Lintel Hekkert, B; Zapater, M-F; Goodwin, S B; Guzmán, M; Kema, G H J; Souza, M T

    2010-11-09

    We searched the genome of Mycosphaerella fijiensis for molecular markers that would allow population genetics analysis of this plant pathogen. M. fijiensis, the causal agent of banana leaf streak disease, also known as black Sigatoka, is the most devastating pathogen attacking bananas (Musa spp). Recently, the entire genome sequence of M. fijiensis became available. We screened this database for VNTR markers. Forty-two primer pairs were selected for validation, based on repeat type and length and the number of repeat units. Five VNTR markers showing multiple alleles were validated with a reference set of isolates from different parts of the world and a population from a banana plantation in Costa Rica. Polymorphism information content values varied from 0.6414 to 0.7544 for the reference set and from 0.0400 and 0.7373 for the population set. Eighty percent of the polymorphism information content values were above 0.60, indicating that the markers are highly informative. These markers allowed robust scoring of agarose gels and proved to be useful for variability and population genetics studies. In conclusion, the strategy we developed to identify and validate VNTR markers is an efficient means to incorporate markers that can be used for fungicide resistance management and to develop breeding strategies to control banana black leaf streak disease. This is the first report of VNTR-minisatellites from the M. fijiensis genome sequence.

  18. Initial study of stability and repeatability of measuring R2' and oxygen extraction fraction values in the healthy brain with gradient-echo sampling of spin-echo sequence

    International Nuclear Information System (INIS)

    Hui Lihong; Zhang Xiaodong; He Chao; Xie Sheng; Xiao Jiangxi; Zhang jue; Wang Xiaoying; Jiang Xuexiang

    2010-01-01

    Objective: To evaluate the stability and repeatability of gradient-echo sampling of spin- echo (GESSE) sequence in measuring the R 2 ' value in volunteers, by comparison with traditional GRE sequence (T 2 * ]nap and T 2 map). Methods: Eight normal healthy volunteers were enrolled in this study and written informed consents were obtained from all subjects. MR scanning including sequences of GESSE, T 2 map and T 2 * map were performed in these subjects at resting status. The same protocol was repeated one day later. Raw data from GESSE sequence were transferred to PC to conduct postprocessing with the software built in house. R 2 ' map and OEF map were got consequently. To obtain quantitative R 2 ' and OEF values in the brain parenchyma, six ROIs were equally placed in the anterior, middle and posterior part of bilateral hemispheres. Both mean and standard deviation of R 2 ' and OEF were recorded. All images from T 2 * map and T 2 map were transferred to the Workstation for postprocessing. The ROIs were put at the same areas as those for GESSE sequence. R 2 ' is defined as R 2 ' = R 2 * - R 2 , R 2 * = 1/T 2 * . The R 2 ' value of GESSE sequence were compared with that of GRE sequence. Results: The mean R 2 ' values of GESSE at the first and second scan and those of the GRE were (4.21±0.92), (4.45±0.94) Hz and (7.37±1.47), (6.42±2.33) Hz respectively. The mean OEF values of GESSE at the first and second scan is 0.327±0.036 and 0.336± 0.035 respectively. The R 2 ' value and OEF value obtained from GESSE were not significantly different between the first and second scan (t=-0.83, -1.48, P>0.05). The R 2 ' value of first GRE imaging had significantly statistical difference from that of second GRE imaging (t=1.80, P 2 ' value of GESSE sequence was less than that of GRE sequence, and there was significantly statistical difference between them (t=1.71, P<0.05). Conclusion: The GESSE sequence has good stability and repeatability with promising clinical practicability

  19. Identification of the centromeric repeat in the threespine stickleback fish (Gasterosteus aculeatus).

    Science.gov (United States)

    Cech, Jennifer N; Peichel, Catherine L

    2015-12-01

    Centromere sequences exist as gaps in many genome assemblies due to their repetitive nature. Here we take an unbiased approach utilizing centromere protein A (CENP-A) chomatin immunoprecipitation followed by high-throughput sequencing to identify the centromeric repeat sequence in the threespine stickleback fish (Gasterosteus aculeatus). A 186-bp, AT-rich repeat was validated as centromeric using both fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on interphase nuclei and metaphase spreads. This repeat hybridizes strongly to the centromere on all chromosomes, with the exception of weak hybridization to the Y chromosome. Together, our work provides the first validated sequence information for the threespine stickleback centromere.

  20. Instability of (CTGn•(CAGn trinucleotide repeats and DNA synthesis

    Directory of Open Access Journals (Sweden)

    Liu Guoqi

    2012-02-01

    Full Text Available Abstract Expansion of (CTGn•(CAGn trinucleotide repeat (TNR microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTGn and (CAGn repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTGn•(CAGn instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTGn•(CAGn TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTGn•(CAGn instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTGn•(CAGn TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  1. [Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats in the Genomes of Shigella].

    Science.gov (United States)

    Wang, Pengfei; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Guo, Xiangjiao; Yang, Haiyan; Xi, Yuanlin

    2015-04-01

    This study was aimed to explore the features of clustered regularly interspaced short palindromic repeats (CRISPR) structures in Shigella by using bioinformatics. We used bioinformatics methods, including BLAST, alignment and RNA structure prediction, to analyze the CRISPR structures of Shigella genomes. The results showed that the CRISPRs existed in the four groups of Shigella, and the flanking sequences of upstream CRISPRs could be classified into the same group with those of the downstream. We also found some relatively conserved palindromic motifs in the leader sequences. Repeat sequences had the same group with corresponding flanking sequences, and could be classified into two different types by their RNA secondary structures, which contain "stem" and "ring". Some spacers were found to homologize with part sequences of plasmids or phages. The study indicated that there were correlations between repeat sequences and flanking sequences, and the repeats might act as a kind of recognition mechanism to mediate the interaction between foreign genetic elements and Cas proteins.

  2. Characterization of new Schistosoma mansoni microsatellite loci in sequences obtained from public DNA databases and microsatellite enriched genomic libraries

    Directory of Open Access Journals (Sweden)

    Rodrigues NB

    2002-01-01

    Full Text Available In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3% sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds. Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8% contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds. The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds. From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.

  3. Sequence comparison alignment-free approach based on suffix tree and L-words frequency.

    Science.gov (United States)

    Soares, Inês; Goios, Ana; Amorim, António

    2012-01-01

    The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  4. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    Science.gov (United States)

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  5. Utilization of a cloned alphoid repeating sequence of human DNA in the study of polymorphism of chromosomal heterochromatin regions

    International Nuclear Information System (INIS)

    Kruminya, A.R.; Kroshkina, V.G.; Yurov, Yu.B.; Aleksandrov, I.A.; Mitkevich, S.P.; Gindilis, V.M.

    1988-01-01

    The chromosomal distribution of the cloned PHS05 fragment of human alphoid DNA was studied by in situ hybridization in 38 individuals. It was shown that this DNA fraction is primarily localized in the pericentric regions of practically all chromosomes of the set. Significant interchromosomal differences and a weakly expressed interindividual polymorphism were discovered in the copying ability of this class of repeating DNA sequences; associations were not found between the results of hybridization and the pattern of Q-polymorphism

  6. Assessing the genetic relationships of Curcuma alismatifolia varieties using simple sequence repeat markers.

    Science.gov (United States)

    Taheri, S; Abdullah, T L; Abdullah, N A P; Ahmad, Z; Karimi, E; Shabanimofrad, M R

    2014-09-05

    The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cultivated in Malaysia. Of the primers tested, 8 (of 17) SSR primers were selected for their reproducibility and high rates of polymorphism. The number of presumed alleles revealed by the SSR analysis ranged from two to six alleles, with a mean value of 3.25 alleles per locus. The values of HO and HE ranged from 0 to 0.8 (mean value of 0.2) and 0.1837 to 0.7755 (mean value of 0.5102), respectively. Eight SSR primers yielded 26 total amplified fragments and revealed high rates of polymorphism among the varieties studied. The polymorphic information content varied from 0.26 to 0.73. Dice's similarity coefficient was calculated for all pairwise comparisons and used to construct an unweighted pair group method with arithmetic average (UPGMA) dendrogram. Similarity coefficient values from 0.2105 to 0.6667 (with an average of 0.4386) were found among the five varieties examined. A cluster analysis of data using a UPGMA algorithm divided the five varieties/hybrids into 2 groups.

  7. Non-radioactive detection of trinucleotide repeat size variability.

    Science.gov (United States)

    Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve

    2014-03-06

    Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.

  8. Repeatability and Reversibility of the Humidity Sensor Based on Photonic Crystal Fiber Interferometer

    Science.gov (United States)

    Hindal, S. S.; Taher, H. J.

    2018-05-01

    The RH sensor operation based on water vapor adsorption and desorption at the silica-air interface within the PCF. Sensor fabrication is simple; it includes splicing and cleaving the PCF with SMF only. PCF (LMA-10) with a certain length spliced to SMF (Corning-28). The PCFI spectrum exhibits good sensitivity to the variations of humidity. The PCFI response is observed for range of relative humidity values from (27% RH to 85% RH), the interference peaks position is found to be shifted to longer wavelength as the humidity increases. In this work, a 6cm length of PCFs is used, and it shows a sensitivity of (2.41pm / %RH), good repeatability, and reversible in nature. This humidity sensor has distinguished features as that the sensor does not require the use of a hygroscopic material, robust, compact size, immunity to electromagnetic interference, and it has potential applications for high humidity environments.

  9. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS Data in Plants

    Directory of Open Access Journals (Sweden)

    Sima Taheri

    2018-02-01

    Full Text Available Microsatellites, or simple sequence repeats (SSRs, are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq and related tools for mining and development of microsatellites in plants.

  10. In silico reversal of repeat-induced point mutation (RIP identifies the origins of repeat families and uncovers obscured duplicated genes

    Directory of Open Access Journals (Sweden)

    Hane James K

    2010-11-01

    Full Text Available Abstract Background Repeat-induced point mutation (RIP is a fungal genome defence mechanism guarding against transposon invasion. RIP mutates the sequence of repeated DNA and over time renders the affected regions unrecognisable by similarity search tools such as BLAST. Results DeRIP is a new software tool developed to predict the original sequence of a RIP-mutated region prior to the occurrence of RIP. In this study, we apply deRIP to the genome of the wheat pathogen Stagonospora nodorum SN15 and predict the origin of several previously uncharacterised classes of repetitive DNA. Conclusions Five new classes of transposon repeats and four classes of endogenous gene repeats were identified after deRIP. The deRIP process is a new tool for fungal genomics that facilitates the identification and understanding of the role and origin of fungal repetitive DNA. DeRIP is open-source and is available as part of the RIPCAL suite at http://www.sourceforge.net/projects/ripcal.

  11. Universal sequence map (USM of arbitrary discrete sequences

    Directory of Open Access Journals (Sweden)

    Almeida Jonas S

    2002-02-01

    Full Text Available Abstract Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM, is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR. The latter enables the representation of 4 unit type sequences (like DNA as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules.

  12. Simple sorting algorithm test based on CUDA

    OpenAIRE

    Meng, Hongyu; Guo, Fangjin

    2015-01-01

    With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.

  13. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  14. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  15. [Clustered regularly interspaced short palindromic repeats (CRISPR) site in Bacillus anthracis].

    Science.gov (United States)

    Gao, Zhiqi; Wang, Dongshu; Feng, Erling; Wang, Bingxiang; Hui, Yiming; Han, Shaobo; Jiao, Lei; Liu, Xiankai; Wang, Hengliang

    2014-11-04

    To investigate the polymorphism of clustered regularly interspaced short palindromic repeats (CRISPR) in Bacillu santhracis and the application to molecular typing based on the polymorphism of CRISPR in B. anthracis. We downloaded the whole genome sequence of 6 B. anthracis strains and extracted the CRISPR sites. We designed the primers of CRISPR sites and amplified the CRISPR fragments in 193 B. anthracis strains by PCR and sequenced these fragments. In order to reveal the polymorphism of CRISPR in B. anthracis, wealigned all the extracted sequences and sequenced results by local blasting. At the same time, we also analyzed the CRISPR sites in B. cereus and B. thuringiensis. We did not find any polymorphism of CRISPR in B. anthracis. The molecular typing approach based on CRISPR polymorphism is not suitable for B. anthracis, but it is possible for us to distinguish B. anthracis from B. cereus and B. thuringiensis.

  16. Sequencing and De Novo Transcriptome Assembly of Brachypodium sylvaticum (Poaceae

    Directory of Open Access Journals (Sweden)

    Samuel E. Fox

    2013-03-01

    Full Text Available Premise of the study: We report the de novo assembly and characterization of the transcriptomes of Brachypodium sylvaticum (slender false-brome accessions from native populations of Spain and Greece, and an invasive population west of Corvallis, Oregon, USA. Methods and Results: More than 350 million sequence reads from the mRNA libraries prepared from three B. sylvaticum genotypes were assembled into 120,091 (Corvallis, 104,950 (Spain, and 177,682 (Greece transcript contigs. In comparison with the B. distachyon Bd21 reference genome and GenBank protein sequences, we estimate >90% exome coverage for B. sylvaticum. The transcripts were assigned Gene Ontology and InterPro annotations. Brachypodium sylvaticum sequence reads aligned against the Bd21 genome revealed 394,654 single-nucleotide polymorphisms (SNPs and >20,000 simple sequence repeat (SSR DNA sites. Conclusions: To our knowledge, this is the first report of transcriptome sequencing of invasive plant species with a closely related sequenced reference genome. The sequences and identified SNP variant and SSR sites will provide tools for developing novel genetic markers for use in genotyping and characterization of invasive behavior of B. sylvaticum.

  17. Generation of sequence signatures from DNA amplification fingerprints with mini-hairpin and microsatellite primers.

    Science.gov (United States)

    Caetano-Anollés, G; Gresshoff, P M

    1996-06-01

    DNA amplification fingerprinting (DAF) with mini-hairpins harboring arbitrary "core" sequences at their 3' termini were used to fingerprint a variety of templates, including PCR products and whole genomes, to establish genetic relationships between plant tax at the interspecific and intraspecific level, and to identify closely related fungal isolates and plant accessions. No correlation was observed between the sequence of the arbitrary core, the stability of the mini-hairpin structure and DAF efficiency. Mini-hairpin primers with short arbitrary cores and primers complementary to simple sequence repeats present in microsatellites were also used to generate arbitrary signatures from amplification profiles (ASAP). The ASAP strategy is a dual-step amplification procedure that uses at least one primer in each fingerprinting stage. ASAP was able to reproducibly amplify DAF products (representing about 10-15 kb of sequence) following careful optimization of amplification parameters such as primer and template concentration. Avoidance of primer sequences partially complementary to DAF product termini was necessary in order to produce distinct fingerprints. This allowed the combinatorial use of oligomers in nucleic acid screening, with numerous ASAP fingerprinting reactions based on a limited number of primer sequences. Mini-hairpin primers and ASAP analysis significantly increased detection of polymorphic DNA, separating closely related bermudagrass (Cynodon) cultivars and detecting putatively linked markers in bulked segregant analysis of the soybean (Glycine max) supernodulation (nitrate-tolerant symbiosis) locus.

  18. Evaluation of Mammalian Interspersed Repeats to investigate the goat genome

    Directory of Open Access Journals (Sweden)

    P. Mariani

    2010-01-01

    Full Text Available Among the repeated sequences present in most eukaryotic genomes, SINEs (Short Interspersed Nuclear Elements are widely used to investigate evolution in the mammalian order (Buchanan et al., 1999. One family of these repetitive sequences, the MIR (Mammalian Interspersed Repeats; Jurka et al., 1995, is ubiquitous in all mammals.MIR elements are tRNA-derived SINEs and are identifiable by a conserved core region of about 70 nucleotides.

  19. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter.

    Science.gov (United States)

    Pelham, Christopher; Jimenez, Tamara; Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M Rafiq

    2013-12-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. © 2013.

  20. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences.

    Science.gov (United States)

    Niu, Qingli; Marchand, Jordan; Yang, Congshan; Bonsergent, Claire; Guan, Guiquan; Yin, Hong; Malandrin, Laurence

    2015-07-30

    Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.

    Science.gov (United States)

    Peng, Yu; Leung, Henry C M; Yiu, S M; Chin, Francis Y L

    2012-06-01

    Next-generation sequencing allows us to sequence reads from a microbial environment using single-cell sequencing or metagenomic sequencing technologies. However, both technologies suffer from the problem that sequencing depth of different regions of a genome or genomes from different species are highly uneven. Most existing genome assemblers usually have an assumption that sequencing depths are even. These assemblers fail to construct correct long contigs. We introduce the IDBA-UD algorithm that is based on the de Bruijn graph approach for assembling reads from single-cell sequencing or metagenomic sequencing technologies with uneven sequencing depths. Several non-trivial techniques have been employed to tackle the problems. Instead of using a simple threshold, we use multiple depthrelative thresholds to remove erroneous k-mers in both low-depth and high-depth regions. The technique of local assembly with paired-end information is used to solve the branch problem of low-depth short repeat regions. To speed up the process, an error correction step is conducted to correct reads of high-depth regions that can be aligned to highconfident contigs. Comparison of the performances of IDBA-UD and existing assemblers (Velvet, Velvet-SC, SOAPdenovo and Meta-IDBA) for different datasets, shows that IDBA-UD can reconstruct longer contigs with higher accuracy. The IDBA-UD toolkit is available at our website http://www.cs.hku.hk/~alse/idba_ud

  2. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten

    2013-01-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective ...... of paternal germ-line repeat sequence instability of the expanded SCA2 locus.European Journal of Human Genetics advance online publication, 10 October 2012; doi:10.1038/ejhg.2012.231....

  3. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons

    DEFF Research Database (Denmark)

    Nielsen, M.L.; Hermansen, T.D.; Aleksenko, Alexei Y.

    2001-01-01

    In the course of a chromosomal walk towards the centromere of chromosome IV of Aspergillus nidulans, several cross- hybridizing genomic cosmid clones were isolated. Restriction mapping of two such clones revealed that their restriction patterns were similar in a region of at least 15 kb, indicati......) phenomenon, first described in Neurospora crassa, may have operated in A. nidulans. The data indicate that this family of repeats has assimilated mobile elements that subsequently degenerated but then underwent further duplications as a part of the host repeats....... the presence of a large repeat. The nature of the repeat was further investigated by sequencing and Southern analysis. The study revealed a family of long dispersed repeats with a high degree of sequence similarity. The number and location of the repeats vary between wild isolates. Two copies of the repeat...

  4. Using "Arabidopsis" Genetic Sequences to Teach Bioinformatics

    Science.gov (United States)

    Zhang, Xiaorong

    2009-01-01

    This article describes a new approach to teaching bioinformatics using "Arabidopsis" genetic sequences. Several open-ended and inquiry-based laboratory exercises have been designed to help students grasp key concepts and gain practical skills in bioinformatics, using "Arabidopsis" leucine-rich repeat receptor-like kinase (LRR…

  5. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species

    OpenAIRE

    Ziya Motalebipour, Elmira; Kafkas, Salih; Khodaeiaminjan, Mortaza; ?oban, Nergiz; G?zel, Hatice

    2016-01-01

    Background Pistachio (Pistacia vera L.) is one of the most important nut crops in the world. There are about 11 wild species in the genus Pistacia, and they have importance as rootstock seed sources for cultivated P. vera and forest trees. Published information on the pistachio genome is limited. Therefore, a genome survey is necessary to obtain knowledge on the genome structure of pistachio by next generation sequencing. Simple sequence repeat (SSR) markers are useful tools for germplasm cha...

  6. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    Science.gov (United States)

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  7. Sequence Comparison Alignment-Free Approach Based on Suffix Tree and L-Words Frequency

    Directory of Open Access Journals (Sweden)

    Inês Soares

    2012-01-01

    Full Text Available The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions. In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L—L-words—in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.

  8. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  9. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).

    Science.gov (United States)

    Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-02-01

    Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.

  10. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].

    Science.gov (United States)

    Li, Hao; Qiu, Shaofu; Song, Hongbin

    2013-10-04

    In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.

  11. Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat (MIRU-VNTR) Genotyping of Mycobacterium intracellulare for Strain Comparison with Establishment of a PCR-Based Database

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A.; Falkinham, Joseph O.; Williams, Myra D.; Vasireddy, Ravikiran; Wilson, Rebecca W.; Turenne, Christine

    2013-01-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the “gold standard” of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible. PMID:23175249

  12. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of mycobacterium intracellulare for strain comparison with establishment of a PCR-based database.

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A; Falkinham, Joseph O; Williams, Myra D; Vasireddy, Ravikiran; Wilson, Rebecca W; Turenne, Christine; Wallace, Richard J

    2013-02-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the "gold standard" of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible.

  13. Mononucleotide repeats are asymmetrically distributed in fungal genes

    NARCIS (Netherlands)

    Passel, van M.W.J.; Graaff, de L.H.

    2008-01-01

    ABSTRACT: BACKGROUND: Systematic analyses of sequence features have resulted in a better characterisation of the organisation of the genome. A previous study in prokaryotes on the distribution of sequence repeats, which are notoriously variable and can disrupt the reading frame in genes, showed that

  14. Race: A scalable and elastic parallel system for discovering repeats in very long sequences

    KAUST Repository

    Mansour, Essam

    2013-08-26

    A wide range of applications, including bioinformatics, time series, and log analysis, depend on the identification of repetitions in very long sequences. The problem of finding maximal pairs subsumes most important types of repetition-finding tasks. Existing solutions require both the input sequence and its index (typically an order of magnitude larger than the input) to fit in memory. Moreover, they are serial algorithms with long execution time. Therefore, they are limited to small datasets, despite the fact that modern applications demand orders of magnitude longer sequences. In this paper we present RACE, a parallel system for finding maximal pairs in very long sequences. RACE supports parallel execution on stand-alone multicore systems, in addition to scaling to thousands of nodes on clusters or supercomputers. RACE does not require the input or the index to fit in memory; therefore, it supports very long sequences with limited memory. Moreover, it uses a novel array representation that allows for cache-efficient implementation. RACE is particularly suitable for the cloud (e.g., Amazon EC2) because, based on availability, it can scale elastically to more or fewer machines during its execution. Since scaling out introduces overheads, mainly due to load imbalance, we propose a cost model to estimate the expected speedup, based on statistics gathered through sampling. The model allows the user to select the appropriate combination of cloud resources based on the provider\\'s prices and the required deadline. We conducted extensive experimental evaluation with large real datasets and large computing infrastructures. In contrast to existing methods, RACE can handle the entire human genome on a typical desktop computer with 16GB RAM. Moreover, for a problem that takes 10 hours of serial execution, RACE finishes in 28 seconds using 2,048 nodes on an IBM BlueGene/P supercomputer.

  15. A Simple, High-Throughput Assay for Fragile X Expanded Alleles Using Triple Repeat Primed PCR and Capillary Electrophoresis

    Science.gov (United States)

    Lyon, Elaine; Laver, Thomas; Yu, Ping; Jama, Mohamed; Young, Keith; Zoccoli, Michael; Marlowe, Natalia

    2010-01-01

    Population screening has been proposed for Fragile X syndrome to identify premutation carrier females and affected newborns. We developed a PCR-based assay capable of quickly detecting the presence or absence of an expanded FMR1 allele with high sensitivity and specificity. This assay combines a triplet repeat primed PCR with high-throughput automated capillary electrophoresis. We evaluated assay performance using archived samples sent for Fragile X diagnostic testing representing a range of Fragile X CGG-repeat expansions. Two hundred five previously genotyped samples were tested with the new assay. Data were analyzed for the presence of a trinucleotide “ladder” extending beyond 55 repeats, which was set as a cut-off to identify expanded FMR1 alleles. We identified expanded FMR1 alleles in 132 samples (59 premutation, 71 full mutation, 2 mosaics) and normal FMR1 alleles in 73 samples. We found 100% concordance with previous results from PCR and Southern blot analyses. In addition, we show feasibility of using this assay with DNA extracted from dried-blood spots. Using a single PCR combined with high-throughput fragment analysis on the automated capillary electrophoresis instrument, we developed a rapid and reproducible PCR-based laboratory assay that meets many of the requirements for a first-tier test for population screening. PMID:20431035

  16. Recursive sequences in first-year calculus

    Science.gov (United States)

    Krainer, Thomas

    2016-02-01

    This article provides ready-to-use supplementary material on recursive sequences for a second-semester calculus class. It equips first-year calculus students with a basic methodical procedure based on which they can conduct a rigorous convergence or divergence analysis of many simple recursive sequences on their own without the need to invoke inductive arguments as is typically required in calculus textbooks. The sequences that are accessible to this kind of analysis are predominantly (eventually) monotonic, but also certain recursive sequences that alternate around their limit point as they converge can be considered.

  17. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  18. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  19. Heads or tails: L1 insertion-associated 5' homopolymeric sequences

    Directory of Open Access Journals (Sweden)

    Meyer Thomas J

    2010-02-01

    Full Text Available Abstract Background L1s are one of the most successful autonomous mobile elements in primate genomes. These elements comprise as much as 17% of primate genomes with the majority of insertions occurring via target primed reverse transcription (TPRT. Twin priming, a variant of TPRT, can result in unusual DNA sequence architecture. These insertions appear to be inverted, truncated L1s flanked by target site duplications. Results We report on loci with sequence architecture consistent with variants of the twin priming mechanism and introduce dual priming, a mechanism that could generate similar sequence characteristics. These insertions take the form of truncated L1s with hallmarks of classical TPRT insertions but having a poly(T simple repeat at the 5' end of the insertion. We identified loci using computational analyses of the human, chimpanzee, orangutan, rhesus macaque and marmoset genomes. Insertion site characteristics for all putative loci were experimentally verified. Conclusions The 39 loci that passed our computational and experimental screens probably represent inversion-deletion events which resulted in a 5' inverted poly(A tail. Based on our observations of these loci and their local sequence properties, we conclude that they most probably represent twin priming events with unusually short non-inverted portions. We postulate that dual priming could, theoretically, produce the same patterns. The resulting homopolymeric stretches associated with these insertion events may promote genomic instability and create potential target sites for future retrotransposition events.

  20. Complete chloroplast genome and 45S nrDNA sequences of the medicinal plant species Glycyrrhiza glabra and Glycyrrhiza uralensis.

    Science.gov (United States)

    Kang, Sang-Ho; Lee, Jeong-Hoon; Lee, Hyun Oh; Ahn, Byoung Ohg; Won, So Youn; Sohn, Seong-Han; Kim, Jung Sun

    2017-10-06

    Glycyrrhiza uralensis and G. glabra, members of the Fabaceae, are medicinally important species that are native to Asia and Europe. Extracts from these plants are widely used as natural sweeteners because of their much greater sweetness than sucrose. In this study, the three complete chloroplast genomes and five 45S nuclear ribosomal (nr)DNA sequences of these two licorice species and an interspecific hybrid are presented. The chloroplast genomes of G. glabra, G. uralensis and G. glabra × G. uralensis were 127,895 bp, 127,716 bp and 127,939 bp, respectively. The three chloroplast genomes harbored 110 annotated genes, including 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The 45S nrDNA sequences were either 5,947 or 5,948 bp in length. Glycyrrhiza glabra and G. glabra × G. uralensis showed two types of nrDNA, while G. uralensis contained a single type. The complete 45S nrDNA sequence unit contains 18S rRNA, ITS1, 5.8S rRNA, ITS2 and 26S rRNA. We identified simple sequence repeat and tandem repeat sequences. We also developed four reliable markers for analysis of Glycyrrhiza diversity authentication.

  1. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  2. Karyological characterization and identification of four repetitive element groups (the 18S – 28S rRNA gene, telomeric sequences, microsatellite repeat motifs, Rex retroelements) of the Asian swamp eel (Monopterus albus)

    Science.gov (United States)

    Suntronpong, Aorarat; Thapana, Watcharaporn; Twilprawat, Panupon; Prakhongcheep, Ornjira; Somyong, Suthasinee; Muangmai, Narongrit; Surin Peyachoknagul; Srikulnath, Kornsorn

    2017-01-01

    Abstract Among teleost fishes, Asian swamp eel (Monopterus albus Zuiew, 1793) possesses the lowest chromosome number, 2n = 24. To characterize the chromosome constitution and investigate the genome organization of repetitive sequences in M. albus, karyotyping and chromosome mapping were performed with the 18S – 28S rRNA gene, telomeric repeats, microsatellite repeat motifs, and Rex retroelements. The 18S – 28S rRNA genes were observed to the pericentromeric region of chromosome 4 at the same position with large propidium iodide and C-positive bands, suggesting that the molecular structure of the pericentromeric regions of chromosome 4 has evolved in a concerted manner with amplification of the 18S – 28S rRNA genes. (TTAGGG)n sequences were found at the telomeric ends of all chromosomes. Eight of 19 microsatellite repeat motifs were dispersedly mapped on different chromosomes suggesting the independent amplification of microsatellite repeat motifs in M. albus. Monopterus albus Rex1 (MALRex1) was observed at interstitial sites of all chromosomes and in the pericentromeric regions of most chromosomes whereas MALRex3 was scattered and localized to all chromosomes and MALRex6 to several chromosomes. This suggests that these retroelements were independently amplified or lost in M. albus. Among MALRexs (MALRex1, MALRex3, and MALRex6), MALRex6 showed higher interspecific sequence divergences from other teleost species in comparison. This suggests that the divergence of Rex6 sequences of M. albus might have occurred a relatively long time ago. PMID:29093797

  3. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    Science.gov (United States)

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  4. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  5. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

    Science.gov (United States)

    Tetreault, Hannah M.; Ungerer, Mark C.

    2016-01-01

    The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across all species and tissue types, whereas others display species-specific and tissue-specific expression. The species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR retrotransposon sublineages, some of which have proliferated independently in other lineages in the Helianthus phylogeny. PMID:27233667

  6. SNAD: sequence name annotation-based designer

    Directory of Open Access Journals (Sweden)

    Gorbalenya Alexander E

    2009-08-01

    Full Text Available Abstract Background A growing diversity of biological data is tagged with unique identifiers (UIDs associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Results Here we introduce SNAD (Sequence Name Annotation-based Designer that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. Conclusion A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.

  7. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

    Directory of Open Access Journals (Sweden)

    Benkman Craig W

    2010-03-01

    Full Text Available Abstract Background Massively parallel sequencing of cDNA is now an efficient route for generating enormous sequence collections that represent expressed genes. This approach provides a valuable starting point for characterizing functional genetic variation in non-model organisms, especially where whole genome sequencing efforts are currently cost and time prohibitive. The large and complex genomes of pines (Pinus spp. have hindered the development of genomic resources, despite the ecological and economical importance of the group. While most genomic studies have focused on a single species (P. taeda, genomic level resources for other pines are insufficiently developed to facilitate ecological genomic research. Lodgepole pine (P. contorta is an ecologically important foundation species of montane forest ecosystems and exhibits substantial adaptive variation across its range in western North America. Here we describe a sequencing study of expressed genes from P. contorta, including their assembly and annotation, and their potential for molecular marker development to support population and association genetic studies. Results We obtained 586,732 sequencing reads from a 454 GS XLR70 Titanium pyrosequencer (mean length: 306 base pairs. A combination of reference-based and de novo assemblies yielded 63,657 contigs, with 239,793 reads remaining as singletons. Based on sequence similarity with known proteins, these sequences represent approximately 17,000 unique genes, many of which are well covered by contig sequences. This sequence collection also included a surprisingly large number of retrotransposon sequences, suggesting that they are highly transcriptionally active in the tissues we sampled. We located and characterized thousands of simple sequence repeats and single nucleotide polymorphisms as potential molecular markers in our assembled and annotated sequences. High quality PCR primers were designed for a substantial number of the SSR loci

  8. A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

    Science.gov (United States)

    Kou, Qinghe; Jiang, Jiao; Guo, Shaogui; Zhang, Haiying; Hou, Wenju; Zou, Xiaohua; Sun, Honghe; Gong, Guoyi; Levi, Amnon; Xu, Yong

    2012-01-01

    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits. PMID:22247776

  9. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery

    Directory of Open Access Journals (Sweden)

    Materne Michael

    2011-05-01

    Full Text Available Abstract Background Lentil (Lens culinaris Medik. is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Results Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs. De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. Conclusions A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.

  10. Brucella 'HOOF-Prints': strain typing by multi-locus analysis of variable number tandem repeats (VNTRs

    Directory of Open Access Journals (Sweden)

    Halling Shirley M

    2003-07-01

    Full Text Available Abstract Background Currently, there are very few tools available for subtyping Brucella isolates for epidemiological trace-back. Subtyping is difficult because of the genetic homogeneity within the genus. Sequencing of the genomes from three Brucella species has facilitated the search for DNA sequence variability. Recently, hypervariability among short tandem repeat sequences has been exploited for strain-typing of several bacterial pathogens. Results An eight-base pair tandem repeat sequence was discovered in nine genomic loci of the B. abortus genome. Eight loci were hypervariable among the three Brucella species. A PCR-based method was developed to identify the number of repeat units (alleles at each locus, generating strain-specific fingerprints. None of the loci exhibited species- or biovar-specific alleles. Sometimes, a species or biovar contained a specific allele at one or more loci, but the allele also occurred in other species or biovars. The technique successfully differentiated the type strains for all Brucella species and biovars, among unrelated B. abortus biovar 1 field isolates in cattle, and among B. abortus strains isolated from bison and elk. Isolates from the same herd or from short-term in vitro passage exhibited little or no variability in fingerprint pattern. Sometimes, isolates from an animal would have multiple alleles at a locus, possibly from mixed infections in enzootic areas, residual disease from incomplete depopulation of an infected herd or molecular evolution within the strain. Therefore, a mixed population or a pool of colonies from each animal and/or tissue was tested. Conclusion This paper describes a new method for fingerprinting Brucella isolates based on multi-locus characterization of a variable number, eight-base pair, tandem repeat. We have named this technique "HOOF-Prints" for Hypervariable Octameric Oligonucleotide Finger-Prints. The technique is highly discriminatory among Brucella species, among

  11. Performance Comparisons of Improved Regular Repeat Accumulate (RA and Irregular Repeat Accumulate (IRA Turbo Decoding

    Directory of Open Access Journals (Sweden)

    Ahmed Abdulkadhim Hamad

    2017-08-01

    Full Text Available In this paper, different techniques are used to improve the turbo decoding of regular repeat accumulate (RA and irregular repeat accumulate (IRA codes. The adaptive scaling of a-posteriori information produced by Soft-output Viterbi decoder (SOVA is proposed. The encoded pilots are another scheme that applied for short length RA codes. This work also suggests a simple and a fast method to generate a random interleaver having a free 4 cycle Tanner graph. Progressive edge growth algorithm (PEG is also studied and simulated to create the Tanner graphs which have a great girth.

  12. Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2011-10-01

    Full Text Available Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

  13. Estimating prognosis at the time of repeat whole brain radiation therapy for multiple brain metastases: The reirradiation score

    Directory of Open Access Journals (Sweden)

    Natalie Logie, MD

    2017-07-01

    Conclusions: In the largest reported cohort to receive repeat WBRT, application of the RPA score was not predictive of MS. The new ReRT score is a simple tool based on readily available clinical information.

  14. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.; Sineo, L.; Pontieri, E. [Catholic Univ. of Rome (Italy)]|[Univ. of Milan (Italy)]|[Univ. Florence (Italy)] [and others

    1994-09-01

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PK gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.

  15. Application of synthetic DNA probes to the analysis of DNA sequence variants in man

    International Nuclear Information System (INIS)

    Wallace, R.B.; Petz, L.D.; Yam, P.Y.

    1986-01-01

    Oligonucleotide probes provide a tool to discriminate between any two alleles on the basis of hybridization. Random sampling of the genome with different oligonucleotide probes should reveal polymorphism in a certain percentage of the cases. In the hope of identifying polymorphic regions more efficiently, we chose to take advantage of the proposed hypermutability of repeated DNA sequences and the specificity of oligonucleotide hybridization. Since, under appropriate conditions, oligonucleotide probes require complete base pairing for hybridization to occur, they will only hybridize to a subset of the members of a repeat family when all members of the family are not identical. The results presented here suggest that oligonucleotide hybridization can be used to extend the genomic sequences that can be tested for the presence of RFLPs. This expands the tools available to human genetics. In addition, the results suggest that repeated DNA sequences are indeed more polymorphic than single-copy sequences. 28 references, 2 figures

  16. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats

    Directory of Open Access Journals (Sweden)

    Vergnaud Gilles

    2007-05-01

    Full Text Available Abstract Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the

  17. Isolation and characterization of repeat elements of the oak genome and their application in population analysis

    International Nuclear Information System (INIS)

    Fluch, S.; Burg, K.

    1998-01-01

    Four minisatellite sequence elements have been identified and isolated from the genome of the oak species Quercus petraea and Quercus robur. Minisatellites 1 and 2 are putative members of repeat families, while minisatellites 3 and 4 show repeat length variation among individuals of test populations. A 590 base pair (bp) long element has also been identified which reveals individual-specific autoradiographic patterns when used as probe in Southern hybridisations of genomic oak DNA. (author)

  18. Sequence finishing and mapping of Drosophila melanogasterheterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Carlson, Joseph W.; Kennedy, Cameron; Acevedo,David; Evans-Holm, Martha; Frise, Erwin; Wan, Kenneth H.; Park, Soo; Mendez-Lago, Maria; Rossi, Fabrizio; Villasante, Alfredo; Dimitri,Patrizio; Karpen, Gary H.; Celniker, Susan E.

    2007-06-15

    Genome sequences for most metazoans are incomplete due tothe presence of repeated DNA in the pericentromeric heterochromatin. Theheterochromatic regions of D. melanogaster contain 20 Mb of sequenceamenable to mapping, sequence assembly and finishing. Here we describethe generation of 15 Mb of finished or improved heterochromatic sequenceusing available clone resources and assembly and mapping methods. We alsoconstructed a BAC-based physical map that spans approximately 13 Mb ofthe pericentromeric heterochromatin, and a cytogenetic map that positionsapproximately 11 Mb of BAC contigs and sequence scaffolds in specificchromosomal locations. The integrated sequence assembly and maps greatlyimprove our understanding of the structure and composition of this poorlyunderstood fraction of a metazoan genome and provide a framework forfunctional analyses.

  19. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs

    Science.gov (United States)

    Schnall-Levin, Michael; Rissland, Olivia S.; Johnston, Wendy K.; Perrimon, Norbert; Bartel, David P.; Berger, Bonnie

    2011-01-01

    MicroRNAs (miRNAs) regulate numerous biological processes by base-pairing with target messenger RNAs (mRNAs), primarily through sites in 3′ untranslated regions (UTRs), to direct the repression of these targets. Although miRNAs have sometimes been observed to target genes through sites in open reading frames (ORFs), large-scale studies have shown such targeting to be generally less effective than 3′ UTR targeting. Here, we show that several miRNAs each target significant groups of genes through multiple sites within their coding regions. This ORF targeting, which mediates both predictable and effective repression, arises from highly repeated sequences containing miRNA target sites. We show that such sequence repeats largely arise through evolutionary duplications and occur particularly frequently within families of paralogous C2H2 zinc-finger genes, suggesting the potential for their coordinated regulation. Examples of ORFs targeted by miR-181 include both the well-known tumor suppressor RB1 and RBAK, encoding a C2H2 zinc-finger protein and transcriptional binding partner of RB1. Our results indicate a function for repeat-rich coding sequences in mediating post-transcriptional regulation and reveal circumstances in which miRNA-mediated repression through ORF sites can be reliably predicted. PMID:21685129

  20. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  1. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  2. The chloroplast genome sequence of the green alga Leptosira terrestris: multiple losses of the inverted repeat and extensive genome rearrangements within the Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-07-01

    Full Text Available Abstract Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales. Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate

  3. Simple sequence repeat (SSR) vs. sequence-related amplified polymorphism (SRAP) markers for Cynara cardunculus characterization

    Energy Technology Data Exchange (ETDEWEB)

    Casadevall, R.; Martin, E.; Cravero, V.

    2011-07-01

    A little is known about the genetic variability present in globe artichoke, cultivated and wild cardoons. This knowledge is very important for efficient genetic resources utilization, and to gain a better understanding of genetic structure of this botanical varieties. With the aims to determine genetic distances between Cynara cardunculus accessions and to compare two molecular markers systems for their efficiency to differ between botanical varieties, a molecular characterization of sixteen accessions from different geographical origins was performed. Seven SSR and seven SRAP markers were used for varieties characterization and to calculate genetic distances between them. Both distance matrices were subjected to cluster analysis. Exclusive SSR alleles were found for globe artichoke and for wild cardoon, but non exclusive alleles were found for cultivated cardoon. For both markers systems two major groups were identified, one of them included mostly globe artichoke accessions and the other one grouped mainly cardoons. The differences observed in the sub-cluster conformation with each marker systems may be due to intrinsic characteristics of the markers. Concluding, both kind of molecular markers are valuable tools for studying genetic distances between C. cardunculus accessions although they give different information. Nevertheless, SSR electrophoretic profiles are simpler to score than SRAP markers because they consist of just a few bands. As well, bands are highly informative because of the great number of alleles existing in population and they are codominant markers. In addition, SSRs use would reduce time and costs. (Author) 31 refs.

  4. A Genome-Wide Survey of the Microsatellite Content of the Globe Artichoke Genome and the Development of a Web-Based Database

    Science.gov (United States)

    Portis, Ezio; Portis, Flavio; Valente, Luisa; Moglia, Andrea; Barchi, Lorenzo; Lanteri, Sergio; Acquadro, Alberto

    2016-01-01

    The recently acquired genome sequence of globe artichoke (Cynara cardunculus var. scolymus) has been used to catalog the genome’s content of simple sequence repeat (SSR) markers. More than 177,000 perfect SSRs were revealed, equivalent to an overall density across the genome of 244.5 SSRs/Mbp, but some 224,000 imperfect SSRs were also identified. About 21% of these SSRs were complex (two stretches of repeats separated by artichoke accessions, as templates. PMID:27648830

  5. A novel typing method for Listeria monocytogenes using high-resolution melting analysis (HRMA) of tandem repeat regions.

    Science.gov (United States)

    Ohshima, Chihiro; Takahashi, Hajime; Iwakawa, Ai; Kuda, Takashi; Kimura, Bon

    2017-07-17

    Listeria monocytogenes, which is responsible for causing food poisoning known as listeriosis, infects humans and animals. Widely distributed in the environment, this bacterium is known to contaminate food products after being transmitted to factories via raw materials. To minimize the contamination of products by food pathogens, it is critical to identify and eliminate factory entry routes and pathways for the causative bacteria. High resolution melting analysis (HRMA) is a method that takes advantage of differences in DNA sequences and PCR product lengths that are reflected by the disassociation temperature. Through our research, we have developed a multiple locus variable-number tandem repeat analysis (MLVA) using HRMA as a simple and rapid method to differentiate L. monocytogenes isolates. While evaluating our developed method, the ability of MLVA-HRMA, MLVA using capillary electrophoresis, and multilocus sequence typing (MLST) was compared for their ability to discriminate between strains. The MLVA-HRMA method displayed greater discriminatory ability than MLST and MLVA using capillary electrophoresis, suggesting that the variation in the number of repeat units, along with mutations within the DNA sequence, was accurately reflected by the melting curve of HRMA. Rather than relying on DNA sequence analysis or high-resolution electrophoresis, the MLVA-HRMA method employs the same process as PCR until the analysis step, suggesting a combination of speed and simplicity. The result of MLVA-HRMA method is able to be shared between different laboratories. There are high expectations that this method will be adopted for regular inspections at food processing facilities in the near future. Copyright © 2017. Published by Elsevier B.V.

  6. Characterization and expression of the maize β-carbonic anhydrase gene repeat regions.

    Science.gov (United States)

    Tems, Ursula; Burnell, James N

    2010-12-01

    In maize, carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the first reaction of the C(4) photosynthetic pathway; it catalyzes the hydration of CO(2) to bicarbonate and provides an inorganic carbon source for the primary carboxylation reaction catalyzed by phosphoenolpyruvate (PEP) carboxylase. The β-CA isozymes from maize, as well as other agronomically important NADP-malic enzyme (NADP-ME) type C(4) crops, have remained relatively uncharacterized but differ significantly from the β-CAs of other C(4) monocot species primarily due to transcript length and the presence of repeat sequences. This research confirmed earlier findings of repeat sequences in maize CA transcripts, and demonstrated that the gene encoding these transcripts is also composed of repeat sequences. One of the maize CA genes was sequenced and found to encode two domains, with distinct groups of exons corresponding to the repeat regions of the transcript. We have also shown that expression of a single repeat region of the CA transcript produced active enzyme that associated as a dimer and was composed primarily of α-helices, consistent with that observed for other plant CAs. As the presence of repeat regions in the CA gene is unique to NADP-ME type C(4) monocot species, the implications of these findings in the context of the evolution of the location and function of this C(4) pathway enzyme are strongly suggestive of CA gene duplication resulting in an evolutionary advantage and a higher photosynthetic efficiency. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  7. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  8. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng

    Directory of Open Access Journals (Sweden)

    Jinhui eChen

    2015-06-01

    Full Text Available Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around ten species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR region, which was found to be IR region A (IRA, was lost in the M. glyptostroboides cp ge-nome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for relat-ed species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostro-boides is a sister species to Cryptomeria japonica (L. F. D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyp-tostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the conif-erous cp genomes, especially for the position of M. glyptostroboides in plant systemat-ics and evolution.

  9. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.

  10. Loss and recovery of Arabidopsis-type telomere repeat sequences 5'-(TTTAGGG)(n)-3' in the evolution of a major radiation of flowering plants.

    OpenAIRE

    Adams, S. P.; Hartman, T. P.; Lim, K. Y.; Chase, M. W.; Bennett, M. D.; Leitch, I. J.; Leitch, A. R.

    2001-01-01

    Fluorescent in situ hybridization and Southern blotting were used for showing the predominant absence of the Arabidopsis-type telomere repeat sequence (TRS) 5'-(TTTAGGG)(n)-3' (the 'typical' telomere) in a monocot clade which comprises up to 6300 species within Asparagales. Initially, two apparently disparate genera that lacked the typical telomere were identified. Here, we used the new angiosperm phylogenetic classification for predicting in which other related families such telomeres might ...

  11. The use of DNase I, buffer gradient gel, and 35S label for DNA sequencing

    International Nuclear Information System (INIS)

    Hong, G.F.

    1987-01-01

    The use of microcentrifuge tubes and mixing of sequencing reactions and brief centrifugation in racks rather than the original capillary tube method has made sequencing reactions relatively simple. Buffer gradient gels and 15 S label are simple means of increasing the rate of sequence analysis; they add little time to that required for determining the sequences of a given number of clones, need no elaborate equipment, and increase the amount of useful data per gel. The standard approach of running 2- and 4-hr gels generates about 300 bases of sequence. The above improvements allow the same number of bases to be read with more confidence from a single 50-cm gel for each clone sequenced due to the changed spacing between sharpened bands

  12. New polymorphisms within the variable number tandem repeat (VNTR) 7 locus of Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Fawzy, Ahmad; Zschöck, Michael; Ewers, Christa; Eisenberg, Tobias

    2016-06-01

    Variable number tandem repeat (VNTR) is a frequently employed typing method of Mycobacterium avium paratuberculosis (MAP) isolates. Based on whole genome sequencing in a previous study, allelic diversity at some VNTR loci seems to over- or under-estimate the actual phylogenetic variance among isolates. Interestingly, two closely related isolates on one farm showed polymorphism at the VNTR 7 locus, raising concerns about the misleading role that it might play in genotyping. We aimed to investigate the underlying basis of VNTR 7-polymorphism by analyzing sequence data for published genomes and field isolates of MAP and other M. avium complex (MAC) members. In contrast to MAP strains from cattle, strains from sheep displayed an "imperfect" repeat within VNTR 7, which was identical to respective allele types in other MAC genomes. Subspecies- and strain-specific single nucleotide polymorphisms (SNPs) and two novel (16 and 56 bp) repeats were detected. Given the combination of the three existing repeats, there are at least five different patterns for VNTR 7. The present findings highlight a higher polymorphism and probable instability of VNTR 7 locus that needs to be considered and challenged in future studies. Until then, sequencing of this locus in future studies is important to correctly assign the underlying allele types.(1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf; Henriksen, Thormod

    2011-07-01

    The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)

  14. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    Science.gov (United States)

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  15. Molecular characterisation and similarity relationships among iranian basil (Ocimum basilicum L. accessions using inter simple sequence repeat markers Caracterização molecular de acessos de Ocimum basilicum L. por meio de marcadores ISSR

    Directory of Open Access Journals (Sweden)

    Mohammad Aghaei

    2012-06-01

    Full Text Available The study of genetic relationships is a prerequisite for plant breeding activities as well as for conservation of genetic resources. In the present study, genetic diversity among 50 Iranian basil (Ocimum basilicum L. accessions was determined using inter simple sequence repeat (ISSR markers. Thirty-eight alleles were generated at 12 ISSR loci. The number of alleles per locus ranged from 1 to 5 with an average of 3.17. The maximum number of alleles was observed at the A7, 818, 825 and 849 loci, and their size ranged from 300 to 2500 bp. A similarity matrix based on Jaccard's coefficient for all 50 basil accessions gave values from 1.00-0.60. The maximum similarity (1.00 was observed between the "Urmia" and "Shahr-e-Rey II" accessions as well as between the "Urmia" and "Qazvin II" accessions. The lowest similarity (0.60 was observed between the "Tuyserkan I" and "Gom II" accessions. The unweighted pair- group method using arithmetique average UPGMA clustering algorithm classified the studied accessions into three distinct groups. All of the basil accessions, with the exception of "Babol III", "Ahvaz II", "Yazd II" and "Ardebil I", were placed in groups I and II. Leaf colour was a specific characteristic that influenced the clustering of Iranian basil accessions. Because of this relationship, the results of the principal coordinate analysis (PCoA approximately corresponded to those obtained through cluster analysis. Our results revealed that the geographical distribution of genotypes could not be used as a basis for crossing parents to obtain high heterosis, and therefore, it must be carried out by genetic studies.O estudo das relações genéticas é um pré-requisito para atividades em reprodução de plantas assim como para conservação de recursos genéticos. Neste trabalho a diversidade genética entre 50 acessos de Manejericão Iraniano (Ocimum basilicum L. foram determinadas usando marcadores de Seqüência Simples Repetida Interna (ISSR

  16. Replication error deficient and proficient colorectal cancer gene expression differences caused by 3'UTR polyT sequence deletions

    DEFF Research Database (Denmark)

    Wilding, Jennifer L; McGowan, Simon; Liu, Ying

    2010-01-01

    , and have distinct pathologies. Regulatory sequences controlling all aspects of mRNA processing, especially including message stability, are found in the 3'UTR sequence of most genes. The relevant sequences are typically A/U-rich elements or U repeats. Microarray analysis of 14 RER+ (deficient) and 16 RER......- (proficient) colorectal cancer cell lines confirms a striking difference in expression profiles. Analysis of the incidence of mononucleotide repeat sequences in the 3'UTRs, 5'UTRs, and coding sequences of those genes most differentially expressed in RER+ versus RER- cell lines has shown that much...... of this differential expression can be explained by the occurrence of a massive enrichment of genes with 3'UTR T repeats longer than 11 base pairs in the most differentially expressed genes. This enrichment was confirmed by analysis of two published consensus sets of RER differentially expressed probesets for a large...

  17. Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA ...

    Indian Academy of Sciences (India)

    Unknown

    Advanced user defined parameters/options let the researchers use different minimum motif repeats ... E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 ..... repeat rates of T-cells, embryo and testis were higher.

  18. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  19. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  20. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Ciancio, A

    2004-03-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 x 10 endospores ml(-1) were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis.

  1. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources

    International Nuclear Information System (INIS)

    Nelson, D.L.; Ledbetter, S.A.; Corbo, L.; Victoria, M.F.; Ramirez-Solis, R.; Webster, T.D.; Ledbetter, D.H.; Caskey, C.T.

    1989-01-01

    Current efforts to map the human genome are focused on individual chromosomes or smaller regions and frequently rely on the use of somatic cell hybrids. The authors report the application of the polymerase chain reaction to direct amplification of human DNA from hybrid cells containing regions of the human genome in rodent cell backgrounds using primers directed to the human Alu repeat element. They demonstrate Alu-directed amplification of a fragment of the human HPRT gene from both hybrid cell and cloned DNA and identify through sequence analysis the Alu repeats involved in this amplification. They also demonstrate the application of this technique to identify the chromosomal locations of large fragments of the human X chromosome cloned in a yeast artificial chromosome and the general applicability of the method to the preparation of DNA probes from cloned human sequences. The technique allows rapid gene mapping and provides a simple method for the isolation and analysis of specific chromosomal regions

  2. The proviral genome of radiation leukemia virus: Molecular cloning, nucleotide sequence of its long terminal repeat and integration in lymphoma cell DNA

    International Nuclear Information System (INIS)

    Janowski, M.; Merregaert, J.; Boniver, J.; Maisin, J.R.

    1985-01-01

    The proviral genome of a thymotropic and leukemogenic C57BL/Ka mouse retrovirus, RadLV/VL/sub 3/(T+L+), was cloned as a biologically active PstI insert in the bacterial plasmid pBR322. Its restriction map was compared to those, already known, of two nonthymotropic and nonleukemogenic viruses of the same mouse strain, the ecotropic BL/Ka(B) and the xenotropic constituent of the radiation leukemia virus complex (RadLV). Differences were observed in the pol gene and in the env gene. Moreover, the nucleotide sequence of the RadLV/VL/sub 3/(T+L+) long terminal repeat revealed the existence of two copies of a 42 bp long sequence, separated by 11 nucleotides and of which BL/Ka(B) possesses only one copy

  3. Giardia telomeric sequence d(TAGGG)4 forms two intramolecular G-quadruplexes in K+ solution: effect of loop length and sequence on the folding topology.

    Science.gov (United States)

    Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân

    2009-11-25

    Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.

  4. Differential transferability of EST-SSR primers developed from diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Th. elongatum

    Science.gov (United States)

    Simple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid T...

  5. Development and Evaluation of a Novel Set of EST-SSR Markers Based on Transcriptome Sequences of Black Locust (Robinia pseudoacacia L.).

    Science.gov (United States)

    Guo, Qi; Wang, Jin-Xing; Su, Li-Zhuo; Lv, Wei; Sun, Yu-Han; Li, Yun

    2017-07-07

    Black locust ( Robinia pseudoacacia L. of the family Fabaceae) is an ecologically and economically important deciduous tree. However, few genomic resources are available for this forest species, and few effective expressed sequence tag-derived simple sequence repeat (EST-SSR) markers have been developed to date. In this study, paired-end sequencing was used to sequence transcriptomes of R. pseudoacacia by the Illumina HiSeq TM2000 platform, and EST-SSR loci were identified by de novo assembly. Furthermore, a total of 1697 primer pairs were successfully designed, from which 286 primers met the selection screening criteria; 94 pairs were randomly selected and tested for validation using polymerase chain reaction amplification. Forty-five primers were verified as polymorphic, with clear bands. The polymorphism information content values were 0.033-0.765, the number of alleles per locus ranged from 2 to 10, and the observed and expected heterozygosities were 0.000-0.931 and 0.035-0.810, respectively, indicating a high level of informativeness. Subsequently, 45 polymorphic EST-SSR loci were tested for amplification efficiency, using the verified primers, in an additional nine species of Leguminosae, 23 loci were amplified in more than three species, of which two loci were amplified successfully in all species. These EST-SSR markers provide a valuable tool for investigating the genetic diversity and population structure of R . pseudoacacia , constructing a DNA fingerprint database, performing quantitative trait locus mapping, and preserving genetic information.

  6. Constructs for the expression of repeating triple-helical protein domains

    International Nuclear Information System (INIS)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M

    2009-01-01

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  7. Constructs for the expression of repeating triple-helical protein domains

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yong Y; Werkmeister, Jerome A; Vaughan, Paul R; Ramshaw, John A M, E-mail: jerome.werkmeister@csiro.a [CSIRO Molecular and Health Technologies, Bag 10, Clayton South, VIC 3169 (Australia)

    2009-02-15

    The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.

  8. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  9. detectIR: a novel program for detecting perfect and imperfect inverted repeats using complex numbers and vector calculation.

    Science.gov (United States)

    Ye, Congting; Ji, Guoli; Li, Lei; Liang, Chun

    2014-01-01

    Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures--hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.

  10. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  11. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    Science.gov (United States)

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  12. [open quotes]Cryptic[close quotes] repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: Analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes

    Energy Technology Data Exchange (ETDEWEB)

    Gostout, B.; Qiang Liu; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1993-06-01

    Triplets of the form of purine, purine, pyrimidine (RRY(i)) are enhanced in frequency in the genomes of primates, rodents, and bacteria. Some RRY(i) are [open quotes]cryptic[close quotes] repeats (cRRY(i)) in which no one tandem run of a trinucleotide predominates. A search of human GenBank sequence revealed that the sequences of cRRY(i) are highly nonrandom. Three randomly chosen human cRRY(i) were sequenced in search of polymorphic alleles. Multiple polymorphic alleles were found in cRRY(i) in the coding regions of the genes for proopiomelanocortin (POMC) and TATA-binding protein (TBP). The highly polymorphic TBP cRRY(i) was characterized in detail. Direct sequencing of 157 unrelated human alleles demonstrated the presence of 20 different alleles which resulted in 29--40 consecutive glutamines in the amino-terminal region of TBP. These alleles are differently distributed among the races. PCR was used to screen 1,846 additional alleles in order to characterize more fully the range of variation in the population. Three additional alleles were discovered, but there was no example of a substantial sequence amplification as is seen in the repeat sequences associated with X-linked spinal and bulbar muscular atrophy, myotonic dystrophy, or the fragile-X syndrome. The structure of the TBP cRRY(i) is conserved in the five monkey species examined. In the chimpanzee, examination of four individuals revealed that the cRRY(i) was highly polymorphic, but the pattern of polymorphism differed from that in humans. The TBP cRRY(i) displays both similarities with and differences from the previously described RRY(i) in the coding sequence of the androgen receptor. The data suggest how simple tandem repeats could evolve from cryptic repeats. 18 refs., 3 figs., 6 tabs.

  13. Abundance, composition and distribution of simple sequence ...

    Indian Academy of Sciences (India)

    δ∗(W-29, W-70) = 1.25; δ∗(W-93, W-70 = 0.75)) even though they originate from different geographical regions. We can, therefore, infer that the WSSV sequences are closely related by ancestry. Table 3. Dinucleotide relative abundance in the ...

  14. ACCA phosphopeptide recognition by the BRCT repeats of BRCA1.

    Science.gov (United States)

    Ray, Hind; Moreau, Karen; Dizin, Eva; Callebaut, Isabelle; Venezia, Nicole Dalla

    2006-06-16

    The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.

  15. Exploration of noncoding sequences in metagenomes.

    Directory of Open Access Journals (Sweden)

    Fabián Tobar-Tosse

    Full Text Available Environment-dependent genomic features have been defined for different metagenomes, whose genes and their associated processes are related to specific environments. Identification of ORFs and their functional categories are the most common methods for association between functional and environmental features. However, this analysis based on finding ORFs misses noncoding sequences and, therefore, some metagenome regulatory or structural information could be discarded. In this work we analyzed 23 whole metagenomes, including coding and noncoding sequences using the following sequence patterns: (G+C content, Codon Usage (Cd, Trinucleotide Usage (Tn, and functional assignments for ORF prediction. Herein, we present evidence of a high proportion of noncoding sequences discarded in common similarity-based methods in metagenomics, and the kind of relevant information present in those. We found a high density of trinucleotide repeat sequences (TRS in noncoding sequences, with a regulatory and adaptive function for metagenome communities. We present associations between trinucleotide values and gene function, where metagenome clustering correlate with microorganism adaptations and kinds of metagenomes. We propose here that noncoding sequences have relevant information to describe metagenomes that could be considered in a whole metagenome analysis in order to improve their organization, classification protocols, and their relation with the environment.

  16. Highly sensitive detection of individual HEAT and ARM repeats with HHpred and COACH.

    Science.gov (United States)

    Kippert, Fred; Gerloff, Dietlind L

    2009-09-24

    HEAT and ARM repeats occur in a large number of eukaryotic proteins. As these repeats are often highly diverged, the prediction of HEAT or ARM domains can be challenging. Except for the most clear-cut cases, identification at the individual repeat level is indispensable, in particular for determining domain boundaries. However, methods using single sequence queries do not have the sensitivity required to deal with more divergent repeats and, when applied to proteins with known structures, in some cases failed to detect a single repeat. Testing algorithms which use multiple sequence alignments as queries, we found two of them, HHpred and COACH, to detect HEAT and ARM repeats with greatly enhanced sensitivity. Calibration against experimentally determined structures suggests the use of three score classes with increasing confidence in the prediction, and prediction thresholds for each method. When we applied a new protocol using both HHpred and COACH to these structures, it detected 82% of HEAT repeats and 90% of ARM repeats, with the minimum for a given protein of 57% for HEAT repeats and 60% for ARM repeats. Application to bona fide HEAT and ARM proteins or domains indicated that similar numbers can be expected for the full complement of HEAT/ARM proteins. A systematic screen of the Protein Data Bank for false positive hits revealed their number to be low, in particular for ARM repeats. Double false positive hits for a given protein were rare for HEAT and not at all observed for ARM repeats. In combination with fold prediction and consistency checking (multiple sequence alignments, secondary structure prediction, and position analysis), repeat prediction with the new HHpred/COACH protocol dramatically improves prediction in the twilight zone of fold prediction methods, as well as the delineation of HEAT/ARM domain boundaries. A protocol is presented for the identification of individual HEAT or ARM repeats which is straightforward to implement. It provides high

  17. Analysis of genetic diversity in pigeon pea germplasm using ...

    Indian Academy of Sciences (India)

    MANEESHA

    2017-08-16

    Aug 16, 2017 ... fied polymorphic DNA (RAPD), simple sequence repeats. (SSR), amplified fragment length polymorphism (AFLP), single-nucleotide polymorphisms (SNPs), diversity array technology (DArT), genic-simple sequence repeats (genic-. SSR) etc. (see review by Varshney et al. 2013). Since retrotransposons are ...

  18. Identification and characterization of 43 microsatellite markers derived from expressed sequence tags of the sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2011-06-01

    The sea cucumber Apostichopus japonicus is a commercially and ecologically important species in China. A total of 3056 potential unigenes were generated after assembling 7597 A. japonicus expressed sequence tags (ESTs) downloaded from Gen-Bank. Two hundred and fifty microsatellite-containing ESTs (8.18%) and 299 simple sequence repeats (SSRs) were detected. The average density of SSRs was 1 per 7.403 kb of EST after redundancy elimination. Di-nucleotide repeat motifs appeared to be the most abundant type with a percentage of 69.90%. Of the 126 primer pairs designed, 90 amplified the expected products and 43 showed polymorphism in 30 individuals tested. The number of alleles per locus ranged from 2 to 26 with an average of 7.0 alleles, and the observed and expected heterozygosities varied from 0.067 to 1.000 and from 0.066 to 0.959, respectively. These new EST-derived microsatellite markers would provide sufficient polymorphism for population genetic studies and genome mapping of this sea cucumber species.

  19. FRB 121102: A Starquake-induced Repeater?

    Science.gov (United States)

    Wang, Weiyang; Luo, Rui; Yue, Han; Chen, Xuelei; Lee, Kejia; Xu, Renxin

    2018-01-01

    Since its initial discovery, the fast radio burst (FRB) FRB 121102 has been found to be repeating with millisecond-duration pulses. Very recently, 14 new bursts were detected by the Green Bank Telescope during its continuous monitoring observations. In this paper, we show that the burst energy distribution has a power-law form which is very similar to the Gutenberg–Richter law of earthquakes. In addition, the distribution of burst waiting time can be described as a Poissonian or Gaussian distribution, which is consistent with earthquakes, while the aftershock sequence exhibits some local correlations. These findings suggest that the repeating FRB pulses may originate from the starquakes of a pulsar. Noting that the soft gamma-ray repeaters (SGRs) also exhibit such distributions, the FRB could be powered by some starquake mechanisms associated with the SGRs, including the crustal activity of a magnetar or solidification-induced stress of a newborn strangeon star. These conjectures could be tested with more repeating samples.

  20. (ISSR) and internal transcribed spacer

    African Journals Online (AJOL)

    Cladistic relationships within the genus Cinnamomum (Lauraceae) in Taiwan based on analysis of leaf morphology and inter-simple sequence repeat (ISSR) and internal transcribed spacer (ITS) molecular markers.

  1. Repeat Customer Success in Extension

    Science.gov (United States)

    Bess, Melissa M.; Traub, Sarah M.

    2013-01-01

    Four multi-session research-based programs were offered by two Extension specialist in one rural Missouri county. Eleven participants who came to multiple Extension programs could be called "repeat customers." Based on the total number of participants for all four programs, 25% could be deemed as repeat customers. Repeat customers had…

  2. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.

    Science.gov (United States)

    Palermo, Francesca; Cognolato, Matteo; Gijsberts, Arjan; Muller, Henning; Caputo, Barbara; Atzori, Manfredo

    2017-07-01

    Control methods based on sEMG obtained promising results for hand prosthetics. Control system robustness is still often inadequate and does not allow the amputees to perform a large number of movements useful for everyday life. Only few studies analyzed the repeatability of sEMG classification of hand grasps. The main goals of this paper are to explore repeatability in sEMG data and to release a repeatability database with the recorded experiments. The data are recorded from 10 intact subjects repeating 7 grasps 12 times, twice a day for 5 days. The data are publicly available on the Ninapro web page. The analysis for the repeatability is based on the comparison of movement classification accuracy in several data acquisitions and for different subjects. The analysis is performed using mean absolute value and waveform length features and a Random Forest classifier. The accuracy obtained by training and testing on acquisitions at different times is on average 27.03% lower than training and testing on the same acquisition. The results obtained by training and testing on different acquisitions suggest that previous acquisitions can be used to train the classification algorithms. The inter-subject variability is remarkable, suggesting that specific characteristics of the subjects can affect repeatibility and sEMG classification accuracy. In conclusion, the results of this paper can contribute to develop more robust control systems for hand prostheses, while the presented data allows researchers to test repeatability in further analyses.

  3. Tandem repeat variation near the HIC1 (hypermethylated in cancer 1) promoter predicts outcome of oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer.

    Science.gov (United States)

    Okazaki, Satoshi; Schirripa, Marta; Loupakis, Fotios; Cao, Shu; Zhang, Wu; Yang, Dongyun; Ning, Yan; Berger, Martin D; Miyamoto, Yuji; Suenaga, Mitsukuni; Iqubal, Syma; Barzi, Afsaneh; Cremolini, Chiara; Falcone, Alfredo; Battaglin, Francesca; Salvatore, Lisa; Borelli, Beatrice; Helentjaris, Timothy G; Lenz, Heinz-Josef

    2017-11-15

    The hypermethylated in cancer 1/sirtuin 1 (HIC1/SIRT1) axis plays an important role in regulating the nucleotide excision repair pathway, which is the main oxaliplatin-induced damage-repair system. On the basis of prior evidence that the variable number of tandem repeat (VNTR) sequence located near the promoter lesion of HIC1 is associated with HIC1 gene expression, the authors tested the hypothesis that this VNTR is associated with clinical outcome in patients with metastatic colorectal cancer who receive oxaliplatin-based chemotherapy. Four independent cohorts were tested. Patients who received oxaliplatin-based chemotherapy served as the training cohort (n = 218), and those who received treatment without oxaliplatin served as the control cohort (n = 215). Two cohorts of patients who received oxaliplatin-based chemotherapy were used for validation studies (n = 176 and n = 73). The VNTR sequence near HIC1 was analyzed by polymerase chain reaction analysis and gel electrophoresis and was tested for associations with the response rate, progression-free survival, and overall survival. In the training cohort, patients who harbored at least 5 tandem repeats (TRs) in both alleles had a significantly shorter PFS compared with those who had fewer than 4 TRs in at least 1 allele (9.5 vs 11.6 months; hazard ratio, 1.93; P = .012), and these findings remained statistically significant after multivariate analysis (hazard ratio, 2.00; 95% confidence interval, 1.13-3.54; P = .018). This preliminary association was confirmed in the validation cohort, and patients who had at least 5 TRs in both alleles had a worse PFS compared with the other cohort (7.9 vs 9.8 months; hazard ratio, 1.85; P = .044). The current findings suggest that the VNTR sequence near HIC1 could be a predictive marker for oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Cancer 2017;123:4506-14. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. Genetic characterization of UCS region of Pneumocystis jirovecii and construction of allelic profiles of Indian isolates based on sequence typing at three regions.

    Science.gov (United States)

    Gupta, Rashmi; Mirdha, Bijay Ranjan; Guleria, Randeep; Kumar, Lalit; Luthra, Kalpana; Agarwal, Sanjay Kumar; Sreenivas, Vishnubhatla

    2013-01-01

    Pneumocystis jirovecii is an opportunistic pathogen that causes severe pneumonia in immunocompromised patients. To study the genetic diversity of P. jirovecii in India the upstream conserved sequence (UCS) region of Pneumocystis genome was amplified, sequenced and genotyped from a set of respiratory specimens obtained from 50 patients with a positive result for nested mitochondrial large subunit ribosomal RNA (mtLSU rRNA) PCR during the years 2005-2008. Of these 50 cases, 45 showed a positive PCR for UCS region. Variations in the tandem repeats in UCS region were characterized by sequencing all the positive cases. Of the 45 cases, one case showed five repeats, 11 cases showed four repeats, 29 cases showed three repeats and four cases showed two repeats. By running amplified DNA from all these cases on a high-resolution gel, mixed infection was observed in 12 cases (26.7%, 12/45). Forty three of 45 cases included in this study had previously been typed at mtLSU rRNA and internal transcribed spacer (ITS) region by our group. In the present study, the genotypes at those two regions were combined with UCS repeat patterns to construct allelic profiles of 43 cases. A total of 36 allelic profiles were observed in 43 isolates indicating high genetic variability. A statistically significant association was observed between mtLSU rRNA genotype 1, ITS type Ea and UCS repeat pattern 4. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tetranucleotide repeat polymorphism at the human prostatic acid phosphatase (ACPP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Polymeropoulos, M H; Xiao, Hong; Rath, D S; Merril, C R [National Inst. of Mental Health Neuroscience Center, Washington, DC (United States)

    1991-09-11

    The polymorphic (AAAT){sub n} repeat begins at base pair 2342 of the human prostatic acid phosphatase gene on chromosome 3q21-qter. The polymorphism can be typed using the polymerase chain reaction (PCR) as described previously. The predicted length of the amplified sequence was 275 bp. Co-dominant segregation was observed in two informative families. The human prostatic acid phosphatase gene has been assigned to chromosome 3q21-qter.

  6. Schizosaccharomyces pombe MutSα and MutLα Maintain Stability of Tetra-Nucleotide Repeats and Msh3 of Hepta-Nucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    2017-05-01

    Full Text Available Defective mismatch repair (MMR in humans is associated with colon cancer and instability of microsatellites, that is, DNA sequences with one or several nucleotides repeated. Key factors of eukaryotic MMR are the heterodimers MutSα (Msh2-Msh6, which recognizes base-base mismatches and unpaired nucleotides in DNA, and MutLα (Mlh1-Pms1, which facilitates downstream steps. In addition, MutSβ (Msh2-Msh3 recognizes DNA loops of various sizes, although our previous data and the data presented here suggest that Msh3 of Schizosaccharomyces pombe does not play a role in MMR. To test microsatellite stability in S. pombe and hence DNA loop repair, we have inserted tetra-, penta-, and hepta-nucleotide repeats in the ade6 gene and determined their Ade+ reversion rates and spectra in wild type and various mutants. Our data indicate that loops with four unpaired nucleotides in the nascent and the template strand are the upper limit of MutSα- and MutLα-mediated MMR in S. pombe. Stability of hepta-nucleotide repeats requires Msh3 and Exo1 in MMR-independent processes as well as the DNA repair proteins Rad50, Rad51, and Rad2FEN1. Most strikingly, mutation rates in the double mutants msh3 exo1 and msh3 rad51 were decreased when compared to respective single mutants, indicating that Msh3 prevents error prone processes carried out by Exo1 and Rad51. We conclude that Msh3 has no obvious function in MMR in S. pombe, but contributes to DNA repeat stability in MMR-independent processes.

  7. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies. PMID:26960153

  8. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers.

    Science.gov (United States)

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies.

  9. RUNX2 tandem repeats and the evolution of facial length in placental mammals

    Directory of Open Access Journals (Sweden)

    Pointer Marie A

    2012-06-01

    Full Text Available Abstract Background When simple sequence repeats are integrated into functional genes, they can potentially act as evolutionary ‘tuning knobs’, supplying abundant genetic variation with minimal risk of pleiotropic deleterious effects. The genetic basis of variation in facial shape and length represents a possible example of this phenomenon. Runt-related transcription factor 2 (RUNX2, which is involved in osteoblast differentiation, contains a functionally-important tandem repeat of glutamine and alanine amino acids. The ratio of glutamines to alanines (the QA ratio in this protein seemingly influences the regulation of bone development. Notably, in domestic breeds of dog, and in carnivorans in general, the ratio of glutamines to alanines is strongly correlated with facial length. Results In this study we examine whether this correlation holds true across placental mammals, particularly those mammals for which facial length is highly variable and related to adaptive behavior and lifestyle (e.g., primates, afrotherians, xenarthrans. We obtained relative facial length measurements and RUNX2 sequences for 41 mammalian species representing 12 orders. Using both a phylogenetic generalized least squares model and a recently-developed Bayesian comparative method, we tested for a correlation between genetic and morphometric data while controlling for phylogeny, evolutionary rates, and divergence times. Non-carnivoran taxa generally had substantially lower glutamine-alanine ratios than carnivorans (primates and xenarthrans with means of 1.34 and 1.25, respectively, compared to a mean of 3.1 for carnivorans, and we found no correlation between RUNX2 sequence and face length across placental mammals. Conclusions Results of our diverse comparative phylogenetic analyses indicate that QA ratio does not consistently correlate with face length across the 41 mammalian taxa considered. Thus, although RUNX2 might function as a ‘tuning knob’ modifying face

  10. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  11. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  12. Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay.

    Science.gov (United States)

    Rajwade, Ashwini V; Arora, Ritu S; Kadoo, Narendra Y; Harsulkar, Abhay M; Ghorpade, Prakash B; Gupta, Vidya S

    2010-06-01

    The objective of this study was to analyze the genetic relationships, using PCR-based ISSR markers, among 70 Indian flax (Linum usitatissimum L.) genotypes actively utilized in flax breeding programs. Twelve ISSR primers were used for the analysis yielding 136 loci, of which 87 were polymorphic. The average number of amplified loci and the average number of polymorphic loci per primer were 11.3 and 7.25, respectively, while the percent loci polymorphism ranged from 11.1 to 81.8 with an average of 63.9 across all the genotypes. The range of polymorphism information content scores was 0.03-0.49, with an average of 0.18. A dendrogram was generated based on the similarity matrix by the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), wherein the flax genotypes were grouped in five clusters. The Jaccard's similarity coefficient among the genotypes ranged from 0.60 to 0.97. When the omega-3 alpha linolenic acid (ALA) contents of the individual genotypes were correlated with the clusters in the dendrogram, the high ALA containing genotypes were grouped in two clusters. This study identified SLS 50, Ayogi, and Sheetal to be the most diverse genotypes and suggested their use in breeding programs and for developing mapping populations.

  13. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.

    Science.gov (United States)

    Ostria-Hernández, Martha Lorena; Sánchez-Vallejo, Carlos Javier; Ibarra, J Antonio; Castro-Escarpulli, Graciela

    2015-08-04

    In recent years the emergence of multidrug resistant Klebsiella pneumoniae strains has been an increasingly common event. This opportunistic species is one of the five main bacterial pathogens that cause hospital infections worldwide and multidrug resistance has been associated with the presence of high molecular weight plasmids. Plasmids are generally acquired through horizontal transfer and therefore is possible that systems that prevent the entry of foreign genetic material are inactive or absent. One of these systems is CRISPR/Cas. However, little is known regarding the clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) system in K. pneumoniae. The adaptive immune system CRISPR/Cas has been shown to limit the entry of foreign genetic elements into bacterial organisms and in some bacteria it has been shown to be involved in regulation of virulence genes. Thus in this work we used bioinformatics tools to determine the presence or absence of CRISPR/Cas systems in available K. pneumoniae genomes. The complete CRISPR/Cas system was identified in two out of the eight complete K. pneumoniae genomes sequences and in four out of the 44 available draft genomes sequences. The cas genes in these strains comprises eight cas genes similar to those found in Escherichia coli, suggesting they belong to the type I-E group, although their arrangement is slightly different. As for the CRISPR sequences, the average lengths of the direct repeats and spacers were 29 and 33 bp, respectively. BLAST searches demonstrated that 38 of the 116 spacer sequences (33%) are significantly similar to either plasmid, phage or genome sequences, while the remaining 78 sequences (67%) showed no significant similarity to other sequences. The region where the CRISPR/Cas systems were located is the same in all the Klebsiella genomes containing it, it has a syntenic architecture, and is located among genes encoding for proteins likely involved in

  14. Temporal asthma patterns using repeated questionnaires over 13 years in a large French cohort of women.

    Directory of Open Access Journals (Sweden)

    Margaux Sanchez

    Full Text Available Variable expression is one aspect of the heterogeneity of asthma. We aimed to define a variable pattern, which is relevant in general health epidemiological cohorts. Our objectives were to assess whether: 1 asthma patterns defined using simple asthma questions through repeated measurements could reflect disease variability 2 these patterns may further be classified according to asthma severity/control. Among 70,428 French women, we used seven questionnaires (1992-2005 and a comprehensive reimbursement database (2004-2009 to define three reliable asthma patterns based on repeated positive answers to the ever asthma attack question: "never asthma" (n = 64,061; "inconsistent" ("yes" followed by "no", n = 3,514; "consistent" (fully consistent positive answers, n = 2,853. The "Inconsistent" pattern was related to both long-term (childhood-onset asthma with remission in adulthood and short-term (reported asthma attack in the last 12 months, associated with asthma medication asthma variability, showing that repeated questions are relevant markers of the variable expression of asthma. Furthermore, in this pattern, the number of positive responses (1992-2005 predicted asthma drug consumption in subsequent years, a marker of disease severity. The "Inconsistent" pattern is a phenotype that may capture the variable expression of asthma. Repeated answers, even to a simple question, are too often neglected.

  15. Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress.

    Science.gov (United States)

    Lee, Jungeun; Noh, Eun Kyeung; Choi, Hyung-Seok; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2013-03-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been studied as an extremophile that has successfully adapted to marginal land with the harshest environment for terrestrial plants. However, limited genetic research has focused on this species due to the lack of genomic resources. Here, we present the first de novo assembly of its transcriptome by massive parallel sequencing and its expression profile using D. antarctica grown under various stress conditions. Total sequence reads generated by pyrosequencing were assembled into 60,765 unigenes (28,177 contigs and 32,588 singletons). A total of 29,173 unique protein-coding genes were identified based on sequence similarities to known proteins. The combined results from all three stress conditions indicated differential expression of 3,110 genes. Quantitative reverse transcription polymerase chain reaction showed that several well-known stress-responsive genes encoding late embryogenesis abundant protein, dehydrin 1, and ice recrystallization inhibition protein were induced dramatically and that genes encoding U-box-domain-containing protein, electron transfer flavoprotein-ubiquinone, and F-box-containing protein were induced by abiotic stressors in a manner conserved with other plant species. We identified more than 2,000 simple sequence repeats that can be developed as functional molecular markers. This dataset is the most comprehensive transcriptome resource currently available for D. antarctica and is therefore expected to be an important foundation for future genetic studies of grasses and extremophiles.

  16. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    Science.gov (United States)

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  17. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  18. Noninvasive prenatal paternity testing (NIPAT) through maternal plasma DNA sequencing

    DEFF Research Database (Denmark)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao

    2016-01-01

    developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels......Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we...... paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future....

  19. cTBS disruption of the supplementary motor area perturbs cortical sequence representation but not behavioural performance.

    Science.gov (United States)

    Solopchuk, Oleg; Alamia, Andrea; Dricot, Laurence; Duque, Julie; Zénon, Alexandre

    2017-12-01

    Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  1. Comparing Whole-Genome Sequencing with Sanger Sequencing for spa Typing of Methicillin-Resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Petersen, Andreas; Worning, Peder

    2014-01-01

    spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and ...

  2. Simulating efficiently the evolution of DNA sequences.

    Science.gov (United States)

    Schöniger, M; von Haeseler, A

    1995-02-01

    Two menu-driven FORTRAN programs are described that simulate the evolution of DNA sequences in accordance with a user-specified model. This general stochastic model allows for an arbitrary stationary nucleotide composition and any transition-transversion bias during the process of base substitution. In addition, the user may define any hypothetical model tree according to which a family of sequences evolves. The programs suggest the computationally most inexpensive approach to generate nucleotide substitutions. Either reproducible or non-repeatable simulations, depending on the method of initializing the pseudo-random number generator, can be performed. The corresponding options are offered by the interface menu.

  3. Integrated massively parallel sequencing of 15 autosomal STRs and Amelogenin using a simplified library preparation approach.

    Science.gov (United States)

    Xue, Jian; Wu, Riga; Pan, Yajiao; Wang, Shunxia; Qu, Baowang; Qin, Ying; Shi, Yuequn; Zhang, Chuchu; Li, Ran; Zhang, Liyan; Zhou, Cheng; Sun, Hongyu

    2018-04-02

    Massively parallel sequencing (MPS) technologies, also termed as next-generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two-round PCR that requires more steps, making it time-consuming (about 2 days), laborious and expensive. In this study, a 16-plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database-type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS-based STR typing and capillary electrophoresis (CE)-based STR typing. The inconsistency might have been caused by off-ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large-scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation-friendly process flow that saves labor, time and costs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  5. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  6. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa

    Directory of Open Access Journals (Sweden)

    Shahin Arwa

    2012-11-01

    Full Text Available Abstract Background Bulbous flowers such as lily and tulip (Liliaceae family are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Results Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups and among the three monocot species: lily, tulip, and rice (6,900 groups were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Conclusions

  7. Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa.

    Science.gov (United States)

    Shahin, Arwa; van Kaauwen, Martijn; Esselink, Danny; Bargsten, Joachim W; van Tuyl, Jaap M; Visser, Richard G F; Arens, Paul

    2012-11-20

    Bulbous flowers such as lily and tulip (Liliaceae family) are monocot perennial herbs that are economically very important ornamental plants worldwide. However, there are hardly any genetic studies performed and genomic resources are lacking. To build genomic resources and develop tools to speed up the breeding in both crops, next generation sequencing was implemented. We sequenced and assembled transcriptomes of four lily and five tulip genotypes using 454 pyro-sequencing technology. Successfully, we developed the first set of 81,791 contigs with an average length of 514 bp for tulip, and enriched the very limited number of 3,329 available ESTs (Expressed Sequence Tags) for lily with 52,172 contigs with an average length of 555 bp. The contigs together with singletons covered on average 37% of lily and 39% of tulip estimated transcriptome. Mining lily and tulip sequence data for SSRs (Simple Sequence Repeats) showed that di-nucleotide repeats were twice more abundant in UTRs (UnTranslated Regions) compared to coding regions, while tri-nucleotide repeats were equally spread over coding and UTR regions. Two sets of single nucleotide polymorphism (SNP) markers suitable for high throughput genotyping were developed. In the first set, no SNPs flanking the target SNP (50 bp on either side) were allowed. In the second set, one SNP in the flanking regions was allowed, which resulted in a 2 to 3 fold increase in SNP marker numbers compared with the first set. Orthologous groups between the two flower bulbs: lily and tulip (12,017 groups) and among the three monocot species: lily, tulip, and rice (6,900 groups) were determined using OrthoMCL. Orthologous groups were screened for common SNP markers and EST-SSRs to study synteny between lily and tulip, which resulted in 113 common SNP markers and 292 common EST-SSR. Lily and tulip contigs generated were annotated and described according to Gene Ontology terminology. Two transcriptome sets were built that are valuable

  8. Molecular marker analysis of 'Shatangju' and 'Wuzishatangju ...

    African Journals Online (AJOL)

    'Wuzishatangju'(Citrus reticulata Blanco) is an excellent cultivar derived from a bud sport of a seedy 'Shatangju' cultivar found in Guangdong Province in the 1980s. In this study, six molecular markers including random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), simple sequence repeat (SSR) ...

  9. Acquiring a cognitive skill with a new repeating version of the Tower of London task.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beauchamp, Miriam H; Owen, Adrian M; Doyon, Julien

    2004-12-01

    A computerized version of the Tower of London task was used to investigate cognitive skill learning. Thirty-six healthy volunteers were assigned to either a random condition (nonrecurring problems), or to a sequence condition in which, unbeknownst to the subjects, a repeating sequence of three problems was presented. Indices of execution, planning, and total time, as well as number of moves performed, were used to measure behavioural change. Subjects' performance improved in both conditions across blocks of practice. A distinct learning effect related to the repeating sequence was also observed. This suggests that a specific skill that reflects procedural learning of the strategies, rules, and procedures pertaining to repeating problems can develop over and above a more general skill at solving cognitive planning problems with practice.

  10. Gene conversion homogenizes the CMT1A paralogous repeats

    Directory of Open Access Journals (Sweden)

    Hurles Matthew E

    2001-12-01

    Full Text Available Abstract Background Non-allelic homologous recombination between paralogous repeats is increasingly being recognized as a major mechanism causing both pathogenic microdeletions and duplications, and structural polymorphism in the human genome. It has recently been shown empirically that gene conversion can homogenize such repeats, resulting in longer stretches of absolute identity that may increase the rate of non-allelic homologous recombination. Results Here, a statistical test to detect gene conversion between pairs of non-coding sequences is presented. It is shown that the 24 kb Charcot-Marie-Tooth type 1A paralogous repeats (CMT1A-REPs exhibit the imprint of gene conversion processes whilst control orthologous sequences do not. In addition, Monte Carlo simulations of the evolutionary divergence of the CMT1A-REPs, incorporating two alternative models for gene conversion, generate repeats that are statistically indistinguishable from the observed repeats. Bounds are placed on the rate of these conversion processes, with central values of 1.3 × 10-4 and 5.1 × 10-5 per generation for the alternative models. Conclusions This evidence presented here suggests that gene conversion may have played an important role in the evolution of the CMT1A-REP paralogous repeats. The rates of these processes are such that it is probable that homogenized CMT1A-REPs are polymorphic within modern populations. Gene conversion processes are similarly likely to play an important role in the evolution of other segmental duplications and may influence the rate of non-allelic homologous recombination between them.

  11. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    Directory of Open Access Journals (Sweden)

    Bonita J Brewer

    2015-12-01

    Full Text Available DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs. Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins

  12. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    Science.gov (United States)

    Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K

    2015-12-01

    DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial

  13. Power Adaptive Feedback Communication over an Additive Individual Noise Sequence Channel

    OpenAIRE

    Lomnitz, Yuval; Feder, Meir

    2009-01-01

    We consider a real-valued additive channel with an individual unknown noise sequence. We present a simple sequential communication scheme based on the celebrated Schalkwijk-Kailath scheme, which varies the transmit power according to the power of the sequence, so that asymptotically the relation between the SNR and the rate matches the Gaussian channel capacity 1/2 log(1+SNR)for almost every noise sequence.

  14. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    Science.gov (United States)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  15. Abnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism

    Directory of Open Access Journals (Sweden)

    Agathi-Vasiliki Goula

    2013-07-01

    Full Text Available More than fifteen genetic diseases, including Huntington’s disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER are involved in repeat instability and might contribute to the tissue selectivity of the process. In this review, we will discuss the mechanisms of trinucleotide repeat instability, focusing more specifically on the role of BER.

  16. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode

    Science.gov (United States)

    Fujita, Shuji; Yamanoi, Shun; Murata, Kenichi; Mita, Hiroki; Samukawa, Tsunetoshi; Nakagawa, Takaaki; Sakai, Hideki; Tokita, Yuichi

    2014-05-01

    Biofuel cells that generate electricity from renewable fuels, such as carbohydrates, must be reusable through repeated refuelling, should these devices be used in consumer electronics. We demonstrate the stable generation of electricity from a glucose-powered mediated biofuel cell through multiple refuelling cycles. This refuelability is achieved by immobilizing nicotinamide adenine dinucleotide (NAD), an electron-transfer mediator, and redox enzymes in high concentrations on porous carbon particles constituting an anode while maintaining their electrochemical and enzymatic activities after the immobilization. This bioanode can be refuelled continuously for more than 60 cycles at 1.5 mA cm-2 without significant potential drop. Cells assembled with these bioanodes and bilirubin-oxidase-based biocathodes can be repeatedly used to power a portable music player at 1 mW cm-3 through 10 refuelling cycles. This study suggests that the refuelability within consumer electronics should facilitate the development of long and repeated use of the mediated biofuel cells as well as of NAD-based biosensors, bioreactors, and clinical applications.

  17. Analysis of pre-service physics teacher skills designing simple physics experiments based technology

    Science.gov (United States)

    Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.

    2018-03-01

    Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.

  18. An Analysis of Delay-based and Integrator-based Sequence Detectors for Grid-Connected Converters

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    -signal cancellation operators are the main members of the delay-based sequence detectors. The aim of this paper is to provide a theoretical and experimental comparative study between integrator and delay based sequence detectors. The theoretical analysis is conducted based on the small-signal modelling......Detecting and separating positive and negative sequence components of the grid voltage or current is of vital importance in the control of grid-connected power converters, HVDC systems, etc. To this end, several techniques have been proposed in recent years. These techniques can be broadly...... classified into two main classes: The integrator-based techniques and Delay-based techniques. The complex-coefficient filter-based technique, dual second-order generalized integrator-based method, multiple reference frame approach are the main members of the integrator-based sequence detector and the delay...

  19. New development and validation of 50 SSR markers in breadfruit (Artocarpus altilis, Moraceae) by next-generation sequencing.

    Science.gov (United States)

    De Bellis, Fabien; Malapa, Roger; Kagy, Valérie; Lebegin, Stéphane; Billot, Claire; Labouisse, Jean-Pierre

    2016-08-01

    Using next-generation sequencing technology, new microsatellite loci were characterized in Artocarpus altilis (Moraceae) and two congeners to increase the number of available markers for genotyping breadfruit cultivars. A total of 47,607 simple sequence repeat loci were obtained by sequencing a library of breadfruit genomic DNA with an Illumina MiSeq system. Among them, 50 single-locus markers were selected and assessed using 41 samples (39 A. altilis, one A. camansi, and one A. heterophyllus). All loci were polymorphic in A. altilis, 44 in A. camansi, and 21 in A. heterophyllus. The number of alleles per locus ranged from two to 19. The new markers will be useful for assessing the identity and genetic diversity of breadfruit cultivars on a small geographical scale, gaining a better understanding of farmer management practices, and will help to optimize breadfruit genebank management.

  20. [EST-SSR identification, markers development of Ligusticum chuanxiong based on Ligusticum chuanxiong transcriptome sequences].

    Science.gov (United States)

    Yuan, Can; Peng, Fang; Yang, Ze-Mao; Zhong, Wen-Juan; Mou, Fang-Sheng; Gong, Yi-Yun; Ji, Pei-Cheng; Pu, De-Qiang; Huang, Hai-Yan; Yang, Xiao; Zhang, Chao

    2017-09-01

    Ligusticum chuanxiong is a well-known traditional Chinese medicine plant. The study on its molecular markers development and germplasm resources is very important. In this study, we obtained 24 422 unigenes by assembling transcriptome sequencing reads of L. chuanxiong root. EST-SSR was detected and 4 073 SSR loci were identified. EST-SSR distribution and characteristic analysis results showed that the mono-nucleotide repeats were the main repeat types, accounting for 41.0%. In addition, the sequences containing SSR were functionally annotated in Gene Ontology (GO) and KEGG pathway and were assigned to 49 GO categories, 242 KEGG pathways, among them 2 201 sequences were annotated against Nr database. By validating 235 EST-SSRs,74 primer pairs were ultimately proved to have high quality amplification. Subsequently, genetic diversity analysis, UPGMA cluster analysis, PCoA analysis and population structure analysis of 34 L. chuanxiong germplasm resources were carried out with 74 primer pairs. In both UPGMA tree and PCoA results, L. chuanxiong resources were clustered into two groups, which are believed to be partial related to their geographical distribution. In this study, EST-SSRs in L. chuanxiong was firstly identified, and newly developed molecular markers would contribute significantly to further genetic diversity study, the purity detection, gene mapping, and molecular breeding. Copyright© by the Chinese Pharmaceutical Association.

  1. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  2. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum and Comparative Analysis with Common Buckwheat (F. esculentum.

    Directory of Open Access Journals (Sweden)

    Kwang-Soo Cho

    Full Text Available We report the chloroplast (cp genome sequence of tartary buckwheat (Fagopyrum tataricum obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats and F. esculentum (one repeat, and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes--rpoC2, ycf3, accD, and clpP--have high synonymous (Ks value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum.

  3. A Simple and High Performing Rate Control Initialization Method for H.264 AVC Coding Based on Motion Vector Map and Spatial Complexity at Low Bitrate

    Directory of Open Access Journals (Sweden)

    Yalin Wu

    2014-01-01

    Full Text Available The temporal complexity of video sequences can be characterized by motion vector map which consists of motion vectors of each macroblock (MB. In order to obtain the optimal initial QP (quantization parameter for the various video sequences which have different spatial and temporal complexities, this paper proposes a simple and high performance initial QP determining method based on motion vector map and temporal complexity to decide an initial QP in given target bit rate. The proposed algorithm produces the reconstructed video sequences with outstanding and stable quality. For any video sequences, the initial QP can be easily determined from matrices by target bit rate and mapped spatial complexity using proposed mapping method. Experimental results show that the proposed algorithm can show more outstanding objective and subjective performance than other conventional determining methods.

  4. Feasibility of a RARE-based sequence for quantitative diffusion-weighted MRI of the spine

    International Nuclear Information System (INIS)

    Raya, J.G.; Dietrich, O.; Sommer, J.; Reiser, M.F.; Baur-Melnyk, A.; Birkenmaier, C.

    2007-01-01

    The feasibility of a diffusion-weighted single-shot fast-spin-echo sequence for the diagnostic work-up of bone marrow diseases was assessed. Twenty healthy controls and 16 patients with various bone marrow pathologies of the spine (bone marrow edema, tumor and inflammation) were examined with a diffusion-weighted single-shot sequence based on a modified rapid acquisition with relaxation enhancement (mRARE) technique; four diffusion weightings (b-values: 50, 250, 500 and 750 s/mm 2 ) in three orthogonal orientations were applied. Apparent diffusion coefficients (ADCs) were determined in the bone marrow and in the intervertebral discs of healthy volunteers and in diseased bone marrow. Ten of the 20 volunteers were repeatedly scanned within 30 min to examine short-time reproducibility. Spatial reproducibility was assessed by measuring ADCs in two different slices including the same lesion in 12 patients. The ADCs of the lesions exhibited significantly higher values, (1.27 ± 0.32) x 10 -3 mm 2 /s, compared with healthy bone marrow, (0.21 ± 0.10) x 10 -3 mm 2 /s. Short-time and spatial reproducibility had a mean coefficient of variation of 2.1% and 6.4%, respectively. The diffusion-weighted mRARE sequence provides a reliable tool for determining quantitative ADCs in vertebral bone marrow with adequate image quality. (orig.)

  5. Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera).

    Science.gov (United States)

    Huang, Ya-Yi; Matzke, Antonius J M; Matzke, Marjori

    2013-01-01

    Coconut, a member of the palm family (Arecaceae), is one of the most economically important trees used by mankind. Despite its diverse morphology, coconut is recognized taxonomically as only a single species (Cocos nucifera L.). There are two major coconut varieties, tall and dwarf, the latter of which displays traits resulting from selection by humans. We report here the complete chloroplast (cp) genome of a dwarf coconut plant, and describe the gene content and organization, inverted repeat fluctuations, repeated sequence structure, and occurrence of RNA editing. Phylogenetic relationships of monocots were inferred based on 47 chloroplast protein-coding genes. Potential nodes for events of gene duplication and pseudogenization related to inverted repeat fluctuation were mapped onto the tree using parsimony criteria. We compare our findings with those from other palm species for which complete cp genome sequences are available.

  6. Centroid based clustering of high throughput sequencing reads based on n-mer counts.

    Science.gov (United States)

    Solovyov, Alexander; Lipkin, W Ian

    2013-09-08

    Many problems in computational biology require alignment-free sequence comparisons. One of the common tasks involving sequence comparison is sequence clustering. Here we apply methods of alignment-free comparison (in particular, comparison using sequence composition) to the challenge of sequence clustering. We study several centroid based algorithms for clustering sequences based on word counts. Study of their performance shows that using k-means algorithm with or without the data whitening is efficient from the computational point of view. A higher clustering accuracy can be achieved using the soft expectation maximization method, whereby each sequence is attributed to each cluster with a specific probability. We implement an open source tool for alignment-free clustering. It is publicly available from github: https://github.com/luscinius/afcluster. We show the utility of alignment-free sequence clustering for high throughput sequencing analysis despite its limitations. In particular, it allows one to perform assembly with reduced resources and a minimal loss of quality. The major factor affecting performance of alignment-free read clustering is the length of the read.

  7. Discovery of Escherichia coli CRISPR sequences in an undergraduate laboratory.

    Science.gov (United States)

    Militello, Kevin T; Lazatin, Justine C

    2017-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) represent a novel type of adaptive immune system found in eubacteria and archaebacteria. CRISPRs have recently generated a lot of attention due to their unique ability to catalog foreign nucleic acids, their ability to destroy foreign nucleic acids in a mechanism that shares some similarity to RNA interference, and the ability to utilize reconstituted CRISPR systems for genome editing in numerous organisms. In order to introduce CRISPR biology into an undergraduate upper-level laboratory, a five-week set of exercises was designed to allow students to examine the CRISPR status of uncharacterized Escherichia coli strains and to allow the discovery of new repeats and spacers. Students started the project by isolating genomic DNA from E. coli and amplifying the iap CRISPR locus using the polymerase chain reaction (PCR). The PCR products were analyzed by Sanger DNA sequencing, and the sequences were examined for the presence of CRISPR repeat sequences. The regions between the repeats, the spacers, were extracted and analyzed with BLASTN searches. Overall, CRISPR loci were sequenced from several previously uncharacterized E. coli strains and one E. coli K-12 strain. Sanger DNA sequencing resulted in the discovery of 36 spacer sequences and their corresponding surrounding repeat sequences. Five of the spacers were homologous to foreign (non-E. coli) DNA. Assessment of the laboratory indicates that improvements were made in the ability of students to answer questions relating to the structure and function of CRISPRs. Future directions of the laboratory are presented and discussed. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):262-269, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. Instability of expanded simple tandem repeats is induced in cell culture by a variety of agents: N-Nitroso-N-ethylurea, benzo(a)pyrene, etoposide and okadaic acid

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Aris [Environmental Health Centre, Environmental and occupational Toxicology Division, Health Canada, Tunney' s Pasture, P.L. 0803A, Ottawa, Ont., K1A 0L2 (Canada); Parfett, Craig [Environmental Health Centre, Environmental and occupational Toxicology Division, Health Canada, Tunney' s Pasture, P.L. 0803A, Ottawa, Ont., K1A 0L2 (Canada); Healy, Caroline [Environmental Health Centre, Environmental and occupational Toxicology Division, Health Canada, Tunney' s Pasture, P.L. 0803A, Ottawa, Ont., K1A 0L2 (Canada); Douglas, George R. [Environmental Health Centre, Environmental and occupational Toxicology Division, Health Canada, Tunney' s Pasture, P.L. 0803A, Ottawa, Ont., K1A 0L2 (Canada); Yauk, Carole L. [Environmental Health Centre, Environmental and occupational Toxicology Division, Health Canada, Tunney' s Pasture, P.L. 0803A, Ottawa, Ont., K1A 0L2 (Canada)]. E-mail: Carole_Yauk@hc-sc.gc.ca

    2006-06-25

    Expanded simple tandem repeat (ESTR) sequences have proven useful biomarkers to detect genotoxicity in vivo. Their high sensitivity has been used to assess environmentally relevant doses of mutagens such as ionizing radiation, DNA alkylating agents and airborne particulate pollution, for germline mutations in mouse assays. The mutagenic response involves size alteration of these ESTR loci induced by agents causing a variety of cellular damage. The mechanistic aspects of this induced instability remain unclear and have not been studied in detail. Mechanistic knowledge is important to help understand the relevance of increased ESTR mutation frequencies. In this study, we applied a murine cell culture system to examine induced response to four agents exhibiting different modes of toxic action including: N-nitroso-N-ethylurea (ENU), benzo(a)pyrene (BaP), okadaic acid and etoposide at slightly sub-toxic levels. We used single-molecule-polymerase chain reaction (SM-PCR) to assess the relative mutant frequency after 4-week chemical treatments at the Ms6-hm ESTR sequence of cultured C3H/10T1/2 cells (a mouse embryonic cell line). Increased mutation was observed with both 0.64 mM ENU (1.95-fold increase, P < 0.0001), 1 {mu}M benzo(a)pyrene (1.87-fold increase, P = 0.0006) and 3 nM etoposide (1.89-fold increase, P = 0.0003). The putative ESTR mutagen okadaic acid (1.27-fold increase, P = 0.2289), administered at 0.5 nM, did not affect the C3H/10T1/2 Ms6-hm locus. Therefore, agents inducing small and bulky adducts, and indirectly causing strand breaks through inhibition of topoisomerase, caused similar induction of instability at an ESTR locus at matched toxicities. As size spectra for induced mutations were identical, the data indicate that although these chemicals exhibit distinct modes of action, a similar indirect process is influencing ESTR instability. In contrast, a potent tumour promoter that is a kinase inhibitor does not contribute to induced ESTR instability in

  9. Instability of expanded simple tandem repeats is induced in cell culture by a variety of agents: N-Nitroso-N-ethylurea, benzo(a)pyrene, etoposide and okadaic acid

    International Nuclear Information System (INIS)

    Polyzos, Aris; Parfett, Craig; Healy, Caroline; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Expanded simple tandem repeat (ESTR) sequences have proven useful biomarkers to detect genotoxicity in vivo. Their high sensitivity has been used to assess environmentally relevant doses of mutagens such as ionizing radiation, DNA alkylating agents and airborne particulate pollution, for germline mutations in mouse assays. The mutagenic response involves size alteration of these ESTR loci induced by agents causing a variety of cellular damage. The mechanistic aspects of this induced instability remain unclear and have not been studied in detail. Mechanistic knowledge is important to help understand the relevance of increased ESTR mutation frequencies. In this study, we applied a murine cell culture system to examine induced response to four agents exhibiting different modes of toxic action including: N-nitroso-N-ethylurea (ENU), benzo(a)pyrene (BaP), okadaic acid and etoposide at slightly sub-toxic levels. We used single-molecule-polymerase chain reaction (SM-PCR) to assess the relative mutant frequency after 4-week chemical treatments at the Ms6-hm ESTR sequence of cultured C3H/10T1/2 cells (a mouse embryonic cell line). Increased mutation was observed with both 0.64 mM ENU (1.95-fold increase, P < 0.0001), 1 μM benzo(a)pyrene (1.87-fold increase, P = 0.0006) and 3 nM etoposide (1.89-fold increase, P = 0.0003). The putative ESTR mutagen okadaic acid (1.27-fold increase, P = 0.2289), administered at 0.5 nM, did not affect the C3H/10T1/2 Ms6-hm locus. Therefore, agents inducing small and bulky adducts, and indirectly causing strand breaks through inhibition of topoisomerase, caused similar induction of instability at an ESTR locus at matched toxicities. As size spectra for induced mutations were identical, the data indicate that although these chemicals exhibit distinct modes of action, a similar indirect process is influencing ESTR instability. In contrast, a potent tumour promoter that is a kinase inhibitor does not contribute to induced ESTR instability in cell

  10. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    Science.gov (United States)

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the

  11. Development of genic SSR markers from transcriptome sequencing of pear buds.

    Science.gov (United States)

    Yue, Xiao-yan; Liu, Guo-qin; Zong, Yu; Teng, Yuan-wen; Cai, Dan-ying

    2014-04-01

    A total of 8375 genic simple sequence repeat (SSR) loci were discovered from a unigene set assembled from 116282 transcriptomic unigenes in this study. Dinucleotide repeat motifs were the most common with a frequency of 65.11%, followed by trinucleotide (32.81%). A total of 4100 primer pairs were designed from the SSR loci. Of these, 343 primer pairs (repeat length ≥15 bp) were synthesized with an M13 tail and tested for stable amplification and polymorphism in four Pyrus accessions. After the preliminary test, 104 polymorphic genic SSR markers were developed; dinucleotide and trinucleotide repeats represented 97.11% (101) of these. Twenty-eight polymorphic genic SSR markers were selected randomly to further validate genetic diversity among 28 Pyrus accessions. These markers displayed a high level of polymorphism. The number of alleles at these SSR loci ranged from 2 to 17, with a mean of 9.43 alleles per locus, and the polymorphism information content (PIC) values ranged from 0.26 to 0.91. The UPGMA (unweighted pair-group method with arithmetic average) cluster analysis grouped the 28 Pyrus accessions into two groups: Oriental pears and Occidental pears, which are congruent to the traditional taxonomy, demonstrating their effectiveness in analyzing Pyrus phylogenetic relationships, enriching rare Pyrus EST-SSR resources, and confirming the potential value of a pear transcriptome database for the development of new SSR markers.

  12. Characterization and Development of EST-SSRs by Deep Transcriptome Sequencing in Chinese Cabbage (Brassica rapa L. ssp. pekinensis

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2015-01-01

    Full Text Available Simple sequence repeats (SSRs are among the most important markers for population analysis and have been widely used in plant genetic mapping and molecular breeding. Expressed sequence tag-SSR (EST-SSR markers, located in the coding regions, are potentially more efficient for QTL mapping, gene targeting, and marker-assisted breeding. In this study, we investigated 51,694 nonredundant unigenes, assembled from clean reads from deep transcriptome sequencing with a Solexa/Illumina platform, for identification and development of EST-SSRs in Chinese cabbage. In total, 10,420 EST-SSRs with over 12 bp were identified and characterized, among which 2744 EST-SSRs are new and 2317 are known ones showing polymorphism with previously reported SSRs. A total of 7877 PCR primer pairs for 1561 EST-SSR loci were designed, and primer pairs for twenty-four EST-SSRs were selected for primer evaluation. In nineteen EST-SSR loci (79.2%, amplicons were successfully generated with high quality. Seventeen (89.5% showed polymorphism in twenty-four cultivars of Chinese cabbage. The polymorphic alleles of each polymorphic locus were sequenced, and the results showed that most polymorphisms were due to variations of SSR repeat motifs. The EST-SSRs identified and characterized in this study have important implications for developing new tools for genetics and molecular breeding in Chinese cabbage.

  13. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    Science.gov (United States)

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform

    Science.gov (United States)

    Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...

  15. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  16. Characterising the CRISPR immune system in Archaea using genome sequence analysis

    DEFF Research Database (Denmark)

    Shah, Shiraz Ali

    Archaea, a group of microorganisms distinct from bacteria and eukaryotes, are equipped with an adaptive immune system called the CRISPR system, which relies on an RNA interference mechanism to combat invading viruses and plasmids. Using a genome sequence analysis approach, the four components...... of archaeal genomic CRISPR loci were analysed, namely, repeats, spacers, leaders and cas genes. Based on analysis of spacer sequences it was predicted that the immune system combats viruses and plasmids by targeting their DNA. Furthermore, analysis of repeats, leaders and cas genes revealed that CRISPR...... systems exist as distinct families which have key differences between themselves. Closely related organisms were seen harbouring different CRISPR systems, while some distantly related species carried similar systems, indicating frequent horizontal exchange. Moreover, it was found that cas genes of Type I...

  17. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    Science.gov (United States)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  18. Large scale analysis of small repeats via mining of the human genome

    NARCIS (Netherlands)

    van den Berg, I.; Bosnacki, D.; Hilbers, P.A.J.

    2009-01-01

    Small repetitive sequences, called tandem repeats, are abundant throughout the human genome, both in coding and in non-coding regions. Their role is still mostly unknown, but at least 20 of those repetitive sequences have been related to neurodegenerative disorders. The mutational process that is

  19. JACOP: A simple and robust method for the automated classification of protein sequences with modular architecture

    Directory of Open Access Journals (Sweden)

    Pagni Marco

    2005-08-01

    Full Text Available Abstract Background Whole-genome sequencing projects are rapidly producing an enormous number of new sequences. Consequently almost every family of proteins now contains hundreds of members. It has thus become necessary to develop tools, which classify protein sequences automatically and also quickly and reliably. The difficulty of this task is intimately linked to the mechanism by which protein sequences diverge, i.e. by simultaneous residue substitutions, insertions and/or deletions and whole domain reorganisations (duplications/swapping/fusion. Results Here we present a novel approach, which is based on random sampling of sub-sequences (probes out of a set of input sequences. The probes are compared to the input sequences, after a normalisation step; the results are used to partition the input sequences into homogeneous groups of proteins. In addition, this method provides information on diagnostic parts of the proteins. The performance of this method is challenged by two data sets. The first one contains the sequences of prokaryotic lyases that could be arranged as a multiple sequence alignment. The second one contains all proteins from Swiss-Prot Release 36 with at least one Src homology 2 (SH2 domain – a classical example for proteins with modular architecture. Conclusion The outcome of our method is robust, highly reproducible as shown using bootstrap and resampling validation procedures. The results are essentially coherent with the biology. This method depends solely on well-established publicly available software and algorithms.

  20. Massively parallel sequencing of forensic STRs

    DEFF Research Database (Denmark)

    Parson, Walther; Ballard, David; Budowle, Bruce

    2016-01-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that...