WorldWideScience

Sample records for simple fast metal

  1. Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation.

    Science.gov (United States)

    Song, Botao

    2016-12-15

    Superhydrophobic metal wire mesh (SMWM) has frequently been applied for the selective and efficient separation of oil/water mixture due to its porous structure and special wettability. However, current methods for the modification of metal wire mesh to be superhydrophobic suffered from problems with respect to complex experimental procedures or time-consuming process. In this study, a very simple, time-saving and single-step electrospray method was proposed to fabricate SMWM and the whole procedure required about only 2min. The morphology, surface composition and wettability of the SMWM were all evaluated, and the oil/water separation ability was further investigated. In addition, a commercial available sponge covered with SMWM was fabricated as an oil adsorbent for the purpose of oil recovery. This study demonstrated a convenient and fast method to modify the metal wire mesh to be superhydrophobic and such simple method might find practical applications in the large-scale removal of oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Simple Attenauation Models of Metallic Cables Suitable for G.fast Frequencies

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2015-01-01

    Full Text Available Recently, a new xDSL successor called G.fast, which can occupy frequencies up to 106 or 212~MHz, has been introduced in ITU-T G.9700 series of recommendations. Moreover, a new model of transmission characteristics suitable for various types of metallic cables has been designed and described as well. The model is based on 9 parameters specified for each type of metallic cable and can provide accurate estimations. However, its complexity together with the number of required parameters makes its practical application questionable, since the most important metallic cable characteristic, the attenuation, can be estimated using much simpler models. Therefore, two innovative attenuation models suitable for frequencies up to 250 MHz were designed and they will be introduced in this paper. The main motivation was to achieve an accurate approximation of attenuation character for various types of metallic cables, while maintaining low mathematical complexity and a number of necessary parameters. Both models were compared with attenuation characteristics measured for variety types of real metallic cables and also with other standard attenuation models. The results are included in this article as well.

  3. Performance of metallic fuels in liquid-metal fast reactors

    International Nuclear Information System (INIS)

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  4. Core characteristics of fast reactor cycle with simple dry pyrochemical processing

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2008-01-01

    Fast reactor core concept and core nuclear characteristics are studied for the application of the simple dry pyrochemical processing for fast reactor mixed oxide spent fuels, that is, the Compound Process Fuel Cycle, large FR core with of loaded fuels are recycled by the simple dry pyrochemical processing. Results of the core nuclear analyses show that it is possible to recycle FR spent fuel once and to have 1.01 of breeding ratio without radial blanket region. The comparison is made among three kinds of recycle fuels, LWR UO 2 spent fuel, LWR MOX spent fuel, and FR spent fuel. The recycle fuels reach an equilibrium state after recycles regardless of their starting heavy metal compositions, and the recycled FR fuel has the lowest radio-activity and the same level of heat generation among the recycle fuels. Therefore, the compound process fuel cycle has flexibility to recycle both LWR spent fuel and FR spent fuel. The concept has a possibility of enhancement of nuclear non-proliferation and process simplification of fuel cycle. (author)

  5. Fast and simple fat grafting of the breast

    DEFF Research Database (Denmark)

    Kristensen, Rasmus Nygård; Gunnarsson, Gudjon L; Børsen-Koch, Mikkel

    2015-01-01

    Fat grafting (FG) is being used at an escalating rate for correction of shape and volume of all types of breast surgery in order to optimize the aesthetic result in spite of an ongoing debate of the oncologic safety. In this paper we demonstrate our simple and fast sedimentation based FG technique...... in the attached video as visualized surgery. We have used this simple approach for 348 procedures in 176 women to optimize and correct the aesthetic result following all types of breast surgery. We prefer this simple technique as no technique has been shown to be superior to other more costly techniques...... and furthermore there are still questions about the oncologic safety in using adipose derived stem cells (ADSC). Simple fat harvesting using low vacuum and preparation by sedimentation is a fast and effective method to perform FG successfully for correction of shape and volume deficits of the breast following...

  6. Irradiation behavior of metallic fast reactor fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  7. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  8. Simple laser-driven, metal photocathodes as cold, high-current electron sources

    International Nuclear Information System (INIS)

    Saunders, J.D.; Ringler, T.J.; Builta, L.A.; Kauppila, T.J.; Moir, D.C.; Downey, S.W.

    1987-01-01

    Recent developments in excimer laser design have made near ultraviolet light intensities of several MWcm 2 possible in unfocused beams. These advances and recent experiments indicate that high-current, simple-metal photoemissive electron guns are now feasible. Producing more than 50 Acm 2 of illuminated cathode surface, the guns could operate at vacuums of 10 -6 torr with no complicated system components inside the vacuum enclosure. The electron beam produced by such photoemission guns would have very low emittance and high brightness. This beam would also closely follow the temporal characteristics of the laser pulse, making fast risetime, ultrashort electron beam pulses possible

  9. Simple, Fast and Selective Detection of Adenosine Triphosphate at Physiological pH Using Unmodified Gold Nanoparticles as Colorimetric Probes and Metal Ions as Cross-Linkers

    Directory of Open Access Journals (Sweden)

    Huan Pang

    2012-11-01

    Full Text Available We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP using unmodified gold nanoparticles (AuNPs as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  10. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  11. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  12. Bioinformatics tools for development of fast and cost effective simple ...

    African Journals Online (AJOL)

    Bioinformatics tools for development of fast and cost effective simple sequence repeat ... comparative mapping and exploration of functional genetic diversity in the ... Already, a number of computer programs have been implemented that aim at ...

  13. Liquid metal fast reactor transient design

    International Nuclear Information System (INIS)

    Horak, C.; Purvis, E. III

    2000-01-01

    An examination has been made of how the currently available computing capabilities could be used to reduce Liquid Metal Fast Reactor design, manufacturing, and construction cost. While the examination focused on computer analyses some other promising means to reduce costs were also examined. (author)

  14. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  15. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2000-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. For example, the high cycle efficiency can be expected because of the similarity of the present cycle to the Ericsson cycle. Sodium-Water Interaction problem can be excluded by proper combination of the working fluids. As the economical feature, the present system is so simple that the liquid-metal main circular pump, the steam turbine generator, and even the steam generator can be excluded if the thermodynamic working fluid is injected directly into the high temperature liquid metal MHD working fluid. In addition, the present system has the potential to be applied to various heat sources including solar energy because of the high flexibility of the operation temperature. In the present paper, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It is found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It is, however, found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. As the conclusions, it is recommended to perform experimental study to obtain the fundamental data, such as the gas-liquid slip ratio in the high-density liquid-metal two-phase natural circulation. (author)

  16. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  17. CADDIS Volume 2. Sources, Stressors and Responses: Metals - Simple Conceptual Model Diagram

    Science.gov (United States)

    Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.

  18. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    Science.gov (United States)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  19. Shock wave compression and metallization of simple molecules

    International Nuclear Information System (INIS)

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  20. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  1. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  2. Simple, fast and accurate two-diode model for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Ishaque, Kashif; Salam, Zainal; Taheri, Hamed [Faculty of Electrical Engineering, Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor Bahru (Malaysia)

    2011-02-15

    This paper proposes an improved modeling approach for the two-diode model of photovoltaic (PV) module. The main contribution of this work is the simplification of the current equation, in which only four parameters are required, compared to six or more in the previously developed two-diode models. Furthermore the values of the series and parallel resistances are computed using a simple and fast iterative method. To validate the accuracy of the proposed model, six PV modules of different types (multi-crystalline, mono-crystalline and thin-film) from various manufacturers are tested. The performance of the model is evaluated against the popular single diode models. It is found that the proposed model is superior when subjected to irradiance and temperature variations. In particular the model matches very accurately for all important points of the I-V curves, i.e. the peak power, short-circuit current and open circuit voltage. The modeling method is useful for PV power converter designers and circuit simulator developers who require simple, fast yet accurate model for the PV module. (author)

  3. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arbind; Mittal, R.K.; Prasad, R.S.; Mahule, N.; Kumar, Arun; Prasad, G.J.

    2012-01-01

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  4. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  5. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  6. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  7. Inherent safe fast breeder reactors and actinide burners, metallic fuel

    International Nuclear Information System (INIS)

    Dorner, S.; Schumacher, G.

    1991-04-01

    Nuclear power without breeder strategy uses the possibilities for the energy supply only to a small extend compared to the possibilities of fast breeder reactors, which offer an energy supply for thousands of years. Moreover, a fast neutron device offers the opportunity to run an actinide-burner that could improve the situation of waste management. Within this concept metallic fuel could play a key role. The present report shows some important aspects of the concept like the pyrometallic reprocessing, the behaviour of metallic fuel during a core meltdown accident and others. The report should contribute to the discussion of these problems and initialize further work

  8. Fabrication of particulate metal fuel for fast burner reactors

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok

    2012-01-01

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented

  9. Physics design of experimental metal fuelled fast reactor cores for full scale demonstration

    International Nuclear Information System (INIS)

    Devan, K.; Bachchan, Abhitab; Riyas, A.; Sathiyasheela, T.; Mohanakrishnan, P.; Chetal, S.C.

    2011-01-01

    Highlights: → In this study we made physics designs of experimental metal fast reactor cores. → Aim is for full-scale demonstration of fuel assemblies in a commercial power reactor. → Minimum power with adequate safety is considered. → In addition, fuel sustainability is also considered in the design. → Sodium bonded U-Pu-6%Zr and mechanically bonded U-Pu alloys are used. - Abstract: Fast breeder reactors based on metal fuel are planned to be in operation for the year beyond 2025 to meet the growing energy demand in India. A road map is laid towards the development of technologies required for launching 1000 MWe commercial metal breeder reactors with closed fuel cycle. Construction of a test reactor with metallic fuel is also envisaged to provide full-scale testing of fuel sub-assemblies planned for a commercial power reactor. Physics design studies have been carried out to arrive at a core configuration for this experimental facility. The aim of this study is to find out minimum power of the core to meet the requirements of safety as well as full-scale demonstration. In addition, fuel sustainability is also a consideration in the design. Two types of metallic fuel pins, viz. a sodium bonded ternary (U-Pu-6% Zr) alloy and a mechanically bonded binary (U-Pu) alloy with 125 μm thickness zirconium liner, are considered for this study. Using the European fast reactor neutronics code system, ERANOS 2.1, four metallic fast reactor cores are optimized and estimated their important steady state parameters. The ABBN-93 system is also used for estimating the important safety parameters. Minimum achievable power from the converter metallic core is 220 MWt. A 320 MWt self-sustaining breeder metal core is recommended for the test facility.

  10. The Field Assessment Stroke Triage for Emergency Destination (FAST-ED): a Simple and Accurate Pre-Hospital Scale to Detect Large Vessel Occlusion Strokes

    Science.gov (United States)

    Lima, Fabricio O.; Silva, Gisele S.; Furie, Karen L.; Frankel, Michael R.; Lev, Michael H.; Camargo, Érica CS; Haussen, Diogo C.; Singhal, Aneesh B.; Koroshetz, Walter J.; Smith, Wade S.; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Patients with large vessel occlusion strokes (LVOS) may be better served by direct transfer to endovascular capable centers avoiding hazardous delays between primary and comprehensive stroke centers. However, accurate stroke field triage remains challenging. We aimed to develop a simple field scale to identify LVOS. Methods The FAST-ED scale was based on items of the NIHSS with higher predictive value for LVOS and tested in the STOPStroke cohort, in which patients underwent CT angiography within the first 24 hours of stroke onset. LVOS were defined by total occlusions involving the intracranial-ICA, MCA-M1, MCA-2, or basilar arteries. Patients with partial, bi-hemispheric, and/or anterior + posterior circulation occlusions were excluded. Receiver operating characteristic (ROC) curve, sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of FAST-ED were compared with the NIHSS, Rapid Arterial oCclusion Evaluation (RACE) scale and Cincinnati Prehospital Stroke Severity Scale (CPSSS). Results LVO was detected in 240 of the 727 qualifying patients (33%). FAST-ED had comparable accuracy to predict LVO to the NIHSS and higher accuracy than RACE and CPSS (area under the ROC curve: FAST-ED=0.81 as reference; NIHSS=0.80, p=0.28; RACE=0.77, p=0.02; and CPSS=0.75, p=0.002). A FAST-ED ≥4 had sensitivity of 0.60, specificity 0.89, PPV 0.72, and NPV 0.82 versus RACE ≥5 of 0.55, 0.87, 0.68, 0.79 and CPSS ≥2 of 0.56, 0.85, 0.65, 0.78, respectively. Conclusions FAST-ED is a simple scale that if successfully validated in the field may be used by medical emergency professionals to identify LVOS in the pre-hospital setting enabling rapid triage of patients. PMID:27364531

  11. Thermophysical properties of simple liquid metals: A brief review of theory

    Science.gov (United States)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  12. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  13. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  14. A simple urea-based route to ternary metal oxynitride nanoparticles

    International Nuclear Information System (INIS)

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-01

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO 2 N (M=Ca, Sr or Ba), MNbO 2 N (M=Sr or Ba), LaTiO 2 N and SrMoO 3-x N x have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO 2 N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles

  15. Resistance switch employing a simple metal nanogap junction

    International Nuclear Information System (INIS)

    Naitoh, Yasuhisa; Horikawa, Masayo; Abe, Hidekazu; Shimizu, Tetsuo

    2006-01-01

    In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage

  16. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1993-01-01

    Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)

  17. Modeling the behavior of metallic fast reactor fuels during extended transients

    International Nuclear Information System (INIS)

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1992-01-01

    Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements

  18. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  19. Demonstration of Ultra-Fast Switching in Nano metallic Resistive Switching Memory Devices

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Interdependency of switching voltage and time creates a dilemma/obstacle for most resistive switching memories, which indicates low switching voltage and ultra-fast switching time cannot be simultaneously achieved. In this paper, an ultra-fast (sub-100 ns) yet low switching voltage resistive switching memory device (“nano metallic ReRAM”) was demonstrated. Experimental switching voltage is found independent of pulse width (intrinsic device property) when the pulse is long but shows abrupt time dependence (“cliff”) as pulse width approaches characteristic RC time of memory device (extrinsic device property). Both experiment and simulation show that the onset of cliff behavior is dependent on physical device size and parasitic resistance, which is expected to diminish as technology nodes shrink down. We believe this study provides solid evidence that nano metallic resistive switching memory can be reliably operated at low voltage and ultra-fast regime, thus beneficial to future memory technology.

  20. A Fast, Simple, and Stable Chebyshev--Legendre Transform Using an Asymptotic Formula

    KAUST Repository

    Hale, Nicholas

    2014-02-06

    A fast, simple, and numerically stable transform for converting between Legendre and Chebyshev coefficients of a degree N polynomial in O(N(log N)2/ log log N) operations is derived. The fundamental idea of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev grid as an intermediate step, it also provides a fast transform between Legendre coefficients and values on a Chebyshev grid. © 2014 Society for Industrial and Applied Mathematics.

  1. Study on Doppler coefficient for metallic fuel fast reactor added hydrogeneous moderator

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, Naohiro; Iwasaki, Tomohiko; Tsujimoto, Kazuhumi [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Osugi, Toshitaka; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Mukaiyama, Takehiko

    1998-01-01

    A series of mock-up experiments for moderator added metallic fast reactor core was carried out at FCA to obtain the experimental verification for improvement of reactivity coefficients. Softened neutron spectrum increases Doppler effect by a factor of 2, and flatter adjoint neutron spectrum decreases Na void effect by a factor of 0.6 when hydrogen to heavy metal atomic number ratio is increased from 0.02 to 0.13. The experimental results are analyzed with SLALOM and CITATION-FBR, which is the standard design code system for a fast reactor at JAERI, and SRAC95 and CITATION-FBR. The present code system gives generally good agreement with the experimental results, especially by the use of the latter, the dependence of the Doppler effect to the hydrogen to fuel element atomic number density ratio is disappeared. Therefore, it looks possible to use the present code system for the conceptual design of a fast reactor system with hydrogeneous materials. (author)

  2. The development of a fast response thermocouple for use in liquid metals

    International Nuclear Information System (INIS)

    Morss, A.G.; Vincent, B.

    1987-03-01

    Work carried out at Berkeley Nuclear Laboratories to develop a fast-response thermocouple for use in liquid metals is described. This thermocouple because of its unique construction, has a junction mass approaching zero and hence its frequency response should be very high. Some of the problems of manufacture are discussed, in particular the high quality of seal required to avoid ingress of liquid metal. A comparison of results obtained with the fast-response thermocouple and with conventional stainless-steel-sheathed thermocouples is made. The improved response of the new thermocouple is clearly visible, hence confirming that measurements made with sheathed thermocouples suffer attenuation. It is concluded that results obtained with the fast-response thermocouple are close to the real magnitude of temperature fluctuations present in turbulent flow. It is also demonstrated that, with suitable corrections, results obtained with sheathed thermocouples can be used to estimate the real signals present in the flow. (author)

  3. Surface core-level shifts for simple metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    screening, whereby a SCLS becomes equivalent to the surface segregation energy of a core-ionized atom, a quantity we obtain by separate bulk and surface impurity calculations. The results are in good agreement with experiment in most of those cases where the data originates from single-crystal measurements....... We discuss the surface shifts of the electrostatic potentials and the band centers in order to trace the microscopic origin of the SCLS in the simple metals and find that the anomalous subsurface core-level shifts in beryllium are caused by charge dipoles, which persist several layers into the bulk...

  4. Alternative Fabrication of Recycling Fast Reactor Metal Fuel

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Kim, Jong Hwan; Song, Hoon; Kim, Hyung-Tae; Lee, Chan-Bock

    2015-01-01

    Metal fuels such as U-Zr/U-Pu-Zr alloys have been considered as a nuclear fuel for a sodium-cooled fast reactor (SFR) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. In order to develop innovative fabrication method of metal fuel for preventing the evaporation of volatile elements such as Am, modified casting under inert atmosphere has been applied for metal fuel slugs for SFR. Alternative fabrication method of fuel slugs has been introduced to develop an improved fabrication process of metal fuel for preventing the evaporation of volatile elements. In this study, metal fuel slugs for SFR have been fabricated by modified casting method, and characterized to evaluate the feasibility of the alternative fabrication method. In order to prevent evaporation of volatile elements such as Am and improve quality of fuel slugs, alternative fabrication methods of metal fuel slugs have been studied in KAERI. U-10Zr-5Mn fuel slug containing volatile surrogate element Mn was soundly cast by modified injection casting under modest pressure. Evaporation of Mn during alternative casting could not be detected by chemical analysis. Mn element was most recovered with prevention of evaporation by alternative casting. Modified injection casting has been selected as an alternative fabrication method in KAERI, considering evaporation prevention, and proven benefits of high productivity, high yield, and good remote control

  5. Simple, Fast, and Cost-Effective Fabrication of Wafer-Scale Nanohole Arrays on Silicon for Antireflection

    Directory of Open Access Journals (Sweden)

    Di Di

    2014-01-01

    Full Text Available A simple, fast, and cost-effective method was developed in this paper for the high-throughput fabrication of nanohole arrays on silicon (Si, which is utilized for antireflection. Wafer-scale polystyrene (PS monolayer colloidal crystal was developed as templates by spin-coating method. Metallic shadow mask was prepared by lifting off the oxygen etched PS beads from the deposited chromium film. Nanohole arrays were fabricated by Si dry etching. A series of nanohole arrays were fabricated with the similar diameter but with different depth. It is found that the maximum depth of the Si-hole was determined by the diameter of the Cr-mask. The antireflection ability of these Si-hole arrays was investigated. The results show that the reflection decreases with the depth of the Si-hole. The deepest Si-hole arrays show the best antireflection ability (reflection 600 nm, which was about 28 percent of the nonpatterned silicon wafer’s reflection. The proposed method has the potential for high-throughput fabrication of patterned Si wafer, and the low reflectivity allows the application of these wafers in crystalline silicon solar cells.

  6. Volume shift and charge instability of simple-metal clusters

    OpenAIRE

    Brajczewska, Marta; Vieira, Armando; Fiolhais, Carlos

    1996-01-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn — Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging

  7. Volume shift and charge instability of simple-metal clusters

    Science.gov (United States)

    Brajczewska, M.; Vieira, A.; Fiolhais, C.; Perdew, J. P.

    1996-12-01

    Experiment indicates that small clusters show changes (mostly contractions) of the bond lengths with respect to bulk values. We use the stabilized jellium model to study the self-expansion and self-compression of spherical clusters (neutral or ionized) of simple metals. Results from Kohn - Sham density functional theory are presented for small clusters of Al and Na, including negatively-charged ones. We also examine the stability of clusters with respect to charging.

  8. Fuel damage during off-normal transients in metal-fueled fast reactors

    International Nuclear Information System (INIS)

    Kramer, J.M.; Bauer, T.H.

    1990-01-01

    Fuel damage during off-normal transients is a key issue in the safety of fast reactors because the fuel pin cladding provides the primary barrier to the release of radioactive materials. Part of the Safety Task of the Integral Fast Reactor Program is to provide assessments of the damage and margins to failure for metallic fuels over the wide range of transients that must be considered in safety analyses. This paper reviews the current status of the analytical and experimental programs that are providing the bases for these assessments. 13 refs., 2 figs

  9. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in uranium-based metal alloys as a fuel for sodium-cooled fast reactors. In this paper we will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel. In the final section of this paper we extend the calculations to consider the failure of IFR ternary fuel under reactor accident conditions. (orig./GL)

  10. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    International Nuclear Information System (INIS)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P.

    2003-01-01

    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model

  11. Development of fast reactor metal fuels containing minor actinides

    International Nuclear Information System (INIS)

    Ohta, Hirokazu; Ogata, Takanari; Kurata, Masaki; Koyama, Tadafumi; Papaioannou, Dimitrios; Glatz, Jean-Paul; Rondinella, Vincenzo V.

    2011-01-01

    Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and rare earths (REs) Y, Nd, Ce, and Gd are being developed by the Central Research Institute of Electric Power Industry (CRIEPI) in collaboration with the Institute for Transuranium Elements (ITU) in the METAPHIX project. The basic properties of U-Pu-Zr alloys containing MA (and RE) were characterized by performing ex-reactor experiments. On the basis of the results, test fuel pins including U-Pu-Zr-MA(-RE) alloy ingots in parts of the fuel stack were fabricated and irradiated up to a maximum burnup of ∼10 at% in the Phenix fast reactor (France). Nondestructive postirradiation tests confirmed that no significant damage to the fuel pins occurred. At present, detailed destructive postirradiation examinations are being carried out at ITU. (author)

  12. The passive response of the Integral Fast Reactor concept to the chilled inlet accident

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1990-01-01

    Simple methods are described for bounding the passive response of a metal fueled liquid-metal cooled reactor to the chilled inlet accident. Calculation of these bounds for a prototype of the Integral Fast Reactor concept shows that failure limits --- eutectic melting, sodium boiling and fuel pin failure --- are not exceeded. 2 refs., 1 fig., 2 tabs

  13. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  14. Pseudoclassical approach to electron and ion density correlations in simple liquid metals

    International Nuclear Information System (INIS)

    Vericat, F.; Tosi, M.P.; Pastore, G.

    1986-04-01

    Electron-electron and electron-ion structural correlations in simple liquid metals are treated by using effective pair potentials to incorporate quantal effects into a pseudoclassical description of the electron fluid. An effective pair potential between simultaneous electron density fluctuations is first constructed from known properties of the degenerate jellium model, which are the plasmon sum rule, the Kimball-Niklasson relation and Yasuhara's values of the electron pair distribution function at contact. An analytic expression is thereby obtained in the Debye-Hueckel approximation for the electronic structure factor in jellium over a range of density appropriate to metals, with results which compare favourably with those of fully quantal evaluations. A simple pseudoclassical model is then set up for a liquid metal: this involves a model of charged hard spheres for the ion-ion potential and an empty core model for the electron-ion potential, the Coulombic tails being scaled as required by the relation between the long-wavelength partial structure factors and the isothermal compressibility of the metal. The model is solved analytically by a pseudoclassical linear response treatment of the electron-ion coupling and numerical results are reported for partial structure factors in liquid sodium and liquid beryllium. Contact is made for the latter system with data on the electron-electron structure factor in the crystal from inelastic X-ray scattering experiments of Eisenberger, Marra and Brown. (author)

  15. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  16. Validation of models for the analysis of the transient behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Kramer, J.M.; Hughes, T.H.; Gruber, E.E.

    1989-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in U-Pu-Zr metal alloys as a fuel for sodium-cooled fast reactors. Part of the attractiveness of the IFR concept is the improvement in reactor safety margins through inherent features of a metal-fueled LMR core. In order to demonstrate these safety margins it is necessary to have computer codes available to analyze the detailed response of metallic fuel to a wide range of accident initiators. Two of the codes that play a key role in assessing this response are the STARS fission gas behavior code and the FPIN2 fuel pin mechanics code. Verification and validation are two important components in the development of models and computer codes. Verification demonstrates through comparison of calculations with analytical solutions that the methodology and algorithms correctly solve the equations that govern the phenomena being modeled. Validation, on the other hand, demonstrates through comparison with data that the phenomena are being modeled correctly. Both components are necessary in order to have the confidence to extrapolate the calculations to reactor accident conditions. This paper presents the results of recent progress in the validation of models for the analysis of the behavior of metallic fast reactor fuel. 9 refs., 7 figs

  17. Small liquid metal reactor for an initial phase of fast breeder reactor introduction

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1985-01-01

    Safety and burnup characteristics of a 1000 MWth liquid metal reactor have been examined for various fuel types. With metallic Pu/Th fuel containing a small amount of zirconium hydride, low sodium-void reactivity, a high Doppler coefficient, and small burnup reactivity swings can be achieved. A conservative design is considered for an initial phase of fast breeder reactor development and possible modifications are discussed. (Author) [pt

  18. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    Science.gov (United States)

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs

  20. Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)

    International Nuclear Information System (INIS)

    Fischer, J.J.

    1978-01-01

    A dispersion-strengthened ferritic alloy is provided which has high-temperature strength and is readily fabricable at ambient temperatures, and which is useful as structural elements of liquid-metal fast breeder reactors. 4 tables

  1. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  2. Approaches to measurement of thermal-hydraulic parameters in liquid-metal-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1983-01-01

    This lecture considers instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, and sodium purity. It is divided into three major parts: (1) measurement requirements for sodium cooled reactor systems, (2) in-core and out-of-core measurements in liquid metal systems, and (3) performance measurements of water steam generators

  3. Study of simple CFRP-metal joint failure

    Science.gov (United States)

    Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur

    2008-07-01

    In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.

  4. Toward a sustainable energy supply with reduced environmental burden. Development of metal fuel fast reactor cycle

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Kobayashi, Hiroaki; Kinoshita, Kensuke

    2009-01-01

    CRIEPI has been studying the metal fuel fast reactor cycle as an outstanding alternative for the future energy sources. In this paper, development of the metal fuel cycle is reviewed in the view point of technological feasibility and material balance. Preliminary estimation of reduction of the waste burden due to introduction of the metal fuel cycle technology is also reported. (author)

  5. Run-Beyond-Cladding-Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program

    International Nuclear Information System (INIS)

    Batte, G.L.; Hoffman, G.L.

    1990-01-01

    In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab

  6. Fast Growth of GaN Epilayers via Laser-Assisted Metal-Organic Chemical Vapor Deposition for Ultraviolet Photodetector Applications.

    Science.gov (United States)

    Rabiee Golgir, Hossein; Li, Da Wei; Keramatnejad, Kamran; Zou, Qi Ming; Xiao, Jun; Wang, Fei; Jiang, Lan; Silvain, Jean-François; Lu, Yong Feng

    2017-06-28

    In this study, we successfully developed a carbon dioxide (CO 2 )-laser-assisted metal-organic chemical vapor deposition (LMOCVD) approach to fast synthesis of high-quality gallium nitride (GaN) epilayers on Al 2 O 3 [sapphire(0001)] substrates. By employing a two-step growth procedure, high crystallinity and smooth GaN epilayers with a fast growth rate of 25.8 μm/h were obtained. The high crystallinity was confirmed by a combination of techniques, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and atomic force microscopy. By optimizing growth parameters, the ∼4.3-μm-thick GaN films grown at 990 °C for 10 min showed a smooth surface with a root-mean-square surface roughness of ∼1.9 nm and excellent thickness uniformity with sharp GaN/substrate interfaces. The full-width at half-maximum values of the GaN(0002) X-ray rocking curve of 313 arcsec and the GaN(101̅2) X-ray rocking curve of 390 arcsec further confirmed the high crystallinity of the GaN epilayers. We also fabricated ultraviolet (UV) photodetectors based on the as-grown GaN layers, which exhibited a high responsivity of 0.108 A W -1 at 367 nm and a fast response time of ∼125 ns, demonstrating its high optical quality with potential in optoelectronic applications. Our strategy thus provides a simple and cost-effective means toward fast and high-quality GaN heteroepitaxy growth suitable for fabricating high-performance GaN-based UV detectors.

  7. Power thresholds for fast oscillatory instabilities in nuclear reactors: a simple mathematical model

    International Nuclear Information System (INIS)

    Suarez-Antola, Roberto; Uruguay)

    2007-01-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may modify the reactivity, and thus thermal power, producing variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small enough amplitude that they will not be excluded by the procedures of conventional mechanical design. After a careful discussion of the time scales of neutron kinetics, thermal-elastic and vibration phenomena, a simple lumped parameter mathematical model is constructed in order to study, in a first approximation, the stability of the reactor. An integro-differential equation for power kinetics is derived. Under certain conditions, fast oscillatory instabilities are found when power is greater than a threshold value, and the delay in the global power feedback loop is big enough. Approximate analytical formulae are given for the power threshold, critical delay and power oscillation frequency. It is shown that if prompt stabilizing fuel effects are strong enough, dangerous fast power oscillations due to mechanical thermal-nuclear coupling phenomena can not appear at any power level. (author)

  8. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading of 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.

  9. Development of a simple estimation tool for LMFBR construction cost

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Kinoshita, Izumi

    1999-01-01

    A simple tool for estimating the construction costs of liquid-metal-cooled fast breeder reactors (LMFBRs), 'Simple Cost' was developed in this study. Simple Cost is based on a new estimation formula that can reduce the amount of design data required to estimate construction costs. Consequently, Simple cost can be used to estimate the construction costs of innovative LMFBR concepts for which detailed design has not been carried out. The results of test calculation show that Simple Cost provides cost estimations equivalent to those obtained with conventional methods within the range of plant power from 325 to 1500 MWe. Sensitivity analyses for typical design parameters were conducted using Simple Cost. The effects of four major parameters - reactor vessel diameter, core outlet temperature, sodium handling area and number of secondary loops - on the construction costs of LMFBRs were evaluated quantitatively. The results show that the reduction of sodium handling area is particularly effective in reducing construction costs. (author)

  10. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

  11. Metal ion protection of DNA to fast neutron irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Radulescu, I.; Radu, L.

    1998-01-01

    The most important effects of the ionising radiation are the single and double strand breaks (SSB and DBS), modifications of the DNA bases and deoxyribose, as well as the occurrence of alkali and heat labile sites (revealed as strand breaks after alkaline or thermic treatment of irradiated DNA). The ionising particles can have either direct effects on the DNA constituents or indirect effects, mediated by the OH - radicals, produced by water radiolysis. The occurrence of SSB and DSB in the chromatin DNA strands is supposed to hinder the DNA-dye complex formation. Usually, the dyes present different fluorescence parameters in the two possible states, so one can correlate the lifetime or the quantum yield with the extent of the damage. We took into account the protective effect offered both by histones, which behave as 'scavenger molecules' for OH - radicals and by the high compactness of DNA chromatin. Similar protective effects might be the results of the metallic ion addition which triggers some conformational transitions of the chromatin DNA towards a highly compacted structure. In this paper we present a study of the complexes of fast neutron irradiated chromatin with proflavine. Fluorimetric and time resolved spectroscopic determinations (single photon counting method) of chromatin-Pr complexes were realised. Information regarding the chromatin protein damage were obtained by monitoring the fluorescence of Trp. The chromatin was irradiated (20-100 Gy) with fast neutrons, obtained by the reaction of 13.5 MeV deuterons on a thick beryllium target at the IFIN-HH U-120 Cyclotron. The dose mean lineal energy in water at the point of interest was 50 keV/m and the mean dose rate was 1.5 Gy/min. By fluorescence determinations, changes of the Pr intercalation parameters in fast neutron irradiated chromatin DNA have been observed. Fluorescence techniques provide valuable information on the binding equilibrium by considering the radiation deexcitation of the complex. The

  12. Materials requirements for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Bennett, J.W.; Horton, K.E.

    1978-01-01

    Materials requirements for Liquid Metal Fast Breeder Reactors (LMFBRs) are quite varied with requisite applications ranging from ex-reactor components such as piping, pumps, steam generators and heat exchangers to in-reactor components such as heavy section reactor vessels, core structurals, fuel pin cladding and subassembly flow ducts. Requirements for ex-reactor component materials include: good high temperature tensile, creep and fatigue properties; compatibility with high temperature flowing sodium; resistance to wear, stress corrosion cracking, and crack propagation; and good weldability. Requirements for in-reactor components include most of those cited above for ex-reactor components as supplemented by the following: resistance to radiation embrittlement, swelling and radiation enhanced creep; good neutronics; compatibility with fuel and fission product materials; and resistance to mass transfer via flowing sodium. Extensive programs are currently in place in a number of national laboratories and industrial contractors to address the materials requirements for LMFBRs. These programs are focused on meeting the near term requirements of early LMFBRs such as the Fast Flux Test Facility and the Clinch River Breeder Reactor as well as the longer term requirements of larger near-commercial and fully-commercial reactors

  13. Electronic structure of vacancies and vacancy clusters in simple metals

    International Nuclear Information System (INIS)

    Manninen, M.; Nieminen, R.M.

    1978-05-01

    The self-consistent density functional approach has been applied in a study of electronic properties of vacancies and vacancy clusters in simple metals. The electron density profiles and potentials have been obtained for spherical voids of varying size. The formation energies and residual resistivities have been calculated for vacancies using both perturbational and variational inclusion of discrete lattice effects. The relation of the void properties to the plane surface ones is studied, and the inadequacy of the jellium-based methods to high-index faces is demonstrated. (author)

  14. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2001-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and

  15. Water storage of liquid-metal fast-breeder-reactor fuel

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1982-01-01

    The purpose of this paper is to present a general overview of a concept proposed for receiving and storing liquid metal fast breeder reactor (LMFBR) spent fuel. This work was done as part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). The CFRP has as its major objective the development of technology for reprocessing advanced nuclear reactor fuels. The program plans that research and development will be carried through to a sufficient scale, using irradiated spent fuel under plant operating conditions, to establish a basis for confident projection of reprocessing capability to support a breeder industry

  16. A simple nondestructive technique for monitoring the bond gas in sealed fast reactor nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Shriwastwa, B B; Mehrotra, R S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.

    1994-12-31

    A simple nondestructive testing technique has been developed to identify bond gas inside a welded fuel pin. The technique is based on the accurate surface temperature measurement of fuel pins heated in a constant temperature water bath. This technique can be applied in Fast Breeder Test Reactor (FBTR) fuel pin production line due to simplicity of the set up, simple operation and quick response time. An attempt was made to develop a non destructive test method for monitoring the bond gas composition. Preliminary development work carried out in this connection, the test method adopted and the test results are presented. 1 ref., 5 figs., 1 tab.

  17. Simple and fast orotracheal intubation procedure in rats.

    Science.gov (United States)

    Tomasello, Giovanni; Damiani, Francesco; Cassata, Giovanni; Palumbo, Vincenzo Davide; Sinagra, Emanuele; Damiani, Provvidenza; Bruno, Antonino; Cicero, Luca; Cupido, Francesco; Carini, Francesco; Lo Monte, Attilio Ignazio

    2016-05-06

    Endotracheal intubation in the rat is difficult because of the extremely small size of anatomical structures (oral cavity, epiglottis and vocal cords), small inlet for an endotracheal tube and the lack of proper technical instruments. In this study we used seventy rats weighting 400-500 g. The equipment needed for the intubation was an operating table, a longish of cotton, a cotton tip, orotracheal tube, neonatal laryngoscope blades, KTR4 small animal ventilator and isoflurane for inhalation anaesthesia. Premedication was carried out by medetomidine hydrochloride 1 mg/mL; then, thanks to a closed glass chamber, a mixture of oxygen and isoflurane was administered. By means of a neonatal laryngoscope the orotracheal tube was advanced into the oral cavity until the wire guide was visualized trough the vocal cords; then it was passed through them. The tube was introduced directly into the larynx over the wire guide; successively, the guide was removed and the tube placed into the trachea. Breathing was confirmed using a glove, cut at the end of a finger, simulating a small balloon. We achieved a fast and simple orotracheal intubation in all animals employed. We believe that our procedure is easier and faster than those previously reported in scientific literature.

  18. Metallization of some simple systems

    International Nuclear Information System (INIS)

    Ross, M.; McMahan, A.K.

    1981-01-01

    We discuss the metallization of Xe, Ar, He, I 2 , H 2 , and N 2 in terms of some recent theoretical work and shock-wave experiments. New shock-wave data on liquid hydrogen and deuterium leads to a predicted pressure above 3 Mbar for the appearance of a monatomic metal phase. We expect CsI to become metallic near 0.8 Mbar

  19. The Simple Metals and New Models of the Interacting-Electron-Gas Type: I. Anomalous Plasmon Dispersion Relations in Heavy Alkali Metals

    Science.gov (United States)

    Okuda, Takashi; Horio, Kohji; Ohmura, Yoshihiro; Mizuno, Yukio

    2018-06-01

    The well-known interacting-electron-gas model of metallic states is modified by replacing the Coulomb interaction by a truncated one to weaken the repulsive force between electrons at short distances. The new model is applied to the so-called simple metals and is found far superior to the old one. Most of the calculations are carried out successfully on the basis of the random-phase-approximation (RPA), which is known much too poor for the old familiar model. In the present paper the numerical value of the new parameter peculiar to the new model is determined systematically with the help of the observed plasmon spectrum for each metal.

  20. Crossing simple resonances

    International Nuclear Information System (INIS)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  1. Crossing simple resonances

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  2. A simple, fast and accurate in-situ method to measure the rate of transport of redox species through membranes for lithium batteries

    Science.gov (United States)

    Meddings, Nina; Owen, John R.; Garcia-Araez, Nuria

    2017-10-01

    Lithium ion conducting membranes are important to protect the lithium metal electrode and act as a barrier to crossover species such as polysulphides in Li-S systems, redox mediators in Li-O2 cells or dissolved cathode species or electrolyte oxidation products in high voltage Li-ion batteries. We present an in-situ method for measuring permeability of membranes to crossover redox species. The method employs a 'Swagelok' cell design equipped with a glassy carbon working electrode, in which redox species are placed initially in the counter electrode compartment only. Permeability through the membrane, which separates working and counter electrodes, is determined using a square wave voltammetry technique that allows the concentration of crossover redox species to be evaluated over time with very high precision. We test the method using a model and well-behaved electrochemical system to demonstrate its sensitivity, reproducibility and reliability relative to alternative approaches. This new method offers advantages in terms of small electrolyte volume, and simple, fast, quantitative and in-situ measurement.

  3. Results of thermal test of metallic molybdenum disk target and fast-acting valve testing

    Energy Technology Data Exchange (ETDEWEB)

    Virgo, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This report describes the irradiation conditions for thermal testing of helium-cooled metallic disk targets that was conducted on March 9, 2016, at the Argonne National Laboratory electron linac. The four disks in this irradiation were pressed and sintered by Oak Ridge National Laboratory from molybdenum metal powder. Two of those disks were instrumented with thermocouples. Also reported are results of testing a fast-acting-valve system, which was designed to protect the accelerator in case of a target-window failure.

  4. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  5. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  6. A Fast-Starting Robotic Fish

    Science.gov (United States)

    Modarres-Sadeghi, Yahya; Watts, Matthew; Conte, Joe; Hover, Franz; Triantafyllou, Michael

    2009-11-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consisted of a thin metal beam covered by a urethane rubber fish body. The body form of the mechanical fish in this work was modeled from a pike species, which is the most successfully studied fast-start specialist species. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by pneumatic cutting mechanisms. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish, similar to a pike. We measured the resulting velocity and acceleration, as well as the efficiency of propulsion for the mechanical fish model and also ran a series of flow visualization tests to observe the resulting flow pattern. We also studied the influence of stiffness and geometry of the tail on the efficiency of propulsion and flow pattern. The hydrodynamic efficiency of the fish, calculated by the transfer of energy, was around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration is associated with the fast movement of an intense vortex in a near-lateral direction.

  7. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance

  8. An overview of FFTF [Fast Flux Test Facility] contributions to Liquid Metal Reactor Safety

    International Nuclear Information System (INIS)

    Waltar, A.E.; Padilla, A. Jr.

    1990-11-01

    The Fast Flux Test Facility has provided a very useful framework for testing the advances in Liquid Metal Reactor Safety Technology. During the licensing phase, the switch from a nonmechanistic bounding technique to the mechanistic approach was developed and implemented. During the operational phase, the consideration of new tests and core configurations led to use of the anticipated-transients-without-scram approach for beyond design basis events and the move towards passive safety. The future role of the Fast Flux Test Facility may involve additional passive safety and waste transmutation tests. 26 refs

  9. On Phonons in Simple Metals II. Calculated Dispersion Curves In Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R [AB Atomenergi, Nykoeping (Sweden); Westin, A [Dept. of Theore tical Physics, Univ. of Uppsala, Uppsala (Sweden)

    1969-07-15

    The real part of the dynamical matrix, derived earlier in a weak local potential ion-electron interaction model of the metal, is investigated in the case of aluminium. It is shown that the free electron, or Lindhard, dielectric function leads to a picture of the metal which is inconsistent with the dHvA observations of the Fermi surface. By adjusting one parameter, however, the experimental phonon frequencies are reproduced satisfactorily. Even some simple structure in the derivative d{omega}/dq can be reproduced in this way. Although corrections to the Lindhard dielectric matrix give no essential contributions to the dynamical matrix, the first order corrections, which are the most important, can explain the observed Fermi surface. Much of the observed structure in the phonon dispersion curves seems also to be due to these non-diagonal terms in the dielectric matrix.

  10. A fast and simple GC MS method for lignan profiling in Anthriscus sylvestris and biosynthetically related plant species

    NARCIS (Netherlands)

    Koulman, A; Bos, R; Medarde, M; Pras, N; Quax, WJ

    2001-01-01

    A new GC-MS method for monitoring lignans was developed to study the variation in plants and elucidate the biosynthetic steps. A simple and fast extraction procedure for lyophilised plant material was developed, giving a lignan-rich extract. A GC-MS method was set up using an apolar WCOT fused

  11. Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation.

    Science.gov (United States)

    Gog, Simon; Bader, Martin

    2008-10-01

    The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.

  12. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    Tsoulfanidis, N.; Jankhah, M.H.

    1979-01-01

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  13. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  14. Progress in liquid metal fast reactor technology. Proceedings of the 28th meeting of the International Working Group on Fast Reactors

    International Nuclear Information System (INIS)

    1996-04-01

    The key objectives and activities of Member State liquid metal fast reactor (LMFR) programmes are: Demonstration of effective designs; demonstration of system safety; demonstration of economic competitiveness with other power generation systems. The International Working Group on Fast Reactors (IWGFR) at its 1995 meeting observed that while some countries (as a result of static or falling power demand) are reducing the research and development programmes or delaying the commercial deployment of fast reactors, other countries are planning to introduce these reactors and are embarking on their own development programmes. In these circumstances the international exchange of information and experience is of increasing importance. These proceedings contain updated information from long standing members of the IWGFR and new information on the status of LMFR research and development from new members of the Group: Brazil, China, Republic of Kazakhstan and the Republic of Korea. Refs, figs, tabs

  15. Progress in liquid metal fast reactor technology. Proceedings of the 28th meeting of the International Working Group on Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The key objectives and activities of Member State liquid metal fast reactor (LMFR) programmes are: Demonstration of effective designs; demonstration of system safety; demonstration of economic competitiveness with other power generation systems. The International Working Group on Fast Reactors (IWGFR) at its 1995 meeting observed that while some countries (as a result of static or falling power demand) are reducing the research and development programmes or delaying the commercial deployment of fast reactors, other countries are planning to introduce these reactors and are embarking on their own development programmes. In these circumstances the international exchange of information and experience is of increasing importance. These proceedings contain updated information from long standing members of the IWGFR and new information on the status of LMFR research and development from new members of the Group: Brazil, China, Republic of Kazakhstan and the Republic of Korea. Refs, figs, tabs.

  16. Feasible homopolar dynamo with sliding liquid-metal contacts

    OpenAIRE

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm~34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the ri...

  17. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  18. Proceedings of the international conference on irradiation behaviour of metallic materials for fast reactor core components

    International Nuclear Information System (INIS)

    Poirier, J.; Dupouy, J.M.

    Radiation effects on metals or alloys used in fast reactor core components are examined in the papers presented at this conference, the accent being put on swelling and irradiation creep of steels and nickel alloys

  19. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States)

    2010-01-31

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium

  20. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors

  1. Evaluation of a novel portable capacitive ECG system in the clinical practice for a fast and simple ECG assessment in patients presenting with chest pain: FIDET (Fast Infarction Diagnosis ECG Trial)

    OpenAIRE

    Rasenack, Eva C. L.; Oehler, Martin; Els?sser, Albrecht; Schilling, Meinhard; Maier, Lars S.

    2012-01-01

    Background Electrocardiogram (ECG) assessment plays a crucial role in patients presenting with chest pain and suspected acute coronary syndrome (ACS). In a pilot study, we previously evaluated a capacitive ECG system (cECG) as a novel ECG technique for a fast and simple ECG assessment in patients with ST-elevation myocardial infarction (STEMI). In a next step, the sensitivity and specificity of this novel ECG technique have to be assessed in patients with ACS. Hypothesis The Fast Infarction D...

  2. The role of structural integrity in liquid metal fast breeder reactor safety

    International Nuclear Information System (INIS)

    Holmes, J.A.G.

    1982-01-01

    Extensive studies have demonstrated the favourable safety characteristics of liquid metal fast breeder reactors, which are attributable to both their inherent features and the engineered safeguards which are included. This requires demonstration that there is no risk of sudden catastrophic failure of the core support system allowing the core to drop off the control rods to give a prompt critical reactivity excursion. An important part of our work in support of the safety case for the U.K. Commercial Demonstration Fast Reactor is to demonstrate that such a failure is virtually incredible. This covers design features, study of the fracture behaviour of stainless steel structures, and inspection and monitoring during fabrication and service. The paper gives a broad description of the relevant design features and supporting work programme

  3. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Appleby, E.R.

    1975-08-01

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  4. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  5. [Evaluation of soil heavy metals accumulation in the fast economy development region].

    Science.gov (United States)

    Zhong, Xian-Lan; Zhou, Sheng-Lu; Li, Jiang-Tao; Zhao, Qi-Guo

    2010-06-01

    Evaluation of soil heavy metals accumulation was studied in Kunshan City, a typical region of the fast economy development region in China. 126 soil samples were collected and analyzed, and evaluation indexes of soil heavy metal accumulation, which including total concentration of soil heavy metal index (THMI), soil available heavy metal index (AHMI) and fractionation of soil heavy metal index (FHMI), were established, and the heavy metal accumulation conditions of soil in this region were also discussed. Results showed as follows: the spatial variability of THMI was relative lower, with a mean value of 42.57%, whereas strong variability was found in AHMI and FHMI (especially active fraction of soil heavy metals), with the average value of 82.75% and 77.83%, respectively. Judging by each index reference standard of C Horizon, THMI was low-grade with a mean value of 1.01, while the AHMI and FHMI reached to medium accumulation and serious accumulation, with the average values of 2.46 and 4.32, respectively. The synthetic accumulation index of soil heavy metals (SHMI) was 2.56, reaching to medium grade level and with strong variability. 21.54% land area was in low-grade accumulation and 54.70% land area was in medium grade accumulation, while 23.76% land area was in serious accumulation under SHMI evaluation system. All the accumulation evaluation indexes in livestock breeding zone were the lowest, while the indexes in the smelting and plating zone were the highest, but the indexes difference between two zones were unobvious. There were markedly differences in soil types, which the accumulation indexes in Wushan soil were significantly higher than those in Huangni soil and Qingni soil.

  6. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  7. Benchmark physics tests in the metallic-fueled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1989-01-01

    Results of the first benchmark physics tests of a metallic-fueled, demonstration-size liquid-metal reactor (LMR) are reported. A simple, two-zone, cylindrical conventional assembly was built with three distinctly different compositions to represent the stages of the Integral Fast Reactor fuel cycle. Experiments included criticality, control, power distribution, reaction rate ratios, reactivity coefficients, shielding, kinetics, and spectrum. Analysis was done with three-dimensional nodal diffusion calculations and ENDF/B-V.2 cross sections. Predictions of the ZPPR-15 reactor physics parameters agreed sufficiently well with the measured values to justify confidence in design analyses for metallic-fueled LMRs

  8. Benchmark physics tests in the metallic-fuelled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1987-01-01

    Results of the first benchmark physics tests of a metallic-fueled, demonstration-size, liquid metal reactor are reported. A simple, two-zone, cylindrical conventional assembly was built with three distinctly different compositions to represent the stages of the Integral Fast Reactor fuel cycle. Experiments included criticality, control, power distribution, reaction rate ratios, reactivity coefficients, shielding, kinetics and spectrum. Analysis was done with 3-D nodal diffusion calculations and ENDFIB-V.2 cross sections. Predictions of the ZPPR-15 reactor physics parameters agreed sufficiently well with the measured values to justify confidence in design analyses for metallic-fueled LMRs

  9. A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face

    Science.gov (United States)

    Yan, Haitao; Zhao, Xiaoyan; Zhang, Chao; Li, Qiu-Ze; Cao, Jingxiao; Han, Dao-Fu; Hao, Hui; Wang, Ming

    2016-01-01

    We demonstrated an integrated hydrogen sensor with Pd metallic grating fabricated on a fiber end-face. The grating consists of three thin metal layers in stacks, Au, WO3 and Pd. The WO3 is used as a waveguide layer between the Pd and Au layer. The Pd layer is etched by using a focused ion beam (FIB) method, forming a Pd metallic grating with period of 450 nm. The sensor is experimentally exposed to hydrogen gas environment. Changing the concentration from 0% to 4% which is the low explosive limit (LEL), the resonant wavelength measured from the reflection experienced 28.10 nm spectral changes in the visible range. The results demonstrated that the sensor is sensitive for hydrogen detection and it has fast response and low temperature effect.

  10. Simple metal model for predicting uptake and chemical processes in sewage-fed aquaculture ecosystem

    DEFF Research Database (Denmark)

    Azanu, David; Jorgensen, Sven Erik; Darko, Godfred

    2016-01-01

    but not working properly for chromium and mercury. Additional processes, including precipitation of chromium and bio-magnification of methylmercury were introduced to explain concentration of chromium and mercury in fish. Comparison of measured and predicted metal concentration used for validation gave a linear......% was the best, which is also in accordance to the fish growth. The ratio of fish food was also calibrated to be 70% due to a food chain in the water and 30% due to a food chain in the sediment. This gave the lowest uncertainty of the model. The simple metal model was working acceptably well for Pb, Cu and Cd...

  11. Fast and Simple Forensic Red Pen Ink Analysis Using Ultra-Performance Liquid Chromatography (UPLC)

    International Nuclear Information System (INIS)

    Lee, L.C.; Ying, S.L.; Wan Nur Syazwani Wan Mohamad Fuad; Ab Aziz Ishak; Khairul Osman

    2016-01-01

    Ultra-performance liquid chromatography (UPLC) is more effective than high performance liquid chromatography in terms of analysis speed and sensitivity. This paper presents a feasibility study on forensic red pen inks analysis using UPLC. A total of 12 varieties of red ball point pen inks were purchased from selected stationary shop. For each variety, four different individual pens were sampled to provide intra-variability within a particular variety of pen. The proposed approach is very simple that it only involved limited analysis step and chemicals. A total of 144 chromatograms were obtained from red ink entries extracted with 1.5 mL 80 % (v/v) acetonitrile. Peaks originated from pen inks were determined by comparing the chromatograms of both blank paper and blank solvent against that of ink samples. Subsequently, one-way ANOVA was conducted to discriminate all 66 possible pairs for red pen inks. Results showed that the proposed approach giving discriminating power of 95.45 %. The outcome of the study indicates that UPLC could be a fast and simple approach to red ball point pen inks analysis. (author)

  12. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  13. Fast and simple high-capacity quantum cryptography with error detection.

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A

    2017-04-13

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  14. Fast and simple high-capacity quantum cryptography with error detection

    Science.gov (United States)

    Lai, Hong; Luo, Ming-Xing; Pieprzyk, Josef; Zhang, Jun; Pan, Lei; Li, Shudong; Orgun, Mehmet A.

    2017-04-01

    Quantum cryptography is commonly used to generate fresh secure keys with quantum signal transmission for instant use between two parties. However, research shows that the relatively low key generation rate hinders its practical use where a symmetric cryptography component consumes the shared key. That is, the security of the symmetric cryptography demands frequent rate of key updates, which leads to a higher consumption of the internal one-time-pad communication bandwidth, since it requires the length of the key to be as long as that of the secret. In order to alleviate these issues, we develop a matrix algorithm for fast and simple high-capacity quantum cryptography. Our scheme can achieve secure private communication with fresh keys generated from Fibonacci- and Lucas- valued orbital angular momentum (OAM) states for the seed to construct recursive Fibonacci and Lucas matrices. Moreover, the proposed matrix algorithm for quantum cryptography can ultimately be simplified to matrix multiplication, which is implemented and optimized in modern computers. Most importantly, considerably information capacity can be improved effectively and efficiently by the recursive property of Fibonacci and Lucas matrices, thereby avoiding the restriction of physical conditions, such as the communication bandwidth.

  15. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  16. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  17. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  18. A simple and fast representation space for classifying complex time series

    International Nuclear Information System (INIS)

    Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.

    2017-01-01

    In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease. - Highlights: • A bidimensional scheme has been tested for classification purposes. • A multiscale generalization is introduced. • Several practical applications confirm its usefulness. • Different sets of financial and physiological data are efficiently distinguished. • This multiscale bidimensional approach has high potential as discriminative tool.

  19. A simple and fast representation space for classifying complex time series

    Energy Technology Data Exchange (ETDEWEB)

    Zunino, Luciano, E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata – CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina); Olivares, Felipe, E-mail: olivaresfe@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso (Chile); Bariviera, Aurelio F., E-mail: aurelio.fernandez@urv.cat [Department of Business, Universitat Rovira i Virgili, Av. Universitat 1, 43204 Reus (Spain); Rosso, Osvaldo A., E-mail: oarosso@gmail.com [Instituto de Física, Universidade Federal de Alagoas (UFAL), BR 104 Norte km 97, 57072-970, Maceió, Alagoas (Brazil); Instituto Tecnológico de Buenos Aires (ITBA) and CONICET, C1106ACD, Av. Eduardo Madero 399, Ciudad Autónoma de Buenos Aires (Argentina); Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Av. Mons. Álvaro del Portillo 12.455, Las Condes, Santiago (Chile)

    2017-03-18

    In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease. - Highlights: • A bidimensional scheme has been tested for classification purposes. • A multiscale generalization is introduced. • Several practical applications confirm its usefulness. • Different sets of financial and physiological data are efficiently distinguished. • This multiscale bidimensional approach has high potential as discriminative tool.

  20. Research of plasma-electrolyte discharge in the processes of obtaining metallic powders

    Science.gov (United States)

    Kashapov, R. N.; Kashapov, L. N.; Kashapov, N. F.

    2017-11-01

    The use of the plasma electrolyte process has never been considered as a simple, cheap and fast method of obtaining powders used in selective laser melting processes. Therefore, the adaptation of the plasma-electrolyte process to the production of metal powders used in additive production is an urgent task. The paper presents the results of studies of gas discharge parameters between a metal and liquid electrode in the processes of obtaining metallic iron powders. The discharge combustion conditions necessary for the formation of metal powders of micron size are determined. A possible mechanism for the formation of powder particles in a discharge plasma is proposed.

  1. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  2. Fast reactors with axial arrangement of oxide and metal fuels in the core

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Ilyunin, V.G.; Matveev, V.I.; Murogov, V.M.; Proshkin, A.A.; Rudneva, V.Ya.; Shmelev, A.N.

    1980-01-01

    Problems of using metal fuel in fast reactor (FR) core are discussed Results are given of the calculation of two-dimentional (R-Z) FR version having a composed core with the combined usage of oxide and metal fuels having parameters close to optimal from the point of view of fuel breeding rate, an oxide subzone having increased enrichment and a decreased proper conversion ratio. A reactor is considered where metallic fuel elements are placed from the side of ''cold'' coolant inlet (400-480 deg C), and oxide fuel elements - in the region where the coolant has a higher temperature (500-560 deg C). It is shown that the new fuel breeding rate in such a reactor can be increased by 20-30% as compared with an oxide fuel reactor. Growth of the total conversion ratio is mainly stipulated with the increase of the inner conversion ratio of the core (CRC) which is important not only from the point of view of nuclear fuel breeding rate but also the optimization of the mode of powerful fast reactor operation with provision for the change in reactivity in the process of its continuous operation. The fact, that the core version under investigation has a CRC value slightly exceeding unit, stipulates considerably less reactivity change as compared with the oxide version in the process of the reactor operation and permits at a constant reactor control system power to significantly increase the time between reloadings and, therefore, to increase the NPP load factor which is of great importance both from the point of view of economy and the improvement of operation conditions as well as of reactor operation reliability. It is concluded on the base of the analysis of the results obtained that FRs with the combined usage of oxide and metal fuels having an increased specific load and increased conversion ratio as compared with the oxide fuel FRs provide a higher rate of development of the whole nuclear power balanced with respect to the fuel [ru

  3. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  4. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    Science.gov (United States)

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fast-neutron activation analysis of manganese nodules

    International Nuclear Information System (INIS)

    Michaelis, W.; Fanger, H.U.; Mueller, A.; Pepelnik, R.

    1976-01-01

    The present paper describes the development of a new nuclear method that allows rapid determinations of the most relevant metals Ni and Cu without sample treatment, thus being particularly suited for quasi-continuous elemental analyses in mining and processing. The measurement is based on fast-neutron activation using Cockcroft-Walton generators, sealed neutron tubes or, possibly, (α,n)-type natural sources. Fast-neutron activation of manganese nodules is dominated by the (n,p)-reactions on Si, Al, Fe; the (n,α)-reaction on Mn and the (n,2n)-reaction on Cu. By choosing appropriate irradiation and cooling periods gamma-ray activities with comparatively simple spectral distributions are induced. From these spectra the Mn/Fe ratio in the nodules can be determined without the elaborate procedures usually required in absolute methods for eliminating systematic errors from fluctuations in sample and/or irradiation parameters. It is connected with the absolute Ni and Cu contents via well-known geochemical correlations which according to a lot of statistical data apply to quite different deposits and nodule types in the Pacific. Using these correlations the determination of the most important metals reduces to the evaluation of a peak area ratio. Measurements of the neutron flux distribution and the apparent sample density are unnecessary. The simple structure of the spectra allows the application of detectors with modest energy resolution, e.g. scintillation counters which can be manufactured as ruggedized crystal assemblies with great resistance to thermal and mechanical shock. The method is described in detail and possible interference, in particular from thermal and epithermal neutrons, are discussed. (orig.) [de

  6. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian; Li, Er Qiang; Lubineau, Gilles; Thoroddsen, Sigurdur T; Mulle, Matthieu

    2016-01-01

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  7. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  8. Simple and fast fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam based on consecutive chemical reactions

    International Nuclear Information System (INIS)

    Chen Wei; Shi Wen; Li Zhao; Ma Huimin; Liu Yang; Zhang Jinghua; Liu Qingjun

    2011-01-01

    Graphical abstract: A simple and fast method for fluorescence detection of benzoyl peroxide in wheat flour by N-methoxy rhodamine-6G spirolactam (1) is proposed based on consecutive chemical reactions. Highlights: ► Benzoyl peroxide can oxidize Fe 2+ into Fe 3+ . ► Fe 3+ selectively induces the opening of rhodamine spirolactam ring. ► The two reactions led to the development of a new fluorescent method for benzoyl peroxide. ► The method is simple and fast, and is used to detect benzoyl peroxide in wheat flour. - Abstract: Benzoyl peroxide (BPO) as a brightener is often added to wheat flour, and excessive use of this food additive is receiving increasing concern. Herein, a simple and fast method for fluorescence detection of BPO is proposed based on consecutive chemical reactions. In this approach, BPO first oxidizes Fe 2+ into Fe 3+ and the resulting Fe 3+ then induces the opening of the spirolactam ring of a new rhodamine derivative, N-methoxy rhodamine-6G spirolactam, switching on fluorescence of the detection system. More importantly, the fluorescence response of the reaction system to BPO is rather rapid and sensitive, with a detection limit of 6 mg kg −1 (k = 3), which makes it to be of great potential use in food safety analysis. The applicability of the proposed method has been successfully demonstrated on the determination of BPO in wheat flour samples.

  9. Performance of the diffusion barrier in the metallic fuel in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Ryu, Ho Jin; Yang, Seong Woo; Lee, Byoung Oon; Oh, Seok Jin; Lee, Chan Bock; Hahn, Dohee

    2009-01-01

    The objectives in this study are to propose several kinds of barrier materials and to evaluate their performance to prevent a fuel-clad interaction situation between the metallic fuel and the clad material in the Sodium-cooled Fast Reactor (SFR). Metallic foil made from refractory element, electrodeposition of the Cr on the clad surface, and the vapor deposition of the Zr were used as the barrier layers. The diffusion couple test was performed at the temperature of 800degC for 25 hour. The results showed that considerable amount of reaction occurred at the specimen without barrier, whereas excellent performance was observed in that neither reaction nor inter-diffusion occurred in the case of metallic foil made of Cr or V. Electrodeposition was revealed to be excellent provided that optimum deposition condition can be found. Similar to the electro-deposition result, excellent performance observed in the case of vapor deposition condition. (author)

  10. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  11. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    International Nuclear Information System (INIS)

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-01-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4 DMBD) interacts with the increasingly harder metal ions of Cu + , Pb 2+ and Eu 3+ to form the coordination networks of Cu 6 (DMBD) 3 (en) 4 (Hen) 6 (1), Pb 2 (DMBD)(en) 2 (2) and Eu 2 (H 2 DMBD) 3 (DEF) 4 (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu + , Pb 2+ and Eu 3+ ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  12. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  13. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  14. A simple and fast determination of microgram thorium in organic solution containing several hundreds times amount of uranium

    International Nuclear Information System (INIS)

    Yin Duanzhi; Cao Benhong; Yang Jinfeng

    1991-01-01

    Using spectrophotometric method, microgram thorium in 30% TBP-kerosene system containing large amount of uranium was successfully determined after one-step back-extraction with hydrochloric acid. The recovery of thorium is more than 98%, and the separation factor α U/Th is over 1 x 10 3 . Being reliable, simple and fast, the recommended method has been used in the research on spent fuel reprocessing and is expected applicable to other neutral phosphate extraction systems such as TOPO and DMHMP

  15. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  16. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  17. Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsiboulia, Anatoli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rozhikhin, Yevgeniy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mihalczo, John T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    graphite reflected (2 inches or less) experiments also using the same set of highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. A stack of highly enriched metal discs with a thick beryllium top reflector is evaluated in HEU-MET-FAST-069, and two additional highly enriched uranium annuli with beryllium cores are evaluated in HEU-MET-FAST-059. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast neutron spectra assemblies were determined to be acceptable benchmark experiments. The calculated eigenvalues for both the detailed and the simple benchmark models are within ~0.26 % of the benchmark values for Configuration 1 (calculations performed using MCNP6 with ENDF/B-VII.1 neutron cross section data), but under-calculate the benchmark values by ~7s because the uncertainty in the benchmark is very small: ~0.0004 (1s); for Configuration 2, the under-calculation is ~0.31 % and ~8s. Comparison of detailed and simple model calculations for the potassium worth measurement and potassium mass coefficient yield results approximately 70 – 80 % lower (~6s to 10s) than the benchmark values for the various nuclear data libraries utilized. Both the potassium worth and mass coefficient are also deemed to be acceptable benchmark experiment measurements.

  18. Soft x-ray continuum radiation transmitted through metallic filters: An analytical approach to fast electron temperature measurements

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.; Hill, K.; Bitter, M.; Tritz, K.; Kramer, T.; Stutman, D.; Finkenthal, M.

    2010-01-01

    A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.

  19. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    C. Lievens; J. Yperman; J. Vangronsveld; R. Carleer [Hasselt University, Diepenbeek (Belgium). Laboratory of Applied Chemistry

    2008-08-15

    Presently, little or no information of implementing fast pyrolysis for looking into the potential valorisation of heavy metal contaminated biomass is available. Fast pyrolysis of heavy metal contaminated biomass (birch and sunflower), containing high amounts of Cd, Cu, Pb and Zn, resulting from phytoremediation, is investigated. The effect of the pyrolysis temperature (623, 673, 773 and 873 K) and the type of solid heat carrier (sand and fumed silica) on the distribution of the heavy metals in birch and sunflower pyrolysis fractions are studied. The goal of the set-up is 'concentrating' heavy metals in the ash/char fraction after thermal treatment, preventing them to be released in the condensable and/or volatile fractions. The knowledge of the behaviour of heavy metals affects directly future applications and valorisation of the pyrolysis products and thus contaminated biomass. They are indispensable for making and selecting the proper thermal conditions for their maximum recovery. In view of the future valorisation of these biomasses, the amounts of the pyrolysis fractions and the calorific values of the obtained liquid pyrolysis products, as a function of the pyrolysis temperature, are determined. 46 refs., 8 figs., 4 tabs.

  20. Improved alloys for a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    1981-01-01

    An alloy is specified suitable for use at elevated temperatures and especially in a liquid metal fast breeder reactor consisting essentially of a nickel-chromium steel having a specified range of composition of C, Mn, Si, Zr, V, Ni, Cr, Ti, Al, Mo, B, and the balance iron with incidental impurities, the alloy exhibiting a swelling at peak swelling temperature of less than 10% wherein the matrix composition has after heat treatment at a temperature within the range of 1000 0 C to 1100 0 C for about one half hour followed by aging at a temperature within the range of from 700 0 C to 815 0 C for a time period of between 10 to 24 hours, the longer hours being associated with the lower temperatures and vice-versa, and after the removal of the non-equilibrium gamma prime and other precipitated phases a composition within a specified range of composition of Ni, Cr, Ti, Al, Mo, the balance being essentially iron. (U.K.)

  1. Time domain measurements for fast metal assemblies with /sup 252/Cf

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J T

    1975-06-01

    Time correlation measurements between the pulses from an ionization counter containing a /sup 252/Cf neutron source, which provided the initiators of fission chains in a neutron multiplying assembly and from sensors that detected particles from the fission chains are reviewed for fast uranium or plutonium metal assemblies. Comparisons are made between the correlated count rate from a /sup 252/Cf measurement and that from both one and two-detector Rossi-..cap alpha.. measurements. The assemblies studied were (1) unmoderated and polyethylene-moderated uranium (93 wt percent /sup 235/U) cylinders with masses from 12 to 160 kg; prompt neutron decay constants from 3 to 10/sup 3/ to 10/sup 8/ sec/sup -1/ and (2) unmoderated plutonium spheres and parts of spheres with plutonium masses from 2.2 to 16 kg with /sup 240/Pu contents of 4.5 to 20.1 at. percent. Measurements with a delayed critical uranium metal sphere determined the effective delayed neutron fraction and served as the basis for verification of the theory of the /sup 252/Cf measurement method in the time domain within a few per cent. (auth)

  2. Dynamical analysis on carbon transfer in liquid metal cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kataoka, Tadayuki; Matsumoto, Keishi

    1979-01-01

    The dynamical analysis was undertaken on the exchange of carbon taking place between the structural steels and sodium for the case of a bi-metallic secondary system constituted of type 304 stainless and 2 1/4Cr-1Mo steels, representing the secondary system of a liquid sodium cooled fast breeder reactor. The analysis brought to light the effects to be expected on the long terms carbon transfer behavior of: (a) the surface areas of structural steels in contact with flowing sodium, (b) the thickness of the sodium-boundary layer, (c) the initial carbon concentration in the sodium, and (d) the rate of carbon contamination of the sodium. (author)

  3. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  4. Development, validation, and application of a fast and simple GC-MS method for determination of some therapeutic drugs relevant in emergency toxicology.

    Science.gov (United States)

    Meyer, Markus R; Welter, Jessica; Weber, Armin A; Maurer, Hans H

    2011-10-01

    To date, immunoassays are commercially available for quantification of valproic acid, salicylic acid, paracetamol, phenobarbital, phenytoin, and primidone. As they are no longer available, a fast, simple, and cost-effective quantitative gas chromatography-mass spectrometry (GC-MS) method was developed and fully validated for these drugs. After simple and fast liquid-liquid extraction, the samples were analyzed by GC-MS using the selected ion monitoring mode. The method was validated including the parameters selectivity, calibration model, precision, accuracy, and extraction efficiency. The above-mentioned analytes were separated within 8.5 minutes and sensitively detected. No interfering peaks were observed in blank samples from 8 different sources. The linearity ranges were 20-200 mg/L for valproic acid, 100-1200 mg/L for salicylic acid, 10-200 mg/L for paracetamol, 10-200 mg/L for phenobarbital, 4-20 mg/L for primidone, and 2.5-30 mg/L for phenytoin. Generally accepted criteria for accuracy and precision were fulfilled for all analytes using 6-point calibration. Even 1-point calibration was applicable for all analytes. The assay was successfully applied to analysis of real plasma samples and proficiency testing material. The assay described allowed fast and reliable determination of analytes relevant in the diagnosis of poisonings. Furthermore, time- and cost-saving 1-point calibration was shown to be suitable for daily routine work, especially in emergency cases.

  5. Diversion analysis and safeguards measures for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1981-10-01

    The general objective of the study is to perform a diversion analysis and an assessment of the available safeguards methods and systems for verifying inventory and flow of nuclear material in accessible and inaccessible areas of liquid-metal fast breeder reactor, LMFBR, systems. The study focuses primarily on the assembly-handling operations, assembly storage facilities, and reactor operations facilities relating to existing and/or near-term planned experimental, demonstration and prototypal reactor plants. The safeguards systems and methods presented are considered to be feasible for development and for implementation within the resource limitation of the IAEA and are considered to be consistent with the objectives, requirements, and constraints of the IAEA as outlined in the IAEA documents INFCIRC/153 and INFCIRC/66-Rev-2

  6. A simple method to prepare self-assembled organic-organic heterobilayers on metal substrates

    Directory of Open Access Journals (Sweden)

    L. D. Sun

    2011-06-01

    Full Text Available We demonstrate a self-assembly based simple method to prepare organic-organic heterobilayers on a metal substrate. By either sequential- or co-deposition of para-sexiphenyl (p-6P and pentacene molecules onto the Cu(110 surface in ultrahigh vacuum, p-6P/pentacene/Cu(110 heterobilayer is synthesized at room temperature. The layer sequence of the heterostructure is independent of the growth scenario indicating the p-6P/pentacene/Cu(110 is a self-assembled structure with lowest energy. Besides, the bilayer shows a very high orientational ordering and is thermally stable up to 430K.

  7. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  8. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  9. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500 degrees C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way

  10. A simple and fast detection method for bovine milk residues in foods: a 2-site monoclonal antibody immunochromatography assay.

    Science.gov (United States)

    Xuli, Wu; Weiyi, He; Ji, Kunmei; Wenpu, Wan; Dongsheng, Hu; Hui, Wu; Xinpin, Luo; Zhigang, Liu

    2013-03-01

    The ingredient declaration on food labels assumes paramount importance in the protection of food-allergic consumers. China has not implemented Food allergen labeling. A gold immunochromatography assay (GICA) was developed using 2 monoclonal antibodies (mAb) against the milk allergen β-lactoglobulin in this study. The GICA was specific for pure milk samples with a sensitivity of 0.2 ng/mL. Milk protein traces extracted from 110 food products were detected by this method. The labels of 106 were confirmed by our GICA method: 57 food samples originally labeled as containing milk were positive for β-lactoglobulin and 49 food samples labeled as not containing milk were negative for β-lactoglobulin. However, 3 food samples falsely labeled as containing milk were found to contain no β-lactoglobulin whereas 1 food sample labeled as not containing milk actually contained β-lactoglobulin. First, these negatives could be because of the addition of a casein fraction. Second, some countries demand that food manufacturers label all ingredients derived from milk as "containing milk" even though the ingredients contain no detectable milk protein by any method. Our GICA method could thus provide a fast and simple method for semiquantitatation of β-lactoglobulin in foods. The present method provides a fast, simple, semiquantitative method for the determination of milk allergens in foods. © 2013 Institute of Food Technologists®

  11. The prototype fast reactor

    International Nuclear Information System (INIS)

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  12. Integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  13. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  14. ORALLOY (93.15 235U) METAL ANNULI WITH BERYLLIUM CORE

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland M.; Reed, Raymond L.; Mihalczo, John T.

    2010-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, two were performed that consisted of uranium metal annuli with a solid beryllium metal core. The outer diameter of the annuli was approximately 13 or 15 inches with an inner diameter of 7 inches. The diameter of the core was approximately 7 inches. The critical height of the configurations was approximately 5 and 4 inches, respectively. The uranium annuli consisted of multiple stacked rings with diametral thicknesses of approximately 2 inches apiece and varying heights. The 15-inch experiment was performed on June 4, 1963, and the 13-inch experiment on July 12, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast-spectra experiments were determined to represent acceptable benchmarks. The calculated eigenvalues for both the detailed and simple models are within approximately 0.6% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: eff of ∼0.67%. Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET

  15. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass.

  16. Experimental and numerical studies of the fast ions confined in TFR 600 during fast neutrals injection

    International Nuclear Information System (INIS)

    Gagey, B.

    1980-08-01

    We present a comparison between experimental fast neutrals spectrum measured with a very simple electrostatic analyzer which has been absolutely calibrated, spectrum obtained during fast neutrals injection in TFR 600, and numerical fast neutrals spectrum obtained from a modified Monte-Carlo calculation code. This comparison allows us to draw important conclusions on the fast ions behavior in the plasma

  17. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  18. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  19. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  20. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  1. Behavior of metallic fuel in treat transient overpower tests

    International Nuclear Information System (INIS)

    Bauer, T.H.; Wright, A.E.; Robinson, W.R.; Klickman, A.E.

    1988-01-01

    Results and analyses are reported for TREAT in-pile transient overpower tests of margin to cladding failure and pre-failure axial expansion of metallic fuel. In all cases the power rise was exponential on an 8 s period until either incipient or actual cladding failure was achieved. Test fuel included EBR-II driver fuel and ternary alloy, the reference fuel of the Intergral Fast Reactor concept. Test pin burnup spanned the widest range available. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models are presented which describe observed cladding failures and pre-failure axial expansions yet are general enough to apply to all metal fuel types

  2. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Sorting protein lists with nwCompare: a simple and fast algorithm for n-way comparison of proteomic data files.

    Science.gov (United States)

    Pont, Frédéric; Fournié, Jean Jacques

    2010-03-01

    MS, the reference technology for proteomics, routinely produces large numbers of protein lists whose fast comparison would prove very useful. Unfortunately, most softwares only allow comparisons of two to three lists at once. We introduce here nwCompare, a simple tool for n-way comparison of several protein lists without any query language, and exemplify its use with differential and shared cancer cell proteomes. As the software compares character strings, it can be applied to any type of data mining, such as genomic or metabolomic datalists.

  4. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  5. Potential of multi-purpose liquid metallic fuelled fast reactor (MPFR) as a hydrogen production system

    International Nuclear Information System (INIS)

    Endo, H.; Ninokata, H.; Netchaev, A.; Sawada, T.

    2001-01-01

    Nuclear energy is the only effective alternative energy source to fossil fuels in the next century. Therefore future nuclear power plants should satisfy the following three requirements: i) multiple energy conversion capability with high temperature not only for electricity generation but also for hydrogen production, ii) extended siting capability so as to eliminate on-site refuelling, and iii) passive safety features. An aim of this paper is to describe the basic concept of the multi-purpose liquid metallic fuelled fast reactor system (MPFR). The MPFR introduces the U-Pu-X (X: Mn, Fe, Co) liquid metallic alloy with Ta and Ta/TaC structural materials, and satisfies all of the conditions listed above based on the following characteristics of the liquid metallic fuel: high temperature operation between 650 deg C (sodium-cooled system) and 1 200 deg C (lead-cooled system), a core lifetime of 15-30 years without radiation damage of fuel materials, and enhanced passive safety by the thermal expansion of liquid fuel and the avoidance of re-criticality due to local core fuel dispersion at fuel failure events. (authors)

  6. Fast and simple method for semiquantitative determination of calcium propionate in bread samples.

    Science.gov (United States)

    Phechkrajang, Chutima Matayatsuk; Yooyong, Surin

    2017-04-01

    Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red-brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC) method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method. Copyright © 2016. Published by Elsevier B.V.

  7. Fast and simple method for semiquantitative determination of calcium propionate in bread samples

    Directory of Open Access Journals (Sweden)

    Chutima Matayatsuk Phechkrajang

    2017-04-01

    Full Text Available Calcium propionate has been widely used as a preservative in bakery and in bread. It is sometimes not carefully used, or a high concentration is added to preserve products. High consumption of calcium propionate can lead to several health problems. This study aims to develop a fast and simple semiquantitative method based on color complex formation for the determination of calcium propionate in a bread sample. A red–brown complex was obtained from the reaction of ferric ammonium sulfate and propionate anion. The product was rapidly formed and easily observed with the concentration of propionate anion >0.4 mg/mL. A high-performance liquid chromatography (HPLC method was also developed and validated for comparison. Twenty-two bread samples from three markets near Bangkok were randomly selected and assayed for calcium propionate using the above two developed methods. The results showed that 19/22 samples contained calcium propionate >2000 mg/kg. The results of the complex formation method agreed with the HPLC method.

  8. Radioactive waste management at a Liquid Metal Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Abrams, C.S.; Fryer, R.H.; Witbeck, L.C.

    1979-01-01

    This paper presents the radioactive waste production and management at a Liquid Metal Fast Breeder Reactor-II (EBR-II), which is operated for the US Department of Energy by the Argonne National Laboratory at the Idaho National Engineering Laboratory (INEL). Since this facility, in addition to supplying power has been used to demonstrate the breeder, fuel cycling, and recently operations with defective fuel elements, various categories of waste have been handled safely over some 14 years of operation. Liquid wastes are processed such that the resulting effluent can be discharged to an uncontrolled area. Solid wastes up to 10,000 R/hr are packaged and shipped contamination-free to a disposal site or interim storage with exposures to personnel approximately 10 mrem. Gaseous waste discharges are low such as 143 Ci of noble gases in 1978 and do not have a significant effect on the environment even with operations with breached fuel

  9. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  10. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    International Nuclear Information System (INIS)

    Park, Jee Won; Jeong, C. J.; Yang, M. S.

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs

  11. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Jeong, C. J.; Yang, M. S

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs.

  12. Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials.

    Science.gov (United States)

    Cherepanov, Pavel V; Andreeva, Daria V

    2017-03-01

    High intensity ultrasound (HIUS) is a novel and efficient tool for top-down nanostructuring of multi-phase metal systems. Ultrasound-assisted structuring of the phase in metal alloys relies on two main mechanisms including interfacial red/ox reactions and temperature driven solid state phase transformations which affect surface composition and morphology of metals. Physical and chemical properties of sonication medium strongly affects the structuring pathways as well as morphology and composition of catalysts. HIUS can serve as a simple, fast, and effective approach for the tuning of structure and surface properties of metal particles, opening the new perspectives in design of robust and efficient catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of Fast Neutron to MA/PU Burning/Transmutation Characteristic Using a Fast Reactor

    International Nuclear Information System (INIS)

    Marsodi; Lasman, As Natio; Kimamoto, A.; Marsongkohadi; Zaki, S.

    2003-01-01

    MA/Pu burning/transmutation has been studied and evaluated using fast neutrons. Generally, neutron density at this fast burner reactor and transmutation has spectrum energy level around 0.2 MeV with wide enough variation, i.e. from low neutron spectrum to its peak is 0.2 MeV. This neutron spectrum energy level depends on the kind of cooler material or fuel used. Neutron spectrum higher than fast power reactor neutron spectrum is found by means of changing oxide fuel by metallic fuel and changing natrium cooler material by metallic or gas cooler material. This evaluation is conducted by various variations in accordance with the kind of fuel or cooler, MA/Pu fractions and fuel comparison fraction with respect to its cooler in order to get better neutron usage and MA/Pu burning speed. Reactor calculation evaluation in this paper was conducted with 26-group nuclear data cross section energy spectrum. The main purpose of the discussion is to know the effect of fast neutrons to burning/transmutation MA/Pu using fast neutrons

  14. Detection of defects in formed sheet metal using medial axis transformation

    Science.gov (United States)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  15. The DSNP simulation language and its application to liquid-metal fast breeder reactor transient analyses

    International Nuclear Information System (INIS)

    Saphier, D.; Madell, J.T.

    1982-01-01

    A new, special purpose block-oriented simulation language, the Dynamic Simulator for Nuclear Power Plants (DSNP), was used to perform a dynamic analysis of several conceptual design studies of liquid metal fast breeder reactors. The DSNP being a high level language enables the user to transform a power plant flow chart directly into a simulation program using a small number of DSNP statements. In addition to the language statements, the DSNP system has its own precompiler and an extensive library containing models of power plant components, algorithms of physical processes, material property functions, and various auxiliary functions. The comparative analysis covered oxide-fueled versus metal-fueled core designs and loop- versus pool-type reactors. The question of interest was the rate of change of the temperatures in the components in the upper plenum and the primary loop, in particular the reactor outlet nozzle and the intermediate heat exchanger inlet nozzle during different types of transients. From the simulations performed it can be concluded that metal-fueled cores will have much faster temperature transients than oxide-fueled cores due mainly to the much higher thermal diffusivity of the metal fuel. The transients in the pool-type design (either with oxide fuel or metal fuel) will be much slower than in the loop-type design due to the large heat capacity of the sodium pool. The DSNP language was demonstrated to be well suited to perform many types of transient analysis in nuclear power plants

  16. Analysis of Accident Scenarios for the Development of Probabilistic Safety Assessment Model for the Metallic Fuel Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, S. Y.; Yang, J. E.; Kwon, Y. M.; Jeong, H. Y.; Suk, S. D.; Lee, Y. B.

    2009-03-01

    The safety analysis reports which were reported during the development of sodium cooled fast reactors in the foreign countries are reviewed for the establishment of Probabilistic Safety Analysis models for the domestic SFR which are under development. There are lots of differences in the safety characteristics between the mixed oxide (MOX) fuel SFR and metallic fuel SFR. Metallic fuel SFR is under development in Korea while MOX fuel SFR is under development in France, Japan, India and China. Therefore the status on the development of fast reactors in the foreign countries are reviewed at first and then the safety characteristics between the MOX fuel SFR and the metallic fuel SFR are reviewed. The core damage can be defined as coolant voiding, fuel melting, cladding damage. The melting points of metallic fuel and the MOX fuel is about 1000 .deg. C and 2300 .deg. C, respectively. The high energy stored in the MOX fuel have higher potential to voiding of coolant compared to the possibility in the metallic fuel. The metallic fuel has also inherent reactivity feedback characteristic that the metallic fuel SFR can be shutdown safely in the events of transient overpower, loss of flow, and loss of heat sink without scram. The metallic fuel has, however, lower melting point due to the eutectic formation between the uranium in metallic fuel and the ferrite in metallic cladding. It is needed to identify the core damage accident scenarios to develop Level-1 PSA model. SSC-K computer code is used to identify the conditions in which the core damage can occur in the KALIMER-600 SFR. The accident cases which are analyzed are the triple failure accidents such as unprotected transient over power events, loss of flow events, and loss of heat sink events with impaired safety systems or functions. Through the analysis of the triple failure accidents for the KALIMER-600 SFR, it is found that the PSA model developed for the PRISM reactor design can be applied to KALIMER-600. However

  17. Experimental study of the large-scale axially heterogeneous liquid-metal fast breeder reactor at the fast critical assembly: Power distribution measurements and their analyses

    International Nuclear Information System (INIS)

    Iijima, S.; Obu, M.; Hayase, T.; Ohno, A.; Nemoto, T.; Okajima, S.

    1988-01-01

    Power distributions of the large-scale axially heterogeneous liquid-metal fast breeder reactor were studied by using the experiment results of fast critical assemblies XI, XII, and XIII and the results of their analyses. The power distributions were examined by the gamma-scanning method and fission rate measurements using /sup 239/Pu and /sup 238/U fission counters and the foil irradiation method. In addition to the measurements in the reference core, the power distributions were measured in the core with a control rod inserted and in a modified core where the shape of the internal blanket was determined by the radial boundary. The calculation was made by using JENDL-2 and the Japan Atomic Energy Research Institute's standard calculation system for fast reactor neutronics. The power flattening trend, caused by the decrease of the fast neutron flux, was observed in the axial and radial power distributions. The effect of the radial boundary shape of the internal blanket on the power distribution was determined in the core. The thickness of the internal blanket was reduced at its radial boundary. The influence of the internal blanket was observed in the power distributions in the core with a control rod inserted. The calculation predicted the neutron spectrum harder in the internal blanket. In the radial distributions of /sup 239/Pu fission rates, the space dependency of the calculated-to-experiment values was found at the active core close to the internal blanket

  18. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  19. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  20. Neutronics and thermal hydraulics coupling scheme for design improvement of liquid metal fast systems

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, V.H.; Jaeger, W.; Travleev, A.; Monti, L.; Doern, R.

    2009-01-01

    Many advanced reactor concepts are nowadays under investigations within the Generation IV international initiative as well as in European research programs including subcritical and critical fast reactor systems cooled by liquid metal, gas and supercritical water. The Institute of Neutron Physics and Reactor Technology (INR) at the Forschungszentrum Karlsruhe GmbH is involved in different European projects like IP EUROTRANS, ELSY, ESFR. The main goal of these projects is, among others, to assess the technical feasibility of proposed concepts regarding safety, economics and transmutation requirements. In view of increased computer capabilities, improved computational schemes, where the neutronic and the thermal hydraulic solution is iteratively coupled, become practicable. The codes ERANOS2.1 and TRACE are being coupled to analyze fuel assembly or core designs of lead-cooled fast reactors (LFR). The neutronic solution obtained with the coupled system for a LFR fuel assembly was compared with the MCNP5 solution. It was shown that the coupled system is predicting physically sound results. The iterative coupling scheme was realized using Perlscripts and auxiliary Fortran programs to ensure that the mapping between the neutronic and the thermal hydraulic part is consistent. The coupled scheme is very flexible and appropriate for the neutron physical and thermal hydraulic investigation of fuel assemblies and of cores of lead cooled fast reactors. The developed methods and the obtained results will be presented and discussed. (author)

  1. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  2. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  3. Calculation of the collision stopping power of simple and composed materials for fast electrons considering the density effect with the aid of effective material parameters

    International Nuclear Information System (INIS)

    Geske, G.

    1979-01-01

    With the aid of two effective material parameters a simple expression is presented for the Bethe-Bloch-formula for the calculation of the collision stopping power of materials for fast electrons. The formula has been modified in order to include the density effect. The derivation was accomplished in connection with a formalism given by Kim. It was shown that the material dependence on the collision stopping power is entirely comprehended by the density and two effective material parameters. Thus a simple criterion is given for the comparison of materials as to their collision stopping power

  4. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  5. Criticality safety validation: Simple geometry, single unit 233U systems

    International Nuclear Information System (INIS)

    Putman, V.L.

    1997-06-01

    Typically used LMITCO criticality safety computational methods are evaluated for suitability when applied to INEEL 233 U systems which reasonably can be modeled as simple-geometry, single-unit systems. Sixty-seven critical experiments of uranium highly enriched in 233 U, including 57 aqueous solution, thermal-energy systems and 10 metal, fast-energy systems, were modeled. These experiments include 41 cylindrical and 26 spherical cores, and 41 reflected and 26 unreflected systems. No experiments were found for intermediate-neutron-energy ranges, or with interstitial non-hydrogenous materials typical of waste systems, mixed 233 U and plutonium, or reflectors such as steel, lead, or concrete. No simple geometry experiments were found with cubic or annular cores, or approximating infinite sea systems. Calculations were performed with various tools and methodologies. Nine cross-section libraries, based on ENDF/B-IV, -V, or -VI.2, or on Hansen-Roach source data, were used with cross-section processing methods of MCNP or SCALE. The k eff calculations were performed with neutral-particle transport and Monte Carlo methods of criticality codes DANT, MCNP 4A, and KENO Va

  6. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  7. Impacts of burnup-dependent swelling of metallic fuel on the performance of a compact breed-and-burn fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Heo, Woong; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

  8. Safety performance comparation of MOX, nitride and metallic fuel based 25-100 MWe Pb-Bi cooled long life fast reactors without on-site refuelling

    International Nuclear Information System (INIS)

    Su'ud, Zaki

    2008-01-01

    In this paper the safety performance of 25-100 MWe Pb-Bi cooled long life fast reactors based on three types of fuels: MOX, nitride and metal is compared and discussed. In the fourth generation NPP paradigm, especially for Pb-Bi cooled fast reactors, inherent safety capability is necessary against some standard accidents such as unprotected loss of flow (ULOF), unprotected rod run-out transient over power (UTOP), unprotected loss of heat sink (ULOHS). Selection of fuel type will have important impact on the overall system safety performance. The results of safety analysis of long life Pb-Bi cooled fast reactors without on-site fuelling using nitride, MOX and metal fuel have been performed. The reactors show the inherent safety pattern with enough safety margins during ULOF and UTOP accidents. For MOX fuelled reactors, ULOF accident is more severe than UTOP accident while for nitride fuelled cores UTOP accident may push power much higher than that comparable MOX fuelled cores. (author)

  9. A simple dissolved metals mixing method to produce high-purity MgTiO3 nanocrystals

    International Nuclear Information System (INIS)

    Pratapa, Suminar; Baqiya, Malik A.; Istianah,; Lestari, Rina; Angela, Riyan

    2014-01-01

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO 3 (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO 3 , with no Mg 2 TiO 4 or MgTi 2 O 5 phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites

  10. Fission and corrosion product behaviour in liquid metal fast breeder reactors (LMFBRs)

    International Nuclear Information System (INIS)

    1993-02-01

    It is intended that this review will be useful not only to scientists but also to those concerned with design, day-to-day operation of plant, with liquid metal fast breeder reactors (LMFBRs), safety and decommissioning. Because of this, the review has been widened to include not only the mass transfer behaviour of the various radionuclides in experimental and operating systems, but also the monitoring of the various species, the methods of measurement and the development of methods to control the build-up of the more important long half-life species in operating plants. The information used in the review has been taken from open literature sources to provide an up-to-date presentation of the behaviour of the various isotopes in LMFBRs. 172 refs, 14 figs, 22 tabs

  11. Trends and sources for heavy metals in urban atmosphere

    International Nuclear Information System (INIS)

    Kemp, Kaare

    2002-01-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing

  12. Trends and sources for heavy metals in urban atmosphere

    Science.gov (United States)

    Kemp, Kåre

    2002-04-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing.

  13. A simple criterion to predict the glass forming ability of metallic alloys

    International Nuclear Information System (INIS)

    Falcao de Oliveira, Marcelo

    2012-01-01

    A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R C ) correlates well with a proper combination of two factors, the minimum topological instability (λ min ) and the Δh parameter, which depends on the average work function difference (Δφ) and the average electron density difference (Δn ws 1/3 ) among the constituent elements of the alloy. A correlation coefficient (R 2 ) of 0.76 was found between R c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z C ) of alloys in the Cu-Zr system. The new criterion underestimated R C in the Cu-Zr system, producing predicted Z C values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness.

  14. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  15. A fast track approach to commercializing the sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, Marvin; Carroll, Douglas

    1999-01-01

    As a result of more than 50 years of Liquid Metal Reactor design and development work the basic technology is well understood. However, commercialization of the Fast Breeder Reactor (FBR) has been delayed while various approaches to achieving competitive plant and fuel cycle costs are explored, developed, and demonstrated in prototype systems. Most designers have elected to take advantage of the economy of scale but are burdened by the cost and risk associated with the need for incremental scale up through the design, construction, and operation of multiple demonstration plants. An alternative commercialization path developed by GE would utilize a modular plant design to reduce the plant construction, R and D, and economic risk associated with the need to build multiple demonstration plants to reach a competitive size'. The key question is can a modular FBR compete with alternative electrical generation systems? Recently completed studies indicate that the answer to this question is yes if the modular plant designers keep the design simple by incorporating passive safety features and optimizing the manner in which supporting service systems are shared. (author)

  16. ORALLOY (93.2 235U) METAL CYLINDER WITH BERYLLIUM TOP REFLECTOR

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland M.; Reed, Raymond L.; Mihalczo, John T.

    2010-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, one experiment was comprised of a stack of approximately 7-inch-diameter metal discs. The bottom of the stack consisted of uranium with an approximate height of 4-1/8 inches. The top of the stack consisted of beryllium with an approximate height of 5-9/16 inches. This experiment was performed on August 20, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. This fast-spectra experiment was determined to represent an acceptable benchmark. The calculated eigenvalues for both the detailed and simple models are within approximately 0.5% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: ±0.0002 (1s). There is significant variability between results using different neutron cross section libraries, the greatest being a k eff of ∼0.65% . Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same highly enriched uranium metal parts are evaluated

  17. A Simple Apparatus for Fast Ion Exchange Separations

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-09-15

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described.

  18. A Simple Apparatus for Fast Ion Exchange Separations

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-09-01

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described

  19. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    International Nuclear Information System (INIS)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.

    2015-01-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.

  20. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of a fast and simple sample preparation method for PBDE flame retardants and DDT pesticides in fish for analysis by ELISA compared with GC-MS/MS

    Science.gov (United States)

    A simple, fast, and cost-effective sample preparation method, previously developed and validated for the analysis of organic contaminants in fish using low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS), was evaluated for analysis of polybrominated diphenyl ethers (PBDEs) and dich...

  2. Techniques for the quantitative analysis of fission-product noble metals

    International Nuclear Information System (INIS)

    Lautensleger, A.W.; Hara, F.T.

    1982-08-01

    Analytical procedures for the determination of ruthenium, rhodium, and palladium in precursor waste, solvent metal, and final glass waste forms have been developed. Two procedures for the analysis of noble metals in the calcine and glass waste forms are described in this report. The first is a fast and simple technique that combines inductively coupled argon plasma atomic emission spectrometry (ICP) and x-ray fluorescence techniques and can only be used on nonradioactive materials. The second procedure is based on a noble metal separation step, followed by an analysis using ICP. This second method is more complicated than the first, but it will work on radioactive materials. Also described is a procedure for the ICP analysis of noble metals in the solvent metal matrix. The only solvent metal addressed in this procedure is lead, but with minor changes the procedure could be applied to any of the solvent metals being considered in the Pacific Northwest Laboratory (PNL) extraction process. A brief explanation of atomic spectroscopy and the ICP analytical process, as well as of certain aspects of ICP performance (interelement spectral line interferences and certain matrix effects) is given

  3. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  4. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  5. Simple clamped connection for bamboo truss systems

    NARCIS (Netherlands)

    Blok, R.

    2016-01-01

    “How to make fast and simple tension connections for truss systems?” The Solution: The innovation is a connection that uses only widely available base components (boltsand threaded steel bars) and simple hand tools to install it. With a handsaw and aspanner, the bamboo stems can be combined into to

  6. Introduction of the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  7. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, A., E-mail: difulvio@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Shin, T.H.; Jordan, T.; Sosa, C.; Ruch, M.L.; Clarke, S.D. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-21

    We developed a fast-neutron multiplicity counter based on organic scintillators (EJ-309 liquid and stilbene). The system detects correlated photon and neutron multiplets emitted by fission reactions, within a gate time of tens of nanoseconds. The system was used at Idaho National Laboratory to assay a variety of plutonium metal plates. A coincidence counting strategy was used to quantify the {sup 240}Pu effective mass of the samples. Coincident neutrons, detected within a 40-ns coincidence window, show a monotonic trend, increasing with the {sup 240}Pu-effective mass (in this work, we tested the 0.005–0.5 kg range). After calibration, the system estimated the {sup 240}Pu effective mass of an unknown sample ({sup 240}Pu{sub eff} >50 g) with an uncertainty lower than 1% in a 4-min assay time.

  8. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  9. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  10. Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  11. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    Science.gov (United States)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  12. A Simple Risk Score for Identifying Individuals with Impaired Fasting Glucose in the Southern Chinese Population

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2015-01-01

    Full Text Available This study aimed to develop and validate a simple risk score for detecting individuals with impaired fasting glucose (IFG among the Southern Chinese population. A sample of participants aged ≥20 years and without known diabetes from the 2006–2007 Guangzhou diabetes cross-sectional survey was used to develop separate risk scores for men and women. The participants completed a self-administered structured questionnaire and underwent simple clinical measurements. The risk scores were developed by multiple logistic regression analysis. External validation was performed based on three other studies: the 2007 Zhuhai rural population-based study, the 2008–2010 Guangzhou diabetes cross-sectional study and the 2007 Tibet population-based study. Performance of the scores was measured with the Hosmer-Lemeshow goodness-of-fit test and ROC c-statistic. Age, waist circumference, body mass index and family history of diabetes were included in the risk score for both men and women, with the additional factor of hypertension for men. The ROC c-statistic was 0.70 for both men and women in the derivation samples. Risk scores of ≥28 for men and ≥18 for women showed respective sensitivity, specificity, positive predictive value and negative predictive value of 56.6%, 71.7%, 13.0% and 96.0% for men and 68.7%, 60.2%, 11% and 96.0% for women in the derivation population. The scores performed comparably with the Zhuhai rural sample and the 2008–2010 Guangzhou urban samples but poorly in the Tibet sample. The performance of pre-existing USA, Shanghai, and Chengdu risk scores was poorer in our population than in their original study populations. The results suggest that the developed simple IFG risk scores can be generalized in Guangzhou city and nearby rural regions and may help primary health care workers to identify individuals with IFG in their practice.

  13. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  14. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  15. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  16. Feasible homopolar dynamo with sliding liquid-metal contacts

    International Nuclear Information System (INIS)

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm≈34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the rings R i /R o ≈0.36 and the spiral pitch angle 54.7°. In a setup of two copper rings with the thickness of 3 cm, R i =10 cm and R o =30 cm, self-excitation of the magnetic field is expected at a critical rotation frequency around 10 Hz

  17. A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment.

    Science.gov (United States)

    Wu, Zefei; Guo, Yanqing; Guo, Yuzheng; Huang, Rui; Xu, Shuigang; Song, Jie; Lu, Huanhuan; Lin, Zhenxu; Han, Yu; Li, Hongliang; Han, Tianyi; Lin, Jiangxiazi; Wu, Yingying; Long, Gen; Cai, Yuan; Cheng, Chun; Su, Dangsheng; Robertson, John; Wang, Ning

    2016-02-07

    The transfer-free synthesis of high-quality, large-area graphene on a given dielectric substrate, which is highly desirable for device applications, remains a significant challenge. In this paper, we report on a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer graphene on a SiO2/Si substrate from solid carbon sources. The stack structure of a solid carbon layer/copper film/SiO2 is adopted in the RTT process. The inserted copper film does not only act as an active catalyst for the carbon precursor but also serves as a "filter" that prevents premature carbon dissolution, and thus, contributes to graphene growth on SiO2/Si. The produced graphene exhibits a high carrier mobility of up to 3000 cm(2) V(-1) s(-1) at room temperature and standard half-integer quantum oscillations. Our work provides a promising simple transfer-free approach using solid carbon sources to obtain high-quality graphene for practical applications.

  18. Fast reactor operation in the United States

    International Nuclear Information System (INIS)

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  19. Metal fuel manufacturing and irradiation performance

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  20. A Simple and Fast Method for the Production and Characterization of Methylic and Ethylic Biodiesels from Tucum Oil via an Alkaline Route

    Directory of Open Access Journals (Sweden)

    Marcelo Firmino de Oliveira

    2011-01-01

    Full Text Available A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit.

  1. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  2. Preliminary design characteristics of the RB fast-thermal core 'HERBE'

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.

    1989-01-01

    The 'RB' is zero power heavy water critical assembly designed in 1958 in Yugoslavia. The reactor operated using natural metal uranium, 2% enriched metal uranium, and 80% enriched UO 2 fuel of Soviet origin. A study of design of fast neutron fields began in 1976 and three fast neutron fields were designed up to 1983: the external neutron converter, the experimental fuel channel and the internal neutron converter, as the first step to fast-thermal coupled system. The preliminary design characteristics of the HERBE - a new fast - thermal core at the RB reactor are shown in this paper. (author)

  3. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  4. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Bauer, T.H.; Holland, J.W.

    1995-01-01

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel

  5. Intra-assembly flow redistribution in LMFBRs: a simple computational approach

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    The liquid metal fast breeder reactor (LMFBR) core consists of fuel, blanket, control, and shielding assemblies packed in a hexagonal configuration. Radial blanket assemblies occupy peripheral locations in the reactor core and are characterized by steep power gradients, while inner blanket assemblies are located within the fuel assembly region and have higher power levels but flatter distributions. It is due to the presence of this radial power gradient that large sodium temperature distributions exist at full power operation. However, at low power, low flow natural convection conditions, a significant flow redistribution takes place leading to considerable radial temperature flattening. The purpose of the present study is to formulate a simple flow-regime dependent model supported by experimental data for prediction of sodium temperature flattening due to buoyancy-induced flow redistribution in LMFBR subassemblies with significant radial power gradient

  6. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    International Nuclear Information System (INIS)

    Li Siheng; Wang Enbo; Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-01-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe 2 O 4 ) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe 2 O 4 (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters

  7. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  8. Two simple methods for calculating the penetration time of a longitudinal magnetic field through the wall of a metallic tube

    International Nuclear Information System (INIS)

    Jimenez D, H.; Colunga S, S.; Lopez C, R.; Melendez L, L.; Ramos S, J.; Cabral P, A.; Gonzalez T, L.; Chavez A, E.; Valencia A, R.

    1991-06-01

    Two simple and fast methods to calculate the penetration time of a longitudinal magnetic field through the wall of a long metallic tube of circular cross section are presented. The first method is based upon the proposition of an 'effective penetration thickness' given by the polar angle average of all possible straight-line transverse penetration paths of field lines through the tube wall. This method provides a quick calculation that yields a remarkably good approximation to experimental and reported values of the penetration time. In the second method the tube is considered as a RL circuit. Thus the penetration time is given by the ratio L T /R T where L T is the inductance of the tube considered as a one turn coil, and R T is the tube resistance. This method is faster to apply than the previous one but the values obtained provide only a rough approximation to the penetration time. Applications of the two methods are given for the tokamak chambers of the Japanese 'HYBTOK', the Brazilian 'TBR' and the Mexican 'Novillo'. The resulting values of the penetration time approximate very well to the reported ones in the first two cases and to the experimental one in the last. The methods are also applied to calculate the penetration time in two long tubes, one of aluminum and other of copper. Calculated values approximate very well to measured values. (Author)

  9. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  10. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    Science.gov (United States)

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  11. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Science.gov (United States)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  12. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  13. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  14. Transient bowing of core assemblies in advanced liquid metal fast reactors

    International Nuclear Information System (INIS)

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety

  15. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five

  16. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    Science.gov (United States)

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long

  17. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  18. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  19. The Integral Fast Reactor concept

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  20. A silicon diode for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The effect of fast neutrons on both animate and inanimate objects, including human beings, can be extremely serious and cumulative. There is thus a need for a small, simple and cheap component which will provide a permanent or semi-permanent record of the accumulated fast neutron dose

  1. The R and D issues necessary to achieve the safety design of commercialized liquid-metal cooled fast reactors

    International Nuclear Information System (INIS)

    Shoji, Kotake; Koji, Dozaki; Shigenobu, Kubo; Yoshio, Shimakawa; Hajime, Niwa; Masakazu, Ichimiya

    2002-01-01

    Within the framework of the feasibility study on commercialized fast reactor cycle systems (hereafter described as F/S), the safety design principle is investigated and several kinds of design studies are now in progress. Among the designs for liquid-metal cooled fast reactor (LMR), the advanced loop type sodium cooled fast reactor (FR) is one of the promising candidate as future commercialized LMR. In this paper, the safety related research and development (R and D) issues necessary to achieve the safety design are described along the defence-in-depth principle, taking account of not only the system characteristics of the advanced loop concepts but also design studies and R and D experiences so far. Safety issues related to the hypothetical core disruptive accidents (CDA) are emphasized both from the prevention and mitigation. A re-criticality free core concept with a special fuel assembly is pursued by performing both analytical and experimental efforts, in order to realize the rational design and to establish easy-to-understand safety logic. Sodium related issues are also given to ensure plant availability and to enhance the acceptability to the public. (authors)

  2. Investigation of Reactivity Feedback Mechanism of Axial and Radial Expansion Effect of Metal-Fueled Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Seong, Seung-Hwan; Choi, Chi-Woong; Jeong, Tae-Kyung; Ha, Gi-Seok

    2015-01-01

    The major inherent reactivity feedback models for a ceramic fuel used in a conventional light water reactor are Doppler feedback and moderator feedback. The metal fuel has these two reactivity feedback mechanisms previously mentioned. In addition, the metal fuel has two more reactivity feedback models related to the thermal expansion phenomena of the metal fuel. Since the metal fuel has a good capability to expand according to the temperature changes of the core, two more feedback mechanisms exist. These additional two feedback mechanism are important to the inherent safety of metal fuel and can make metal-fueled SFR safer than oxide-fueled SFR. These phenomena have already been applied to safety analysis on design extended condition. In this study, the effect of these characteristics on power control capability was examined through a simple load change operation. The axial expansion mechanism is induced from the change of the fuel temperature according to the change of the power level of PGSFR. When the power increases, the fuel temperatures in the metal fuel will increase and then the reactivity will decrease due to the axial elongation of the metal fuel. To evaluate the expansion effect, 2 cases were simulated with the same scenario by using MMS-LMR code developed at KAERI. The first simulation was to analyze the change of the reactor power according to the change of BOP power without the reactivity feedback model of the axial and radial expansion of the core during the power transient event. That is to say, the core had only two reactivity feedback mechanism of Doppler and coolant temperature

  3. Status of Liquid Metal Fast Reactor Development in the United States of America, March 1987

    International Nuclear Information System (INIS)

    Horton, K.E.

    1987-01-01

    In order to meet the objective to develop and demonstrate economically competitive reactor designs and associated fuel cycles early in the next century, the U.S. program has become more focused. Two innovative reactor designs supported by the metal-fueled Integral Fast Reactor program are being directed at fulfilling a series of advanced reactor goals. The supporting technology programs and facilities are being refocused to support the overall goals. International collaboration is being broadened to provide the two-way support across the spectrum of plant projects and the fuel cycle. This program is intended to maintain the technology base into the time period (mid-1990s) when a private sector demonstration could be initiated. (author)

  4. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Solomon, K.A.

    1979-07-01

    In the design of light water reactors (LWRs), protection against anticipated transients (e.g., loss of normal electric power and control rod withdrawal) is provided by a highly reliable scram, or shutdown system. If this system should become inoperable, however, the transient could lead to a core meltdown. The Nuclar Regulatory Commission (NRC) has proposed, in NUREG-0460 [1], new requirements (or acceptance criteria) for anticipated transients without scram (ATWS) events and the manner in which they could be considered in the design and safety evaluation of LWRs. This note assesses the potential impact of the proposed LWR-ATWS criteria on the liquid metal fast breeder reactor (LMFBR) safety program as represented by the Clinch River Breeder Reactor Plant

  5. New metals

    International Nuclear Information System (INIS)

    Bergqvist, U.

    1983-12-01

    The aim of this report is to estimate the exposure to various metals and metal compounds and discuss the available information of the possible toxic effects of these metals and compounds. In the first section, some metals are defined as those with either a large or a fast increasing exposure to living organisms. The available information on toxicity is discussed in the second section. In the third section interesting metals are defined as compounds having a large exposure and an apparent insufficient knowledge of their possible toxic effects. Comments on each of these metals are also to be found in the third section. (G.B.)

  6. Criticality safety validation: Simple geometry, single unit {sup 233}U systems

    Energy Technology Data Exchange (ETDEWEB)

    Putman, V.L.

    1997-06-01

    Typically used LMITCO criticality safety computational methods are evaluated for suitability when applied to INEEL {sup 233}U systems which reasonably can be modeled as simple-geometry, single-unit systems. Sixty-seven critical experiments of uranium highly enriched in {sup 233}U, including 57 aqueous solution, thermal-energy systems and 10 metal, fast-energy systems, were modeled. These experiments include 41 cylindrical and 26 spherical cores, and 41 reflected and 26 unreflected systems. No experiments were found for intermediate-neutron-energy ranges, or with interstitial non-hydrogenous materials typical of waste systems, mixed {sup 233}U and plutonium, or reflectors such as steel, lead, or concrete. No simple geometry experiments were found with cubic or annular cores, or approximating infinite sea systems. Calculations were performed with various tools and methodologies. Nine cross-section libraries, based on ENDF/B-IV, -V, or -VI.2, or on Hansen-Roach source data, were used with cross-section processing methods of MCNP or SCALE. The k{sub eff} calculations were performed with neutral-particle transport and Monte Carlo methods of criticality codes DANT, MCNP 4A, and KENO Va.

  7. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    International Nuclear Information System (INIS)

    Kutepov, A. L.

    2017-01-01

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.

  8. Evolution of fast reactor core spectra in changing a heavy liquid metal coolant by molten PB-208

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, D. A.; Mitenkova, E. F. [Nuclear Safety Inst., Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Khorasanov, G. L.; Zemskov, E. A.; Blokhin, A. I. [State Scientific Center, Russian Federation, Inst. of Physics and Power Engineering, Bondarenko Square 1, Obninsk, 249033 (Russian Federation)

    2012-07-01

    In the paper neutron spectra of fast reactor cooled with lead-bismuth or lead-208 are given. It is shown that in changing the coolant from lead-bismuth to lead-208 the core neutron spectra of the fast reactor FR RBEC-M are hardening in whole by several percents when a little share of low energy neutrons (5 eV - 50 keV) is slightly increasing. The shift of spectra to higher energies permits to enhance the fuel fission while the increased share of low energy neutrons provides more effective conversion of uranium-238 into plutonium due to peculiarity of {sup 238}U neutron capture cross section. Good neutron and physical features of molten {sup 208}Pb permit to assume it as perspective coolant for fast reactors and accelerator driven systems. The one-group cross sections of neutron radiation capture, {sigma}(n,g), by {sup 208}Pb, {sup 238}U, {sup 99}Tc, mix of lead and bismuth, {sup nat}Pb-Bi, averaged over neutron spectra of the fast reactor RBEC-M are given. It is shown that one-group cross sections of neutron capture by material of the liquid metal coolant consisted from lead enriched with the stable lead isotope, {sup 208}Pb, are by 4-7 times smaller {sigma}(n,g) for the coolant {sup nat}Pb-Bi. The economy of neutrons in the core cooled with {sup 208}Pb can be used for reducing reactor's initial fuel load, increasing fuel breeding and transmutation of long lived fission products, for example {sup 99}Tc. Good neutron and physical features of lead enriched with {sup 208}Pb permit to consider it as a perspective low neutron absorbing coolant for fast reactors and accelerator driven systems. (authors)

  9. Fabrication of integrated metallic MEMS devices

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Ravnkilde, Jan Tue; Hansen, Ole

    2002-01-01

    A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators are characteri......A simple and complementary metal oxide semiconductor (CMOS) compatible fabrication technique for microelectromechanical (MEMS) devices is presented. The fabrication technology makes use of electroplated metal layers. Among the fabricated devices, high quality factor microresonators...

  10. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  11. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  12. Plasmonic finite-thickness metal-semiconductor-metal waveguide as ultra-compact modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Malureanu, Radu; Lavrinenko, Andrei

    2013-01-01

    We propose a plasmonic waveguide with semiconductor gain material for optoelectronic integrated circuits. We analyze properties of a finite-thickness metal-semiconductor-metal (F-MSM) waveguide to be utilized as an ultra-compact and fast plasmonic modulator. The InP-based semiconductor core allows...

  13. Fast wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kitamura, Kazunori.

    1990-01-01

    A protruding molten metal reservoir is disposed to a sealing vessel embedded in the armour tile of fast walls, and molten metal of low melting point such as tin, lead or alloy thereof is filled in the sealing vessel. The volume of the molten metal reservoir is determined such that the surface level of the molten metal is kept within the molten metal reservoir even when the sealed low melting point metal is solidified at room temperature. When the temperature is lowered during plasma interruption period and the sealed low melting molten metal is solidified to reduce the volume, most of the molten metal reservoir regioin constitutes a vacuum gap. However, the inner wall of the sealing vessel other than the molten metal reservior region can be kept into contact with the sealed metal. Accordingly, the temperature and the sublimation loss of the armour tile can be kept low even upon plasma heat application. (I.N.)

  14. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    International Nuclear Information System (INIS)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.; Beusekom, Mara M. van; Mol, Isabel M.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Rooij, Karien E. de

    2014-01-01

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining

  15. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    Energy Technology Data Exchange (ETDEWEB)

    Moester, Martiene J.C. [Department of Radiology, Leiden University Medical Center (Netherlands); Schoeman, Monique A.E. [Department of Orthopedic Surgery, Leiden University Medical Center (Netherlands); Oudshoorn, Ineke B. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Beusekom, Mara M. van [Department of Radiology, Leiden University Medical Center (Netherlands); Mol, Isabel M. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Kaijzel, Eric L.; Löwik, Clemens W.G.M. [Department of Radiology, Leiden University Medical Center (Netherlands); Rooij, Karien E. de, E-mail: k.e.de_rooij@lumc.nl [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands)

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.

  16. Hepatic malonyl-CoA levels of fed, fasted and diabetic rats as measured using a simple radioisotopic assay

    International Nuclear Information System (INIS)

    McGarry, J.D.; Stark, M.J.; Foster, D.W.

    1978-01-01

    A simple radioisotopic assay for malonyl-CoA is described. The method is based on the malonyl-CoA-dependent incorporation of labeled acetyl-CoA into palmitic acid catalyzed by fatty acid synthetase in the presence of NADPH. Its main advantage over the more conventional spectrophotometric procedure is that it is extremely sensitive and allows the simultaneous determination of picomole quantities of malonyl-CoA in multiple tissue extracts. It should prove particularly suitable for studies on the regulation of lipid metabolism in isolated hepatocytes where the quantity of tissue available for analysis is frequently very small. Application of the method to the measurement of malonyl-CoA in livers from fed, fasted, and diabetic rats yielded values that were consistent with the recently postulated role of malonyl-CoA in the regulation of hepatic ketone body production

  17. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  18. The integral fast reactor concept

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  19. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  20. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  1. Fast reactors and problems in their development. Chapter 6

    International Nuclear Information System (INIS)

    Dombey, N.

    1980-01-01

    The main differences between fast reactors, in particular the liquid-metal fast breeder reactor (LMFBR), and thermal reactors are discussed. The view is taken, based on the intrinsic physics of the systems, that fast reactors should be considered as a different genus from thermal reactors. Some conclusions are drawn for fast reactor development generally and for the British programme in particular. Physics, economics and safety aspects are covered. (U.K.)

  2. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  3. A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Susmita [Jadavpur University, Department of Instrumentation Science (India); Das, Rashmita [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Bhar, Radhaballabh [Jadavpur University, Department of Instrumentation Science (India); Bandyopadhyay, Rajib [Jadavpur University, Department of Instrumentation and Electronics Engineering (India); Pramanik, Panchanan, E-mail: pramanik1946@gmail.com [GLA University, Department of Chemistry and Nanoscience (India)

    2017-02-15

    A new simple chemical method for synthesis of nanocrystalline bismuth telluride (Bi{sub 2}Te{sub 3}) has been developed by microwave assisted reduction of homogeneous tartrate complexes of bismuth and tellurium metal ions with hydrazine. The reaction is performed at pH 10. The nano-crystallites have rhombohedral phase identified by XRD. The size distribution of nanoparticle is narrow and it ranges between 50 to 70 nm. FESEM shows that the fine powders are composed of small crystallites. The TEM micrographs show mostly deformed spherical particles and the lattice fringes are found to be 0.137 nm. Energy dispersive X-ray spectroscopy (EDX) analysis shows the atomic composition ratio between bismuth and tellurium is 2:3. Thermoelectric properties of the materials are studied after sintering by spark plasma sintering method (SPS). The grain size of the material after sintering is in the nanometer range. The material shows enhanced Seebeck coefficient and electrical conductivity value at 300 K. The figure of merit is found to be 1.18 at 300 K.

  4. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    Directory of Open Access Journals (Sweden)

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  5. Psychology into economics: fast and frugal heuristics

    OpenAIRE

    Schilirò, Daniele

    2015-01-01

    The present essay focuses on the fast and frugal heuristics program set forth by Gerd Gigerenzer and his fellows. In particular it examines the contribution of Gigerenzer and Goldstein (1996) ‘Reasoning the Fast and Frugal Way: Models of Bounded Rationality’. This essay, following the theoretical propositions and the empirical evidence of Gigerenzer and Goldstein, points out that simple cognitive mechanisms such as fast and frugal heuristics can be capable of successful performance in real wo...

  6. Fuel and core design study of the sodium-cooled fast reactors. Studies on metallic fuel cores in the JFY2002

    International Nuclear Information System (INIS)

    Sugino, Kazuteru; Mizuno, Tomoyasu

    2003-06-01

    Based on the results obtained in the former feasibility study, the metallic fueled core of ordinary-type, that is, 2-region homogeneous core, has been established aiming at the improvement in the core performance, and subsequent comparison has been performed with the mixed oxide fueled core. Further, the attractive concept of the metallic fueled core of high outlet temperature has been constructed which has good nuclear features as a metallic fueled core and has identical outlet temperature to mixed oxide fuelled core. Following items have been found as a result of the investigation on the ordinary-type core. The metallic fueled core whose maximum fast neutron fluence (En>0.1MeV) is set identical (5x10 23 n/cm 2 ) to the mixed oxide fueled cores with core discharge burnup 150GWd/t has sufficient core performances as a metallic fueled core, e.g. higher breeding ratio and longer operation period compared with mixed oxide fueled cores, but the core discharge burnup is limited up to 100GWd/t. However effective discharge burnup including the contribution of the blanket region is comparative to mixed oxide cores under the same breeding ratio condition. In order to enlarge the core discharge burnup to 150GWd/t keeping the core performance identical to above mentioned core's, the irradiation deformation of structural material should be reduced to that of mixed oxide fueled cores. Further the maximum fast neutron fluence reaches to 7-8x10 23 n/cm 2 (En>0.1MeV). The investigations on the core of high outlet temperature have clarified following items. Even in the change of core regions by pin-diameter form 3-region to 2-region and in the limited maximum fuel pin diameter 8.5 mm, realization of the identical outlet/inlet temperatures to the mixed oxide cores (550/395degC) is feasible under the criteria of the maximum temperature 650degC at the inner surface of the cladding. The constructed core accommodates the targets of breeding ratio from about 1.0 to 1.2 only by adjusting

  7. Application of acoustic agglomerators for emergency use in liquid-metal fast breeder reactor plants

    International Nuclear Information System (INIS)

    Shaw, D.T.; Rajendran, N.

    1979-01-01

    The use of acoustic agglomerators for the suppression of sodium-fire aerosols in the case of a hypothetical core disruptive accident of a liquid-metal fast breeder reactor is discussed. The basic principle for the enhancement of agglomeration of airborne particles under the influence of an acoustic field is first discussed, followed by theoretical predictions of the optimum operating conditions for such application. It is found that with an acoustic intensity of 160 dB (approx. 1 W/cm 2 ), acoustic agglomeration is expected to be several hundred times more effective than gravitational agglomeration. For particles with a radius larger than approx. 2 μm, hydrodynamic interaction becomes more important than the inertial capture. For radii between 0.5 and 2 μm, both mechanisms have to included in the theoretical predictions of the acoustic agglomeration rate

  8. Liquid-metal fast breeder reactor fuel rod performance and modeling at high burnup

    International Nuclear Information System (INIS)

    Verbeek, P.; Toebbe, H.; Hoppe, N.; Steinmetz, B.

    1978-01-01

    The fuel rod modeling codes IAMBUS and COMETHE were used in the analysis and interpretation of postirradiation examination results of mixed-oxide fuel pins. These codes were developed in the framework of the SNR-300 research and development (R and D) program at Interatom and Belgonucleaire, respectively. SNR-300 is a liquid-metal fast breeder reactor demonstration plant designed and presently constructed in consortial cooperation by Germany, Belgium, and the Netherlands. RAPSODIE I, the two-bundle irradiation experiment, was irradiated in the French test FBR RAPSODIE FORTISSIMO and is one of the key irradiation experiments within the SNR-300 R and D program. The comparison of code predictions with postirradiation examination results concentrates on clad diameter expansions, clad total axial elongations, fuel differential and total axial elongations, fuel restructuring, and fission gas release. Fuel rod modeling was considered in the light of benchmarking of the codes, and there was consideration of fuel rod design for operation at low and high burnup

  9. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  10. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  11. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  12. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  13. Advanced liquid metal fast breeder reactor designs

    International Nuclear Information System (INIS)

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  14. Role of fast reactor and its cycle to reduce nuclear waste burden

    Energy Technology Data Exchange (ETDEWEB)

    Arie, Kazuo; Oomori, Takashi; Okita, Takeshi [Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Kawashima, Masatoshi [Toshiba Nuclear Engineering Services Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan); Kotake, Shoji [The Japan Atomic Power Company, 1-1, Kanda-Mitoshiro-cho, Chiyoda-ku, Tokyo 101-0053 (Japan); Fuji-ie, Yoichi [Nuclear Salon Fuji-ie, 1-11-10, Yushima, Bunkyo-ku, Tokyo 113-0034 (Japan)

    2013-07-01

    The role of the metal fuel fast reactor with recycling of actinides and the five long-lived fission products based on the concept of the Self-Consistent Nuclear Energy System has been examined by evaluating the reduction of nuclear wastes during the transition period to this reactor system. The evaluation was done in comparison to an LWR once-through case and a conventional actinide recycling oxide fast reactor. As a result, it is quantitatively clarified that a metal fuel fast reactor with actinide and the five long-lived fission products (I{sup 129}, Tc{sup 99}, Zr{sup 93}, Cs{sup 135} and Sn{sup 126}) recycling could play a significant role in reducing the nuclear waste burden including the current LWR wastes. This can be achieved by using a fast neutron spectrum reactor enhanced with metal fuel that brings high capability as a 'waste burner'. (authors)

  15. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Geraldo, Issa Cherif; Bose, Tanmoy; Pekpe, Komi Midzodzi; Cassar, Jean-Philippe; Mohanty, A.R.; Paumel, Kévin

    2014-01-01

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  16. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  17. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  18. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    Science.gov (United States)

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNiacid octaester porphyrins and their metal complexes very attractive for variant applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  20. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    International Nuclear Information System (INIS)

    Metere, Alfredo; Oleynikov, Peter; Dzugutov, Mikhail; O’Keeffe, Michael

    2014-01-01

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction

  1. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  2. Irradiation performance of metallic fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Porter, D.L.; Batte, G.L.; Hofman, G.L.

    1989-01-01

    Argonne National Laboratory has been working for the past five years to develop and demonstrate the Integral Fast Reactor (IFR) concept. The concept involves a closed system for fast-reactor power generation and on-site fuel reprocessing, both designed specifically around the use of metallic fuel. The Experimental Breeder Reactor-II (EBR-II) has used metallic fuel for all of its 25-year life. In 1985, tests were begun to examine the irradiation performance of advanced-design metallic fuel systems based on U-Zr or U-Pu-Zr fuels. These tests have demonstrated the viable performance of these fuel systems to high burnup. The initial testing program will be described in this paper. 2 figs

  3. Performance of Zr as FCCI barrier layer for metallic fuel of fast reactor

    International Nuclear Information System (INIS)

    Kaity, Santu; Bhagat, R.K.; Kutty, T.R.G.; Kumar, Arun; Laik, A.; Kamath, H.S.

    2011-01-01

    Uranium-plutonium (U-Pu) and uranium-plutonium-zirconium (U-Pu-Zr) alloys have been considered as promising advanced fuels for fast reactor in India because of its high breeding potential, high thermal conductivity, high fissile and fertile atom densities, low doubling time and ease of fabrication compared to other ceramic fuels. The chemical compatibility between the fuel and clad material also known as fuel-clad chemical interaction (FCCI) has been recognized as one of the major concerns about the performance of the metallic fuel. Primarily, two design concepts have been proposed for the metallic fuel development programme for FBRs. One of them is based on sodium bonded ternary U-Pu-Zr alloy with T91 grade steel clad, and the other consists of binary U-Pu alloy mechanically bonded to T91 clad with a Zr liner between the fuel and clad. U will be the axial blanket material for U-Pu binary fuel. In the present investigation, the performance of Zr as FCCI barrier layer was studied through diffusion couple experiments of U/Zr/T91. A thin Zr foil (thickness ∼ 200 μm) sandwiched between U and T91 discs was kept inside a fixture made of Inconel 600 alloy. The fixture was encapsulated in quartz tube under Helium atmosphere and then heated at 650, 700 and 750 deg C for upto 1500 h. The extent of reaction and composition of phases formed were analyzed by scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) and electron probe microanalyser (EPMA) equipped with wavelength dispersive spectrometer (WDS)

  4. The integral fast reactor - an overview

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Hannum, W.H.

    1997-01-01

    The Integral Fast Reactor (IFR) is a system that consists of a fast-spectrum nuclear reactor that uses metallic fuel and liquid-metal (sodium) cooling, coupled with technology for high-temperature electrochemical recycling, and with processes for preparing wastes for disposition. The concept is based on decades of experience with fast reactors, adapted to priorities that have evolved markedly from those of the early days of nuclear power. It has four essential, distinguishing features: efficient use of natural resources, inherent safety characteristics, reduced burdens of nuclear waste, and unique proliferation resistance. These fundamental characteristics offer benefits in economics and environmental protection. The fuel cycle never involves separated plutonium, immediately simplifying the safeguarding task. Initiated in 1984 in response to proliferation concerns identified in the International Nuclear Fuel Cycle Evaluation (INFCE, 1980), the project has made substantial technical progress, with new potential applications coming to light as nuclear weapons stockpiles are reduced and concerns about waste disposal increase. A breakthrough technology, the IFR has the characteristics necessary for the next nuclear age. (author)

  5. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  6. The Kubo-Greenwood calculation of conductivity of the simple and non-simple liquid metals in a wide temperature range

    International Nuclear Information System (INIS)

    Sobolev, A N; Mirzoev, A A

    2008-01-01

    We calculated the temperature dependences of electroconductivity for the different metals, such as alkalis (caesium), transition metals (iron), and mercury by Kubo-Greenwood formula. Atomic models of 1000-4000 atoms were obtained by Shommers method using the data of diffractional experiments for the wide temperature range. The electronic structure and interaction parameters for supercells of 30-50 atoms were got by LMTO method. The recursion method was used for the calculation of DOS and diffusivity quotients. The lowering of the DOS at the Fermi level was carefully examined. The results obtained are in good agreement with other authors' in views on the nature of the metal-nonmetal transition in different liquid metals. The calculated DOS and conductivity for all metals match the experimental data well

  7. A simple method for validation and verification of pipettes mounted on automated liquid handlers

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Frøslev, Tobias G

    2011-01-01

    We have implemented a simple, inexpensive, and fast procedure for validation and verification of the performance of pipettes mounted on automated liquid handlers (ALHs) as necessary for laboratories accredited under ISO 17025. A six- or seven-step serial dilution of OrangeG was prepared in quadru......We have implemented a simple, inexpensive, and fast procedure for validation and verification of the performance of pipettes mounted on automated liquid handlers (ALHs) as necessary for laboratories accredited under ISO 17025. A six- or seven-step serial dilution of OrangeG was prepared...... are freely available. In conclusion, we have set up a simple, inexpensive, and fast solution for the continuous validation of ALHs used for accredited work according to the ISO 17025 standard. The method is easy to use for aqueous solutions but requires a spectrophotometer that can read microtiter plates....

  8. Cellular Structure Fabricated on Ni Wire by a Simple and Cost-Effective Direct-Flame Approach and Its Application in Fiber-Shaped Supercapacitors.

    Science.gov (United States)

    Wang, Zhihong; Cao, Fenhui; Chen, Kongfa; Yan, Yingming; Chen, Yifu; Zhang, Yaohui; Zhu, Xingbao; Wei, Bo; Xiong, Yueping; Lv, Zhe

    2018-03-09

    Cellular metals with the large surface/volume ratios and excellent electrical conductivity are widely applicable and have thus been studied extensively. It is highly desirable to develop a facile and cost-effective process for fabrication of porous metallic structures, and yet more so for micro/nanoporous structures. A direct-flame strategy is developed for in situ fabrication of micron-scale cellular architecture on a Ni metal precursor. The flame provides the required heat and also serves as a fuel reformer, which provides a gas mixture of H 2 , CO, and O 2 for redox treatment of metallic Ni. The redox processes at elevated temperatures allow fast reconstruction of the metal, leading to a cellular structure on Ni wire. This process is simple and clean and avoids the use of sacrificial materials or templates. Furthermore, nanocrystalline MnO 2 is coated on the microporous Ni wire (MPNW) to form a supercapacitor electrode. The MnO 2 /MPNW electrode and the corresponding fiber-shaped supercapacitor exhibit high specific capacitance and excellent cycling stability. Moreover, this work provides a novel strategy for the fabrication of cellular metals and alloys for a variety of applications, including catalysis, energy storage and conversion, and chemical sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fast and simple microwave synthesis of TiO2/Au nanoparticles for gas-phase photocatalytic hydrogen generation

    Science.gov (United States)

    May-Masnou, Anna; Soler, Lluís; Torras, Miquel; Salles, Pol; Llorca, Jordi; Roig, Anna

    2018-04-01

    The fabrication of small anatase titanium dioxide (TiO2) nanoparticles (NPs) attached to larger anisotropic gold (Au) morphologies by a very fast and simple two-step microwave-assisted synthesis is presented. The TiO2/Au NPs are synthesized using polyvinylpyrrolidone (PVP) as reducing, capping and stabilizing agent through a polyol approach. To optimize the contact between the titania and the gold and facilitate electron transfer, the PVP is removed by calcination at mild temperatures. The nanocatalysts activity is then evaluated in the photocatalytic production of hydrogen from water/ethanol mixtures in gas-phase at ambient temperature. A maximum value of 5.3 mmol·gcat-1·h-1 (7.4 mmol·gTiO2-1·h-1) of hydrogen is recorded for the system with larger gold particles at an optimum calcination temperature of 450 °C. Herein we demonstrate that TiO2-based photocatalysts with high Au loading and large Au particle size (≈ 50 nm) NPs have photocatalytic activity.

  10. Simple and fast PO-CL method for the evaluation of antioxidant capacity of hydrophilic and hydrophobic antioxidants

    Science.gov (United States)

    Zargoosh, Kiomars; Ghayeb, Yousef; Azmoon, Behnaz; Qandalee, Mohammad

    2013-08-01

    A simple and fast procedure is described for evaluating the antioxidant activity of hydrophilic and hydrophobic compounds by using the peroxyoxalate-chemiluminescence (PO-CL) reaction of Bis(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of di(tert-butyl)2-(tert-butylamino)-5-[(E)-2-phenyl-1-ethenyl]3,4-furandicarboxylate as a highly fluorescent fluorophore. The IC50 values of the well-known antioxidants were calculated and the results were expressed as gallic equivalent antioxidant capacity (GEAC). It was found that the proposed method is free of physical quenching and oxidant interference, for this reason, proposed method is able to determine the accurate scavenging activity of the antioxidants to the free radicals. Finally, the proposed method was applied to the evaluation of antioxidant activity of complex real samples such as soybean oil and sunflower oil (as hydrophobic samples) and honey (as hydrophilic sample). To the best of our knowledge, this is the first time that total antioxidant activity can be determined directly in soybean oil, sunflower oil and honey (not in their extracts) using PO-CL reactions.

  11. A fast ethanol assay to detect seed deterioration

    NARCIS (Netherlands)

    Kodde, J.; Buckley, W.T.; Groot, de C.C.; Retiere, M.; Víquez Zamora, A.M.; Groot, S.P.C.

    2012-01-01

    The most common way to test seed quality is to use a simple and reliable but time- and space-consuming germination test. In this paper we present a fast and simple method to analyse cabbage seed deterioration by measuring ethanol production from partially imbibed seeds. The method uses a modified

  12. Fast algorithm of track detection

    International Nuclear Information System (INIS)

    Nehrguj, B.

    1980-01-01

    A fast algorithm of variable-slope histograms is proposed, which allows a considerable reduction of computer memory size and is quite simple to carry out. Corresponding FORTRAN subprograms given a triple speed gain have been included in spiral reader data handling software

  13. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  14. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  15. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    Science.gov (United States)

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  16. Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bediako, John Kwame; Wei, Wei; Kim, Sok; Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr

    2015-12-15

    Highlights: • Waste Lyocell fiber was chemically modified into cellulose xanthate. • The sorbent showed high affinity for Pb(II), Cd(II) and Cu(II) ions. • The sorbent also showed strong Cu(II) selectivity in Pb(II)–Cd(II)–Cu(II) ternary metal solutions. - Abstract: In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29 ± 0.28 mg/g, 505.64 ± 0.21 mg/g, and 123.08 ± 0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

  17. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    De Bleye, C., E-mail: cdebleye@ulg.ac.be; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-08-12

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L{sup −1} for BPA and BPB and from 5 to 100 μg L{sup −1} for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols.

  18. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    De Bleye, C.; Dumont, E.; Hubert, C.; Sacré, P.-Y.; Netchacovitch, L.; Chavez, P.-F.; Hubert, Ph.; Ziemons, E.

    2015-01-01

    Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L −1 for BPA and BPB and from 5 to 100 μg L −1 for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples. - Highlights: • Development of a simple, fast and ultrasensitive SERS method to detect bisphenols. • Multiplexed-SERS detection of bisphenol A, bisphenol B and bisphenol F. • Implementation of the SERS developed method on real samples to detect bisphenols

  19. O3 fast and simple treatment-enhanced p-doped in Spiro-MeOTAD for CH3NH3I vapor-assisted processed CH3NH3PbI3 perovskite solar cells

    Institute of Scientific and Technical Information of China (English)

    En-Dong Jia; Xi Lou; Chun-Lan Zhou; Wei-Chang Hao; Wen-Jing Wang

    2017-01-01

    We demonstrate a simple and fast post-deposition treatment with high process compatibility on the hole transport material (HTM) Spiro-MeOTAD in vapor-assisted solution processed methylammonium lead triiodide (CH3NH3PbI3)-based solar cells.The prepared Co-doped p-type Spiro-MeOTAD films are treated by O3 at room temperature for 5 min,10 min,and 20 min,respectively,prior to the deposition of the metal electrodes.Compared with the traditional oxidation of Spiro-MeOTAD films overnight in dry air,our fast O3 treatment of HTM at room temperature only needs just 10 min,and a relative 40.3% increment in the power conversion efficiency is observed with respect to the result of without-treated perovskite solar cells.This improvement of efficiency is mainly attributed to the obvious increase of the fill factor and short-circuit current density,despite a slight decrease in the open-circuit voltage.Ultraviolet photoelectron spectroscopy (UPS) and Hall effect measurement method are employed in our study to determine the changes of properties after O3 treatment in HTM.It is found that after the HTM is exposed to O3,its p-type doping level is enhanced.The enhancement of conductivity and Hall mobility of the film,resulting from the improvement in p-doping level of HTM,leads to better performances of perovskite solar cells.Best power conversion efficiencies (PCEs) of 13.05% and 16.39% are achieved with most properly optimized HTM via CH3NH3I vapor-assisted method and traditional single-step method respectively.

  20. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

    International Nuclear Information System (INIS)

    Bieri, Michael; D’Auvergne, Edward J.; Gooley, Paul R.

    2011-01-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  1. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    Science.gov (United States)

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  2. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  3. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    1988-11-01

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  4. Simple nonempirical calculations of the zero-field splitting in transition metal systems: I. The Ni(II)-water complexes

    International Nuclear Information System (INIS)

    Ribbing, C.; Odelius, M.; Laaksonen, A.; Kowalewski, J.; Roos, B.

    1990-01-01

    A simple nonempirical scheme is presented for calculating the splittings of ground state multiplets (the zero-field splitting) is transition metal complexes. The method employs single reference, single excitation CI calculations based on open-shell RHF. The spin-orbit coupling is described using an effective one-electron, one-center operators. The method is applied to the triplet state Ni(II) complexes with one to six water molecules. the validity of the second-order perturbation theory approach and of the spin-Hamiltonian formalism is found to be limited to slightly distorted octahedral systems. Generally, small changes in the geometries of the complexes are found to cause substantial variations of the splitting pattern

  5. The problems of thermohydraulics of prospective fast reactor concepts

    International Nuclear Information System (INIS)

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  6. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs

  7. GRSIS program to predict fission gas release and swelling behavior of metallic fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Lee, Byung Ho; Nam, Cheol; Sohn, Dong Seong

    1999-03-01

    A mechanistic model of fission gas release and swelling for the U-(Pu)-Zr metallic fuel in the fast reactor, GRSIS (Gas Release and Swelling in ISotropic fuel matrix) was developed. Fission gas bubbles are assumed to nucleate isotropically from the gas atoms in the metallic fuel matrix since they can nucleate at both the grain boundaries and the phase boundaries which are randomly distributed inside the grain. Bubbles can grow to larger size by gas diffusion and coalition with other bubbles so that they are classified as three classes depending upon their sizes. When bubble swelling reaches the threshold value, bubbles become interconnected each other to make the open channel to the external free space, that is, the open bubbles and then fission gases inside the interconnected open bubbles are released instantaneously. During the irradiation, fission gases are released through the open bubbles. GRSIS model can take into account the fuel gap closure by fuel bubble swelling. When the fuel gap is closed by fuel swelling, the contact pressure between fuel and cladding in relation to the bubble swelling and temperature is calculated. GRSIS model was validated by comparison with the irradiation test results of U-(Pu)-Zr fuels in ANL as well as the parametric studies of the key variable in the model. (author). 13 refs., 1 tab., 22 figs.

  8. Integral fast reactor safety features

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  9. Metallic uranium as fuel for fast reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  10. A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.

    Science.gov (United States)

    Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu

    2016-06-01

    Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  12. Application of a bistable convection loop to LMFBR [liquid metal fast breeder reactor] emergency core cooling

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1990-01-01

    The concept of passive safety features for nuclear reactors has been developed in recent years and has gained wide acceptance. A literature survey of current reactors with passive features indicates that these reactors have some passive features but still do not fully meet the design objectives. Consider a current liquid-metal reactor design like PRISM. During normal operation, liquid sodium enters the reactor at ∼395 degree C and exits at ∼550 degree C. In the event of loss of secondary cooling with or without scram, the primary coolant (liquid sodium) initially acts as a heat sink and its temperature increases. For events without scram, the negative reactivity induced by the increase in temperature shuts the reactor down. When the average temperature of the sodium reaches ∼600 to 650 degree C, it overflows from the reactor vessel, activating the auxiliary cooling system. The auxiliary cooling system uses natural circulation of air around the reactor guard vessel. An alternative to the current design incorporates a bistable convection loop (BCL). The incorporation of the BCL concept remarkably improves the safety of the nuclear reactors. Application of the BCL concept to liquid-metal fast breeder reactors is described in this paper

  13. The fast fission effect in a cylindrical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1959-06-15

    A new formula for the fast fission factor is derived, which takes proper account to fast capture. The fission neutron spectrum is divided into two groups with constant fission cross section in one group and zero fission cross section in the other. The average total, elastic, inelastic and capture cross sections in the two groups are calculated. Different assumptions regarding anisotropic and inelastic scattering are investigated. The effects of backscattering from the moderator and fast fission in neighbouring fuel elements are pointed out. Formulas for the fast fission ratio and for the fast conversion ratio are derived. The calculated fast fission ratios are compared with experimental values. Curves are given for the fast fission factor in uranium metal and uranium oxide.

  14. A computationally simple and robust method to detect determinism in a time series

    DEFF Research Database (Denmark)

    Lu, Sheng; Ju, Ki Hwan; Kanters, Jørgen K.

    2006-01-01

    We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals. The IS ......We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals...

  15. Fast reactor database

    International Nuclear Information System (INIS)

    1996-02-01

    This publication contains detailed data on liquid metal cooled fast reactors (LMFRs), specifically plant parameters and design details. Each LMFR power plant is characterized by about 400 parameters, by design data and by relevant materials. The report provides general and detailed design characteristics including structural materials, data on experimental, demonstration, prototype and commercial size LMFRs. The focus is on practical issues that are useful to engineers, scientists, managers and university students and professors. The report includes updated information contained in IAEA previous publications on LMFR plant parameters: IWGRF/51 (1985) and IWGFR/80 (1991) and reflects experience gained from two consultants meetings held in Vienna (1993,1994). This compilation of data was produced by members of the IAEA International Working Group on Fast Reactors (IWGFR)

  16. Advanced breeder cycle uses metallic fuel

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1991-01-01

    Scientists from Argonne National Laboratory have been developing a concept called the Integral fast Reactor (IFR). This fast breeder reactor could effectively increase Uranium resources a hundred fold making nuclear power essentially an inexhaustible energy source. The IFR is outlined. In the IFR, the inherent properties of liquid metal cooling are combined with a new metallic fuel which is allowed to swell and gives an improved burnup level and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics and waste management. (author)

  17. A fast-starting mechanical fish that accelerates at 40 m s-2

    International Nuclear Information System (INIS)

    Conte, J; Modarres-Sadeghi, Y; Watts, M N; Hover, F S; Triantafyllou, M S

    2010-01-01

    We have built a simple mechanical system to emulate the fast-start performance of fish. The system consists of a thin metal beam covered by a urethane rubber, the fish body and an appropriately shaped tail. The body form of the mechanical fish was modeled after a pike species and selected because it is a widely-studied fast-start specialist. The mechanical fish was held in curvature and hung in water by two restraining lines, which were simultaneously released by a pneumatic cutting mechanism. The potential energy in the beam was transferred into the fluid, thereby accelerating the fish. We measured the resulting acceleration, and calculated the efficiency of propulsion for the mechanical fish model, defined as the ratio of the final kinetic energy of the fish and the initially stored potential energy in the body beam. We also ran a series of flow visualization tests to observe the resulting flow patterns. The maximum start-up acceleration was measured to be around 40 m s -2 , with the maximum final velocity around 1.2 m s -1 . The form of the measured acceleration signal as function of time is quite similar to that of type I fast-start motions studied by Harper and Blake (1991 J. Exp. Biol. 155 175-92). The hydrodynamic efficiency of the fish was found to be around 10%. Flow visualization of the mechanical fast-start wake was also analyzed, showing that the acceleration peaks are associated with the shedding of two vortex rings in near-lateral directions.

  18. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  19. First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals

    International Nuclear Information System (INIS)

    Bévillon, E.; Colombier, J.P.; Recoules, V.; Stoian, R.

    2015-01-01

    Ultrafast laser excitation can induce fast increases of the electronic subsystem temperature. The subsequent electronic evolutions in terms of band structure and energy distribution can determine the change of several thermodynamic properties, including one essential for energy deposition; the electronic heat capacity. Using density functional calculations performed at finite electronic temperatures, the electronic heat capacities dependent on electronic temperatures are obtained for a series of metals, including free electron like, transition and noble metals. The effect of exchange and correlation functionals and the presence of semicore electrons on electronic heat capacities are first evaluated and found to be negligible in most cases. Then, we tested the validity of the free electron approaches, varying the number of free electrons per atom. This shows that only simple metals can be correctly fitted with these approaches. For transition metals, the presence of localized d electrons produces a strong deviation toward high energies of the electronic heat capacities, implying that more energy is needed to thermally excite them, compared to free sp electrons. This is attributed to collective excitation effects strengthened by a change of the electronic screening at high temperature

  20. Elemental analysis of fertilizer by fast neutron activation

    International Nuclear Information System (INIS)

    Bodart, F.; Deconninck, G.

    1977-01-01

    A simple and accurate technique has been developed to analyse commercial fertilizers for phosphorus, potassium, chlorine, magnesium and silicon. The method is based on fast-neutron activation using a neutron flux of 2x10 11 neutrons/second. The optimum analytical conditions are tabulated. After irradiation, the sample is measured on a conventional counting system including a Ge(Li) detector (10% efficiency and 2 keV resolution for 60 Co) and a multichannel analyser. Monitor foils radioactivity are measured separately at the same time with a 2''x2''NaI detector coupled with a single channel analyser and a scaler. Fast neutron activation has proved to be a fast, simple, reliable and low cost analytical technique for the determination of phosphorus, silicon, potassium, magnesium and chlorine in fertilizers. Not less than five phosphorus determinations are possible in one hour, while two potassium, magnesium and chlorine determinations are made at the same time. (T.G.)

  1. The French liquid metal fast breeder reactor programme

    International Nuclear Information System (INIS)

    Rapin, M.

    1980-01-01

    The strong French LMFBR development and the corresponding success obtained up to now show that there is no technical insuperable barrier to fast breeder construction. This satisfactory evolution is in fact the conjunction of a strong incentive due to the lack of other resources, a firm and permanent stand of the government, and an obstinate effort of all the teams involved in the LMFBR field. The changeover to industrial level should be helped by the simplicity of the French organization for fast breeder. Finally, the development of LMFBR on a larger scale is helped by international agreements through which the present French know-how can be put at the disposal of other partners, and the general knowledge can be improved by setting common R and D programmes. A quite successful example of such agreements is given by the German-French agreement, and we hope that new partners will join us soon. (orig.) [de

  2. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  3. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    with contact angles up to 152 degrees and roll-off angle down to 8 degrees. Such nonlithographic nanoscale overhanging Structures can also be added to silicon nanograss by deposition of a thin SiO2 layer, which equips the silicon rods with 100-300 nm sized overhanging Structures. This is a simple, fast...

  4. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  5. Hierarchical Chitin Fibers with Aligned Nanofibrillar Architectures: A Nonwoven-Mat Separator for Lithium Metal Batteries.

    Science.gov (United States)

    Kim, Joong-Kwon; Kim, Do Hyeong; Joo, Se Hun; Choi, Byeongwook; Cha, Aming; Kim, Kwang Min; Kwon, Tae-Hyuk; Kwak, Sang Kyu; Kang, Seok Ju; Jin, Jungho

    2017-06-27

    Here, we introduce regenerated fibers of chitin (Chiber), the second most abundant biopolymer after cellulose, and propose its utility as a nonwoven fiber separator for lithium metal batteries (LMBs) that exhibits an excellent electrolyte-uptaking capability and Li-dendrite-mitigating performance. Chiber is produced by a centrifugal jet-spinning technique, which allows a simple and fast production of Chibers consisting of hierarchically aligned self-assembled chitin nanofibers. Following the scrutinization on the Chiber-Li-ion interaction via computational methods, we demonstrate the potential of Chiber as a nonwoven mat-type separator by monitoring it in Li-O 2 and Na-O 2 cells.

  6. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    International Nuclear Information System (INIS)

    Zhang, Xiulan; Zhu, Yonggang; Li, Xie; Guo, Xuhong; Zhang, Bo; Jia, Xin

    2016-01-01

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  7. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulan [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Zhu, Yonggang [Microfluidics and Fluid Dynamics Laboratory, CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria, 3168 (Australia); Li, Xie [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Guo, Xuhong [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 (China); Zhang, Bo [Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 (China); Jia, Xin, E-mail: jiaxin@shzu.edu.cn [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); and others

    2016-11-09

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  8. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, F.; Permana, S.

    2013-01-01

    Full-text: A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8 % HM. From the neutronic point of view, this design is in compliance with good performance. (author)

  9. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    International Nuclear Information System (INIS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-01-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance

  10. Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  11. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.

    Science.gov (United States)

    Bogart, Justin A; Lippincott, Connor A; Carroll, Patrick J; Schelter, Eric J

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-(t) BuNO)C6 H4 CH2 }3 N](3-) (TriNOx(3-) ), feature a size-sensitive aperture formed of its three η(2) -(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/ [M(TriNOx)]2 (M=rare-earth metal). Differences in the equilibrium constants (Keq ) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio SNd/Dy =359. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  13. Coupled hydro-neutronic calculations for fast burst reactor accidents

    International Nuclear Information System (INIS)

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  14. Direct reading fast microwave interferometer for EBT

    International Nuclear Information System (INIS)

    Uckan, T.

    1984-10-01

    A simple and inexpensive 4-mm direct reading fast (rise time approx. 100 μs) microwave interferometer is described. The system is particularly useful for density measurements on the ELMO Bumpy Torus (EBT) during pulsed operation

  15. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  16. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  17. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues.

    Science.gov (United States)

    Sun, Hui; Lai, Jia-Ping; Chen, Fang; Zhu, De-Rong

    2015-02-01

    A simple, fast, and universal suspension polymerization method was used to synthesize the molecularly imprinted microspheres (MIMs) for the topical anesthetic benzocaine (BZC). The desired diameter (10-20 μm) and uniform morphology of the MIMs were obtained easily by changing one or more of the synthesis conditions, including type and amount of surfactant, stirring rate, and ratio of organic to water phase. The MIMs obtained were used as a molecular-imprinting solid-phase-extraction (MISPE) material for extraction of BZC in human serum and fish tissues. The MISPE results revealed that the BZC in these biosamples could be enriched effectively after the MISPE operation. The recoveries of BZC on MIMs cartridges were higher than 90% (n = 3). Finally, an MISPE-HPLC method with UV detection was developed for highly selective extraction and fast detection of trace BZC in human serum and fish tissues. The developed method could also be used for the enrichment and detection of BZC in other complex biosamples.

  18. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  19. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  20. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  1. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of data were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.

  2. Fabrication of functional superhydrophobic engineering materials via an extremely rapid and simple route.

    Science.gov (United States)

    Guo, Jie; Yu, Shen; Li, Jing; Guo, Zhiguang

    2015-04-18

    As important and irreplaceable engineering materials, metals are widely used in our daily life. Therefore, fabricating superhydrophobic surfaces on metal materials is of great significance, and applicable methods for industrial production are in urgent need. In this work, we provide a rapid and easy route for fabricating superhydrophobic films on metal materials through simple displacement deposition. This method includes two simple steps with each step being as short as one second. The obtained superhydrophobic surfaces are homogeneous and easy to repair. A miniature boat and a miniature box were used to test the buoyancy-increasing and oil absorption properties, respectively. This method is feasible for massive production of superhydrophobic metal materials applied to water transportation and oil spill clean-up areas.

  3. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Science.gov (United States)

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  4. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    Directory of Open Access Journals (Sweden)

    Junyeob Yeo

    Full Text Available Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm and high-performance flexible organic field effect transistor arrays.

  5. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  6. An operationally simple method for separating the rare-earth elements neodymium and dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2015-07-06

    Rare-earth metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare earths. To incentivize recycling there is a clear need for simple methods for targeted separations of mixtures of rare-earth metal salts. Metal complexes of a tripodal nitroxide ligand [{(2-"tBuNO)C_6H_4CH_2}{sub 3}N]{sup 3-} (TriNOx{sup 3-}), feature a size-sensitive aperture formed of its three η{sup 2}-(N,O) ligand arms. Exposure of metal cations in the aperture induces a self-associative equilibrium comprising [M(TriNOx)thf]/[M(TriNOx)]{sub 2} (M=rare-earth metal). Differences in the equilibrium constants (K{sub eq}) for early and late metals enables simple Nd/Dy separations through leaching with a separation ratio S{sub Nd/Dy}=359. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Liquid metal cooled experimental fast reactor simulator

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  8. Fast reactors will eat nuclear waste from LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwai, Moriyasu [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Res., Lab.

    1999-12-01

    Although nuclear power is one of the indispensable energy sources to support modern life styles in developed countries, it becomes harder and harder to increase its capacity. Newspaper reported that there are numbers of evidences showing the suppression effect on cancer by the low level of radiation. It is expected for public people that the fear for radiation induced harm on health will mitigate through the explanation based on scientific evidences. Safe management of radioactive waste is one of the most serious issues to be solved. The neutron at fast reactors can eat more effectively the long lived several nuclear waste materials from light water reactor system, The key issue is to develop the fast reactor fuel cycle system technologies that are more economical, more proliferation resistant and higher breeding ratio. The Metallic Fuel Cycle is one of the options for the future fast breeder reactor and its related fuel cycle that enable to give the answer for the radioactive waste issues. The attractiveness of the metallic fuel cycle concept is briefly described. (author)

  9. Fast reactors will eat nuclear waste from LWR

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu

    1999-01-01

    Although nuclear power is one of the indispensable energy sources to support modern life styles in developed countries, it becomes harder and harder to increase its capacity. Newspaper reported that there are numbers of evidences showing the suppression effect on cancer by the low level of radiation. It is expected for public people that the fear for radiation induced harm on health will mitigate through the explanation based on scientific evidences. Safe management of radioactive waste is one of the most serious issues to be solved. The neutron at fast reactors can eat more effectively the long lived several nuclear waste materials from light water reactor system, The key issue is to develop the fast reactor fuel cycle system technologies that are more economical, more proliferation resistant and higher breeding ratio. The Metallic Fuel Cycle is one of the options for the future fast breeder reactor and its related fuel cycle that enable to give the answer for the radioactive waste issues. The attractiveness of the metallic fuel cycle concept is briefly described. (author)

  10. A fast dynamic mode in rare earth based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ngai, K. L. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β′-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β′-relaxation is about 12RT{sub g} and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  11. A fast integrated discriminator with continuously variable width

    International Nuclear Information System (INIS)

    Borghesi, A.; Goggi, G.; Nardo, R.

    1976-01-01

    A simple dc-coupled discriminator with fast switching characteristics has been realized. Both input threshold and output width are continuously variable; the ECL design allows high speed and high density with ample fanout. (Auth.)

  12. Preliminary examination of the applicability of imaging plates to fast neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2001-01-01

    Fast neutron radiography is an attractive non-destructive inspection technique because of the excellent penetration characteristics of fast neutrons in matter. However, the difficulty of detecting fast neutrons reduces this attractive feature. As an experiment to overcome the difficulty, imaging plates were applied to fast neutron radiography. A simple combination of two sheets of imaging plates and a sheet of polyethylene as a proton emitter was examined with the (fast neutron, thermal neutron and gamma ray) FTG discriminator proposed by Yoneda et al. . The experimental results showed that the method could be applicable to fast neutron radiography with effective discrimination of γ-rays

  13. Fast and Simple Analytical Method for Direct Determination of Total Chlorine Content in Polyglycerol by ICP-MS.

    Science.gov (United States)

    Jakóbik-Kolon, Agata; Milewski, Andrzej; Dydo, Piotr; Witczak, Magdalena; Bok-Badura, Joanna

    2018-02-23

    The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35 Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.

  14. Cor ASTM: um método simples e rápido para determinar a qualidade do biodiesel produzido a partir de óleos residuais de fritura ASTM color: a simple and fast method for determining quality of biodiesel produced from used cooking oils

    Directory of Open Access Journals (Sweden)

    Verônica Santos de Morais

    2013-01-01

    Full Text Available In this study, 23 biodiesel samples were produced, 20 from used cooking oil and the remaining 3 from refined soybean oil. The following properties were determined in all of the samples (oil and its respective biodiesel: density; viscosity; total acid number and ASTM color. The results indicated high correlation (R > 0.6 between ASTM color of used cooking oil and total acid number of its resultant biodiesel. This high correlation allows prediction of the quality of the biodiesel produced using a simple and fast procedure such as ASTM color.

  15. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  16. Preparation of para-chloroaniline: a simple, fast and inexpensive experiment

    International Nuclear Information System (INIS)

    Bastos, Renato Saldanha; Cunha, Andrea Sousa da; Silva, Lucyane Costa da; Oliveira, Carina Cantelle Pacheco de; Rezende, Claudia M.; Pinto, Angelo C.

    2008-01-01

    Experiments simple, short and efficient for experimental disciplines in undergraduate courses in Chemistry are an excellent opportunity for students to consolidate the learning of theoretical concepts in classical chemical transformations. The use of a safe reagent, of low cost and easy access is the motivation for this communication, that describes the use of trichloroisocyanuric acid - a chlorinating agent used in the treatment of swimming pool water - for the chlorination of acetanilide, an intermediate in the preparation of para-chloroaniline. (author)

  17. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  18. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  19. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  20. Integral fast reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  1. Integral Fast Reactor concept inherent safety features

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  2. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  3. Fast breeder reactor research

    International Nuclear Information System (INIS)

    1975-01-01

    reactors of the future, the body of research aimed at developing liquid metal cooled fast reactors, national plans for work in 1976 on developing fast reactors - these were some of the topics discussed in connection with the national programmes. The development of power reactors involves a wide range of problems in the fields of nuclear and reactor physics, the thermophysics, chemistry, physics and technology of the cooling system, structural materials and nuclear fuel, the fabrication of reliable fuel elements and operating equipment, reactor monitoring and control, spent fuel reprocessing, the economics of constructing fast power reactors, nuclear safety, etc. The IWGFR, as at previous meetings, therefore paid great attention to the matter of holding international specialists' meetings. The working group recommended that the IAEA should organize the following IWGFR meetings in 1976: (1) In-Service Inspection and Monitoring (Bensberg, FRG, March 1976). (2) Cavitation in Sodium and Studies of Analogy with Water as Compared to Sodium (Cadarache, France, April 1976). (3) High Temperature Structural Design Technology (United States, May 1976) (4) Aerosol Formation, Vapour Deposits and Sodium Vapour Trapping (France, September-December 1976). The Group welcomed the IAEA's proposal to hold specialists' meetings on 'Fast Reactor Instrumentation' and 'Fuel Reprocessing and Recycling Techniques' within the framework of the Agency's programme of working groups in 1976. After discussing questions of co-ordinating and organizing international conferences on fast reactors, the IWGFR agreed to send representatives to the joint meeting of the American Nuclear Society and the American Institute of Metallurgical Engineers on 'Liquid Metal Technology', to be held at Champion, Pennsylvania, U.S.A. from 3-6 May 1976, and recommended that the IAEA should organize an international symposium on the 'Design, Construction and Operating Experience of Demonstration Fast Power Reactors' at Bologna

  4. Quartz fast component opticallystimulated luminescence: Towards routine extraction for dating applications

    International Nuclear Information System (INIS)

    Shen, Zhixiong; Lang, Andreas

    2016-01-01

    Using an uncontaminated fast component is a key for improving the reliability of quartz OSL dating for many deposits. So far no approach to extract the fast component of quartz OSL has routinely been adopted for dating practice. Key challenges for extracting fast components are (1) the difficulty of finding a unique solution in curve-fitting deconvolution of OSL decay curves and (2) the relatively poor dating precision when using experimental fast component extraction. Here, a simple mathematic solution for fast component extraction is presented that is not relying on curve-fitting deconvolution and can easily be adopted into routine dating practices. By using specifically selected data points from smoothed OSL decay curves, the precision of equivalent doses calculated using the extracted fast component can be improved over equivalent doses calculated using bulk OSL. The fast component extraction is tested on a group of age-constrained samples containing both insufficiently bleached and sufficiently bleached deposits. Fast component OSL ages are as accurate as bulk OSL ages for the sufficiently bleached deposits, but more accurate for samples where bulk OSL is affected by insufficient bleaching. We also demonstrate how using a curve smoothing procedure can improve dating precision in case of both sufficiently and insufficiently bleached deposits. - Highlights: • A simple mathematical method to extract quartz OSL fast component is presented. • The method can be adopted in D_e calculation programs for routine extraction. • The method leads to an increase in accuracy and precision of D_e. • The method works for relatively dim samples with low signal-to-noise ratios.

  5. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  8. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    International Nuclear Information System (INIS)

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997

  9. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997. Refs,figs,tabs.

  10. Pair potentials in liquid metals

    International Nuclear Information System (INIS)

    Faber, T.E.

    1980-01-01

    The argument which justifies the use of a pair potential to describe the structure-dependent term in the energy of liquid metals is briefly reviewed. Because there is an additional term in the energy which depends upon volume rather than structure, and because the pair potential itself is volume-dependent, the relationship between pair potential and observable properties such as pressure, bulk modulus and pair distribution function is more complicated for liquid metals than it is for molecular liquids. Perhaps for this reason, the agreement between pair potentials inferred from observable properties and pair potentials calculated by means of pseudo-potential theory is still far from complete. The pair potential concept is applicable only to simple liquid metals, in which the electron-ion interaction is weak. No attempt is made to discuss liquid transition and rare-earth metals, which are not simple in this sense. (author)

  11. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.

    Science.gov (United States)

    Leggett, Graham J

    2011-03-22

    Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.

  12. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  13. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury

    Directory of Open Access Journals (Sweden)

    Gordon W. Irvine

    2017-03-01

    Full Text Available Metallothioneins (MTs are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs. This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor.

  14. Economics of Metal Markets

    OpenAIRE

    Tilton, J.E.

    1984-01-01

    Simple economic principles can provide useful insights into the behavior of metal markets. In applying these principles, however, the analyst must take into account technology, market structure, government policies, and other institutional factors influencing the nature of metal supply and demand. Knowledge of both economics and the metal markets is essential. One without the other is likely to lead to sterile or even misleading results. In support of the above conclusion, this study exa...

  15. Fast for sure: new developments in laser beam cutting of thin sheet metal; Mit Sicherheit schnell: neue Entwicklungen zum Laserstrahlschneiden von Fein- und Feinstblechen

    Energy Technology Data Exchange (ETDEWEB)

    Petring, D.; Schneider, F.; Thelen, C.; Poprawe, R.l [Fraunhofer-Institut fuer Lasertechnik (ILT), Aachen (Germany)

    1999-04-01

    Presently laser beam cutting is a rapidly developing technology. New laser sources with higher power and improved beam quality as well as the modern drive and control equipment together with advanced process developments allow a significant increase in cutting speed at excellent quality features. Recent results in laser beam slitting of sheet metal coils and in fast cutting of car body sheets illustrate this trend. It will be continued be even higher powers and new types of lasers. (orig.)

  16. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin

    DEFF Research Database (Denmark)

    Thoisen, Christina Vinum; Hansen, Benni Winding; Nielsen, Søren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive...... freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equipment. Filters with the cryptophyte were frozen (−80 °C) and added phosphate buffer for extraction at 4 °C...... followed by absorbance measurement. The cryptophyte Rhodomonas salina was used as a model organism. •Simple method for extraction and quantification of phycoerythrin from cryptophytes. •Minimal usage of equipment and chemicals, and low labor costs. •Applicable for industrial and biological purposes....

  17. Total decay heat estimates in a proto-type fast reactor

    International Nuclear Information System (INIS)

    Sridharan, M.S.

    2003-01-01

    Full text: In this paper, total decay heat values generated in a proto-type fast reactor are estimated. These values are compared with those of certain fast reactors. Simple analytical fits are also obtained for these values which can serve as a handy and convenient tool in engineering design studies. These decay heat values taken as their ratio to the nominal operating power are, in general, applicable to any typical plutonium based fast reactor and are useful inputs to the design of decay-heat removal systems

  18. Ion implantation enhanced metal-Si-metal photodetectors

    Science.gov (United States)

    Sharma, A. K.; Scott, K. A. M.; Brueck, S. R. J.; Zolper, J. C.; Myers, D. R.

    1994-05-01

    The quantum efficiency and frequency response of simple Ni-Si-Ni metal-semiconductor-metal (MSM) photodetectors at long wavelengths are significantly enhanced with a simple, ion-implantation step to create a highly absorbing region approx. 1 micron below the Si surface. The internal quantum efficiency is improved by a factor of approx. 3 at 860 nm (to 64%) and a full factor of ten at 1.06 microns (to 23%) as compared with otherwise identical unimplanted devices. Dark currents are only slightly affected by the implantation process and are as low as 630 pA for a 4.5-micron gap device at 10-V bias. Dramatic improvement in the impulse response is observed, 100 ps vs. 600 ps, also at 10-V bias and 4.5-micron gap, due to the elimination of carrier diffusion tails in the implanted devices. Due to its planar structure, this device is fully VLSI compatible. Potential applications include optical interconnections for local area networks and multi-chip modules.

  19. Compact-Morphology-based poly-metallic Nodule Delineation.

    Science.gov (United States)

    Schoening, Timm; Jones, Daniel O B; Greinert, Jens

    2017-10-17

    Poly-metallic nodules are a marine resource considered for deep sea mining. Assessing nodule abundance is of interest for mining companies and to monitor potential environmental impact. Optical seafloor imaging allows quantifying poly-metallic nodule abundance at spatial scales from centimetres to square kilometres. Towed cameras and diving robots acquire high-resolution imagery that allow detecting individual nodules and measure their sizes. Spatial abundance statistics can be computed from these size measurements, providing e.g. seafloor coverage in percent and the nodule size distribution. Detecting nodules requires segmentation of nodule pixels from pixels showing sediment background. Semi-supervised pattern recognition has been proposed to automate this task. Existing nodule segmentation algorithms employ machine learning that trains a classifier to segment the nodules in a high-dimensional feature space. Here, a rapid nodule segmentation algorithm is presented. It omits computation-intense feature-based classification and employs image processing only. It exploits a nodule compactness heuristic to delineate individual nodules. Complex machine learning methods are avoided to keep the algorithm simple and fast. The algorithm has successfully been applied to different image datasets. These data sets were acquired by different cameras, camera platforms and in varying illumination conditions. Their successful analysis shows the broad applicability of the proposed method.

  20. Low temperature fatigue crack propagation in neutron irradiated Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Walls, J.D.; Gravenor, J.

    1981-02-01

    The fast cycling fatigue crack propagation characteristics of Type 316 steel and weld metal have been investigated at 380 0 C after irradiation to 1.72-1.92x10 20 n/cm 2 (E>1MeV) and 2.03x10 21 n/cm 2 (E>1MeV) at the same temperature. With mill-annealed Type 316 steel, modest decreases in the rates of crack propagation were observed for both dose levels considered, whereas for cold-worked Type 316 steel irradiation to 2.03x10 21 n/cm 2 (E>1MeV) caused increases in the rate of crack propagation. For Type 316 weld metal, increases in the rate of crack propagation were observed for both dose levels considered. The diverse influences of irradiation upon fatigue crack propagation in these materials are explained by considering a simple continuum mechanics model of crack propagation together with the results of control tensile experiments made on similarly irradiated materials. (author)

  1. Theoretical microcontact spectra of metal electron-phonon coupling

    International Nuclear Information System (INIS)

    Kulagina, T.N.; Zhernov, A.P.

    1987-01-01

    Theoretical and experimental microcontact spectra of simple and certain transition metals are discussed. The Eliashberg thermodynamic functions for the metals are considered, as well as correlations between spectra peculiarities and parameters of metals and microbridge models

  2. Preapplication safety evaluation report for the Sodium Advanced Fast Reactor (SAFR) liquid-metal reactor

    International Nuclear Information System (INIS)

    King, T.L.; Landry, R.R.; Throm, E.D.; Wilson, J.N.

    1991-12-01

    This safety evaluation report (SER) presents the final results of a preapplication design review for the Sodium Advanced Fast Reactor (SAFR) liquid metal reactor (Project 673). The SAFR conceptual design was submitted by the US Department of Energy (DOE) in accordance with the US Nuclear Regulatory Commission (NRC) ''Statement of Policy for the Regulation of Advanced Nuclear Power Plants'' (51 FR 24643 which provides for the early Commission review and interaction). The standard SAFR plant design consists of four identical reactor modules, referred to as ''paks,'' each with a thermal output rating of 900 MWt, coupled with four steam turbine-generator sets. The total electrical output was held to be 1400 MWe. This SER represents the NRC staff's preliminary technical evaluation of the safety features in the SAFR design. It must be recognized that final conclusions in all matters discussed in this SER require approval by the Commission. During the NRC staff review of the SAFR conceptual design, DOE terminated work on this design in September 1988. This SER documents the work done to that date and no additional work is planned for the SAFR

  3. On the problem of heat and mass exchange between liquid metal surface and structural elements in fast reactors

    International Nuclear Information System (INIS)

    Rineisky, A.A.; Sorokin, A.P.; Yatsenko, M.G.

    1986-01-01

    For the development of means ensuring normal operating conditions of the fast reactor vessel some design procedures for calculating temperature conditions of its structural elements over the liquid metal surface are required. The radiative heat transfer from the liquid metal surface playing an important part at working temperatures (550 deg. C), the effect of experimentally detected fog formation process (not taken into account before) upon the radiative heat exchange has been considered. A simplified heat transfer model based upon separation of thin thermal boundary layers and of the main volume at a constant temperature has been proposed. Calculation relationships for the heat flux from the reactor vessel roof have been obtained by solving a one-dimensional equation of radiation transfer within the boundary layer and a three-dimensional one in the bulk volume at an approximation of moments with Marshak boundary conditions. Evaluations performed have shown a possibility of a considerable decrease of the vessel roof temperature due to fog formation. The observed asymmetry of the temperature distribution in the cover gas is explained in this case greater fog density near the evaporation surface and by a possibility of some radiative energy loss due to evaporation from the droplets surface. (author)

  4. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  5. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO 2 ). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh o o is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid

  6. Improvements in the fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-01-01

    Argonne National Laboratory (ANL) is currently developing a new liquid-metal-cooled breeder reactor known as the Integral Fast Reactor (IFR). The IFR represents the state of the art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, discussed in this paper, will support ANL-West's (ANL-W) fully remote fuel cycle facility, which is an integral part of the IFR concept

  7. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin.

    Science.gov (United States)

    Thoisen, Christina; Hansen, Benni Winding; Nielsen, Søren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equipment. The cryptophyte cells on the filters were disrupted at -80 °C and added phosphate buffer for extraction at 4 °C followed by absorbance measurement. The cryptophyte Rhodomonas salina was used as a model organism. •Simple method for extraction and quantification of phycoerythrin from cryptophytes.•Minimal usage of equipment and chemicals, and low labor costs.•Applicable for industrial and biological purposes.

  8. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  9. The properties of helium atoms and positrons as impurities in metals

    International Nuclear Information System (INIS)

    Pendry, J.B.

    1980-01-01

    Topics covered include: (A) atoms in simple metals: (1) the highly repulsive e - /He interaction and its consequences for binding energies in simple metals; (2) binding energy calculations for jellium and their implications for validity of pair-potential He/M interactions; and (3) the need for experimental data on high negative binding energy systems: (B) low energy positrons in simple metals: (1) behaviour of the positron especially its range (< 100A); (2) consequences for experiments on voids; and (3) possibility for non-destructive depth profiling of defect concentration. (author)

  10. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  11. Direct synthesis of metal complexes starting from zero-valent metals

    Energy Technology Data Exchange (ETDEWEB)

    Gojon-Zorrilla, Gabriel; Kharisov, Boris I. [Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon (Mexico); Garnovskii, Alexander D. [Institute of Physical and Organic Chemistry (Russian Federation)

    1996-06-01

    The recent (1980-1994) literature on metal-vapor synthesis of coordination and organometallic compounds is reviewed. An account is given of the high-and low-temperature reactions between free metal atoms and a large variety of substrates, mainly alkenes, alkynes, dienes, arenes, funtionalized arenes, alkyl halides {beta}-diketones and simple inorganic molecules. The main experimental methods are described, as well as the results obtained thereby. It is shown that in many instances these methods present significant advantages over conventional synthetic procedures, offering unique access to some metal complexes. [Spanish] Se reviso la literatura reciente (1980-1994) sobre la sintesis de compuestos de coordinacion y compuestos organometalicos a partir de vapores metalicos. Se examinan las reacciones de los atomos metalicos libres con una gran variedad de substratos, principalmente alquenos, alquinos, dienos, hidrocarburos aromaticos y sus derivados, haluros de alquilo y arilo, {beta}-dicetonas y moleculas inorganicas simples. Se presentan los principales metodos experimentales, asi como los resultados obtenidos; se concluye que la crisintesis presenta en muchos casos ventajas significativas sobre los procedimientos sinteticos tradicionales, constituyendo frecuentemente la unica opcion disponible.

  12. Simple and fast technique to measure CO2 profiles in soil

    International Nuclear Information System (INIS)

    Fang, C.; Moncrieff, J.B.

    1998-01-01

    We describe a simple method for sampling soil gas at different profile depths and analyzing CO 2 concentration in the gas sample. Soil gas samples were taken on the soil surface from each chosen depth through a gas circulation system and analyzed in situ with an infrared gas analyzer. The method is suitable for quickly handling a large number of soil gas samples in the field. (author)

  13. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    Science.gov (United States)

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  14. Safety characteristics of the integral fast reactor concept

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents

  15. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.edu [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 24-204 (United States)

    2011-07-15

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  16. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  17. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin

    2011-01-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  18. Metal cyanides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the biewpoint of general crystal T chemistry principles and on the basis of modern data the structural chemistry of metal cyanites is presented. The features of the structure of the following compounds are considered: simple ionic alkali cyanides (Li-Cs) containing CN - ions; molybdenum (4,5), tungsten (4,5), rhenium (5,6) complexes etc, where-CN group is only connected with one metal atom; covalent cyanides of cadmium and other elements in which the CN-group serves as a bridge

  19. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    Science.gov (United States)

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fast neutron activation analysis in metallurgy

    International Nuclear Information System (INIS)

    Sterlinski, S.

    1981-01-01

    Article discusses the usage of a 14 MeV neutron generator for producing fast neutrons of different energies and intensities. A complete instrumental set-up for the neutron activation analysis (NAA) is given. In metallurgy the device is mainly used in the determination of oxygen and silicon in steel and non-ferrous metal, including different alloys

  1. Construction of a Simple Multipurpose Airlift Bioreactor and its ...

    African Journals Online (AJOL)

    BSN

    The aim of the present research is to develop a simple airlift bioreactor which can be operated even ... compression metal. The bioreactor is mixed ... the method developed by (Bailey and Olis, .... (Ed) Concise Encyclopedia of Bio-resources.

  2. A simple three-dimensional-focusing, continuous-flow mixer for the study of fast protein dynamics.

    Science.gov (United States)

    Burke, Kelly S; Parul, Dzmitry; Reddish, Michael J; Dyer, R Brian

    2013-08-07

    We present a simple, yet flexible microfluidic mixer with a demonstrated mixing time as short as 80 μs that is widely accessible because it is made of commercially available parts. To simplify the study of fast protein dynamics, we have developed an inexpensive continuous-flow microfluidic mixer, requiring no specialized equipment or techniques. The mixer uses three-dimensional, hydrodynamic focusing of a protein sample stream by a surrounding sheath solution to achieve rapid diffusional mixing between the sample and sheath. Mixing initiates the reaction of interest. Reactions can be spatially observed by fluorescence or absorbance spectroscopy. We characterized the pixel-to-time calibration and diffusional mixing experimentally. We achieved a mixing time as short as 80 μs. We studied the kinetics of horse apomyoglobin (apoMb) unfolding from the intermediate (I) state to its completely unfolded (U) state, induced by a pH jump from the initial pH of 4.5 in the sample stream to a final pH of 2.0 in the sheath solution. The reaction time was probed using the fluorescence of 1-anilinonaphthalene-8-sulfonate (1,8-ANS) bound to the folded protein. We observed unfolding of apoMb within 760 μs, without populating additional intermediate states under these conditions. We also studied the reaction kinetics of the conversion of pyruvate to lactate catalyzed by lactate dehydrogenase using the intrinsic tryptophan emission of the enzyme. We observe sub-millisecond kinetics that we attribute to Michaelis complex formation and loop domain closure. These results demonstrate the utility of the three-dimensional focusing mixer for biophysical studies of protein dynamics.

  3. Fast and powerful hashing using tabulation

    DEFF Research Database (Denmark)

    Thorup, Mikkel

    2017-01-01

    Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed to yield the desired probabilistic guarantees are often too complicated to be practical. Here, we survey recent results on how simple hashing schemes based on tabulation provide unexpectedly strong......, linear probing and Cuckoo hashing. Next, we consider twisted tabulation where one input character is "twisted" in a simple way. The resulting hash function has powerful distributional properties: Chernoffstyle tail bounds and a very small bias for minwise hashing. This is also yields an extremely fast...... pseudorandom number generator that is provably good for many classic randomized algorithms and data-structures. Finally, we consider double tabulation where we compose two simple tabulation functions, applying one to the output of the other, and show that this yields very high independence in the classic...

  4. Design of a spherical fuel element for a gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Van Rooijen, W.F.G.; Kloosterman, J.L.; Van Dam, H.; Van der Hagen, T.H.J.J.

    2004-01-01

    A study is undertaken to develop a fuel cycle for a gas-cooled fast reactor (GCFR). The design goals are: highly efficient use of (depleted) uranium, application of Pu recycled from LWR discharge as fissile material, high temperature output and simplicity of design. The design focuses on spherical TRISO-like fuel elements, a homogeneous core at start-up, providing for easy fuel fabrication, and self-breeding capability with a flat k eff with burn-up. Nitride fuel ( 15 N > 99%) has been selected because of its favourable thermal conductivity, high heavy metal density and compatibility with PUREX reprocessing. Two core concepts have been studied: one with coated particles embedded inside fuel pebbles, and one with coated particles cooled directly by helium. The result is that a flat k eff can be achieved for a long period of time, using coated particles cooled directly, with a homogeneous core at, start-up, with a closed fuel cycle and a simple refuelling and reprocessing scheme. (author)

  5. The present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    Dievoet, J.P. van

    1987-01-01

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the beginning to power of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resource that uranium is. (author)

  6. Fabrication of Metallic Fuel Slugs for Irradiation Experiments in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Abdulla, K.K.; Kumar, Arun; Prasad, G.J.

    2013-01-01

    Advantages of Metallic fuels for future FBR: → High heavy metal atom density; → Higher thermal conductivity at room temperature that increases with temperature; → Metal fuels can be relatively easily fabricated with close dimensional tolerances; → They have excellent compatibility with liquid metal coolants

  7. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films; Streifende Streuung schneller Atome an Oberflaechen von Metalloxid-Kristallen und ultraduennen Filmen

    Energy Technology Data Exchange (ETDEWEB)

    Blauth, David

    2010-03-11

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO{sub 2}/Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  8. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  9. CADDIS Volume 2. Sources, Stressors and Responses: Metals - Point Sources from Industry

    Science.gov (United States)

    Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.

  10. CADDIS Volume 2. Sources, Stressors and Responses: Metals - Detailed Conceptual Model Diagram

    Science.gov (United States)

    Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.

  11. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  12. Simple Impeller Systems for Maintenance of Oil Palm Culture Aggregates

    International Nuclear Information System (INIS)

    Tarmizi, A.H.; Zaiton, R.; Rosli, M.Y.

    2016-01-01

    Scaling up of liquid culture systems generally involves moving from the use of simple shake flasks to bioreactors or specialised vessels; this is costly. A new innovation called the Two-in-One MPOB Simple Impeller (2-in-1 MoSLIM) was developed using commonly available Schott bottles in the laboratory. This system provided simultaneous aeration and agitation (two-in-one) in a single device for tissue propagation in liquid culture. The 2-in-1 MoSLIM produced cell aggregates with fresh weight increments of two- to six-fold over 30-40 days. This system was a convenient alternative compared to the conventional shake flask system. Multiplication of cultures in the 2-in-1 MoSLIM did not require any shaker or a big space area. This system with a working volume of 300 - 700 ml used a simple impeller and a pump for agitation and aeration purposes. However, with the 2-in-1 MoSLIM, media replenishment remained a tedious task. To overcome this, modifications were made to the system to enable media replenishment on-site without the need of a sterile hood. The adaptation of 2-in-1 MoSLIM with an earlier innovation, Fast Transfer Technique (MoFaTT) in Liquid Culture System, resulted in the development of the Simple Impeller with Fast Transfer Technique (SLIM-FaTT) system. This new system can be applied to the liquid culture system of any crop with a potential towards automation. (author)

  13. Multiple lead seal assembly for a liquid-metal-cooled fast-breeder nuclear reactor

    International Nuclear Information System (INIS)

    Hutter, E.; Pardini, J.A.

    1977-01-01

    A reusable multiple lead seal assembly provides leak-free passage of stainless-steel-clad instrument leads through the cover on the primary tank of a liquid-metal-cooled fast-breeder nuclear reactor. The seal isolates radioactive argon cover gas and sodium vapor within the primary tank from the exterior atmosphere and permits reuse of the assembly and the stainless-steel-clad instrument leads. Leads are placed in flutes in a seal body, and a seal shell is then placed around the seal body. Circumferential channels in the body and inner surface of the shell are contiguous and together form a conduit which intersects each of the flutes, placing them in communication with a port through the wall of the seal shell. Liquid silicone rubber sealant is injected into the flutes through the port and conduit; the sealant fills the space in the flutes not occupied by the leads themselves and dries to a rubbery hardness. A nut, threaded onto a portion of the seal body not covered by the seal shell, jacks the body out of the shell and shears the sealant without damage to the body, shell, or leads. The leads may then be removed from the body. The sheared sealant is cleaned from the body, leads, and shell and the assembly may then be reused with the same or different leads. 3 claims, 6 figures

  14. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    Science.gov (United States)

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  15. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Rant, J.; Kristof, E.; Balasko, M.; Stade, J.

    1999-01-01

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115 In(n, n') 115m In, 64 Zn(n,p) 64 Cu, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na and 27 Al(n, α) 24 Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φ n ∼ 10 8 n/cm 2 s, R Cd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27 Al(n.α) 24

  16. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review.

    Science.gov (United States)

    Alves, Georgina M S; Rocha, Luciana S; Soares, Helena M V M

    2017-12-01

    Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radioisotopes in the primary circuit of a fast reactor

    International Nuclear Information System (INIS)

    Berlin, M.; Cauvin, M.

    1976-01-01

    In the frame of the research performed to understand the behaviour of the radioactive isotopes of iodine in the primary coolant circuit of fast reactor, a simple theoretical model is proposed. Results concerning PHENIX and RAPSODIE are given

  18. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  19. Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test.

    Science.gov (United States)

    Jorge Mendoza, C; Tatiana Garrido, R; Cristian Quilodrán, R; Matías Segovia, C; José Parada, A

    2017-06-01

    A study is made to evaluate the bioaccessibility of heavy metals in contaminated soils through a simple bioaccessibility extraction test (SBET), applied to the analysis of both the gastric and intestinal phases. Soils with high metal content of the Mapocho, Cachapoal, and Rancagua series were studied; they are located in suburban areas of large cities in the central valley of Chile. The bioaccessible concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were related to the main physicochemical characteristics of the soils and to the chemical forms obtained by sequential extraction. The elements Cd, Cu, Ni, and Zn are distributed in the soils between the exchangeable fractions, bound to oxides, to organic matter, and in the residual fraction. On the other hand, Cr and Pb are found mainly in the fractions bound to organic matter and in the residual fraction. The three soils have a high Cu content, (640-2060 mg/kg), in the order Cachapoal > Rancagua > Mapocho. The SBET test allowed establishing a different bioaccessibility for the elements in the soil. Cu was notoriously bioaccessible in both the gastric and intestinal phases in the three soils, reaching more than 50% in the Cachapoal and Rancagua soils. The other elements, regardless of the soil, were bioaccessible only in one of the phases, more frequently in the gastric phase. The multiple correlation study indicates that the metal forms have a higher incidence than the soil's physicochemical factors on the extractability to evaluate the human oral bioaccessibility of the metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. An introduction to the engineering of fast nuclear reactors

    CERN Document Server

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  1. Simple Functions Spreadsheet tool presentation

    International Nuclear Information System (INIS)

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara

    2010-09-01

    This document is a guide for users of the Simple Functions Spreadsheet tool. The Simple Functions Spreadsheet tool has been developed by Amphos 21 to determine the solubility limits of some radionuclides and it has been especially designed for Performance Assessment exercises. The development of this tool has been promoted by the necessity expressed by SKB of having a confident and easy-to-handle tool to calculate solubility limits in an agile and relatively fast manner. Its development started in 2005 and since then, it has been improved until the current version. This document describes the accurate and preliminary study following expert criteria that has been used to select the simplified aqueous speciation and solid phase system included in the tool. This report also gives the basic instructions to use this tool and to interpret its results. Finally, this document also reports the different validation tests and sensitivity analyses that have been done during the verification process

  2. Uranium alloys for using in fast breeder reactors

    International Nuclear Information System (INIS)

    Moura Neto, C.; Pires, O.S.

    1988-08-01

    The U-Zr and U-Ti alloys are studied, given emphasis to the high solute solubility in gamma phase of uranium, which is suitable for using as metal fuel in fast breeder reactors. The alloys were prepared in electron beam furnaces and submitted to X-ray diffraction, X-ray fluorescence, microhardness, optical metallography, and chemical analysis. The obtained values are good agreements with the literature data. The study shows that the U-Zr presents better characteristics than the U-Ti for using as fuel in fast breeder reactors. (M.C.K.) [pt

  3. A simple and secure method to fix laparoscopic trocars in children.

    Science.gov (United States)

    Yip, K F; Tam, P K H; Li, M K W

    2006-04-01

    We introduce a simple method of fixing trocars to the abdominal wall in children. Before anchoring the trocar, a piece of Tegaderm polyurethrane adhesive (3M Healthcare, St. Paul, Minnesota) is attached to the trocar. A silk stitch is anchored to neighboring skin, and then transfixed over the shaft of the trocar through the adhesive. Both inward and outward movement of the trocar can be restrained. This method is simple, fast, secure, and can be applied to trocars of any size.

  4. Laser fusion reactor design in a fast ignition with a dry wall chamber

    International Nuclear Information System (INIS)

    Ogawa, Yichi; Goto, Takuya; Ninomiya, Daisuke; Hiwatari, Ryoji; Asaoka, Yoshiyuki; Okano, Kunihiko

    2007-01-01

    One of the critical issues in laser fusion reactor design is high pulse heat load on the first wall by the X-rays and the fast/debris ions from fusion burn. There are mainly two concepts for the first wall of laser fusion reactor, a dry wall and a liquid metal wall. We should notice that the fast ignition method can achieve sufficiently high pellet gain with smaller (about 1/10 of the conventional central ignition method) input energy. To take advantage of this property, the design of a laser fusion reactor with a small size dry wall chamber may become possible. Since a small fusion pulse leads to a small electric power, high repetition of laser irradiation is required to keep sufficient electric power. Then we tried to design a laser fusion reactor with a dry wall chamber and a high repetition laser. This is a new challenging path to realize a laser fusion plant. Based on the point model of the core plasma, we have estimated that fusion energy in one pulse can be reduced to be 40 MJ with a pellet gain around G>100. To evaluate the validity of this simple estimation and to optimize the pellet design and the pulse shaping for the fast ignition scenario, we have introduced 1-D hydrodynamic simulation code ILESTA-1D and carried out implosion simulations. Since the code is one-dimensional, the detailed physics process of fast heating cannot be reproduced. Thus the fast heating is reflected in the code as the additional artificial heating source in the energy equation. It is modeled as a homogeneous heating of electrons in core region at the time just before when the maximum compression is achieved. At present we obtained the pellet gain G∝100 with the same input energy as the above estimation by a simple point model (350kJ for implosion, 50kJ for heating and assuming 20% coupling of heating laser). A dry wall is exposed to several threats due to the cyclic load by the high energy X-ray and charged particles: surface melting, physical and chemical sputtering

  5. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  6. Applied Decision Making With Fast-and-Frugal Heuristics

    NARCIS (Netherlands)

    Hafenbrädl, S.; Waeger, D.; Marewski, J.N.; Gigerenzer, G.

    In applied settings, such as aviation, medicine, and finance, individuals make decisions under various degrees of uncertainty, that is, when not all risks are known or can be calculated. In such situations, decisions can be made using fast-and-frugal heuristics. These are simple strategies that

  7. Ten years operating experience at the Fast Flux Test Facility: A decade of excellence

    International Nuclear Information System (INIS)

    Swaim, D.J.; Waldo, J.B.; Farabee, O.A.

    1991-07-01

    The Fast Flux Test Facility is a 400 MW(t) fast reactor cooled by three sodium loops. The Fast Flux Test Facility is managed by the Westinghouse Hanford Company for the US Department of Energy. The Fast Flux Test Facility was designed and constructed to provide irradiation testing of fuels and materials for the US Department of Energy Liquid Metal Reactor research program. Facility activities have increased to include fusion power materials testing, passive safety testing, isotope production, and international collaboration. 5 figs

  8. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Audet, Patrick [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: paude086@uottawa.ca; Charest, Christiane [Ottawa-Carleton Institute of Biology, Department of Biology, University of Ottawa, 30 Marie-Curie Street, Ottawa, ON K1N 6N5 (Canada)], E-mail: ccharest@uottawa.ca

    2008-11-15

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress.

  9. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation

    International Nuclear Information System (INIS)

    Audet, Patrick; Charest, Christiane

    2008-01-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices. - This meta-analysis has revealed a shift in plant biomass and metal distribution from shoots to roots possibly to protect vital functions when subjected to metal stress

  10. Liquid metal corrosion considerations in alloy development

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Liquid metal corrosion can be an important consideration in developing alloys for fusion and fast breeder reactors and other applications. Because of the many different forms of liquid metal corrosion (dissolution, alloying, carbon transfer, etc.), alloy optimization based on corrosion resistance depends on a number of factors such as the application temperatures, the particular liquid metal, and the level and nature of impurities in the liquid and solid metals. The present paper reviews the various forms of corrosion by lithium, lead, and sodium and indicates how such corrosion reactions can influence the alloy development process

  11. Nuclear data for advanced fast reactors

    International Nuclear Information System (INIS)

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  12. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS.

    Science.gov (United States)

    Dubreil, Estelle; Gautier, Sophie; Fourmond, Marie-Pierre; Bessiral, Mélaine; Gaugain, Murielle; Verdon, Eric; Pessel, Dominique

    2017-04-01

    An approach is described to validate a fast and simple targeted screening method for antibiotic analysis in meat and aquaculture products by LC-MS/MS. The strategy of validation was applied for a panel of 75 antibiotics belonging to different families, i.e., penicillins, cephalosporins, sulfonamides, macrolides, quinolones and phenicols. The samples were extracted once with acetonitrile, concentrated by evaporation and injected into the LC-MS/MS system. The approach chosen for the validation was based on the Community Reference Laboratory (CRL) guidelines for the validation of screening qualitative methods. The aim of the validation was to prove sufficient sensitivity of the method to detect all the targeted antibiotics at the level of interest, generally the maximum residue limit (MRL). A robustness study was also performed to test the influence of different factors. The validation showed that the method is valid to detect and identify 73 antibiotics of the 75 antibiotics studied in meat and aquaculture products at the validation levels.

  13. Decorporation of metal ions by chelating agents

    International Nuclear Information System (INIS)

    Koenig, T.

    1978-01-01

    Simple model designs to simulate the effect of therapeutical chelating agents on the behaviour of metals in mammal organisms with and without excretion have been derived and analytical solutions given for the corresponding differential equations. The possibilities of these models in the short-term description of plasma kinetics of various metals, the competition of the therapeutical ligands with proteins for the metal and of the metabolism of chelating agents were tested and the properties applying extreme conceivable parameters were analyzed. The simple models were successsively expanded in logical sequence, so that it was possible to qualitatively well describe over a long period of time, the metallic kinetics in plasma, organs and urine, the retention of the ligands and their effect on the metal excretion. Two suggestions were given to describe the so-called after-effect, an increased excretion of the metal at times when the ligand is almost completely excreted and their different behaviour after injecting the metal chelate is given. Calculations on the therapy with several ligand data as well as on dose fractionation are described resting on the ratios in the plutonium-239 chosen model parameters and the determining mechanisms analyzed. (orig./MG) [de

  14. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  15. Simulation of In-Vessel Corium Retention through External Reactor Vessel Cooling for SMART using SIMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Sung; Son, Donggun; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Thermal load analysis from the corium pool to the outer reactor vessel in the lower plenum of the reactor vessel is necessary to evaluate the effect of the IVR-ERVC during a severe accident for SMART. A computational code called SIMPLE (Sever Invessel Melt Progression in Lower plenum Environment) has been developed for analyze transient behavior of molten corium in the lower plenum, interaction between corium and coolant, and heat-up and ablation of reactor vessel wall. In this study, heat load analysis of the reactor vessel for SMART has been conducted using the SIMPLE. Transient behavior of the molten corium in the lower plenum and IVR-ERVC for SMART has been simulated using SIMPLE. Heat flux from the corium pool to the outer reactor vessel is concentrated in metallic layer by the focusing effect. As a result, metallic layer shows higher temperature than the oxidic layer. Also, vessel wall of metallic layer has been ablated by the high in-vessel temperature. Ex-vessel temperature of the metallic layer was maintained 390 K and vessel thickness was maintained 14 cm. It means that the reactor vessel integrity is maintained by the IVR-ERVC.

  16. Italian position paper on the safety analysis of liquid metal fast breeder reactors as related to sodium fires. The PEC reactor

    International Nuclear Information System (INIS)

    Gerosa, A.

    1983-01-01

    To obtain a deep understanding of physical phenomena and engineering problems connected to sodium fires, and to optimize the utilization of human and financial resources available, CNEN (now ENEA) has decided to join the French Commissariat a l'Energie Atomique (CEA) in the realization of a Franco-Italian experimental programme on sodium fires, named ESMERALDA. As for design preventions for PEC reactor (a fast flux, liquid metal cooled, fuel element testing reactor) fundamental choices were made taking into account all available knowledge, but with particular reference to the results of CEA's previous experiments on sodium fires. More detailed design analysis will be possible in the future, based on experimental results coming from the ESMERALDA programme

  17. Fast mutual-information-based contrast enhancement

    Science.gov (United States)

    Cao, Gang; Yu, Lifang; Tian, Huawei; Huang, Xianglin; Wang, Yongbin

    2017-07-01

    Recently, T. Celik proposed an effective image contrast enhancement (CE) method based on spatial mutual information and PageRank (SMIRANK). According to the state-of-the-art evaluation criteria, it achieves the best visual enhancement quality among existing global CE methods. However, SMIRANK runs much slower than the other counterparts, such as histogram equalization (HE) and adaptive gamma correction. Low computational complexity is also required for good CE algorithms. In this paper, we novelly propose a fast SMIRANK algorithm, called FastSMIRANK. It integrates both spatial and gray-level downsampling into the generation of pixel value mapping function. Moreover, the computation of rank vectors is speeded up by replacing PageRank with a simple yet efficient row-based operation of mutual information matrix. Extensive experimental results show that the proposed FastSMIRANK could accelerate the processing speed of SMIRANK by about 20 times, and is even faster than HE. Comparable enhancement quality is preserved simultaneously.

  18. Fast Blue RR—Siloxane Derivatized Materials Indicate Wound Infection Due to a Deep Blue Color Development

    Directory of Open Access Journals (Sweden)

    Doris Schiffer

    2015-09-01

    Full Text Available There is a strong need for simple and fast methods for wound infection determination. Myeloperoxidase, an immune system-derived enzyme was found to be a suitable biomarker for wound infection. Hence, alkoxysilane-derivatized Fast Blue RR was immobilized via simple hydrolytic polymerization. The resulting enzyme-responsive siloxane layers were incubated with myeloperoxidase, wound fluid or hemoglobin. The reaction was monitored via HPLC measurements and the color development quantified spectrophotometrically. Myeloperoxidase was indeed able to oxidize immobilized Fast Blue RR leading to a blue colored product. No conversion was detected in non-infected wound fluids. The visible color changes of these novel materials towards blue enable an easy distinction between infected and non-infected wound fluids.

  19. Fast Flux Test Facility fuel and test management: The first 10 years

    International Nuclear Information System (INIS)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs

  20. Upper limits to americium concentration in large sized sodium-cooled fast reactors loaded with metallic fuel

    International Nuclear Information System (INIS)

    Zhang, Youpeng; Wallenius, Janne

    2014-01-01

    Highlights: • The americium transmutation capability of Integral Fast Reactor was investigated. • The impact from americium introduction was parameterized by applying SERPENT Monte Carlo calculations. • Higher americium content in metallic fuel leads to a power penalty, preserving consistent safety margins. - Abstract: Transient analysis of a large sized sodium-cooled reactor loaded with metallic fuel modified by different fractions of americium have been performed. Unprotected loss-of-offsite power, unprotected loss-of-flow and unprotected transient-over-power accidents were simulated with the SAS4A/SASSYS code based on the geometrical model of an IFR with power rating of 2500 MW th , using safety parameters obtained with the SERPENT Monte Carlo code. The Ti-modified austenitic D9 steel, having higher creep rupture strength, was considered as the cladding and structural material apart from the ferritic/martensitic HT9 steel. For the reference case of U–12Pu–1Am–10Zr fuel at EOEC, the margin to fuel melt during a design basis condition UTOP is about 50 K for a maximum linear rating of 30 kW/m. In order to maintain a margin of 50 K to fuel failure, the linear power rating has to be reduced by ∼3% and 6% for 2 wt.% and 3 wt.% Am introduction into the fuel respectively. Hence, an Am concentration of 2–3 wt.% in the fuel would lead to a power penalty of 3–6%, permitting a consumption rate of 3.0–5.1 kg Am/TW h th . This consumption rate is significantly higher than the one previously obtained for oxide fuelled SFRs

  1. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  2. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Walters, L.C.

    1991-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960's worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected

  3. Economic Viability of Metallic Sodium-Cooled Fast Reactor Fuel in Korea

    Directory of Open Access Journals (Sweden)

    S. K. Kim

    2013-01-01

    Full Text Available This paper evaluates whether SFR metallic nuclear fuel can be economical. To make this determination, the cost of SFCF (SFR fuel cycle facilities was estimated, and the break-even point of the manufacturing cost of SFR metallic nuclear fuel for direct disposal option was then calculated. As a result of the cost estimation, the levelized unit cost (LUC for SFCF was calculated to be 5,311 $/kgHM, and the break-even point was calculated to be $5,267/kgHM. Therefore, the cost difference between LUC and the break-even point is not only small but is also within the relevant range of the uncertainty level of Class 3 in accordance with a generic cost estimate classification matrix of AACE (the Association for the Advancement of Cost Engineering. This means it is very difficult to judge the economical feasibility of SFR metallic nuclear fuel because as of today there are no commercial facilities in Korea or the world. The economic feasibility of SFR metallic nuclear fuel, however, will be enhanced if the mass production of SFCF becomes possible in the future.

  4. Theoretical and Experimental Analysis of Fast Neutron Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, H.; Kleijn, H. R. [Reactor Instituut, Delft (Netherlands)

    1968-04-15

    The reactor physics division of the Inter-Academic Reactor Institute at Delft is concentrating its efforts in the field of fast reactor physics on problems of a more fundamental nature. The object of the programme is to determine experimentally a number of microscopic reactor physics parameters such as conversion potentials, fission ratios and Doppler coefficients for simple geometries and material compositions. Because of the extreme importance of knowledge of the neutron spectrum for the interpretation of the results, attention has initially been concentrated on both the measurement and the calculation of fast neutron spectra. The transport of neutrons in absorbing and non-absorbing heavy atom materials is studied by solving the Boltzmann equation. Both isotropic and anisotropic scattering are considered. Anisotropic scattering is treated by the P{sub n}-approximation, while flux-anisotropy is handled with the S{sub N}-method. In the code FAST-DELFT, scattering is treated up to the P{sub 4} component, a further extension of which is useless because of the lack of available cross-section data. By using this method, the effect of scattering anisotropy on the spectrum formation has been studied. In addition the influence of group cross-section inaccuracies was determined. The experimental work has been concentrated on methods to determine in-core spectra. Using home-made proportional counters with gamma-ray discrimination provisions fast neutron spectra have been measured in simple geometries. These experiments were complemented by foil measurements in the lower energy region. The results of this work are presented in this paper. (author)

  5. Report on generation IV technical working group 3 : liquid metal reactors

    International Nuclear Information System (INIS)

    Lineberry, M. J.; Rosen, S. L.; Sagayama, Y.

    2002-01-01

    This paper reports on the first round of R and D roadmap activities of the Generation IV (Gen IV) Technical Working Group (TWG) 3, on liquid metal-cooled reactors. Liquid metal coolants give rise to fast spectrum systems, and thus the reactor systems considered in this TWG are all fast reactors. Gas-cooled fast reactors are considered in the context of TWG 2. As is noted in other Gen IV papers, this first round activity is termed ''screening for potential'', and includes collecting the most complete set of liquid metal reactor/fuel cycle system concepts possible and evaluating the concepts against the Gen IV principles and goals. Those concepts or concept groups that meet the Gen IV principles and which are deemed to have reasonable potential to meet the Gen IV goals will pass to the next round of evaluation. Although we sometimes use the terms ''reactor'' or ''reactor system'' by themselves, the scope of the investigation by TWG 3 includes not only the reactor systems, but very importantly the closed fuel recycle system inevitably required by fast reactors. The response to the DOE Request for Information (RFI) on liquid metal reactor/fuel cycle systems from principal investigators, laboratories, corporations, and other institutions, was robust and gratifying. Thirty three liquid metal concept descriptions, from eight different countries, were ultimately received. The variation in the scope, depth, and completeness of the responses created a significant challenge for the group, but the TWG made a very significant effort not to screen out concepts early in the process

  6. Hydrotreatment of Fast Pyrolysis Oil Using Heterogeneous Noble-Metal Catalysts

    NARCIS (Netherlands)

    Wildschut, Jelle; Mahfud, Farchad H.; Venderbosch, Robbie H.; Heeres, Hero J.

    2009-01-01

    Fast pyrolysis oils from lignocellulosic biomass are promising second-generation biofuels. Unfortunately, the application range for such oils is limited because of the high acidity (pH similar to 2.5) and the presence of oxygen in a variety of chemical functionalities, and upgrading of the oils is

  7. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    Science.gov (United States)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  8. New simple method for fast and accurate measurement of volumes

    International Nuclear Information System (INIS)

    Frattolillo, Antonio

    2006-01-01

    A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

  9. Identification of Super Phenix steam generator by a simple polynomial model

    International Nuclear Information System (INIS)

    Rousseau, I.

    1981-01-01

    This note suggests a method of identification for the steam generator of the Super-Phenix fast neutron power plant for simple polynomial models. This approach is justified in the selection of the adaptive control. The identification algorithms presented will be applied to multivariable input-output behaviours. The results obtained with the representation in self-regressive form and by simple polynomial models will be compared and the effect of perturbations on the output signal will be tested, in order to select a good identification algorithm for multivariable adaptive regulation [fr

  10. Simple-to-Complex Transformation in Liquid Rubidium.

    Science.gov (United States)

    Gorelli, Federico A; De Panfilis, Simone; Bryk, Taras; Ulivi, Lorenzo; Garbarino, Gaston; Parisiades, Paraskevas; Santoro, Mario

    2018-05-18

    We investigated the atomic structure of liquid Rb along an isothermal path at 573 K, up to 23 GPa, by X-ray diffraction measurements. By raising the pressure, we observed a liquid-liquid transformation from a simple metallic liquid to a complex one. The transition occurs at 7.5 ± 1 GPa which is slightly above the first maximum of the T-P melting line. This transformation is traced back to the density-induced hybridization of highest electronic orbitals leading to the accumulation of valence electrons between Rb atoms and to the formation of interstitial atomic shells, a behavior that Rb shares with Cs and is likely to be common to all alkali metals.

  11. Fast electrochemical membrane actuator: Design, fabrication and preliminary testing

    Science.gov (United States)

    Uvarov, I. V.; Postnikov, A. V.; Shlepakov, P. S.; Naumov, V. V.; Koroleva, O. M.; Izyumov, M. O.; Svetovoy, V. B.

    2017-11-01

    An actuator based on water electrolysis with a fast change of voltage polarity is presented. It demonstrates a new actuation principle allowing significant increase the operation frequency of the device due to fast termination of the produced gas. The actuator consists of a working chamber with metallic electrodes and supplying channels filled with an electrolyte. The chamber is formed in a layer of SU-8 and covered by a flexible polydimethylsiloxane membrane, which deforms as the pressure in the chamber increases. Design, fabrication procedure, and first tests of the actuator are described.

  12. Ordered metal nanotube arrays fabricated by PVD.

    Science.gov (United States)

    Marquez, F; Morant, C; Campo, T; Sanz, J M; Elizalde, E

    2010-02-01

    In this work we report a simple method to fabricate ordered arrays of metal nanotubes. This method is based on the deposition of a metal by PVD onto an anodized aluminum oxide (AAO) template. The dimensions of the synthesized nanotubes depend both on the AAO template and on the deposited metal. In fact, it is observed that the aspect ratios of the nanotubes clearly depend significantly on the metal, ranging from 0.6 (Fe) to at least 3 (Zr).

  13. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  14. Utility industry evaluation of the Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; DelGeorge, L.O.; Tramm, T.R.; Gibbons, J.P.; High, M.D.; Neils, G.H.; Pilmer, D.F.; Tomonto, J.R.; Wells, J.T.

    1990-02-01

    A team of utility industry representatives evaluated the Sodium Advanced Fast Reactor plant design, a current liquid metal reactor design created by an industrial team led by Rockwell International under Department of Energy sponsorship. The utility industry team concluded that the plant design offers several attractive characteristics, especially in the safety arena, as well as preserving the traditional attraction of liquid metal reactors, very high fuel utilization. Specific comments and recommendations are provided as a contribution towards improving an already attractive plant design. 18 refs

  15. Thermal-hydraulic methods in fast reactor safety

    International Nuclear Information System (INIS)

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  16. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  17. Safety of the liquid-metal cooled fast breeder reactor and aspects of its fuel cycle

    International Nuclear Information System (INIS)

    Kessler, G.; Papp, R.; Huebel, D.

    1977-01-01

    Design and construction of the sodium-cooled fast reactors KNK-II (20MW(e)) and SNR-300 (300MW(e)) determine the status of safety engineering and safety R and D of LMFBRs in the Federal Republic of Germany. Both prototype fast power reactors have to go through a civil licensing process similar to that applied to present LWRs. A multilevel safety - or defence in depth - approach is applied to the design and construction of fast power reactors. All design data of the fast reactor plant are confirmed by extensive experimental programmes. Design limits of the plant are thoroughly discussed during the licensing process. Important safety R and D programmes have been and are still being performed. A very conservative safety analysis for hypothetical core and other plant accidents is used for present prototype fast reactors. The paper reviews the future trend of development of theoretical methods for accident analysis and the application of experimental results, especially in view of large commercial-type LMFBRs. The safety approach applied to the LMFBR plant is safe operation under normal operating conditions and safe shutdown under off-normal conditions. The consequences of releases of radioactivity to the environment meet the given standards. No chemical reprocessing plant for fast breeder fuel is in operation in the FRG at present; however, R and D work on investigation of all aspects and problem areas of the fast breeder fuel cycle are under way. Systems studies on safety aspects of the fast breeder fuel cycle (transport, reprocessing, fuel fabrication) and its impact on the environment have been performed and the main consequences of these studies are presented in the paper. (author)

  18. Comparison of Two Commercial FE-Codes for Sheet Metal Forming

    International Nuclear Information System (INIS)

    Revuelta, A.; Larkiola, J.; Kanervo, K.; Korhonen, A. S.; Myllykoski, P.

    2007-01-01

    There is urgent need to develop new advanced fast and cost-effective mass-production methods for small sheet metal components. Traditionally progressive dies have been designed by using various CAD techniques. Recent results in mass production of small sheet metal parts using progressive dies and a transfer press showed that the tool design time may be cut in up to a half by using 3D finite element simulation of forming. In numerical simulation of sheet metal forming better constitutive models are required to obtain more accurate results, reduce the time for tool design and cut the production costs further. Accurate models are needed to describe the initial yielding, subsequent work hardening and to predict the formability. In this work two commercially available finite element simulation codes, PAM-STAMP and LS-DYNA, were compared in forming of small austenitic stainless steel sheet part for electronic industry. Several constitutive models were used in both codes and the results were compared. Comparisons were made between the same models in each of the codes and also between different models in the same code. Material models ranged from very simple to advanced ones, which took into account anisotropy and both isotropic and kinematic hardening behavior. In order to make a valid comparison we employed similar finite element meshes. The effects of the material models parameters were studied and the results were compared with experiments. The effects of the computational time were also studied

  19. A simple and fast method for extraction and quantification of cryptophyte phycoerythrin

    OpenAIRE

    Thoisen, Christina; Hansen, Benni Winding; Nielsen, S?ren Laurentius

    2017-01-01

    The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equip...

  20. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  1. Calculation of the valence charge density and binding energy in a simple metal according to the neutral atom method: the Hartree-Fock ionic potential

    International Nuclear Information System (INIS)

    Dagens, L.

    1975-01-01

    The neutral atom method is generalized in order to deal with a Hartree-Fock nonlocal ionic potential. It is used to test the following metal potential, based upon a theoretical analysis due to Hedin and Lundquist. The true HF potential is used to describe the ionic part and a simple local density scheme (the Gaspar-Kohn-Sham approximation) is used for the valence part. The method is first applied to the calculation of the rigid neutral atom valence density of a few simple metals and the corresponding form factor n(q). The choice of the ionic potential (HF or GKS) is found to have a small but significant effect as far as n(q) is concerned. A comparison with experiment is made for Al and Be, using the available X-rays structure factor measurements. Good agreement is obtained for Al with the recent results of Raccah and Heinrich. No agreement is obtained with the Be results of Brown, although the general behavior of the observed and theoretical n(g) as function of g (reciprocal vector length) are found to be quite similar. The binding energy is calculated for Li, Be, Na, Mg and Al, using the Nozieres-Pines formula for the valence-valence correlation energy. The agreement with observed values is improved considerably when the present (HF+GKS) scheme is used, instead of the HFS completely local density scheme used in a previous work. The remaining discrepancies may be ascribed to the inaccuracy of the NP formula and to the neglect of the whole valence-core correlation energy [fr

  2. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Walters, L.C.

    1990-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960s worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected. 28 refs., 2 figs., 1 tab

  3. How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity

    Czech Academy of Sciences Publication Activity Database

    Gutten, Ondrej; Rulíšek, Lubomír

    2015-01-01

    Roč. 17, č. 22 (2015), s. 14393-14404 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 Keywords : metal-ion selectivity * metallopeptide * stability constants * theoretical calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c4cp04876h

  4. Development of physical conceptions of fast reactors

    International Nuclear Information System (INIS)

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  5. A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress.

    Science.gov (United States)

    Grison, Claire M; Renard, Brice-Loïc; Grison, Claude

    2014-02-01

    2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway. A simple, efficient and stereoselective synthesis of KDG isopropyl ester is described in five steps from 2,3-O-isopropylidene-D-threitol with an overall yield of 47%. KDG isopropyl ester is studied as an attractive marker of a functional Entner Doudoroff pathway. KDG isopropyl ester is used to promote growth of ammonium producing bacterial strains, showing interesting features in the remediation of heavy-metal polluted soils. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Technical Meeting on Passive Shutdown Systems for Liquid Metal-Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2015-01-01

    A major focus of the design of modern fast reactor systems is on inherent and passive safety. Specific systems to improve reactor safety performance during accidental transients have been developed in nearly all fast reactor programs, and a large number of proposed systems have reached various stages of maturity. This Technical Meeting on Passive Shutdown Systems for Fast Reactors, which was recommended by the Technical Working Group on Fast Reactors (TWG-FR), addressed Member States’ expressed need for information exchange on projects and programs in the field, as well as for the identification of priorities based on the analysis of technology gaps to be covered through R&D activities. This meeting was limited to shutdown systems only, and did not include other passive features such as natural circulation decay heat removal systems etc.; however the meeting catered to passive shutdown safety devices applicable to all types of fast neutron systems. It was agreed to initiate a new study and produce a Nuclear Energy Series (NES) Technical Report to collect information about the existing operational systems as well as innovative concepts under development. This will be a useful source for member states interested in gaining technical expertise to develop passive shutdown systems as well as to highlight the importance and development in this area

  7. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Pal, S.; Mishra, G.P.

    2012-01-01

    CERMET fuel with either PuO 2 or enriched UO 2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO 2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO 2 , U–25 wt%UO 2 and U–30 wt%UO 2 . It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO 2 compositions.

  8. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    Science.gov (United States)

    Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.

    2012-08-01

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.

  9. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  10. Determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions by potentiometric titration

    International Nuclear Information System (INIS)

    Tucker, H.L.; McElhaney, R.J.

    1983-01-01

    A simple, fast method for the determination of uranium in uranium metal, uranium oxides, and uranyl nitrate solutions has been adapted from the Davies-Gray volumetric method to meet the needs of Y-12. One-gram duplicate aliquots of uranium metal or uranium oxide are dissolved in 1:1 HNO 3 and concentrated H 2 SO 4 to sulfur trioxide fumes, and then diluted to 100-mL volume. Duplicate aliquots are then weighed for analysis. For uranyl nitrate samples, duplicate aliquots containing between 50 and 150 mg of U are weighed and analyzed directly. The weighed aliquot is transferred to a Berzelius beaker; 1.5 M sulfamic acid is added, followed in order by concentrated phosphoric acid, 1 M ferrous sulfate, and (after a 30-second interval) the oxidizing reagent. After a timed 3-minute waiting period, 100 mL of the 0.1% vanadyl sulfate-sulfuric acid mixture is added. The sample is then titrated past its endpoint with standard potassium dichromate, and the endpoint is determined by second derivative techniques on a mV/weight basis

  11. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    Science.gov (United States)

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  12. A fast, simple and green method for the extraction of carbamate pesticides from rice by microwave assisted steam extraction coupled with solid phase extraction.

    Science.gov (United States)

    Song, Weitao; Zhang, Yiqun; Li, Guijie; Chen, Haiyan; Wang, Hui; Zhao, Qi; He, Dong; Zhao, Chun; Ding, Lan

    2014-01-15

    This paper presented a fast, simple and green sample pretreatment method for the extraction of 8 carbamate pesticides in rice. The carbamate pesticides were extracted by microwave assisted water steam extraction method, and the extract obtained was immediately applied on a C18 solid phase extraction cartridge for clean-up and concentration. The eluate containing target compounds was finally analysed by high performance liquid chromatography with mass spectrometry. The parameters affecting extraction efficiency were investigated and optimised. The limits of detection ranging from 1.1 to 4.2ngg(-1) were obtained. The recoveries of 8 carbamate pesticides ranged from 66% to 117% at three spiked levels, and the inter- and intra-day relative standard deviation values were less than 9.1%. Compared with traditional methods, the proposed method cost less extraction time and organic solvent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  14. The use of molecular dynamics for the thermodynamic properties of simple and transition metals

    International Nuclear Information System (INIS)

    Straub, G.K.

    1987-04-01

    The technique of computer simulation of the molecular dynamics in metallic systems to calculate thermodynamic properties is discussed. The nature of a metal as determined by its electronic structure is used to determine the total adiabatic potential. The effective screened ion-ion interaction can then be used in a molecular dynamics simulation. The method for the construction of a molecular dynamics ensemble, its relation to the canonical ensemble, and the definition of thermodynamic functions from the Helmholtz free energy is given. The method for the analysis of the molecular dynamics results from quasiharmonic lattice dynamics and the decomposition in terms of harmonic and anharmonic contributions is given for solids. For fluid phase metals, procedures for calculating the thermodynamics and determining the constant of entropy are presented. The solid-fluid phase boundary as a function of pressure and temperature is determined using the results of molecular dynamics. Throughout, examples and results for metallic sodium are used. The treatment of the transition metal electronic d-states in terms of an effective pair-wise interaction is also discussed and the phonon dispersion curves of Al, Ni, and Cu are calculated

  15. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    Science.gov (United States)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  16. Fast neutron dosimetry: [Progress report, 1986-1987

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.; Gould, M.N.; Meisner, L.F.; Pearson, D.W.

    1987-01-01

    A new research area was initiated in ultrasoft x-rays with the University of Wisconsin 1-GeV electron storage ring used as a radiation source. A new beam line and irradiation apparatus was designed and constructed. Amongst the distinguishing features are an irradiation vessel of considerable generality allowing many types of radiological/biological experiments to be performed; the ability to maintain low-pressure, high humidity environments with good control; and a computer controlled sample slide for [X,Y,Z] motions of high precision that allows fully controlled velocities and accelerations for complex sample irradiations. Work in the area of chromosomal aberration studies has continued after the completion of the investigation into the possible synergistic effects of mixed beams of neutrons and photons. Of special interest is the damage dependence on absorbed dose and dose rate for low-dose and low-dose rate exposures to high LET radiation. A unique microdosimetric instrument was employed in the continuing effort to measure dose distribution in LET from fast neutron irradiation of metal-metal oxide walls. Our purpose is to determine this distribution for oxygen, an element of critical importance to fast neutron dosimetry. 31 refs., 7 figs., 2 tabs

  17. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  18. A new safety approach in the design of fast reactors

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  19. A Simple and Fast Extraction Method for the Determination of Multiclass Antibiotics in Eggs Using LC-MS/MS.

    Science.gov (United States)

    Wang, Kun; Lin, Kunde; Huang, Xinwen; Chen, Meng

    2017-06-21

    The purpose of this study was to develop and validate a simple, fast, and specific extraction method for the analysis of 64 antibiotics from nine classes (including sulfonamides, quinolones, tetracyclines, macrolides, lincosamide, nitrofurans, β-lactams, nitromidazoles, and cloramphenicols) in chicken eggs. Briefly, egg samples were simply extracted with a mixture of acetonitrile-water (90:10, v/v) and 0.1 mol·L -1 Na 2 EDTA solution assisted with ultrasonic. The extract was centrifuged, condensed, and directly analyzed on a liquid chromatography coupled to tandem mass spectrometry. Compared with conventional cleanup methods (passing through solid phase extract cartridges), the established method demonstrated comparable efficiencies in eliminating matrix effects and higher or equivalent recoveries for most of the target compounds. Typical validation parameters including specificity, linearity, matrix effect, limits of detection (LODs) and quantification (LOQs), the decision limit, detection capability, trueness, and precision were evaluated. The recoveries of target compounds ranged from 70.8% to 116.1% at three spiking levels (5, 20, and 50 μg·kg -1 ), with relative standard deviations less than 14%. LODs and LOQs were in the ranges of 0.005-2.00 μg·kg -1 and 0.015-6.00 μg·kg -1 for all of the antibiotics, respectively. A total of five antibiotics were successfully detected in 22 commercial eggs from local markets. This work suggests that the method is suitable for the analysis of multiclass antibiotics in eggs.

  20. Effect of fluid-to-structure heat transfer on the structural damage potential to a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hakim, S.J.; Abramson, P.B.

    1979-01-01

    Deterministic calculations simulating a hypothetical accident in a liquid-metal fast breeder reactor that leads to a hydrodynamic disassembly of the core have been carried out to estimate the system's damage potential due to the vapor-pressure-driven expansion of molten core material and its dependency on the heat transfer to the remaining structure. These calculations ignored the effect on the work potential of sodium left in the core during the disassembly. Results indicate that steel cladding in the upper axial blankets and fission gas plenum acts as a thermodynamic energy sink that could reduce the total thermodynamic work energy by between one and two orders of magnitude, provided little or no sodium is present in the core at the time of interaction. These results have been found to be insensitive to the rate of heat transferred from the molten fuel to the molten steel that comprises the molten core material

  1. The safety basis of the integral fast reactor program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  2. Analysis of C/E results of fission rate ratio measurements in several fast lead VENUS-F cores

    Science.gov (United States)

    Kochetkov, Anatoly; Krása, Antonín; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente; Bianchini, Giancarlo; Fabrizio, Valentina; Carta, Mario; Firpo, Gabriele; Fridman, Emil; Sarotto, Massimo

    2017-09-01

    During the GUINEVERE FP6 European project (2006-2011), the zero-power VENUS water-moderated reactor was modified into VENUS-F, a mock-up of a lead cooled fast spectrum system with solid components that can be operated in both critical and subcritical mode. The Fast Reactor Experiments for hybrid Applications (FREYA) FP7 project was launched in 2011 to support the designs of the MYRRHA Accelerator Driven System (ADS) and the ALFRED Lead Fast Reactor (LFR). Three VENUS-F critical core configurations, simulating the complex MYRRHA core design and one configuration devoted to the LFR ALFRED core conditions were investigated in 2015. The MYRRHA related cores simulated step by step design peculiarities like the BeO reflector and in pile sections. For all of these cores the fuel assemblies were of a simple design consisting of 30% enriched metallic uranium, lead rodlets to simulate the coolant and Al2O3 rodlets to simulate the oxide fuel. Fission rate ratios of minor actinides such as Np-237, Am-241 as well as Pu-239, Pu-240, Pu-242 and U-238 to U-235 were measured in these VENUS-F critical assemblies with small fission chambers in specially designed locations, to determine the spectral indices in the different neutron spectrum conditions. The measurements have been analyzed using advanced computational tools including deterministic and stochastic codes and different nuclear data sets like JEFF-3.1, JEFF-3.2, ENDF/B7.1 and JENDL-4.0. The analysis of the C/E discrepancies will help to improve the nuclear data in the specific energy region of fast neutron reactor spectra.

  3. A fast direct sampling algorithm for equilateral closed polygons

    International Nuclear Information System (INIS)

    Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica

    2016-01-01

    Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral. (paper)

  4. Fast and Cache-Oblivious Dynamic Programming with Local Dependencies

    DEFF Research Database (Denmark)

    Bille, Philip; Stöckel, Morten

    2012-01-01

    are widely used in bioinformatics to compare DNA and protein sequences. These problems can all be solved using essentially the same dynamic programming scheme over a two-dimensional matrix, where each entry depends locally on at most 3 neighboring entries. We present a simple, fast, and cache......-oblivious algorithm for this type of local dynamic programming suitable for comparing large-scale strings. Our algorithm outperforms the previous state-of-the-art solutions. Surprisingly, our new simple algorithm is competitive with a complicated, optimized, and tuned implementation of the best cache-aware algorithm...

  5. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  6. An evaluation of fast reactor blankets

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  7. Fuel motion in overpower tests of metallic integral fast reactor fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Bauer, T.H.; Stanford, G.S.; Regis, J.P.; Dickerman, C.E.

    1992-01-01

    In this paper results from hodoscope data analyses are presented for transient overpower (TOP) tests M5, M6, and M7 at the Transient Reactor Test Facility, with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding breach and prefailure elongation of D9-clad ternary (U-Pu-Zr) integral fast reactor-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT-9-clad binary (U-Zr) Fast Flux Test Facility driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure

  8. Reactivity monitoring for safety purposes on the UK prototype fast reactor

    International Nuclear Information System (INIS)

    Lord, D.J.; Wilkes, D.J.

    1987-01-01

    The small size and high rating of the liquid metal cooled fast breeder reactor (LMFBR) make the provision of safety related instrumentation for individual subassemblies both difficult and expensive. Global monitoring of the core is thus very attractive. Reactivity monitoring is an important part of such global monitoring. Reactivity monitoring on a short timescale (a few seconds) is used on the UK Prototype Fast Reactor (PFR) as a trip parameter and long-term reactivity monitoring is being developed as a means of providing early warning of slowly developing faults. Results are presented from PFR to demonstrate the capabilities of reactivity monitoring in an operational fast reactor power station. (author)

  9. Core performance of equilibrium fast reactors for different coolant materials and fuel types

    International Nuclear Information System (INIS)

    Mizutani, Akihiko; Sekimoto, Hiroshi

    1998-01-01

    Parametric studies with several coolant and fuel materials in the equilibrium state are performed for fast reactors in which natural uranium is fed and all of the actinides are confined. Sodium, sodium-potassium, lead, lead-bismuth and helium coolant materials, and oxide, nitride and metal fuels are employed to compare the neutronic characteristics in the equilibrium state. As to the criticality performance, sodium-potassium shows the best performance among the liquid metal coolants and the metallic fuel indicates the best performance

  10. The US Advanced Liquid Metal Reactor and the Fast Flux Test Facility Phase IIA passive safety tests

    International Nuclear Information System (INIS)

    Shen, P.K.; Harris, R.A.; Campbell, L.R.; Dautel, W.A.; Dubberley, A.E.; Gluekler, E.L.

    1992-07-01

    This report discusses the safety approach of the Advanced Liquid Metal reactor program, sponsored by the US Department of Energy, which relies upon passive reactor responses to off-normal condition to limit power and temperature excursions to levels that allow safety margins. Gas expansion modules (GEM) have included in the design to provide negative reactivity to enhance these margins in the extremely unlikely event that pumping power is lost and the highly reliable scram system fails to operate. The feasibility and beneficial features of these devices were first demonstrated in the core of the Fast Flux Test Facility (FFTF) in 1986. Preapplication safety evaluations by the US Nuclear Regulatory Commission have identified areas that must be addressed if these devices are to be relied on. One of these areas is the response of the reactor when it is critical and the pumps are turned on, resulting in positive reactivity being added to the core. Tests to examine such transients have been performed as part of the continuing FFTF program to confirm the passive safety characteristics of liquid metal reactors (LMR). The primary tests consisted of starting the main coolant pumps, which forced sodium coolant into the GEMS, decreasing neutron leakage and adding positive reactivity. The resulting transients were shown to be benign and easily mitigated by the reactivity feedbacks inherent in the FFTF and all LMRs. Steady-state auxiliary tests of the GEM and feedback reactivity worths accurately predicted the transient results. The auxiliary GEM worth tests also demonstrated that the worth can be determined at a subcritical state, which allows for a verification of the GEM's availability prior to ascending to power

  11. Direct reduction of uranium dioxide and few other metal oxides to corresponding metals by high temperature molten salt electrolysis

    International Nuclear Information System (INIS)

    Mohandas, K.S.

    2017-01-01

    Molten salt based electro-reduction processes, capable of directly converting solid metal oxides to metals with minimum intermediate steps, are being studied worldwide. Production of metals apart, the process assumes importance in nuclear technology in the context of pyrochemical reprocessing of spent oxide fuels, for it serves as an intermediate step to convert spent oxide fuel to a metal alloy, which in turn can be processed by molten salt electro-refining method to gain the actinides present in it. In the context of future metal fuel fast reactor programme, the electrochemical process was studied for conversion of solid UO_2 to U metal in LiCl-1wt.% Li_2O melt at 650 °C with platinum anode at the Metal Processing Studies Section, PMPD, IGCAR. A brief overview of the work is presented in the paper

  12. Overview of fast reactor safety research and development in the USA

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Avery, R.; Marchaterre, J.F.

    1986-01-01

    The liquid metal reactor (LMR) safety R and D program in the U.S. is presently focused on support of two modular innovative reactor concepts: PRISM - the General Electric Power Reactor Inherently Safe Module and SAFR - the Rockwell International Sodium Advanced Fast Reactor. These reactor plant concepts accommodate the use of either oxide fuel or the metal fuel which is under development in the Argonne National Laboratory (ANL) Integral Fast Reactor (IFR) program. Both concepts emphasize prevention of accidents through enhancement of inherent and passive safety characteristics. Enhancement of these characteristics is expected to be a major factor in establishing new and improved safety criteria and licensing arrangements with regulatory authorities for advanced reactors. Limited work is also continuing on the Large Scale Prototype Breeder (LSPB), a large pool plant design. Major elements of the current and restructured safety program are discussed. (author)

  13. Photoionization in negative streamers : fast computations and two propagation modes

    NARCIS (Netherlands)

    Luque, A.; Ebert, U.M.; Montijn, C.; Hundsdorfer, W.

    2007-01-01

    Streamer discharges play a central role in electric breakdown of matter in pulsed electric fields, both in nature and in technology. Reliable and fast computations of the minimal model for negative streamers in simple gases such as nitrogen have recently been developed. However, photoionization was

  14. Fabrication of cermet fuel for fast reactor

    International Nuclear Information System (INIS)

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  15. Status of national programmes on fast reactors in Korea

    International Nuclear Information System (INIS)

    Kim, Y.I.; Hahn, D.

    2002-01-01

    The role of nuclear power plants in electricity generation in Korea is expected to become more important in the years to come due to poor natural resources and green house gases. This heavy dependence on nuclear power eventually raises the issues of efficient utilization of uranium resources and of spent fuel storage. Fast reactors can resolve these issues. Korea Atomic Energy Research Institute started development of a Liquid Metal Reactor design in 1997 and completed the Conceptual Design in March of 2002. Efforts are currently directed toward the development of advanced fast reactor concepts and basic key technologies. (author)

  16. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  17. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  18. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng; Xia, Chuan; Zheng, Dongxing; Wang, Ping; Jin, Chao; Bai, Haili

    2015-01-01

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  19. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Kuang, E-mail: z.kuang@liv.ac.uk [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom); Dun Liu; Perrie, Walter; Edwardson, Stuart; Sharp, Martin; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom)

    2009-04-15

    Fast parallel femtosecond laser surface micro-structuring is demonstrated using a spatial light modulator (SLM). The Gratings and Lenses algorithm, which is simple and computationally fast, is used to calculate computer generated holograms (CGHs) producing diffractive multiple beams for the parallel processing. The results show that the finite laser bandwidth can significantly alter the intensity distribution of diffracted beams at higher angles resulting in elongated hole shapes. In addition, by synchronisation of applied CGHs and the scanning system, true 3D micro-structures are created on Ti6Al4V.

  20. Experimental search for compression phenomena in fast nucleus--nucleus collisions

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.; Obst, E.

    1977-01-01

    The occurrence of compression phenomena and shock waves, connected with the increase of the density of the nuclear matter during the interpenetration of two fast nuclei, are discussed. Current experiments dealing with this problem are reviewed. Before considering the mechanism of the interpenetration of two fast nuclei it may be useful to look at more simple situations, i.e., proton-proton interactions, then to envelop them with nuclear matter, considering proton-nucleus interactions. Only very general features are described, which may give suggestions for the understanding of the nucleus-nucleus impact