WorldWideScience

Sample records for simple f-theory compactification

  1. Fixing All Moduli in a Simple F-Theory Compactification

    International Nuclear Information System (INIS)

    Denef, F.

    2005-01-01

    We discuss a simple example of an F-theory compactification on a Calabi-Yau fourfold where background fluxes, together with nonperturbative effects from Euclidean D3 instantons and gauge dynamics on D7 branes, allow us to fix all closed and open string moduli. We explicitly check that the known higher order corrections to the potential, which we neglect in our leading approximation, only shift the results by a small amount. In our exploration of the model, we encounter interesting new phenomena, including examples of transitions where D7 branes absorb O3 planes, while changing topology to preserve the net D3 charge

  2. Discrete structures in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Till, Oskar

    2016-05-04

    In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.

  3. Gauge fluxes in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ling

    2016-07-13

    In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.

  4. Right-handed neutrinos in F-theory compactifications

    International Nuclear Information System (INIS)

    Tatar, Radu; Tsuchiya, Yoichi; Watari, Taizan

    2009-01-01

    F-theory is one of the frameworks where up-type Yukawa couplings of SU(5) unified theories are naturally generated. As charged matter fields have localized zero modes in F-theory, a study of flavor structure could be easier in F-theory than in Heterotic string theory. In a study of flavor structure in the lepton sector, however, an important role is played by right-handed neutrinos, which are not charged under the SU(5) unified gauge group. It is therefore solicited to find out what right-handed neutrinos are in F-theory compactifications and how their Majorana mass terms are generated together with developing a theoretical framework where effective Yukawa couplings involving both SU(5)-neutral and charged fields can be calculated. We find that the complex structure moduli chiral multiplets of F-theory compactifications are good candidates to be right-handed neutrinos, and that their Majorana masses are automatically generated in flux compactifications. The mass scale is predicted to be somewhat below the GUT scale, which is in nice agreement with the Δm 2 of the atmospheric neutrino oscillation through the see-saw mechanism. We also discuss various scenarios of solving the dimension-4 proton decay problem in supersymmetric F-theory compactifications, along with considering the consequences of those scenarios in the nature of right-handed neutrinos.

  5. Effective actions for F-theory compactifications and tensor theories

    International Nuclear Information System (INIS)

    Bonetti, Federico

    2014-01-01

    In this thesis we study the low-energy effective dynamics emerging from a class of F-theory compactifications in four and six dimensions. We also investigate six-dimensional supersymmetric quantum field theories with self-dual tensors, motivated by the problem of describing the long-wavelength regime of a stack of M5-branes in M-theory. These setups share interesting common features. They both constitute examples of intrinsically non-perturbative physics. On the one hand, in the context of F-theory the non-perturbative character is encoded in the geometric formulation of this class of string vacua, which allows the complexified string coupling to vary in space. On the other hand, the dynamics of a stack of multiple M5-branes flows in the infrared to a novel kind of superconformal field theories in six dimensions - commonly referred to as (2,0) theories - that are expected to possess no perturbative weakly coupled regime and have resisted a complete understanding so far. In particular, no Lagrangian description is known for these models. The strategy we employ to address these two problems is also analogous. A recurring Leitmotif of our work is a transdimensional treatment of the system under examination: in order to extract information about dynamics in d dimensions we consider a (d-1)-dimensional setup. As far as F-theory compactifications are concerned, this is a consequence of the duality between M-theory and F-theory, which constitutes our main tool in the derivation of the effective action of F-theory compactifications. We apply it to six-dimensional F-theory vacua, obtained by taking the internal space to be an elliptically fibered Calabi-Yau threefold, but we also employ it to explore a novel kind of F-theory constructions in four dimensions based on manifolds with Spin(7) holonomy. With reference to six-dimensional (2,0) theories, the transdimensional character of our approach relies in the idea of studying these theories in five dimensions. Indeed, we

  6. The N=1 effective action of F-theory compactifications

    International Nuclear Information System (INIS)

    Grimm, Thomas W.

    2011-01-01

    The four-dimensional N=1 effective action of F-theory compactified on a Calabi-Yau fourfold is studied by lifting a three-dimensional M-theory compactification. The lift is performed by using T-duality realized via a Legendre transform on the level of the effective action, and the application of vector-scalar duality in three dimensions. The leading order Kaehler potential and gauge-kinetic coupling functions are determined. In these compactifications two sources of gauge theories are present. Space-time filling non-Abelian seven-branes arise at the singularities of the elliptic fibration of the fourfold. Their couplings are included by resolving the singular fourfold. Generically a U(1) r gauge theory arises from the R-R bulk sector if the base of the elliptically fibered Calabi-Yau fourfold supports 2r harmonic three-forms. The gauge coupling functions depend holomorphically on the complex structure moduli of the fourfold, comprising closed and open string degrees of freedom. The four-dimensional electro-magnetic duality is studied in the three-dimensional effective theory obtained after M-theory compactification. A discussion of matter couplings transforming in the adjoint of the seven-brane gauge group is included.

  7. Physics of F-theory compactifications without section

    International Nuclear Information System (INIS)

    Anderson, Lara B.; García-Etxebarria, Iñaki; Grimm, Thomas W.; Keitel, Jan

    2014-01-01

    We study the physics of F-theory compactifications on genus-one fibrations without section by using an M-theory dual description. The five-dimensional action obtained by considering M-theory on a Calabi-Yau threefold is compared with a six-dimensional F-theory effective action reduced on an additional circle. We propose that the six-dimensional effective action of these setups admits geometrically massive U(1) vectors with a charged hypermultiplet spectrum. The absence of a section induces NS-NS and R-R three-form fluxes in F-theory that are non-trivially supported along the circle and induce a shift-gauging of certain axions with respect to the Kaluza-Klein vector. In the five-dimensional effective theory the Kaluza-Klein vector and the massive U(1)s combine into a linear combination that is massless. This U(1) is identified with the massless U(1) corresponding to the multi-section of the Calabi-Yau threefold in M-theory. We confirm this interpretation by computing the one-loop Chern-Simons terms for the massless vectors of the five-dimensional setup by integrating out all massive states. A closed formula is found that accounts for the hypermultiplets charged under the massive U(1)s.

  8. Universal properties of type IIB and F-theory flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Marsh, M.C. David; Sousa, Kepa

    2016-01-01

    We consider flux compactifications of type IIB string theory and F-theory in which the respective superpotentials at large complex structure are dominated by cubic or quartic terms in the complex structure moduli. In this limit, the low-energy effective theory exhibits universal properties that are insensitive to the details of the compactification manifold or the flux configuration. Focussing on the complex structure and axio-dilaton sector, we show that there are no vacua in this region and the spectrum of the Hessian matrix is highly peaked and consists only of three distinct eigenvalues (0, 2m 3/2 2 and 8m 3/2 2 ), independently of the number of moduli. We briefly comment on how the inclusion of Kähler moduli affect these findings. Our results generalise those of Brodie & Marsh http://dx.doi.org/10.1007/JHEP01(2016)037, in which these universal properties were found in a subspace of the large complex structure limit of type IIB compactifications.

  9. Fluxes in F-theory compactifications on genus-one fibrations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ling [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität,Theresienstraße 37, 80333 München (Germany); Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-01-18

    We initiate the construction of gauge fluxes in F-theory compactifications on genus-one fibrations which only have a multi-section as opposed to a section. F-theory on such spaces gives rise to discrete gauge symmetries in the effective action. We generalize the transversality conditions on gauge fluxes known for elliptic fibrations by taking into account the properties of the available multi-section. We test these general conditions by constructing all vertical gauge fluxes in a bisection model with gauge group SU(5)×ℤ{sub 2}. The non-abelian anomalies are shown to vanish. These flux solutions are dynamically related to fluxes on a fibration with gauge group SU(5)×U(1) by a conifold transition. Considerations of flux quantization reveal an arithmetic constraint on certain intersection numbers on the base which must necessarily be satisfied in a smooth geometry. Combined with the proposed transversality conditions on the fluxes these conditions are shown to imply cancellation of the discrete ℤ{sub 2} gauge anomalies as required by general consistency considerations.

  10. Fluxes in F-theory compactifications on genus-one fibrations

    International Nuclear Information System (INIS)

    Lin, Ling; Mayrhofer, Christoph; Till, Oskar; Weigand, Timo

    2016-01-01

    We initiate the construction of gauge fluxes in F-theory compactifications on genus-one fibrations which only have a multi-section as opposed to a section. F-theory on such spaces gives rise to discrete gauge symmetries in the effective action. We generalize the transversality conditions on gauge fluxes known for elliptic fibrations by taking into account the properties of the available multi-section. We test these general conditions by constructing all vertical gauge fluxes in a bisection model with gauge group SU(5)×ℤ_2. The non-abelian anomalies are shown to vanish. These flux solutions are dynamically related to fluxes on a fibration with gauge group SU(5)×U(1) by a conifold transition. Considerations of flux quantization reveal an arithmetic constraint on certain intersection numbers on the base which must necessarily be satisfied in a smooth geometry. Combined with the proposed transversality conditions on the fluxes these conditions are shown to imply cancellation of the discrete ℤ_2 gauge anomalies as required by general consistency considerations.

  11. Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications

    International Nuclear Information System (INIS)

    Aldazabal, G.; Camara, P.G.; Rosabal, J.A.

    2009-01-01

    We discuss the structure of 4D gauged supergravity algebras corresponding to globally non-geometric compactifications of F-theory, admitting a local geometric description in terms of 10D supergravity. By starting with the well-known algebra of gauge generators associated to non-geometric type IIB fluxes, we derive a full algebra containing all, closed RR and NSNS, geometric and non-geometric dual fluxes. We achieve this generalization by a systematic application of SL(2,Z) duality transformations and by taking care of the spinorial structure of the fluxes. The resulting algebra encodes much information about the higher dimensional theory. In particular, tadpole equations and Bianchi identities are obtainable as Jacobi identities of the algebra. When a sector of magnetized (p,q) 7-branes is included, certain closed axions are gauged by the U(1) transformations on the branes. We indicate how the diagonal gauge generators of the branes can be incorporated into the full algebra, and show that Freed-Witten constraints and tadpole cancellation conditions for (p,q) 7-branes can be described as Jacobi identities satisfied by the algebra mixing bulk and brane gauge generators

  12. Elevating the Free-Fermion $Z_{2} \\times Z_{2}$ Orbifold Model to a Compactification of $F$-Theory

    CERN Document Server

    Berglund, P; Faraggi, A E; Nanopoulos, Dimitri V; Qiu, Z; Berglund, Per; Ellis, John; Faraggi, Alon E.; Qiu, Zongan

    2000-01-01

    We study the elliptic fibrations of some Calabi-Yau three-folds, including the $Z_2\\times Z_2$ orbifold with $(h_{1,1},h_{2,1})=(27,3)$, which is equivalent to the common framework of realistic free-fermion models, as well as related models with $(h_{1,1},h_{2,1})=(51,3)$ and $(31,7)$. Two related puzzles arise when one considers the $(h_{1,1},h_{2,1})=(27,3)$ model as an F-theory compactification to six dimensions. One is that the condition for the vanishing of the gravitational anomaly is not satisfied. This suggests that either a new feature must appear in the F-theory limit of the corresponding four-dimensional type-IIA vacuum, or that the F-theory compactification does not make sense. However, the elliptic fibration is well defined everywhere except at four singular points in the base. We speculate on the possible existence of N=1 tensor and hypermultiplets at these points which would cancel the gravitational anomaly.

  13. General U(1)xU(1) F-theory Compactifications and Beyond: Geometry of unHiggsings and novel Matter Structure

    CERN Document Server

    Cvetic, Mirjam; Piragua, Hernan; Taylor, Washington

    2015-01-01

    We construct the general form of an F-theory compactification with two U(1) factors based on a general elliptically fibered Calabi-Yau manifold with Mordell-Weil group of rank two. This construction produces broad classes of models with diverse matter spectra, including many that are not realized in earlier F-theory constructions with U(1)xU(1) gauge symmetry. Generic U(1)xU(1) models can be related to a Higgsed non-Abelian model with gauge group SU(2)xSU(2)xSU(3), SU(2)^3xSU(3), or a subgroup thereof. The nonlocal horizontal divisors of the Mordell-Weil group are replaced with local vertical divisors associated with the Cartan generators of non-Abelian gauge groups from Kodaira singularities. We give a global resolution of codimension two singularities of the Abelian model; we identify the full anomaly free matter content, and match it to the unHiggsed non-Abelian model. The non-Abelian Weierstrass model exhibits a new algebraic description of the singularities in the fibration that results in the first expl...

  14. Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories

    International Nuclear Information System (INIS)

    Giribet, Gaston; Oliva, Julio; Troncoso, Ricardo

    2006-01-01

    We look for the existence of asymptotically flat simple compactifications of the form M D-p x T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold M D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on M D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if M D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories

  15. Description of a class of superstring compactifications related to semi-simple Lie algebras

    International Nuclear Information System (INIS)

    Markushevich, D.I.; Ol'shanetskij, M.A.; Perelomov, A.M.

    1986-01-01

    A class of vacuum configurations in the superstring theory obtained by compactification of physical dimensions from ten to four is constructed. The compactification scheme involves taking quotients of tori of semisimple Lie algebras by finite symmetry group actions. The complete list of such configurations arising from actions by a Coxeter transformation is given. Some topological invariants having physical interpretations are calculated

  16. Fixing D7-brane positions by F-theory fluxes

    International Nuclear Information System (INIS)

    Braun, A.P.; Hebecker, A.; Luedeling, C.; Valandro, R.

    2009-01-01

    To do realistic model building in type IIB supergravity, it is important to understand how to fix D7-brane positions by the choice of fluxes. More generally, F-theory model building requires the understanding of how fluxes determine the singularity structure (and hence gauge group and matter content) of the compactification. We analyse this problem in the simple setting of M-theory on K3xK3. Given a certain flux which is consistent with the F-theory limit, we can explicitly derive the positions at which D7 branes or stacks of D7 branes are stabilised. The analysis is based on a parameterization of the moduli space of type IIB string theory on T 2 /Z 2 (including D7-brane positions) in terms of the periods of integral cycles of M-theory on K3. This allows us, in particular, to select a specific desired gauge group by the choice of flux numbers.

  17. Axion inflation in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Thomas W.

    2014-12-12

    We study the dynamics of axion-like fields in F-theory and suggest that they can serve as inflatons in models of natural inflation. The axions arise from harmonic three-forms on the F-theory compactification space and parameterize a complex torus that varies over the geometric moduli space. In particular, this implies that the axion decay constants depend on the complex structure moduli that can be fixed by background fluxes. This might allow tuning them to be super-Planckian in a controlled way and allow for interesting single field inflationary models. We argue that this requires a localization of the three-forms near regions of strong string coupling, analogously to the reasoning that GUT physics requires the use of F-theory. These models can admit a tensor to scalar ratio r>0.1.

  18. Flux Compactification

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Michael R.; Kachru, Shamit

    2006-10-24

    We review recent work in which compactifications of string and M theory are constructed in which all scalar fields (moduli) are massive, and supersymmetry is broken with a small positive cosmological constant, features needed to reproduce real world physics. We explain how this work implies that there is a ''landscape'' of string/M theory vacua, perhaps containing many candidates for describing real world physics, and present the arguments for and against this idea. We discuss statistical surveys of the landscape, and the prospects for testable consequences of this picture, such as observable effects of moduli, constraints on early cosmology, and predictions for the scale of supersymmetry breaking.

  19. F-Theory - From Geometry to Physics and Back

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Compactifications of string theory have the potential to form a bridge between what we believe is a consistent quantum theory of gravity in 10 spacetime dimensions and observed physics in four dimensions. At the same time, beautiful results from mathematics, especially algebraic geometry, are directly linked to some of the key concepts in modern particle and quantum field theory. This theory colloquium will illustrate some of these ideas in the context of F-theory, which provides a non-perturbative formulation of a class of string compactifications in their geometric regime. Recent applications of F-theory range from very concrete suggestions to address known challenges in physics beyond the Standard Model to the 'physicalization of geometry' to the construction and investigations of strongly coupled quantum field theories in various dimensions. After reviewing examples of such applications we will conclude by demonstrating the close links between geometry and physics in F-theory via some new results on the r...

  20. The gravitational sector of 2d (0,2) F-theory vacua

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Craig [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, Heidelberg, 69120 (Germany); Schäfer-Nameki, Sakura [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, Heidelberg, 69120 (Germany)

    2017-05-19

    F-theory compactifications on Calabi-Yau fivefolds give rise to two-dimensional N=(0,2) supersymmetric field theories coupled to gravity. We explore the dilaton supergravity defined by the moduli sector of such compactifications. The massless moduli spectrum is found by uplifting Type IIB compactifications on Calabi-Yau fourfolds. This spectrum matches expectations from duality with M-theory on the same elliptic fibration. The latter defines an N=2 Supersymmetric Quantum Mechanics related to the 2d (0,2) F-theory supergravity via circle reduction. Using our recent results on the gravitational anomalies of duality twisted D3-branes wrapping curves in Calabi-Yau fivefolds we show that the F-theory spectrum is anomaly free. We match the classical Chern-Simons terms of the M-theory Super Quantum Mechanics to one-loop contributions to the effective action by S{sup 1} reduction of the dual F-theory.

  1. The gravitational sector of 2d (0,2) F-theory vacua

    International Nuclear Information System (INIS)

    Lawrie, Craig; Schäfer-Nameki, Sakura; Weigand, Timo

    2017-01-01

    F-theory compactifications on Calabi-Yau fivefolds give rise to two-dimensional N=(0,2) supersymmetric field theories coupled to gravity. We explore the dilaton supergravity defined by the moduli sector of such compactifications. The massless moduli spectrum is found by uplifting Type IIB compactifications on Calabi-Yau fourfolds. This spectrum matches expectations from duality with M-theory on the same elliptic fibration. The latter defines an N=2 Supersymmetric Quantum Mechanics related to the 2d (0,2) F-theory supergravity via circle reduction. Using our recent results on the gravitational anomalies of duality twisted D3-branes wrapping curves in Calabi-Yau fivefolds we show that the F-theory spectrum is anomaly free. We match the classical Chern-Simons terms of the M-theory Super Quantum Mechanics to one-loop contributions to the effective action by S 1 reduction of the dual F-theory.

  2. Abelian gauge symmetries in F-theory and dual theories

    Science.gov (United States)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  3. Five-brane superpotentials and heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Ha, Tae-Won; Klemm, Albrecht; Klevers, Denis

    2010-01-01

    Under heterotic/F-theory duality it was argued that a wide class of heterotic five-branes is mapped into the geometry of an F-theory compactification manifold. In four-dimensional compactifications this identifies a five-brane wrapped on a curve in the base of an elliptically fibered Calabi-Yau threefold with a specific F-theory Calabi-Yau fourfold containing the blow-up of the five-brane curve. We argue that this duality can be reformulated by first constructing a non-Calabi-Yau heterotic threefold by blowing up the curve of the five-brane into a divisor with five-brane flux. Employing heterotic/F-theory duality this leads us to the construction of a Calabi-Yau fourfold and four-form flux. Moreover, we obtain an explicit map between the five-brane superpotential and an F-theory flux superpotential. The map of the open-closed deformation problem of a five-brane in a compact Calabi-Yau threefold into a deformation problem of complex structures on a dual Calabi-Yau fourfold with four-form flux provides a powerful tool to explicitly compute the five-brane superpotential.

  4. Constraints on GUT 7-brane topology in F-theory

    International Nuclear Information System (INIS)

    Hayashi, Hirotaka; Kawano, Teruhiko; Watari, Taizan

    2012-01-01

    We study the relation between phenomenological requirements and the topology of the surfaces that GUT 7-branes wrap in F-theory compactifications. In addition to the exotic matter free condition in the hypercharge flux scenario of SU(5) GUT breaking, we analyze a new condition that comes from a discrete symmetry aligning the contributions to low-energy Yukawa matrices from a number of codimension-three singularity points. We see that the exotic matter free condition excludes Hirzebruch surfaces (except F 0 ) as the GUT surface, correcting an existing proof in the literature. We further find that the discrete symmetry for the alignment of the Yukawa matrices excludes del Pezzo surfaces and a rational elliptic surface as the GUT surface. Therefore, some GUT 7-brane surfaces are good for some phenomenological requirements, but sometimes not for others, and this aspect should be kept in mind in geometry search in F-theory compactifications.

  5. On discrete symmetries and torsion homology in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität München,München (Germany); Palti, Eran; Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,Heidelberg (Germany)

    2015-06-04

    We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a ℤ{sub 2} symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a ℤ{sub 2} gauge symmetry. We show that the resulting five-dimensional theories do not have a ℤ{sub 2} symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a ℤ{sub 2} symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.

  6. The geometry and physics of Abelian gauge groups in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Keitel, Jan

    2015-07-14

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  7. The geometry and physics of Abelian gauge groups in F-theory

    International Nuclear Information System (INIS)

    Keitel, Jan

    2015-01-01

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  8. F-theory vacua with $\\mathbb Z_3$ gauge symmetry

    CERN Document Server

    Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan; Poretschkin, Maximilian

    2015-01-01

    Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi-Yau manifolds. Such geometries appear in families that are parameterized by the Tate-Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate-Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1) symmetries. The Higgs fields arise from vanishing cycles in $I_2$-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry pla...

  9. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  10. Tools for CICYs in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lara B.; Gao, Xin; Gray, James; Lee, Seung-Joo [Physics Department, Virginia Tech,Robeson Hall, Blacksburg, VA 24061 (United States)

    2016-11-02

    We provide a set of tools for analyzing the geometry of elliptically fibered Calabi-Yau manifolds, starting with a description of the total space rather than with a Weierstrass model or a specified type of fiber/base. Such an approach to the subject of F-theory compactification makes certain geometric properties, which are usually hidden, manifest. Specifically, we review how to isolate genus-one fibrations in such geometries and then describe how to find their sections explicitly. This includes a full parameterization of the Mordell-Weil group where non-trivial. We then describe how to analyze the associated Weierstrass models, Jacobians and resolved geometries. We illustrate our discussion with concrete examples which are complete intersections in products of projective spaces (CICYs). The examples presented include cases exhibiting non-abelian symmetries and higher rank Mordell-Weil group. We also make some comments on non-flat fibrations in this context. In a companion paper http://arxiv.org/abs/1608.07555 to this one, these results will be used to analyze the consequences for string dualities of the ubiquity of multiple fibrations in known constructions of Calabi-Yau manifolds.

  11. F-theory and 2d (0,2) theories

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer-Nameki, Sakura [Department of Mathematics, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-05-11

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0,2) GLSM is realized via different T-branes or gluing data in F-theory.

  12. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  13. Inflationary cosmologies from compactification?

    International Nuclear Information System (INIS)

    Wohlfarth, Mattias N.R.

    2004-01-01

    We consider the compactification of (d+n)-dimensional pure gravity and of superstring or M-theory on an n-dimensional internal space to a d-dimensional Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology, with a spatial curvature k=0,±1, in the Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, do not lead to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times

  14. New Supersymmetric String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit

    2002-11-25

    We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.

  15. Lobotomy of flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala,Box 803, SE-751 08 Uppsala (Sweden); Guarino, Adolfo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Roest, Diederik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4 9747 AG Groningen (Netherlands)

    2014-05-15

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T{sup 6} with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N=4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N=8 theory.

  16. String theory of Calabi-Yau compactifications

    International Nuclear Information System (INIS)

    Luetken, C.A.

    1989-01-01

    The conformal field theory description of Calabi-Yau compactifications of the heterotic superstring from 10 to 4 dimensions is outlined. The basic ideas of ordinary (bosonic) conformal field theory are explained before describing the exactly solvable N=2 superconformal minimal models which are needed in the tensor construction of certain particularly simple string vacua. Using a simple sigma-model construction of algebraic varieties and drawing on insight gained from the Landau-Ginzburg description of critical phenomena, it is explained how the critical behaviour of these 2-dimensional solvable quantum field theories with complex supersymmetry may be regarded as string compactification on a Calabi-Yau background. The virtue of this is to provide a tool for computing exact (tree level) results for strings in these highly non-trivial vacua, including all the Yukawa couplings needed in the construction of the low-energy effective field theory. (orig.)

  17. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  18. Ubiquity of non-geometry in heterotic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany); Lüst, Dieter [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany); Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany); Massai, Stefano [Enrico Fermi Institute, University of Chicago,5640 S Ellis Ave, Chicago, IL 60637 (United States); Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany); Mayrhofer, Christoph [Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany)

    2017-03-08

    We study the effect of quantum corrections on heterotic compactifications on elliptic fibrations away from the stable degeneration limit, elaborating on a recent observation by Malmendier and Morrison. We show that already for the simplest non-trivial elliptic fibration the effect is quite dramatic: the I{sub 1} degeneration with trivial gauge background dynamically splits into two T-fects with monodromy around each T-fect being (conjugate to) T-duality along one of the legs of the T{sup 2}. This implies that almost every elliptic heterotic compactification becomes a non-geometric T-fold away from the stable degeneration limit. We also point out a subtlety due to this non-geometric splitting at finite fiber size. It arises when determining, via heterotic/F-theory duality, the SCFTs associated to a small number of pointlike instantons probing heterotic ADE singularities. Along the way we resolve various puzzles in the literature.

  19. Holomorphic couplings in non-perturbative string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis Marco

    2011-06-15

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)

  20. Holomorphic couplings in non-perturbative string compactifications

    International Nuclear Information System (INIS)

    Klevers, Denis Marco

    2011-06-01

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z 3 , that is canonically constructed from the original five-brane and Calabi-Yau threefold Z 3 via a blow-up. We exploit the use of the blow-up threefold Z 3 as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z 3 as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z 3 , that is generated dynamically by the five-brane backreaction. (orig.)

  1. From M-theory higher curvature terms to α′ corrections in F-theory

    Directory of Open Access Journals (Sweden)

    Thomas W. Grimm

    2016-02-01

    Full Text Available We perform a Kaluza–Klein reduction of eleven-dimensional supergravity on a Calabi–Yau fourfold including terms quartic and cubic in the Riemann curvature and determine the induced corrections to the three-dimensional two-derivative N=2 effective action. We focus on the effective Einstein–Hilbert term and the kinetic terms for vectors. Dualizing the vectors into scalars, we derive the resulting Kähler potential and complex coordinates. The classical expressions for the Kähler coordinates are non-trivially modified by terms containing the third Chern form of the background Calabi–Yau fourfold, while the functional form of the Kähler potential is shown to be uncorrected. We omit terms proportional to the non-harmonic part of the third Chern form. For elliptically fibered Calabi–Yau fourfolds the corrections can be uplifted to a four-dimensional F-theory compactification. We argue that also the four-dimensional N=1 Kähler coordinates receive non-trivial corrections. We find a simple expression for the induced corrections for different Abelian and non-Abelian seven-brane configurations by scanning over many Calabi–Yau fourfolds with resolved singularities. The interpretation of this expression leads us to conjecture that the higher-curvature corrections correspond to α′2 corrections that arise from open strings at the self-intersection of seven-branes.

  2. On quantum corrected Kahler potentials in F-theory

    CERN Document Server

    García-Etxebarria, Iñaki; Savelli, Raffaele; Shiu, Gary

    2013-01-01

    We work out the exact in string coupling and perturbatively exact in \\alpha' result for the vector multiplet moduli K\\"ahler potential in a specific N=2 compactification of F-theory. The well-known correction cubic in {\\alpha}' is absent, but there is a rich structure of corrections at all even orders in \\alpha'. Moreover, each of these orders independently displays an SL(2,Z) invariant set of corrections in the string coupling. This generalizes earlier findings to the case of a non-trivial elliptic fibration. Our results pave the way for the analysis of quantum corrections in the more complicated N=1 context, and may have interesting implications for the study of moduli stabilization in string theory.

  3. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  4. Heterotic String/F-theory Duality from Mirror Symmetry

    CERN Document Server

    Berglund, Per

    1998-01-01

    We use local mirror symmetry in type IIA string compactifications on Calabi-Yau n+1 folds $X_{n+1}$ to construct vector bundles on (possibly singular) elliptically fibered Calabi-Yau n-folds Z_n. The interpretation of these data as valid classical solutions of the heterotic string compactified on Z_n proves F-theory/heterotic duality at the classical level. Toric geometry is used to establish a systematic dictionary that assigns to each given toric n+1-fold $X_{n+1}$ a toric n fold Z_n together with a specific family of sheafs on it. This allows for a systematic construction of phenomenologically interesting d=4 N=1 heterotic vacua, e.g. on deformations of the tangent bundle, with grand unified and SU(3)\\times SU(2) gauge groups. As another application we find non-perturbative gauge enhancements of the heterotic string on singular Calabi-Yau manifolds and new non-perturbative dualities relating heterotic compactifications on different manifolds.

  5. New F-theory lifts

    International Nuclear Information System (INIS)

    Collinucci, Andres

    2009-01-01

    In this note, a procedure is developed to explicitly construct non-trivial F-theory lifts of perturbative IIB orientifold models on Calabi-Yau complete intersections in toric varieties. This procedure works on Calabi-Yau orientifolds where the involution coordinate can have arbitrary projective weight, as opposed to the well-known hypersurface cases where it has half the weight of the equation defining the CY threefold. This opens up the possibility of lifting more general setups, such as models that have O3-planes.

  6. Non-perturbative selection rules in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)

    2015-09-29

    We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.

  7. Meromorphic flux compactification

    Energy Technology Data Exchange (ETDEWEB)

    Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)

    2017-04-26

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  8. Meromorphic flux compactification

    International Nuclear Information System (INIS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-01-01

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  9. Three-form periods on Calabi-Yau fourfolds: toric hypersurfaces and F-theory applications

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Sebastian; Grimm, Thomas W. [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich (Germany)

    2017-05-30

    The study of the geometry of Calabi-Yau fourfolds is relevant for compactifications of string theory, M-theory, and F-theory to various dimensions. This work introduces the mathematical machinery to derive the complete moduli dependence of the periods of non-trivial three-forms for fourfolds realized as hypersurfaces in toric ambient spaces. It sets the stage to determine Picard-Fuchs-type differential equations and integral expressions for these forms. The key tool is the observation that non-trivial three-forms on fourfold hypersurfaces in toric ambient spaces always stem from divisors that are build out of trees of toric surfaces fibered over Riemann surfaces. The three-form periods are then non-trivially related to the one-form periods of these Riemann surfaces. In general, the three-form periods are known to vary holomorphically over the complex structure moduli space and play an important role in the effective actions arising in fourfold compactifications. We discuss two explicit example fourfolds for F-theory compactifications in which the three-form periods determine axion decay constants.

  10. Compactifications of heterotic strings on non-Kaehler complex manifolds II

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Dasgupta, Keshav; Green, Paul S.; Sharpe, Eric

    2004-01-01

    We continue our study of heterotic compactifications on non-Kaehler complex manifolds with torsion. We give further evidence of the consistency of the six-dimensional manifold presented earlier and discuss the anomaly cancellation and possible supergravity description for a generic non-Kaehler complex manifold using the newly proposed superpotential. The manifolds studied in our earlier papers had zero Euler characteristics. We construct new examples of non-Kaehler complex manifolds with torsion in lower dimensions, that have nonzero Euler characteristics. Some of these examples are constructed from consistent backgrounds in F-theory and therefore are solutions to the string equations of motion. We discuss consistency conditions for compactifications of the heterotic string on smooth non-Kaehler manifolds and illustrate how some results well known for Calabi-Yau compactifications, including counting the number of generations, apply to the non-Kaehler case. We briefly address various issues regarding possible phenomenological applications

  11. Global F-theory GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.; /Bonn U.; Jurke, Benjamin; /Munich, Max Planck Inst.; Weigand, Timo; /SLAC

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.

  12. Global F-theory GUTs

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Grimm, Thomas W.; Jurke, Benjamin; Weigand, Timo

    2010-01-01

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4)xU(1) X ] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P 4 [4].

  13. Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section

    International Nuclear Information System (INIS)

    Kimura, Yusuke

    2017-01-01

    We determine the discrete gauge symmetries that arise in F-theory compactifications on examples of genus-one fibered Calabi-Yau 4-folds without a section. We construct genus-one fibered Calabi-Yau 4-folds using Fano manifolds, cyclic 3-fold covers of Fano 4-folds, and Segre embeddings of products of projective spaces. Discrete ℤ 5 , ℤ 4 , ℤ 3 and ℤ 2 symmetries arise in these constructions. We introduce a general method to obtain multisections for several constructions of genus-one fibered Calabi-Yau manifolds. The pullbacks of hyperplane classes under certain projections represent multisections to these genus-one fibrations. We determine the degrees of these multisections by computing the intersection numbers with fiber classes. As a result, we deduce the discrete gauge symmetries that arise in F-theory compactifications. This method applies to various Calabi-Yau genus-one fibrations.

  14. F-theory and the landscape of intersecting D7-branes

    International Nuclear Information System (INIS)

    Braun, Andreas

    2010-01-01

    In this work, the moduli of D7-branes in type IIB orientifold compactifications and their stabilization by fluxes is studied from the perspective of F-theory. In F-theory, the moduli of the D7-branes and the moduli of the orientifold are unified in the moduli space of an elliptic Calabi-Yau manifold. This makes it possible to study flux the stabilization of D7-branes in an elegant manner. To answer phenomenological questions, one has to translate the deformations of the elliptic Calabi-Yau manifold of F-theory back to the positions and the shape of the D7-branes. We address this problem by constructing the homology cycles that are relevant for the deformations of the elliptic Calabi-Yau manifold.We show the viability of our approach for the case of elliptic two- and three-folds. Furthermore, we discuss a consistency conditions related to the intersections between D7-branes and orientifold planes which is automatically fulfilled in F-theory. Finally, we use our results to study the flux stabilization of D7-branes on the orientifold K3 x T 2 /Z 2 using F-theory on K3 x K3. In this context, we derive conditions on the fluxes to stabilize a given configuration of D7-branes. (orig.)

  15. F-theory and the landscape of intersecting D7-branes

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Andreas

    2010-02-05

    In this work, the moduli of D7-branes in type IIB orientifold compactifications and their stabilization by fluxes is studied from the perspective of F-theory. In F-theory, the moduli of the D7-branes and the moduli of the orientifold are unified in the moduli space of an elliptic Calabi-Yau manifold. This makes it possible to study flux the stabilization of D7-branes in an elegant manner. To answer phenomenological questions, one has to translate the deformations of the elliptic Calabi-Yau manifold of F-theory back to the positions and the shape of the D7-branes. We address this problem by constructing the homology cycles that are relevant for the deformations of the elliptic Calabi-Yau manifold.We show the viability of our approach for the case of elliptic two- and three-folds. Furthermore, we discuss a consistency conditions related to the intersections between D7-branes and orientifold planes which is automatically fulfilled in F-theory. Finally, we use our results to study the flux stabilization of D7-branes on the orientifold K3 x T{sup 2}/Z{sub 2} using F-theory on K3 x K3. In this context, we derive conditions on the fluxes to stabilize a given configuration of D7-branes. (orig.)

  16. Flux compactifications and generalized geometries

    International Nuclear Information System (INIS)

    Grana, Mariana

    2006-01-01

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry

  17. Flux compactifications and generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Mariana [Service de Physique Theorique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France)

    2006-11-07

    Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T{sup 6} /(Z{sub 3} x Z{sub 3}) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry.

  18. Toward the M(F)--Theory Embedding of Realistic Free-Fermion Models

    CERN Document Server

    Berglund, P; Faraggi, A E; Nanopoulos, Dimitri V; Qiu, Z; Berglund, Per; Ellis, John; Faraggi, Alon E.; Qiu, Zongan

    1998-01-01

    We construct a Landau-Ginzburg model with the same data and symmetries as a $Z_2\\times Z_2$ orbifold that corresponds to a class of realistic free-fermion models. Within the class of interest, we show that this orbifolding connects between different $Z_2\\times Z_2$ orbifold models and commutes with the mirror symmetry. Our work suggests that duality symmetries previously discussed in the context of specific $M$ and $F$ theory compactifications may be extended to the special $Z_2\\times Z_2$ orbifold that characterizes realistic free-fermion models.

  19. Non-Higgsable clusters for 4D F-theory models

    International Nuclear Information System (INIS)

    Morrison, David R.; Taylor, Washington

    2015-01-01

    We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3)×SU(2), that can be realized through 4D non-Higgsable clusters. There are also more complicated configurations involving more than two gauge factors; in particular, the collection of gauge group factors with jointly charged matter can exhibit branchings, loops, and long linear chains.

  20. The toric SO(10) F-theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, W.; Dierigl, M.; Oehlmann, P.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ruehle, F. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics

    2017-09-15

    Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kaehler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.

  1. The toric SO(10) F-theory landscape

    International Nuclear Information System (INIS)

    Buchmuller, W.; Dierigl, M.; Oehlmann, P.K.; Ruehle, F.

    2017-09-01

    Supergravity theories in more than four dimensions with grand unified gauge symmetries are an important intermediate step towards the ultraviolet completion of the Standard Model in string theory. Using toric geometry, we classify and analyze six-dimensional F-theory vacua with gauge group SO(10) taking into account Mordell-Weil U(1) and discrete gauge factors. We determine the full matter spectrum of these models, including charged and neutral SO(10) singlets. Based solely on the geometry, we compute all matter multiplicities and confirm the cancellation of gauge and gravitational anomalies independent of the base space. Particular emphasis is put on symmetry enhancements at the loci of matter fields and to the frequent appearance of superconformal points. They are linked to non-toric Kaehler deformations which contribute to the counting of degrees of freedom. We compute the anomaly coefficients for these theories as well by using a base-independent blow-up procedure and superconformal matter transitions. Finally, we identify six-dimensional supergravity models which can yield the Standard Model with high-scale supersymmetry by further compactification to four dimensions in an Abelian flux background.

  2. Minkowski vacuum transitions in (nongeometric) flux compactifications

    International Nuclear Information System (INIS)

    Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar

    2010-01-01

    In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.

  3. Geometric symmetries and topological terms in F-theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapfer, Andreas

    2016-08-25

    In this thesis we investigate topological aspects and arithmetic structures in quantum field theory and string theory. Particular focus is put on consistent truncations of supergravity and compactifications of F-theory. The first part treats settings of supersymmetry breaking in five dimensions. We focus on an N=4 to N=2 breaking in gauged supergravity. For certain classes of embedding tensors we can analyze the theory around the vacuum to a great extent. Importantly, one-loop corrections to Chern-Simons terms are generically induced which are independent of the supersymmetry-breaking scale. We investigate concrete examples of consistent truncations of supergravity and M-theory which show this N=4 to N=2 breaking pattern in five dimensions. In particular, we analyze necessary conditions for these consistent truncations to be used as effective theories for phenomenology by demanding consistency of the scale-independent corrections to Chern-Simons couplings. The second part is devoted to the study of anomalies and large gauge transformations in circle-reduced gauge theories and F-theory. We consider four- and six-dimensional matter-coupled gauge theories on the circle and classify all large gauge transformations that preserve the boundary conditions of the matter fields. Enforcing that they act consistently on one-loop Chern-Simons couplings in three and five dimensions explicitly yields all higher-dimensional gauge anomaly cancelation conditions. In the context of F-theory compactifications we identify the classified large gauge transformations along the circle with arithmetic structures on elliptically fibered Calabi-Yau manifolds via the dual M-theory setting. Integer Abelian large gauge transformations correspond to free basis shifts in the Mordell-Weil lattice of rational sections while special fractional non-Abelian large gauge transformations are matched to torsional shifts in the Mordell-Weil group. For integer non-Abelian large gauge transformations we

  4. Instabilities of higher dimensional compactifications

    International Nuclear Information System (INIS)

    Accetta, F.S.

    1987-02-01

    Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs

  5. Stability of compactification during inflation

    International Nuclear Information System (INIS)

    Amendola, L.; Litterio, M.; Occhionero, F.; Kolb, E.W.

    1990-03-01

    The possibility that inflation may trigger an instability in compactification of extra spatial dimensions is considered. In old, new, or extended inflation, the false vacuum energy results in a semiclassical instability in which the scalar field representing the radius of the extra dimensions may tunnel through a potential barrier leading to an expansion of the internal space. In chaotic inflation, if the initial value of the scalar field responsible for inflation is large enough, the internal space becomes classically unstable to ever increasing expansion. Restrictions on inflationary models necessary to keep the extra dimensions small are discussed. 15 refs., 5 figs

  6. F-theory uplifts and GUTs

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Jurke, Benjamin; Grimm, Thomas W.; Weigand, Timo

    2009-01-01

    We study the F-theory uplift of Type IIB orientifold models on compact Calabi-Yau threefolds containing divisors which are del Pezzo surfaces. We consider two examples defined via del Pezzo transitions of the quintic. The first model has an orientifold projection leading to two disjoint O7-planes and the second involution acts via an exchange of two del Pezzo surfaces. The two uplifted fourfolds are generically singular with minimal gauge enhancements over a divisor and, respectively, a curve in the non-Fano base. We study possible further degenerations of the elliptic fiber leading to F-theory GUT models based on subgroups of E 8 .

  7. Constraints on four dimensional effective field theories from string and F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Baume, Florent

    2017-06-21

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E{sub 8} to SU(5) x U(1){sup n}. We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  8. Constraints on four dimensional effective field theories from string and F-theory

    International Nuclear Information System (INIS)

    Baume, Florent

    2017-01-01

    This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E 8 to SU(5) x U(1) n . We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.

  9. Flavour mixings in flux compactifications

    International Nuclear Information System (INIS)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-01

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  10. Dynamics of warped flux compactifications

    International Nuclear Information System (INIS)

    Shiu, Gary; Underwood, Bret; Torroba, Gonzalo; Douglas, Michael R.

    2008-01-01

    We discuss the four dimensional effective action for type IIB flux compactifications, and obtain the quadratic terms taking warp effects into account. The analysis includes both the 4-d zero modes and their KK excitations, which become light at large warping. We identify an 'axial' type gauge for the supergravity fluctuations, which makes the four dimensional degrees of freedom manifest. The other key ingredient is the existence of constraints coming from the ten dimensional equations of motion. Applying these conditions leads to considerable simplifications, enabling us to obtain the low energy lagrangian explicitly. In particular, the warped Kaehler potential for metric moduli is computed and it is shown that there are no mixings with the KK fluctuations and the result differs from previous proposals. The four dimensional potential contains a generalization of the Gukov-Vafa-Witten term, plus usual mass terms for KK modes.

  11. The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K3 × K3 as a test case

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.P. [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom); Kimura, Y. [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Watari, T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwano-ha 5-1-5, 277-8583 (Japan)

    2014-04-07

    Four-form flux in F-theory compactifications not only stabilizes moduli, but gives rise to ensembles of string vacua, providing a scientific basis for a stringy notion of naturalness. Of particular interest in this context is the ability to keep track of algebraic information (such as the gauge group) associated with individual vacua while dealing with statistics. In the present work, we aim to clarify conceptual issues and sharpen methods for this purpose, using compactification on K3×K3 as a test case. Our first approach exploits the connection between the stabilization of complex structure moduli and the Noether-Lefschetz problem. Compactification data for F-theory, however, involve not only a four-fold (with a given complex structure) Y{sub 4} and a flux on it, but also an elliptic fibration morphism Y{sub 4}⟶B{sub 3}, which makes this problem complicated. The heterotic-F-theory duality indicates that elliptic fibration morphisms should be identified modulo isomorphism. Based on this principle, we explain how to count F-theory vacua on K3×K3 while keeping the gauge group information. Mathematical results reviewed/developed in our companion paper are exploited heavily. With applications to more general four-folds in mind, we also clarify how to use Ashok-Denef-Douglas’ theory of the distribution of flux vacua in order to deal with statistics of sub-ensembles tagged by a given set of algebraic/topological information. As a side remark, we extend the heterotic/F-theory duality dictionary on flux quanta and elaborate on its connection to the semistable degeneration of a K3 surface.

  12. Calculating corrections in F-theory from refined BPS invariants and backreacted geometries

    Energy Technology Data Exchange (ETDEWEB)

    Poretschkin, Maximilian

    2015-07-01

    This thesis presents various corrections to F-theory compactifications which rely on the computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis of backreacted geometries. Detailed information about rigid supersymmetric theories in five dimensions is contained in an index counting refined BPS invariants. These BPS states fall into representations of SU(2){sub L} x SU(2){sub R}, the little group in five dimensions, which has an induced action on the cohomology of the moduli space of stable pairs. In the first part of this thesis, we present the computation of refined BPS state multiplicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use an algorithm which is based on the Weierstrass normal form of the mirror geometry. In addition we use the refined holomorphic anomaly equation and the gap condition at the conifold locus in the moduli space in order to perform the direct integration and to fix the holomorphic ambiguity. In a second approach, we use the refined Goettsche formula and the refined modular anomaly equation that govern the (refined) genus expansion of the free energy of the half K3 surface. By this procedure, we compute the refined BPS invariants of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by flop transitions and blow-downs. These calculations also make use of the high symmetry of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional Lie algebras. In cases where both approaches are applicable, we successfully check the compatibility of these two methods. In the second part of this thesis, we apply the results obtained from the calculation of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-perturbative objects in F-theory. The first application is given by BPS states of the E

  13. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m)×U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m)×ℤ_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.

  14. Nonperturbative type IIB model building in the F-theory framework

    International Nuclear Information System (INIS)

    Jurke, Benjamin Helmut Friedrich

    2011-01-01

    This dissertation is concerned with the topic of non-perturbative string theory, which is generally considered to be the most promising approach to a consistent description of quantum gravity. The five known 10-dimensional perturbative string theories are all interconnected by numerous dualities, such that an underlying non-perturbative 11-dimensional theory, called M-theory, is postulated. Due to several technical obstacles, little is known about the fundamental objects in this theory. There exists an alternative non-perturbative description to type IIB string theory, namely F-theory. Here the SL(2;Z) self-duality of IIB theory is geometrized in the form of an elliptic fibration over the space-time. Moreover, higher-dimensional objects like 7-branes are included via singularities into the geometric picture. This formally elegant description, however, requires significant technical effort for the construction of suitable compactification geometries, as many different aspects necessarily have to be dealt with at the same time. On the other hand, the generation of essential GUT building blocks like certain Yukawa couplings or spinor representations is easier compared to perturbative string theory. The goal of this study is therefore to formulate a unified theory within the framework of F-theory, that satisfies basic phenomenological constraints. Within this thesis, at first E3-brane instantons in type IIB string theory - 4-dimensional objects that are entirely wrapped around the invisible dimensions of space-time - are matched with M5-branes in F-theory. Such objects are of great importance in the generation of critical Yukawa couplings or the stabilization of the free parameters of a theory. Certain properties of M5-branes then allow to derive a new criterion for E3-branes to contribute to the superpotential. In the aftermath of this analysis, several compactification geometries are constructed and checked for basic properties that are relevant for semi

  15. Nonperturbative type IIB model building in the F-theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Jurke, Benjamin Helmut Friedrich

    2011-02-28

    This dissertation is concerned with the topic of non-perturbative string theory, which is generally considered to be the most promising approach to a consistent description of quantum gravity. The five known 10-dimensional perturbative string theories are all interconnected by numerous dualities, such that an underlying non-perturbative 11-dimensional theory, called M-theory, is postulated. Due to several technical obstacles, little is known about the fundamental objects in this theory. There exists an alternative non-perturbative description to type IIB string theory, namely F-theory. Here the SL(2;Z) self-duality of IIB theory is geometrized in the form of an elliptic fibration over the space-time. Moreover, higher-dimensional objects like 7-branes are included via singularities into the geometric picture. This formally elegant description, however, requires significant technical effort for the construction of suitable compactification geometries, as many different aspects necessarily have to be dealt with at the same time. On the other hand, the generation of essential GUT building blocks like certain Yukawa couplings or spinor representations is easier compared to perturbative string theory. The goal of this study is therefore to formulate a unified theory within the framework of F-theory, that satisfies basic phenomenological constraints. Within this thesis, at first E3-brane instantons in type IIB string theory - 4-dimensional objects that are entirely wrapped around the invisible dimensions of space-time - are matched with M5-branes in F-theory. Such objects are of great importance in the generation of critical Yukawa couplings or the stabilization of the free parameters of a theory. Certain properties of M5-branes then allow to derive a new criterion for E3-branes to contribute to the superpotential. In the aftermath of this analysis, several compactification geometries are constructed and checked for basic properties that are relevant for semi

  16. Supersymmetry: Compactification, flavor, and dualities

    Science.gov (United States)

    Heidenreich, Benjamin Jones

    We describe several new research directions in the area of supersymmetry. In the context of low-energy supersymmetry, we show that the assumption of R-parity can be replaced with the minimal flavor violation hypothesis, solving the issue of nucleon decay and the new physics flavor problem in one stroke. The assumption of minimal flavor violation uniquely fixes the form of the baryon number violating vertex, leading to testable predictions. The NLSP is unstable, and decays promptly to jets, evading stringent bounds on vanilla supersymmetry from LHC searches, whereas the gravitino is long-lived, and can be a dark matter component. In the case of a sbottom LSP, neutral mesinos can form and undergo oscillations before decaying, leading to same sign tops, and allowing us to place constraints on the model in this case. We show that this well-motivated phenomenology can be naturally explained by spontaneously breaking a gauged flavor symmetry at a high scale in the presence of additional vector-like quarks, leading to mass mixings which simultaneously generate the flavor structure of the baryon-number violating vertex and the Standard Model Yukawa couplings, explaining their minimal flavor violating structure. We construct a model which is robust against Planck suppressed corrections and which also solves the mu problem. In the context of flux compactifications, we begin a study of the local geometry near a stack of D7 branes supporting a gaugino condensate, an integral component of the KKLT scenario for Kahler moduli stabilization. We obtain an exact solution for the geometry in a certain limit using reasonable assumptions about symmetries, and argue that this solution exhibits BPS domain walls, as expected from field theory arguments. We also begin a larger program of understanding general supersymmetric compactifications of type IIB string theory, reformulating previous results in an SL(2, R ) covariant fashion. Finally, we present extensive evidence for a new class of

  17. arXiv Algebraic Cycles and Local Anomalies in F-Theory

    CERN Document Server

    Bies, Martin; Weigand, Timo

    2017-11-16

    We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibre...

  18. Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality

    CERN Document Server

    Cvetic, Mirjam; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required ...

  19. Anomaly cancelation in field theory and F-theory on a circle

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Kapfer, Andreas

    2016-01-01

    We study the manifestation of local gauge anomalies of four- and six-dimensional field theories in the lower-dimensional Kaluza-Klein theory obtained after circle compactification. We identify a convenient set of transformations acting on the whole tower of massless and massive states and investigate their action on the low-energy effective theories in the Coulomb branch. The maps employ higher-dimensional large gauge transformations and precisely yield the anomaly cancelation conditions when acting on the one-loop induced Chern-Simons terms in the three- and five-dimensional effective theory. The arising symmetries are argued to play a key role in the study of the M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact that all fully resolved F-theory geometries inducing multiple Abelian gauge groups or non-Abelian groups admit a certain set of symmetries, we are able to generally show the cancelation of pure Abelian or pure non-Abelian anomalies in these models.

  20. F-theory and all things rational: surveying U(1) symmetries with rational sections

    International Nuclear Information System (INIS)

    Lawrie, Craig; Schäfer-Nameki, Sakura; Wong, Jin-Mann

    2015-01-01

    We study elliptic fibrations for F-theory compactifications realizing 4d and 6d supersymmetric gauge theories with abelian gauge factors. In the fibration these U(1) symmetries are realized in terms of additional rational section. We obtain a universal characterization of all the possible U(1) charges of matter fields by determining the corresponding codimension two fibers with rational sections. In view of modelling supersymmetric Grand Unified Theories, one of the main examples that we analyze are U(1) symmetries for SU(5) gauge theories with 5̄ and 10 matter. We use a combination of constraints on the normal bundle of rational curves in Calabi-Yau three- and four-folds, as well as the splitting of rational curves in the fibers in codimension two, to determine the possible configurations of smooth rational sections. This analysis straightforwardly generalizes to multiple U(1)s. We study the flops of such fibers, as well as some of the Yukawa couplings in codimension three. Furthermore, we carry out a universal study of the U(1)-charged GUT singlets, including their KK-charges, and determine all realizations of singlet fibers. By giving vacuum expectation values to these singlets, we propose a systematic way to analyze the Higgsing of U(1)s to discrete gauge symmetries in F-theory.

  1. Strong coupling in F-theory and geometrically non-Higgsable seven-branes

    Directory of Open Access Journals (Sweden)

    James Halverson

    2017-06-01

    Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.

  2. Monodromies, fluxes, and compact three-generation F-theory GUTs

    International Nuclear Information System (INIS)

    Marsano, Joseph; Saulina, Natalia; Schaefer-Nameki, Sakura

    2009-01-01

    We analyze constraints for embedding local SU(5) F-theory GUTs into consistent compactifications and construct explicit three-generation models based on the geometry of [1]. The key tool for studying constraints in this problem when there is an underlying E 8 structure is the spectral cover, which encodes all of the symmetries that fix the allowed couplings in the superpotential, as well as the consistent, supersymmetric G-fluxes. Imposing phenomenological requirements such as the existence of three generations, top and bottom Yukawa couplings, good flavor structure and absence of exotics and of a tree-level μ-term, we derive stringent constraints on the allowed spectral covers. The resulting spectral covers are in conflict with the neutrino scenarios that have been studied in local F-theory models unless we allow for the possibility of additional charged fields, perhaps playing the role of gauge messengers, that do not comprise complete GUT multiplets. Quite remarkably, the existence of additional incomplete GUT multiplets below the GUT scale is necessary for consistency with gauge coupling 'unification', as their effect can precisely cancel that of the internal hypercharge flux, which distorts the gauge couplings already at M GUT .

  3. Generating Small Numbers by Tunneling in Multi-Throat Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2001-07-25

    A generic F-theory compactification containing many D3 branes develops multiple brane throats. The interaction of observers residing inside different throats involves tunneling suppression and, as a result, is very weak. This suggests a new mechanism for generating small numbers in Nature. One application is to the hierarchy problem: large supersymmetry breaking near the unification scale inside a shallow throat causes TeV-scale SUSY-breaking inside the standard-model throat. Another application, inspired by nuclear-decay, is in designing naturally long-lived particles: a cold dark matter particle residing near the standard model brane decays to an approximate CFT-state of a longer throat within a Hubble time. This suggests that most of the mass of the universe today could consist of CFT-matter and may soften structure formation at sub-galactic scales. The tunneling calculation demonstrates that the coupling between two throats is dominated by higher dimensional modes and consequently is much larger than a naive application of holography might suggest.

  4. Neutrino mass textures from F-theory

    CERN Document Server

    Antoniadis, I

    2013-01-01

    Experimental data on the neutrino mixing and masses strongly suggest an underlying approximate symmetry of the relevant Yukawa superpotential terms. Intensive phenomenological explorations during the last decade indicate that permutation symmetries such as S_4, A_4 and their subgroups, under certain assumptions and vacuum alignments, predict neutrino mass textures compatible with such data. Motivated by these findings, in the present work we analyse the neutrino properties in F-theory GUT models derived in the framework of the maximal underlying E_8 symmetry in the elliptic fibration. More specifically, we consider local F-SU(5) GUT models and study in detail spectral cover geometries with monodromies associated to the finite symmetries S_4, A_4 and their transitive subgroups, including the dihedral group D_4 and Z_2 X Z_2. We discuss various issues that emerge in the implementation of S_4, A_4 neutrino models in the F-theory context and suggest how these can be resolved. Realistic models are presented for th...

  5. F-theory on all toric hypersurface fibrations and its Higgs branches

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin [Bethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Piragua, Hernan [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Reuter, Jonas [Bethe Center for Theoretical Physics, Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany)

    2015-01-27

    We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces in ℙ{sup 2}, ℙ{sup 1}×ℙ{sup 1} and the recently studied ℙ{sup 2}(1,1,2), yield F-theory realizations of SUGRA theories with discrete gauge groups ℤ{sub 3}, ℤ{sub 2} and ℤ{sub 4}. This opens up a whole new arena for model building with discrete global symmetries in F-theory. In these three manifolds, we also find codimension two I{sub 2}-fibers supporting matter charged only under these discrete gauge groups. Their 6D matter multiplicities are computed employing ideal techniques and the associated Jacobian fibrations. We also show that the Jacobian of the biquadric fibration has one rational section, yielding one U(1)-gauge field in F-theory. Furthermore, the elliptically fibered Calabi-Yau manifold based on dP{sub 1} has a U(1)-gauge field induced by a non-toric rational section. In this model, we find the first F-theory realization of matter with U(1)-charge q=3.

  6. The fate of unstable gauge flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C P [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy; [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S L [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2008-12-15

    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  7. The fate of unstable gauge flux compactifications

    International Nuclear Information System (INIS)

    Burgess, C.P.; Parameswaran, S.L.; Zavala, I.

    2008-12-01

    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink D-2 x S 2 geometry supported by an unstable monopole relaxes to AdS D-2 x S 2 , with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink 4 times S 2 , with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  8. Geometric Algebra Techniques in Flux Compactifications

    International Nuclear Information System (INIS)

    Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela

    2016-01-01

    We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.

  9. Rational F-theory GUTs without exotics

    Science.gov (United States)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-07-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  10. Rational F-theory GUTs without exotics

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Pena, Damian Kaloni Mayorga; Oehlmann, Paul-Konstantin

    2014-01-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  11. Rational F-theory GUTs without exotics

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-01-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U1 symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  12. Froggatt-Nielsen meets Mordell-Weil: a phenomenological survey of global F-theory GUTs with U(1)s

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Schäfer-Nameki, Sakura; Wong, Jin-Mann

    2015-01-01

    In F-theory, U(1) gauge symmetries are encoded in rational sections, which generate the Mordell-Weil group of the elliptic fibration of the compactification space. Recently the possible U(1) charges for global SU(5) F-theory GUTs with smooth rational sections were classified http://dx.doi.org/10.1007/JHEP09(2015)144. In this paper we utilize this classification to probe global F-theory models for their phenomenological viability. After imposing an exotic-free MSSM spectrum, anomaly cancellation (related to hypercharge flux GUT breaking in the presence of U(1) gauge symmetries), absence of dimension four and five proton decay operators and other R-parity violating couplings, and the presence of at least the third generation top Yukawa coupling, we generate the remaining quark and lepton Yukawa textures by a Froggatt-Nielsen mechanism. In this process we require that the dangerous couplings are forbidden at leading order, and when re-generated by singlet vevs, lie within the experimental bounds. We scan over all possible configurations, and show that only a small class of U(1) charge assignments and matter distributions satisfy all the requirements. The solutions give rise to the exact MSSM spectrum with realistic quark and lepton Yukawa textures, which are consistent with the CKM and PMNS mixing matrices. We also discuss the geometric realization of these models, and provide pointers to the class of elliptic fibrations with good phenomenological properties.

  13. When rational sections become cyclic — Gauge enhancement in F-theory via Mordell-Weil torsion

    Science.gov (United States)

    Baume, Florent; Cvetič, Mirjam; Lawrie, Craig; Lin, Ling

    2018-03-01

    We explore novel gauge enhancements from abelian to non-simply-connected gauge groups in F-theory. To this end we consider complex structure deformations of elliptic fibrations with a Mordell-Weil group of rank one and identify the conditions under which the generating section becomes torsional. For the specific case of ℤ2 torsion we construct the generic solution to these conditions and show that the associated F-theory compactification exhibits the global gauge group [SU(2) × SU(4)]/ℤ2 × SU(2). The subsolution with gauge group SU(2)/ℤ2 × SU(2), for which we provide a global resolution, is related by a further complex structure deformation to a genus-one fibration with a bisection whose Jacobian has a ℤ2 torsional section. While an analysis of the spectrum on the Jacobian fibration reveals an SU(2)/ℤ2 × ℤ2 gauge theory, reproducing this result from the bisection geometry raises some conceptual puzzles about F-theory on genus-one fibrations.

  14. Toric Methods in F-Theory Model Building

    Directory of Open Access Journals (Sweden)

    Johanna Knapp

    2011-01-01

    Full Text Available We discuss recent constructions of global F-theory GUT models and explain how to make use of toric geometry to do calculations within this framework. After introducing the basic properties of global F-theory GUTs, we give a self-contained review of toric geometry and introduce all the tools that are necessary to construct and analyze global F-theory models. We will explain how to systematically obtain a large class of compact Calabi-Yau fourfolds which can support F-theory GUTs by using the software package PALP.

  15. A curious example involving ordered compactifications

    Directory of Open Access Journals (Sweden)

    Thomas A. Richmond

    2002-10-01

    Full Text Available For a certain product X x Y where X is compact, connected, totally ordered space, we find that the semilattice K0 (X x Y of ordered compactifications of X x Y is isomorphic to a collection of Galois connections and to a collection of functions F which determines a quasi-uniformity on an extended set X U {+∞}, from which the topology and order on X is easily recovered. It is well-known that each ordered compactification of an ordered space X x Y corresponds to a totally bounded quasi-uniformity on X x Y compatible with the topology  and order on X x Y, and thus K0 (X x Y may be viewed as a collection of quasi-uniformities on X x Y. By the results here, these quasi-uniformities on X x Y determine a quasi-uniformity on the related space X U {+∞}.

  16. Gauge unification in highly anisotropic string compactifications

    International Nuclear Information System (INIS)

    Hebecker, A.; Trapletti, M.

    2005-01-01

    It is well known that heterotic string compactifications have, in spite of their conceptual simplicity and aesthetic appeal, a serious problem with precision gauge coupling unification in the perturbative regime of string theory. Using both a duality-based and a field-theoretic definition of the boundary of the perturbative regime, we reevaluate the situation in a quantitative manner. We conclude that the simplest and most promising situations are those where some of the compactification radii are exceptionally large, corresponding to highly anisotropic orbifold models. Thus, one is led to consider constructions which are known to the effective field-theorist as higher-dimensional or orbifold grand unified theories (orbifold GUTs). In particular, if the discrete symmetry used to break the GUT group acts freely, a non-local breaking in the larger compact dimensions can be realized, leading to a precise gauge coupling unification as expected on the basis of the MSSM particle spectrum. Furthermore, a somewhat more model dependent but nevertheless very promising scenario arises if the GUT breaking is restricted to certain singular points within the manifold spanned by the larger compactification radii

  17. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  18. A Delicate Universe: Compactification Obstacles to D-brane Inflation

    International Nuclear Information System (INIS)

    Baumann, Daniel; Dymarsky, Anatoly; McAllister, Liam; Klebanov, Igor R.; Steinhardt, Paul J.

    2007-01-01

    We investigate whether explicit models of warped D-brane inflation are possible in string compactifications. To this end, we study the potential for D3-brane motion in a warped conifold that includes holomorphically embedded D7-branes involved in moduli stabilization. The presence of the D7-branes significantly modifies the inflaton potential. We construct an example based on a very simple and symmetric embedding due to Kuperstein, z 1 =const, in which it is possible to fine-tune the potential so that slow-roll inflation can occur. The resulting model is rather delicate: inflation occurs in the vicinity of an inflection point, and the cosmological predictions are extremely sensitive to the precise shape of the potential

  19. F-Theory on all Toric Hypersurface Fibrations and its Higgs Branches

    CERN Document Server

    Klevers, Denis; Oehlmann, Paul-Konstantin; Piragua, Hernan; Reuter, Jonas

    2015-01-01

    We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories. All these theories have a non-trivial gauge group and matter content. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. We recover the 6D effective theories of all 16 toric hypersurface fibrations by repeatedly Higgsing the theories that exhibit Mordell-Weil torsion. We find that the three Calabi-Yau manifolds without section, whose fibers are given by the toric hypersurfaces in P^2, P^1x P^1 and the recently studied ...

  20. Tuned and non-Higgsable U(1)s in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Nan [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2017-03-27

    We study the tuning of U(1) gauge fields in F-theory models on a base of general dimension. We construct a formula that computes the change in Weierstrass moduli when such a U(1) is tuned, based on the Morrison-Park form of a Weierstrass model with an additional rational section. Using this formula, we propose the form of “minimal tuning” on any base, which corresponds to the case where the decrease in the number of Weierstrass moduli is minimal. Applying this result, we discover some universal features of bases with non-Higgsable U(1)s. Mathematically, a generic elliptic fibration over such a base has additional rational sections. Physically, this condition implies the existence of U(1) gauge group in the low-energy supergravity theory after compactification that cannot be Higgsed away. In particular, we show that the elliptic Calabi-Yau manifold over such a base has a small number of complex structure moduli. We also suggest that non-Higgsable U(1)s can never appear on any toric bases. Finally, we construct the first example of a threefold base with non-Higgsable U(1)s.

  1. Instanton induced compactification and fermion chirality

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1983-07-01

    The question of fermion chirality in Kaluza-Klein theories with coupling to Yang-Mills fields is discussed. The argument is illustrated in eight dimensions where an SU(2) Yang-Mills field assumes the 1-instanton form on the internal space. This serves not only to trigger spontaneous compactification of the internal space but will ensure the emergence of nsub(L)-nsub(R)=2/3t(t+1) (2t+1) zero modes in an irreducible 8-spinor belonging to the (2t+1)-dimensional representation of SU(2). (author)

  2. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    Science.gov (United States)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  3. Yukawa couplings in superstring compactification. [in quantum gravity theory

    Science.gov (United States)

    Strominger, A.

    1985-01-01

    A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.

  4. F-theory, GUTs, and the weak scale

    International Nuclear Information System (INIS)

    Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the μ term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare μ and Bμ terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value μ ∼ 10 2 -10 3 GeV when the hidden sector scale of supersymmetry breaking is F 1/2 ∼ 10 8.5 GeV. Further, the Bμ problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f a ∼ M GUT cμ/Λ, where Λ ∼ 10 5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio μ/Λ ∼ M GUT /M pl ∼ 10 -3 . We find f a ∼ 10 12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10 1 -10 2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10 2 -10 3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tanβ ∼ 30±7.

  5. Aspects of six-dimensional flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dierigl, Markus

    2017-08-15

    In this thesis we investigate various aspects of flux compactifications in six-dimensional quantum field theories. After introducing the internal geometries, i.e. the two-dimensional torus T{sup 2} and one of its orbifolds T{sup 2}/Z{sub 2}, we classify possible gauge backgrounds including continuous and discrete Wilson lines with emphasis on a non-vanishing flux density. An operator analogy with the quantum harmonic oscillator allows for an explicit derivation of the mode functions of charged fields and demonstrates the advantage of our interpretation of discrete Wilson lines in terms of localized fractional gauge fluxes. We then derive a globally supersymmetric action which captures the D-term supersymmetry breaking induced by the internal magnetic field and reproduces the Landau level mass spectrum of the charged four-dimensional degrees of freedom. In this context we show that, even though supersymmetry is broken at the compactification scale, the inclusion of the whole tower of charged states leads to vanishing quantum corrections for the Wilson line effective potential on T{sup 2}. This result is supported by a symmetry breaking argument in which the Wilson line appears as a Goldstone boson. After that, we additionally include gravitational effects within a supergravity effective action of the lightest modes in four dimensions. The dynamics of the moduli fields arising after compactification can be encoded in the setup of N=1 supergravity augmented with anomaly cancellation by the Green-Schwarz mechanism. This leads to a non-trivial transformation behavior for two axion fields under gauge variations in the low-energy effective action. As an application, we discuss an SO(10) x U(1) grand unified theory which uses the multiplicity of fermionic zero modes in the flux background to induce the number of matter generations. Finally, we investigate a novel mechanism for generating de Sitter vacua in N=1 supergravity based on a flux-induced positive definite D

  6. Aspects of six-dimensional flux compactifications

    International Nuclear Information System (INIS)

    Dierigl, Markus

    2017-08-01

    In this thesis we investigate various aspects of flux compactifications in six-dimensional quantum field theories. After introducing the internal geometries, i.e. the two-dimensional torus T"2 and one of its orbifolds T"2/Z_2, we classify possible gauge backgrounds including continuous and discrete Wilson lines with emphasis on a non-vanishing flux density. An operator analogy with the quantum harmonic oscillator allows for an explicit derivation of the mode functions of charged fields and demonstrates the advantage of our interpretation of discrete Wilson lines in terms of localized fractional gauge fluxes. We then derive a globally supersymmetric action which captures the D-term supersymmetry breaking induced by the internal magnetic field and reproduces the Landau level mass spectrum of the charged four-dimensional degrees of freedom. In this context we show that, even though supersymmetry is broken at the compactification scale, the inclusion of the whole tower of charged states leads to vanishing quantum corrections for the Wilson line effective potential on T"2. This result is supported by a symmetry breaking argument in which the Wilson line appears as a Goldstone boson. After that, we additionally include gravitational effects within a supergravity effective action of the lightest modes in four dimensions. The dynamics of the moduli fields arising after compactification can be encoded in the setup of N=1 supergravity augmented with anomaly cancellation by the Green-Schwarz mechanism. This leads to a non-trivial transformation behavior for two axion fields under gauge variations in the low-energy effective action. As an application, we discuss an SO(10) x U(1) grand unified theory which uses the multiplicity of fermionic zero modes in the flux background to induce the number of matter generations. Finally, we investigate a novel mechanism for generating de Sitter vacua in N=1 supergravity based on a flux-induced positive definite D-term potential. The

  7. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  8. Soft supersymmetry breaking in KKLT flux compactification

    International Nuclear Information System (INIS)

    Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M.

    2005-01-01

    We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important contribution and one can easily arrange for flavor-independent soft terms. In its most attractive realization, the modulus mediation is comparable to the anomaly mediation, yielding a quite distinctive sparticle spectrum. In addition, the axion component of the modulus/dilaton superfield dynamically cancels the relative CP phase between the contributions of anomaly and modulus mediation, thereby avoiding dangerous SUSY CP violation

  9. Spontaneous compactification and Ricci-flat manifolds with torsion

    International Nuclear Information System (INIS)

    McInnes, B.

    1985-06-01

    The Freund-Rubin mechanism is based on the equation Rsub(ik)=lambdagsub(ik) (where lambda>0), which, via Myers' Theorem, implies ''spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and lambda set equal to zero, but then compactification ''by hand'' is necessary, since the equation Rsub(ik)=0 can be satisfied both on compact and on non-compact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ''spontaneity'' of the compactification. (author)

  10. The vertical, the horizontal and the rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.P. [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom); Watari, T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwano-ha 5-1-5, 277-8583 (Japan)

    2015-01-12

    The four-form field strength in F-theory compactifications on Calabi-Yau fourfolds takes its value in the middle cohomology group H{sup 4}. The middle cohomology is decomposed into a vertical, a horizontal and a remaining component, all three of which are present in general. We argue that a flux along the remaining or vertical component may break some symmetry, while a purely horizontal flux does not influence the unbroken part of the gauge group or the net chirality of charged matter fields. This makes the decomposition crucial to the counting of flux vacua in the context of F-theory GUTs. We use mirror symmetry to derive a combinatorial formula for the dimensions of these components applicable to any toric Calabi-Yau hypersurface, and also make a partial attempt at providing a geometric characterization of the four-cycles Poincaré dual to the remaining component of H{sup 4}. It is also found in general elliptic Calabi-Yau fourfolds supporting SU(5) gauge symmetry that a remaining component can be present, for example, in a form crucial to the symmetry breaking SU(5)⟶SU(3){sub C}×SU(2){sub L}×U(1){sub Y}. The dimension of the horizontal component is used to derive an estimate of the statistical distribution of the number of generations and the rank of 7-brane gauge groups in the landscape of F-theory flux vacua.

  11. Symmetries of string, M- and F-theories

    NARCIS (Netherlands)

    Bergshoeff, Eric; Proeyen, Antoine Van

    2001-01-01

    The d = 10 type II string theories, d = 11 M-theory and d = 12 F-theory have the same symmetry group. It can be viewed either as a subgroup of a conformal group OSp(1|64) or as a contraction of OSp(1|32). The theories are related by different identifications of their symmetry operators as generators

  12. Spontaneous compactification in 2D induced quantum gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.

    1992-01-01

    In this paper spontaneous compactification - on a R 1 x S 1 background - in 2D induced quantum gravity (considered as a toy model for more fundamental quantum gravity) is analyzed in the gauge-independent effective action formalism. It is shown that such compactification is stable, in contradistinction to multidimensional quantum gravity on a R degrees x S 1 (D-> 2) background - which is known to be one-loop unstable

  13. Moduli Potentials in Type IIA Compactifications with RR and NS Flux

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, S.

    2004-12-01

    We describe a simple class of type IIA string compactifications on Calabi-Yau manifolds where background fluxes generate a potential for the complex structure moduli, the dilaton, and the Kaehler moduli. This class of models corresponds to gauged {Nu} = 2 supergravities, and the potential is completely determined by a choice of gauging and by data of the {Nu} = 2 Calabi-Yau model--the prepotential for vector multiplets and the quaternionic metric on the hypermultiplet moduli space. Using mirror symmetry, one can determine many (though not all) of the quantum corrections which are relevant in these models.

  14. R-parity violation in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Romão, Miguel Crispim [Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Karozas, Athanasios [Physics Department, Theory Division, Ioannina University,GR-45110 Ioannina (Greece); King, Stephen F. [Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Leontaris, George K. [Physics Department, Theory Division, Ioannina University,GR-45110 Ioannina (Greece); Meadowcroft, Andrew K. [Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom)

    2016-11-14

    We discuss R-parity violation (RPV) in semi-local and local F-theory constructions. We first present a detailed analysis of all possible combinations of RPV operators arising from semi-local F-theory spectral cover constructions, assuming an SU(5) GUT. We provide a classification of all possible allowed combinations of RPV operators originating from operators of the form 10⋅5̄⋅5̄, including the effect of U(1) fluxes with global restrictions. We then relax the global constraints and perform explicit computations of the bottom/tau and RPV Yukawa couplings, at an SO(12) local point of enhancement in the presence of general fluxes subject only to local flux restrictions. We compare our results to the experimental limits on each allowed RPV operator, and show that operators such as LLe{sup c}, LQd{sup c} and u{sup c}d{sup c}d{sup c} may be present separately within current bounds, possibly on the edge of observability, suggesting lepton number violation or neutron-antineutron oscillations could constrain F-theory models.

  15. General perturbations for braneworld compactifications and the six dimensional case

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, S.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Randjbar-Daemi, S. [International Center for Theoretical Physics, Trieste (Italy); Salvio, A. [EPFL, Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques]|[Universitat Autonoma de Barcelona, Bellaterra (Spain). IFAE

    2009-02-15

    Our main objective is to study how braneworld models of higher codimension differ from the 5D case and traditional Kaluza-Klein compactifications. We first derive the classical dynamics describing the physical fluctuations in a wide class of models incorporating gravity, non-Abelian gauge fields, the dilaton and two-form potential, as well as 3-brane sources. Next, we use these results to study braneworld compactifications in 6D supergravity, focusing on the bosonic fields in the minimal model; composed of the supergravity-tensor multiplet and the U(1) gauge multiplet whose flux supports the compactification. For unwarped models sourced by positive tension branes, a harmonic analysis allows us to solve the large, coupled, differential system completely and obtain the full 4D spin-2,1 and 0 particle spectra, establishing (marginal) stability and a qualitative behaviour similar to the smooth sphere compactification. We also find interesting results for models with negative tension branes; extra massless Kaluza-Klein vector fields can appear in the spectra, beyond those expected from the isometries in the internal space. These fields imply an enhanced gauge symmetry in the low energy 4D effective theory obtained by truncating to the massless sector, which is explicitly broken as higher modes are excited, until the full 6D symmetries are restored far above the Kaluza-Klein scale. Remarkably, the low energy effective theory does not seem to distinguish between a compactification on a smooth sphere and these singular, deformed spheres. (orig.)

  16. General perturbations for braneworld compactifications and the six dimensional case

    International Nuclear Information System (INIS)

    Parameswaran, S.L.; Salvio, A.; Universitat Autonoma de Barcelona, Bellaterra

    2009-02-01

    Our main objective is to study how braneworld models of higher codimension differ from the 5D case and traditional Kaluza-Klein compactifications. We first derive the classical dynamics describing the physical fluctuations in a wide class of models incorporating gravity, non-Abelian gauge fields, the dilaton and two-form potential, as well as 3-brane sources. Next, we use these results to study braneworld compactifications in 6D supergravity, focusing on the bosonic fields in the minimal model; composed of the supergravity-tensor multiplet and the U(1) gauge multiplet whose flux supports the compactification. For unwarped models sourced by positive tension branes, a harmonic analysis allows us to solve the large, coupled, differential system completely and obtain the full 4D spin-2,1 and 0 particle spectra, establishing (marginal) stability and a qualitative behaviour similar to the smooth sphere compactification. We also find interesting results for models with negative tension branes; extra massless Kaluza-Klein vector fields can appear in the spectra, beyond those expected from the isometries in the internal space. These fields imply an enhanced gauge symmetry in the low energy 4D effective theory obtained by truncating to the massless sector, which is explicitly broken as higher modes are excited, until the full 6D symmetries are restored far above the Kaluza-Klein scale. Remarkably, the low energy effective theory does not seem to distinguish between a compactification on a smooth sphere and these singular, deformed spheres. (orig.)

  17. On the dynamics of superstring compactification

    Science.gov (United States)

    Pollock, M. D.

    2018-05-01

    Compactification of the ten-dimensional heterotic superstring theory to four dimensions gives rise to two moduli potentials VA, VB, the positive semi-definiteness of which places constraints on the Euler characteristic \\bar{χ} of the internal space \\bar{g}_{μν}(y^{ξ}) and the adiabatic index γ of the effective matter source of energy-density ρ and pressure p = (γ -1)ρ that generates the physical four-space g_{ij}(xk), namely \\bar{χ} 0, 1 ≤ γ ≤ 4/3. Here, we show how fermion-bilinear condensation in the internal space, first put forward by Helayël-Neto and Smith, determines the field \\tilde{β} ≡ A_r B_r3, thus reducing the moduli space to a single canonical field \\tilde{σ}=2σB with a potential ˜ , which is positive semi-definite under the same conditions that ensure positive semi-definiteness of VA, VB, and has a minimum at a value of \\tilde{β} that is approximately constant far from the Planck era at t ≫ t_P. The fields σA, σB, which are canonically normalized in the zero-slope limit, are modified by contributions originating from the higher-derivative gravitational terms α^' \\hatR_E2 and α^' 3} \\hatR4, but the associated kinetic energy remains positive for times t ≳ t_P/2, guaranteeing classical stability of the solution, since the generalized indeterminacy principle implies a minimum physically measurable time t0 ≈ 50 t_P for the superstring theory.

  18. Effects on the CMB from compactification before inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kontou, Eleni-Alexandra [Physics Program, Bard College, 30 Campus Rd, Annandale-on-Hudson, NY 12504 (United States); Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Hertzberg, Mark P.; Masoumi, Ali, E-mail: elenikontou@cosmos.phy.tufts.edu, E-mail: josejuan.blanco@ehu.es, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-04-01

    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional spacetime and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models.

  19. GUTs in type IIB orientifold compactifications

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Braun, Volker; Grimm, Thomas W.; Weigand, Timo

    2009-01-01

    We systematically analyse globally consistent SU(5) GUT models on intersecting D7-branes in genuine Calabi-Yau orientifolds with O3- and O7-planes. Beyond the well-known tadpole and K-theory cancellation conditions there exist a number of additional subtle but quite restrictive constraints. For the realisation of SU(5) GUTs with gauge symmetry breaking via U(1) Y flux we present two classes of suitable Calabi-Yau manifolds defined via del Pezzo transitions of the elliptically fibred hypersurface P 1,1,1,6,9 [18] and of the Quintic P 1,1,1,1,1 [5], respectively. To define an orientifold projection we classify all involutions on del Pezzo surfaces. We work out the model building prospects of these geometries and present five globally consistent string GUT models in detail, including a 3-generation SU(5) model with no exotics whatsoever. We also realise other phenomenological features such as the 10105 H Yukawa coupling and comment on the possibility of moduli stabilisation, where we find an entire new set of so-called swiss-cheese type Calabi-Yau manifolds. It is expected that both the general constrained structure and the concrete models lift to F-theory vacua on compact Calabi-Yau fourfolds.

  20. Moduli effective action in warped brane-world compactifications

    International Nuclear Information System (INIS)

    Garriga, Jaume; Pujolas, Oriol; Tanaka, Takahiro

    2003-01-01

    We consider a class of 5D brane-world solutions with a power-law warp factor a(y)∝y q , and bulk dilaton with profile phi∝lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y ± , corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K ± 4 , where K ± =q/y ± is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V∼d -4 , where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a 4 (y ± )K ± 4 ln(K ± /μ ± ), where μ ± are renormalization scales. In the RS case, the bulk geometry is AdS and K ± are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m - < or approx. TeV

  1. The complete matter sector in a three-generation compactification

    International Nuclear Information System (INIS)

    Berglund, P.; Parkes, L.; Huebsch, T.

    1992-01-01

    We consider a Calabi-Yau compactification paradigm with three light generations and an R-symmetry. From a special form of the Tian-Yau manifold, we also construct a new three-generation model with markedly different phenomenology. The complete spectrum of all light matter fields is obtained in a universal way and moreover in a physically suitable basis, allowing a straightforward analysis of all their couplings. Here we discuss all the renormalizable Yukawa couplings. This computation can equally well be repeated for all compactification models based on Calabi-Yau complete intersections in products of homogeneous spaces. (orig.)

  2. Diphoton resonance in F-theory inspired flipped SO(10)

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, George K. [Ioannina University, Physics Department, Theory Division, Ioannina (Greece); Shafi, Qaisar [University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE (United States)

    2016-10-15

    Motivated by the di-photon excess at 750 GeV reported by the ATLAS and CMS experiments, we present an F-theory inspired flipped SO(10) model embedded in E{sub 6}. The low energy spectrum includes the three MSSM chiral families, vector-like colour triplets, several pairs of charged SU(2){sub L} singlet fields (E{sup c}, anti E{sup c}), as well as MSSM singlets, one or more of which could contribute to the di-photon resonance. A total decay width in the multi-GeV range can arise from couplings involving the singlet and MSSM fields. (orig.)

  3. Aspects of Flavour and Supersymmetry in F-theory GUTs

    CERN Document Server

    Conlon, Joseph P; 10.1007

    2009-01-01

    We study the constraints of supersymmetry on flavour in recently proposed models of F-theory GUTs. We relate the topologically twisted theory to the canonical presentation of eight-dimensional super Yang-Mills and provide a dictionary between the two. We describe the constraints on Yukawa couplings implied by holomorphy of the superpotential in the effective 4-dimensional supergravity theory, including the scaling with \\alpha_{GUT}. Taking D-terms into account we solve explicitly to second order for wavefunctions and Yukawas due to metric and flux perturbations and find a rank-one Yukawa matrix with no subleading corrections.

  4. On the standard model group in F-theory

    International Nuclear Information System (INIS)

    Choi, Kang-Sin

    2014-01-01

    We analyze the standard model gauge group SU(3) x SU(2) x U(1) constructed in F-theory. The non-Abelian part SU(3) x SU(2) is described by a surface singularity of Kodaira type. Blow-up analysis shows that the non-Abelian part is distinguished from the naive product of SU(3) and SU(2), but that it should be a rank three group along the chain of E n groups, because it has non-generic gauge symmetry enhancement structure responsible for desirablematter curves. The Abelian part U(1) is constructed from a globally valid two-form with the desired gauge quantum numbers, using a similar method to the decomposition (factorization) method of the spectral cover. This technique makes use of an extra section in the elliptic fiber of the Calabi-Yau manifold, on which F-theory is compactified. Conventional gauge coupling unification of SU(5) is achieved, without requiring a threshold correction from the flux along the hypercharge direction. (orig.)

  5. Prepotential, Mirror Map and F-Theory on K3

    CERN Document Server

    Lerche, W.

    1998-01-01

    We compute certain one-loop corrections to F^4 couplings of the heterotic string compactified on T^2, and show that they can be characterized by holomorphic prepotentials. We then discuss how some of these couplings can be obtained in F-theory, or more precisely from 7-brane geometry in type IIB language. We in particular study theories with E_8 x E_8 and SO(8)^4 gauge symmetry, on certain one-dimensional sub-spaces of the moduli space that correspond to constant IIB coupling. For these theories, the relevant geometry can be mapped to Riemann surfaces. Physically, the computations amount to non-trivial tests of the basic F-theory -- heterotic duality in eight dimensions. Mathematically, they mean to associate holomorphic 5-point couplings of the form (del_t)^5 G = sum[ g_l l^5 q^l/(1-q^l) ] to K3 surfaces. This can be seen as a novel manifestation of the mirror map, acting here between open and closed string sectors.

  6. Compactification of Superstrings and Chain or Oriented Strings in Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Robert O.

    2000-04-10

    Superstring theories command the study of their various possible compactifications, and their consequence physics. Thus, the role of topology is likely to be far more central, in particular in ten-dimensional physics. Topological invariants on a chain of oriented strings in interaction are discussed. Attempts to link superstrings with the reality of the physical world in four dimensions are discussed.

  7. Light hidden-sector U(1)s in string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark; Ringwald, Andreas

    2010-02-15

    We review the case for light U(1) gauge bosons in the hidden-sector of heterotic and type II string compactifications, present estimates of the size of their kinetic mixing with the visible-sector hypercharge U(1), and discuss their possibly very interesting phenomenological consequences in particle physics and cosmology. (orig.)

  8. Light hidden-sector U(1)s in string compactifications

    International Nuclear Information System (INIS)

    Goodsell, Mark; Ringwald, Andreas

    2010-02-01

    We review the case for light U(1) gauge bosons in the hidden-sector of heterotic and type II string compactifications, present estimates of the size of their kinetic mixing with the visible-sector hypercharge U(1), and discuss their possibly very interesting phenomenological consequences in particle physics and cosmology. (orig.)

  9. On hypercharge flux and exotics in F-theory GUTs

    CERN Document Server

    Dudas, Emilian; 10.1007

    2010-01-01

    We study SU(5) Grand Unified Theories within a local framework in F-theory with multiple extra U(1) symmetries arising from a small monodromy group. The use of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all the U(1) symmetries which implies that proton decay operators are induced. If we impose an additional R-parity symmetry by hand we find all the exotics can be lifted while proton decay operators are still forbidden. These models can retain the gauge coupling unification accuracy of the MSSM at 1-loop. For models where the generations are distributed across multiple curves we also present a motivation for the quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen approach to flavour.

  10. A note on local GUT models in F-theory

    International Nuclear Information System (INIS)

    Chen, C.-M.; Chung, Y.-C.

    2010-01-01

    We construct non-minimal GUT local models in the F-theory configuration. The gauge group on the bulk G S is one rank higher than the GUT gauge group. The line bundles on the curves are nontrivial to break G S down to the GUT gauge groups. We demonstrate examples of SU(5) GUT from G S =SU(6) and G S =SO(10), the flipped SU(5) from G S =SO(10), and the SO(10) GUT from G S =SO(12) and G S =E 6 . We obtain complete GUT matter spectra and couplings, with minimum exotic matter contents. GUT gauge group breaking to MSSM is achievable by instanton configurations.

  11. On the GUT scale of F-theory SU(5)

    International Nuclear Information System (INIS)

    Leontaris, G.K.; Vlachos, N.D.

    2011-01-01

    In F-theory GUTs, threshold corrections from Kaluza-Klein (KK) massive modes arising from gauge and matter multiplets play an important role in the determination of the weak mixing angle and the strong gauge coupling of the effective low energy model. In this Letter we further explore the induced modifications on the gauge couplings running and the GUT scale. In particular, we focus on the KK-contributions from matter curves and analyze the conditions on the chiral and Higgs matter spectrum which imply a GUT scale consistent with the minimal unification scenario. As an application, we present an explicit computation of these thresholds for matter fields residing on specific non-trivial Riemann surfaces.

  12. Moduli effective action in warped brane-world compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume E-mail: garriga@ifae.es; Pujolas, Oriol; Tanaka, Takahiro

    2003-04-07

    We consider a class of 5D brane-world solutions with a power-law warp factor a(y){proportional_to}y{sup q}, and bulk dilaton with profile phi{proportional_to}lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y{sub {+-}}, corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K{sub {+-}}{sup 4}, where K{sub {+-}}=q/y{sub {+-}} is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V{approx}d{sup -4}, where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a{sup 4}(y{sub {+-}})K{sub {+-}}{sup 4}ln(K{sub {+-}}/{mu}{sub {+-}}), where {mu}{sub {+-}} are renormalization scales. In the RS case, the bulk geometry is AdS and K{sub {+-}} are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m{sub -} < or approx. TeV.

  13. Effective action in multidimensional quantum gravity and spontaneous compactification

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.

    1987-01-01

    One-loop effective action (the Casimir energy) is obtained for a special model of multidimensional quantum gravity and several variants of the d-dimensional quantum R 2 gravity in the space M 4 xT d-4 , where M 4 is the Minkowski space and T d-4 is the (d-4)-dimensional torus. It is shown that the effective action for the conformal gravity and the R 2 gravity without cosmological and Einstein's terms lead to an instability of the classical compactification. A numerical calculation reveals that the effective action for the five-dimensional R 2 gravity with the cosmological term is compatible with a self-consistent spontaneous compactification. The one-loop effective action is also obtained for the five dimensional Einstein gravity with the antisymmetrical torsion in the space M 4 xS 1 , where S 1 is the one-dimensional sphere

  14. Effective action in multidimensional quantum gravity, and spontaneous compactification

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Odintsov, S.D.

    1987-01-01

    The one-loop effective action (Casimir energy) is obtained for a special form of model of multidimensional quantum gravity and for several variants of d-dimensional quantum R 2 -gravity on the space M 4 x T/sub d//sub -4/, where M 4 is Minkowski space and T/sub d//sub -4/ is the (d-4)-dimensional torus. It is shown that the effective action of the model of multidimensional quantum gravity and R 2 -gravity without the cosmological term and Einstein term leads to instability of the classical compactification. By a numerical calculation it is demonstrated that the effective action of five-dimensional R 2 -gravity with the cosmological term admits a self-consistent spontaneous compactification. The one-loop effective action is also found for five-dimensional Einstein gravity with antisymmetric torsion on the space M 4 x S 1 (S 1 is the one-dimensional sphere)

  15. Moduli evolution in the presence of flux compactifications

    International Nuclear Information System (INIS)

    Barreiro, Tiago; Carlos, Beatriz de; Copeland, Ed; Nunes, Nelson J.

    2005-01-01

    We study the cosmological evolution of the volume moduli in a class of recently proposed inflationary universe models of Kachru et al. arising out of Type IIB string theory, where a number of the moduli fields have been stabilized through flux compactifications. Developing an approach introduced by some of us earlier, we show, in agreement with Brustein et al., how the presence of extra sources of matter act so as to provide additional friction, slowing the modulus field as it evolves down its potential, thereby vastly increasing the region of parameter space which leads to the eventual stabilization of these fields. Extending the case to include both the real and imaginary parts of the volume modulus, we show how the parameter space of initial conditions is modified and comment on the impact for these inflationary models arising out of flux type compactifications

  16. New compactifications in seven and eleven dimensional supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.; Sezgin, E.

    1984-08-01

    It is found that the N=4 gauged supergravity in d=7 spontaneously compactifies on direct product of anti-deSitter space (AdS) with a 3-sphere (non-supersymmetric: N=0), or with 3-hyperboloid (N=2). Similarly the N=2 gauged supergravity in d=7 compactifies on AdSxH 3 (N=1). The possibility of σ-model induced compactification of ungauged d=7 N=2 supergravity coupled to one vector multiplet on (Minkowski) 4 x Tear Drop x S 1 is discussed. The case of d=11 supergravity is also studied, and two new compactifications are found: AdS x non-Einstein squashed S 7 (n=0) and AdS x non-Einstein SU(2) bundle over CP 2 (N=0). (author)

  17. Compactification over coset spaces with torsion and vanishing cosmological constant

    International Nuclear Information System (INIS)

    Batakis, N.A.

    1989-01-01

    We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions. (orig.)

  18. Compactification over coset spaces with torsion and vanishing cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Batakis, N.A.; Farakos, K.; Koutsoumbas, G.; Zoupanos, G.; Kapetanakis, D.

    1989-04-13

    We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions.

  19. Bounds on Masses of Bulk Fields in String Compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; McGreevy, John; Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-02-13

    In string compactification on a manifold X, in addition to the string scale and the normal scales of low-energy particle physics, there is a Kaluza-Klein scale 1/R associated with the size of X. We present an argument that generic string models with low-energy supersymmetry have, after moduli stabilization, bulk fields with masses which are parametrically lighter than 1/R. We discuss the implications of these light states for anomaly mediation and gaugino mediation scenarios.

  20. A compactification of the Bruhat-Tits building

    CERN Document Server

    Landvogt, Erasmus

    1996-01-01

    The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.

  1. Reducing the rank of gauge groups in orbifold compactification

    International Nuclear Information System (INIS)

    Sato, H.

    1989-01-01

    The Wilson-line mechanism in orbifold compactification is investigated for both Abelian and non-Abelian embedding of the Z 3 group in the E 8 x E 8 . The authors give general argument in the fermionic formulation for the gauge degrees of freedom and show that the rank of the gauge group is reduced by introducing nondiagonal Wilson-line matrix in the fermionic boundary conditions

  2. String loop moduli stabilisation and cosmology in IIB flux compactifications

    International Nuclear Information System (INIS)

    Cicoli, M.

    2010-01-01

    We present a detailed review of the moduli stabilisation mechanism and possible cosmological implications of the LARGE Volume Scenario (LVS) that emerges naturally in the context of type IIB Calabi-Yau flux compactifications. After a quick overview of physics beyond the Standard Model, we present string theory as the most promising candidate for a consistent theory of quantum gravity. We then give a pedagogical introduction to type IIB compactifications on Calabi-Yau orientifolds where most of the moduli are stabilised by turning on background fluxes. However in order to fix the Kaehler moduli one needs to consider several corrections beyond the leading order approximations. After presenting a survey of all the existing solutions to this problem, we derive the topological conditions on an arbitrary Calabi-Yau to obtain the LVS since it requires no fine-tuning of the fluxes and provides a natural solution of the hierarchy problem. After performing a systematic study of the behaviour of string loop corrections for general type IIB compactifications, we show how they play a crucial role to achieve full Kaehler moduli stabilisation in the LVS. Before examining the possible cosmological implication of these scenarios, we present a broad overview of string cosmology. We then notice how, in the case of K3-fibrations, string loop corrections give rise naturally to an inflationary model which yields observable gravity waves. We finally study the finite-temperature behaviour of the LVS and discuss prospects for future work. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Phenomenology with F-theory S U (5 )

    Science.gov (United States)

    Leontaris, George K.; Shafi, Qaisar

    2017-09-01

    We explore the low-energy phenomenology of an F-theory-based S U (5 ) model which, in addition to the known quarks and leptons, contains Standard Model (SM) singlets and vectorlike color triplets and S U (2 ) doublets. Depending on their masses and couplings, some of these new particles may be observed at the LHC and future colliders. We discuss the restrictions by Cabibbo-Kobayashi-Maskawa matrix constraints on their mixing with the ordinary down quarks of the three chiral families. The model is consistent with gauge coupling unification at the usual supersymmetric GUT scale; dimension-five proton decay is adequately suppressed, while dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of 5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-energy masses in reasonable agreement with observations. The hierarchical nature of the masses of lighter generations is accounted for via nonrenormalizable interactions, with the perturbative vacuum expectation values (VEVs) of the SM singlet fields playing an essential role.

  4. One-Loop Effective Action in Orbifold Compactifications

    CERN Document Server

    Von Gersdorff, Gero

    2008-01-01

    We employ the covariant background formalism to derive generic expressions for the one-loop effective action in field theoretic orbifold compactifications. The contribution of each orbifold sector is given by the effective action of its fixed torus with a shifted mass matrix. We thus study in detail the computation of the heat kernel on tori. Our formalism manifestly separates UV sensitive (local) from UV-insensitive (nonlocal) renormalization. To exemplify our methods, we study the effective potential of 6d gauge theory as well as kinetic terms for gravitational moduli in 11d supergravity.

  5. Three-forms in supergravity and flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, Fotis; Lanza, Stefano; Martucci, Luca; Sorokin, Dmitri [Univ. degli Studi di Padova (Italy). Dipt. di Fisica e Astronomia ' ' Galileo Galilei' ' ; I.N.F.N., Sezione di Padova (Italy)

    2017-09-15

    We present a duality procedure that relates conventional four-dimensional matter-coupled N = 1 supergravities to dual formulations in which auxiliary fields are replaced by field strengths of gauge three-forms. The duality promotes specific coupling constants appearing in the superpotential to vacuum expectation values of the field strengths. We then apply this general duality to type IIA string compactifications on Calabi-Yau orientifolds with RR fluxes. This gives a new supersymmetric formulation of the corresponding effective four-dimensional theories which includes gauge three-forms. (orig.)

  6. Naturally light hidden photons in LARGE volume string compactifications

    International Nuclear Information System (INIS)

    Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A.

    2009-09-01

    Extra ''hidden'' U(1) gauge factors are a generic feature of string theory that is of particular phenomenological interest. They can kinetically mix with the Standard Model photon and are thereby accessible to a wide variety of astrophysical and cosmological observations and laboratory experiments. In this paper we investigate the masses and the kinetic mixing of hidden U(1)s in LARGE volume compactifications of string theory. We find that in these scenarios the hidden photons can be naturally light and that their kinetic mixing with the ordinary electromagnetic photon can be of a size interesting for near future experiments and observations. (orig.)

  7. Gauge-mediated supersymmetry breaking in string compactifications

    International Nuclear Information System (INIS)

    Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter

    2006-01-01

    We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem

  8. Two-loop string theory on null compactifications

    International Nuclear Information System (INIS)

    Cove, Henry C.D.; Szabo, Richard J.

    2006-01-01

    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed

  9. Compactifications of 5d SCFTs with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Zafrir, Gabi [Department of Physics, Technion - Israel Institute of Technology,32000, Haifa (Israel)

    2017-01-23

    We study the compactification of 5d SCFTs to 4d on a circle with a twist in a discrete global symmetry element of these SCFTs. We present evidence that this leads to various 4dN=2 isolated SCFTs. These include many known theories as well as seemingly new ones. The known theories include the recently discovered rank 1SU(4) SCFT and its mass deformations. One application of the new SCFTs is in the dual descriptions of the 4d gauge theory SU(N)+1S+(N−2)F. Also interesting is the appearance of a theory with rank 1 and F{sub 4} global symmetry.

  10. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  11. Supersymmetric RG flows and Janus from type II orbifold compactification

    Energy Technology Data Exchange (ETDEWEB)

    Karndumri, Parinya; Upathambhakul, Khem [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)

    2017-07-15

    We study holographic RG flow solutions within four-dimensional N = 4 gauged supergravity obtained from type IIA and IIB string theories compactified on T{sup 6}/Z{sub 2} x Z{sub 2} orbifold with gauge, geometric and non-geometric fluxes. In type IIB non-geometric compactifications, the resulting gauged supergravity has ISO(3) x ISO(3) gauge group and admits an N = 4 AdS{sub 4} vacuum dual to an N = 4 superconformal field theory (SCFT) in three dimensions. We study various supersymmetric RG flows from this N = 4 SCFT to N = 4 and N = 1 non-conformal field theories in the IR. The flows preserving N = 4 supersymmetry are driven by relevant operators of dimensions Δ = 1, 2 or alternatively by one of these relevant operators, dual to the dilaton, and irrelevant operators of dimensions Δ = 4 while the N = 1 flows in addition involve marginal deformations. Most of the flows can be obtained analytically. We also give examples of supersymmetric Janus solutions preserving N = 4 and N = 1 supersymmetries. These solutions should describe two-dimensional conformal defects within the dual N = 4 SCFT. Geometric compactifications of type IIA theory give rise to N = 4 gauged supergravity with ISO(3) x U(1){sup 6} gauge group. In this case, the resulting gauged supergravity admits an N = 1 AdS{sub 4} vacuum. We also numerically study possible N = 1 RG flows to non-conformal field theories in this case. (orig.)

  12. Quantum fluctuations and spontaneous compactification of eleven-dimensional gravity

    International Nuclear Information System (INIS)

    Nguen Van Hieu.

    1985-01-01

    The reduction of the eleven-dimensional pure gravity to the field theory in the four-dimensional Minkowski space-time by means of the spontaneous compactification of the extra dimensions is investigated. The contribution of the quantum fluctuations of the eleven-dimen-- sonal second rank symmetric tensor field to the curvatures of the space-time and the compactified space of the extra dimensions are calculated in the one-loop approximation. It is shown that there exist the values of the cosmological constant for which tachions are absent. As a result, self-consistent quantum field theory is obtained in spontaneous compactified Minkowski space M 4 xS 7 ,is where M 4 is Minkowski space-time, and S 7 is seven-dimensional sphere

  13. Anomaly, fluxes and (2,0) heterotic-string compactifications

    International Nuclear Information System (INIS)

    Gillard, Joe; Papadopoulos, George; Tsimpis, Dimitrios

    2003-01-01

    We compute the corrections to heterotic-string backgrounds with (2,0) world-sheet supersymmetry, up to two loops in sigma-model perturbation theory. We investigate the conditions for these backgrounds to preserve spacetime supersymmetry and we find that a sufficient requirement for consistency is the applicability of the ∂ ∂-bar-lemma. In particular, we investigate the α' corrections to (2,0) heterotic-string compactifications and we find that the Calabi-Yau geometry of the internal space is deformed to a hermitean one. We show that at first order in α', the heterotic anomaly-cancellation mechanism does not induce any lifting of moduli. We explicitly compute the corrections to the conifold and to the U(n)-invariant Calabi-Yau metric at first order in α'. We also find a generalization of the gauge-field equations, compatible with the Donaldson equations on conformally-balanced hermitean manifolds. (author)

  14. Generalized N=1 orientifold compactifications and the Hitchin functionals

    International Nuclear Information System (INIS)

    Benmachiche, I.; Hamburg Univ.; Grimm, T.W.

    2006-02-01

    The four-dimensional N=1 supergravity theories arising in compactifications of type IIA and type IIB on generalized orientifold backgrounds with background fluxes are discussed. The Kaehler potentials are derived for reductions on SU(3) structure orientifolds and shown to consist of the logarithm of the two Hitchin functionals. These are functions of even and odd forms parameterizing the geometry of the internal manifold, the B-field and the dilaton. The superpotentials induced by background fluxes and the non-Calabi-Yau geometry are determined by a reduction of the type IIA and type IIB fermionic actions on SU(3) and generalized SU(3) x SU(3) manifolds. Mirror spaces of Calabi-Yau orientifolds with electric and part of the magnetic NS-NS fluxes are conjectured to be certain SU(3) x SU(3) structure manifolds. Evidence for this identification is provided by comparing the generalized type IIA and type IIB superpotentials. (orig.)

  15. Reconciling grand unification with strings by anisotropic compactifications

    International Nuclear Information System (INIS)

    Dundee, Ben; Raby, Stuart; Wingerter, Akin

    2008-01-01

    We analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five-dimensional orbifold grand unified theory field theories. Our analysis assumes three fundamental scales: the string scale M S , a compactification scale M C , and a mass scale for some of the vectorlike exotics M EX ; the other exotics are assumed to get mass at M S . In the particular models analyzed, we show that gauge coupling unification is not possible with M EX =M C , and in fact we require M EX C ∼3x10 16 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 10 33 yr 0 e + ) 36 yr. The other 80% of the parameter space gives proton lifetimes below Super-Kamiokande bounds. The next generation of proton decay experiments should be sensitive to the remaining parameter space.

  16. Generalized N=1 orientifold compactifications and the Hitchin functionals

    International Nuclear Information System (INIS)

    Benmachiche, Iman; Grimm, Thomas W.

    2006-01-01

    The four-dimensional N=1 supergravity theories arising in compactifications of type IIA and type IIB on generalized orientifold backgrounds with background fluxes are discussed. The Kahler potentials are derived for reductions on SU(3) structure orientifolds and shown to consist of the logarithm of the two Hitchin functionals. These are functions of even and odd forms parameterizing the geometry of the internal manifold, the B-field and the dilaton. The superpotentials induced by background fluxes and the non-Calabi-Yau geometry are determined by a reduction of the type IIA and type IIB fermionic actions on SU(3) and generalized SU(3)xSU(3) manifolds. Mirror spaces of Calabi-Yau orientifolds with electric and part of the magnetic NS-NS fluxes are conjectured to be certain SU(3)xSU(3) structure manifolds. Evidence for this identification is provided by comparing the generalized type IIA and type IIB superpotentials

  17. N-flation with hierarchically light axions in string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); Dutta, Koushik [Theory Division, Saha Institute of Nuclear Physics, 1/AF Salt Lake, Kolkata, 700064 (India); Maharana, Anshuman, E-mail: mcicoli@ictp.it, E-mail: koushik.dutta@saha.ac.in, E-mail: anshumanmaharana@hri.res.in [Harish Chandra Research Intitute, Chattnag Road, Jhunsi, Allahabad, 211019 (India)

    2014-08-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringy embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation.

  18. N-flation with hierarchically light axions in string compactifications

    International Nuclear Information System (INIS)

    Cicoli, Michele; Dutta, Koushik; Maharana, Anshuman

    2014-01-01

    We propose a possible embedding of axionic N-flation in type IIB string compactifications where most of the Kähler moduli are stabilised by perturbative effects, and so are hierarchically heavier than the corresponding N>> 1 axions whose collective dynamics drives inflation. This is achieved in the framework of the LARGE Volume Scenario for moduli stabilisation. Our set-up can be used to realise a model of either large field inflation or quintessence, just by varying the volume of the internal space which controls the scale of the axionic potential. Both cases predict a very high scale of supersymmetry breaking. A fully explicit stringy embedding of N-flation would require control over dangerous back-reaction effects due to a large number of species. A viable reheating of the Standard Model degrees of freedom can be achieved after the end of inflation due to the perturbative decay of the N light axions which drive inflation

  19. Effective theories and black hole production in warped compactifications

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Katz, Emanuel

    2001-01-01

    We investigate aspects of the four-dimensional (4D) effective description of brane world scenarios based on warped compactification on anti-de Sitter space. The low-energy dynamics is described by visible matter gravitationally coupled to a ''dark'' conformal field theory. We give the linearized description of the 4D stress tensor corresponding to an arbitrary 5D matter distribution. In particular a 5D falling particle corresponds to a 4D expanding shell, giving a 4D interpretation of a trajectory that misses a black hole only by moving in the fifth dimension. Breakdown of the effective description occurs when either five-dimensional physics or strong gravity becomes important. In scenarios with a TeV brane, the latter can happen through the production of black holes near the TeV scale. This could provide an interesting experimental window on quantum black hole dynamics

  20. AdS strings with torsion: Noncomplex heterotic compactifications

    International Nuclear Information System (INIS)

    Frey, Andrew R.; Lippert, Matthew

    2005-01-01

    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS 4 compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kaehler. We argue that all moduli are fixed, and we show that the Kaehler potential and superpotential proposed in the literature yield the correct AdS 4 radius. In the nearly Kaehler case, we are able to solve the H Bianchi identity using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate

  1. Non-hermitian symmetric N = 2 coset models, Poincare polynomials, and string compactification

    International Nuclear Information System (INIS)

    Fuchs, J.; Schweigert, C.

    1994-01-01

    The field identification problem, including fixed point resolution, is solved for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these models are finally identified as well-defined modular invariant conformal field theories. As an application, the theories are used as subtheories in N = 2 tensor products with c = 9, which in turn are taken as the inner sector of heterotic superstring compactifications. All string theories of this type are classified, and the chiral ring as well as the number of massless generations and anti-generations are computed with the help of the extended Poincare polynomial. Several equivalences between a priori different non-hermitian coset theories show up; in particular there is a level-rank duality for an infinite series of coset theories based on C-type Lie algebras. Further, some general results for generic N = 2 coset theories are proven: a simple formula for the number of identification currents is found, and it is shown that the set of Ramond ground states of any N = 2 coset model is invariant under charge conjugation. (orig.)

  2. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  3. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  4. Type IIA flux compactifications. Vacua, effective theories and cosmological challenges

    International Nuclear Information System (INIS)

    Koers, Simon

    2009-01-01

    In this thesis, we studied a number of type IIA SU(3)-structure compactifications with 06-planes on nilmanifolds and cosets, which are tractable enough to allow for an explicit derivation of the low energy effective theory. In particular we calculated the mass spectrum of the light scalar modes, using N = 1 supergravity techniques. For the torus and the Iwasawa solution, we have also performed an explicit Kaluza-Klein reduction, which led to the same result. For the nilmanifold examples we have found that there are always three unstabilized moduli corresponding to axions in the RR sector. On the other hand, in the coset models, except for SU(2) x SU(2), all moduli are stabilized. We discussed the Kaluza-Klein decoupling for the supersymmetric AdS vacua and found that it requires going to the Nearly-Calabi Yau limited. We searched for non-trivial de Sitter minima in the original flux potential away from the AdS vacuum. Finally, in chapter 7, we focused on a family of three coset spaces and constructed non-supersymmetric vacua on them. (orig.)

  5. Foliated eight-manifolds for M-theory compactification

    Science.gov (United States)

    Babalic, Elena Mirela; Lazaroiu, Calin Iuliu

    2015-01-01

    We characterize compact eight-manifolds M which arise as internal spaces in flux compactifications of M-theory down to AdS3 using the theory of foliations, for the case when the internal part ξ of the supersymmetry generator is everywhere non-chiral. We prove that specifying such a supersymmetric background is equivalent with giving a codimension one foliation of M which carries a leafwise G 2 structure, such that the O'Neill-Gray tensors, non-adapted part of the normal connection and the torsion classes of the G 2 structure are given in terms of the supergravity four-form field strength by explicit formulas which we derive. We discuss the topology of such foliations, showing that the C * algebra is a noncommutative torus of dimension given by the irrationality rank of a certain cohomology class constructed from G, which must satisfy the Latour obstruction. We also give a criterion in terms of this class for when such foliations are fibrations over the circle. When the criterion is not satisfied, each leaf of is dense in M.

  6. Anomaly, fluxes and (2,0) heterotic-string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Joe; Papadopoulos, George; Tsimpis, Dimitrios [Department of Mathematics, King' s College London, Strand, London WC2R 2LS (United Kingdom)]. E-mail: tsimpis@fy.chalmers.se

    2003-06-01

    We compute the corrections to heterotic-string backgrounds with (2,0) world-sheet supersymmetry, up to two loops in sigma-model perturbation theory. We investigate the conditions for these backgrounds to preserve spacetime supersymmetry and we find that a sufficient requirement for consistency is the applicability of the {partial_derivative} {partial_derivative}-bar-lemma. In particular, we investigate the {alpha}' corrections to (2,0) heterotic-string compactifications and we find that the Calabi-Yau geometry of the internal space is deformed to a hermitean one. We show that at first order in {alpha}', the heterotic anomaly-cancellation mechanism does not induce any lifting of moduli. We explicitly compute the corrections to the conifold and to the U(n)-invariant Calabi-Yau metric at first order in {alpha}'. We also find a generalization of the gauge-field equations, compatible with the Donaldson equations on conformally-balanced hermitean manifolds. (author)

  7. Dynamical Compactification as a Mechanism of Spontaneous Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia

    1997-01-01

    Supersymmetry breaking and compactification of extra space-time dimensions may have a common dynamical origin if our universe is spontaneously generated in the form of a four-dimensional topological or non-topological defect in higher dimensional space-time. Within such an approach the conventional particles are zero modes trapped in the core of the defect. In many cases solutions of this type spontaneously break all supersymmetries of the original theory, so that the low-energy observer from ``our'' universe inside the core would not detect supersymmetry. Since the extra dimensions are not compact but, rather, inaccessible to low-energy observers, the usual infinite tower of the Kaluza-Klein excitations does not exist. Production of superpartners at the energy scale of SUSY restoration will be accompanied by four-momentum non-conservation. (Depending on the nature of the solution at hand, the non-conservation may either happen above some threshold energy or be continuous). In either case, the door to extra d...

  8. String theory compactifications with fluxes, and generalized geometry

    International Nuclear Information System (INIS)

    Cassani, D.

    2009-06-01

    The topic of this thesis is compactifications in string theory and supergravity. We study dimensional reductions of type II theories on backgrounds with fluxes, using the techniques of Hitchin's generalized geometry. We start with an introduction of the needed mathematical tools, focusing on SU(3)xSU(3) structures on the generalized tangent bundle T+T * , and analyzing their deformations. Next we study the four dimensional N equals 2 gauged supergravity which can be defined reducing type II theories on SU(3)*SU(3) structure backgrounds with general NSNS and RR fluxes: we establish the complete bosonic action, and we show how its data are related to the generalized geometry formalism on T+T * . In particular, we derive a geometric expression for the full N = 2 scalar potential. Then we focus on the relations between the 10d and 4d descriptions of supersymmetric flux backgrounds: we spell out the N = 1 vacuum conditions within the 4d N = 2 theory, as well as from its N = 1 truncation, and we establish a precise matching with the equations characterizing the N = 1 backgrounds at the ten dimensional level. We conclude by presenting some concrete examples, based on coset spaces with SU(3) structure. We establish for these spaces the consistency of the truncation based on left-invariance, and we explore the landscape of vacua of the corresponding theory, taking string loop corrections into account. (author)

  9. Casimir effect in rugby-ball type flux compactifications

    International Nuclear Information System (INIS)

    Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade

    2007-01-01

    As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ ' (0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys. 12 (2006) 079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling

  10. Compactifications of deformed conifolds, branes and the geometry of qubits

    Energy Technology Data Exchange (ETDEWEB)

    Cvetič, M. [Department of Physics and Astronomy,University of Pennsylvania, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics,University of Maribor, SI2000 Maribor (Slovenia); Gibbons, G.W. [Department of Physics and Astronomy,University of Pennsylvania, Philadelphia, PA 19104 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom); Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350,Fédération Denis Poisson, Université François-Rabelais Tours,Parc de Grandmont, 37200 Tours (France); LE STUDIUM, Loire Valley Institute for Advanced Studies,Tours and Orleans (France); Pope, C.N. [DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom); George P. & Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843-4242 (United States)

    2016-01-22

    We present three families of exact, cohomogeneity-one Einstein metrics in (2n+2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces ℂℙ{sup n+1}, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V{sub 2}(ℝ{sup n+2})=SO(n+2)/SO(n) divided by ℤ{sub 2}. The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds G{sub 2}(ℝ{sup n+3})=SO(n+3)/((SO(n+1)×SO(2)), whose principal orbits are the Stiefel manifolds V{sub 2}(ℝ{sup n+2}) (with no ℤ{sub 2} factoring in this case). The third family are Einstein metrics on the product manifolds S{sup n+1}×S{sup n+1}, and are Kähler only for n=1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on ℂℙ{sup n+1}, and we apply the formalism to study the quantum entanglement of qubits.

  11. Scales and hierarchies in warped compactifications and brane worlds

    International Nuclear Information System (INIS)

    DeWolfe, Oliver; Giddings, Steven B.

    2003-01-01

    Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined solely by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kaehler potential, including the effects of warping. We identify matter living on certain branes to be effectively sequestered from the supersymmetry breaking fluxes: specifically, such 'visible sector' fields receive no tree-level masses from the supersymmetry breaking. However, loop corrections are expected to generate masses, at the phenomenologically viable TeV scale

  12. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  13. T-duality orbifolds of heterotic Narain compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Nibbelink, Stefan Groot [School of Engineering and Applied Sciences, Rotterdam University of Applied Sciences,G.J. de Jonghweg 4-6, 3015 GG Rotterdam (Netherlands); Vaudrevange, Patrick K.S. [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Physik Department T30, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)

    2017-04-06

    To obtain a unified framework for symmetric and asymmetric heterotic orbifold constructions we provide a systematic study of Narain compactifications orbifolded by finite order T-duality subgroups. We review the generalized vielbein that parametrizes the Narain moduli space (i.e. the metric, the B-field and the Wilson lines) and introduce a convenient basis of generators of the heterotic T-duality group. Using this we generalize the space group description of orbifolds to Narain orbifolds. This yields a unified, crystallographic description of the orbifold twists, shifts as well as Narain moduli. In particular, we derive a character formula that counts the number of unfixed Narain moduli after orbifolding. Moreover, we develop new machinery that may ultimately open up the possibility for a full classification of Narain orbifolds. This is done by generalizing the geometrical concepts of ℚ-, ℤ- and affine classes from the theory of crystallography to the Narain case. Finally, we give a variety of examples illustrating various aspects of Narain orbifolds, including novel T-folds.

  14. BPS open strings and A-D-E-singularities in F-theory on K3

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle

    We improve on a recently constructed graphical representation of the supergravity 7-brane solution and apply this refined representation to re-study the open string description of the A-D-E-singularities in F-theory on K3. A noteworthy feature of the graphical representation is that it provides the

  15. Controlling chaos through compactification in cosmological models with a collapsing phase

    International Nuclear Information System (INIS)

    Wesley, Daniel H.; Steinhardt, Paul J.; Turok, Neil

    2005-01-01

    We consider the effect of compactification of extra dimensions on the onset of classical chaotic mixmaster behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-dimensional Friedmann-Robertson-Walker model (with negligible Kaluza-Klein excitations) when the contraction phase begins, we identify compactifications that allow a smooth contraction and delay the onset of chaos until arbitrarily close to the big crunch. These compactifications are defined by the de Rham cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifications that control chaos in vacuum Einstein gravity, as well as in string theories with N=1 supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to the big crunch and transition into a subsequent expanding phase. Our results may be useful for constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big bang models

  16. Spin(7) compactifications and 1/4-BPS vacua in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Stephen [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 Republic of (Korea, Republic of); Matti, Cyril [Department of Mathematics, City University, Northampton Square, London, EC1V 0HB (United Kingdom); Mandelstam Institute for Theoretical Physics, NITheP, andSchool of Physics, University of the Witwatersrand,Johannesburg, WITS 2050 South Africa (South Africa); Svanes, Eirik E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE,Paris, F-75005 (France); CNRS, UMR 7589, LPTHE,Paris, F-75005 (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Bd Arago, Paris, 75014 (France)

    2016-03-25

    We continue the investigation into non-maximally symmetric compactifications of the heterotic string. In particular, we consider compactifications where the internal space is allowed to depend on two or more external directions. For preservation of supersymmetry, this implies that the internal space must in general be that of a Spin(7) manifold, which leads to a 1/4-BPS four-dimensional supersymmetric perturbative vacuum breaking all but one supercharge. We find that these solutions allow for internal geometries previously excluded by the domain-wall-type solutions, and hence the resulting four-dimensional superpotential is more generic. In particular, we find an interesting resemblance to the superpotentials that appear in non-geometric flux compactifications of type II string theory. If the vacua are to be used for phenomenological applications, they must be lifted to maximal symmetry by some non-perturbative or higher-order effect.

  17. Low-energy supergravities from heterotic compactification on reduced structure backgrounds

    International Nuclear Information System (INIS)

    Martinez Pedrera, Danny Manuel

    2009-10-01

    In this thesis, the compactification of heterotic supergravity on six-dimensional manifolds with SU(2) and SU(3) structure is studied. For the SU(2)-structure backgrounds, the spectrum and the bosonic action of the effective theory in four dimensions are obtained. The results are gauged versions of the ungauged N=2 supergravity obtained after compactification on K3 x T 2 . The gauge algebra and the Killing prepotentials are also computed. For the SU(3)-structure backgrounds, the couplings of the resulting N=1 supergravity are computed by reducing terms on the heterotic supergravity action involving fermionic fields, and are further checked by computing the supersymmetry variations of the fermions. (orig.)

  18. arXiv Gauge Backgrounds and Zero-Mode Counting in F-Theory

    CERN Document Server

    Bies, Martin; Weigand, Timo

    2017-11-14

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gi...

  19. F-theory GUTs with U(1) symmetries: Generalities and survey

    International Nuclear Information System (INIS)

    Dolan, Matthew J.; Marsano, Joseph; Saulina, Natalia; Schaefer-Nameki, Sakura

    2011-01-01

    We study the structure of SU(5) F-theory grand unified theory (GUT) models that engineer additional U(1) symmetries. These are highly constrained by a set of relations observed by Dudas and Palti (DP) that originate from the physics of four-dimensional anomaly cancellation. Using the DP relations, we describe a general tension between unification and the suppression of dimension 5 proton decay when one or more U(1)'s are Peccei-Quinn (PQ) symmetries and hypercharge flux is used to break the SU(5) GUT group. We then specialize to spectral cover models, whose global completions in F theory we know how to construct. In that setting, we provide a technical derivation of the DP relations, construct spectral covers that yield all possible solutions to them, and provide a complete survey of spectral cover models for SU(5) GUTs that exhibit two U(1) symmetries.

  20. F-theory and unpaired tensors in 6D SCFTs and LSTs

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, David R. [Department of Mathematics, University of California Santa Barbara, CA (United States); Department of Physics, University of California Santa Barbara, CA (United States); Rudelius, Tom [Jefferson Physical Laboratory, Harvard University, Cambridge, MA (United States)

    2016-08-15

    We investigate global symmetries for 6D SCFTs and LSTs having a single ''unpaired'' tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F-theory whose tensor has Dirac self-pairing equal to -1, the global symmetry algebra is a subalgebra of e{sub 8}. This result is new if the F-theory presentation of the theory involves a one-parameter family of nodal or cuspidal rational curves (i.e., Kodaira types I{sub 1} or II) rather than elliptic curves (Kodaira type I{sub 0}). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi-tensor theories. We also study the analogous problem for theories whose tensor has Dirac self-pairing equal to -2 and find that the global symmetry algebra is a subalgebra of su(2). However, in this case there are additional constraints on F-theory constructions for coupling these theories to others. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. F-theory and unpaired tensors in 6D SCFTs and LSTs

    International Nuclear Information System (INIS)

    Morrison, David R.; Rudelius, Tom

    2016-01-01

    We investigate global symmetries for 6D SCFTs and LSTs having a single ''unpaired'' tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F-theory whose tensor has Dirac self-pairing equal to -1, the global symmetry algebra is a subalgebra of e 8 . This result is new if the F-theory presentation of the theory involves a one-parameter family of nodal or cuspidal rational curves (i.e., Kodaira types I 1 or II) rather than elliptic curves (Kodaira type I 0 ). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi-tensor theories. We also study the analogous problem for theories whose tensor has Dirac self-pairing equal to -2 and find that the global symmetry algebra is a subalgebra of su(2). However, in this case there are additional constraints on F-theory constructions for coupling these theories to others. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds

    DEFF Research Database (Denmark)

    Spotti, Cristiano; Sun, Song

    We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds in all complex dimensions bigger than two (Fano K-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of K-stable Fano...

  3. Geometry of the Poincaré compactification of a four-dimensional food-web system

    Czech Academy of Sciences Publication Activity Database

    Priyadarshi, Anupam; Banerjee, S.; Gakkhar, S.

    2014-01-01

    Roč. 226, JAN 1 (2014), s. 229-237 ISSN 0096-3003 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Poincaré compactification * global dynamics * boundedness Subject RIV: EH - Ecology, Behaviour Impact factor: 1.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0096300313011247

  4. Flux compactification of M-theory on compact manifolds with Spin(7) holonomy

    International Nuclear Information System (INIS)

    Constantin, D.

    2005-01-01

    At the leading order, M-theory admits minimal supersymmetric compactifications if the internal manifold has exceptional holonomy. The inclusion of non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory, which depends on the fluxes. In this work, we check the conjectured form of this superpotential in the case of warped M-theory compactifications on Spin(7) holonomy manifolds. We perform a Kaluza-Klein reduction of the eleven-dimensional supersymmetry transformation for the gravitino and we find by direct comparison the superpotential expression. We check the conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well. The conjecture can be checked indirectly by inspecting the scalar potential obtained after the compactification of M-theory on Spin(7) holonomy manifolds with non-vanishing fluxes. The scalar potential can be written in terms of the superpotential and we show that this potential stabilizes all the moduli fields describing deformations of the metric except for the radial modulus. All the above analyses require the knowledge of the minimal supergravity action in three dimensions. Therefore we calculate the most general causal N =1 three-dimensional, gauge invariant action coupled to matter in superspace and derive its component form using Ectoplasmic integration theory. We also show that the three-dimensional theory which results from the compactification is in agreement with the more general supergravity construction. The compactification procedure takes into account higher order quantum correction terms in the low energy effective action. We analyze the properties of these terms on a Spin(7) background. We derive a perturbative set of solutions which emerges from a warped compactification on a Spin(7) holonomy manifold with non-vanishing flux for the M-theory field strength and we show that in general the Ricci flatness of the internal manifold is lost, which

  5. Aspects of string theory compactifications. D-brane statistics and generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Gmeiner, F.

    2006-05-26

    In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate

  6. Aspects of string theory compactifications. D-brane statistics and generalised geometry

    International Nuclear Information System (INIS)

    Gmeiner, F.

    2006-01-01

    In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate

  7. E(lementary) Strings in Six-Dimensional Heterotic F-Theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  8. E{sub 6} Yukawa couplings in F-theory as D-brane instanton effects

    Energy Technology Data Exchange (ETDEWEB)

    Collinucci, Andrés [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany)

    2017-03-29

    At weak coupling the neighborhood of a E{sub 6} Yukawa point in SU(5) GUT F-theory models is described by a non-resolvable orientifold of the conifold. We explicitly show, first directly in IIB and then via a mirror symmetry argument, that in this limit the E{sub 6} Yukawa coupling is better described as coming from the non-perturbative contribution of a euclidean D1-brane wrapping the non-resolvable cycle. We also discuss how the M-theory description interpolates between the weak and strong coupling viewpoints.

  9. Gauge backgrounds and zero-mode counting in F-theory

    Science.gov (United States)

    Bies, Martin; Mayrhofer, Christoph; Weigand, Timo

    2017-11-01

    Computing the exact spectrum of charged massless matter is a crucial step towards understanding the effective field theory describing F-theory vacua in four dimensions. In this work we further develop a coherent framework to determine the charged massless matter in F-theory compactified on elliptic fourfolds, and demonstrate its application in a concrete example. The gauge background is represented, via duality with M-theory, by algebraic cycles modulo rational equivalence. Intersection theory within the Chow ring allows us to extract coherent sheaves on the base of the elliptic fibration whose cohomology groups encode the charged zero-mode spectrum. The dimensions of these cohomology groups are computed with the help of modern techniques from algebraic geometry, which we implement in the software gap. We exemplify this approach in models with an Abelian and non-Abelian gauge group and observe jumps in the exact massless spectrum as the complex structure moduli are varied. An extended mathematical appendix gives a self-contained introduction to the algebro-geometric concepts underlying our framework.

  10. Vectorlike particles, Z′ and Yukawa unification in F-theory inspired E6

    Directory of Open Access Journals (Sweden)

    Athanasios Karozas

    2018-03-01

    Full Text Available We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z′ gauge boson associated with a U(1 symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t−b−τ Yukawa couplings unify.

  11. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    Science.gov (United States)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  12. A Natural Extension of Standard Warped Higher-Dimensional Compactifications: Theory and Phenomenology

    Science.gov (United States)

    Hong, Sungwoo

    Warped higher-dimensional compactifications with "bulk'' standard model, or their AdS/CFT dual as the purely 4D scenario of Higgs compositeness and partial compositeness, offer an elegant approach to resolving the electroweak hierarchy problem as well as the origins of flavor structure. However, low-energy electroweak/flavor/CP constraints and the absence of non-standard physics at LHC Run 1 suggest that a "little hierarchy problem'' remains, and that the new physics underlying naturalness may lie out of LHC reach. Assuming this to be the case, we show that there is a simple and natural extension of the minimal warped model in the Randall-Sundrum framework, in which matter, gauge and gravitational fields propagate modestly different degrees into the IR of the warped dimension, resulting in rich and striking consequences for the LHC (and beyond). The LHC-accessible part of the new physics is AdS/CFT dual to the mechanism of "vectorlike confinement'', with TeV-scale Kaluza-Klein excitations of the gauge and gravitational fields dual to spin-0,1,2 composites. Unlike the minimal warped model, these low-lying excitations have predominantly flavor-blind and flavor/CP-safe interactions with the standard model. In addition, the usual leading decay modes of the lightest KK gauge bosons into top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to all pairs of SM fermions, and a novel channel--decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. We present a detailed phenomenological study of the latter cascade decay processes. Remarkably, this scenario also predicts small deviations from flavor-blindness originating from virtual effects of Higgs/top compositeness at O(10) TeV, with subdominant resonance decays into a pair of Higgs/top-rich final states, giving the LHC an early "preview'' of the nature of the resolution of the hierarchy

  13. Heterotic and type II orientifold compactifications on SU(3) structure manifolds

    International Nuclear Information System (INIS)

    Benmachiche, I.

    2006-07-01

    We study the four-dimensional N=1 effective theories of generic SU(3) structure compactifications in the presence of background fluxes. For heterotic and type IIA/B orientifold theories, the N=1 characteristic data are determined by a Kaluza-Klein reduction of the fermionic actions. The Kaehler potentials, superpotentials and the D-terms are entirely encoded by geometrical data of the internal manifold. The background flux and the intrinsic torsion of the SU(3) structure manifold, gives rise to contributions to the four-dimensional F-terms. The corresponding superpotentials generalize the Gukov-Vafa-Witten superpotential. For the heterotic compactification, the four-dimensional fermionic supersymmetry variations, as well as the conditions on supersymmetric vacua, are determined. The Yukawa couplings of the theory turn out to be similar to their Calabi-Yau counterparts. (Orig.)

  14. arXiv Wilson lines and UV sensitivity in magnetic compactifications

    CERN Document Server

    Ghilencea, D.M.

    2017-06-07

    We investigate the ultraviolet (UV) behaviour of 6D N=1 supersymmetric effective (Abelian) gauge theories compactified on a two-torus (T$_{2}$) with magnetic flux. To this purpose we compute offshell the one-loop correction to the Wilson line state self-energy. The offshell calculation is actually necessary to capture the usual effective field theory expansion in powers of (∂/Λ). Particular care is paid to the regularization of the (divergent) momentum integrals, which is relevant for identifying the corresponding counterterm(s). We find a counterterm which is a new higher dimensional effective operator of dimension d=6, that is enhanced for a larger compactification area (where the effective theory applies) and is consistent with the symmetries of the theory. Its consequences are briefly discussed and comparison is made with orbifold compactifications without flux.

  15. On the effective theory of type II string compactifications on nilmanifolds and coset spaces

    International Nuclear Information System (INIS)

    Caviezel, Claudio

    2009-01-01

    In this thesis we analyzed a large number of type IIA strict SU(3)-structure compactifications with fluxes and O6/D6-sources, as well as type IIB static SU(2)-structure compactifications with fluxes and O5/O7-sources. Restricting to structures and fluxes that are constant in the basis of left-invariant one-forms, these models are tractable enough to allow for an explicit derivation of the four-dimensional low-energy effective theory. The six-dimensional compact manifolds we studied in this thesis are nilmanifolds based on nilpotent Lie-algebras, and, on the other hand, coset spaces based on semisimple and U(1)-groups, which admit a left-invariant strict SU(3)- or static SU(2)-structure. In particular, from the set of 34 distinct nilmanifolds we identified two nilmanifolds, the torus and the Iwasawa manifold, that allow for an AdS 4 , N = 1 type IIA strict SU(3)-structure solution and one nilmanifold allowing for an AdS 4 , N = 1 type IIB static SU(2)-structure solution. From the set of all the possible six-dimensional coset spaces, we identified seven coset spaces suitable for strict SU(3)-structure compactifications, four of which also allow for a static SU(2)-structure compactification. For all these models, we calculated the four-dimensional low-energy effective theory using N = 1 supergravity techniques. In order to write down the most general four-dimensional effective action, we also studied how to classify the different disconnected ''bubbles'' in moduli space. (orig.)

  16. Soft masses in theories with supersymmetry breaking by TeV compactification

    International Nuclear Information System (INIS)

    Antoniadis, I.; Dimopoulos, S.; Pomarol, A.; Quiros, M.

    1999-01-01

    We study the sparticle spectroscopy and electroweak breaking of theories where supersymmetry is broken by compactification (Scherk-Schwarz mechanism) at a TeV The evolution of the soft terms above the compactification scale and the resulting sparticle spectrum are very different from those of the usual MSSM and gauge-mediated theories. This is traced to the softness of the Scherk-Schwarz mechanism which leads to scalar sparticle masses that are only logarithmically sensitive to the cutoff starting at two loops. As a result, the mass-squareds of the squarks and sleptons are a loop factor smaller than those of the gauginos. In addition, the mechanism is very predictive and the sparticle spectrum depends on just two new parameters. A significant advantage of this mechanism relative to gauge mediation is that a Higgsino mass μ ∼ M susy is automatically generated when supersymmetry is broken. Our analysis applies equally well to theories where the cutoff is near a TeV or M Pl or some intermediate scale. We also use these observations to show how we may obtain compactification radii which are hierarchically larger than the fundamental cutoff scale

  17. On Hamiltonians with position-dependent mass from Kaluza–Klein compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Ángel, E-mail: angelb@ubu.es; Gutiérrez-Sagredo, Iván, E-mail: igsagredo@ubu.es; Naranjo, Pedro, E-mail: pnaranjo@ubu.es

    2017-02-19

    In a recent paper (Morris (2015) ), an inhomogeneous compactification of the extra dimension of a five-dimensional Kaluza–Klein metric has been shown to generate a position-dependent mass (PDM) in the corresponding four-dimensional system. As an application of this dimensional reduction mechanism, a specific static dilatonic scalar field has been connected with a PDM Lagrangian describing a well-known nonlinear PDM oscillator. Here we present more instances of this construction that lead to PDM systems with radial symmetry, and the properties of their corresponding inhomogeneous extra dimensions are compared with the ones in the nonlinear oscillator model. Moreover, it is also shown how the compactification introduced in this type of models can alternatively be interpreted as a novel mechanism for the dynamical generation of curvature. - Highlights: • New position-dependent mass systems arising from inhomogeneous Kaluza–Klein compactifications are presented. • Connections with known integrable position-dependent mass systems are established. • A novel mechanism for the dynamical generation of curvature is proposed.

  18. The spectra of type IIB flux compactifications at large complex structure

    International Nuclear Information System (INIS)

    Brodie, Callum; Marsh, M.C. David

    2016-01-01

    We compute the spectra of the Hessian matrix, H, and the matrix M that governs the critical point equation of the low-energy effective supergravity, as a function of the complex structure and axio-dilaton moduli space in type IIB flux compactifications at large complex structure. We find both spectra analytically in an h − 1,2 +3 real-dimensional subspace of the moduli space, and show that they exhibit a universal structure with highly degenerate eigenvalues, independently of the choice of flux, the details of the compactification geometry, and the number of complex structure moduli. In this subspace, the spectrum of the Hessian matrix contains no tachyons, but there are also no critical points. We show numerically that the spectra of H and M remain highly peaked over a large fraction of the sampled moduli space of explicit Calabi-Yau compactifications with 2 to 5 complex structure moduli. In these models, the scale of the supersymmetric contribution to the scalar masses is strongly linearly correlated with the value of the superpotential over almost the entire moduli space, with particularly strong correlations arising for g s <1. We contrast these results with the expectations from the much-used continuous flux approximation, and comment on the applicability of Random Matrix Theory to the statistical modelling of the string theory landscape.

  19. Froggatt-Nielsen models from E8 in F-theory GUTs

    CERN Document Server

    Dudas, Emilian; 10.1007

    2009-01-01

    This paper studies F-theory SU(5) GUT models where the three generations of the standard model come from three different curves. All the matter is taken to come from curves intersecting at a point of enhanced E8 gauge symmetry. Giving a vev to some of the GUT singlets naturally implements a Froggatt-Nielsen approach to flavour structure. A scan is performed over all possible models and the results are filtered using phenomenological constraints. We find a unique model that fits observations of quark and lepton masses and mixing well. This model suffers from two drawbacks: R-parity must be imposed by hand and there is a doublet-triplet splitting problem.

  20. Breaking E8 to SO(16) in M-theory and F-theory

    International Nuclear Information System (INIS)

    Aldabe, F.

    1998-01-01

    M-theory on an 11-dimensional manifold with a boundary must have E 8 gauge groups at each boundary in order to cancel anomalies. The type IA supergravity must have SO(16) gauge group at each boundary in order to be a consistent theory. The latter action can be obtained from the former one via dimensional reduction. Here we make use of the current algebra of the open membrane which couples to the former action to explain why the gauge group E 8 breaks down to SO(16) in going from M-theory to type IA supergravity. We also use the same current algebra to explain why F-theory has an E 8 x E 8 gauge group in its strong coupling limit while it has an SO(16) x SO(16) gauge group in its weak coupling limit. (orig.)

  1. Fibre Inflation: Observable Gravity Waves from IIB String Compactifications

    CERN Document Server

    Cicoli, M; Quevedo, Fernando

    2009-01-01

    We introduce a simple string model of inflation, in which the inflaton field can take trans-Planckian values while driving a period of slow-roll inflation. This leads naturally to a realisation of large field inflation, inasmuch as the inflationary epoch is well described by the single-field scalar potential V = V_0 (3 - 4 exp{-phi/\\sqrt{3}}). Remarkably, for a broad class of vacua all adjustable parameters enter only through the overall coefficient V_0, and in particular do not enter into the slow-roll parameters. Predictions for observables are therefore completely determined by the number of e-foldings (and so are correlated with the post-inflationary reheat temperature, T_r). If the reheat temperature is T_r = 1, 100, 10^{10} or 10^{15} GeV, then N_e = 23, 28, 46 and 58 e-foldings of inflation are required after horizon exit, corresponding to a scalar spectral index n_s = 0.924, 0.937, 0.961 and 0.968, while the ratio of tensor to scalar perturbations becomes r = 0.0264, 0.0189, 0.00797 and 0.00528, withi...

  2. Vortex configuration in topological insulators from (1+3) Kaluza-Klein compactification

    International Nuclear Information System (INIS)

    Ferreira, Cristine Nunes; Lima, Carlos Eduardo Campos; Helayel-Neto, Jose Abdalla; Paredes, Alfredo A.V.

    2011-01-01

    Full text: Quantum electrodynamics in (1+2)-D is a super-renormalizable gauge theory with some resemblance to four-dimensional theories whenever analyzed in the framework on an 1=N f -expansion. It is possible to show that, by using the fermionic sector of supersymmetric models that result from a (1+3)-D space-time upon compactification, there appears a U(2)-symmetry. We investigate the breakdown study of this symmetry by considering some specific sectors, such as the couplings and the vortex configurations that appear as particular solutions of the model. The construction and the study of models the QCD 3 -type can set up a new bridge of common interests between the condensed matter and high-energy physics communities. The point of view of the condensed matter also helps us to understand materials like graphene, whose description is associated to a massless Dirac equation or topological insulators. The latter, once coupled to vortex configurations, in the low-energy approximation, can generate a mass gap into the Dirac equation through the coupling with fermions. In this work, we consider a Kaluza-Klein compactification from a (1 + 3) supersymmetric model with the Maxwell-Chern-Simons term. The whole motivation behind this contribution is to consider the vortex configuration in (1+2)-D and its coupling to the fermionic sector of the model as a possible interpretation of the topological insulators. As the compactification mechanism adopted is the Kaluza-Klein reduction, we propose an interpretation of the Kaluza- Klein n-modes in connection with the vortices that may be formed in the surface of topological insulators. (author)

  3. Hidden selection rules, M5-instantons and fluxes in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, & I.N.F.N. Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, 69120 Heidelberg (Germany)

    2015-10-21

    We introduce a new approach to investigate the selection rules governing the contributions of fluxed M5-instantons to the F-theory four-dimensional effective action, with emphasis on the generation of charged matter F-terms. The structure of such couplings is unraveled by exploiting the perturbative and non-perturbative homological relations, introduced in our companion paper http://dx.doi.org/10.1007/JHEP09(2015)198, which encode the interplay between the self-dual 3-form flux on the M5-brane, the background 4-form flux and certain fibral curves. The latter are wrapped by time-like M2-branes representing matter insertions in the instanton path integral. In particular, we clarify how fluxed M5-instantons detect the presence of geometrically massive U(1)s which are responsible for ‘hidden’ selection rules. We discuss how for non-generic embeddings the M5-instanton can probe ‘locally massless’ U(1) symmetries if the rank of its Mordell-Weil group is enhanced compared to that of the bulk. As a phenomenological off-spring we propose a new type of non-perturbative corrections to Yukawa couplings which may change the rank of the Yukawa matrix. Along the way, we also gain new insights into the structure of massive U(1) gauge fluxes in the stable degeneration limit.

  4. F-Theory, spinning black holes and multi-string branches

    International Nuclear Information System (INIS)

    Haghighat, Babak; Murthy, Sameer; Vafa, Cumrun; Vandoren, Stefan

    2016-01-01

    We study 5d supersymmetric black holes which descend from strings of generic N=(1,0) supergravity in 6d. These strings have an F-theory realization in 6d as D3 branes wrapping smooth genus g curves in the base of elliptic 3-folds. They enjoy (0,4) worldsheet supersymmetry with an extra SU(2) L current algebra at level g realized on the left-movers. When the smooth curves degenerate they lead to multi-string branches and we find that the microscopic worldsheet theory flows in the IR to disconnected 2d CFTs having different central charges. The single string sector is the one with maximal central charge, which when wrapped on a circle, leads to a 5d spinning BPS black hole whose horizon volume agrees with the leading entropy prediction from the Cardy formula. However, we find new phenomena where this branch meets other branches of the CFT. These include multi-string configurations which have no bound states in 6 dimensions but are bound through KK momenta when wrapping a circle, as well as loci where the curves degenerate to spheres. These loci lead to black hole configurations which can have total angular momentum relative to a Taub-Nut center satisfying J 2 >M 3 and whose number of states, though exponentially large, grows much slower than those of the large spinning black hole.

  5. On a new compactification of the moduli of vector bundles on a surface

    International Nuclear Information System (INIS)

    Timofeeva, N V

    2008-01-01

    A new compactification of the moduli scheme of Gieseker-stable vector bundles with prescribed Hilbert polynomial on a smooth projective polarized surface (S,H) defined over a field k=k-bar of characteristic zero is constructed. The families of locally free sheaves on the surface S are completed by locally free sheaves on surfaces that are certain modifications of S. The new moduli space has a birational morphism onto the Gieseker-Maruyama moduli space. The case when the Gieseker-Maruyama space is a fine moduli space is considered. Bibliography: 12 titles.

  6. On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

    International Nuclear Information System (INIS)

    Timofeeva, Nadezhda V

    2011-01-01

    A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface (S,L) is constructed. We work over the field k=k-bar of characteristic zero. Families of locally free sheaves on the surface S are completed with locally free sheaves on schemes which are modifications of S. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs 'polarized scheme-vector bundle' with moduli space of such type. Bibliography: 16 titles.

  7. Stabilization of compactification volume in a noncommutative mini-super-phase-space

    International Nuclear Information System (INIS)

    Khosravi, N.; Sepangi, H.R.; Sheikh-Jabbari, M.M.

    2007-01-01

    We consider a class of generalized FRW type metrics in the context of higher dimensional Einstein gravity in which the extra dimensions are allowed to have different scale factors. It is shown that noncommutativity between the momenta conjugate to the internal space scale factors controls the power-law behavior of the scale factors in the extra dimensions, taming it to an oscillatory behavior. Hence noncommutativity among the internal momenta of the mini-super-phase-space can be used to explain stabilization of the compactification volume of the internal space in a higher dimensional gravity theory

  8. N=2 heterotic string compactifications on orbifolds of K3×T{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyaya, Aradhita; David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2017-01-10

    We study N=2 compactifications of E{sub 8}×E{sub 8} heterotic string theory on orbifolds of K3×T{sup 2} by g{sup ′} which acts as an ℤ{sub N} automorphism of K3 together with a 1/N shift on a circle of T{sup 2}. The orbifold action g{sup ′} corresponds to the 26 conjugacy classes of the Mathieu group M{sub 24}. We show that for the standard embedding the new supersymmetric index for these compactifications can always be decomposed into the elliptic genus of K3 twisted by g{sup ′}. The difference in one-loop corrections to the gauge couplings are captured by automorphic forms obtained by the theta lifts of the elliptic genus of K3 twisted by g{sup ′}. We work out in detail the case for which g{sup ′} belongs to the equivalence class 2B. We then investigate all the non-standard embeddings for K3 realized as a T{sup 4}/ℤ{sub ν} orbifold with ν=2,4 and g{sup ′} the 2A involution. We show that for non-standard embeddings the new supersymmetric index as well as the difference in one-loop corrections to the gauge couplings are completely characterized by the instanton numbers of the embeddings together with the difference in number of hypermultiplets and vector multiplets in the spectrum.

  9. Calabi-Yau compactifications of non-supersymmetric heterotic string theory

    International Nuclear Information System (INIS)

    Blaszczyk, Michael; Groot Nibbelink, Stefan

    2015-07-01

    Phenomenological explorations of heterotic strings have conventionally focused primarily on the E 8 x E 8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16) x SO(16) theory and the related supersymmetric E 8 x E 8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the nonsupersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion-couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five branes in the SO(16) x SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.

  10. Testing string vacua in the lab. From a hidden CMB to dark forces in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele; Goodsell, Mark; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenolgy

    2011-03-15

    We perform a detailed analysis of the phenomenological properties of hidden Abelian gauge bosons with a kinetic mixing with the ordinary photon within type IIB flux compactifications. We study the interplay between moduli stabilisation and the Green-Schwarz mechanism that gives mass to the hidden photon paying particular attention to the role of D-terms. We present two generic classes of explicit Calabi-Yau examples with an isotropic and an anisotropic shape of the extra dimensions showing how the last case turns out to be very promising to make contact with current experiments. In fact, anisotropic compactifications lead naturally to a GeV-scale hidden photon (''dark forces'' that can be searched for in beam dump experiments) for an intermediate string scale; or even to an meV-scale hidden photon (which could lead to a ''hidden CMB'' and can be tested by light-shining-through-a-wall experiments) in the case of TeV-scale strings. (orig.)

  11. Flux formulation of DFT on group manifolds and generalized Scherk-Schwarz compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Bosque, Pascal du [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Fakultät für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Hassler, Falk [University of North Carolina, Department of Physics and Astronomy,Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center,365 Fifth Avenue, New York, NY 10016 (United States); Columbia University, Department of Physics,Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Arnold-Sommerfeld-Center für Theoretische Physik,Fakultät für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)

    2016-02-04

    A flux formulation of Double Field Theory on group manifold is derived and applied to study generalized Scherk-Schwarz compactifications, which give rise to a bosonic subsector of half-maximal, electrically gauged supergravities. In contrast to the flux formulation of original DFT, the covariant fluxes split into a fluctuation and a background part. The latter is connected to a 2D-dimensional, pseudo Riemannian manifold, which is isomorphic to a Lie group embedded into O(D,D). All fields and parameters of generalized diffeomorphisms are supported on this manifold, whose metric is spanned by the background vielbein E{sub A}{sup I}∈ GL(2D). This vielbein takes the role of the twist in conventional generalized Scherk-Schwarz compactifications. By doing so, it solves the long standing problem of constructing an appropriate twist for each solution of the embedding tensor. Using the geometric structure, absent in original DFT, E{sub A}{sup I} is identified with the left invariant Maurer-Cartan form on the group manifold, in the same way as it is done in geometric Scherk-Schwarz reductions. We show in detail how the Maurer-Cartan form for semisimple and solvable Lie groups is constructed starting from the Lie algebra. For all compact embeddings in O(3,3), we calculate E{sub A}{sup I}.

  12. Flipped SU(5)xU(1){sub X} models from F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tianjun, E-mail: tjli@physics.rutgers.ed [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece); Xie Dan [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)

    2010-05-01

    We systematically construct flipped SU(5)xU(1){sub X} models without and with bulk vector-like particles from F-theory. To realize the decoupling scenario, we introduce sets of vector-like particles in complete SU(5)xU(1) multiplets at the TeV scale, or at the intermediate scale, or at the TeV scale and high scale. To avoid the Landau pole problem for the gauge couplings, we can only introduce five sets of vector-like particles around the TeV scale. These vector-like particles can couple to the Standard Model singlet fields, and obtain suitable masses by Higgs mechanism. We study gauge coupling unification in detail. We show that the U(1){sub X} flux contributions to the gauge couplings preserve the SU(5)xU(1){sub X} gauge coupling unification. We calculate the SU(3){sub C}xSU(2){sub L} unification scales, and the SU(5)xU(1){sub X} unification scales and unified couplings. In most of our models, the high-scale or bulk vector-like particles can be considered as string-scale threshold corrections since their masses are close to the string scale. Furthermore, we discuss the phenomenological consequences of our models. In particular, in the models with TeV-scale vector-like particles, the vector-like particles can be observed at the Large Hadron Collider, the proton decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even Higgs boson mass can be increased, the hybrid inflation can be naturally realized, and the correct cosmic primordial density fluctuations can be generated.

  13. GUTs and exceptional branes in F-theory - II. Experimental predictions

    International Nuclear Information System (INIS)

    Beasley, Chris; Heckman, Jonathan J.; Vafa, Cumrun

    2009-01-01

    We consider realizations of GUT models in F-theory. Adopting a bottom up approach, the assumption that the dynamics of the GUT model can in principle decouple from Planck scale physics leads to a surprisingly predictive framework. An internal U(1) hypercharge flux Higgses the GUT group directly to the MSSM or to a flipped GUT model, a mechanism unavailable in heterotic models. This new ingredient automatically addresses a number of puzzles present in traditional GUT models. The internal U(1) hyperflux allows us to solve the doublet-triplet splitting problem, and explains the qualitative features of the distorted GUT mass relations for lighter generations due to the Aharanov-Bohm effect. These models typically come with nearly exact global symmetries which prevent bare μ terms and also forbid dangerous baryon number violating operators. Strong curvature around our brane leads to a repulsion mechanism for Landau wave functions for neutral fields. This leads to large hierarchies of the form exp(-c/ε 2γ ) where c and γ are order one parameters and ε ∼ α GUT -1 M GUT /M pl . This effect can simultaneously generate a viably small μ term as well as an acceptable Dirac neutrino mass on the order of 0.5 x 10 -2±0.5 eV. In another scenario, we find a modified seesaw mechanism which predicts that the light neutrinos have masses in the expected range while the Majorana mass term for the heavy neutrinos is ∼ 3 x 10 12±1.5 GeV. Communicating supersymmetry breaking to the MSSM can be elegantly realized through gauge mediation. In one scenario, the same repulsion mechanism also leads to messenger masses which are naturally much lighter than the GUT scale.

  14. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  15. Three-index symmetric matter representations of SU(2) in F-theory from non-Tate form Weierstrass models

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue Cambridge, MA 02139 (United States)

    2016-06-29

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by “unHiggsing” a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G{sub 2}×SU(2) models with more conventional matter content or SU(2){sup 3} models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.

  16. F-theory and AdS3/CFT2 (2, 0)

    Science.gov (United States)

    Couzens, Christopher; Martelli, Dario; Schäfer-Nameki, Sakura

    2018-06-01

    We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=(0,2) supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y_8^{τ } , which is elliptically fibered over a base \\tilde{M}_6 . We construct two classes of solutions given in terms of a product ansatz \\tilde{M}_6}=Σ × {M}_4 , where Σ is a complex curve and \\tilde{M}_4 is locally a Kähler surface. In the first class \\tilde{M}_4 is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ 5 τ , dual to 2d (0, 2) SCFTs, and AdS3 × S 3/Γ × CY 3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=(2,2) supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1 SCFTs.

  17. Time-Dependent Toroidal Compactification Proposals and the Bianchi Type I Model: Classical and Quantum Solutions

    Directory of Open Access Journals (Sweden)

    L. Toledo Sesma

    2016-01-01

    Full Text Available We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending on the momenta moduli values. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW equation in the context of standard quantum cosmology.

  18. Local anomaly cancellation in heterotic E8 x E8 orbifold compactifications with Wilson line backgrounds

    International Nuclear Information System (INIS)

    Walter, M.G.A.

    2004-02-01

    We consider several examples of a special class of heterotic compactifications, i.e. heterotic E 8 x E 8 orbifolds with Wilson line backgrounds. By developing a local perspective we show that a brane world like picture emerges. As an important result we prove that the local massless spectrum at such a brane can always be traced back to the global spectrum of a (different) orbifold without Wilson lines. One particular implication of this result is that the use of (discrete) Wilson lines for the construction of phenomenologically interesting models has to be rethought. We show that stringy constraints render the brane spectra consistent. Using our local picture we are able to compute the local anomalies appearing at the different branes for our examples and show that they can all be cancelled by a local version of the Green-Schwarz mechanism at the same time. (orig.)

  19. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    International Nuclear Information System (INIS)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex; Troncoso, Ricardo

    2009-01-01

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effect opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.

  20. The Poincaré compactification of the MIC-Kepler problem with positive energies

    CERN Document Server

    Iwai, T

    2001-01-01

    The Poincare compactification and the symplectic reduction methods are first reviewed and then used to study the behaviour at infinity of the MIC (McIntosh-Cisneros)-Kepler problem at positive energies. The hyperbolic orbits leave the unstable equilibrium point set at infinity and tend eventually to the stable equilibrium point set at infinity. Both of these equilibrium point sets are diffeomorphic with S/sup 2/, the unit sphere in R/sup 3/. The hyperbolic orbits determine a map of the unstable equilibrium point set to the stable equilibrium point set in such a manner that the initial point (or the limit point as t to - infinity ) of an orbit is mapped to its final point (or the limit point as t to infinity ). This map is found explicitly as a rotation matrix which depends on the energy and the angular momentum of the orbits. (9 refs).

  1. Hierarchical supersymmetry breaking and dynamical determination of compactification parameters by non-perturbative effects

    International Nuclear Information System (INIS)

    Casas, J.A.; Lalak, Z.; Munoz, C.; Ross, G.G.

    1990-01-01

    The characteristics of the effective potentials coming from phenomenologically promising compactified superstring theories are examined, playing special attention to the supersymmetry breaking issue. We find a mechanism for generating the large gauge hierarchy by gaugino condensation effect in the case that the hidden sector possesses more than one condensate. We construct an explicit example based on orbifold compactification in which this is realized. Minimization of the effective potential not only determines the gauge hierarchy but also fixes other important parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. These get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. (orig.)

  2. Standard 4D gravity on a brane in six-dimensional flux compactifications

    International Nuclear Information System (INIS)

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo

    2006-01-01

    We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4D gravity at large distances. Our model provides a consistent setup for the study of gravity in the rugby (or football) compactification, without having to deal with the complications of a deltalike, codimension two brane. To our knowledge, this is the first complete study of gravity in a realistic brane model with two extra dimensions, in which the mechanism of stabilization of the extra space is fully taken into account

  3. Toward the realistic three-generation model in the (2,0) heterotic string compactification

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Murayama, A.

    1992-01-01

    In this paper, the three generation models with SUSY SO(10) or SU(5) GUTs derived from the (2,0) compactification of E 8 x E' 8 heterotic string, the massless matter field spectra at the GUT scale M X and the breaking directions of GUT symmetries are discussed. A pseudo-left-right symmetric Pati-Salam model is naturally deduced in the SUSY SO(10) GUT and shown to have an interesting property, M x ≅ M P1 , M R ≅ 10 10 GeV and M S ( the scale of superpartner masses) ≅ 10 4 GeV, as a result of the renormalization group equation analysis using the new precise LEP data

  4. Compactification and inflation in the superstring theory from the condensation of gravitino pairs

    Science.gov (United States)

    Pollock, M. D.

    1987-12-01

    We discuss the possibility that inflation can occur in the E8×E8' heterotic superstring theory, if there is a pair condensation of the gravitino field ψA and also of the Majorana-Weyl spinor λ, as suggested by the Helayël-Neto and Smith. In the absence of a condensation of the anti-symmetric tensor field HMNP, then the associated potential V(θ,φ) is bounded from below and independent of the dilaton field φ. It can be made to vanish at the minimum, where the compactification scale θ is fixed. Alternatively, a small cosmological constant may remain (ultimately to be cancelled by radiative corrections at the lower energy scale of the gaugino condensation), which could in principle lead to inflation. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India.

  5. Critical Combinations of Higher-Order Terms in Einstein-Maxwell Theory and Compactification

    Directory of Open Access Journals (Sweden)

    Nahomi Kan

    2015-01-01

    Full Text Available We discuss the role of a particular combination of higher derivative terms in higher dimensional theories, particularly in the background of spontaneous compactification. Two classes of theories are proposed in this paper. The first model as a generalization of the critical gravity with the Maxwell field could have a de Sitter solution. We consider the Lanczos-Lovelock term and Horndeski term as well as the higher-order Maxwell term for the second model, which contains a possible longer expansion time for the inflationary phase. It is interesting that both models can be regarded as the generalization of the Randjbar-Daemi, Salam and Strathdee (RSS model and give the well behavior for inflation stage under the specific assumptions.

  6. The anomalous U(1){sub anom} symmetry and flavors from an SU(5) x SU(5){sup '} GUT in Z{sub 12-I} orbifold compactification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihn E. [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), Daejeon (Korea, Republic of); Kyae, Bumseok [Pusan National University, Department of Physics, Busan (Korea, Republic of); Nam, Soonkeon [Kyung Hee University, Department of Physics, Seoul (Korea, Republic of)

    2017-12-15

    In string compactifications, frequently the anomalous U(1) gauge symmetry appears which belongs to E{sub 8} x E{sub 8}{sup '} of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale (∼ 10{sup 18} GeV) by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank antisymmetric tensor field B{sub MN}. Below the compactification scale a global symmetry U(1){sub anom} results whose charge Q{sub anom} is the original gauge U(1) charge. This is the most natural global symmetry, realizing the ''invisible'' axion. This global symmetry U(1){sub anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, all the low energy parameters are calculated in terms of the vacuum expectation values of the standard model singlets. (orig.)

  7. The anomalous U(1)_{anom} symmetry and flavors from an SU(5) × SU(5)' GUT in Z_{12-I} orbifold compactification

    Science.gov (United States)

    Kim, Jihn E.; Kyae, Bumseok; Nam, Soonkeon

    2017-12-01

    In string compactifications, frequently the anomalous U(1) gauge symmetry appears which belongs to E_8 × E_8' of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale (≈ 10^{18 } {GeV}) by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank antisymmetric tensor field B_{MN}. Below the compactification scale a global symmetry U(1)_{anom} results whose charge Q_anom is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)_{anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, all the low energy parameters are calculated in terms of the vacuum expectation values of the standard model singlets.

  8. On the compactification of the moduli space of branched minimal immersions of S2 into S4

    International Nuclear Information System (INIS)

    Loo, B.

    1992-01-01

    We study the natural compactification of the moduli space of branched minimal immersions of S 2 into S 4 . We prove that the (compactified) moduli space M d is a connected projective variety of dimension 2d+4. It is irreducible when d=1,2, and it has two irreducible components when d ≥ 3. We discuss the bubbling phenomenon at the boundary of the moduli space. (author). 26 refs, 3 figs

  9. Applications of the D-instanton calculus in type IIB orientifold compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Moster, Sebastian

    2010-06-22

    In this thesis string compactifications are studied in the formalism of the large-volume type IIB string theory. This class of compactifications possesses an in various regards phenomenologically interesting effective low-energy field theory. Theme of this thesis is the further development of these models motivated by recent knowledges in the D-brane instanton calculus of the string theory. After a short, general introduction in the string theory and especially in type IIB orbifolds and their consistency conditions the large-volume models are extensively presented and the hitherto knowledges on their phenomenology - like scale hierarchies, gauge couplings, supersymmetry breaking, and cosmological questions - discussed. An essential part in the construction of the large-volume models is the stabilizing of moduli fields by means of nonperturbative contribution to the superpotential in the effective low-energy field theory, which are caused by D-brane instantons or gaugino condensates. With recent knowledges in the D-brane instanton calculus it is shown that the moduli stabilization with the hitherto applied mechanism is not compatible with the existence of chiral fermions, as they occur in the standard model of elementary particle physics. A modified mechanism is proposed, in which the moduli fields are stabilized by additions of D-terms. Then by so-called ''polyinstanton corrections'' for the gauge-kinetic function a new large-volume scenario is constructed, in which the string scale without fine tuning lies not in an as in these model usual intermediate range of about 10{sup 11} GeV, but at 10{sup 16} GeV. By this this construction becomes interesting also for grand unified theories with SU(5) or SO(10) gauge groups. This is demonstrated on explicit models. Finally supersymmetry breaking is treated in large-volume scenarios. By the new mechanism for the moduli stabilization it is suggested that the supersymmetry breaking is caused by a

  10. Applications of the D-instanton calculus in type IIB orientifold compactifications

    International Nuclear Information System (INIS)

    Moster, Sebastian

    2010-01-01

    In this thesis string compactifications are studied in the formalism of the large-volume type IIB string theory. This class of compactifications possesses an in various regards phenomenologically interesting effective low-energy field theory. Theme of this thesis is the further development of these models motivated by recent knowledges in the D-brane instanton calculus of the string theory. After a short, general introduction in the string theory and especially in type IIB orbifolds and their consistency conditions the large-volume models are extensively presented and the hitherto knowledges on their phenomenology - like scale hierarchies, gauge couplings, supersymmetry breaking, and cosmological questions - discussed. An essential part in the construction of the large-volume models is the stabilizing of moduli fields by means of nonperturbative contribution to the superpotential in the effective low-energy field theory, which are caused by D-brane instantons or gaugino condensates. With recent knowledges in the D-brane instanton calculus it is shown that the moduli stabilization with the hitherto applied mechanism is not compatible with the existence of chiral fermions, as they occur in the standard model of elementary particle physics. A modified mechanism is proposed, in which the moduli fields are stabilized by additions of D-terms. Then by so-called ''polyinstanton corrections'' for the gauge-kinetic function a new large-volume scenario is constructed, in which the string scale without fine tuning lies not in an as in these model usual intermediate range of about 10 11 GeV, but at 10 16 GeV. By this this construction becomes interesting also for grand unified theories with SU(5) or SO(10) gauge groups. This is demonstrated on explicit models. Finally supersymmetry breaking is treated in large-volume scenarios. By the new mechanism for the moduli stabilization it is suggested that the supersymmetry breaking is caused by a completely from the MSSM

  11. Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi

    2005-01-01

    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2

  12. Dynamical compactification of D-dimensional gravity coupled to antisymmetric tensors in a 1/D expansion

    International Nuclear Information System (INIS)

    Foda, O.

    1984-12-01

    The effective potential of components of the curl of an antisymmetric tensor coupled to gravity in D dimensions is evaluated in a 1/D expansion. For large D, only highest-rank propagators contribute to leading order, while multiloop diagrams are suppressed by phase-space factors. Divergences are regulated by a cut-off LAMBDA, that we interpret as the mass-breaking scale of a larger theory that is finite. As an application we consider the bosonic sector of D=11, N=1 supergravity. If the full theory is finite, then LAMBDA is msub(SUSY): the scale below which the fermion sector decouples. For m 9 sub(SUSY)>1/akappa 2 , (kappa 2 : the D=11 Newton's coupling, a approx.= O(1)) the 11-dimensional symmetric vacuum is unstable under compactification. For m 9 sub(SUSY) 2 , it is metastable. To leading order in 1/D, all gauge dependence cancels identically, while ghosts as well as the graviton decouple. (author)

  13. Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification

    Energy Technology Data Exchange (ETDEWEB)

    Nayek, Kuntal; Roy, Shibaji [Saha Institute of Nuclear Physics, Calcutta (India); Homi Bhabha National Institute, Mumbai (India)

    2017-07-15

    Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H{sub 6}) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t{sub 0}, with t{sub 0} some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t{sub 0}) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H{sub 6}. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)

  14. Classical and quantum aspects of BPS black holes in N=2,D=4 heterotic string compactifications

    International Nuclear Information System (INIS)

    Rey, S.-J.

    1997-01-01

    We study classical and quantum aspects of D=4, N=2 BPS black holes for T 2 compactification of D=6, N=1 heterotic string vacua. We extend dynamical relaxation phenomena of moduli fields to a background consisting of a BPS soliton or a black hole and provide a simpler but more general derivation of the Ferrara-Kallosh extremized black hole mass and entropy. We study quantum effects to the BPS black hole mass spectra and to their dynamical relaxation. We show that, despite non-renormalizability of string effective supergravity, the quantum effect modifies BPS mass spectra only through coupling constant and moduli field renormalizations. Based on target-space duality, we establish a perturbative non-renormalization theorem and obtain the exact BPS black hole mass and entropy in terms of the renormalized string loop-counting parameter and renormalized moduli fields. We show that a similar conclusion holds, in the large T 2 limit, for leading non-perturbative correction. We finally discuss implications to type-I and type-IIA Calabi-Yau black holes. (orig.)

  15. A comment on compactification of M-theory on an (almost) light-like circle

    International Nuclear Information System (INIS)

    Bilal, A.

    1998-01-01

    In perturbative quantum field theory the limit of compactification on an almost light-like circle has recently been shown to be plagued by divergences. We argue that the light-like limit for M-theory probably is free of such divergences due to, among others, the existence of the wrapping modes of the membranes. To illustrate this, we consider superstring theory compactified on an almost light-like circle. Specifically, we compute a one-loop four-point amplitude in type II theory. As is well known, if the external states have vanishing momenta in the compact dimension, the divergence in the light-like limit is even stronger than in field theory. However, in the case of present interest, where these external momenta are non-vanishing, there is a subtle compensation and the resulting amplitude has a well defined and finite light-like limit. The net effect of taking the light-like limit is to replace the integration over one of the moduli of the four-punctured torus by a sum over a discrete modulus taking values in a finite lattice on the torus. The same result can also be obtained from a suitably ''Wick rotated'' amplitude computed directly with a compact light-like circle. (orig.)

  16. Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification

    International Nuclear Information System (INIS)

    Nayek, Kuntal; Roy, Shibaji

    2017-01-01

    Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H_6) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t_0, with t_0 some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t_0) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H_6. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)

  17. New N=1 superconformal field theories in four dimensions from D-brane probes

    International Nuclear Information System (INIS)

    Aharony, O.; Kachru, S.; Silverstein, E.

    1997-01-01

    We present several new examples of non-trivial 4D N=1 superconformal field theories. Some of these theories exhibit exotic global symmetries, including non-simply laced groups (such as F 4 ). They are obtained by studying three-brane probes in F-theory compactifications on elliptic Calabi-Yau threefolds. The geometry of the compactification encodes in a simple way the behavior of the gauge coupling and the Kaehler potential on the Coulomb branch of these theories. (orig.)

  18. Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Kreuzer, Maximilian

    2011-06-15

    We analyse several explicit toric examples of compact K3-fibred Calabi-Yau three-folds which can be used for the study of string dualities and are crucial ingredients for the construction of LARGE Volume type IIB vacua with promising applications to cosmology and particle phenomenology. In order to build a phenomenologically viable model, on top of the two moduli corresponding to the base and the K3 fibre, we demand also the existence of two additional rigid divisors: the first supporting the non-perturbative effects needed to achieve moduli stabilisation, and the second allowing the presence of chiral matter on wrapped D-branes. We clarify the topology of these rigid divisors by discussing the interplay between a diagonal structure of the Calabi-Yau volume and D-terms. Del Pezzo divisors appearing in the volume form in a completely diagonal way are natural candidates for supporting non-perturbative effects and for quiver constructions, while 'non-diagonal' del Pezzo and rigid but not del Pezzo divisors are particularly interesting for model building in the geometric regime. Searching through the existing list of four dimensional reflexive lattice polytopes, we find 158 examples admitting a Calabi-Yau hypersurface which is a K3 fibration with four Kaehler moduli where at least one of them is a 'diagonal' del Pezzo. We work out explicitly the topological details of a few examples showing how, in the case of simplicial polytopes, all the del Pezzo divisors are 'diagonal', while 'non-diagonal' ones appear only in the case of non-simplicial polytopes. A companion paper will use these results in the study of moduli stabilisation for globally consistent explicit Calabi-Yau compactifications with the local presence of chirality. (orig.)

  19. Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mayrhofer, Christoph; Kreuzer, Maximilian

    2011-06-01

    We analyse several explicit toric examples of compact K3-fibred Calabi-Yau three-folds which can be used for the study of string dualities and are crucial ingredients for the construction of LARGE Volume type IIB vacua with promising applications to cosmology and particle phenomenology. In order to build a phenomenologically viable model, on top of the two moduli corresponding to the base and the K3 fibre, we demand also the existence of two additional rigid divisors: the first supporting the non-perturbative effects needed to achieve moduli stabilisation, and the second allowing the presence of chiral matter on wrapped D-branes. We clarify the topology of these rigid divisors by discussing the interplay between a diagonal structure of the Calabi-Yau volume and D-terms. Del Pezzo divisors appearing in the volume form in a completely diagonal way are natural candidates for supporting non-perturbative effects and for quiver constructions, while 'non-diagonal' del Pezzo and rigid but not del Pezzo divisors are particularly interesting for model building in the geometric regime. Searching through the existing list of four dimensional reflexive lattice polytopes, we find 158 examples admitting a Calabi-Yau hypersurface which is a K3 fibration with four Kaehler moduli where at least one of them is a 'diagonal' del Pezzo. We work out explicitly the topological details of a few examples showing how, in the case of simplicial polytopes, all the del Pezzo divisors are 'diagonal', while 'non-diagonal' ones appear only in the case of non-simplicial polytopes. A companion paper will use these results in the study of moduli stabilisation for globally consistent explicit Calabi-Yau compactifications with the local presence of chirality. (orig.)

  20. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  1. 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Gabriella; Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2015-06-10

    We carry out a systematic study of a class of 6D F-theory models and associated Calabi-Yau threefolds that are constructed using base surfaces with a generalization of toric structure. In particular, we determine all smooth surfaces with a structure invariant under a single ℂ{sup ∗} action (sometimes called “T-varieties” in the mathematical literature) that can act as bases for an elliptic fibration with section of a Calabi-Yau threefold. We identify 162,404 distinct bases, which include as a subset the previously studied set of strictly toric bases. Calabi-Yau threefolds constructed in this fashion include examples with previously unknown Hodge numbers. There are also bases over which the generic elliptic fibration has a Mordell-Weil group of sections with nonzero rank, corresponding to non-Higgsable U(1) factors in the 6D supergravity model; this type of structure does not arise for generic elliptic fibrations in the purely toric context.

  2. 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces

    International Nuclear Information System (INIS)

    Martini, Gabriella; Taylor, Washington

    2015-01-01

    We carry out a systematic study of a class of 6D F-theory models and associated Calabi-Yau threefolds that are constructed using base surfaces with a generalization of toric structure. In particular, we determine all smooth surfaces with a structure invariant under a single ℂ ∗ action (sometimes called “T-varieties” in the mathematical literature) that can act as bases for an elliptic fibration with section of a Calabi-Yau threefold. We identify 162,404 distinct bases, which include as a subset the previously studied set of strictly toric bases. Calabi-Yau threefolds constructed in this fashion include examples with previously unknown Hodge numbers. There are also bases over which the generic elliptic fibration has a Mordell-Weil group of sections with nonzero rank, corresponding to non-Higgsable U(1) factors in the 6D supergravity model; this type of structure does not arise for generic elliptic fibrations in the purely toric context.

  3. 'Finite' non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2009-01-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, (arXiv: 0707.0105)] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, (arXiv: 0712.1260 [hep-th])] and using the formalisms of [S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar slow-roll inflation, (arXiv: 0705.3178 [astro-ph]); S. Yokoyama, T. Suyama, T. Tanaka, Primordial non-Gaussianity in multi-scalar inflation, Phys. Rev. D 77 (2008) 083511, (arXiv: 0711.2920 [astro-ph])], after inclusion of perturbative and non-perturbative α' corrections to the Kaehler potential and (D1- and D3-)instanton generated superpotential, we show the possibility of getting finite values for the non-linear parameter f NL while looking for non-Gaussianities in type IIB compactifications on orientifolds of the Swiss cheese Calabi-Yau WCP 4 [1,1,1,6,9] in the L(arge) V(olume) S(cenarios) limit. We show the same in two contexts. First is multi-field slow-roll inflation with D3-instanton contribution coming from a large number of multiple wrappings of a single (Euclidean) D3-brane around the 'small' divisor yielding f NL ∼O(1). The second is when the slow-roll conditions are violated and for the number of the aforementioned D3-instanton wrappings being of O(1) but more than one, yielding f NL ∼O(1). Based on general arguments not specific to our (string-theory) set-up, we argue that requiring curvature perturbations not to grow at horizon crossing and at super-horizon scales, automatically picks out hybrid inflationary scenarios which in our set up can yield f NL ∼O(1) and tensor-scalar ratio of O(10 -2 ). For all our calculations, the world-sheet instanton contributions to the Kaehler potential coming from the non-perturbative α ' corrections

  4. Simple prostatectomy

    Science.gov (United States)

    ... Han M, Partin AW. Simple prostatectomy: open and robot-assisted laparoscopic approaches. In: Wein AJ, Kavoussi LR, ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  5. Simple unification

    International Nuclear Information System (INIS)

    Ponce, W.A.; Zepeda, A.

    1987-08-01

    We present the results obtained from our systematic search of a simple Lie group that unifies weak and electromagnetic interactions in a single truly unified theory. We work with fractionally charged quarks, and allow for particles and antiparticles to belong to the same irreducible representation. We found that models based on SU(6), SU(7), SU(8) and SU(10) are viable candidates for simple unification. (author). 23 refs

  6. Local anomaly cancellation in heterotic E{sub 8} x E{sub 8} orbifold compactifications with Wilson line backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.G.A.

    2004-02-01

    We consider several examples of a special class of heterotic compactifications, i.e. heterotic E{sub 8} x E{sub 8} orbifolds with Wilson line backgrounds. By developing a local perspective we show that a brane world like picture emerges. As an important result we prove that the local massless spectrum at such a brane can always be traced back to the global spectrum of a (different) orbifold without Wilson lines. One particular implication of this result is that the use of (discrete) Wilson lines for the construction of phenomenologically interesting models has to be rethought. We show that stringy constraints render the brane spectra consistent. Using our local picture we are able to compute the local anomalies appearing at the different branes for our examples and show that they can all be cancelled by a local version of the Green-Schwarz mechanism at the same time. (orig.)

  7. A positive semi-definite action in a Kaluza-Klein theory with compactification onto time-like extra dimensions

    International Nuclear Information System (INIS)

    Pollock, M.D.

    1986-01-01

    We consider the (4+N)-dimensional theory whose Lagrangian function is Lsub(4+N)=√-g-circumflex α R-circumflex 2 , where R-circumflex is the Ricci scalar and α is a positive constant. The metric is g-circumflexsub(AB)= diag(gsub(ab), phi -1 g-barsub(mn)). Dimensional reduction leads to an effective four-dimensional Lagrangian of induced-gravity type. The positive semi-definiteness of L avoids the difficulties, pointed out recently by Horowitz and by Rubakov, which can arise in quantum cosmology when the (Euclidean) action becomes negative. The compactification is onto a time-like internal space g-barsub(mn), as suggested by Aref'eva and Volovich, giving a four-dimensional de Sitter space-time with phi=constant, which however is classically unstable on a time scale approx. H -1 . Decrease of the radius phisup(-1/2) of the internal space is ultimately halted by quantum effects, via some V(phi), and L 4 then includes the usual Hilbert term and a cosmological constant. (author)

  8. Compactification de la Supergravite 10-D Sur les Varietes de Calabi-Yau

    Science.gov (United States)

    Gagnon, Michel

    Les varietes de Calabi-Yau permettent une description relativement simple et assez juste de la realite. Recemment, de nombreuses equipes de recherche s'y sont interessees, en particulier P. Candelas, A. M. Dale, C. A. Lutken et R. Schimmrigk (13) qui ont propose une liste de 7868 configurations distinctes. Toutefois, nous croyons que certaines des techniques qui sont exploitees pour construire cette liste ne sont pas suffisamment justifiees et ont pour effet de soustraire a nos investigations bon nombre de configurations potentiellement interessantes. Ainsi, nous produisons, sans utiliser ces techniques simplificatrices, une liste de 97360 configurations. Ensuite, dans le cadre des modeles a 4 generations, nous appliquons un ensemble de criteres, fondes sur les symetries discretes, pour delimiter le domaine des configurations phenomenologiquement viables. Finalement, apres avoir fixe notre choix sur une configuration particuliere, nous essayons de montrer tout l'interet physique des varietes de Calabi-Yau en exposant certains aspects de la phenomenologie a basse energie, notamment les nombres quantiques, les spectres fermioniques, la brisure intermediaire du groupe de jauge et la duree de vie du proton.

  9. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    International Nuclear Information System (INIS)

    Misra, Aalok; Shukla, Pramod

    2010-01-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP 4 [1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the 'big' divisor Σ B (as opposed to the 'small' divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 12 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  10. Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications

    Science.gov (United States)

    Misra, Aalok; Shukla, Pramod

    2010-03-01

    We consider type IIB large volume compactifications involving orientifolds of the Swiss Cheese Calabi-Yau WCP[1,1,1,6,9] with a single mobile space-time filling D3-brane and stacks of D7-branes wrapping the “big” divisor ΣB (as opposed to the “small” divisor usually done in the literature thus far) as well as supporting D7-brane fluxes. After reviewing our proposal of [1] (Misra and Shukla, 2010) for resolving a long-standing tension between large volume cosmology and phenomenology pertaining to obtaining a 10 GeV gravitino in the inflationary era and a TeV gravitino in the present era, and summarizing our results of [1] (Misra and Shukla, 2010) on soft supersymmetry breaking terms and open-string moduli masses, we discuss the one-loop RG running of the squark and slepton masses in mSUGRA-like models (using the running of the gaugino masses) to the EW scale in the large volume limit. Phenomenological constraints and some of the calculated soft SUSY parameters identify the D7-brane Wilson line moduli as the first two generations/families of squarks and sleptons and the D3-brane (restricted to the big divisor) position moduli as the two Higgses for MSSM-like models at TeV scale. We also discuss how the obtained open-string/matter moduli make it easier to impose FCNC constraints, as well as RG flow of off-diagonal squark mass(-squared) matrix elements.

  11. Non-supersymmetric flux compactifications of heterotic string- and M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Held, Johannes Georg Joseph

    2012-05-08

    This dissertation is concerned with non-supersymmetric vacua of string theory in the supergravity (SUGRA) approach. This approach is the effective description of string theory at low energies. The concrete field of research that is treated here is heterotic E{sub 8} x E{sub 8} string theory at weak and at strong coupling, respectively. In the strong coupling limit the theory is described by eleven-dimensional SUGRA with two ten-dimensional boundaries (heterotic M-Theory). The transition to the weak coupling limit is governed by the restricted space dimension, whose length tends to zero for weak coupling such that the two boundaries get identified with each other. The resulting theory is ten-dimensional E{sub 8} x E{sub 8} SUGRA. In the context of this heterotic SUGRA, at first six of the former nine space-dimensions are compactified, and then, in the presence of non-vanishing background flux, conditions for unbroken supersymmetry (SUSY) in four space-time dimensions are analyzed. Afterwards, a violation of one of the necessary SUSY conditions is allowed. An essential ingredient, necessary for this to work, is the presence of flux. This kind of SUSY-breaking leads to severe constraints on the compact six-dimensional manifold, which can be satisfied by fiber bundles with two-dimensional fiber and four-dimensional base. In simple examples one can stabilize the expectation value of the dilaton as well as the volume of the fiber, whereas the volume of the base remains undetermined. Furthermore, the effect of a fermionic condensate is analyzed. The expected additional SUSY-breaking can be observed, and it is shown that the breaking induced by the flux can not be canceled by the contributions from the condensate. The end of this thesis is concerned with the discussion of the strong coupling limit of the previously found examples. To analyze this, it is necessary to rewrite the action of heterotic M-theory as a sum of quadratic terms, which vanish once SUSY is imposed

  12. Simple de Sitter solutions

    International Nuclear Information System (INIS)

    Silverstein, Eva

    2008-01-01

    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential

  13. Simple Kidney Cysts

    Science.gov (United States)

    ... Solitary Kidney Your Kidneys & How They Work Simple Kidney Cysts What are simple kidney cysts? Simple kidney cysts are abnormal, fluid-filled ... that form in the kidneys. What are the kidneys and what do they do? The kidneys are ...

  14. Crossing simple resonances

    International Nuclear Information System (INIS)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  15. Crossing simple resonances

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  16. Simple WZW currents

    International Nuclear Information System (INIS)

    Fuchs, J.

    1990-08-01

    A complete classification of simple currents of WZW theory is obtained. The proof is based on an analysis of the quantum dimensions of the primary fields. Simple currents are precisely the primaries with unit quantum dimension; for WZW theories explicit formulae for the quantum dimensions can be derived so that an identification of the fields with unit quantum dimension is possible. (author). 19 refs.; 2 tabs

  17. Strategy as simple rules.

    Science.gov (United States)

    Eisenhardt, K M; Sull, D N

    2001-01-01

    The success of Yahoo!, eBay, Enron, and other companies that have become adept at morphing to meet the demands of changing markets can't be explained using traditional thinking about competitive strategy. These companies have succeeded by pursuing constantly evolving strategies in market spaces that were considered unattractive according to traditional measures. In this article--the third in an HBR series by Kathleen Eisenhardt and Donald Sull on strategy in the new economy--the authors ask, what are the sources of competitive advantage in high-velocity markets? The secret, they say, is strategy as simple rules. The companies know that the greatest opportunities for competitive advantage lie in market confusion, but they recognize the need for a few crucial strategic processes and a few simple rules. In traditional strategy, advantage comes from exploiting resources or stable market positions. In strategy as simple rules, advantage comes from successfully seizing fleeting opportunities. Key strategic processes, such as product innovation, partnering, or spinout creation, place the company where the flow of opportunities is greatest. Simple rules then provide the guidelines within which managers can pursue such opportunities. Simple rules, which grow out of experience, fall into five broad categories: how- to rules, boundary conditions, priority rules, timing rules, and exit rules. Companies with simple-rules strategies must follow the rules religiously and avoid the temptation to change them too frequently. A consistent strategy helps managers sort through opportunities and gain short-term advantage by exploiting the attractive ones. In stable markets, managers rely on complicated strategies built on detailed predictions of the future. But when business is complicated, strategy should be simple.

  18. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  19. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  20. Excel 2010 Made Simple

    CERN Document Server

    Katz, Abbott

    2011-01-01

    Get the most out of Excel 2010 with Excel 2010 Made Simple - learn the key features, understand what's new, and utilize dozens of time-saving tips and tricks to get your job done. Over 500 screen visuals and clear-cut instructions guide you through the features of Excel 2010, from formulas and charts to navigating around a worksheet and understanding Visual Basic for Applications (VBA) and macros. Excel 2010 Made Simple takes a practical and highly effective approach to using Excel 2010, showing you the best way to complete your most common spreadsheet tasks. You'll learn how to input, format,

  1. Droids Made Simple

    CERN Document Server

    Mazo, Gary

    2011-01-01

    If you have a Droid series smartphone - Droid, Droid X, Droid 2, or Droid 2 Global - and are eager to get the most out of your device, Droids Made Simple is perfect for you. Authors Martin Trautschold, Gary Mazo and Marziah Karch guide you through all of the features, tips, and tricks using their proven combination of clear instructions and detailed visuals. With hundreds of annotated screenshots and step-by-step directions, Droids Made Simple will transform you into a Droid expert, improving your productivity, and most importantly, helping you take advantage of all of the cool features that c

  2. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  3. Association "Les Simples"

    OpenAIRE

    Thouzery, Michel

    2014-01-01

    Fondée par les producteurs du Syndicat Inter-Massifs pour la Production et l’Économie des Simples (S.I.M.P.L.E.S), l’association base son action sur la recherche et le maintien d’une production de qualité (herboristerie et préparations à base de plantes) qui prend en compte le respect de l’environnement et la pérennité des petits producteurs en zone de montagne. Actions de formation Stages de découverte de la flore médicinale sauvage, Stages de culture et transformation des plantes médicinale...

  4. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  5. Simple Driving Techniques

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    2002-01-01

    -like language. Our aim is to extract a simple notion of driving and show that even in this tamed form it has much of the power of more general notions of driving. Our driving technique may be used to simplify functional programs which use function composition and will often be able to remove intermediate data...

  6. A Simple Tiltmeter

    Science.gov (United States)

    Dix, M. G.; Harrison, D. R.; Edwards, T. M.

    1982-01-01

    Bubble vial with external aluminum-foil electrodes is sensing element for simple indicating tiltmeter. To measure bubble displacement, bridge circuit detects difference in capacitance between two sensing electrodes and reference electrode. Tiltmeter was developed for experiment on forecasting seismic events by changes in Earth's magnetic field.

  7. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  8. Structure of simple liquids

    International Nuclear Information System (INIS)

    Blain, J.F.

    1969-01-01

    The results obtained by application to argon and sodium of the two important methods of studying the structure of liquids: scattering of X-rays and neutrons, are presented on one hand. On the other hand the principal models employed for reconstituting the structure of simple liquids are exposed: mathematical models, lattice models and their derived models, experimental models. (author) [fr

  9. Simple mathematical fireworks

    International Nuclear Information System (INIS)

    De Luca, R; Faella, O

    2014-01-01

    Mathematical fireworks are reproduced in two dimensions by means of simple notions in kinematics and Newtonian mechanics. Extension of the analysis in three dimensions is proposed and the geometric figures the falling tiny particles make on the ground after explosion are determined. (paper)

  10. simple sequence repeat (SSR)

    African Journals Online (AJOL)

    In the present study, 78 mapped simple sequence repeat (SSR) markers representing 11 linkage groups of adzuki bean were evaluated for transferability to mungbean and related Vigna spp. 41 markers amplified characteristic bands in at least one Vigna species. The transferability percentage across the genotypes ranged ...

  11. A Simple Wave Driver

    Science.gov (United States)

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  12. Complexity is simple!

    Science.gov (United States)

    Cottrell, William; Montero, Miguel

    2018-02-01

    In this note we investigate the role of Lloyd's computational bound in holographic complexity. Our goal is to translate the assumptions behind Lloyd's proof into the bulk language. In particular, we discuss the distinction between orthogonalizing and `simple' gates and argue that these notions are useful for diagnosing holographic complexity. We show that large black holes constructed from series circuits necessarily employ simple gates, and thus do not satisfy Lloyd's assumptions. We also estimate the degree of parallel processing required in this case for elementary gates to orthogonalize. Finally, we show that for small black holes at fixed chemical potential, the orthogonalization condition is satisfied near the phase transition, supporting a possible argument for the Weak Gravity Conjecture first advocated in [1].

  13. Unicameral (simple) bone cysts.

    Science.gov (United States)

    Baig, Rafath; Eady, John L

    2006-09-01

    Since their original description by Virchow, simple bone cysts have been studied repeatedly. Although these defects are not true neoplasms, simple bone cysts may create major structural defects of the humerus, femur, and os calcis. They are commonly discovered incidentally when x-rays are taken for other reasons or on presentation due to a pathologic fracture. Various treatment strategies have been employed, but the only reliable predictor of success of any treatment strategy is the age of the patient; those being older than 10 years of age heal their cysts at a higher rate than those under age 10. The goal of management is the formation of a bone that can withstand the stresses of use by the patient without evidence of continued bone destruction as determined by serial radiographic follow-up. The goal is not a normal-appearing x-ray, but a functionally stable bone.

  14. Information technology made simple

    CERN Document Server

    Carter, Roger

    1991-01-01

    Information Technology: Made Simple covers the full range of information technology topics, including more traditional subjects such as programming languages, data processing, and systems analysis. The book discusses information revolution, including topics about microchips, information processing operations, analog and digital systems, information processing system, and systems analysis. The text also describes computers, computer hardware, microprocessors, and microcomputers. The peripheral devices connected to the central processing unit; the main types of system software; application soft

  15. Modern mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional

  16. Finite temperature instability for compactification

    International Nuclear Information System (INIS)

    Accetta, F.S.; Kolb, E.W.

    1986-03-01

    We consider finite temperature effects upon theories with extra dimensions compactified via vacuum stress energy (Casimir) effects. For sufficiently high temperature, a static configuration for the internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal fluctuations of radius of the compact dimensions. For both cases, the Universe can evolve to a de Sitter-like expansion of all dimensions. Stability to late times constrains the initial entropy of the universe. 28 refs., 1 fig., 2 tabs

  17. Dimensional analysis made simple

    International Nuclear Information System (INIS)

    Lira, Ignacio

    2013-01-01

    An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

  18. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  19. Data processing made simple

    CERN Document Server

    Wooldridge, Susan

    2013-01-01

    Data Processing: Made Simple, Second Edition presents discussions of a number of trends and developments in the world of commercial data processing. The book covers the rapid growth of micro- and mini-computers for both home and office use; word processing and the 'automated office'; the advent of distributed data processing; and the continued growth of database-oriented systems. The text also discusses modern digital computers; fundamental computer concepts; information and data processing requirements of commercial organizations; and the historical perspective of the computer industry. The

  20. ASP made simple

    CERN Document Server

    Deane, Sharon

    2003-01-01

    ASP Made Simple provides a brief introduction to ASP for the person who favours self teaching and/or does not have expensive computing facilities to learn on. The book will demonstrate how the principles of ASP can be learned with an ordinary PC running Personal Web Server, MS Access and a general text editor like Notepad.After working through the material readers should be able to:* Write ASP scripts that can display changing information on a web browser* Request records from a remote database or add records to it* Check user names & passwords and take this knowledge forward, either for their

  1. Theory of simple liquids

    CERN Document Server

    Hansen, Jean-Pierre

    1986-01-01

    This book gives a comprehensive and up-to-date treatment of the theory of ""simple"" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics.Key Features* Compares theoretical deductions with experimental r

  2. Probabilistic simple sticker systems

    Science.gov (United States)

    Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod

    2017-04-01

    A model for DNA computing using the recombination behavior of DNA molecules, known as a sticker system, was introduced by by L. Kari, G. Paun, G. Rozenberg, A. Salomaa, and S. Yu in the paper entitled DNA computing, sticker systems and universality from the journal of Acta Informatica vol. 35, pp. 401-420 in the year 1998. A sticker system uses the Watson-Crick complementary feature of DNA molecules: starting from the incomplete double stranded sequences, and iteratively using sticking operations until a complete double stranded sequence is obtained. It is known that sticker systems with finite sets of axioms and sticker rules generate only regular languages. Hence, different types of restrictions have been considered to increase the computational power of sticker systems. Recently, a variant of restricted sticker systems, called probabilistic sticker systems, has been introduced [4]. In this variant, the probabilities are initially associated with the axioms, and the probability of a generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the computation of the string. Strings for the language are selected according to some probabilistic requirements. In this paper, we study fundamental properties of probabilistic simple sticker systems. We prove that the probabilistic enhancement increases the computational power of simple sticker systems.

  3. Simple stochastic simulation.

    Science.gov (United States)

    Schilstra, Maria J; Martin, Stephen R

    2009-01-01

    Stochastic simulations may be used to describe changes with time of a reaction system in a way that explicitly accounts for the fact that molecules show a significant degree of randomness in their dynamic behavior. The stochastic approach is almost invariably used when small numbers of molecules or molecular assemblies are involved because this randomness leads to significant deviations from the predictions of the conventional deterministic (or continuous) approach to the simulation of biochemical kinetics. Advances in computational methods over the three decades that have elapsed since the publication of Daniel Gillespie's seminal paper in 1977 (J. Phys. Chem. 81, 2340-2361) have allowed researchers to produce highly sophisticated models of complex biological systems. However, these models are frequently highly specific for the particular application and their description often involves mathematical treatments inaccessible to the nonspecialist. For anyone completely new to the field to apply such techniques in their own work might seem at first sight to be a rather intimidating prospect. However, the fundamental principles underlying the approach are in essence rather simple, and the aim of this article is to provide an entry point to the field for a newcomer. It focuses mainly on these general principles, both kinetic and computational, which tend to be not particularly well covered in specialist literature, and shows that interesting information may even be obtained using very simple operations in a conventional spreadsheet.

  4. Beyond Simple Headquarters Configurations

    DEFF Research Database (Denmark)

    Dellestrand, Henrik; Kappen, Philip; Nell, Phillip Christopher

    We investigate “dual headquarters involvement”, i.e. corporate and divisional headquarters’ simultaneous involvement in subsidiaries’ innovation development projects. Analyses draw on 85 innovation projects in 23 multibusiness firms and reveal that cross-divisional innovation importance, i.......e., an innovation that is important for the firm beyond the divisional boundaries, drives dual headquarters involvement in innovation development. Contrary to expectations, on average, a non-significant effect of cross-divisional embeddedness on dual headquarters involvement is found. Yet, both cross......-divisional importance and embeddedness effects are contingent on the overall complexity of the innovation project as signified by the size of the development network. The results lend support for the notion that parenting in complex structures entails complex headquarters structures and that we need to go beyond simple...

  5. Simple relation algebras

    CERN Document Server

    Givant, Steven

    2017-01-01

    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  6. A Simple Harmonic Universe

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Peter W.; /Stanford U., ITP; Horn, Bart; Kachru, Shamit; /Stanford U., ITP /SLAC; Rajendran, Surjeet; /Johns Hopkins U. /Stanford U., ITP; Torroba, Gonzalo; /Stanford U., ITP /SLAC

    2011-12-14

    We explore simple but novel bouncing solutions of general relativity that avoid singularities. These solutions require curvature k = +1, and are supported by a negative cosmological term and matter with -1 < w < -1 = 3. In the case of moderate bounces (where the ratio of the maximal scale factor a{sub +} to the minimal scale factor a{sub -} is {Omicron}(1)), the solutions are shown to be classically stable and cycle through an infinite set of bounces. For more extreme cases with large a{sub +} = a{sub -}, the solutions can still oscillate many times before classical instabilities take them out of the regime of validity of our approximations. In this regime, quantum particle production also leads eventually to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular crunch. We briefly discuss possible applications of these models to realistic cosmology.

  7. SIMPLE for industrial radiography

    International Nuclear Information System (INIS)

    Azhar Azmi; Abd Nassir Ibrahim; Siti Madiha Muhammad Amir; Glam Hadzir Patai Mohamad; Saidi Rajab

    2004-01-01

    The first thing industrial radiographers have to do before commencing radiography works is to determine manually the amount of correct exposure that the film need to be exposed in order to obtain the right density. The amount of exposure depends on many variables such as type of radioisotope, type of film, nature of test-object and its orientation, and specific arrangement related to object location and configuration. In many cases radiography works are rejected because of radiographs fail to meet certain reference criteria as defined in the applicable standard. One of the main reasons of radiograph rejection is due to inadequate exposure received by the films. SIMPLE is a software specially developed to facilitate the calculation of gamma-radiography exposure. By using this software and knowing radiographic parameters to be encountered during the work, it is expected that human error will be minimized, thus enhancing the quality and productivity of NDT jobs. (Author)

  8. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  9. Molecular genetics made simple

    Science.gov (United States)

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  10. SIMPLE LIFE AND RELIGION

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIRIM

    2014-07-01

    Full Text Available Individuals in terms of the economy in which we live is one of the most important phenomenon of the century. This phenomenon present itself as the only determinant of people's lives by entering almost makes itself felt. The mo st obvious objective needs of the economy by triggering motive is to induce people to consume . Consumer culture pervades all aspects of the situation are people . Therefore, these people have the blessing of culture , beauty and value all in the name of w hatever is consumed. This is way out of the siege of moral and religious values we have is to go back again . Referred by local cultural and religious values, based on today increasingly come to the fore and the Muslim way of life appears to be close to th e plain / lean preferred by many people life has been a way of life. Even the simple life , a way of life in the Western world , a conception of life , a philosophy, a movement as it has become widely accepted. Here in determining the Muslim way of life Pr ophet. Prophet (sa lived the kind of life a very important model, sample, and determining which direction is known. Religious values, which is the carrier of the prophets, sent to the society they have always been examples and models. Because every aspect of human life, his life style and the surrounding area has a feature. We also value his life that he has unknowingly and without learning and skills and to understand it is not possible to live our religion . We also our presentation, we mainly of Islam o utlook on life and predicted life - style, including the Prophet of Islam 's (sa simple life to scrutinize and lifestyle issues related to reveal , in short Islam's how life has embraced and the Prophet. Prophet's will try to find answers to questions reg arding how to live.

  11. Quasispecies made simple.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Quasispecies are clouds of genotypes that appear in a population at mutation-selection balance. This concept has recently attracted the attention of virologists, because many RNA viruses appear to generate high levels of genetic variation that may enhance the evolution of drug resistance and immune escape. The literature on these important evolutionary processes is, however, quite challenging. Here we use simple models to link mutation-selection balance theory to the most novel property of quasispecies: the error threshold-a mutation rate below which populations equilibrate in a traditional mutation-selection balance and above which the population experiences an error catastrophe, that is, the loss of the favored genotype through frequent deleterious mutations. These models show that a single fitness landscape may contain multiple, hierarchically organized error thresholds and that an error threshold is affected by the extent of back mutation and redundancy in the genotype-to-phenotype map. Importantly, an error threshold is distinct from an extinction threshold, which is the complete loss of the population through lethal mutations. Based on this framework, we argue that the lethal mutagenesis of a viral infection by mutation-inducing drugs is not a true error catastophe, but is an extinction catastrophe.

  12. A simple scaler timer

    International Nuclear Information System (INIS)

    Narayanan, R.; Kalavathy, K.R.

    1989-01-01

    In any nuclear reactor, the start-up channels monitor the neutron flux during the start-up operation and give the alarm signals for safety purposes. Normally, a fission chamber is used as a detector to detect the low level neutron fluxes. The output of the detector after amplification and discrimination is shaped in a pulse shaper to provide constant width, constant height pulses for further processing in rate meters. The shaped pulses also go to a scaler timer, where they are counted for fixed time intervals and the accumulated counts displayed. The scaler timer described in this paper uses LSIs to get at a simple, compact and reliable unit. The design is centered around two LSIs. MOS Counter Timebase LSI type MK 5009P (U1) is used to generate the gating pulses. A 1 MHz crystal is used to generate the system clock. A 4 bit address selects the desired gating intervals of 1 or 10 or 100 seconds. In fact, MK 5009 is a very versatile LSI in a 16 pin DIP package, consisting of a MOS oscillator and divider chain. It is binary encoded for frequency division selection ranging from 1 to 36 x 10. With an input frequency of 1 MHz, MK 5009 provides the time periods of 1 μs to 100 seconds, one minute, ten minute and one hour periods. (author)

  13. A Simple Accelerometer Calibrator

    International Nuclear Information System (INIS)

    Salam, R A; Islamy, M R F; Khairurrijal; Munir, M M; Latief, H; Irsyam, M

    2016-01-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM. (paper)

  14. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  15. Simple exercises to flatten your potential

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi; Horn, Bart; Silverstein, Eva [Stanford Univ., Stanford, CA (United States). SLAC and Dept. of Physics; California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stanford Univ., Stanford, CA (United States). SLAC and Dept. of Physics

    2010-11-15

    We show how backreaction of the inflation potential energy on heavy scalar fields can flatten the inflationary potential, as the heavy fields adjust to their most energetically favorable configuration. This mechanism operates in previous UV-complete examples of axion monodromy inflation - flattening a would-be quadratic potential to one linear in the inflaton field - but occurs more generally, and we illustrate the effect with several examples. Special choices of compactification minimizing backreaction may realize chaotic inflation with a quadratic potential, but we argue that a flatter potential such as power-law inflation V({phi}){proportional_to} {phi}{sup p} with p<2 is a more generic option at sufficiently large values of {phi}. (orig.)

  16. Simple exercises to flatten your potential

    International Nuclear Information System (INIS)

    Dong, Xi; Horn, Bart; Silverstein, Eva; California Univ., Santa Barbara, CA; Westphal, Alexander; Stanford Univ., Stanford, CA

    2010-11-01

    We show how backreaction of the inflation potential energy on heavy scalar fields can flatten the inflationary potential, as the heavy fields adjust to their most energetically favorable configuration. This mechanism operates in previous UV-complete examples of axion monodromy inflation - flattening a would-be quadratic potential to one linear in the inflaton field - but occurs more generally, and we illustrate the effect with several examples. Special choices of compactification minimizing backreaction may realize chaotic inflation with a quadratic potential, but we argue that a flatter potential such as power-law inflation V(φ)∝ φ p with p<2 is a more generic option at sufficiently large values of φ. (orig.)

  17. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  18. Is simple nephrectomy truly simple? Comparison with the radical alternative.

    Science.gov (United States)

    Connolly, S S; O'Brien, M Frank; Kunni, I M; Phelan, E; Conroy, R; Thornhill, J A; Grainger, R

    2011-03-01

    The Oxford English dictionary defines the term "simple" as "easily done" and "uncomplicated". We tested the validity of this terminology in relation to open nephrectomy surgery. Retrospective review of 215 patients undergoing open, simple (n = 89) or radical (n = 126) nephrectomy in a single university-affiliated institution between 1998 and 2002. Operative time (OT), estimated blood loss (EBL), operative complications (OC) and length of stay in hospital (LOS) were analysed. Statistical analysis employed Fisher's exact test and Stata Release 8.2. Simple nephrectomy was associated with shorter OT (mean 126 vs. 144 min; p = 0.002), reduced EBL (mean 729 vs. 859 cc; p = 0.472), lower OC (9 vs. 17%; 0.087), and more brief LOS (mean 6 vs. 8 days; p < 0.001). All parameters suggest favourable outcome for the simple nephrectomy group, supporting the use of this terminology. This implies "simple" nephrectomies are truly easier to perform with less complication than their radical counterpart.

  19. Simple Solutions for Dry Eye

    Science.gov (United States)

    Patient Education Sheet Simple Solutions for Dry Eye The SSF thanks J. Daniel Nelson, MD, Associate Medical Director, Specialty Care HealthPartners Medical Group & Clinics, and Professor of Ophthalmology, University of ...

  20. Simple Tidal Prism Models Revisited

    Science.gov (United States)

    Luketina, D.

    1998-01-01

    Simple tidal prism models for well-mixed estuaries have been in use for some time and are discussed in most text books on estuaries. The appeal of this model is its simplicity. However, there are several flaws in the logic behind the model. These flaws are pointed out and a more theoretically correct simple tidal prism model is derived. In doing so, it is made clear which effects can, in theory, be neglected and which can not.

  1. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  2. Generalized Gradient Approximation Made Simple

    International Nuclear Information System (INIS)

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  3. Emergence Issues - not so simple

    African Journals Online (AJOL)

    Anaesthetics Supplement: Emergence Issues - not so simple. S Afr Fam Pract 2014. Vol 56 No 2 Supplement 1. Introduction. Emergence from anaesthesia is by definition the process of return to baseline physiological function of all organ systems after cessation of administration of general anaesthesia and is the stage from ...

  4. On framed simple Lie groups

    OpenAIRE

    MINAMI, Haruo

    2016-01-01

    For a compact simple Lie group $G$, we show that the element $[G, \\mathcal{L}] \\in \\pi^S_*(S^0)$ represented by the pair $(G, \\mathcal{L})$ is zero, where $\\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].

  5. The simple ethers of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.

    1998-01-01

    From glycerin derivatives the considerable interest is present simple ethers because many of them are biological active and found wide practical using as an effect drugs, inters for thin organic synthesis, vehicle for injections, regulators of plants growth, reagents, components for perfumery-cosmetic goods and etc

  6. Solving Simple Kinetics without Integrals

    Science.gov (United States)

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  7. Grief: Difficult Times, Simple Steps.

    Science.gov (United States)

    Waszak, Emily Lane

    This guide presents techniques to assist others in coping with the loss of a loved one. Using the language of 9 layperson, the book contains more than 100 tips for caregivers or loved ones. A simple step is presented on each page, followed by reasons and instructions for each step. Chapters include: "What to Say"; "Helpful Things to Do"; "Dealing…

  8. Simple stålrammebygninger

    DEFF Research Database (Denmark)

    Ellum, J.C.

    Anvisningen gennemgår dimensioneringen og bringer detaljerede konstruktionstegninger til simple stålrammebygninger, dvs. lukkede, fritliggende bygninger i én etage, hvor tagkonstruktionen ud over egenlast kun er påvirket af naturlaster, dvs. sne og vind. Dimensioneringen sker ved at udfylde et di...

  9. Simple models with ALICE fluxes

    CERN Document Server

    Striet, J

    2000-01-01

    We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.

  10. Structure of simple liquids; Structure des liquides simples

    Energy Technology Data Exchange (ETDEWEB)

    Blain, J F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The results obtained by application to argon and sodium of the two important methods of studying the structure of liquids: scattering of X-rays and neutrons, are presented on one hand. On the other hand the principal models employed for reconstituting the structure of simple liquids are exposed: mathematical models, lattice models and their derived models, experimental models. (author) [French] On presente d'une part les resultats obtenus par application a l'argon et au sodium des deux principales methodes d'etude de la structure des liquides: la diffusion des rayons X et la diffusion des neutrons; d'autre part, les principaux modeles employes pour reconstituer la structure des liquides simples sont exposes: modeles mathematiques, modeles des reseaux et modeles derives, modeles experimentaux. (auteur)

  11. Unification of string dualities

    International Nuclear Information System (INIS)

    Sen, A.

    1997-01-01

    We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)

  12. Galois and simple current symmetries in conformal field theory

    International Nuclear Information System (INIS)

    Schweigert, C.

    1995-01-01

    In this thesis various aspects of rational field theories are studied. In part I explicit examples for N=2 superconformal field theories are constructed by means of the coset approach. By means of these models string vacua are constructed, and the massless spectra of the string compactifications based on these models are computed. The symmetry of the S matrix, which implements the modular transformation on the space of characters is the subject of Part II. The developed methods are applied to the fusion rings of WZW theories. (HSI)

  13. IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES

    Institute of Scientific and Technical Information of China (English)

    CHEN XIAOMAN; WANG QIN

    2004-01-01

    This paper characterizes ideal structure of the uniform Roe algebra B* (X) over sinple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B* (X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B* (X) are completely described by the corona of the Stone-Cech compactification of X.

  14. Simple Electromagnetic Analysis in Cryptography

    Directory of Open Access Journals (Sweden)

    Zdenek Martinasek

    2012-07-01

    Full Text Available The article describes the main principle and methods of simple electromagnetic analysis and thus provides an overview of simple electromagnetic analysis.The introductions chapters describe specific SPA attack used visual inspection of EM traces, template based attack and collision attack.After reading the article, the reader is sufficiently informed of any context of SEMA.Another aim of the article is the practical realization of SEMA which is focused on AES implementation.The visual inspection of EM trace of AES is performed step by step and the result is the determination of secret key Hamming weight.On the resulting EM trace, the Hamming weight of the secret key 1 to 8 was clearly visible.This method allows reduction from the number of possible keys for following brute force attack.

  15. Complexity-aware simple modeling.

    Science.gov (United States)

    Gómez-Schiavon, Mariana; El-Samad, Hana

    2018-02-26

    Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Simple Functions Spreadsheet tool presentation

    International Nuclear Information System (INIS)

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara

    2010-09-01

    This document is a guide for users of the Simple Functions Spreadsheet tool. The Simple Functions Spreadsheet tool has been developed by Amphos 21 to determine the solubility limits of some radionuclides and it has been especially designed for Performance Assessment exercises. The development of this tool has been promoted by the necessity expressed by SKB of having a confident and easy-to-handle tool to calculate solubility limits in an agile and relatively fast manner. Its development started in 2005 and since then, it has been improved until the current version. This document describes the accurate and preliminary study following expert criteria that has been used to select the simplified aqueous speciation and solid phase system included in the tool. This report also gives the basic instructions to use this tool and to interpret its results. Finally, this document also reports the different validation tests and sensitivity analyses that have been done during the verification process

  17. Gradings on simple Lie algebras

    CERN Document Server

    Elduque, Alberto

    2013-01-01

    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  18. Licensing of simple digital devices

    International Nuclear Information System (INIS)

    Jackson, T. W.

    2008-01-01

    The inability to guarantee error-free software gave rise to the potential for common-cause failure of digital safety systems in nuclear power plants. To address this vulnerability, the U. S. Nuclear Regulatory Commission (NRC) required a quality software development process and a defense-in-depth and diversity analysis for digital safety systems. As a result of recent interim [NRC] staff guidance in the digital instrumentation and control (I and C) area, licensing of simple digital devices decreases some regulatory burden with respect to demonstrating a quality software development process and defense-in-depth and diversity analysis. This paper defines simple digital devices and addresses the interim staff guidance that applies to such devices. The paper also highlights the technical aspects that affect the licensing of such devices and incorporates licensing experience in the U.S. to date. (authors)

  19. A simple electron plasma wave

    International Nuclear Information System (INIS)

    Brodin, G.; Stenflo, L.

    2017-01-01

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.

  20. A Simple Probabilistic Combat Model

    Science.gov (United States)

    2016-06-13

    Government may violate any copyrights that exist in this work. This page intentionally left blank. ABSTRACT The Lanchester ...page intentionally left blank. TABLE OF CONTENTS Page No.Abstract iii List of Illustrations vii 1. INTRODUCTION 1 2. DETERMINISTIC LANCHESTER MODEL...This page intentionally left blank. 1. INTRODUCTION The Lanchester combat model1 is a simple way to assess the effects of quantity and quality

  1. A simple electron plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, G., E-mail: gert.brodin@physics.umu.se [Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Stenflo, L. [Department of Physics, Linköping University, SE-581 83 Linköping (Sweden)

    2017-03-18

    Considering a class of solutions where the density perturbations are functions of time, but not of space, we derive a new exact large amplitude wave solution for a cold uniform electron plasma. This result illustrates that most simple analytical solutions can appear even if the density perturbations are large. - Highlights: • The influence of large amplitude electromagnetic waves on electrostatic oscillations is found. • A generalized Mathieu equation is derived. • Anharmonic wave profiles are computed numerically.

  2. Simple and Realistic Data Generation

    DEFF Research Database (Denmark)

    Pedersen, Kenneth Houkjær; Torp, Kristian; Wind, Rico

    2006-01-01

    This paper presents a generic, DBMS independent, and highly extensible relational data generation tool. The tool can efficiently generate realistic test data for OLTP, OLAP, and data streaming applications. The tool uses a graph model to direct the data generation. This model makes it very simple...... to generate data even for large database schemas with complex inter- and intra table relationships. The model also makes it possible to generate data with very accurate characteristics....

  3. Classification of simple current invariants

    CERN Document Server

    Gato-Rivera, Beatriz

    1992-01-01

    We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)

  4. Instant simple botting with PHP

    CERN Document Server

    Anderson, Shay Michael

    2013-01-01

    do for you, and then get to work with the most important features and tasks. This book is a hands-on Starter guide that takes the reader from initialization to the coding and implementation of bot apps.Instant Simple Botting with PHP targets programmers of all levels who are familiar with common PHP functions and syntax, and who want to learn about bots and how to design and develop bots using objects.

  5. What Is a Simple Liquid?

    Directory of Open Access Journals (Sweden)

    Trond S. Ingebrigtsen

    2012-03-01

    Full Text Available This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s understanding of the term. Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlations between virial and potential-energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a direct property of the intermolecular potential because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS. This is demonstrated by NVT simulations of the structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law systems (r^{-n} pair potentials with n=18,6,4, Lennard-Jones (LJ models (the standard LJ model, two generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture, the Buckingham model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the single-point charge water model. The final part of the paper summarizes properties of strongly correlating liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be

  6. Correlation and simple linear regression.

    Science.gov (United States)

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  7. Systems analysis made simple computerbooks

    CERN Document Server

    Antill, Lyn

    1980-01-01

    Systems Analysis: Made Simple Computerbooks introduces the essential elements of information systems analysis and design and teaches basic technical skills required for the tasks involved. The book covers the aspects to the design of an information system; information systems and the organization, including the types of information processing activity and computer-based information systems; the role of the systems analyst; and the human activity system. The text also discusses information modeling, socio-technical design, man-machine interface, and the database design. Software specification

  8. Computer electronics made simple computerbooks

    CERN Document Server

    Bourdillon, J F B

    1975-01-01

    Computer Electronics: Made Simple Computerbooks presents the basics of computer electronics and explains how a microprocessor works. Various types of PROMs, static RAMs, dynamic RAMs, floppy disks, and hard disks are considered, along with microprocessor support devices made by Intel, Motorola and Zilog. Bit slice logic and some AMD bit slice products are also described. Comprised of 14 chapters, this book begins with an introduction to the fundamentals of hardware design, followed by a discussion on the basic building blocks of hardware (NAND, NOR, AND, OR, NOT, XOR); tools and equipment that

  9. Singular perturbation of simple eigenvalues

    International Nuclear Information System (INIS)

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  10. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  11. Wrist arthrography: a simple method

    Energy Technology Data Exchange (ETDEWEB)

    Berna-Serna, Juan D.; Reus, Manuel; Alonso, Jose [Virgen de la Arrixaca University Hospital, Department of Radiology, El Palmar (Murcia) (Spain); Martinez, Francisco; Domenech-Ratto, Gines [University of Murcia, Department of Human Anatomy, Faculty of Medicine, Murcia (Spain)

    2006-02-01

    A technique of wrist arthrography is presented using an adhesive marker-plate with radiopaque coordinates to identify precisely sites for puncture arthrography of the wrist and to obviate the need for fluoroscopic guidance. Radiocarpal joint arthrography was performed successfully in all 24 cases, 14 in the cadaveric wrists and 10 in the live patients. The arthrographic procedure described in this study is simple, safe, and rapid, and has the advantage of precise localisation of the site for puncture without need for fluoroscopic guidance. (orig.)

  12. Windows Phone 7 Made Simple

    CERN Document Server

    Trautschold, Martin

    2011-01-01

    With Windows Phone 7, Microsoft has created a completely new smartphone operating system that focuses on allowing users to be productive with their smartphone in new ways, while offering seamless integration and use of Microsoft Office Mobile as well as other productivity apps available in the Microsoft App Store. Windows Phone 7 Made Simple offers a clear, visual, step-by-step approach to using your Windows Phone 7 smartphone, no matter what the manufacturer. Author Jon Westfall is an expert in mobile devices, recognized by Microsoft as a "Most Valuable Professional" with experience

  13. iPad Made Simple

    CERN Document Server

    Trautschold, Martin; Learning, MSL Made Simple

    2010-01-01

    The new iPad is sleek, powerful, and most importantly, it's much more than just a big iPhone. Your iPad is can be used for reading, surfing the web, emailing, watching TV/Movies, getting work done, and much more. And with the upcoming wave of iPad apps, the possibilities are endless. iPad X Made Simple clarifies all of the key features on the iPad, introduces what's new, and also reveals dozens of time-saving shortcuts and techniques. The book has over 1,000 screen shots that are carefully annotated with step-by-step instructions. * Clear instructions on how to set up and use the iPad * Illust

  14. Methadone radioimmunoassay: two simple methods

    International Nuclear Information System (INIS)

    Robinson, K.; Smith, R.N.

    1983-01-01

    Two simple and economical radioimmunoassays for methadone in blood or urine are described. Haemolysis, decomposition, common anticoagulants and sodium fluoride do not affect the results. One assay used commercially-available [1- 3 H](-)-methadone hydrobromide as the label, while the other uses a radioiodinated conjugate of 4-dimethylamino-2,2-diphenylpentanoic acid and L-tyrosine methyl ester. A commercially-available antiserum is used in both assays. Normethadone and α-methadol cross-react to a small extent with the antiserum while methadone metabolites, dextropropoxyphene, dipipanone and phenadoxone have negligible cross-reactivities. The 'cut-offs' of the two assays as described are 30 and 33 ng ml -1 for blood, and 24 and 21 ng ml -1 for urine. The assay using the radioiodinated conjugate can be made more sensitive if required by increasing the specific activity of the label. (author)

  15. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  16. Semantic markup of sensor capabilities: how simple it too simple?

    Science.gov (United States)

    Rueda-Velasquez, C. A.; Janowicz, K.; Fredericks, J.

    2016-12-01

    Semantics plays a key role for the publication, retrieval, integration, and reuse of observational data across the geosciences. In most cases, one can safely assume that the providers of such data, e.g., individual scientists, understand the observation context in which their data are collected,e.g., the used observation procedure, the sampling strategy, the feature of interest being studied, and so forth. However, can we expect that the same is true for the technical details of the used sensors and especially the nuanced changes that can impact observations in often unpredictable ways? Should the burden of annotating the sensor capabilities, firmware, operation ranges, and so forth be really part of a scientist's responsibility? Ideally, semantic annotations should be provided by the parties that understand these details and have a vested interest in maintaining these data. With manufactures providing semantically-enabled metadata for their sensors and instruments, observations could more easily be annotated and thereby enriched using this information. Unfortunately, today's sensor ontologies and tool chains developed for the Semantic Web community require expertise beyond the knowledge and interest of most manufacturers. Consequently, knowledge engineers need to better understand the sweet spot between simple ontologies/vocabularies and sufficient expressivity as well as the tools required to enable manufacturers to share data about their sensors. Here, we report on the current results of EarthCube's X-Domes project that aims to address the questions outlined above.

  17. Flux compactifications, twisted tori and doubled geometry

    International Nuclear Information System (INIS)

    Reid-Edwards, R.A.

    2009-01-01

    In [1] an O(D,D)-covariant sigma model describing the embedding of a closed world-sheet into the 2D-dimensional twisted torus X was proposed. Such sigma models provide a universal description of string theory with target spaces related by the action of T-duality. In this article a six-dimensional toy example is studied in detail. Different polarisations of the six-dimensional target space give different three-dimensional string backgrounds including a nilmanifold with H-flux, a T-fold with R-flux and a new class of T-folds. Global issues and connections with the doubled torus formalism are discussed. Finally, the sigma model introduced in [1], describing the embedding of a world-sheet into X, is generalised to one describing a target space which is a bundle of X over a base M d , allowing for a more complete description of the associated gauged supergravity from the world-sheet perspective to be given.

  18. Superconformal compactifications in weighted projective space

    International Nuclear Information System (INIS)

    Greene, B.R.

    1990-01-01

    We discuss some aspects of string vacua constructed from orbifolded nonminimal Landau-Ginzburg theories which correspond to Calabi-Yau manifolds in weighted projective space. In contrast to previous expectations, we find that these theories allow for the construction of numerous stable (2, 0) Calabi-Yau vacua (most of which are not simply deformations of an underlying (2, 2) theory) thus indicating that this phenomenologically promising sector of the space of classical vacua is quite robust. We briefly discuss methods for extracting the phenomenology of these models and show, for example, that the full renormalizable superpotential of our SU(5) theories is not corrected by world sheet instantons and is thus given exactly by its tree-level value. (orig.)

  19. Calabi–Yau metrics and string compactification

    Directory of Open Access Journals (Sweden)

    Michael R. Douglas

    2015-09-01

    Full Text Available Yau proved an existence theorem for Ricci-flat Kähler metrics in the 1970s, but we still have no closed form expressions for them. Nevertheless there are several ways to get approximate expressions, both numerical and analytical. We survey some of this work and explain how it can be used to obtain physical predictions from superstring theory.

  20. Invisible Axions and Large-Radius Compactifications

    CERN Document Server

    Dienes, Keith R.; Gherghetta, Tony; Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony

    2000-01-01

    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza...

  1. Water nanoelectrolysis: A simple model

    Science.gov (United States)

    Olives, Juan; Hammadi, Zoubida; Morin, Roger; Lapena, Laurent

    2017-12-01

    A simple model of water nanoelectrolysis—defined as the nanolocalization at a single point of any electrolysis phenomenon—is presented. It is based on the electron tunneling assisted by the electric field through the thin film of water molecules (˜0.3 nm thick) at the surface of a tip-shaped nanoelectrode (micrometric to nanometric curvature radius at the apex). By applying, e.g., an electric potential V1 during a finite time t1, and then the potential -V1 during the same time t1, we show that there are three distinct regions in the plane (t1, V1): one for the nanolocalization (at the apex of the nanoelectrode) of the electrolysis oxidation reaction, the second one for the nanolocalization of the reduction reaction, and the third one for the nanolocalization of the production of bubbles. These parameters t1 and V1 completely control the time at which the electrolysis reaction (of oxidation or reduction) begins, the duration of this reaction, the electrolysis current intensity (i.e., the tunneling current), the number of produced O2 or H2 molecules, and the radius of the nanolocalized bubbles. The model is in good agreement with our experiments.

  2. Simple substrates for complex cognition

    Directory of Open Access Journals (Sweden)

    Peter Dayan

    2008-12-01

    Full Text Available Complex cognitive tasks present a range of computational and algorithmic challenges for neural accounts of both learning and inference. In particular, it is extremely hard to solve them using the sort of simple policies that have been extensively studied as solutions to elementary Markov decision problems. There has thus been recent interest in architectures for the instantiation and even learning of policies that are formally more complicated than these, involving operations such as gated working memory. However, the focus of these ideas and methods has largely been on what might best be considered as automatized, routine or, in the sense of animal conditioning, habitual, performance. Thus, they have yet to provide a route towards understanding the workings of rule-based control, which is critical for cognitively sophisticated competence. Here, we review a recent suggestion for a uniform architecture for habitual and rule-based execution, discuss some of the habitual mechanisms that underpin the use of rules, and consider a statistical relationship between rules and habits.

  3. Plunger with simple retention valve

    International Nuclear Information System (INIS)

    Fekete, A.V.

    1987-01-01

    This patent describes a positive displacement retention valve apparatus in which the actual flow equals the theoretical maximum flow through the retention valve. The apparatus includes, in combination, a confined fluid flow conduit, a piston adapted for reciprocal movement within the fluid flow conduit between upstream and downstream limit positions, piston reciprocating means, and pressure responsive check valve means located upstream with respect to the piston in the fluid flow conduit. The pressure responsive check valve means operable to permit fluid flow therethrough in a downstream direction toward the piston, and to preclude fluid flow therethrough in an opposite direction. The piston is composed of parts which are relatively movable with respect to one another. The piston includes a simple retention valve consisting of a plug means, a cylinder having a minimum and a maximum internal cross section flow area therein and being reciprocal within the confined fluid flow conduit, and a seat on the cylinder for the plug means. The piston reciprocating means are operatively connected to the plug means

  4. SSL - THE SIMPLE SOCKETS LIBRARY

    Science.gov (United States)

    Campbell, C. E.

    1994-01-01

    The Simple Sockets Library (SSL) allows C programmers to develop systems of cooperating programs using Berkeley streaming Sockets running under the TCP/IP protocol over Ethernet. The SSL provides a simple way to move information between programs running on the same or different machines and does so with little overhead. The SSL can create three types of Sockets: namely a server, a client, and an accept Socket. The SSL's Sockets are designed to be used in a fashion reminiscent of the use of FILE pointers so that a C programmer who is familiar with reading and writing files will immediately feel comfortable with reading and writing with Sockets. The SSL consists of three parts: the library, PortMaster, and utilities. The user of the SSL accesses it by linking programs to the SSL library. The PortMaster initializes connections between clients and servers. The PortMaster also supports a "firewall" facility to keep out socket requests from unapproved machines. The "firewall" is a file which contains Internet addresses for all approved machines. There are three utilities provided with the SSL. SKTDBG can be used to debug programs that make use of the SSL. SPMTABLE lists the servers and port numbers on requested machine(s). SRMSRVR tells the PortMaster to forcibly remove a server name from its list. The package also includes two example programs: multiskt.c, which makes multiple accepts on one server, and sktpoll.c, which repeatedly attempts to connect a client to some server at one second intervals. SSL is a machine independent library written in the C-language for computers connected via Ethernet using the TCP/IP protocol. It has been successfully compiled and implemented on a variety of platforms, including Sun series computers running SunOS, DEC VAX series computers running VMS, SGI computers running IRIX, DECstations running ULTRIX, DEC alpha AXPs running OSF/1, IBM RS/6000 computers running AIX, IBM PC and compatibles running BSD/386 UNIX and HP Apollo 3000

  5. Reconstructing Nearly Simple Polytopes from their Graph

    OpenAIRE

    Doolittle, Joseph

    2017-01-01

    We present a partial description of which polytopes are reconstructible from their graphs. This is an extension of work by Blind and Mani (1987) and Kalai (1988), which showed that simple polytopes can be reconstructed from their graphs. In particular, we introduce a notion of $h$-nearly simple and prove that 1-nearly simple and 2-nearly simple polytopes are reconstructible from their graphs. We also give an example of a 3-nearly simple polytope which is not reconstructible from its graph. Fu...

  6. Correcting slightly less simple movements

    Directory of Open Access Journals (Sweden)

    M.P. Aivar

    2005-01-01

    Full Text Available Many studies have analysed how goal directed movements are corrected in response to changes in the properties of the target. However, only simple movements to single targets have been used in those studies, so little is known about movement corrections under more complex situations. Evidence from studies that ask for movements to several targets in sequence suggests that whole sequences of movements are planned together. Planning related segments of a movement together makes it possible to optimise the whole sequence, but it means that some parts are planned quite long in advance, so that it is likely that they will have to be modified. In the present study we examined how people respond to changes that occur while they are moving to the first target of a sequence. Subjects moved a stylus across a digitising tablet. They moved from a specified starting point to two targets in succession. The first of these targets was always at the same position but it could have one of two sizes. The second target could be in one of two different positions and its size was different in each case. On some trials the first target changed size, and on some others the second target changed size and position, as soon as the subject started to move. When the size of the first target changed the subjects slowed down the first segment of their movements. Even the peak velocity, which was only about 150 ms after the change in size, was lower. Beside this fast response to the change itself, the dwell time at the first target was also affected: its duration increased after the change. Changing the size and position of the second target did not influence the first segment of the movement, but also increased the dwell time. The dwell time was much longer for a small target, irrespective of its initial size. If subjects knew in advance which target could change, they moved faster than if they did not know which could change. Taken together, these

  7. Simple sorting algorithm test based on CUDA

    OpenAIRE

    Meng, Hongyu; Guo, Fangjin

    2015-01-01

    With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.

  8. The Fluid Foil: The Seventh Simple Machine

    Science.gov (United States)

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  9. Simple utility functions with Giffen demand

    DEFF Research Database (Denmark)

    Sørensen, Peter Norman

    2007-01-01

    Simple utility functions with the Giffen property are presented: locally, the demand curve for a good is upward sloping. The utility functions represent continuous, monotone, convex preferences......Simple utility functions with the Giffen property are presented: locally, the demand curve for a good is upward sloping. The utility functions represent continuous, monotone, convex preferences...

  10. Falling balls and simple shearing strain

    International Nuclear Information System (INIS)

    Brun, J L; Pacheco, A F

    2006-01-01

    The problem of particles falling under gravity allows us to relate Hamiltonian mechanics to such different subjects as elasticity and fluid mechanics. It is with this in mind that mechanics gives us the opportunity of introducing, in a rather simple and unusual form, some concepts such as vorticity, the incompressibility condition or simple shear strain to physics students at the undergraduate level

  11. Simple clamped connection for bamboo truss systems

    NARCIS (Netherlands)

    Blok, R.

    2016-01-01

    “How to make fast and simple tension connections for truss systems?” The Solution: The innovation is a connection that uses only widely available base components (boltsand threaded steel bars) and simple hand tools to install it. With a handsaw and aspanner, the bamboo stems can be combined into to

  12. NVU perspective on simple liquids’ quasiuniversality

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2013-01-01

    The last half-century of research into the structure, dynamics, and thermodynamics of simple liquids has revealed a number of approximate universalities. This paper argues that simple liquids' reduced-coordinate constant-potential-energy hypersurfaces constitute a quasiuniversal family of compact...

  13. A simple approach to nonlinear oscillators

    International Nuclear Information System (INIS)

    Ren Zhongfu; He Jihuan

    2009-01-01

    A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.

  14. Sporadic simple groups and quotient singularities

    International Nuclear Information System (INIS)

    Cheltsov, I A; Shramov, C A

    2013-01-01

    We show that if a faithful irreducible representation of a central extension of a sporadic simple group with centre contained in the commutator subgroup gives rise to an exceptional (resp. weakly exceptional but not exceptional) quotient singularity, then that simple group is the Hall-Janko group (resp. the Suzuki group)

  15. Machine learning in the string landscape

    Science.gov (United States)

    Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.

    2017-09-01

    We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

  16. A simple model for binary star evolution

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1985-01-01

    A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)

  17. Dynamics of unwinding of a simple entaglement

    NARCIS (Netherlands)

    Wiegel, F.W.; Michels, J.P.J.

    1987-01-01

    The dynamics of unwinding of a simple entanglement is studied in two ways, firstly using an optimal path approximation in the Rouse model and secondly by simulating the movement of a more realistic model using Brownian molecular dynamics

  18. A Simple Preparation Method for Diphosphoimidazole

    DEFF Research Database (Denmark)

    Rosenberg, T.

    1964-01-01

    A simple method for the preparation of diphosphoimidazole is presented that involves direct phosphorylation of imidazole by phosphorus oxychloride in alkaline aqueous solution. Details are given on the use of diphosphoimidazole in preparing sodium phosphoramidate and certain phosphorylated amino...

  19. simple and rapid spectrophotometric assay of levocetirizine

    African Journals Online (AJOL)

    Preferred Customer

    Simple, rapid, selective and fairly sensitive method is described for the ... Determination of small amounts of LCTZ in pharmaceutical preparations is important for .... sodium hydroxide and extraction of HCl-free-amine into chloroform followed ...

  20. Simple Perturbation Example for Quantum Chemistry.

    Science.gov (United States)

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  1. The Invention Convention: Mind Meets Simple Machines.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    1997-01-01

    Describes an Earth Day celebration where students had to design an invention made of simple machines that could crush an empty aluminum can through 10 rapid mechanical movements using materials foraged from the students' homes. (JRH)

  2. Simple and Clear Proofs of Stirling's Formula

    Science.gov (United States)

    Niizeki, Shozo; Araki, Makoto

    2010-01-01

    The purpose of our article is to show two simpler and clearer methods of proving Stirling's formula than the traditional and conventional ones. The distinction of our method is to use the simple trapezoidal formula.

  3. Low Cost, Simple, Intrauterine Insemination Procedure

    African Journals Online (AJOL)

    AJRH Managing Editor

    quite simple intrauterine insemination technique which may be performed in developing countries, without the need of sophisticated ... Cytoplasmic Sperm Injection (ICSI), are quite ... were administered only once by intramuscular injection ...

  4. A review of recent results on spread F theory

    International Nuclear Information System (INIS)

    Ossakow, S.L.

    1979-01-01

    Ionospheric Spread F was discovered some four decades ago. Yet only in the past few years has significant progress been made in the theoretical explanation of such phenomena. In particular, considerable effort has been expended to explain equatorial Spread F and the attendant satellite signal propagation scintillation phenomena. The present review dwells mainly in this low latitude area. The various linear plasma instabilities thought to initiate equatorial Spread F are discussed. Recent theoretical and numerical simulation studies of the nonlinear evolution of the collisional Rayleigh-Taylor instability in equatorial Spread F are reviewed. Also, analytical studies of rising equatorial Spread F bubbles in the collisional and collisionless Rayleigh-Taylor regime are discussed, as well as the nohlinear saturation of instabilities in these two regimes. Current theories on very small scale (< approx 10 meters) size irregularities observed by radar backscatter during equatorial Spread F and their relation to the larger wavelength scintillation causing irregularities are discussed. Application of turbulence theory to equatorial Spread F phenomena is reviewed. Remaining problems to be dealt with at equatorial latitudes are summarized. (Auth.)

  5. F-theory Yukawa couplings and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Oikonomou, V.K.

    2012-01-01

    The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.

  6. Substoichiometric method in the simple radiometric analysis

    International Nuclear Information System (INIS)

    Ikeda, N.; Noguchi, K.

    1979-01-01

    The substoichiometric method is applied to simple radiometric analysis. Two methods - the standard reagent method and the standard sample method - are proposed. The validity of the principle of the methods is verified experimentally in the determination of silver by the precipitation method, or of zinc by the ion-exchange or solvent-extraction method. The proposed methods are simple and rapid compared with the conventional superstoichiometric method. (author)

  7. Simple versus complex degenerative mitral valve disease.

    Science.gov (United States)

    Javadikasgari, Hoda; Mihaljevic, Tomislav; Suri, Rakesh M; Svensson, Lars G; Navia, Jose L; Wang, Robert Z; Tappuni, Bassman; Lowry, Ashley M; McCurry, Kenneth R; Blackstone, Eugene H; Desai, Milind Y; Mick, Stephanie L; Gillinov, A Marc

    2018-07-01

    At a center where surgeons favor mitral valve (MV) repair for all subsets of leaflet prolapse, we compared results of patients undergoing repair for simple versus complex degenerative MV disease. From January 1985 to January 2016, 6153 patients underwent primary isolated MV repair for degenerative disease, 3101 patients underwent primary isolated MV repair for simple disease (posterior prolapse), and 3052 patients underwent primary isolated MV repair for complex disease (anterior or bileaflet prolapse), based on preoperative echocardiographic images. Logistic regression analysis was used to generate propensity scores for risk-adjusted comparisons (n = 2065 matched pairs). Durability was assessed by longitudinal recurrence of mitral regurgitation and reoperation. Compared with patients with simple disease, those undergoing repair of complex pathology were more likely to be younger and female (both P values < .0001) but with similar symptoms (P = .3). The most common repair technique was ring/band annuloplasty (3055/99% simple vs 3000/98% complex; P = .5), followed by leaflet resection (2802/90% simple vs 2249/74% complex; P < .0001). Among propensity-matched patients, recurrence of severe mitral regurgitation 10 years after repair was 6.2% for simple pathology versus 11% for complex pathology (P = .007), reoperation at 18 years was 6.3% for simple pathology versus 11% for complex pathology, and 20-year survival was 62% for simple pathology versus 61% for complex pathology (P = .6). Early surgical intervention has become more common in patients with degenerative MV disease, regardless of valve prolapse complexity or symptom status. Valve repair was associated with similarly low operative risk and time-related survival but less durability in complex disease. Lifelong annual echocardiographic surveillance after MV repair is recommended, particularly in patients with complex disease. Copyright © 2018 The American Association for Thoracic Surgery

  8. Infinitivo simple y compuesto con predicados declarativos

    OpenAIRE

    Rodríguez Espiñeira, María José

    2012-01-01

    Este trabajo se centra en las diferencias semánticas y sintácticas que presentan las construcciones de infinitivo simple y compuesto que actúan como objeto directo de predicados declarativos. El tema despierta interés por varios motivos: (1) Se trata de un subconjunto de verbos que subordinan infinitivos simples de un elenco restringido, pero que admiten regularmente infinitivos compuestos.

  9. Simple Lie algebras and Dynkin diagrams

    International Nuclear Information System (INIS)

    Buccella, F.

    1983-01-01

    The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras

  10. Signed Young Modules and Simple Specht Modules

    OpenAIRE

    Danz, Susanne; Lim, Kay Jin

    2015-01-01

    By a result of Hemmer, every simple Specht module of a finite symmetric group over a field of odd characteristic is a signed Young module. While Specht modules are parametrized by partitions, indecomposable signed Young modules are parametrized by certain pairs of partitions. The main result of this article establishes the signed Young module labels of simple Specht modules. Along the way we prove a number of results concerning indecomposable signed Young modules that are of independent inter...

  11. The Design of SimpleITK

    Directory of Open Access Journals (Sweden)

    Bradley Christopher Lowekamp

    2013-12-01

    Full Text Available SimpleITK is a new interface to the Insight Segmentation andRegistration Toolkit (ITK designed to facilitate rapid prototyping, educationand scientific activities, via high level programminglanguages. ITK is a templated C++ library of image processingalgorithms and frameworks for biomedical and other applications, andit was designed to be generic, flexible and extensible. Initially, ITKprovided a direct wrapping interface to languages such as Python andTcl through the WrapITK system. Unlike WrapITK, which exposed ITK'scomplex templated interface, SimpleITK was designed to provide an easyto use and simplified interface to ITK's algorithms. It includesprocedural methods, hides ITK's demand driven pipeline, and provides atemplate-less layer. Also SimpleITK provides practical conveniencessuch as binary distribution packages and overloaded operators. Ouruser-friendly design goals dictated a departure from the directinterface wrapping approach of WrapITK, towards a new facadeclass structure that only exposes the required functionality, hidingITK's extensive template use. Internally SimpleITK utilizes a manualdescription of each filter with code-generation and advanced C++meta-programming to provide the higher-level interface, bringing thecapabilities of ITK to a wider audience. SimpleITK is licensed asopen source software under the Apache License Version 2.0 and more informationabout downloading it can be found at http://www.simpleitk.org.

  12. Vortex breakdown in simple pipe bends

    Science.gov (United States)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  13. TRSkit: A Simple Digital Library Toolkit

    Science.gov (United States)

    Nelson, Michael L.; Esler, Sandra L.

    1997-01-01

    This paper introduces TRSkit, a simple and effective toolkit for building digital libraries on the World Wide Web. The toolkit was developed for the creation of the Langley Technical Report Server and the NASA Technical Report Server, but is applicable to most simple distribution paradigms. TRSkit contains a handful of freely available software components designed to be run under the UNIX operating system and served via the World Wide Web. The intended customer is the person that must continuously and synchronously distribute anywhere from 100 - 100,000's of information units and does not have extensive resources to devote to the problem.

  14. Assessment of daylight quality in simple rooms

    DEFF Research Database (Denmark)

    Johnsen, Kjeld; Dubois, Marie-Claude; Sørensen, Karl Grau

    The present report documents the results of a study on daylight conditions in simple rooms of residential buildings. The overall objective of the study was to develop a basis for a method for the assessment of daylight quality in a room with simple geometry and window configurations. As a tool...... in daylighting conditions for a number of lighting parameters. The results gave clear indications of, for instance, which room would be the brightest, under which conditions might glare be a problem and which type of window would yield the greatest luminous variation (or visual interest), etc....

  15. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...

  16. Simple gas chromatographic method for furfural analysis.

    Science.gov (United States)

    Gaspar, Elvira M S M; Lopes, João F

    2009-04-03

    A new, simple, gas chromatographic method was developed for the direct analysis of 5-hydroxymethylfurfural (5-HMF), 2-furfural (2-F) and 5-methylfurfural (5-MF) in liquid and water soluble foods, using direct immersion SPME coupled to GC-FID and/or GC-TOF-MS. The fiber (DVB/CAR/PDMS) conditions were optimized: pH effect, temperature, adsorption and desorption times. The method is simple and accurate (RSDfurfurals will contribute to characterise and quantify their presence in the human diet.

  17. A simple technique for laparoscopic gastrostomy.

    Science.gov (United States)

    Murphy, C; Rosemurgy, A S; Albrink, M H; Carey, L C

    1992-05-01

    While endoscopically placed gastrostomy tubes are routinely simple, they are not always feasible. Endoscopic technique also does not uniformly secure the tube to the abdominal wall, which presents possible complications, including leakage, accidental early tube removal, intraperitoneal catheter migration and necrosis of the stomach or abdominal wall because of excessive traction. Presented herein is a technique that is rapid, simple and eliminates some of these potential complications. The technique is easily combined with other operative procedures, such as tracheostomy, is done under direct vision, can be performed quickly with intravenous sedation and local anesthetic and is a safe method of tube placement for enteral feeding or gastric decompression.

  18. Simple 2-representations and Classification of Categorifications

    DEFF Research Database (Denmark)

    Agerholm, Troels

    We consider selfadjoint functors defined on categories of modules over finite dimensional algebras and classify those that satisfy some simple relations. In particular we classify self- adjoint idempotents and selfadjoint squareroots of a multiple of the identity functor. This is related to the t......We consider selfadjoint functors defined on categories of modules over finite dimensional algebras and classify those that satisfy some simple relations. In particular we classify self- adjoint idempotents and selfadjoint squareroots of a multiple of the identity functor. This is related...

  19. Molecular implementation of simple logic programs.

    Science.gov (United States)

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-10-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  20. Simple Approach to Superamphiphobic Overhanging Silicon Nanostructures

    DEFF Research Database (Denmark)

    Kumar, Rajendra; Mogensen, Klaus Bo; Bøggild, Peter

    2010-01-01

    with contact angles up to 152 degrees and roll-off angle down to 8 degrees. Such nonlithographic nanoscale overhanging Structures can also be added to silicon nanograss by deposition of a thin SiO2 layer, which equips the silicon rods with 100-300 nm sized overhanging Structures. This is a simple, fast...

  1. Question Answering for Dutch : Simple does it

    NARCIS (Netherlands)

    Hoekstra, A.H.; Hiemstra, Djoerd; van der Vet, P.E.; Huibers, Theo W.C.; Schobbens, Pierre-Yves; Vanhoof, Wim; Schwanen, Gabriel

    2006-01-01

    When people pose questions in natural language to search for information on the web, the role of question answering (QA) systems becomes important. In this paper the QAsystem simpleQA, capable of answering Dutch questions on which the answer is a person or a location, is described. The system's

  2. Nature versus Nurture: The Simple Contrast

    Science.gov (United States)

    Davidoff, Jules; Goldstein, Julie; Roberson, Debi

    2009-01-01

    We respond to the commentary of Franklin, Wright, and Davies ("Journal of Experimental Child Psychology, 102", 239-245 [2009]) by returning to the simple contrast between nature and nurture. We find no evidence from the toddler data that makes us revise our ideas that color categories are learned and never innate. (Contains 1 figure.)

  3. Simple picture of the annihilation process

    International Nuclear Information System (INIS)

    Gotsman, E.; Nussinov, S.

    1980-01-01

    We propose a simple geometrical picture for B-barB annihilations, which is motivated by the electric-flux-tube model and is consistent with the quark-rearrangement model, as well as the nonplanar multiperipheral quark-exchange model. Within its framework we are able to explain all the salient features of the experimental annihilation data

  4. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  5. Seismic Safety Of Simple Masonry Buildings

    International Nuclear Information System (INIS)

    Guadagnuolo, Mariateresa; Faella, Giuseppe

    2008-01-01

    Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have to be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements

  6. Simple concurrent garbage collection almost without synchronization

    NARCIS (Netherlands)

    Hesselink, Wim H.; Lali, M.I.

    We present two simple mark and sweep algorithms, A and B, for concurrent garbage collection by a single collector running concurrently with a number of mutators that concurrently modify shared data. Both algorithms are based on the ideas of Ben-Ari's classical algorithm for on-the-fly garbage

  7. Bayesian decision theory : A simple toy problem

    NARCIS (Netherlands)

    van Erp, H.R.N.; Linger, R.O.; van Gelder, P.H.A.J.M.

    2016-01-01

    We give here a comparison of the expected outcome theory, the expected utility theory, and the Bayesian decision theory, by way of a simple numerical toy problem in which we look at the investment willingness to avert a high impact low probability event. It will be found that for this toy problem

  8. Low Cost, Simple, Intrauterine Insemination Procedure with ...

    African Journals Online (AJOL)

    During the last 30 years however, intrauterine insemination has evolved with the introduction of ovulation stimulating protocols and sperm preparation methods taken from assisted reproduction techniques. Costs have risen, but the success rate has not risen to the same extent. We have therefore developed a quite simple ...

  9. A rewriting view of simple typing

    NARCIS (Netherlands)

    Stump, A.; Zantema, H.; Kimmell, G.; El Haj Omar, R.

    2013-01-01

    This paper shows how a recently developed view of typing as small-step abstract reduction, due to Kuan, MacQueen, and Findler, can be used to recast the development of simple type theory from a rewriting perspective. We show how standard meta-theoretic results can be proved in a completely new way,

  10. Studying the Greenhouse Effect: A Simple Demonstration.

    Science.gov (United States)

    Papageorgiou, G.; Ouzounis, K.

    2000-01-01

    Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)

  11. Simple parametrization of nucleon form factors

    International Nuclear Information System (INIS)

    Kelly, J.J.

    2004-01-01

    This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En

  12. A Simple Sketch Symbolizing Self-Reliance

    Centers for Disease Control (CDC) Podcasts

    2017-02-16

    EID Managing Editor, Byron Breedlove, reads his cover art story, A Simple Sketch Symbolizing Self-Reliance.  Created: 2/16/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/16/2017.

  13. Simple Cloud Chambers Using Gel Ice Packs

    Science.gov (United States)

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  14. A Study of Simple Diffraction Models

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    In this paper two simple methods for cabinet edge diffraction are examined. Calculations with both models are compared with more sophisticated theoretical models and with measured data. The parameters involved are studied and their importance for normal loudspeaker box designs is examined....

  15. Variations on a Simple Dice Game

    Science.gov (United States)

    Heafner, Joe

    2018-01-01

    I begin my introductory astronomy course with a unit on critical thinking that focuses on, among other things, the differences between the "scientific method" as frequently presented in textbooks and actual scientific practice. One particular classroom activity uses a simple dice game to simulate observation of a natural phenomenon and…

  16. Tour of a Simple Trigonometry Problem

    Science.gov (United States)

    Poon, Kin-Keung

    2012-01-01

    This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was…

  17. A rewriting view of simple typing

    NARCIS (Netherlands)

    Stump, A.; Zantema, H.; Kimmell, G.; El Haj Omar, R.

    2012-01-01

    This paper shows how a recently developed view of typing as small-step abstract reduction, due to Kuan, MacQueen, and Findler, can be used to recast the development of simple type theory from a rewriting perspective. We show how standard meta-theoretic results can be proved in a completely new way,

  18. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  19. Simple Calculation Programs for Biology Other Methods

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Other Methods. Hemolytic potency of drugs. Raghava et al., (1994) Biotechniques 17: 1148. FPMAP: methods for classification and identification of microorganisms 16SrRNA. graphical display of restriction and fragment map of ...

  20. Simple model of the arms race

    International Nuclear Information System (INIS)

    Zane, L.I.

    1982-01-01

    A simple model of a two-party arms race is developed based on the principle that the race will continue so long as either side can unleash an effective first strike against the other side. The model is used to examine how secrecy, the ABM, MIRV-ing, and an MX system affect the arms race

  1. Microwave Radiometer Linearity Measured by Simple Means

    DEFF Research Database (Denmark)

    Skou, Niels

    2002-01-01

    Modern spaceborne radiometer systems feature an almost perfect on-board calibration, hence the primary calibration task to be carried out before launch is a check of radiometer linearity. This paper describes two ways of measuring linearity of microwave radiometers only requiring relatively simple...

  2. Simple Calculation Programs for Biology Immunological Methods

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Immunological Methods. Computation of Ab/Ag Concentration from EISA data. Graphical Method; Raghava et al., 1992, J. Immuno. Methods 153: 263. Determination of affinity of Monoclonal Antibody. Using non-competitive ...

  3. Simulated Holograms: A Simple Introduction to Holography.

    Science.gov (United States)

    Dittmann, H.; Schneider, W. B.

    1992-01-01

    Describes a project that uses a computer and a dot matrix printer to simulate the holographic recording process of simple object structures. The process' four steps are (1) superposition of waves; (2) representing the superposition of a plane reference wave on the monitor screen; (3) photographic reduction of the images; and (4) reconstruction of…

  4. A Simple Model of Self-Assessments

    NARCIS (Netherlands)

    S. Dominguez Martinez (Silvia); O.H. Swank (Otto)

    2006-01-01

    textabstractWe develop a simple model that describes individuals' self-assessments of their abilities. We assume that individuals learn about their abilities from appraisals of others and experience. Our model predicts that if communication is imperfect, then (i) appraisals of others tend to be too

  5. A simple model of self-assessment

    NARCIS (Netherlands)

    Dominguez-Martinez, S.; Swank, O.H.

    2009-01-01

    We develop a simple model that describes individuals' self-assessments of their abilities. We assume that individuals learn about their abilities from appraisals of others and experience. Our model predicts that if communication is imperfect, then (i) appraisals of others tend to be too positive and

  6. Simple relation among the charged lepton masses

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi; Yasue, Masaki.

    1992-10-01

    It is suggested that the first and second generations of quarks and leptons can be taken as almost and quasi Nambu-Goldstone fermions, respectively. As a result, derived are simple relations such as m τ ≅(m μ 3 /m e ) 1/2 , which are well satisfied experimentally. (author)

  7. Simple Activity Demonstrates Wind Energy Principles

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Wind energy is an exciting and clean energy option often described as the fastest-growing energy system on the planet. With some simple materials, teachers can easily demonstrate its key principles in their classroom. (Contains 1 figure and 2 tables.)

  8. TMAP: Stata module for simple thematic mapping

    OpenAIRE

    Maurizio Pisati

    2005-01-01

    This is a revised version of the package published in The Stata Journal 4(4):361-378 (2004) for carrying out simple thematic mapping. This new release should be considered as a beta version: comments and problem reports to the author are welcome. After the final revision, the resulting version will be submitted for publication to The Stata Journal.

  9. Simple Numerical Simulation of Strain Measurement

    Science.gov (United States)

    Tai, H.

    2002-01-01

    By adopting the basic principle of the reflection (and transmission) of a plane polarized electromagnetic wave incident normal to a stack of films of alternating refractive index, a simple numerical code was written to simulate the maximum reflectivity (transmittivity) of a fiber optic Bragg grating corresponding to various non-uniform strain conditions including photo-elastic effect in certain cases.

  10. A Simple ELISA Exercise for Undergraduate Biology.

    Science.gov (United States)

    Baker, William P.; Moore, Cathy R.

    Understanding of immunological techniques such as the Enzyme Linked Immuno Sorbent Assay (ELISA) is an important part of instructional units in human health, developmental biology, microbiology, and biotechnology. This paper describes a simple ELISA exercise for undergraduate biology that effectively simulates the technique using a paper model.…

  11. Testing theory in practice: a simple experiment

    NARCIS (Netherlands)

    Terpstra, R.; Brezocnik, Z.; Kapus, T.; Ferreira Pires, Luis; Heerink, A.W.; Tretmans, G.J.

    1996-01-01

    In this paper we discuss the experiences gained in conducting a simple testing experiment. The goal of this experiment is to apply the abstract, formal testing framework [8] in a practical setting, and to indicate the critical aspects in its application to realistic testing situations. For that

  12. Simple air collectors for preheating fresh air

    NARCIS (Netherlands)

    Hensen, J.L.M.; Wit, de M.H.; Ouden, den C.

    1984-01-01

    In dwellings with mechanical ventilation systems the fresh air can easily be preheated by means of simple solar air systems. These can be an integral part of the building facade or roof and the costs are expected to be low. By means of computer experiments a large number of systems were evaluated.

  13. Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    NARCIS (Netherlands)

    Stuyt, Floran H.A.; Römer, GertWillem R.B.E.; Stuyt, Harry .J.A.

    2007-01-01

    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm

  14. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  15. Jacks--A Study of Simple Machines.

    Science.gov (United States)

    Parsons, Ralph

    This vocational physics individualized student instructional module on jacks (simple machines used to lift heavy objects) contains student prerequisites and objectives, an introduction, and sections on the ratchet bumper jack, the hydraulic jack, the screw jack, and load limitations. Designed with a laboratory orientation, each section consists of…

  16. Special Relativity as a Simple Geometry Problem

    Science.gov (United States)

    de Abreu, Rodrigo; Guerra, Vasco

    2009-01-01

    The null result of the Michelson-Morley experiment and the constancy of the one-way speed of light in the "rest system" are used to formulate a simple problem, to be solved by elementary geometry techniques using a pair of compasses and non-graduated rulers. The solution consists of a drawing allowing a direct visualization of all the fundamental…

  17. Simple analytical relations for ship bow waves

    Science.gov (United States)

    Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi

    Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.

  18. Solution of a simple inelastic scattering problem

    International Nuclear Information System (INIS)

    Knudson, S.K.

    1975-01-01

    Simple examples of elastic scattering, typically from square wells, serve as important pedagogical tools in discussion of the concepts and processes involved in elastic scattering events. An analytic solution of a model inelastic scattering system is presented here to serve in this role for inelastic events. The model and its solution are simple enough to be of pedagogical utility, but also retain enough of the important physical features to include most of the special characteristics of inelastic systems. The specific model chosen is the collision of an atom with a harmonic oscillator, interacting via a repulsive square well potential. Pedagogically important features of inelastic scattering, including its multistate character, convergence behavior, and dependence on an ''inelastic potential'' are emphasized as the solution is determined. Results are presented for various energies and strengths of inelastic scattering, which show that the model is capable of providing an elementary representation of vibrationally inelastic scattering

  19. Simple spherical ablative-implosion model

    International Nuclear Information System (INIS)

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-01-01

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling

  20. Characterization of simple wireless neurostimulators and sensors.

    Science.gov (United States)

    Gulick, Daniel W; Towe, Bruce C

    2014-01-01

    A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.

  1. A Simple Technique of Supine Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Munshi, Anusheel; Jalali, Rakesh

    2008-01-01

    We describe a simple procedure of craniospinal irradiation in supine position. The procedure was carried out with a 100-cm isocenter linear accelerator and compatible simulator. Treatment was with a 1 or 2 posteroanterior (PA)-directed spinal fields abutting lateral-directed cranial fields. Abutment of the fields was established by placement of markers on the neck of the patient, which provided a measure of the divergence of the spinal field. The precision and reproducibility of this technique, including the placement of junctions, appeared to be as good as for treatment in the prone position. The same could be verified with port films. We conclude that this new technique of supine craniospinal treatment is a simple and convenient alternative to traditional treatment in the prone position

  2. A computational description of simple mediation analysis

    Directory of Open Access Journals (Sweden)

    Caron, Pier-Olivier

    2018-04-01

    Full Text Available Simple mediation analysis is an increasingly popular statistical analysis in psychology and in other social sciences. However, there is very few detailed account of the computations within the model. Articles are more often focusing on explaining mediation analysis conceptually rather than mathematically. Thus, the purpose of the current paper is to introduce the computational modelling within simple mediation analysis accompanied with examples with R. Firstly, mediation analysis will be described. Then, the method to simulate data in R (with standardized coefficients will be presented. Finally, the bootstrap method, the Sobel test and the Baron and Kenny test all used to evaluate mediation (i.e., indirect effect will be developed. The R code to implement the computation presented is offered as well as a script to carry a power analysis and a complete example.

  3. Is the world simple or complicated

    CERN Document Server

    Barrow, John D

    1998-01-01

    Stop some particle physicists in the street and they will soon be trying to persuade you that the world is altogether simple and symmetrical. But stop a biologist, an economist, or a social scientist and they will tell you quite the opposite: the world is a higgledy-piggledy collection of complexities that owes little to symmetry and displays precious little simplicity. So who is right : is the world really complicated or is it simple ? We shall look at the reasoning that leads to these different conclusions, show why we got different answers to our question, and look at some of the recent developments that have taken place in the study of systems from sand-piles to music on the border between order and chaos. We shall also look at some of the connections between our aesthetic sensibilities and the structure of scientific theories.

  4. Simple educational tool for digital speckle shearography

    International Nuclear Information System (INIS)

    Schirripa Spagnolo, Giuseppe; Martocchia, Andrea; Papalillo, Donato; Cozzella, Lorenzo

    2012-01-01

    In this study, an educational tool has been prepared for obtaining short-term and more economic training on digital speckle shearography (DSS). Shearography non-destructive testing (NDT) has gained wide acceptance over the last decade, providing a number of important and exciting inspection solutions in aerospace, electronics and medical device manufacturing. For exploring these motivations, it is important to develop didactic tools to understand the potential of digital shearography through training and didactic courses in the field of NDT. In this paper we describe a simple tool for making one familiar with the potential of DSS in the area of education and training. The system is realized with a simple and economic optical setup and a virtual instrument based on the LabVIEW™ and DAQ. (paper)

  5. Estimation of the simple correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  6. Rack Protection Monitor - A Simple System

    International Nuclear Information System (INIS)

    Orr, S.

    1997-12-01

    The Rack Protection Monitor is a simple, fail-safe device to monitor smoke, temperature and ventilation sensors. It accepts inputs from redundant sensors and has a hardwired algorithm to prevent nuisance power trips due to random sensor failures. When a sensor is triggered the Rack Protection Monitor latches and annunicates the alarm. If another sensor is triggered, the Rack Protection Monitor locally shuts down the power to the relay rack and sends alarm to central control

  7. Diffraction enhanced imaging: a simple model

    International Nuclear Information System (INIS)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu

    2006-01-01

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser

  8. Diffraction enhanced imaging: a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-10-07

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser.

  9. Which finite simple groups are unit groups?

    DEFF Research Database (Denmark)

    Davis, Christopher James; Occhipinti, Tommy

    2014-01-01

    We prove that if G is a finite simple group which is the unit group of a ring, then G is isomorphic to either (a) a cyclic group of order 2; (b) a cyclic group of prime order 2^k −1 for some k; or (c) a projective special linear group PSLn(F2) for some n ≥ 3. Moreover, these groups do all occur a...

  10. Differential calculus on quantized simple Lie groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU q (2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q ε R are also discussed. (orig.)

  11. A Simple Experiment for Visualizing Diffusion

    Science.gov (United States)

    Helseth, L. E.

    2011-01-01

    We propose a simple and fascinating experiment for studying diffusion in gels using a pH-sensitive dye. By doping agar with methyl red, we obtain a gel which rapidly reacts to changes in pH by changing its absorption spectrum. The pH gradients can be followed using a digital camera, and we demonstrate here that the pH-sensitive colour changes can…

  12. APPLYING SIMPLE TECHNOLOGY ACCOMPLISHES VISUAL INSPECTION CHALLENGES

    International Nuclear Information System (INIS)

    Robinson, C

    2007-01-01

    This paper discusses the successful implementation of simple video technologies at the Savannah River Site (SRS) to perform complex visual inspection, monitoring, and surveillance tasks. Because SRS facilities are similar to those of an industrial plant, the environmental and accessibility considerations for remote viewing are the primary determining factors in the selection of technology. The constraints and challenges associated with remote viewing are discussed, and examples of applications are given

  13. Entropy estimates for simple random fields

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    1995-01-01

    We consider the problem of determining the maximum entropy of a discrete random field on a lattice subject to certain local constraints on symbol configurations. The results are expected to be of interest in the analysis of digitized images and two dimensional codes. We shall present some examples...... of binary and ternary fields with simple constraints. Exact results on the entropies are known only in a few cases, but we shall present close bounds and estimates that are computationally efficient...

  14. Histopathology slide projector: a simple improvisation.

    Science.gov (United States)

    Agarwal, Akhilesh K R; Bhattacharya, Nirjhar

    2008-07-01

    The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.

  15. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart, Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed....

  16. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart,Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed.

  17. A simple neutron-gamma discriminating system

    International Nuclear Information System (INIS)

    Liu Zhongming; Xing Shilin; Wang Zhongmin

    1986-01-01

    A simple neutron-gamma discriminating system is described. A detector and a pulse shape discriminator are suitable for the neutron-gamma discriminating system. The influence of the constant fraction discriminator threshold energy on the neutron-gamma resolution properties is shown. The neutron-gamma timing distributions from an 241 Am-Be source, 2.5 MeV neutron beam and 14 MeV neutron beam are presented

  18. Implementing successful strategic plans: a simple formula.

    Science.gov (United States)

    Blondeau, Whitney; Blondeau, Benoit

    2015-01-01

    Strategic planning is a process. One way to think of strategic planning is to envision its development and design as a framework that will help your hospital navigate through internal and external changing environments over time. Although the process of strategic planning can feel daunting, following a simple formula involving five steps using the mnemonic B.E.G.I.N. (Begin, Evaluate, Goals & Objectives, Integration, and Next steps) will help the planning process feel more manageable, and lead you to greater success.

  19. Locally Simple Models Construction: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    I. A. Kazakov

    2017-12-01

    Full Text Available One of the most notable trends associated with the Fourth industrial revolution is a significant strengthening of the role played by semantic methods. They are engaged in artificial intelligence means, knowledge mining in huge flows of big data, robotization, and in the internet of things. Smart contracts also can be mentioned here, although the ’intelligence’ of smart contracts still needs to be seriously elaborated. These trends should inevitably lead to an increased role of logical methods working with semantics, and significantly expand the scope of their application in practice. However, there are a number of problems that hinder this process. We are developing an approach, which makes the application of logical modeling efficient in some important areas. The approach is based on the concept of locally simple models and is primarily focused on solving tasks in the management of enterprises, organizations, governing bodies. The most important feature of locally simple models is their ability to replace software systems. Replacement of programming by modeling gives huge advantages, for instance, it dramatically reduces development and support costs. Modeling, unlike programming, preserves the explicit semantics of models allowing integration with artificial intelligence and robots. In addition, models are much more understandable to general people than programs. In this paper we propose the implementation of the concept of locally simple modeling on the basis of so-called document models, which has been developed by us earlier. It is shown that locally simple modeling is realized through document models with finite submodel coverages. In the second part of the paper an example of using document models for solving a management problem of real complexity is demonstrated.

  20. Simple Parametric Model for Airfoil Shape Description

    Science.gov (United States)

    Ziemkiewicz, David

    2017-12-01

    We show a simple, analytic equation describing a class of two-dimensional shapes well suited for representation of aircraft airfoil profiles. Our goal was to create a description characterized by a small number of parameters with easily understandable meaning, providing a tool to alter the shape with optimization procedures as well as manual tweaks by the designer. The generated shapes are well suited for numerical analysis with 2D flow solving software such as XFOIL.

  1. Central Odontogenic Fibroma of Simple Type

    Directory of Open Access Journals (Sweden)

    Prasanth Thankappan

    2014-01-01

    Full Text Available Central odontogenic fibroma (COF is an extremely rare benign tumor that accounts for 0.1% of all odontogenic tumors. It is a lesion associated with the crown of an unerupted tooth resembling dentigerous cyst. In this report, a 10-year-old male patient is presented, who was diagnosed with central odontogenic fibroma of simple type from clinical, radiological, and histopathological findings.

  2. Multiphase flow in geometrically simple fracture intersections

    Science.gov (United States)

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  3. Interfaces for a simple local network

    International Nuclear Information System (INIS)

    Nekhanevich, Eh.L.; Yasenev, M.V.

    1988-01-01

    A system of communication and interfaces for a simple local network of computers is described. The data on technical parameters, fields of application and operation features of the interfaces developed are presented. The data indispensable for the development of software are given. The experience in operation of the subsystem of software for remote terminal computers which makes use of the above interfaces is briefly presented. 7 refs.; 3 figs

  4. A discerning approach to simple aesthetic orthodontics.

    Science.gov (United States)

    Noar, J H; Sharma, S; Roberts-Harry, D; Qureshi, T

    2015-02-16

    There is currently considerable interest from general dental practitioners (GDPs) in the use of simple orthodontics to treat adult malocclusions. There is controversy in this, particularly in relation to 'quick fixes', simple orthodontics and 'straight teeth in six months' as opposed to more conventional treatment where the whole malocclusion is treated. This article will present a case for the use of simple aesthetic adult orthodontics in a measured and planned way. It will discuss the processes, planning and the importance of consent. It will also highlight how digital technology is used to preview, consent and execute an aesthetic result. Many of the recent systems emerging, have been as a result of the demand and supply of cosmetic dentistry. This, to a degree, has not helped since the implication of a 'quick-fix' is associated with this field. There has also been discussion on what the limits of GDP orthodontics should be. There is variability in how GDPs approach orthodontics, their experience, skill and ability to treat to an acceptable standard. Short courses may be one way of delivering orthodontic training but some of these courses are not regulated and the amount of internal mentoring is variable. This article highlights some of the systems in use, and potential upsides and downsides of this approach.

  5. Necessity of Antibiotics following Simple Exodontia

    Directory of Open Access Journals (Sweden)

    Waqas Yousuf

    2016-01-01

    Full Text Available Introduction. The aim of our study is to assess the need for postoperative antibiotics following simple exodontia and determine its role in minimizing patient discomfort and postoperative complications. Material and Methods. All the patients undergoing simple extractions were grouped into two categories: Group 1, patients receiving antibiotics, and Group 2, patients receiving no antibiotics. Patients were recalled on the sixth day to assess postoperative complications. On recall, patients were evaluated for signs of persistent inflammation and signs of dry socket. Presence of persistent inflammation and/or suppuration on the 6th day was considered as wound infection. Results. A total of 146 patients were included in this study. Out of the total sample, 134 (91.8% presented with no postoperative complications and 12 (8.2% had postoperative complications, out of which 11 (7.5% patients presented with dry socket (alveolar osteitis, 5 (3.4% in the antibiotic group and 6 (4.1% in the nonantibiotic group. Only 1 patient (0.7% was reported with infection of the extraction socket in the nonantibiotic group, whereas no case of infection was found in the antibiotic group. Conclusion. Antibiotics are not required after simple extractions in patients who are not medically comprised nor do they have any role in preventing postoperative complications.

  6. Optimized theory for simple and molecular fluids.

    Science.gov (United States)

    Marucho, M; Montgomery Pettitt, B

    2007-03-28

    An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.

  7. Modeling reproductive decisions with simple heuristics

    Directory of Open Access Journals (Sweden)

    Peter Todd

    2013-10-01

    Full Text Available BACKGROUND Many of the reproductive decisions that humans make happen without much planning or forethought, arising instead through the use of simple choice rules or heuristics that involve relatively little information and processing. Nonetheless, these heuristic-guided decisions are typically beneficial, owing to humans' ecological rationality - the evolved fit between our constrained decision mechanisms and the adaptive problems we face. OBJECTIVE This paper reviews research on the ecological rationality of human decision making in the domain of reproduction, showing how fertility-related decisions are commonly made using various simple heuristics matched to the structure of the environment in which they are applied, rather than being made with information-hungry mechanisms based on optimization or rational economic choice. METHODS First, heuristics for sequential mate search are covered; these heuristics determine when to stop the process of mate search by deciding that a good-enough mate who is also mutually interested has been found, using a process of aspiration-level setting and assessing. These models are tested via computer simulation and comparison to demographic age-at-first-marriage data. Next, a heuristic process of feature-based mate comparison and choice is discussed, in which mate choices are determined by a simple process of feature-matching with relaxing standards over time. Parental investment heuristics used to divide resources among offspring are summarized. Finally, methods for testing the use of such mate choice heuristics in a specific population over time are then described.

  8. The Monash University Interactive Simple Climate Model

    Science.gov (United States)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  9. Simple map in action-angle coordinates

    Science.gov (United States)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-07-01

    A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)={(3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)} with amplitude δ =0.8×10-5. Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1m, the width of stochastic layer near the X-point is about 1.4cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7×10-4, while the average area of the stochastic layer in action-angle phase space is 1.69017×10-3. On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].

  10. Simple map in action-angle coordinates

    International Nuclear Information System (INIS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-01-01

    A simple map [A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett. 69, 3322 (1992)] is the simplest map that has the topology of divertor tokamaks [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. Here, action-angle coordinates, the safety factor, and the equilibrium generating function for the simple map are calculated analytically. The simple map in action-angle coordinates is derived from canonical transformations. This map cannot be integrated across the separatrix surface because of the singularity in the safety factor there. The stochastic broadening of the ideal separatrix surface in action-angle representation is calculated by adding a perturbation to the simple map equilibrium generating function. This perturbation represents the spatial noise and field errors typical of the DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] tokamak. The stationary Fourier modes of the perturbation have poloidal and toroidal mode numbers (m,n,)=((3,1),(4,1),(6,2),(7,2),(8,2),(9,3),(10,3),(11,3)) with amplitude δ=0.8x10 -5 . Near the X-point, about 0.12% of toroidal magnetic flux inside the separatrix, and about 0.06% of the poloidal flux inside the separatrix is lost. When the distance from the O-point to the X-point is 1 m, the width of stochastic layer near the X-point is about 1.4 cm. The average value of the action on the last good surface is 0.19072 compared to the action value of 3/5π on the separatrix. The average width of stochastic layer in action coordinate is 2.7x10 -4 , while the average area of the stochastic layer in action-angle phase space is 1.69017x10 -3 . On average, about 0.14% of action or toroidal flux inside the ideal separatrix is lost due to broadening. Roughly five times more toroidal flux is lost in the simple map than in DIII-D for the same perturbation [A. Punjabi, H. Ali, A. Boozer, and T. Evans, Bull. Amer. Phys. Soc. 52, 124 (2007)].

  11. Solution of the schrodinger equation in one dimension by simple method for a simple step potential

    International Nuclear Information System (INIS)

    Ertik, H.

    2005-01-01

    The coefficients of the transmission and reflection for the simple-step barrier potential were calculated by a simple method. Their values were entirely different from those often encountered in the literature. Especially in the case that the total energy is equal to the barrier potential, the value of 0,20 for the reflection coefficient was obtained whereas this is zero in the literature. This may be considered as an interesting point

  12. THE SIMPLE SURVEY: OBSERVATIONS, REDUCTION, AND CATALOG

    International Nuclear Information System (INIS)

    Damen, M.; Franx, M.; Taylor, E. N.; Labbe, I.; Van Dokkum, P. G.; Muzzin, A.; Brandt, W. N.; Dickinson, M.; Gawiser, E.; Illingworth, G. D.; Kriek, M.; Marchesini, D.; Papovich, C.; Rix, H.-W.

    2011-01-01

    We present the Spitzer IRAC/MUSYC Public Legacy Survey in the Extended CDF-South (SIMPLE), which consists of deep IRAC observations covering the ∼1600 arcmin 2 area surrounding GOODS-S. The limiting magnitudes of the SIMPLE IRAC mosaics typically are 23.8, 23.6, 21.9, and 21.7, at 3.6 μm, 4.5 μm, 5.8 μm, and 8.0 μm, respectively (5σ total point source magnitudes in AB). The SIMPLE IRAC images are combined with the 10' x 15' GOODS IRAC mosaics in the center. We give detailed descriptions of the observations, data reduction, and properties of the final images, as well as the detection and photometry methods used to build a catalog. Using published optical and near-infrared data from the Multiwavelength Survey by Yale-Chile (MUSYC), we construct an IRAC-selected catalog, containing photometry in UBVRIz'JHK, [3.6 μm], [4.5 μm], [5.8 μm], and [8.0 μm]. The catalog contains 43,782 sources with S/N >5 at 3.6 μm, 19,993 of which have 13-band photometry. We compare this catalog to the publicly available MUSYC and FIREWORKS catalogs and discuss the differences. Using a high signal-to-noise sub-sample of 3391 sources with ([3.6] + [4.5])/2 * >10 11 M sun ) are passively evolving, in agreement with earlier results from surveys covering less area.

  13. Simple, inexpensive computerized rodent activity meters.

    Science.gov (United States)

    Horton, R M; Karachunski, P I; Kellermann, S A; Conti-Fine, B M

    1995-10-01

    We describe two approaches for using obsolescent computers, either an IBM PC XT or an Apple Macintosh Plus, to accurately quantify spontaneous rodent activity, as revealed by continuous monitoring of the spontaneous usage of running activity wheels. Because such computers can commonly be obtained at little or no expense, and other commonly available materials and inexpensive parts can be used, these meters can be built quite economically. Construction of these meters requires no specialized electronics expertise, and their software requirements are simple. The computer interfaces are potentially of general interest, as they could also be used for monitoring a variety of events in a research setting.

  14. Simple ectopic kidney in three dogs.

    Science.gov (United States)

    Choi, Jiyoung; Lee, Heechun; Lee, Youngwon; Choi, Hojung

    2012-10-01

    Simple ectopic kidney was diagnosed in three dogs by means of radiography and ultrasonography. A 2-year-old castrated male Schnauzer, a 13-year-old female Schnauzer and a 9-year-old male Jindo were referred with vomiting, hematuria and ocular discharge, respectively. In all three dogs, oval-shaped masses with soft tissue density were observed in the mid to caudal abdomen bilaterally or unilaterally, and kidney silhouettes were not identified at the proper anatomic places on abdominal radiographs. Ultrasonography confirmed the masses were malpositioned kidney. The ectopic kidneys had relatively small size, irregular shape and short ureter but showed normal function on excretory urography.

  15. A 'simple' hybrid model for power derivatives

    International Nuclear Information System (INIS)

    Lyle, Matthew R.; Elliott, Robert J.

    2009-01-01

    This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)

  16. Selective laser photolysis of simple molecules

    International Nuclear Information System (INIS)

    Golnabi, Hossein.

    1984-01-01

    A two-photon technique is reported for the measurement of relative cross section for the photolysis of simple molecules into particular product channels. In this method two independently tunable dye lasers were used to sequentially dissociate molecules of Cs 2 and Cs-Kr for the wavelengths in the range 420 to 660 nm, and then to excite the resulting products to determine the relative cross sections for the photolysis of Cs 2 and Cs-kr into each of the lowest four of the energetically possible product states

  17. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  18. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  19. A simple fluxgate magnetometer using amorphous alloys

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Mitra, A.

    1992-01-01

    A simple fluxgate magnetometer is developed using low magnetostrictive ferromagnetic amorphous alloy acting as a sensing element. It uses the fact that the magnetization of sensing element symmetrically magnetized by a sinusoidal field contains even harmonic components in presence of dc signal field H and the amplitude of the second harmonic component of magnetization is proportional to H. The sensitivity and linearity of the magnetometer with signal field are studied for parallel configuration and the field ranging from 10 nT to 10 μT can be measured. The functioning of the magnetometer is demonstrated by studying the shielding and flux-trapping phenomena in high-Tc superconductor. (orig.)

  20. Differential calculus on quantized simple Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Dept. of Optics, Palacky Univ., Olomouc (Czechoslovakia))

    1991-07-01

    Differential calculi, generalizations of Woronowicz's four-dimensional calculus on SU{sub q}(2), are introduced for quantized classical simple Lie groups in a constructive way. For this purpose, the approach of Faddeev and his collaborators to quantum groups was used. An equivalence of Woronowicz's enveloping algebra generated by the dual space to the left-invariant differential forms and the corresponding quantized universal enveloping algebra, is obtained for our differential calculi. Real forms for q {epsilon} R are also discussed. (orig.).

  1. Drift estimation from a simple field theory

    International Nuclear Information System (INIS)

    Mendes, F. M.; Figueiredo, A.

    2008-01-01

    Given the outcome of a Wiener process, what can be said about the drift and diffusion coefficients? If the process is stationary, these coefficients are related to the mean and variance of the position displacements distribution. However, if either drift or diffusion are time-dependent, very little can be said unless some assumption about that dependency is made. In Bayesian statistics, this should be translated into some specific prior probability. We use Bayes rule to estimate these coefficients from a single trajectory. This defines a simple, and analytically tractable, field theory.

  2. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  3. Construction of simple quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Ristov, Milcho [Center of Energy, Informatics and Materials of the Macedonian Academy fo Science and Arts, Skopje (Macedonia, The Former Yugoslav Republic of); Mitrevski, Mitre [Institute of Physics, Faculty of natural Science and Mathematics, Ss Cyril and Methodius University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2003-07-01

    A very simple Quartz Crystal Microbalance (QCM) was constructed for the measurement of thickness of chemically deposited thin films. QCM consisted of two active elements: one dual-gate MOSFET and one bipolar transistor, and as usually two AT-cut quartz crystal. The beat frequency oscillation generated as a result of loading of the sensor crystal by the deposited thin film, was measured by HP-multimeter, set as a low frequency meter. The sensitivity was found to be high and satisfactory for the study of growth rate of thin films, mainly deposited by methods of chemical deposition.

  4. Construction of simple quartz crystal microbalance

    International Nuclear Information System (INIS)

    Ristov, Milcho; Mitrevski, Mitre

    2002-01-01

    A very simple Quartz Crystal Microbalance (QCM) was constructed for the measurement of thickness of chemically deposited thin films. QCM consisted of two active elements: one dual-gate MOSFET and one bipolar transistor, and as usually two AT-cut quartz crystal. The beat frequency oscillation generated as a result of loading of the sensor crystal by the deposited thin film, was measured by HP-multimeter, set as a low frequency meter. The sensitivity was found to be high and satisfactory for the study of growth rate of thin films, mainly deposited by methods of chemical deposition.

  5. Design of Simple Landslide Monitoring System

    Science.gov (United States)

    Meng, Qingjia; Cai, Lingling

    2018-01-01

    The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.

  6. Simple Synthesis Method for Alumina Nanoparticle

    Directory of Open Access Journals (Sweden)

    Daniel Damian

    2017-11-01

    Full Text Available Globally, the human population steady increase, expansion of urban areas, excessive industrialization including in agriculture, caused not only decrease to depletion of non-renewable resources, a rapid deterioration of the environment with negative impact on water quality, soil productivity and of course quality of life in general. This paper aims to prepare size controlled nanoparticles of aluminum oxide using a simple synthesis method. The morphology and dimensions of nanomaterial was investigated using modern analytical techniques: SEM/EDAX and XRD spectroscopy.

  7. A simple statistical model for geomagnetic reversals

    Science.gov (United States)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  8. A Simple Measure of Price Adjustment Coefficients.

    OpenAIRE

    Damodaran, Aswath

    1993-01-01

    One measure of market efficiency is the speed with which prices adjust to new information. The author develops a simple approach to estimating these price adjustment coefficients by using the information in return processes. This approach is used to estimate t he price adjustment coefficients for firms listed on the NYSE and the A MEX as well as for over-the-counter stocks. The author finds evidence of a lagged adjustment to new information in shorter return intervals for firms in all market ...

  9. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  10. Simple multifunction discriminator for multichannel triggers

    International Nuclear Information System (INIS)

    Maier, M.R.

    1982-10-01

    A simple version of a multifunction timing discriminator using only two integrated circuits is presented. It can be configured as a leading edge, a constant fraction, a zero cross or a dual threshold timing discriminator. Since so few parts are used, it is well suited for building multichannel timing discriminators. Two versions of this circuit are described: a quadruple multifunction discriminator and an octal constant fraction trigger. The different compromises made in these units are discussed. Results for walk and jitter obtained with these are presented and possible improvements are disussed

  11. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  12. Chaos from simple models to complex systems

    CERN Document Server

    Cencini, Massimo; Vulpiani, Angelo

    2010-01-01

    Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor

  13. Simple method for calculating island widths

    International Nuclear Information System (INIS)

    Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.

    1989-01-01

    A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs

  14. Modelling simple helically delivered dose distributions

    International Nuclear Information System (INIS)

    Fenwick, John D; Tome, Wolfgang A; Kissick, Michael W; Mackie, T Rock

    2005-01-01

    In a previous paper, we described quality assurance procedures for Hi-Art helical tomotherapy machines. Here, we develop further some ideas discussed briefly in that paper. Simple helically generated dose distributions are modelled, and relationships between these dose distributions and underlying characteristics of Hi-Art treatment systems are elucidated. In particular, we describe the dependence of dose levels along the central axis of a cylinder aligned coaxially with a Hi-Art machine on fan beam width, couch velocity and helical delivery lengths. The impact on these dose levels of angular variations in gantry speed or output per linear accelerator pulse is also explored

  15. Neutrosophic Correlation and Simple Linear Regression

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2014-09-01

    Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.

  16. Simple Unawareness in Dynamic Psychological Games

    DEFF Research Database (Denmark)

    Nielsen, Carsten Søren; Sebald, Alexander Christopher

    2017-01-01

    Building on Battigalli and Dufwenberg (2009)’s framework of dynamic psychological games and the progress in the modeling of dynamic unawareness by Heifetz, Meier, and Schipper (2013a) we model and analyze the impact of asymmetric awareness in the strategic interaction of players motivated...... by reciprocity and guilt. Specifically we characterize extensive-form games with psychological payoffs and simple unawareness, define extensive-form rationalizability and, using this, show that unawareness has a pervasive impact on the strategic interaction of psychologically motivated players. Intuitively...

  17. Crystal nucleation in simple and complex fluids.

    Science.gov (United States)

    Oxtoby, David W

    2003-03-15

    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.

  18. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  19. Foreshock and aftershocks in simple earthquake models.

    Science.gov (United States)

    Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R

    2015-02-27

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  20. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  1. Simple apparatus for polarization sensing of analytes

    Science.gov (United States)

    Gryczynski, Zygmunt; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2000-09-01

    We describe a simple device for fluorescence sensing based on an unexpansive light source, a dual photocell and a Watson bridge. The emission is detected from two fluorescent samples, one of which changes intensity in response to the analyte. The emission from these two samples is observed through two orthogonally oriented polarizers and an analyzer polarizer. The latter polarizer is rotated to yield equal intensities from both sides of the dual photocell, as determined by a zero voltage from the Watson bridge. Using this device, we are able to measure fluorescein concentration to an accuracy near 2% at 1 (mu) M fluorescein, and pH values accurate to +/- 0.02 pH units. We also use this approach with a UV hand lamp and a glucose-sensitive protein to measure glucose concentrations near 2 (mu) M to an accuracy of +/- 0.1 (mu) M. This approach requires only simple electronics, which can be battery powered. Additionally, the method is generic, and can be applied with any fluorescent sample that displays a change in intensity. One can imagine this approach being used to develop portable point-of-care clinical devices.

  2. Trophic dynamics of a simple model ecosystem.

    Science.gov (United States)

    Bell, Graham; Fortier-Dubois, Étienne

    2017-09-13

    We have constructed a model of community dynamics that is simple enough to enumerate all possible food webs, yet complex enough to represent a wide range of ecological processes. We use the transition matrix to predict the outcome of succession and then investigate how the transition probabilities are governed by resource supply and immigration. Low-input regimes lead to simple communities whereas trophically complex communities develop when there is an adequate supply of both resources and immigrants. Our interpretation of trophic dynamics in complex communities hinges on a new principle of mutual replenishment, defined as the reciprocal alternation of state in a pair of communities linked by the invasion and extinction of a shared species. Such neutral couples are the outcome of succession under local dispersal and imply that food webs will often be made up of suites of trophically equivalent species. When immigrants arrive from an external pool of fixed composition a similar principle predicts a dynamic core of webs constituting a neutral interchange network, although communities may express an extensive range of other webs whose membership is only in part predictable. The food web is not in general predictable from whole-community properties such as productivity or stability, although it may profoundly influence these properties. © 2017 The Author(s).

  3. Training nuclei detection algorithms with simple annotations

    Directory of Open Access Journals (Sweden)

    Henning Kost

    2017-01-01

    Full Text Available Background: Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. Methods: We compared different approaches for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki-67-stained breast cancer images. Results: A Voronoi tessellation-based sample extraction method produced the best performing training sets. However, subsampling of the extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active learning led to a further increase in detection quality. Conclusions: With appropriate sample extraction and selection methods, nuclei detection algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally created training sets.

  4. A simple radioimmunoassay for plasma cortisol

    International Nuclear Information System (INIS)

    Seth, J.; Brown, L.M.

    1978-01-01

    A simple radioimmunoassay (RIA) for plasma cortisol is described which combines the advantages of (i) direct analysis of untreated plasma samples, (ii) use of solid-coupled anti-cortisol antibodies and (iii) use of a gamma-labelled radioligand. The reagents are relatively easily prepared and stable, and the analysis can be completed in 4 h. Inter-assay precision (C.V.) is 8-11%. Critical examination of specificity using high pressure liquid chromatography showed that 23-35% of the immunoassayable material in plasma was not cortisol. RIA results on samples collected under basal conditions were an average 40 nmol/l lower than fluorimetric results, while in insulin hypoglycaemia and synacthen (ACTH) stimulation tests, this difference increased to over 100 nmol/l. The RIA is technically more simple than fluorimetric, competitive-protein-binding, and many RIA methods, and can be used with advantage in the routine investigation of adrenocortical function. However, using the present antiserum, the RIA is not applicable to investigations on patients receiving metyrapone, nor in suspected cases of congenital adrenal hyperplasia. (Auth.)

  5. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.

    Science.gov (United States)

    Cheng, Feng; Xu, Jian-Miao; Xiang, Chao; Liu, Zhi-Qiang; Zhao, Li-Qing; Zheng, Yu-Guo

    2017-04-01

    To develop a practically simple and robust multi-site saturation mutagenesis (MSSM) method that enables simultaneously recombination of amino acid positions for focused mutant library generation. A general restriction enzyme-free and ligase-free MSSM method (Simple-MSSM) based on prolonged overlap extension PCR (POE-PCR) and Simple Cloning techniques. As a proof of principle of Simple-MSSM, the gene of eGFP (enhanced green fluorescent protein) was used as a template gene for simultaneous mutagenesis of five codons. Forty-eight randomly selected clones were sequenced. Sequencing revealed that all the 48 clones showed at least one mutant codon (mutation efficiency = 100%), and 46 out of the 48 clones had mutations at all the five codons. The obtained diversities at these five codons are 27, 24, 26, 26 and 22, respectively, which correspond to 84, 75, 81, 81, 69% of the theoretical diversity offered by NNK-degeneration (32 codons; NNK, K = T or G). The enzyme-free Simple-MSSM method can simultaneously and efficiently saturate five codons within one day, and therefore avoid missing interactions between residues in interacting amino acid networks.

  6. Simple spatial scaling rules behind complex cities.

    Science.gov (United States)

    Li, Ruiqi; Dong, Lei; Zhang, Jiang; Wang, Xinran; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2017-11-28

    Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.

  7. Simple turbulence measurements with azopolymer thin films.

    Science.gov (United States)

    Barillé, Regis; Pérez, Darío G; Morille, Yohann; Zielińska, Sonia; Ortyl, Ewelina

    2013-04-01

    A simple method to measure the influence on the laser beam propagation by a turbid medium is proposed. This measurement is based on the inscription of a surface relief grating (SRG) on an azopolymer thin film. The grating obtained with a single laser beam after propagation into a turbulent medium is perturbed and directly analyzed by a CCD camera through its diffraction pattern. Later, by scanning the surface pattern with an atomic force microscope, the inscribed SRG is analyzed with the Radon transform. This method has the advantage of using a single beam to remotely inscribe a grating detecting perturbations during the beam path. A method to evaluate the refractive index constant structure is developed.

  8. Search without Boundaries Using Simple APIs

    Science.gov (United States)

    Tong, Qi

    2009-01-01

    The U.S. Geological Survey (USGS) Library, where the author serves as the digital services librarian, is increasingly challenged to make it easier for users to find information from many heterogeneous information sources. Information is scattered throughout different software applications (i.e., library catalog, federated search engine, link resolver, and vendor websites), and each specializes in one thing. How could the library integrate the functionalities of one application with another and provide a single point of entry for users to search across? To improve the user experience, the library launched an effort to integrate the federated search engine into the library's intranet website. The result is a simple search box that leverages the federated search engine's built-in application programming interfaces (APIs). In this article, the author describes how this project demonstrated the power of APIs and their potential to be used by other enterprise search portals inside or outside of the library.

  9. A Simple Solution to Type Specialization

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Partial evaluation specializes terms, but traditionally this specialization does not apply to the type of these terms. As a result, specializing, e.g., an interpreter written in a typed language, which requires a “universal” type to encode expressible values, yields residual programs with type tags...... all over. Neil Jones has stated that getting rid of these type tags was an open problem, despite possible solutions such as Torben Mogensen's “constructor specialization.” To solve this problem, John Hughes has proposed a new paradigm for partial evaluation, “Type Specialization”, based on type...... inference instead of being based on symbolic interpretation. Type Specialization is very elegant in principle but it also appears non-trivial in practice. Stating the problem in terms of types instead of in terms of type encodings suggests a very simple type-directed solution, namely, to use a projection...

  10. Two simple models of classical heat pumps.

    Science.gov (United States)

    Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek

    2007-03-01

    Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.

  11. Simple Device for Treating Prolapsing Loop Colostomy

    Directory of Open Access Journals (Sweden)

    Ming-Yu Hsieh

    2006-03-01

    Full Text Available Stoma prolapse is a common complication of intestinal stoma. Although various surgical methods yield satisfactory results, nonsurgical treatment may be better for a temporary stoma. We report a case of a patient with a distal limb prolapse of a right transverse colostomy who received nonsurgical treatment with satisfactory results. For the treatment of a temporary transverse loop colostomy with distal limb prolapse, we designed a simple device consisting of a pediatric plastic medicine cup, which was rolled into a towel to shape the bottom of the cup into a compressor. The towel was put on the stoma outside of the colostomy bag with the compressor above the prolapsing limb of the colostomy. An abdominal binder was applied to fix the towel.

  12. A simple model of bedform migration

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Ernstsen, Verner Brandbyge; Flemming, Burg W

    2010-01-01

    and width) of naturally-packed bed material on the bedform lee side, qb(crest). The model is simple, built on a rational description of simplified sediment mechanics, and its calibration constant can be explained in accordance with estimated values of the physical constants on which it is based. Predicted......A model linking subaqueous dune migration to the effective (grain related) shear stress is calibrated by means of flume data for bedform dimensions and migration rates. The effective shear stress is calculated on the basis of a new method assuming a near-bed layer above the mean bed level in which...... the current velocity accelerates towards the bedform crest. As a consequence, the effective bed shear stress corresponds to the shear stress acting directly on top of the bedform. The model operates with the critical Shields stress as a function of grain size, and predicts the deposition (volume per unit time...

  13. Simple Lie groups without the approximation property

    DEFF Research Database (Denmark)

    Haagerup, Uffe; de Laat, Tim

    2013-01-01

    For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...

  14. Swarming behavior of simple model squirmers

    International Nuclear Information System (INIS)

    Thutupalli, Shashi; Seemann, Ralf; Herminghaus, Stephan

    2011-01-01

    We have studied experimentally the collective behavior of self-propelling liquid droplets, which closely mimic the locomotion of some protozoal organisms, the so-called squirmers. For the sake of simplicity, we concentrate on quasi-two-dimensional (2D) settings, although our swimmers provide a fully 3D propulsion scheme. At an areal density of 0.46, we find strong polar correlation of the locomotion velocities of neighboring droplets, which decays over less than one droplet diameter. When the areal density is increased to 0.78, distinct peaks show up in the angular correlation function, which point to the formation of ordered rafts. This shows that pronounced textures, beyond what has been seen in simulations so far, may show up in crowds of simple model squirmers, despite the simplicity of their (purely physical) mutual interaction.

  15. The biomechanics of simple steatosis and steatohepatitis

    Science.gov (United States)

    Parker, K. J.; Ormachea, J.; Drage, M. G.; Kim, H.; Hah, Z.

    2018-05-01

    Magnetic resonance and ultrasound elastography techniques are now important tools for staging high-grade fibrosis in patients with chronic liver disease. However, uncertainty remains about the effects of simple accumulation of fat (steatosis) and inflammation (steatohepatitis) on the parameters that can be measured using different elastographic techniques. To address this, we examine the rheological models that are capable of capturing the dominant viscoelastic behaviors associated with fat and inflammation in the liver, and quantify the resulting changes in shear wave speed and viscoelastic parameters. Theoretical results are shown to match measurements in phantoms and animal studies reported in the literature. These results are useful for better design of elastographic studies of fatty liver disease and steatohepatitis, potentially leading to improved diagnosis of these conditions.

  16. Genealogies in simple models of evolution

    International Nuclear Information System (INIS)

    Brunet, Éric; Derrida, Bernard

    2013-01-01

    We review the statistical properties of the genealogies of a few models of evolution. In the asexual case, selection leads to coalescence times which grow logarithmically with the size of the population, in contrast with the linear growth of the neutral case. Moreover for a whole class of models, the statistics of the genealogies are those of the Bolthausen–Sznitman coalescent rather than the Kingman coalescent in the neutral case. For sexual reproduction in the neutral case, the time to reach the first common ancestors for the whole population and the time for all individuals to have all their ancestors in common are also logarithmic in the population size, as predicted by Chang in 1999. We discuss how these times are modified by introducing selection in a simple way. (paper)

  17. Learning from correlated patterns by simple perceptrons

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Takashi; Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)], E-mail: shinzato@sp.dis.titech.ac.jp, E-mail: kaba@dis.titech.ac.jp

    2009-01-09

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.

  18. iPad 2 Made Simple

    CERN Document Server

    Mazo, Gary; Ritchie, Rene

    2011-01-01

    The iPad 2 is thinner, more powerful, intuitive and very fun for users of all ages. Your iPad can be used for reading, surfing the web, emailing, watching TV and movies, getting work done and much more. And with over 65,000 apps just for the iPad, as well as the ability to run over 30,000 iPhone apps, the possibilities are endless. iPad 2 Made Simple clarifies all of the key features on the iPad, introduces what's new, and also reveals dozens of time-saving shortcuts and techniques. The book has over 1,000 screen shots that are carefully annotated with step-by-step instructions. * Clear instru

  19. Inequivalent topologies of chaos in simple equations

    International Nuclear Information System (INIS)

    Letellier, Christophe; Roulin, Elise; Roessler, Otto E.

    2006-01-01

    In the 1970, one of us introduced a few simple sets of ordinary differential equations as examples showing different types of chaos. Most of them are now more or less forgotten with the exception of the so-called Roessler system published in [Roessler OE. An equation for continuous chaos. Phys Lett A 1976;57(5):397-8]. In the present paper, we review most of the original systems and classify them using the tools of modern topological analysis, that is, using the templates and the bounding tori recently introduced by Tsankov and Gilmore in [Tsankov TD, Gilmore R. Strange attractors are classified by bounding tori. Phys Rev Lett 2003;91(13):134104]. Thus, examples of inequivalent topologies of chaotic attractors are provided in modern spirit

  20. Learning from correlated patterns by simple perceptrons

    Science.gov (United States)

    Shinzato, Takashi; Kabashima, Yoshiyuki

    2009-01-01

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.