WorldWideScience

Sample records for similar laboratory-scale vermicomposts

  1. Vermicomposting of winery wastes: a laboratory study.

    Science.gov (United States)

    Nogales, Rogelio; Cifuentes, Celia; Benítez, Emilio

    2005-01-01

    In Mediterranean countries, millions of tons of wastes from viticulture and winery industries are produced every year. This study describes the ability of the earthworm Eisenia andrei to compost different winery wastes (spent grape marc, vinasse biosolids, lees cakes, and vine shoots) into valuable agricultural products. The evolution of earthworm biomass and enzyme activities was tracked for 16 weeks of vermicomposting, on a laboratory scale. Increases in earthworm biomass for all winery wastes proved lower than in manure. Changes in hydrolytic enzymes and overall microbial activities during the vermicomposting process indicated the biodegradation of the winery wastes. Vermicomposting improved the agronomic value of the winery wastes by reducing the C:N ratio, conductivity and phytotoxicity, while increasing the humic materials, nutrient contents, and pH in all cases. Thus, winery wastes show potential as raw substrates in vermicomposting, although further research is needed to evaluate the feasibility of such wastes in large-scale vermicomposting systems.

  2. Development of a modified vermireactor for efficient vermicomposting: a laboratory study.

    Science.gov (United States)

    Jain, K; Singh, J; Gupta, S K

    2003-12-01

    Waste has become an index of growth. Utilization of waste materials for productivity purposes is important for both economic and environmental reasons. Vermicomposting is an important aspect as it converts waste to wealth. In this context, a modified vermireactor in place of the conventional vermireactor for efficient vermicomposting has been developed. In the conventional low- and high-rate vermireactors, the space for vermicomposting is reduced due to the thick layer of vermibed at the bottom of the reactor, thus a small amount of worm casts is produced. In the modified vermireactors there was only a thick moist cloth at the bottom in place of the thick vermibed which allowed a comparatively large quantity of organic waste to be vermicomposted as compared to conventional vermireactors. Laboratory studies showed that the modified vermireactor performed better than the conventional vermireactor in average vermicast produced and mg castings l(-1) (digester volume) day(-1). The study further showed that only the volume of the vermireactor was responsible for the high yield of worm casts.

  3. Microbiological community analysis of vermicompost tea and its influence on the growth of vegetables and cereals.

    Science.gov (United States)

    Fritz, J I; Franke-Whittle, I H; Haindl, S; Insam, H; Braun, R

    2012-07-01

    Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.

  4. Pathogens\\' Reduction in Vermicompost Process Resulted from the Mixed Sludge Treatments-Household Wastes

    OpenAIRE

    Hossien Karimi; Mohammad Rezvani; Morteza Mohammadzadeh; Yaser Eshaghi; Mehdi Mokhtari

    2016-01-01

    Introduction: The presence of pathogenic microbial agents and pathogens in organic fertilizers causes health problems and disease transmission. The aim of this study was to evaluate the efficiency of vermicomposting process in improve the microbial quality of the compost produced. Materials and Methods: This experimental study was conducted as a pilot-scale one, in the laboratory of school of Health. In order to produce vermicompost, some perishable domestic waste were mixed whit sludge o...

  5. Dynamics of a vertical-flow windrow vermicomposting system.

    Science.gov (United States)

    Hanc, Ales; Castkova, Tereza; Kuzel, Stanislav; Cajthaml, Tomas

    2017-11-01

    Large-scale vermicomposting under outdoor conditions may differ from small-scale procedures in the laboratory. The present study evaluated changes in selected properties of a large-scale vertical-flow windrow vermicomposting system with continuous feeding with household biowaste. The windrow profile was divided into five layers of differing thickness and age after more than 12 months of vermicomposting. The top layer (0-30 cm, age <3 months) was characterised by partially decomposed organic matter with a high pH value and an elevated carbon/nitrogen (C/N) ratio. The earthworm biomass was 15 g kg -1 with a population density of 125 earthworms per kilogram predominantly found in clusters. The greatest amount of fungi (3.5 µg g -1 dw) and bacteria (62 µg g -1 dw) (expressed as phospholipid fatty acid analysis) was found in this layer. Thus, the top layer could be used for an additional cycle of windrow vermicomposting and for the preparation of aqueous extracts to protect plants against diseases. The lower layers (graduated by 30 cm and by 3 months of age) were mature as reflected by the low content of ammonia nitrogen, ratio of ammonia to nitrate nitrogen and dissolved organic carbon, and high ion-exchange capacity and its ratio to carbon. These layers were characterised by elevated values for electrical conductivity, total content of nutrients, available magnesium content, and a relatively large bacterial/fungal ratio. On the basis of the observed properties, the bottom layers were predetermined as effective fertilisers.

  6. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-07-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  7. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    International Nuclear Information System (INIS)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-01-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  8. Is it efficient to co-compost and co-vermicompost green waste with biochar and/or clay to reduce CO2 emissions? A short-term laboratory experiment on (vermi)composts with additives.

    Science.gov (United States)

    Barthod, Justine; Rumpel, Cornélia; Paradelo, Remigio; Dignac, Marie-France

    2016-04-01

    Intensive farming practices can lead to a depletion of soil organic matter, negatively impacting important soil properties such as structural stability, fertility and C storage. The addition of organic amendments such as compost and vermicompost, rich in carbon, helps maintaining soil organic matter levels or restoring degraded soils. Composting and vermicomposting are based on stabilization of organic matter through the mineralization of easily decomposable organic matter compounds, therefore releasing greenhouse gases, including CO2. The aim of this study was to evaluate the global potential reduction of such emissions by the use of additives (2:1 clay and/or biochar): during (vermi)composting processes and after use of the final products as soil amendments. We hypothesized that the interactions between the additives and organic matter may lead to carbon stabilization and that such interactions may be enhanced by the presence of worms (Eisenia). We added in different proportions clay (25% or 50%), biochar (10%) and a mixture of biochar (10%) with clay (25%) to pre-composted green waste. The CO2 emissions of the composting and vermicomposting processes were measured during 21 days. After that, the amendments were added to a loamy cambisol soil and the CO2 emissions were monitored during 30 days of a laboratory experiment. The most efficient treatments in terms of reducing global CO2 emissions were the co-vermicomposting process with 25% clay followed by co-composting with 50% clay and with 10% biochar plus 25% clay. In this treatment (vermicompost with 25% clay), the carbon emissions were decreased by up to 44% compared to regular compost. Addition of biochar reduced CO2 emissions only during composting. Co-composting with biochar could be a promising avenue to limit global CO2 emissions whereas in presence of worms clay additions are better suited. These findings suggest that the presence of worms increased the formation of organo-mineral associations and thus C

  9. Vermicomposting

    OpenAIRE

    Waldbillig, H.; Brain, Roslynn

    2012-01-01

    Vermicomposting, or worm composting as it is more commonly known, is the process of using worms to break down discarded food and other organic wastes and convert them into compost and liquid fertilizers. Not only will this process save you money, but it will also downscale your environmental footprint. Vermicompost systems can be purchased online or assembled cheaply by up-cycling materials found around the house or at a local thrift store.

  10. EVALUATION OF VERMICOMPOSTED CATTLE MANURE

    Directory of Open Access Journals (Sweden)

    Zdenko Lončarić

    2005-06-01

    Full Text Available Vermicompost (lumbripost, biohumus is organic fertilizer or potting medium produced by microbial decomposition of cattle manure using Californian earthworm (Eisenia foetida. Analysing physical, chemical and biological properties confirmed that the vermicompost was stable with significant level of plant nutrients and the concentration of analysed heavy metals below threshold values. The results of vermicompost analyses were 17.85% ash, neutral pH reaction, EC 1.07 dS m-1, 24.6% total C, 2.32% total N and C:N ratio 10.6 indicating vermicompost maturity. Analyses showed significant concentrations (in g kg-1 of total P (11.25, K (6.13, Ca (10 and Mg (8.55 and microelements (in mg kg-1 Fe (9464, Mn (354, Zn (272 and Cu (46. Also, the total concentration of Zn, Cu, Pb (16 mg kg-1 and Cr (42 mg kg-1 was below permitted threshold values indicating that the use of vermicompost as fertilizer or as potting medium would be unrestricted. Biological tests show that (i the vermicompost was stable because measured respiration rate was 1.2 mg CO2-C g-1 compost-C day-1, and (ii the vermicompost did not show any phytotoxic effects because the 14-day growth of lettuce in containers resulted in higher aboveground fresh matter production using vermicompost as a potting medium compared with commercial medium, although the differences were not.

  11. Effect of vermicompost and vermicompost extract on oil yield and quality of peppermint (Mentha piperita L.)

    OpenAIRE

    Ayyobi Hossein; Peyvast Gholam-Ali; Olfati Jamal-Ali

    2013-01-01

    Organic fertilizers have beneficial effects on plants growth and quality. However, vermicompost increases electrical conductivity in soil due to increased salinity associated with continued usage. The experiment was conducted in a research field at the University of Guilan to determine effects of 7 Mt ha-1 of cow manure vermicompost, vermiwash prepared from 7 Mt ha-1 of vermicompost, leachate vermicompost + vermiwash, 50 Mt ha-1 municipal solid waste compos...

  12. Effect of Vermicompost Extract and Vermicompost-Derived Humic Acids on Seed Germination and Seedling Growth of Hemp

    Directory of Open Access Journals (Sweden)

    Ievinsh Gederts

    2017-08-01

    Full Text Available Hemp (Cannabis sativa L. cultivars grown for industrial use have recently emerged as a sustainable alternative source of industrial fibre and bioenergy, and is a highly valuable food and animal feed resource. The aim of the present study was to evaluate the effect of vermicompost extract, vermicompost mineral nutrient composition, and vermicompost-derived humic and fulvic acids on seed germination and growth of hemp seedlings. In general, separate application of all vermicompost components stimulated seed germination and hypocotyl and radicle growth, as well as increased chlorophyll concentration in cotyledons. Effective concentration range and the degree of stimulation varied significantly between the treatments. For practical purposes, application of vermicompost and vermicompost-derived extracts for stimulation of hemp growth could be useful at concentrations 5%, 0.05 mg·mL−1 and 1%, for vermicompost extract, humic acids and fulvic acids, respectively.

  13. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Fornes, F.; Mendoza-Hernandez, D.; Belda, R. M.

    2013-06-01

    The feasibility of composted (C), composted plus vermicomposted (V1) and straight vermicomposted (V2) tomato crop waste as component of rooting media for Euonymus japonicus Microphylla and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF) at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v) were assayed. Physical, physico-chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water-holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC) was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO{sub 4} {sup 2}- and Na+ in this material. EC and the ions contributing to it (K+, SO{sub 4} {sup 2}-, Na+) showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5%) performed worse than vermicomposts V1 (av. rooting = 97%) and V2 (av. rooting = 98%) whilst the latter performed similarly to CF control (av. rooting = 100%). Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent. (Author) 39 refs.

  14. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Directory of Open Access Journals (Sweden)

    F. Fornes

    2013-04-01

    Full Text Available The feasibility of composted (C, composted plus vermicomposted (V1 and straight vermicomposted (V2 tomato crop waste as component of rooting media for Euonymus japonicus ‘Microphylla’ and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v were assayed. Physical, physico chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO42– and Na+ in this material. EC and the ions contributing to it (K+, SO42–, Na+ showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5% performed worse than vermicomposts V1 (av. rooting = 97% and V2 (av. rooting = 98% whilst the latter performed similarly to CF control (av. rooting = 100%. Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent.

  15. USE OF VARIOUS BAITS FOR EXTRACTION OF EARTHWORMS FROM VERMICOMPOST

    OpenAIRE

    Joanna Kostecka; Vinod Kumar Garg

    2015-01-01

    During vermicomposting, earthworm grower has to overcome a lot of different problems. For instance, in case of a sudden requirement to sell earthworms it is useful to have the ability to collect them in one place. Fresh food extraction is an effective and neutral way to do it. The efficiency of gathering and extracting E. fetida from the vermicompost was studied, using a fresh bait method. Experiments were carried out in the laboratory (at the mean temperature of 20±0.5 °C) in pots filled wit...

  16. Recycling of Different Available Organic Wastes through Vermicomposting

    Directory of Open Access Journals (Sweden)

    S. Karmakar

    2012-01-01

    Full Text Available Generation of organic wastes has been increased in an unprecedented rate in India with rapid population expansion, leading to disposal problems. These organic wastes can be converted into valuable wealth by applying vermicomposting technology. Vermicompost which provides macro and micro nutrients to the plants, also reduces pollution by providing a valuable substitute for chemical fertilizers. Present paper deals with vermicomposting of organic wastes from seven different sources and evaluation of nutrient in those vermicomposts following chemical analyses. These seven sources include coconut coir, water hyacinth, mixed materials, cabbage, banana pseudostem, cow dung, and rice husk. Three composting species of earthworms e.g. Eisenia. fetida, Eudrilus. eugeniae, and Perionyx excavatus were chosen for the experiment. Chemical analysis of vermicomposts under study clearly showed that the vermicompost from water hyacinth contained maximum amount of organic C, total N, and total K though the phosphorous content was maximum in vermicompost from mixed materials. Lowest nutrient content was observed in vermicompost of coconut coir. Vermicomposts from mixed materials, cabbage, banana pseudostem were at per in their chemical properties. It can be concluded that among the seven sources, vermicompost from water hyacinth is best for its nutrient value.

  17. Dynamics of a vertical-flow windrow vermicomposting system

    Czech Academy of Sciences Publication Activity Database

    Hanč, A.; Částková, T.; Kužel, S.; Cajthaml, Tomáš

    2017-01-01

    Roč. 35, č. 11 (2017), s. 1121-1128 ISSN 0734-242X Institutional support: RVO:61388971 Keywords : Large-scale windrow vermicomposting * continuous feeding * biowaste Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.803, year: 2016

  18. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka; Thomas, George V

    2006-10-01

    During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.

  19. Vermicomposting of source-separated human faeces for nutrient recycling.

    Science.gov (United States)

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2010-01-01

    The present study examined the suitability of vermicomposting technology for processing source-separated human faeces. Since the earthworm species Eisenia fetida could not survive in fresh faeces, modification in the physical characteristics of faeces was necessary before earthworms could be introduced to faeces. A preliminary study with six different combinations of faeces, soil and bulking material (vermicompost) in different layers was conducted to find out the best condition for biomass growth and reproduction of earthworms. The results indicated that SVFV combination (soil, vermicompost, faeces and vermicompost - bottom to top layers) was the best for earthworm biomass growth indicating the positive role of soil layer in earthworm biomass growth. Further studies with SVFV and VFV combinations, however, showed that soil layer did not enhance vermicompost production rate. Year-long study conducted with VFV combination to assess the quality and quantity of vermicompost produced showed an average vermicompost production rate of 0.30kg-cast/kg-worm/day. The vermicompost produced was mature as indicated by low dissolved organic carbon (2.4+/-0.43mg/g) and low oxygen uptake rate (0.15+/-0.09mg O(2)/g VS/h). Complete inactivation of total coliforms was noted during the study, which is one of the important objectives of human faeces processing. Results of the study thus indicated the potential of vermicomposting for processing of source-separated human faeces.

  20. Chemical Composition of Vermicompost Made from Organic Wastes through the Vermicomposting and Composting with the Addition of Fish Meal and Egg Shells Flour

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2017-05-01

    Full Text Available Chemical composition of compost is an important indicator that determines the quality of compost. This study compared the chemical composition of vermicompost resulting from the process of vermicomposting alone with combined vermicomposting and composting with addition of egg shells flour and fish meal. Organic wastes used were the mixture of spent mushrooms waste, coconut husks, cow dung, vegetables residue, and leaf litter. Lumbricus rubellus was the species of earthworm used in the vermicomposting process. In the composting process, egg shells flour and fish meal are added into the vermicompost as additives materials. The results indicate that the combined vermicomposting and composting process with addition the additives materials improves the chemical composition of vermicompost compared to using vermicomposting process alone. The change of chemical composition was indicated by a decrease in C-organic content and C/N ratio by 29% and 99%, respectively, while the content of N, P, K and S increased by 52%, 67.5%, 29% and 25%, respectively due to the addition of additives material in the composting process. The largest increase of vermicompost nutrient content occurred in the Ca content by an average of up to 7-fold. While polyphenols, lignin and cellulose content of vermicompost decreased slightly. The treatment of two mixture (a spent mushrooms waste, cow dung and vegetables residue, and (b spent mushroom waste, cow dung, vegetables residue, and leaf litter gave the best chemical composition. However, to determine the quality, we need to test the product in a plant growth bioassay as a follow-up study.

  1. Similarity and self-similarity in high energy density physics: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Falize, E.

    2008-10-01

    The spectacular recent development of powerful facilities allows the astrophysical community to explore, in laboratory, astrophysical phenomena where radiation and matter are strongly coupled. The titles of the nine chapters of the thesis are: from high energy density physics to laboratory astrophysics; Lie groups, invariance and self-similarity; scaling laws and similarity properties in High-Energy-Density physics; the Burgan-Feix-Munier transformation; dynamics of polytropic gases; stationary radiating shocks and the POLAR project; structure, dynamics and stability of optically thin fluids; from young star jets to laboratory jets; modelling and experiences for laboratory jets

  2. Vermicomposting of Food Waste: Assessing the Stability and Maturity

    Directory of Open Access Journals (Sweden)

    Monireh Majlessi

    2012-12-01

    Full Text Available The vermicompost using earthworms (Eisenia Fetida was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents(C/N and germination bioassaywas examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress.The ranges of EC,pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8- 58.4%, espectively. The germination index (GI value revealed that vermicompost rendered as moderate phytotoxic to cress seed.Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level.The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests.

  3. [Anaerobic co-digestion of corn stalk and vermicompost].

    Science.gov (United States)

    Chen, Guang-yin; Zheng, Zheng; Zou, Xing-xing; Fang, Cai-xia; Luo, Yan

    2010-02-01

    The characteristics of corn stalk digested alone at different total solid (TS) loading rates and co-digestion of various proportions of corn stalk and vermicompost were investigated by batch model at 35 degrees C +/- 1 degrees C. The organic loading rates (OLRs) studied were in the range of 1.2%-6.0% TS and increasing proportions of vermicompost from 20% to 80% TS. A maximum methane yield of corn stalk digested alone was 217.60 mL/g obtained at the TS loading rate of 4.8%. However, when the TS loading rate was 6.0%, the anaerobic system was acidified and the lowest pH value was 5.10 obtained on day 4 and the biogas productivity decreased. Furthermore, co-digestion of vermicompost and corn stalk in varying proportions were investigated at constant of 6.0% TS. Co-digestion with vermicompost improved the biodegradability of corn stalk and the methane yield was improved by 4.42%-58.61%, and led to higher pH values, higher volatile fatty acids (VFAs) concentration and lower alkalinity content compared with corn stalk digested alone. The maximum biogas yield and methane yield of 410.30 mL/g and 259. 35 mL/g were obtained for 40% vermicompost and 60% corn stalk respectively. Compared with corn stalk digested alone, co-digested with vermicompost didn' t affect methane content and the fermentation type, but promoted the destruction of crystalline of cellulose and the highest destruction rate was 29.36% for 40% vermicompost and 60% corn stalk. Therefore, adding vermicompost was beneficial for the decomposition and increasing the biotransformation rate of corn stalk.

  4. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  5. Vermicomposting of organic wastes from olive oil, winery and alcohol industries; Vermicompostaje de residuos organicos generados por industrias oleicolas, vitivinicolas y alcoholeras

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Melgar, R.; Cifuentes, C.; Romero, E.; Benitez, E.

    2004-07-01

    The olive oil, winery and alcohol industries produce large amounts of organic waste that need suitable management in order to reduce their potential impact on the environment. This paper briefly describes the use of vermicomposting, at microcosm, laboratory and pilot scale, as an efficient and low-cost biotechnological process to obtain safe,mature and stabilised organic amendments, which can be feasibly used in conventional, integrated and organic agriculture. (Author) 26 refs.

  6. Impact of imidacloprid residues on the development of Eisenia fetida during vermicomposting of greenhouse plant waste.

    Science.gov (United States)

    Fernández-Gómez, Manuel J; Romero, Esperanza; Nogales, Rogelio

    2011-09-15

    Pesticide application in agriculture causes residues in post-harvest plant waste at different concentrations. Knowledge concerning how pesticide concentrations in such waste affect earthworms is essential for recycling greenhouse plant debris through vermicomposting. Here, we have evaluated the effects of imidacloprid (IMD) residues on earthworms (Eisenia fetida) during the vermicomposting of plant waste from greenhouse crops in Spain. Before, the effect of different IMD concentrations on earthworms was tested using cattle manure as an optimum waste for worm development. The results after using cattle manure indicate that IMD dose ≥ 5 mg kg(-1) hinders worm growth and even causes death, whereas IMD dose ≤ 2 mg IMD kg(-1) allows worm growth similar to control but impedes reproduction. The results from the vermicomposting of plant waste reveal that IMD inhibits adequate worm growth and increases mortality. Although 89% worms became sexually mature in substrate containing 2 mg IMD kg(-1), they did not produce cocoons. IMD also affected microorganisms harboured in the substrates for vermicomposting, as indicated by the reduction in their dehydrogenase activity. This enzyme activity was restored after vermicomposting. This study provides a sound basis for the vermicomposting of pesticide-contaminated plant waste. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The use of vermicompost in organic farming: overview, effects on soil and economics.

    Science.gov (United States)

    Lim, Su Lin; Wu, Ta Yeong; Lim, Pei Nie; Shak, Katrina Pui Yee

    2015-04-01

    Vermicomposting is a process in which earthworms are used to convert organic materials into humus-like material known as vermicompost. A number of researchers throughout the world have found that the nutrient profile in vermicompost is generally higher than traditional compost. In fact, vermicompost can enhance soil fertility physically, chemically and biologically. Physically, vermicompost-treated soil has better aeration, porosity, bulk density and water retention. Chemical properties such as pH, electrical conductivity and organic matter content are also improved for better crop yield. Nevertheless, enhanced plant growth could not be satisfactorily explained by improvements in the nutrient content of the soil, which means that other plant growth-influencing materials are available in vermicomposts. Although vermicomposts have been shown to improve plant growth significantly, the application of vermicomposts at high concentrations could impede growth due to the high concentrations of soluble salts available in vermicomposts. Therefore, vermicomposts should be applied at moderate concentrations in order to obtain maximum plant yield. This review paper discusses in detail the effects of vermicompost on soil fertility physically, chemically and biologically. Future prospects and economy on the use of organic fertilizers in the agricultural sector are also examined. © 2014 Society of Chemical Industry.

  8. Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting.

    Science.gov (United States)

    Adi, A J; Noor, Z M

    2009-01-01

    Vermicomposting using Lumbricus rubellus for 49 days was conducted after 21 days of pre-composting. Three different combination of treatments were prepared with eight replicates for each treatment namely cow dung: kitchen waste in 30:70 ratio (T(1)), cow dung: coffee grounds in 30:70 ratio (T(2)), and cow dung: kitchen waste: coffee grounds in 30:35:35 ratio (T(3)). The multiplication of earthworms in terms of numbers and weight were measured at the end of vermicomposting. Consequently, only T(2) showed significant increase (from it initial stage) compared to other treatments. The presence of coffee grounds in T(2) and T(3) showed higher percentage of nutrient elements in vermicompost produced. The data reveal that coffee grounds can be decomposed through vermicomposting and help to enhance the quality of vermicompost produced rather than sole use of kitchen waste in vermicomposting.

  9. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    International Nuclear Information System (INIS)

    Lalander, Cecilia Helena; Komakech, Allan John; Vinnerås, Björn

    2015-01-01

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of worm biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies

  10. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    Energy Technology Data Exchange (ETDEWEB)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se [Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Komakech, Allan John [Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala (Sweden); Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala (Uganda); Vinnerås, Björn [Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala (Sweden)

    2015-05-15

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of worm biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.

  11. Vermicomposting transforms allelopathic parthenium into a benign organic fertilizer.

    Science.gov (United States)

    Hussain, Naseer; Abbasi, Tasneem; Abbasi, S A

    2016-09-15

    Vermicompost, which had been derived solely by the action of the epigeic earthworm Eisenia fetida on parthenium (Parthenium hysterophorus), was tested for its impact on the germination and early growth of green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). Seedlings were germinated and grown in soil amended with 0 (control), 0.75, 1.5, 2, 4, 8, 20 and 40% (by weight) parthenium vermicompost. Even though parthenium is known to possess strong negative allelopathy, as also plant/animal toxicity in other forms, its vermicompost (VC) manifested none of these attributes. Rather the VC enhanced germination success, introduced plant-friendly physical features in the container media, increased biomass carbon, and was seen to promote early growth as reflected in several morphological and biochemical characteristics in plants which had received parthenium VC in comparison to those which had not. All these effects were statistically significant. Fourier Transform Infrared (FTIR) Spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the negative allelopathic impact of parthenium were largely destroyed in the course of vermicomposting. FTIR spectra also indicated that lignin content of parthenium was reduced during its vermicomposting. The findings open up the possibility that several other invasives known for their negative allelopathy and toxicity may also produce vermicompost which may be plant-friendly and soil-friendly. It also makes it appear possible that the huge quantities of phytomass that is generated annually by parthenium can be gainfully utilized in producing organic fertilizer via vermicomposting, thereby providing a means of exercising some control over parthenium's rampant growth and invasion. Copyright © 2016. Published by Elsevier Ltd.

  12. Comparison of Composting and Vermicomposting Processes in Refining Drill Cutting Mud from Ahvaz Oil Field in the Presence of Biosolids

    Directory of Open Access Journals (Sweden)

    afshin takdastan

    2017-11-01

    Full Text Available Cutting and drilling mud contains significant amounts of petroleum hydrocarbons that are detrimental to both the environment and public health. The objective of this study was to remove the hazardous components of drill cutting mud using the two biological processes of sewage sludge vermicomposting and biocomposting. In an experimental laboratory research, two pilot composting and vermicomposting processes, each over a period of two months with 2 repetitions, were conducted using the the same biological sludge mixed with drill cuttings contaminated with total petroleum hydrocarbon (TPH along with sawdust and yard waste. The GC-FID unit was used to determine the residual total petroleum hydrocarbon concentrations. Results showed that the vermicomposting pilot had a higher TPH removal efficiency than did the composting one so that TPH concentration in the mixed waste mass declined after 60 days from its original value of 42.004 g/kg to 11.316 g/kg. In other words, TPH removal in the pilots A (vermicomposting and B (biocomposting were 73/06% and 55/3%, respectively. Moreover, the TPH levels in the two composting and vermicomposting pilots on the 45th and 60th days showed significant differences (p < 0.05. The study showed that the vermicomposting process enjoys a higher capability than the composting one in removing TPH from oil-based drill cutting waste.

  13. Propiedades químicas de tés de vermicompost

    OpenAIRE

    González Solano, Karla Daniela; Rodríguez Mendoza, Ma. De Las Nieves; Trejo Téllez, Libia Iris; Sánchez Escudero, Julio; García Cué, José Luis

    2013-01-01

    La investigación tuvo como objetivo relacionar algunas características químicas de los tés con el origen de vermicompost usado en la extracción, la relación agua:vermicompost y el tiempo de incubación. Como parámetros de evaluación se consideró la conductividad eléctrica (CE), el pH y la concentración nutrimental. El tipo u origen del vermicompost tuvo efecto significativo sobre pH, CE y la concentración de nutrientes; los tés extraídos del vermicompost de pasto y estiércoles de borrego y bov...

  14. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Gómez, Manuel J., E-mail: manuelj.fernandez@eez.csic.es [Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada (Spain); Nogales, Rogelio [Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008 Granada (Spain); Plante, Alain [Department of Earth and Environmental Science, University of Pennsylvania, Hayden Hall, 240 S. 33rd Street, Philadelphia, PA 19104 (United States); Plaza, César [Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115, 28006 Madrid (Spain); Fernández, José M. [Department of Earth and Environmental Science, University of Pennsylvania, Hayden Hall, 240 S. 33rd Street, Philadelphia, PA 19104 (United States); Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano 115, 28006 Madrid (Spain)

    2015-01-15

    Highlights: • A set of techniques was used to characterize humic acids content of vermicomposts. • The properties of the humic acids produced from different waste mixtures were similar. • This set of techniques allowed distinguishing the humic acids of each vermicomposts. • Increasing humic acid contents in initial mixtures would produce richer vermicomposts. - Abstract: A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV–visible spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) {sup 13}C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs.

  15. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting

    International Nuclear Information System (INIS)

    Fernández-Gómez, Manuel J.; Nogales, Rogelio; Plante, Alain; Plaza, César; Fernández, José M.

    2015-01-01

    Highlights: • A set of techniques was used to characterize humic acids content of vermicomposts. • The properties of the humic acids produced from different waste mixtures were similar. • This set of techniques allowed distinguishing the humic acids of each vermicomposts. • Increasing humic acid contents in initial mixtures would produce richer vermicomposts. - Abstract: A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV–visible spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) 13 C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs

  16. Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production.

    Science.gov (United States)

    Yadav, Kunwar D; Tare, Vinod; Ahammed, M Mansoor

    2011-06-01

    The main objective of the present study was to determine the optimum stocking density for feed consumption rate, biomass growth and reproduction of earthworm Eisenia fetida as well as determining and characterising vermicompost quantity and product, respectively, during vermicomposting of source-separated human faeces. For this, a number of experiments spanning up to 3 months were conducted using soil and vermicompost as support materials. Stocking density in the range of 0.25-5.00 kg/m(2) was employed in different tests. The results showed that 0.40-0.45 kg-feed/kg-worm/day was the maximum feed consumption rate by E. fetida in human faeces. The optimum stocking densities were 3.00 kg/m(2) for bioconversion of human faeces to vermicompost, and 0.50 kg/m(2) for earthworm biomass growth and reproduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Improved retention of imidacloprid (Confidor) in soils by adding vermicompost from spent grape marc.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2007-05-25

    Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; Pcharacteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.

  18. The financial feasibility of hazelnut husk and sewage sludge based vermicompost production

    Directory of Open Access Journals (Sweden)

    Vedat Ceyhan

    2015-10-01

    Full Text Available Recycling the waste such as hazelnut husk, sewage sludge etc. has been one of the issues into the agenda of many countries. Therefore the purpose of the study was to examine the economic feasibility of the vermicompost production. Technical data about composting hazelnut husk and sewage sludge were gathered from past research. The time series data such as production, export, import and price of vermicompost collected from TURKSTAT, FAO and related institutions. Autoregressive integrating moving average model (ARIMA and smoothing methods such as double exponential model and winter model were used in forecasting process. We followed net present value and internal rate of return procedures when evaluating the financial feasibility of the facility having one ton vermicompost production capacity per day. Research results showed that the profitability of vermicompost production facility was high, while the likelihood of loss was less. Vermicompost production facility with approximately 130 thousands of US dollars initial investment provided net present value of 1.28 million of US dollars during the economic life. The internal rate of vermicompost production facility was 23%. Research results also revealed that production cost of vermicompost was $0.2 per kilogram. Since vermicompost production facility investment with high profitability and low level of risk was good investment alternatives facing with low level of competitive in market, the study suggest to investors who has good back grounding about sector that they should pay attention to marketing system and market observation about organic input market.

  19. Feasibility of vermicomposting dewatered sludge from paper mills using Perionyx excavatus

    Directory of Open Access Journals (Sweden)

    Puspanjali Sonowal

    2013-06-01

    Full Text Available India has a large network of pulp and paper mills of varying capacity. On an industrial scale the sludge from paper and pulp mills is disposed of either as landfill or incinerated. Both methods result in the loss of a valuable resource and have obvious environmental and economic disadvantages. The solid waste from pulp and paper mills is a source of organic matter and its proper disposal and management is the responsibility of the industry. As composting/vermicomposting could be used to transform this waste trials were carried out to determine the feasibility of converting dewatered sludge (DS into a value added end product using an earthworm, Perionyx excavatus. The vermicomposting of the waste resulted in an increase in its electrical conductivity (EC, ash content, total nitrogen (TN, total phosphorous (TP and available phosphorous (AP, respectively, and a decrease in total organic carbon (TOC, biochemical oxygen demand (BOD, chemical oxygen demand (COD, oxygen uptake rate (OUR and evolution of carbon dioxide (CO2. Overall, the best treatment was T5 in which there was a 76.1% increase in TP, 58.7% in TN, 74.5% decrease in TOC , and a reduction of 6.7 fold in the production of CO2 and 10.7 fold in BOD, respectively. Our trials demonstrate that vermicomposting using an epigeic earthworm, Perionyx excavatus, is an alternate and environmentally safe way of recycling paper mill sludge if it is mixed with an appropriate amount of cow dung and food processing waste. Overall T5 was the best combination of paper mill sludge and waste for vermicomposting followed by T3, T2, T4 and T1, respectively.

  20. Solid waste management with the help of vermicomposting and its applications in crop improvement

    Directory of Open Access Journals (Sweden)

    Nandita Mehta

    2013-01-01

    Full Text Available Management of solid waste has become one of the biggest problems that we are facing today. Vermicomposting is the better option to tackle with this problem. Vermicomposting is the process of conversion of organic wastes by earthworms to valuable humus like material which is used as a natural soil conditioner. Vermicomposting is environment friendly and cost effective technique for solid waste management. Vermicomposting serves two main purposes for the welfare of humans as it helps in the degradation of solid waste and the cast produced during this process is used as a natural fertilizer. Vermicompost is much better than chemical fertilizer because it is not associated with any kind of risk. Earthworms are potentially important creatures that are capable of transforming garbage into gold. Eisenia fetida is the most commonly used species of earthworms for vermicomposting. Vermicomposting is a mesophilic process and should be maintained up to 32°C with the moisture content of 60-80%. Earthworms break down organic matter and leave behind castings that are an exceptionally valuable fertilizer. Vermicomposting has many applications in crop improvement such as pathogen destruction, water holding capacity of soil, improved crop growth and yield, improved soil physical, chemical and biological properties and production of plant growth regulators.

  1. Influence of vermicompost humic acid on chlorophyll content and ...

    African Journals Online (AJOL)

    S

    2016-11-23

    Nov 23, 2016 ... cattle used was fed mainly with grasses, and the manure was processed with African red worm. This vermicompost was used for the humic substances extraction according to International humic substances society (2008) with NaOH (0.1 mol L-1) in a proportion of 1:10 (mg of vermicompost: mL dissolution) ...

  2. Effect of solid and aqueous extract of vermicompost on growth characteristics of tomato and greenhouse whitefly (Trialeurodes vaporariorum)

    OpenAIRE

    A. Peimani Foroushani; N. Poorjavad; M. Haghigh; J. Khajehali

    2016-01-01

    Considering the increase of using vermicompost fertilizers in greenhouse cultivation, effect of vermicompost application on growth characteristics of tomato and one of its major pests [greenhouse whitefly, Trialeurodes vaporariorum (Hem:Aleyrodidae)] was investigated. The experiment consisted of five treatments: control (without vermicompost), 30% and 60% solid vermicompost fertilizer, and 40% and 20% aqueous extracts of vermicompost. Effect of vermicompost on greenhouse whitefly was tested f...

  3. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting

    NARCIS (Netherlands)

    Nigussie, Abebe; Kuijper, Thomas; Bruun, Sander; Neergaard, de Andreas

    2016-01-01

    Thermophilic composting produces a significant amount of greenhouse gases. The objectives of this study were (i) to evaluate the effectiveness of vermicomposting to reduce nitrogen losses and greenhouse gases emissions compared to thermophilic composting, and (ii) to determine the effect of

  4. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    Science.gov (United States)

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition.

  5. Nutrient content in maize fertilized with tannery sludge vermicompost and irrigated with domestic wastewater

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2016-11-01

    Full Text Available This study analyzed the macro and micronutrient content of maize leaves (Zea mays L. grown in soil containing tannery sludge vermicomposting and irrigated with wastewater. The arrangement of the treatments consisted of a factorial 2x6 (two types of irrigation and six kinds of fertilizer in a completely randomized design, with five repetitions, totaling sixty experimental units. The following experimental units, irrigated with supply water (A and household wastewater (R, were established: (T1 Control Soil, with no chemical fertilization and no vermicomposting; (T2 Soil + NPK; (T3 Soil + primary sludge vermicompost; (T4 Soil + P + primary sludge vermicompost; (T5 Soil + P + liming sludge vermicompost; and (T6 Soil + liming sludge vermicompost. For the leaf-tissue analysis, the opposite whole leaf below the first (upper ear was collected from each plant, excluding the midrib at the onset of the female inflorescence. The results showed that both wastewater and the tannery sludge vermicomposts can be a good source of nutrients for maize plants, since the macro and micronutrients in the leaves of plants were satisfactory and no signs or symptoms of toxicity were observed. While leaf analysis alone is insufficient to assess the nutritional status of plants, this study innovatively suggests the potential beneficial use of a combination of wastewater and tannery sludge vermicompost in the cultivation of corn, motivating new research.

  6. Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria.

    Science.gov (United States)

    Busato, Jader G; Lima, Lívia S; Aguiar, Natália O; Canellas, Luciano P; Olivares, Fábio L

    2012-04-01

    The aim of this study was to assess the effect of N(2)-fixing and P-solubilizing bacteria during maturation of vermicompost on phosphorus availability. A bacterial suspension containing Burkholderia silvatlantica, Burkholderia spp. and Herbaspirillum seropedicae was applied at the initial stage of vermicomposting. At the end of the incubation time (120days), the nitrogen content had increased by18% compared to uninoculated vermicompost. Water-soluble P was 106% higher in inoculated vermicompost while resin-extractable P increased during the initial vermicomposting stage and was 21% higher at 60days, but was the same in inoculated and uninoculated mature compost. The activity of acid phosphatase was 43% higher in inoculated than uninoculated vermicompost. These data suggest that the introduction of the mixed culture had beneficial effects on vermicompost maturation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. VERMICOMPOST APPLICATION IMPROVING SEMIARID-GROWN CORN GREEN EAR AND GRAIN YIELDS

    Directory of Open Access Journals (Sweden)

    PAULO SÉRGIO LIMA E SILVA

    2017-01-01

    Full Text Available Intensive corn farming quickly depletes soil organic matter in the nutrient-poor soils of the Brazilian semiarid region. Application of vermicompost, an excellent organic fertilizer, could help solve that problem. This study evaluated the effect of applying Eisenia fetida vermicompost in the seeding furrows, at 0, 2, 4, 6, 8, and 10 Mg.ha-1 application rates, on the green ear yield and grain yield of two corn cultivars. Treatments were replicated five times with split-plots (vermicompost application rates within plots in a completely randomized block design. The number of mature ears, number of kernels per ear (cultivar BR 106, and 100-kernel weight (cultivar AG 1051 were not affected by vermicompost application rate. However, vermicompost application increased total number and weight of unhusked and husked marketable green ears as well as grain yield. Total number of green ears was higher in cultivar BR 106 than in cultivar AG 1051. Conversely, grain yield and total ear weight and marketable weight of unhusked and husked green ears was higher in cultivar AG 1051, but responses in the latter two traits were dose-dependent.

  8. Towards understanding the effects of additives on the vermicomposting of sewage sludge.

    Science.gov (United States)

    Xing, Meiyan; Lv, Baoyi; Zhao, Chunhui; Yang, Jian

    2015-03-01

    This work evaluated the effects of additives on the chemical properties of the final products (vermicompost) from vermicomposting of sewage sludge and the adaptable characteristics of Eisenia fetida during the process. An experimental design with different ratios of sewage sludge and the additives (cattle dung or pig manure) was conducted. The results showed that the vermicomposting reduced total organic carbon and the quotient of total organic carbon to total nitrogen (C/N ratio) of the initial mixtures and enhanced the stability and agronomical value of the final products. Notably, principal component analysis indicated that the additives had significant effects on the characteristics of the vermicomposts. Moreover, the vermibeds containing cattle dung displayed a better earthworm growth and reproduction than those with pig manure. Additionally, redundancy analysis demonstrated that electrical conductivity (EC), pH, and C/N ratio played crucial roles on earthworm growth and reproduction. In all, the additives with high C/N ratio, pH buffering capacity, and low EC are recommended to be used for vermicomposting of sewage sludge.

  9. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Bayo, J.D. [Department of Environmental Protection, Estacion Experimental del Zaidin (CSIC), C/Profesor Albareda 1, 18008 Granada (Spain)], E-mail: jesus.bayo@eez.csic.es; Romero, E. [Department of Environmental Protection, Estacion Experimental del Zaidin (CSIC), C/Profesor Albareda 1, 18008 Granada (Spain); Schnitzler, F.; Burauel, P. [Agrosphere Institute, ICG 4, Forschungszentrum Juelich, Juelich (Germany)

    2008-07-15

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed {sup 14}C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil. - Winery vermicomposts as organic amendments to reduce pesticide pollution.

  10. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts

    International Nuclear Information System (INIS)

    Fernandez-Bayo, J.D.; Romero, E.; Schnitzler, F.; Burauel, P.

    2008-01-01

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14 C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil. - Winery vermicomposts as organic amendments to reduce pesticide pollution

  11. [Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato].

    Science.gov (United States)

    Shen, Fei; Zhu, Tong-bin; Teng, Ming-jiao; Chen, Yue; Liu, Man-qiang; Hu, Feng; Li, Hui-xin

    2016-02-01

    In this study, we investigated the effects of two strains of probiotic bacteria (Bacillus megaterium BM and Bacillus amyloliquefaciens BA) combined with chemical fertilizers and vermicompost on the soil property, the yield and quality of tomato. The results showed that under the same nutrient level, vermicompost significantly increased the yield, soluble sugar and protein contents of fruit, the soil pH and available phosphorus when compared with chemical fertilizers. Vermicompost combined with probiotics not only increased the tomato yield, soluble sugar, protein and vitamin C contents, sugar/acid ratio of fruit, and reduced the organic acid and nitrate nitrogen contents of fruit, also increased the soil pH and nitrate nitrogen content, and reduced soil electric conductivity when compared with vermicompost treatment. This improved efficiency was better than that by chemical fertilizers combined with probiotics. For BA and BM applied with chemical fertilizers or vermicompost, both stains had no significant effect on tomato quality. When co-applied with vermicompost, BA and BM showed significant difference in tomato yield. High soil available phosphorus content was determined when BM was combined with chemical fertilizers, while high soil available potassium content was obtained when BA was combined with vermicompost. Our results suggested that probiotics and vermicompost could be used as alternatives of chemical fertilizers in tomato production and soil fertility improvement.

  12. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  13. Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review.

    Science.gov (United States)

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2017-06-01

    Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes.

    Science.gov (United States)

    Wang, Hang; Li, Hongyi; Gilbert, Jack A; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian

    2015-11-01

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P biofertilizer in agroecosystems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Value added product recovery from sludge generated during gum arabic refining process by vermicomposting.

    Science.gov (United States)

    Das, Veena; Satyanarayan, Sanjeev; Satyanarayan, Shanta

    2016-09-01

    Gum arabic is multifunctional and used in food products, pharmaceutical, confectionery, cosmetic, printing and textile industry. Gum arabic has an excellent market and its production is being increased to meet the market demand. In the process, huge quantity of solid waste is generated during its refining process. An attempt has been made to vermicompost this organic waste using Eudrilus eugeniae. This research work is first of its kind. Literature on this substrate has not been reported anywhere else for vermicomposting. Results were excellent with volatile solid reduction of 51.34 %; C/N ratio reduced to 16.31 % indicating efficient loss of carbon as carbon dioxide during vermicomposting period. Manurial value, i.e. nitrogen, phosphorus and potassium content in the range, required for the plants also increased. Porosity of 67.74 % and water holding capacity of 65.75 % were observed. The maturity of the vermicompost was evaluated through scanning electron microscopy wherein the complete conversion of large raw material particles into finer particles forming a uniform matrix with more surface area was observed indicating its efficient conversion. Microbial quality of vermicompost was also studied. The final vermicompost is free of fungal cells and pathogenic bacteria.

  16. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential.

    Science.gov (United States)

    Pathma, Jayakumar; Sakthivel, Natarajan

    2012-01-01

    Vermicomposting is a non-thermophilic, boioxidative process that involves earthworms and associated microbes. This biological organic waste decomposition process yields the biofertilizer namely the vermicompost. Vermicompost is a finely divided, peat like material with high porosity, good aeration, drainage, water holding capacity, microbial activity, excellent nutrient status and buffering capacity thereby resulting the required physiochemical characters congenial for soil fertility and plant growth. Vermicompost enhances soil biodiversity by promoting the beneficial microbes which inturn enhances plant growth directly by production of plant growth-regulating hormones and enzymes and indirectly by controlling plant pathogens, nematodes and other pests, thereby enhancing plant health and minimizing the yield loss. Due to its innate biological, biochemical and physiochemical properties, vermicompost may be used to promote sustainable agriculture and also for the safe management of agricultural, industrial, domestic and hospital wastes which may otherwise pose serious threat to life and environment.

  17. Influence of Nitrogen Fertilizer and Vermicompost Application on Flower Yield and Essential Oil of Chamomile (Matricaria Chamomile L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haj Seyed Hadi

    2015-07-01

    Full Text Available    This study was performed to assess the effects of nitrogen fertilizer and vermicompost on qualitative and quantitative yield of chamomile (Matricaria chamomilla L.. It was conducted at the Research Fields of Ran Company located in Firouzkouh, Iran, in 2013. Treatments were consisted of 1 Control, 2 100% nitrogen from urea, 3 100% nitrogen from ammonium nitrate, 4 75% nitrogen from urea and 25% from vermicompost, 5 75% nitrogen from ammonium nitrate and 25% from vermicompost, 6 50% nitrogen from urea and 25% from vermicompost , 7 50% nitrogen from ammonium nitrate and 25% from vermicompost, 8 25% nitrogen from urea and 25% from vermicompost, 9 25% nitrogen from ammonium nitrate and 25% from vermicompost, and 10 100% nitrogen from vermicompost. The maximum plant height (67.03 cm and plant weight (93.21 g/plant were obtained at N2 treatment (200 kg ha-1 urea. N5 treatment (202.5 kg ha-1 ammonium nitrate + 1.5 ton vermicompost ha-1 caused maximum flower diameter. The highest fresh flower yield (7539.45 kg ha-1, dry flower yield (1715.93 kg ha-1 and essential oil yield (6.95 kg ha-1 obtained in plots, which received 135 kg ha-1 nitrate ammonium + 3 ton vermicompost ha-1. It seems using biofertilizers such as vermicompost could enhance quantitative and qualitative characteristics of chamomile. Moreover, by substituting chemical fertilizers by biofertilizers, ecosystem health and quality of life will increase which it is the most important goals of sustainable developments. 

  18. Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinenis var. Apure) uptake

    International Nuclear Information System (INIS)

    Carrasquero Duran, A.; Flores, I.; Perozo, C.; Pernalete, Z.

    2006-01-01

    Lead is one i f the most dangerous contaminants which has been released to the environment during many years by anthropogenic activities. Adsorption of Pb 2+ on vermicompost was studied at 11 d ig C , 30 d ig C and 50 d ig C by using Langmuir and Freundlich models, that adequately described the adsorption process, with maximum adsorption capacities were 116.3; 113.6 and 123.5 μg/g for each temperature. The differences in FTIR (Fourier Transform Infrared Spectrometer) spectra of vermicompost at pH 3,8 and pH 7.0 in the region from 1800 to 1300 cm -1 were interpreted on the basis of carboxyl acid ionization that reduce band intensity around 1725 cm -1 producing signals at 1550 cm -1 (υ a ) and 1390 cm -1 (υ a ) of carboxylate groups. Similar changes were detected at pH 3.8 when ionic lead was present suggesting that heavy metal complexation occurs throughout a cationic exchange reaction. Vermicompost was applied to a soil where white bean plants were planted. After irrigation with lead nitrate solutions the uptake of lead was reduced to 81% in leaves and stem, while the reduction in the roots was around 50%. The highest accumulation of lead was found in the roots and the translocations seems to be limited by the presence off vermicompost in the soil

  19. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.

    Science.gov (United States)

    Villar, Iria; Alves, David; Mato, Salustiano

    2017-11-01

    This research evaluates, through microbial dynamics, the use of earthworms Eisenia andrei for maturation of pre-composted pig manure in comparison with maturation under static conditions and with vermicomposting of fresh pig manure. Therefore, two substrates were used (fresh and pre-composted pig manure) and four treatments were developed: fresh manure vermicomposting, control of fresh manure without earthworms, pre-composting followed by vermicomposting and static maturation of pre-composted manure. In order to determine the microbial dynamics, the enzymatic activities and profiles of phospholipid fatty acids (PLFAs) were evaluated over a 112-days period. Physicochemical and biological parameters of the obtained products were also analyzed. The presence of earthworms significantly reduced (pquality values, it is necessary to optimize the vermicompost aging phase period to improve the stability. Static maturation presented stability on microbial dynamics that indicated a slow degradation of organic compounds so that, maturation of pre-composted manure through vermicomposting is better option. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessment of pesticide availability in soil fractions after the incorporation of winery-distillery vermicomposts.

    Science.gov (United States)

    Fernández-Bayo, J D; Romero, E; Schnitzler, F; Burauel, P

    2008-07-01

    The influence of two vermicomposts from winery and distillery wastes on the distribution of diuron in agricultural soil was studied. Physical soil fractionations at 0, 9, 27, 49 and 77 days, allowed the quantification of pesticide residues in different particle-size fractions, coarse waste (WF), sand-sized (SF), silt-sized (SiF), clay-sized (CF) and dissolved organic matter-sized fraction (DOM). The SiF made a greater contribution to the formation of non-extractable residues in unamended soil, but when vermicomposts were added, new sorption sites in WF appeared, being higher for the more humified vermicompost V2. The dissolved organic carbon (DOC) increased with the addition of vermicompost, but the concentration of the desorbed 14C-radiochemical did not increase. Non-significant increment was observed with time for the non-extractable fraction with amendments. Diuron was transformed in all samples, although less than 0.5% was mineralized. The main effect caused by vermicomposts was a reduction in the availability of diuron in soil.

  1. Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts.

    Science.gov (United States)

    Sudkolai, Saber Tayebi; Nourbakhsh, Farshid

    2017-06-01

    The establishment of a reliable index is an essential need to assess the degree of stability and maturity of solid wastes vermicomposts. The objective of this study was to investigate the effects of vermicomposting process on some chemical (pH, EC, OC, TN, lignin and C:N ratio) and biochemical properties of the cow manure (CM) and wheat residue (WR). Results demonstrated that during vermicomposting process of CM and WR urease activity was highly correlated with the time of vermicomposting (r=-0.97 ∗∗ for CM and r=-0.99 ∗∗ for WR), and well able to show the stability of organic waste. The urease activity showed significant correlations with the C:N ratio during the vermicomposting of CM and WR (r=0.89 ∗ and r=0.93 ∗∗ respectively) therefore it can be considered as a reliable indicator for determining the maturity and stability of organic wastes during vermicomposting process. Copyright © 2017. Published by Elsevier Ltd.

  2. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum).

    Science.gov (United States)

    Gutiérrez-Miceli, Federico A; Santiago-Borraz, Jorge; Montes Molina, Joaquín Adolfo; Nafate, Camerino Carlos; Abud-Archila, Miguel; Oliva Llaven, María Angela; Rincón-Rosales, Reiner; Dendooven, Luc

    2007-11-01

    The effects of earthworm-processed sheep-manure (vermicompost) on the growth, productivity and chemical characteristics of tomatoes (Lycopersicum esculentum) (c.v. Rio Grande) were investigated in a greenhouse experiment. Five treatments were applied combining vermicompost and soil in proportions of 0:1, 1:1, 1:2, 1:3, 1:4 and 1:5 (v/v). Growth and yield parameters were measured 85 days and 100 days after transplanting. Addition of vermicompost increased plant heights significantly, but had no significant effect on the numbers of leaves or yields 85 days after transplanting. Yields of tomatoes were significantly greater when the relationship vermicompost:soil was 1:1, 1:2 or 1:3, 100 days after transplanting. Addition of sheep-manure vermicompost decreased soil pH, titratable acidity and increased soluble and insoluble solids, in tomato fruits compared to those harvested from plants cultivated in unamended soil. Sheep-manure vermicompost as a soil supplement increased tomato yields and soluble, insoluble solids and carbohydrate concentrations.

  3. Management of floral waste generated from temples of Jaipur city through vermicomposting

    Directory of Open Access Journals (Sweden)

    Priyanka Tiwari

    2016-02-01

    Full Text Available This paper aims at management of floral waste generated from temples of Jaipur city through vermicomposting. In this study, flower waste consisted of variety of flowers out of which marigold was chosen as it was found in maximum amount. The vermibeds were prepared by mixing the marigold with cow dung in different proportions viz., 50:50, 60:40, 70:30, 80:20 and 90:10 and they were filled in the earthen pots, individually. Simultaneously, a control (without worms for each of these concentrations was prepared and maintained. Eisenia foetida was introduced into each of these trays except the control. The bioconversion ratio i.e., waste into vermicompost was found to be high in 60:40 proportion than the others. Vermicompost obtained was analysed for various parameters like organic carbon, total nitrogen, phosphorus, potassium, calcium and magnesium. The amount of organic carbon, potassium and phosphorus was more in vermicompost samples for all the groups as compared to compost samples. It was concluded that floral waste with cow dung at 50:50, 60:40 and 70:30 ratios could be converted into a nutrient rich vermicompost. International Journal of Environment Vol. 5 (1 2016,  pp: 1-13

  4. COMBINED COMPOST AND VERMICOMPOSTING PROCESS IN THE TREATMENT AND BIOCONVERSION OF SLUDGE

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh and M. R. Shamansouri

    2005-10-01

    Full Text Available Traditional thermophillic composting is commonly for treatment of sludge. A related technique as vermicomposting process, using earthworms to breakdown sludge, is also becoming popular. These two techniques have their inherent advantages and disadvantages. The combined approach suggested in this study to enhance the overall process and improve the products qualities. Two systems,vermicomposting and combined compost vermicomposting processes, have been investigated in this study. The sludge used in this study was obtained from the drying beds of South Isfahan wastewater treatment plant.The sludge mixed with sawdust to provide C/N ratio of 25/1.Eisenia fetida was the species of earthworms used in the vermicomposting processes.The results obtained indicates reduction in the amount of volatile solids,total carbon and C/N ratio with the vermicompost age,which indicates the reduction in the biodegradable organic content and mineralization of sludge. Also increase in phosphorus concentration by the end process because of mineralization of organic matter. The results indicate that, a system that combines the two mentioned processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and homogenous; the product could meet the pathogen reduction requirements.

  5. Removal of Hydrogen Sulfide from Septic Tank by Vermicomposting Bio Filter

    Directory of Open Access Journals (Sweden)

    Abdol Kazem Neisi

    2016-09-01

    Full Text Available Background & Aims of the Study: Hydrogen sulfide (H2S is a colorless and highly toxic, easily dissolved in water, flammable and explosive gas. Hydrogen sulfide gas is the main cause of odor emissions from municipal sewage plants. One method for removal of hydrogen sulfide gas is the use of biological systems, biofilter. The aim of this study was to survey removal hydrogen sulfide provide in septic tank by vermicomposting biofilter. Materials and Methods: In this study pilot-scale biofilter has been made of bed vermicompost and wood trash. To survey biofilter performance under real condition, the pilot installed in one wastewater pumping station of Ahwaz city, Iran. The study was carried out over 80 days. Inlet and outlet H2S concentration were measured on regular basis. To provide an optimal condition for bacterial growth, moisture was adjusted between 40% and 60% throughout the experiment. Results: Results showed that H2S concentration emitted from the pumping station during the study varied greatly between 33 and 54ppm .The maximum adsorption capacity of the biological bedding was recorded at 22.4 g/m3.hr and the mean efficiency of H2S removal account the startup time was 89.31% .The mean performance efficiency during the biological activity after the startup was recorded at 96.88%. Conclusion: use up biofilter with vermicompost bed and woodchip is an economic method for H2S removal of septic tanks. Removal efficiency of more than 96% is expected with this method.

  6. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sharma, S. [Indian Institute of Technology, New Delhi (India). Centre for Rural Development and Technology

    2002-11-01

    Preliminary studies were conducted on wheat straw to test the technical viability of an integrated system of composting, with bioinoculants and subsequent vermicomposting, to overcome the problem of lignocellulosic waste degradation, especially during the winter season. Wheat straw was pre-decomposed for 40 days by inoculating it with Pleurotus sajor-caju, Trichoderma harzianum, Aspergillus niger and Azotobacter chroococcum in different combinations. This was followed by vermicomposting for 30 days. Chemical analysis of the samples showed a significant decrease in cellulose, hemicellulose and lignin contents during pre-decomposition and vermicomposting. The N, P, K content increased significantly during pre-decomposition with bioinoculants. The best quality compost, based on chemical analysis, was prepared where the substrate was treated with all the four bioinoculants together followed by vermicomposting. Results indicated that the combination of both the systems reduced the overall time required for composting and accelerated the composting of ligno-cellulosic waste during the winter season besides producing a nutrient-enriched compost product. (author)

  7. Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum).

    Science.gov (United States)

    Azarmi, Rasool; Ziveh, Parviz Sharifi; Satari, Mohammad Reza

    2008-07-15

    An experiment was conducted to determine the effects of vermicompost on growth, yield and fruit quality of tomato (Lycopersicum esculentum var. Super Beta) in a field condition. The experiment was a randomized complete block design with four replications. The different rates of vermicompost (0, 5, 10 and 15 t ha(-1)) was incorporated into the top 15 cm of soil. During experiment period, fruits were harvested twice in a week and total yield were recorded for two months. At the end of experiment, growth characteristics such as leaf number, leaf area and shoot dry weights were determined. The results revealed that addition of vermicompost at rate of 15 t ha(-1) significantly (at p Vermicompost with rate of 15 t ha(-1) increased EC of fruit juice and percentage of fruit dry matter up to 30 and 24%, respectively. The content of K, P, Fe and Zn in the plant tissue increased 55, 73, 32 and 36% compared to untreated plots respectively. The result of our experiment showed addition of vermicompost had significant (p < 0.05) positive effects on growth, yield and elemental content of plant as compared to control.

  8. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida.

    Science.gov (United States)

    Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.

  9. Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, N.; Abbasi, Tasneem; Abbasi, S.A., E-mail: prof.s.a.abbasi@gmail.com

    2015-11-15

    Highlights: • It is shown for the first time that Lantana can lose its toxicity when vermicomposted. • The Lantana vermicompost is shown to be a good organic fertilizer. • FTIR studies identified Lantana’s toxic constituents destroyed by vermicomposting. • The findings have far-reaching implications in the gainful use of harmful weeds. - Abstract: In evidently the first study of its kind, vermicompost derived solely from a weed known to possess plant and animal toxicity was used to assess its impact on the germination and early growth of several plant species. No pre-composting or supplementation of animal manure was done to generate the vermicompost in order to ensure that the impact is clearly attributable to the weed. Whereas the weed used in this study, Lantana (Lantana camara), is known to possess strong negative allelopathy, besides plant/animal toxicity in other forms, its vermicompost was seen to be a good organic fertilizer as it increased germination success and encouraged growth of all the three botanical species explored by the authors – green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). In terms of several physical, chemical and biochemical attributes that were studied, the vermicompost appeared plant-friendly, giving best results in general when employed at concentrations of 1.5% in soil (w/w). Fourier transform infrared spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the allelopathic impact of Lantana were largely destroyed in the course of vermicomposting. There is also an indication that lignin content of Lantana was reduced during its vermicomposting. The findings open up the possibility that the billions of tons of phytomass that is generated annually by Lantana and other invasives can be gainfully utilized in generating organic fertilizer via vermicomposting.

  10. Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer

    International Nuclear Information System (INIS)

    Hussain, N.; Abbasi, Tasneem; Abbasi, S.A.

    2015-01-01

    Highlights: • It is shown for the first time that Lantana can lose its toxicity when vermicomposted. • The Lantana vermicompost is shown to be a good organic fertilizer. • FTIR studies identified Lantana’s toxic constituents destroyed by vermicomposting. • The findings have far-reaching implications in the gainful use of harmful weeds. - Abstract: In evidently the first study of its kind, vermicompost derived solely from a weed known to possess plant and animal toxicity was used to assess its impact on the germination and early growth of several plant species. No pre-composting or supplementation of animal manure was done to generate the vermicompost in order to ensure that the impact is clearly attributable to the weed. Whereas the weed used in this study, Lantana (Lantana camara), is known to possess strong negative allelopathy, besides plant/animal toxicity in other forms, its vermicompost was seen to be a good organic fertilizer as it increased germination success and encouraged growth of all the three botanical species explored by the authors – green gram (Vigna radiata), ladies finger (Abelmoschus esculentus) and cucumber (Cucumis sativus). In terms of several physical, chemical and biochemical attributes that were studied, the vermicompost appeared plant-friendly, giving best results in general when employed at concentrations of 1.5% in soil (w/w). Fourier transform infrared spectrometry revealed that the phenols and the sesquiterpene lactones that are responsible for the allelopathic impact of Lantana were largely destroyed in the course of vermicomposting. There is also an indication that lignin content of Lantana was reduced during its vermicomposting. The findings open up the possibility that the billions of tons of phytomass that is generated annually by Lantana and other invasives can be gainfully utilized in generating organic fertilizer via vermicomposting

  11. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Meiyan, E-mail: xingmeiyan@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Vermicomposting causes an increase in the aromaticity of WEOM from the substrates. Black-Right-Pointing-Pointer Vermicomposting homogenizes the molecular weight of WEOM from the substrates. Black-Right-Pointing-Pointer The WEOM from the vermicompost is characterized by high O-containing groups. Black-Right-Pointing-Pointer The WEOM from the vermicompost includes small aliphatic and protein-like groups. Black-Right-Pointing-Pointer The WEOM test is a good way to evaluate the biological maturity of vermicompost. - Abstract: The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10{sup 3} and 10{sup 6} Da became the main part of WEOM in the final product. {sup 1}H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and

  12. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung

    International Nuclear Information System (INIS)

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-01-01

    Highlights: ► Vermicomposting causes an increase in the aromaticity of WEOM from the substrates. ► Vermicomposting homogenizes the molecular weight of WEOM from the substrates. ► The WEOM from the vermicompost is characterized by high O-containing groups. ► The WEOM from the vermicompost includes small aliphatic and protein-like groups. ► The WEOM test is a good way to evaluate the biological maturity of vermicompost. - Abstract: The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10 3 and 10 6 Da became the main part of WEOM in the final product. 1 H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00–3.00 ppm decreased, while increasing at 3.00–4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost.

  13. Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes

    International Nuclear Information System (INIS)

    Castillo, Jean Manuel; Beguet, Jérèmie; Martin-Laurent, Fabrice; Romero, Esperanza

    2016-01-01

    Highlights: • The genetic structure of soil bacterial community was transiently affected by diuron. • Soil amended with vermicompost regulated diuron persistence in soil. • puhB abundance increased after bacterial-community pre-exposure to diuron. • O-Vermicompost mitigated diuron fate by improving microbial activity. - Abstract: Soil organic amendment affects biotic and abiotic processes that control the fate of pesticides, but the treatment history of the soil is also relevant. These processes were assessed in a multidisciplinary study with the aim of optimizing pesticide mitigation in soils. Soil microcosms pre-treated (E2) or not with diuron (E1) were amended with either winery (W) or olive waste (O) vermicomposts. Herbicide dissipation followed a double first-order model in E1 microcosms, but a single first-order model in E2. Also, diuron persistence was longer in E1 than in E2 (E1-DT_5_0 > 200 day"−"1, E2-DT_5_0 < 16 day"−"1). The genetic structure of the bacterial community was modified by both diuron exposure and amendment. O-vermicompost increased enzymatic activities in both experiments, but diuron-degrading genetic potential (puhB) was quantified only in E2 microcosms in accordance with reduced diuron persistence. Therefore, O-vermicompost addition favoured the proliferation of diuron degraders, increasing the soil diuron-depuration capability.

  14. Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Jean Manuel, E-mail: jeanmanuel.castillo04@gmail.com [Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada (Spain); Beguet, Jérèmie; Martin-Laurent, Fabrice [French National Institute for Agricultural Research—INRA, UMR 1347 Agroécologie, 17 rue Sully, B P 86510, 21065 Dijon Cedex (France); Romero, Esperanza [Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada (Spain)

    2016-03-05

    Highlights: • The genetic structure of soil bacterial community was transiently affected by diuron. • Soil amended with vermicompost regulated diuron persistence in soil. • puhB abundance increased after bacterial-community pre-exposure to diuron. • O-Vermicompost mitigated diuron fate by improving microbial activity. - Abstract: Soil organic amendment affects biotic and abiotic processes that control the fate of pesticides, but the treatment history of the soil is also relevant. These processes were assessed in a multidisciplinary study with the aim of optimizing pesticide mitigation in soils. Soil microcosms pre-treated (E2) or not with diuron (E1) were amended with either winery (W) or olive waste (O) vermicomposts. Herbicide dissipation followed a double first-order model in E1 microcosms, but a single first-order model in E2. Also, diuron persistence was longer in E1 than in E2 (E1-DT{sub 50} > 200 day{sup −1}, E2-DT{sub 50} < 16 day{sup −1}). The genetic structure of the bacterial community was modified by both diuron exposure and amendment. O-vermicompost increased enzymatic activities in both experiments, but diuron-degrading genetic potential (puhB) was quantified only in E2 microcosms in accordance with reduced diuron persistence. Therefore, O-vermicompost addition favoured the proliferation of diuron degraders, increasing the soil diuron-depuration capability.

  15. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida in the Sewage Sludge Vermicomposting

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri, H Pourmoghadas, AR Parvaresh, H Alidadi

    2005-01-01

    Full Text Available Vermicomposting of organic waste has an important part to play in an integrated waste management strategy. In this study, the possibility of heavy metals accumulation with two groups of Iranian and Australian earthworms in sewage sludge vermicompost was investigated. Eisenia fetida was the species of earthworms used in the vermicomposting process. The bioaccumulation of Cr, Cd, Pb, Cu, and Zn as heavy metals by Iranian and Australian earthworms was studied. The results indicated that heavy metals concentration decreased with increasing vermicomposting time. Comparison of the two groups of earthworms showed that the Iranian earthworms consumed higher quantities of micronutrients such as Cu and Zn comparing with the Australian earthworms, while the bioaccumulation of non-essential elements such as Cr, Cd, and Pb by the Australian group was higher. The significant decrease in heavy metal concentrations in the final vermicompost indicated the capability of both Iranian and Australian E.fetida species in accumulating heavy metals in their body tissues.

  16. Effects of Vermi-compost and Two Bacterial Bio-fertilizers on some Quality Parameters of Petunia

    Directory of Open Access Journals (Sweden)

    Mina Zarghami MOGHADAM

    2013-05-01

    Full Text Available The present research was conducted to study the effect of vermi-compost and two bio-fertilizer applications on growth, yield and quality of petunia (Petunia hybrida. The experiment laid out in randomized block design with 3 replications and 9 treatment combinations composing of vermi-compost, bio-fertilizers and NPK fertilizer. The treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose recorded the highest plant height, number of branches, plant spread, leaf area index, dry matter accumulation and yield attributes such as number of flowers per plant, number of flowers per plot, flower yield/plant, flower yield/plot. The early flower bud initiation, 50 percent flowering and more flowering duration was achieved in the treatment receiving Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose. Application of Azospirillum sp. + Phosphate solubilizing bacterium + Vermicompost + NPK (25% of recommended dose registered significantly higher quality parameters such as flower diameter.

  17. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods.

    Science.gov (United States)

    Pereira, Madson de Godoi; Neta, Lourdes Cardoso de Souza; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Matos, Thaionara Carvalho; Sachdev, Raquel de Lima; dos Santos, Arnaud Victor; da Guarda Souza, Marluce Oliveira; de Andrade, Marta Valéria Almeida Santana; Paulo, Gabriela Marinho Maciel; Ribeiro, Joselito Nardy; Ribeiro, Araceli Verónica Flores Nardy

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

  18. Effect of rice bran on the quality of vermicompost produced from food waste

    Directory of Open Access Journals (Sweden)

    Hamidreza Pourzamani

    2016-01-01

    Conclusion: The results of this study showed that composting and vermicomposting process can be used as a potential tool for bio convert rice bran and food waste. However, it is suggested that the rice bran can be amended with food waste to ensure better quality of vermicompost.

  19. Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hang; Li, Hongyi; Gilbert, Jack A.; Li, Haibo; Wu, Longhua; Liu, Meng; Wang, Liling; Zhou, Qiansheng; Yuan, Junxiang; Zhang, Zhijian; Goodrich-Blair, H.

    2015-08-21

    Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M),tet(O),tet(Q), andtet(W)] were reduced (P< 0.05), while those of genes encoding sulfonamide resistance (sul1andsul2) were increased (P< 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P< 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance ofFlavobacteriaceaespp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the familyRuminococcaceae, classBacilli, or phylumProteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to

  20. Agricultural use of compost and vermicomposts from urban wastes: process, maturity and quality of products; Uso agricola de compost y vermicompost de basuras urbanas: procesos, madurez y calidad de los productos

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Departamento Agricola y Proteccion Vegetal, Estacion experimental del Zaidin, CSIC, Granada (Spain)

    1995-12-31

    In this fourth-part review, the authors discuss the positive and negative effects of the agricultural use of compost and vermicomposts from town refuse. This first part reviews the composting and vermicomposting processes, including the most important methods to evaluate the maturity of the end products.

  1. Sheep manure vermicompost supplemented with a native diazotrophic bacteria and mycorrhizas for maize cultivation.

    Science.gov (United States)

    Gutiérrez-Miceli, F A; Moguel-Zamudio, B; Abud-Archila, M; Gutiérrez-Oliva, V F; Dendooven, L

    2008-10-01

    An orthogonal experimental design L9 (3(4)) with 10 repetitions was used to investigate the effect of Glomus claroideum (0, 1 or 2g(-1) plant), G. fasciculatum (0, 1 or 2g plant(-1)), native diazotrophic bacteria (0, 10(3) and 10(5) UFC ml(-1)) and sheep manure vermicompost (0%, 5% and 10% v/v) on maize plant growth, N and P in leaves and mycorrhization percent. Vermicompost explained most of the variation found for leaf number, wet weight, stem height, and diameter. Both mycorrhizas increased the plant wet weight but G. fasciculatum the most. Mycorrhization increased the P content, but not the N content. Mycorrhizal colonization increased when diazotrophic bacteria and vermicompost were added. It was found that weight of maize plants cultivated in peat moss amended with vermicompost increased when supplemented with G. fasciculatum and diazotrophic bacteria.

  2. Effect of Vermicompost and Nitroxin on Vegetative Growth and some Biochemical Properties of Rosemary Herb (Rosmarinus officinalis L.

    Directory of Open Access Journals (Sweden)

    Farzaneh Nourbakhsh

    2017-02-01

    Full Text Available Introduction: Rosemary (Rosmarinus officinalis L. is a perennial, ever green and fragrant plant belongs to Lamiaceae family. Vegetative parts of this plant have essential oil and compounds with anti oxidant and antibacterial properties which are used extensively in pharmaceutical, food and cosmetic industries. The use of biofertilizers such as vermicompost and Nitroxin could have beneficial effect on production of rosemary by increasing the production of plant growth hormones and the availability of macro and micro nutrients in growing media. Materials and Methods: The effect of vermicompost and Nitroxin biofertilizers was investigated on growth, yield, the amounts of photosynthetic pigments, flavonoid, essential oil percentage and yield of rosemary. The experiment was based on a randomized complete block design with two factors, including vermicompost (0, 10, 20, 30 and 40% w/w and Nitroxin (inoculated and non-inoculated with Nitroxin with four replications. This research was done at Sari Agricultural Sciences and Natural Resources University, Sari, Iran, in 2012-2013. Uniform one-year old rooted rosemary cuttings were selected for this experiment. Before planting, rooted cuttings were treated in diluted Nitroxin solution in water (1:10 for 10 minutes. After planting, rosemary plants were fertilized twice by Nitroxin for every 45 days according to the producing company recommendation. During growth period, irrigation was done according to plants requirement. At the end of experiment, parameters such as plant height, shoot fresh and dry weight, root dry weight, chlorophyll a, total chlorophyll, leaf flavonoid and essential oil yield were measured. Data was analyzed using standard analysis of variance (ANOVA using the general linear models procedure of SAS, (version 9.1; SAS Institute, Cary, N.C.. Differences among means were tested by least significant difference (LSD (p ≤ 0.05. Results and Discussion: Obtained results showed that the

  3. CHROMIUM BIOACCUMULATION FROM COMPOSTS AND VERMICOMPOSTS BASED ON TANNERY SLUDGES

    Directory of Open Access Journals (Sweden)

    Krzysztof GONDEK

    2008-07-01

    Full Text Available Storage of waste substances is not indifferent to ecological equilibrium in the environment therefore should not be the ultimate way to limit waste arduousness. Therefore, the conducted investigations aimed to determine the effect of tannery composts and vermicomposts loaded with chromium on this element bioaccumulation in earthworm bodies and biomass of selected plants. Chromium in composts and vermicomposts based on tannery sludges occurred in small quantities and easily soluble compounds. Chromium concentrations in redworm biomass points to this metal accumulation in Eisenia fetida body tissues. This element content in redworm biomass was signifi cantly positively correlated with its content in composts. Chromium content in plants was diversifi ed and on treatments was generally smaller than on mineral treatment or farmyard manure. Chromium absorbed by plants was stored mainly in the root systems, and over the norm content of this element found in vermicomposts did not cause its excessive accumulation in plant biomass.

  4. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    Science.gov (United States)

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    Science.gov (United States)

    Pereira, Madson de Godoi; Cardoso de Souza Neta, Lourdes; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Carvalho Matos, Thaionara; de Lima Sachdev, Raquel; dos Santos, Arnaud Victor; Oliveira da Guarda Souza, Marluce; de Andrade, Marta Valéria Almeida Santana; Marinho Maciel Paulo, Gabriela; Ribeiro, Joselito Nardy; Verónica Flores Nardy Ribeiro, Araceli

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv) the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps) are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent. PMID:24578668

  6. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    Directory of Open Access Journals (Sweden)

    Madson de Godoi Pereira

    2014-01-01

    Full Text Available The use of vermicompost (humified material for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i easy acquisition, (ii low costs, (iii structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities as well as pollutant degradation, and (iv the promotion of biocontrol. Specifically, for wastewater decontamination, a considerable number of works have verified the adsorption of toxic metals, but the application of vermicompost is still scarce for the retention of organic compounds. Problems related to the final disposal of enriched vermicompost (after treatment steps are often found, in spite of some successful destinations such as organic fertilizer. For decontaminating soils, the use of vermicompost is quite scarce, mainly for inorganic pollutants. In agricultural productivity and biocontrol, vermicompost imparts remarkable benefits regarding soil aggregation, plant nutrition, and the development of beneficial microorganisms against phytopathogens. Finally, the use of vermicompost in sensitive analytical methods for quantifying toxic metals is the newest application of this adsorbent.

  7. Optimization of animal manure vermicomposting based on biomass production of earthworms and higher plants.

    Science.gov (United States)

    Borges, Yan V; Alves, Luciano; Bianchi, Ivan; Espíndola, Jonas C; Oliveira, Juahil M De; Radetski, Claudemir M; Somensi, Cleder A

    2017-11-02

    The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.

  8. Vermicomposting of vegetable waste: A biophysicochemical process ...

    African Journals Online (AJOL)

    some cities, the organic waste (market, municipal, household) are dumped indiscriminately or littered on the streets causing environmental deterioration. Biological processes such as composting followed by vermicomposting to convert vegetables waste (as valuable nutrient source) in agriculturally useful organic fertilizer ...

  9. Spectroscopic, thermogravimetric and structural characterization analyses for comparing Municipal Solid Waste composts and vermicomposts stability and maturity.

    Science.gov (United States)

    Soobhany, Nuhaa; Gunasee, Sanjana; Rago, Yogeshwari Pooja; Joyram, Hashita; Raghoo, Pravesh; Mohee, Romeela; Garg, Vinod Kumar

    2017-07-01

    This is the first-ever study of its kind for an extensive assessment and comparison of maturity indexes between compost and vermicompost that have been derived from Municipal Solid Waste (MSW). The spectroscopic (Fourier transform infrared spectroscopy: FT-IR), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and structural characterization (scanning electron microscope: SEM) were recorded. FT-IR spectra showed an increase in conversion of polysaccharides species and aliphatic methylene groups in vermicompost compared to compost as depicted from the variation of the intensity of the peaks. TG curves of final vermicompost showed a much lower mass loss when compared to compost, indicating higher stability in feedstock. SEM micrographs of the vermicompost reflected strong fragmentation of material than composts which revealed the extent of intra-structural degradation of MSW. These findings elucidate on a clear comparison between composts and vermicomposts in terms of maturity indexes for soil enhancement and in agriculture as organic fertilizer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of zeolite and vermicompost on growth characteristics and concentration of some nutrients in Petunia hybrida

    OpenAIRE

    M. Hamidpour; S. Fathi; H.R. Roosta

    2013-01-01

    Petunia is one of the most popular flowers in the urban greeneries. The effects of zeolite and vermicompost media on some quantitative and qualitative characteristics of petunia were studied in a greenhouse experiment. Treatments consisted of three levels of zeolite (2.5, 5 and 10 % w/w) and three levels of vermicompost (2.5, 5 and 10 % w/w). In control treatment, no zeolite and vermicompost was added to soil. The experiment was carried out as a completely randomized design with 3 replication...

  11. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes.

    Science.gov (United States)

    Amouei, A I; Yousefi, Z; Khosravi, T

    2017-01-01

    The aim of this study was to determine the potential of produced compost from the sludge of wastewater treatment plant using earthworms and compare it with the vermicompost produced from household solid waste. In the current study, three treatments with the same conditions in terms of organic wastes type were prepared to produce vermicompost from household solid waste and sewage sludges using earthworms. The standard methods were used to determine the physical and chemical parameters in the different produced vermicomposts. The mean of C/N in the household solid waste, raw biological and chemical sludges was 32, 22.5, and 26.5, respectively. These levels were 16.5, 14.5, and 15 in the vermicomposts. The mean of nitrogen and phosphorus percentages in the vermicompost of solid waste, biological and chemical sludges was 2.2%, 2.6%, 2.3% and 0.72%, 0.54%, and 0.56%, respectively. The mean percentages of organic matters in the initial substrates and vermicomposts of solid waste, biological and chemical sludges were 97.2%, 90%, 80.5% and 65.8%, 67.8% and 63% respectively. The concentrations of heavy metals decreased in all vermicomposts. The EC levels in solid waste, biological and chemical sludges were 1459, 1041, and 1487 μs/cm, respectively. These levels were 544, 385 and 635 μs/cm in the produced compost. Eisenia fetida can convert household solid waste, and biological and chemical sludges produced from wastewater treatment plant into a high-quality and acceptable compost.

  12. Valorisation of a water hyacinth in vermicomposting using an epigeic earthworm Perionyx excavatus in Central Vietnam

    Directory of Open Access Journals (Sweden)

    Zirbes, L.

    2011-01-01

    Full Text Available The feasibility of vermicomposting water hyacinth (WH [Eichhornia crassipes (Mart. Solms] mixed with pig manure (PM in different proportions was tested using tropical composting earthworm Perionyx excavatus. Earthworms grew and reproduced normally until the incorporation of 50% WH in initial substrate. Higher water hyacinth proportions induced earthworms' mortality and significantly affected the numbers of hatchlings and cocoons produced during vermicomposting period. The influence of the application of compost/vermicompost obtained from water hyacinth mixed with pig manure was also studied on seeds germination. Only water hyacinth substrate with 25% WH + 75% PM enhanced seeds germination for Oryza sp. and Nasturtium officinale. At the end of experiments, a significant decrease was observed in organic carbon content for each tested substrates (S1 to S8, in total nitrogen (N for substrates containing 70% to 100% of water hyacinth (S5 to S3 and compost substrates (S1 and S2. An important decrease was also noted in total potassium for all vermicompost substrates (S3 to S8, in total magnesium for composted substrates (S1 and S2, and in C/N ratio for substrates containing 0% to 50% of water hyacinth (S8 to S6. Whereas total N in vermicompost containing 0% to 50% of water hyacinth (S8 to S6, total phosphorus, total potassium in composted substrates (S1 and S2, total magnesium in vermicompost substrates (S3 to S8 and C:N ratio in substrates containing 70% to 100% of water hyacinth (S5 to S3 expressed a significant increase after eight weeks. The result suggested that water hyacinth could be potentially useful as raw material in vermicomposting and biofertilizing if mixed with 75% of pig manure.

  13. VERMICOMPOSTING AS AN ALTERNATIVE WAY OF BIODEGRADABLE WASTE MANAGEMENT FOR SMALL MUNICIPALITIES

    Directory of Open Access Journals (Sweden)

    Aleksandra Sosnecka

    2016-07-01

    Full Text Available The aim of the study was to assess the usefulness of vermicomposting as a method of bioconversion of organic wastes, inter alia sewage sludge, biodegradable fraction of municipal solid wastes and green wastes. Vermicomposting is a biological process in which earthworms are employed to cooperate with microorganisms in order to convert organic wastes into a valuable product. It is considered as a relatively low cost and environmentally-friendly method of waste treatment. Nevertheless, as each biotechnology, the process is limited to some physical, chemical and biological parameters. In this study, sewage sludge coming from medium-sized wastewater treatment plant was mixed with mown grass, sawdust and organic fraction of municipal wastes and vermicomposted for 5 weeks with Eisenia fetida and Eisenia andrei as main actors. The scope of the research was to 1 assess the influence of E. fetida and E.andrei composting earthworms on the physical and chemical properties of the product; 2 changes of concentration of selected heavy metals and their available forms in compost during the process, 3 the effects of substrates on earthworms survival and reproduction. Selected earthworm species had shown a high tolerance to the contaminants present in sewage sludge and a positive impact on the quality of the product was noted. Vermicomposting enhances decomposition of organic matter, leads to decrease in C/N ratio and pH, and changes the availability of some heavy metals and its total content in substratum. Experimental medium led earthworms to increase body weight due to the presence of large amount of organic matter, while the reproduction was importantly reduced. Vermicomposting can be considered as a method of treatment of solid wastes, mainly in the case of small municipalities.

  14. Determining the constraints and challenges of vermicompost technology development: the case of active sites in Kermanshah Province

    Directory of Open Access Journals (Sweden)

    mariyeh sahraie

    2015-11-01

    Full Text Available Entrepreneurial enterprises have the potential to create new business opportunities and provide alternative income sources for rural populations. Vermicompost production provides diversified income for farmers using livestock manure as well as agricultural residues and household wastes. The economic, social, cultural, and environmental importance of vermicompost technology has made it a unique opportunity for rural households to maintain food security and sustainable livelihood. However, this technology has not yet been diffused across rural population in the Kermanshah Province. Therefore, the purpose of this design was to determine the constraints and challenges of vermicompost technology development in the case of active sites in the Kermanshah Province by using a qualitative study and a well-established theoretical approach. The population for this study comprised of all vermicompost producers in the Kermanshah province (N=52. A purposeful sample of 21 producers with a minimum of two years of experience in vermicompost production participated in the study. Data was collected using deep and semi-structured interviews. Open, axial, and selective coding was used to analyze the data. The results revealed that the following constraints and challenges impede the development of vermicompost technology: low production during the winter, high prices for the customers, lack of technical and marketing skills among the producers, lack of efficient support and monitoring, weak adoption process due to cultural beliefs, and inefficient extension and diffusion by public institutions.

  15. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J. G.; Dominguez, J.

    2009-07-01

    Abstract Post transplant success after nursery stage is strongly influenced by plant morphology. Cultural practices strongly shape plant morphology, and substrate choice is one of the most determining factors. Peat is the most often used amendment in commercial potting substrates, involving the exploitation of non-renewable resources and the degradation of highly valuable peatland ecosystems and therefore alternative substrates are required. Here the feasibility of replacing peat by compost or vermicompost for the production of tomato plants in nurseries was investigated through the study of the effect of increasing proportions of these substrates (0%, 10%, 20%, 50%, 75% and 100%) in target plant growth and morphological features, indicators of adequate post-transplant growth and yield. Compost and vermicompost showed to be adequate substrates for tomato plant growth. Total replacement of peat by vermicompost was possible while doses of compost higher than 50% caused plant mortality. Low doses of compost (10 and 20%) and high doses of vermicompost produced significant increases in aerial and root biomass of the tomato plants. In addition these treatments improved significantly plant morphology (higher number of leaves and leaf area, and increased root volume and branching). The use of compost and vermicompost constitute an attractive alternative to the use of peat in plant nurseries due to the environmental benefits involved but also due to the observed improvement in plant quality. Additional key words: peat moss, plant nursery, soil-less substrate, Solanum lycopersicum L. (Author) 37 refs.

  16. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost.

    Science.gov (United States)

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming

    2017-03-01

    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L -1 , while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L -1 , respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  17. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost

    International Nuclear Information System (INIS)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-01-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g −1 and 38.11 mg g −1 onto CM and 170.65 and 43.01 mg g −1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. - Graphical abstract: The existed aliphatic alcohol, aromatic acids and its only carbonates and phosphates may underlie much higher efficiency of vermicompost (CV) on Pb 2+ and Cd 2+ removal than cow manure (CM). - Highlights: • Less irregular pores in cow manure (CM) than its vermicompost (CV). • More Pb 2+ or Cd 2+ could be removed from solution by vermicompost (CV) than by cow manure (CM). • The existed aliphatic

  18. Scaling law in laboratory astrophysics

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jie

    2001-01-01

    The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data

  19. Evaluation of Aloe vera (Aloe barbadensis Miller Antioxidant Activity and Some of the Morphological Characteristics in Different Vermicompost Field

    Directory of Open Access Journals (Sweden)

    Z.Yavari

    2013-04-01

    Full Text Available Construction and function of effective substances of medicinal plants are influenced by environmental factors such as deficiency or increased of nutrients in the soil and substrates. Therefore, a greenhouse experiment was performed in completely randomized design with four treatments and three replications. The effects of vermicompost were examined on the morphological and phytochemical features in aloe vera. Treatments consisted of four vermicompost percentages (0%, 15%, 30% and 45% in humus soil. The considered factors were leaf weight, gel fresh weight, gel dry weight, the antioxidant capacity of the gel, glucomannan of gel, flavonoids and phenols of gel, and anthocyanins of cortex. data analysis showed that the maximum of leaf weight, gel weight, dry weight of gel and gel glucomannan was obtained in 45% of vermicompost. The maximum of gel phenol, antioxidant activity of gel and anthocyanins of cortex belonged to 30% of vermicompost and gel flavonoid in 15% of vermicompost. To achieve maximum antioxidant capacity and optimum amount of active substances, more studies and application of different field of vermicompost are required in order to increase the value of medicinal properties.

  20. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting.

    Science.gov (United States)

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Plante, Alain; Plaza, César; Fernández, José M

    2015-01-01

    A better understanding of how varying the proportion of different organic wastes affects humic acid (HA) formation during vermicomposting would be useful in producing vermicomposts enriched in HAs. With the aim of improving the knowledge about this issue, a variety of analytical techniques [UV-visible spectroscopic, Fourier transform infrared, fluorescence spectra, solid-state cross-polarization magic-angle spinning (CPMAS) (13)C nuclear magnetic resonance (NMR) spectra, and thermal analysis] was used in the present study to characterize HAs isolated from two mixtures at two different ratios (2:1 and 1:1) of tomato-plant debris (TD) and paper-mill sludge (PS) before and after vermicomposting. The results suggest that vermicomposting increased the HA content in the TD/PS 2:1 and 1:1 mixtures (15.9% and 16.2%, respectively), but the vermicompost produced from the mixture with a higher amount of TD had a greater proportion (24%) of HAs. Both vermicomposting processes caused equal modifications in the humic precursors contained in the different mixtures of TD and PS, and consequently, the HAs in the vermicomposts produced from different waste mixtures exhibited analogous characteristics. Only the set of analytical techniques used in this research was able to detect differences between the HAs isolated from each type of vermicompost. In conclusion, varying the proportion of different wastes may have a stronger influence on the amount of HAs in vermicomposts than on the properties of HAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Effect of Vermicompost on Reducing the Adverse Effects of Water Stress on Growth and Chemical Composition of Corn in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    leila zare

    2017-01-01

    equal to 0, 20, 40 and 60 Mg ha-1 and three moisture levels(100, 80and 60%of field capacity(FC. The soil samples were collected (0-30 cm depth from a calcareous soil (Fine, mixed, mesic, Typic, Calcixrepts, located at Bajgah, Shiraz, Iran. Soil samples were mixed thoroughly with different levels of vermicompost and transfred to plastic pots. Six corn seeds were planted in each pot and were thinned to three uniform plants, one week after germination. Eight weeks after germination, corn shoots were harvested, dried and recorded. Plant samples were grind using a portable grinder and transferred to the laboratory for chemical analysis. The collected data were statistically analysed using SAS software (9.1.3 package. Results and Discussion: The results indicated that with increasing the levels of vermicompost, dry matter yield and concentrations of total nitrogen (TN, phosphorus (P, iron (Fe, copper(Cu and zinc (Zn in corn shoots were significantly increased. But, due to the antagonistic relationship between manganese (Mn and Zn or Fe,concentrations of Mn were significantly decreased. However, the concentration of Mn was in the sufficiency range. The highest dry matter yield and concentrations of nitrogen and phosphorus in corn shoot was observed at 30 g kg-1 vermicompost treatment, with 19, 10 and 20 % increase (compared to the control, respectively. The application of 30 g kg-1 vermicompost increased the concentrations of Zn, Cu and Fe by 41%, 90% and 75%, respectively and concentration of Mn decreased by 11.88%, compared to the control. Increasing the levels of water stress increased significantly the concentration of nutrients in corn shoot due to the reduction of corn biomass. The highest increase in nutrient concentrations was observed at 60% FC moisture level. Nitrogen and phosphorus concentrations in corn shoots by 12.5and 22.5% and Zn, Cu, Fe and Mn by 25, 83, 43and29% were higher compared to those of control (100% FC, respectively. The interaction effects of water

  2. The effects of vermicompost and chemical fertilizers on yield and yield components of marshmallow (Altheae officinalis L.

    Directory of Open Access Journals (Sweden)

    A.A. Sadeghi

    2016-05-01

    Full Text Available In order to investigate the effects of vermicompost and chemical fertilizers on growth characteristics, yield and yield components of marshmallow (Altheaeofficinalis L., a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2012. Experimental treatments were designed based on 3 levels of vermicompost (0, 5 and 10 t ha-1 and 5 levels of nitrogen fertilizer (0, 25, 50, 75 and 100% of 200 kg N ha-1. Results indicated that applied vermicompost had significant effects on increasing leaf area, flower weight per plant and grain yield of marshmallow. Flower weight per plant and grain yield of marshmallow was increased by 2 to 3 times by applying vermicompost at 10 t. ha-1, as compared to control treatment. In addition, nitrogen fertilizer had a significant effect on increasing flower weight per plant and grain, mucilage and oil yields of marshmallow. It seems that applying vermicompost can be suitable strategy in reducing the problems caused by excessive using of chemical fertilizers.

  3. Critical tests for determination of microbiological quality and biological activity in commercial vermicompost samples of different origins.

    Science.gov (United States)

    Grantina-Ievina, Lelde; Andersone, Una; Berkolde-Pīre, Dace; Nikolajeva, Vizma; Ievinsh, Gederts

    2013-12-01

    The aim of the present paper was to show that differences in biological activity among commercially produced vermicompost samples can be found by using a relatively simple test system consisting of microorganism tests on six microbiological media and soilless seedling growth tests with four vegetable crop species. Significant differences in biological properties among analyzed samples were evident both at the level of microbial load as well as plant growth-affecting activity. These differences were mostly manufacturer- and feedstock-associated, but also resulted from storage conditions of vermicompost samples. A mature vermicompost sample that was produced from sewage sludge still contained considerable number of Escherichia coli. Samples from all producers contained several potentially pathogenic fungal species such as Aspergillus fumigatus, Pseudallescheria boidii, Pseudallescheria fimeti, Pseudallescheria minutispora, Scedosporium apiospermum, Scedosporium prolificans, Scopulariopsis brevicaulis, Stachybotrys chartarum, Geotrichum spp., Aphanoascus terreus, and Doratomyces columnaris. In addition, samples from all producers contained plant growth-promoting fungi from the genera Trichoderma and Mortierella. The described system can be useful both for functional studies aiming at understanding of factors affecting quality characteristics of vermicompost preparations and for routine testing of microbiological quality and biological activity of organic waste-derived composts and vermicomposts.

  4. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes.

    Science.gov (United States)

    Huang, Kui; Xia, Hui; Li, Fusheng; Wei, Yongfen; Cui, Guangyu; Fu, Xiaoyong; Chen, Xuemin

    2016-07-01

    This study aimed to promote vermicomposting performance for recycling fresh fruit and vegetable wastes (FVWs) and to assess microbial population and community of final products. Five fresh FVWs including banana peels, cabbage, lettuce, potato, and watermelon peels were chosen as earthworms' food. The fate test of earthworms showed that 30 g fresh FVWs/day was the optimal loading and the banana peels was harmful for the survival of Eisenia fetida. The followed vermicomposting test revealed lower contents of total carbon and weaker microbial activity in final vermicomposts, relative to those in compared systems without earthworms worked. The leachate from FVWs carried away great amounts of nutrients from reactors. Additionally, different fresh FVWs displayed dissimilar stabilization process. Molecular biological approaches revealed that earthworms could broaden bacterial diversity in their products, with significant greater populations of actinobacteria and ammonia oxidizing bacteria than in control. This study evidences that vermicomposting efficiency differs with the types and loadings of fresh FVWs and vermicomposts are rich in agricultural probiotics.

  5. Red worm behavior (Eisenia spp. in vermicomposting systems of organic residues

    Directory of Open Access Journals (Sweden)

    Mamani-Mamani Gladys

    2012-08-01

    Full Text Available This work evaluates the behavior of the vermicomposting red worm (Eisenia spp. in two environments (greenhouse and unsheltered and with two solid organic substrates (cow manure=CM and kitchen waste=KW in the zone of Carmen Pampa, Nor Yungas Province, Department of La Paz – Bolivia, using a factorial design with two factors and three repetitions (ANOVA analysis. The largest number of cocoons was found in the greenhouse treatment, with 64 in CM and 41 in KW. Cocoon viability was also greatest in the greenhouse treatment, at 100% for CM and 96% for KW. Similarly, the greatest number of worms hatched from cocoons was in the greenhouse treatment, with 2 immature worms for CM and 3.5 for KW, and the greatest number of immature worms was registered in the greenhouse treatment with 123 individuals in CM and 16 in KW. The lowest mortality rate due to environment was in the greenhouse treatment, with 3.90% mortality with CM and 88.64% with KW. The greatest number of mature worms (with clitella was in the unsheltered treatment, with 15 in CM and 21 in KW. The greatest biomass of immature worms was found in the greenhouse treatment, with 1.41 g of worms for CM and 0.185 g for KW; however, the greatest biomass of mature worms was in the KW treatment, with 7.98 g for the greenhouse treatment and 6.93 g for the unsheltered treatment. The phytotoxicity from CM vermicompost in the two environments was lowest, exhibiting a 66.6% rate of germination, and the opposite was true for KW, which was the most toxic in both environments. Macronutrient content in vermicompost obtained was: nitrogen at 2.45% and 2.31%, phosphorus at 500 mg kg-1 and 220 mg kg-1 and potassium at 27.43 and 2.76 cmol(+ kg-1 of dry substrate in KW and CM respectively.

  6. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  7. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.

    Science.gov (United States)

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-02-29

    The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Influence of Nitrogen Fertilizer and Vermicompost Application on Flower Yield and Essential Oil of Chamomile (Matricaria Chamomile L.)

    OpenAIRE

    Mohammad Reza Haj Seyed Hadi; Mohsen Abarghooei Fallah; Mohammad Taghi Darzi

    2015-01-01

       This study was performed to assess the effects of nitrogen fertilizer and vermicompost on qualitative and quantitative yield of chamomile (Matricaria chamomilla L.). It was conducted at the Research Fields of Ran Company located in Firouzkouh, Iran, in 2013. Treatments were consisted of 1) Control, 2) 100% nitrogen from urea, 3) 100% nitrogen from ammonium nitrate, 4) 75% nitrogen from urea and 25% from vermicompost, 5) 75% nitrogen from ammonium nitrate and 25% from vermicompost, 6) 50% n...

  9. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    Science.gov (United States)

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  10. Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost.

    Science.gov (United States)

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2015-01-01

    In the present work bagasse (B) i.e waste of the sugar industry, was fed to Eisenia fetida with cattle dung (CD) support as feed material at various ratios (waste: CD) of 0:100 (B0), 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100) on dry weight basis. Co-composting with cattle dung helped to improve their acceptability for E. fetida and also improved physico-chemical characteristics. Best appropriate ratio for survival, maximum growth and population buildup of E. fetida was determined by observing population buildup, growth rate, biomass, mortality and cocoon formation. Minimum mortality and highest population size of worms was observed in 50:50 (B50) ratio. Increasing concentrations of wastes significantly affected the growth and reproduction of worms. Nutrients like nitrogen, phosphorus and sodium increased from pre-vermicompost to post-vermicompost, while organic carbon, and C:N ratio decreased in all the end products of post-vermicomposting. Heavy metals decreased significantly from initial except zinc, iron and manganese which increased significantly. Scanning electron microscopy (SEM) was used to recognize the changes in texture in the pre and post-vermicomposted samples. The post-vermicomposted ratios in the presence of earthworms validate more surface changes that prove to be good manure. The results observed from the present study indicated that the earthworm E. fetida was able to change bagasse waste into nutrient-rich manure and thus play a major role in industrial waste management.

  11. THE INFLUENCE OF VERMICOMPOST FROM KITCHEN WASTE ON THE YIELD-ENHANCING CHARACTERISTICS OF PEAS PISUM SATIVUM L. VAR. SACCHARATUM SER. BAJKA VARIETY

    OpenAIRE

    Grzegorz Pączka; Joanna Kostecka

    2013-01-01

    This study determined the possibility of using the vermicompost produced from kitchen waste (by Eisenia fetida earthworms) to grow sugar peas. Its influence on the dynamics of sprouting of peas and their growth to 21st day was investigated in a pot experiment. Four combinations were realised (control – standard garden soil; (50W) – its mixture with 50% of vermicompost; (25W) and (10W) – with 25% and 10% of vermicompost addition respectively (n=5)). Vermicompost from kitchen waste turned out t...

  12. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment.

    Science.gov (United States)

    Doan, Thuy Thu; Henry-des-Tureaux, Thierry; Rumpel, Cornelia; Janeau, Jean-Louis; Jouquet, Pascal

    2015-05-01

    Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and vermicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost-biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH₄(+) and NO₃(-) transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of Vermicompost and Mycorrhizal Fungi on Growth Characteristics, Essential Oil and Yield of Thyme (Thymus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Naeemeh Bitarafan

    2017-09-01

    Full Text Available Introduction Thyme (Thymus vulgaris L. is one of the most important essential oil plants that its essential oil constituent be used in different medicinal and food industries. Vermicompost is organic manure that significant amounts of macro and micronutrients make available to the plants. Although some of this material is minerals but most of them gradually and slowly released through the mineralization of organic matter. Mycorrhizal fungi are one of the biological factors in the rhizosphere, which include a relatively important part of soil organisms. Under water deficit conditions, mycorrhiza enhances photosynthesis and carbon fixation during the growing season by increasing the leaf area. This condition does not directly contribute to increased photosynthesis in the host plant, but keeps the photosynthesis level higher than control by improving water relations and changing the hormonal relations. Materials and methods The treatments included vermicompost in four levels (0, 2, 4, and 6 ton.ha-1 and mycorrhiza in three levels (without inoculation, inoculation with Glomus mosseae and Glomus intraradices was arranged based on randomized complete block design with 12 treatments and 3 replications. Fresh leaf tissue was used to measure chlorophyll content. Dimethyl sulfoxide (7 ml was added to 0.1 g leaf tissue and the samples were incubated at 70°Cfor 4h. The light absorptance was measured at 663, 645 and 470 nm with spectrophotometer (Jenway, 6305 to obtain chlorophyll content. To measure Arbuscular Mycorrhizal (AM symbiosis, plant roots were collected one week before harvesting, cleaned by 10% KOH at 80˚C for 2h, and acidified in 1% HCL for 60 min. Then the cleaned up roots were stained in a solution of trypan blue. The roots were destained in a mixture of 500 ml glycerol, 450 ml water and 5 ml HCL for 24 h, allowing the fungus to be revealed under microscopic examination (Taylor et al. 2008. Statistical analysis: Analysis of variance (ANOVA

  14. Yield and fruit quality of four sweet corn hybrids (Zea mays) under conventional and integrated fertilization with vermicompost.

    Science.gov (United States)

    Lazcano, Cristina; Revilla, Pedro; Malvar, Rosa Ana; Domínguez, Jorge

    2011-05-01

    Vermicompost has been proposed as a valuable fertilizer for sustainable agriculture. The effects of vermicompost on yield and quality of sweet corn were evaluated in this study. In two field trials, sweet corn plants were grown under (i) a conventional fertilization regime with inorganic fertilizer, and integrated fertilization regimes in which 75% of the nutrients were supplied by the inorganic fertilizer and 25% of the nutrients were supplied by either (ii) rabbit manure, or (iii) vermicompost. All three types of fertilization regime were supplied at two doses. Two pairs of nearly isogenic sweet corn hybrids homozygous for sugary1 and shrunken2 mutants were included in the trials to explore fertilizer × genotype interactions. Growth, yield and ear quality of the plants were evaluated in relation to the three fertilization regimes. In general, the integrated regimes yielded the same productivity levels as the conventional treatment. Moreover, both vermicompost and manure produced significant increases in plant growth and marketable yield, and also affected the chemical composition and quality of the marketable ear. Nevertheless, most of the observed effects of the organic fertilizers were genotype-dependent. The results confirm that the use of organic fertilizers such as vermicompost has a positive effect on crop yield and quality. Nevertheless, these effects were not general, indicating the complexity of the organic amendment-plant interactions and the importance of controlling genetic variation when studying the effects of vermicompost on plant growth. Copyright © 2011 Society of Chemical Industry.

  15. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus

    International Nuclear Information System (INIS)

    Pattnaik, S.; Vikram, M.

    2010-01-01

    Major nutrient status of vermicompost of vegetable market waste (MW) and floral waste (FW) processed by three species of earthworms namely, Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus and its simple compost were assessed across different periods in relation to their respective initiative substrates. Their physical parameters temperature, moisture, ph, and electrical conductivity were also recorded. The nutrients nitrogen, phosphorus, potassium, calcium, and magnesium increased in the vermicompost and compost while the organic carbon, C/N and C/P ratios decreased as the composting process progressed from 0 to 15, 30, 45, and 60 days. The nutrient statuses of vermicomposts of all earthworm species produced from both the wastes were more than that of the compost and that of their respective substrates. Moreover, the vermicompost produced by E. eugeniae possessed higher nutrient contents than that of E. fetida, P. excavatus, and compost. The MW showed higher nutrient contents than the FW. Thus, vermicomposting is the paramount approach of nutrient recovery of urban green waste.

  16. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y

    2006-08-21

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, we caution that the energy containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper we introduce the concept of a minimum state as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper we show that the Reynolds number of the minimum state may be determined as 1.6 x 10{sup 5}. Our efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. At the last the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced supercomputing facilities increase

  17. Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations

    International Nuclear Information System (INIS)

    Zhou Ye

    2007-01-01

    The Euler similarity criteria for laboratory experiments and time-dependent mixing transition are important concepts introduced recently for application to prediction and analysis of astrophysical phenomena. However, Euler scaling by itself provides no information on the distinctive spectral range of high Reynolds number turbulent flows found in astrophysics situations. On the other hand, time-dependent mixing transition gives no indication on whether a flow that just passed the mixing transition is sufficient to capture all of the significant dynamics of the complete astrophysical spectral range. In this paper, a new approach, based on additional insight gained from review of Navier-Stokes turbulence theory, is developed. It allows for revelations about the distinctive spectral scale dynamics associated with high Reynolds number astrophysical flows. From this perspective, the energy-containing range of the turbulent flow measured in a laboratory setting must not be unintentionally contaminated in such a way that the interactive influences of this spectral scale range in the corresponding astrophysical situation cannot be faithfully represented. In this paper, the concept of a minimum state is introduced as the lowest Reynolds number turbulent flow that a time-dependent mixing transition must achieve to fulfill this objective. Later in the paper, the Reynolds number of the minimum state is determined as 1.6x10 5 . The temporal criterion for the minimum state is also obtained. The efforts here can be viewed as a unification and extension of the concepts of both similarity scaling and transient mixing transition concepts. Finally, the implications of our approach in planning future intensive laser experiments or massively parallel numerical simulations are discussed. A systematic procedure is outlined so that as the capabilities of the laser interaction experiments and supporting results from detailed numerical simulations performed in recently advanced

  18. Chemical characterization of vermicompost of sewage sludge with different proportions of diatomaceous material

    Directory of Open Access Journals (Sweden)

    Fabíola M. Braga

    Full Text Available ABSTRACT The pursuit for waste recovery has been the best way to contribute to environmental sustainability. The mix of sewage sludge (SS from Sewage Treatment Plant with diatomaceous material containing oil (DE, used as a filter in biofuel production, can form a substrate rich in minerals and organic matter through vermicomposting. Therefore, this study aimed to produce vermicompost using worms, Eisenia foetida, from a pre-compost (PC of sewage sludge and garden pruning residues mixed with different proportions of DE in relation to PC: 0; 7.53; 15.06; 22.59; and 30.12% v/v. The design was randomized complete blocks with five treatment replicates. The chemical characteristics of the vermicompost were analyzed after a period of four months. The proportion of up to 30.12% v/v of DE met the criteria established for agriculture uses, registration and marketing of the product as organic compost in accordance with the Normative Instructions SDA 27/2006 and 25/2009 from the Ministry of Agriculture.

  19. BIOCONCENTRATION OF HEAVY METALS IN VERMICOMPOSTING EARTHWORMS (Eisenia fetida, Perionyx excavatus and Lampito mauritii IN NEPAL

    Directory of Open Access Journals (Sweden)

    Raju Panday

    2014-04-01

    Full Text Available Vermicomposting of organic waste can play an important part during the waste management process in larger cities such as Kathmandu where 70% of the waste generated is organic. In this study, the possibility of heavy metal (Pb, Cd, Cu and Cr bioaccumulation by three different species of earthworms Eisenia fetida, Lampito mauritii and Perionyx excavatus in domestic waste vermicompost was investigated. Quantification of heavy metals by Atomic Absorption Spectroscopy(AAS in final vermicompost showed a significant reduction in concentration of metals, Pb (11.4-26.0%, Cd (48-61%, Cu (4.9- 29.01% and Cr (18.90-33.60% at the end. Bioaccumulation of heavy metal in the composting earthworms was also recorded. Comparison of the three groups of earthworms showed that the bioaccumulation of Pb, Cu and Cr was greater for P. excavatus whereas E. fetida was the most reluctant. Heavy metal content in the vermicompost was within the limit of USEPA for Biosolids and the compost could be used for the agriculture purpose.

  20. The Application of Active Sewage Sludge on the Vermicomposting of Agricultural Waste

    Directory of Open Access Journals (Sweden)

    seyyedeh maryam kharrazi

    2015-11-01

    Full Text Available In this experiment, active sewage sludge was inoculated in organic waste. The objective was to study its effect on nutrient dynamics during vermicomposting. Active sewage sludge, as a source of nitrogen fixing and phosphorous solubilizing bacteria, was added in four combinations to the vermicomposting substrate. Prior to inoculation with active sludge, the treatments were precomposted for 30 days and finally vermicomposted for 40 days. Results showed that inoculation of microorganisms in the substrate accompanied by earthworms’ activity enhances the organic waste biodegradation rate. Increasing sludge concentration from 0 to 6000 mg/l led to reduced Total Organic Carbon from 32.76 to 29.91%, Total Volatile Solids from 49.85 to 48/02%, and C/N ratio from 19.59 to 16.06 but increased Total Kjeldahl Nitrogen from 1.68 to 1.87%, nitrate from 1476.75 to 1699.60 mg/kg, Total Phosphorous from 1.66 to 1.77 g/kg, and Electrical Conductivity from 3.10 to 3.48 mS/cm. By increasing the concentration of sewage sludge, heavy metals content also increased significantly due to the enhanced organic matter biodegradation. Finally, the results showed that, among the treatments, the one with an active sewage sludge concentration of 6000 mg/l had more desirable effects on the final vermicompost quality. Based on the reproducibility of the process and the quality of the final products, this experimental procedure may be proposed for studies requiring a mass reduction in the initial composted waste mixtures.

  1. Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting.

    Science.gov (United States)

    Pérez-Godínez, Edmundo Arturo; Lagunes-Zarate, Jorge; Corona-Hernández, Juan; Barajas-Aceves, Martha

    2017-06-01

    Disposal of animal manure without treatment can be harmful to the environment. In this study, samples of four zoo animal dungs and one horse dung were pre-composted in two ways: (a) traditional composting and (b) bokashi pre-composting for 1month, followed by vermicomposting for 3months. The permanence (PEf) and reproductive potential (RP) of Eisenia foetida as well as the quality of vermicompost were evaluated. The PEf values and RP index of E. foetida were higher for samples pre-composted using the traditional composting method (98.7-88% and 31.85-16.27%, respectively) followed by vermicomposting (92.7-72.7% and 22.96-13.51%, respectively), when compared with those for bokashi pre-composted samples followed by vermicomposting, except for the horse dung sample (100% for both the parameters). The values of electrical conductivity (EC), cation exchange capacity (CEC), organic C, total N, available P, C/N ratio, and pH showed that both treatments achieved the norms of vermicompost (bokashi pre-composting followed by vermicomposting produced the highest values (98.7-70.7%, 97.67-96.65%, and 2.7-1.97%, respectively), when compared with the other method adapted in this study. Nevertheless, further studies with plants for plant growth evaluation are needed to assess the benefits and limitations of these two pre-composting methods prior to vermicomposting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species—Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus

    Directory of Open Access Journals (Sweden)

    Swati Pattnaik

    2010-01-01

    Full Text Available Major nutrient status of vermicompost of vegetable market waste (MW and floral waste (FW processed by three species of earthworms namely, Eudrilus eugeniae, Eisenia fetida, and Perionyx excavatus and its simple compost were assessed across different periods in relation to their respective initiative substrates. Their physical parameters—temperature, moisture, pH, and electrical conductivity—were also recorded. The nutrients—nitrogen, phosphorus, potassium, calcium, and magnesium—increased in the vermicompost and compost while the organic carbon, C/N and C/P ratios decreased as the composting process progressed from 0 to 15, 30, 45, and 60 days. The nutrient statuses of vermicomposts of all earthworm species produced from both the wastes were more than that of the compost and that of their respective substrates. Moreover, the vermicompost produced by E. eugeniae possessed higher nutrient contents than that of E. fetida, P. excavatus, and compost. The MW showed higher nutrient contents than the FW. Thus, vermicomposting is the paramount approach of nutrient recovery of urban green waste.

  3. Effect of poultry (turkey) litter vermicompost on growth and yield ...

    African Journals Online (AJOL)

    KSK

    2011-11-02

    Nov 2, 2011 ... were higher in vermicompost amendments in a dose-dependent manner followed by the regular farmer ..... soluble salt level increases due to the mineralization ..... worms in the mechanism of decomposition of organic matter.

  4. La yerba no es basura : lombricultura y producción de Vermicompost a partir de residuos de yerba mate en Uruguay

    Directory of Open Access Journals (Sweden)

    María Torrendel

    2011-05-01

    should have in order to be tolerated and best exploited by the worms and the period of time that the “yerba mate” takes to achieve these conditions. We observed that four weeks is the minimum amount of precomposting time of “yerba mate”, recquired by the worms for an improved processing of it. The vermicompost obtained was analyzed. The following analysis were performed: organic matter, Nitrogen, Phosphorous and metals. The values found for Nitrogen (1 % and organic matter (which was around 30 % are parallel to the values found for other composts which are obtained by similar composting methods. However, the value of Phosphorus was found to be lower than that found in the analysis performed by CUI (Ambiental Laboratory Echotech, October 2006.

  5. Effects of Zeolite and Vermicompost on Changes of Zn Chemical Fractionation in a Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mohsen Hamidpour

    2017-02-01

    Full Text Available Introduction: Soil contamination by heavy metals is a major concern throughout the world, due to persistence of metals in the environment and their toxicity and threat to all living organisms. Several strategies have been used to immobilize heavy metal ions in soils. Immobilization can be achieved by adding natural and synthetic amendments such as zeolites and organic materials. Because of large specific surface area, high cation exchange capacity (CEC, low cost and wide spread availability, zeolites are probably the most promising materials interacting with many heavy metal ions in contaminated soils and water. Organic amendments such as vermicompost contains a high proportion of humified organic matter (OM, may decrease the bioavailability of heavy metals in soil by adsorption and by forming stable complexes with surface functional groups, thus permitting the re-establishment of vegetation on contaminated sites. Recent studies showed that the co-application of zeolite and humic acids could be effective in reducing the available fraction of Pb in a garden polluted soil. Fractionation of heavy metals cations in amended polluted-soils is needed to predict elemental mobility in soil and phyto-availability to plants. Therefore, the objective of this study was to investigate the effects of co-application of zeolite and vermicompost on Zn redistribution in a contaminated soil. Material and Methods: A contaminated soil was collected from the top 20 cm in the vicinity of zinc mine in Zanjan province, western north of Iran. The soil sample was air-dried, passed through 2-mm sieve and stored at room temperature. The soil sample was thoroughly mixed to ensure uniformity. Sub-samples were then digested using the hot-block digestion procedure for total Zn concentration. The experiment was conducted under greenhouse condition. The polluted soil was put in polyethylene pots and mixed well vermicompost and zeolite at the rate of 0, 50 and 100 g kg-1 soil. The

  6. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    Science.gov (United States)

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio.

  7. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaowei [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Xing Meiyan, E-mail: xmy5000@163.com [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Yang Jian; Huang Zhidong [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-01-30

    The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments.

  8. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung.

    Science.gov (United States)

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Huang, Zhidong

    2011-01-30

    The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung

    International Nuclear Information System (INIS)

    Li Xiaowei; Xing Meiyan; Yang Jian; Huang Zhidong

    2011-01-01

    The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments.

  10. Vermicomposting as alternative for recycling the sludges of paper industry; El vermicompostaje como alternativa para el reciclaje de lodos residuales derivados de la industria papelera

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, C.; Sampedro, L.; Mato, S. [Departamento Recusros Naturales, Medio Ambiente, Universidad de Vigo, Vigo (Spain); Nogales, R. [U.E.I. Agroecologia y Proteccion Vegetal, Granada (Spain)

    1995-12-01

    Vermicomposting is a process of bio oxidation and stabilization of organic materials involving the joint action of earthworms and microorganisms, by which high-quality organic fertilizers called vermicomposts are ob tamed. Waste sludge from the pulp-paper and paper industry may be converted using vermicomposting techniques which require correct conditioning of the waste. Earthworms speed up the biodegradation and humification processes of these soil sludges. Vermicomposts are obtained which could be used as organic amendments or fertilizers in agriculture and forestry.

  11. Vermicomposting of Vegetable Wastes Using Cow Dung

    OpenAIRE

    Muthukumaravel, K.; Amsath, A.; Sukumaran, M.

    2008-01-01

    Municipal solid wastes are mainly from domestic and commercial areas containing recyclable toxic substances, compostable organic matter and others. With rapid increase in population, the generation of municipal solid wastes has increased several folds during last few years. Disposal of solid wastes can be done by methods like land filling, incineration, recycling, conversion into biogas, disposal into sea and composting. Vermicomposting is one of the recycling technologies which will impro...

  12. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    Science.gov (United States)

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  13. Comparison of plant nutrient contents in vermicompost from selected ...

    African Journals Online (AJOL)

    In this experiment, earthworm, Eudrilus eugeniae was fed with different plant residues: grass clippings, sago waste and rice straw. These organic wastes were also left to decompose naturally as the control. Analysis on samples vermicompost showed that humic acid content was highest in rice straw, followed by grass ...

  14. Effect of Vermicompost and Liquid Seaweed Fertilizer on Morpho-physiological Properties of Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    Milad Heydari

    2017-04-01

    Full Text Available Marigold is an ornamental and medicinal plant and has also industrial in cosmetalogical uses. To evaluate the effects of vermicompost and seaweed fertilizers on some morpho-physiological properties of the plant, a factorial experiment based on a randomized complete block (RCB design with three replications was conducted in pot in Mianeh. In this experiment, the first factor was vermicompost fertilizer at four levels (0, 5, 10 and 15 t.ha-1 added to the pot soil and the second factor was for levels of liquid seaweed fertilizer (0, 1, 2 and 3 percent sprayed on foliage. The assessed traits were leaf, root and stem dry weights, root volume, number of secondary shoots, plant height, leaf number, flowering period, number of flowers, flower diameter, dry weight of flowers, leaves electrolyte leakage, leaf area (LA and essential oil percentage and yield. The results showed that application of vermicompost increased some traits, including plant height (18.58 cm, number of branches (4.3 branches, root volume (3.4 cm³ and leaf area index (65.55 cm2. Using 3 percent of liquid seaweed fertilizer was also effective. In general, application of 5 tons per hectare of vermicompost with 3 percent of liquid seaweed fertilizer resulted in highest flower and stem dry weights.

  15. Effect of vermicompost on some physiological attributes involved in carbon and nitrogen metabolism as well as nutrient status in leaves of tobacco (nicotiana tabacum L.)

    International Nuclear Information System (INIS)

    Qin, C.; Zheng, P.; Akram, N.A.

    2016-01-01

    A pot experiment was carried out to examine the influence of vermicompost application on some key enzymes and metabolites involved in carbon (C) and nitrogen (N) metabolism as well as nutrient status in the leaves of tobacco (Nicotiana tabacum L.). Two types of vermicompost with two application rates were used in this study. Regardless of application rate, both types of vermicompost significantly increased total N, phosphorus (P) and potassium (K) contents in the leaves. They also caused enhancements in contents of total soluble carbohydrates, reducing sugars, starch and total organic C as well as amylase and invertase activities involved in C metabolism, contents of soluble protein and nicotine in N metabolism in the leaves. With an increase in application rate, each vermicompost type had an increasing effect on almost all measured parameters except nitrate reductase activity. Regardless of vermicompost type, the high rate (50%) of application showed the best effects compared with controls. The effects of V1 type vermicompost were superior to those of V2 at the same application rate. Therefore, the above effects might appear to be dependent on both type and dose. Vermicompost could be considered as an effective organic matter for attaining improved plant nutrition as well as C and N metabolism. (author)

  16. Evaluation of Aloe vera (Aloe barbadensis Miller Antioxidant Activity and Some of the Morphological Characteristics in Different Vermicompost Field

    Directory of Open Access Journals (Sweden)

    Z. Yavari

    2014-02-01

    Full Text Available Normal 0 false false false EN-US X-NONE FA Construction and function of effective substances of medicinal plants are influenced by environmental factors such as deficiency or increased of nutrients in the soil and substrates. Therefore, a greenhouse experiment was performed in completely randomized design with four treatments and three replications. The effects of vermicompost were examined on the morphological and phytochemical features in aloe vera. Treatments consisted of four vermicompost percentages (0%, 15%, 30% and 45% in humus soil. The considered factors were leaf weight, gel fresh weight, gel dry weight, the antioxidant capacity of the gel, glucomannan of gel, flavonoids and phenols of gel, and anthocyanins of cortex. data analysis showed that the maximum of leaf weight, gel weight, dry weight of gel and gel glucomannan was obtained in 45% of vermicompost. The maximum of gel phenol, antioxidant activity of gel and anthocyanins of cortex belonged to 30% of vermicompost and gel flavonoid in 15% of vermicompost. To achieve maximum antioxidant capacity and optimum amount of active substances, more studies and application of different field of vermicompost are required in order to increase the value of medicinal properties. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

  17. Uso de vermicompost de alperujo para la descontaminación de suelos contaminados con hidrocarburos policíclicos aromáticos

    OpenAIRE

    Benítez León, Emilio; Moreno Sánchez, Beatriz; Gennaro, Patrizia di; Nogales Vargas-Machuca, Rogelio

    2008-01-01

    Uso de vermicompost de alperujo para la descontaminación de suelos contaminados con hidrocarburos policíclicos aromáticos. La presente invención se refiere al uso de vermicompost de alperujo como enmienda orgánica en la biorremediación de suelos contaminados por hidrocarburos policíclicos aromáticos (PAH). El vermicompost induce la expresión de genes implicados en la degradación de naftaleno (naftaleno-dioxigenasa, NDO) de comunidades bacterianas del suelo. En la pr...

  18. THE INFLUENCE OF VERMICOMPOST FROM KITCHEN WASTE ON THE YIELD-ENHANCING CHARACTERISTICS OF PEAS PISUM SATIVUM L. VAR. SACCHARATUM SER. BAJKA VARIETY

    Directory of Open Access Journals (Sweden)

    Grzegorz Pączka

    2013-04-01

    Full Text Available This study determined the possibility of using the vermicompost produced from kitchen waste (by Eisenia fetida earthworms to grow sugar peas. Its influence on the dynamics of sprouting of peas and their growth to 21st day was investigated in a pot experiment. Four combinations were realised (control – standard garden soil; (50W – its mixture with 50% of vermicompost; (25W and (10W – with 25% and 10% of vermicompost addition respectively (n=5. Vermicompost from kitchen waste turned out to be useful in the cultivation of peas. No significant differences in the impact of all the analysed substrates on the sprouting of this plant were found. A 10% vermicompost addition (10W was shown to be the most favourable substrate. Its positive influence was shown in the impact on the increase of total average mass (by 33%; p<0.001 and height of the plants (by 12%; p<0.05 and average mass (by 39%; p<0.001 and length (by 12%; p<0.05 of stems.

  19. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    Science.gov (United States)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation

  20. Survey of Optimal Temperature and Moisture for Worms Growth and Operating Vermicompost Production of Food Wastes

    OpenAIRE

    A Eslami; A Nabaey; R Rostami

    2009-01-01

    "n "nBackground and Objectives:Nowadays vermicompost production of food wastes is posed as one of appropriate methods to food wastes. disposal, its production used in agriculture and gardening. Moreover this process has some by products beside useful fertilizer that one of them is the worms. we can use them in variety of products specially in production of poultry and fish food. So determination of optimal condition for operating vermicompost production process of food wastes and worms. growt...

  1. Influence of vermicompost humic acid on chlorophyll content and ...

    African Journals Online (AJOL)

    Influence of vermicompost humic acid on chlorophyll content and acclimatization in banana clone, Enano Guantanamero. Marcia Beatriz Moya Fernández, Esteban Sánchez Chávez, Daniel Cabezas Montero, Andrés Calderín García, Dany Marrero López, Eduardo F. Héctor Ardisana, Sandra Pérez Álvarez ...

  2. An Overview of the Environmental Applicability of Vermicompost: From Wastewater Treatment to the Development of Sensitive Analytical Methods

    OpenAIRE

    Pereira, Madson de Godoi; Cardoso de Souza Neta, Lourdes; Fontes, Maurício Paulo Ferreira; Souza, Adriana Nascimento; Carvalho Matos, Thaionara; de Lima Sachdev, Raquel; dos Santos, Arnaud Victor; Oliveira da Guarda Souza, Marluce; de Andrade, Marta Valéria Almeida Santana; Marinho Maciel Paulo, Gabriela; Ribeiro, Joselito Nardy; Verónica Flores Nardy Ribeiro, Araceli

    2014-01-01

    The use of vermicompost (humified material) for treating wastewaters, remediating polluted soils, improving agricultural productivity, protecting crop production, and developing sensitive analytical methods is reviewed here, covering the past 17 years. The main advantages of vermicompost, considering all applications covered in this paper, comprise (i) easy acquisition, (ii) low costs, (iii) structural, chemical, and biological characteristics responsible for exceptional adsorptive capacities...

  3. Shading and vermicompost effect on growth and flavonoid content of Tapak Liman (Elephantopus scaber L.)

    Science.gov (United States)

    Dawiyah, R. Y. A.; Yunus, A.; Samanhudi; Widiyastuti, Y.; Widodo

    2018-03-01

    Tapak Liman (Elephantopus scaber L) is one of Indonesian medicinal plants which is well known as weed. In Thailand, Tapak Limanthis plant is use for traditional medicine due to its flavonoids contains. Flavonoid is compound with red, yellow, purple and blue pigments, used for cancer, aphrodiasiac and anti-radical treatments. One obstacle of Tapak liman cultivation is the effort to increase its flavonoids compound. There is a bridge between flavonoids compound with growth and yield of Tapak Liman. For that, this research aims to find out the effect of shade intensity combined with vermicompost dosage on Tapak Liman growth and yield. This research was conducted in Mei to August 2016 at Medicinal Plantation of BPTO, Tanjungsari Village, Tegal Gede, Karanganyar. Complete Randomized Design compiled with split plot and two factors: shade intensity (0%, 50%, 75%) and vermicompost dosage per plant (0 g, 250 g, 500 g, 750 g) used as the experimental design. The variables observed are leaves number,leaves length, canopy diameter, fresh weight, dry weight, root length, chlorophyl analysis and flavonoid identification. Data were analyzed using ANOVA, any significant treatments followed with Duncan’s Multiple Range Test (DMRT) at α = 10%. Result showed that 75% shade intesity and 750 g of vermicompost has gave highest yield of leaf and total simplicia of Tapak Liman. Shade intensity of 50% with 250 g of and 500 g/plant of vermicompost dosage showed highest flavonoid rendement (Rf 0,5) with highly contrasting spot colors.

  4. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    Science.gov (United States)

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    International Nuclear Information System (INIS)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-01-01

    Highlights: • Earthworms significantly decreased emissions of N 2 O and CH 4 , but had a marginal effect on CO 2 emission. • NH 3 , N 2 O, and CH 4 emissions were significantly reduced by reed straw and zeolite, CO 2 emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH 3 ), and greenhouse gases (GHG), including nitrous oxide (N 2 O), methane (CH 4 ), and carbon dioxide (CO 2 ). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH 3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH 3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N 2 O, CH 4 , and CO 2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg −1 DM to 274.2, 30.4, and 314.0 mg kg −1 DM, respectively. Earthworms and amendments significantly decreased N 2 O and CH 4 emissions. Emission of CO 2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH 3 emission ranged from 3.0 to 8.1 g kg −1 DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N 2 O, CH 4 , and NH 3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer

  6. The effects of vermicompost and chemical fertilizers on yield and yield components of marshmallow (Altheae officinalis L.)

    OpenAIRE

    A.A. Sadeghi; K. Bakhsh Kelarestaghi; K. Hajmohammadnia Ghalibaf

    2016-01-01

    In order to investigate the effects of vermicompost and chemical fertilizers on growth characteristics, yield and yield components of marshmallow (Altheaeofficinalis L.), a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2012. Experimental treatments were designed based on 3 levels of vermicompost (0, 5 and 10 t ha-1) and 5 levels of ...

  7. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure.

    Science.gov (United States)

    Wang, Jinzhi; Hu, Zhengyi; Xu, Xingkai; Jiang, Xia; Zheng, Binghui; Liu, Xiaoning; Pan, Xubin; Kardol, Paul

    2014-08-01

    Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH3), and greenhouse gases (GHG), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH3 and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH3 and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N2O, CH4, and CO2 emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg(-)(1) DM to 274.2, 30.4, and 314.0 mg kg(-1) DM, respectively. Earthworms and amendments significantly decreased N2O and CH4 emissions. Emission of CO2 was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH3 emission ranged from 3.0 to 8.1 g kg(-1) DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N2O, CH4, and NH3 from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The effects of composting approaches on the emissions of anthropogenic volatile organic compounds: A comparison between vermicomposting and general aerobic composting

    International Nuclear Information System (INIS)

    Bhattacharya, S.S.; Kim, Ki-Hyun; Ullah, Md. Ahsan; Goswami, L.; Sahariah, B.; Bhattacharyya, P.; Cho, Sung-Back; Hwang, Ok-Hwa

    2016-01-01

    Emission patterns of 13 VOCs were investigated in three types of vermicomposting systems (Eisenia fetida, Metaphire posthuma, and Lampito mauritii) in reference to a traditional aerobic composting system by feeding the systems with mixtures of three materials (coal ash (CA), municipal solid waste (MSW), and cow dung (CD)). On an average, the emission rates of aromatic VOCs (benzene, toluene, xylenes, and styrene) were two to three times higher than all other groups (aldehyde, ketones, esters, and alcohols) from all three types of feeding mixtures. However, the emission rates of aromatic VOCs were generally reduced over time in both aerobic composting and vermicomposting systems. Such reduction in the emission rates was most prominent from Eisenia-treated CD + MSW (1:1), Lampito-treated CD + CA (1:1), and Metaphire-treated CD. The results clearly indicated that the increase in humified organic C fractions (humic acid and fulvic acid) and the microbial biomass present during the biocomposting processes greatly reduced the emissions of VOCs. Hence, the study recommends that vermicomposting of coal ash and municipal solid waste in combination with cow dung in 1:1 ratio is an environmentally gainful proposition. - Highlights: • Emissions of volatile odorant gases from different composting treatments were investigated. • Emissions of 13 VOCs were quantified in three types of vermicomposting systems. • Systems are fed with mixtures of three materials: coal ash, cow dung, municipal wastes. • The optimum composition of three types of wastes is suggested for vermicomposting. - The emissions of VOCs from vermicomposting were controlled sensitively by humidified organic C fractions and microbial biomass during composting processes.

  9. Yield and Yield Components of Vetch (Vigna radiata as Affected by the Use of Vermicompost and Phosphate Bio-fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rahimi

    2016-06-01

    Full Text Available To evaluate the effects different levels of phosphate biofertilizer barvar-2 and vermi compost on yield and yield components of vetch plant (Vigna radiata L.in Yasouj a factorial experiments was performed in completely randomized design in crop year of 2013. Experimental treatments were phosphate biofertilizer barvar-2 at 3 levels (0, 50, 100 gram per hectare and vermicompost at 4 levels (0, 10, 20, 30 ton per hectare. In this study stem height, root length, biological yield, seed yield and harvest index was measured. ANOVA and comparison of means showed that vermicompost significantly increased stem height, economic and biological yields. Results, also, indicated that highest yield and biomass, 4.3 and 18.8 g/plant, observed respectively when 100 g/ha of barvar-2 and 30 t/ha of vermi compost were used. Using both of phosphate biofertilizer barvar-2 and vermicompost was better than their individnal usage. This indicates that combined use of these 2 factors would produce higher yield. It can be concluded that application of 100 g/ha of barvar-2 and 30 t/ha of vermicompost would a proper recommendation.

  10. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    Science.gov (United States)

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  11. PUDRICIÓN BASAL CAUSADA POR Phytophthora capsici EN PLANTAS DE CHILE TRATADAS CON VERMICOMPOST

    Directory of Open Access Journals (Sweden)

    Lidieth Uribe-Lor\\u00EDo

    2014-01-01

    Full Text Available Pudrición basal causada por Phytophthora capcisi en plantas de chile tratadas con vermicompost. El objetivo de este trabajo fue evaluar a nivel de invernadero el efecto de vermicompost sobre la incidencia y severidad de Phytophthora capcisi en plantas de chile (Capsicum annuum. Esta investigación se realizó entre febrero y marzo del 2012 en el Centro de Investigaciones Agronómicas, Sabanilla, San José, Costa Rica. Se utilizó un diseño completamente al azar con cuatro repeticiones y ocho plantas por unidad experimental en un arreglo factorial con los factores de dosis (0, 25% y 50% v/v vermicompost:suelo e inoculación (0 y 500 zoosporas por gramo de suelo. Se trasplantaron plántulas de 35 días, que fueron inoculadas dos semanas después del trasplante. La aplicación de vermicompost provocó un aumento significativo del peso fresco foliar y del peso seco foliar y radical; a mayor dosis, mayor fue el incremento. Las plantas de todos los tratamientos que incluyeron inoculación con P. capsici presentaron síntomas de la enfermedad en la raíz. Los valores de incidencia y severidad fueron mayores para el tratamiento con 50% de abono. En este tratamiento se presentaron síntomas de marchitez. La ausencia de diferencias en las variables de peso fresco y seco entre los tratamientos inoculados y sin inocular, a los que se adicionó abono al 25%, sugiere que esta dosis podría compensar el daño causado por el patógeno. Se observó una menor concentración de nutrimentos en los tejidos de las plantas inoculadas lo que indica que el daño causado a la raíz pudo haber afectado la adquisición de nutrimentos.

  12. Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials.

    Science.gov (United States)

    Singh, Deepika; Suthar, Surindra

    2012-05-01

    Efforts were made to decompose herbal pharmaceutical industrial waste (HPIW) spiked with cow dung (CD) using Eisenia fetida. A total of five vermibeds: T(1) - HPIW (0%+CD 100%, control), T(2) - HPIW (25%), T(3) - HPIW (50%), T(4) - HPIW (75%) and T(5) - HPIW (100%) were used for vermicomposting. The changes in biology and chemistry of vermibeds were measured after ten days interval. E. fetida showed high growth and cocoon production rate in all vermibeds. The vermicomposted material contained great population of fungi 6.0-40.6 (CFU × 10(5)g(-1)), bacteria 220-1276.0 (CFU × 10(8)g(-1)) and actinomycetes 410.0-2962.0 (CFU × 10(5)g(-1)) than initial material. Vermicomposted material was rich in plant-available forms of nutrients (N-NO(3)(-),PO(4)(3-),available K and SO(4)(-2)). Results suggested that noxious industrial waste can be converted into valuable product for sustainable soil fertility programme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinzhi [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Zhengyi, E-mail: zhyhu@ucas.ac.cn [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Xingkai [State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Jiang, Xia; Zheng, Binghui [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012 (China); Liu, Xiaoning [College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049 (China); Pan, Xubin [Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029 (China); Kardol, Paul [Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, S 90183 Umeå (Sweden)

    2014-08-15

    Highlights: • Earthworms significantly decreased emissions of N{sub 2}O and CH{sub 4}, but had a marginal effect on CO{sub 2} emission. • NH{sub 3}, N{sub 2}O, and CH{sub 4} emissions were significantly reduced by reed straw and zeolite, CO{sub 2} emission was increased by reed straw. • Combined pre-composting and vermicomposting with reed straw and zeolite would be recommended for disposal of duck manure. - Abstract: Combined pre-composting and vermicomposting has shown potential for reclamation of solid wastes, which is a significant source of ammonia (NH{sub 3}), and greenhouse gases (GHG), including nitrous oxide (N{sub 2}O), methane (CH{sub 4}), and carbon dioxide (CO{sub 2}). Earthworms and amendments may both affect physico-chemical characteristics that control gas-producing processes, and thus affect NH{sub 3} and GHG emissions. Here, we used two-way ANOVA to test the effects of addition of reed straw and combined addition of reed straw and zeolite on NH{sub 3} and GHG emissions during pre-composting of duck manure, either with or without a follow-up phase of vermicomposting. Results showed that cumulative N{sub 2}O, CH{sub 4}, and CO{sub 2} emissions during pre-composting and vermicomposting ranged from 92.8, 5.8, and 260.6 mg kg{sup −1} DM to 274.2, 30.4, and 314.0 mg kg{sup −1} DM, respectively. Earthworms and amendments significantly decreased N{sub 2}O and CH{sub 4} emissions. Emission of CO{sub 2} was not affected by earthworms, but increased in responses to addition of reed straw. Cumulative NH{sub 3} emission ranged from 3.0 to 8.1 g kg{sup −1} DM, and was significantly decreased by reed straw and zeolite addition. In conclusion, combined pre-composting and vermicomposting with reed straw and zeolite addition would be strongly recommended in mitigating emissions of N{sub 2}O, CH{sub 4}, and NH{sub 3} from duck manure. Moreover, this method also provides nutrient-rich products that can be used as a fertilizer.

  14. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study.

    Science.gov (United States)

    Wang, Xin-Xin; Zhao, Fengyan; Zhang, Guoxian; Zhang, Yongyong; Yang, Lijuan

    2017-01-01

    A greenhouse pot test was conducted to study the impacts of replacing mineral fertilizer with organic fertilizers for one full growing period on soil fertility, tomato yield and quality using soils with different tomato planting history. Four types of fertilization regimes were compared: (1) conventional fertilizer with urea, (2) chicken manure compost, (3) vermicompost, and (4) no fertilizer. The effects on plant growth, yield and fruit quality and soil properties (including microbial biomass carbon and nitrogen, [Formula: see text]-N, [Formula: see text]-N, soil water-soluble organic carbon, soil pH and electrical conductivity) were investigated in samples collected from the experimental soils at different tomato growth stages. The main results showed that: (1) vermicompost and chicken manure compost more effectively promoted plant growth, including stem diameter and plant height compared with other fertilizer treatments, in all three types of soil; (2) vermicompost improved fruit quality in each type of soil, and increased the sugar/acid ratio, and decreased nitrate concentration in fresh fruit compared with the CK treatment; (3) vermicompost led to greater improvements in fruit yield (74%), vitamin C (47%), and soluble sugar (71%) in soils with no tomato planting history compared with those in soils with long tomato planting history; and (4) vermicompost led to greater improvements in soil quality than chicken manure compost, including higher pH (averaged 7.37 vs. averaged 7.23) and lower soil electrical conductivity (averaged 204.1 vs. averaged 234.6 μS/cm) at the end of experiment in each type of soil. We conclude that vermicompost can be recommended as a fertilizer to improve tomato fruit quality and yield and soil quality, particularly for soils with no tomato planting history.

  15. Evaluation of Mycorrhizal Fungi, Vermicompost and Humic Acid on Essence Yield and Root Colonization of Fennel

    Directory of Open Access Journals (Sweden)

    I. Akbari

    2016-02-01

    Full Text Available Introduction The main objective of sustainable agriculture is to decrease the off-farm inputs such as chemical fertilizers, increased farm nutrient cycle through reduced tillage and the use of biological and organic fertilizers. Studies on medicinal plants indicates that the use of sustainable farming systems provide the best conditions for the production of these plants. Mycorrhizal fungi, vermicompost and humic acid are samples of biological and organic fertilizer that can be used, to eliminate or substantially reduce the use of chemical inputs in order to increase the quantity, quality and stability of the products. Mycorrhizal fungi are one of the most important rhizosphere microorganisms which have symbiotic relation with root of most crops. Mycorrhizal symbiosis improves the soil physical (through expansion of hyphae of fungus, chemical (through increased absorption of nutrients and biological (the soil food web quality. These fungus increased nutrient uptake, such as phosphorus and some micronutrients, water uptake, reducing the negative effects of environmental stress and increase resistance to pathogens and improve the quality of their host plants. Fennel (Foeniculum vulgare Mill is one of the most important medicinal plants, as the essential oil from the seeds used in a variety of industries, pharmaceutical, food and cosmetic use. Anethole is important component of the essential oil of fennel seed. Materials and Methods This experiment was conducted as a factorial based on randomized complete block design in order to evaluate the effects of vermicompost application, humic acid and mycorrhizal fungi on quantitative and qualitative aspects of fennel yield at experimental farm of Shahrood University during growing season of 1391-92. This experiment includes 12 treatments and 3 applications. Vermicompost levels include: v1 (no application v2 (4 ton ha-1 v3 (8 ton ha-1. Mycorrhizal fungi include: m1 (no inoculation and m2 (inoculation and

  16. Investigating the Effect of Waste Process of Halva Ardeh Production on Vermicompost Quality

    Directory of Open Access Journals (Sweden)

    Masoumeh Khatebasreh

    2017-12-01

    Conclusion: Based on our findings, the compost quality of this study confirms to the standards of compost class A. This method can be used to convert the waste from Halva Ardeh production on vermicompost qulity.

  17. Yield and Yield Components of Safflower (Carthamus tinctorius L. as Affected by Micronutrient Application and Vermicompost in Two Kerman and Bardsir Regions

    Directory of Open Access Journals (Sweden)

    Alireza Karimi Gogheri

    2017-10-01

    Full Text Available Introduction Despite the importance of oily crops in development of Iran, there are few studies on nutrition with micronutrient in these crops, especially for safflower. Safflower, a deep rooted oilseed crop, is grown in many areas of world because it can be used as oil crop, vegetable, birdfeed and spices. To achieve the acceptable growth and yield of safflower, it needs the sufficient micro- and macronutrient, so that recently, there has been an increased interest in evaluation of nutrient role in quality and quantity of safflower. Application of vermicompost in oil crop production systems of Iran has been increased; which it can improve soil structure by increasing aggregate stability as well as increase in water holding capacity and aeration. On the other hand, micronutrients are nutrients required by plants in small quantities to organize a range of physiological functions. The deficiency micronutrients is widespread in many parts of the country due to cultivation of high yielding varieties, intensive agriculture and increasing use of sulphur free fertilizers in large quantities with concomitant decrease in use of organic manures. There is little information on interaction of vermicompost and micronutrients combination on safflower. thus, this study was conducted to evaluate the effect of combinations of three important micronutrient consisted of sulphur, zinc and boron on yield and yield components as well as dry forage production of safflower in different vermicompost treatments. Material and Methods In this research, the effect of micronutrient application and vermicompost was examined on yield and yield components of safflower in Agriculture and Natural Resources Research Center of Kerman Province in two Kerman and Bardsir regions. The treatments were included vermicompost factor at two levels (0 and 6 t ha-1 and micronutrients combinations at 12 levels (no use, 100 kg ha-1 S, 200 kg ha-1 S, 3 ml L-1 Zn, 2 ml L-1 B, four twofold and two

  18. Combination of anaerobic effluent and lignocellulosic bacterial consortium to reduce vermicomposting time

    Science.gov (United States)

    Utilization of solid bio-fertilizers is an alternative to avoid chemical degradation of soil. Anaerobic biodigestor effluents/digestates have been used effectively as fertilizers. However, they may have several risk factors such as the presence of pathogens and heavy metals. Vermicomposting could he...

  19. The analysis on of the effect of urea, iron sulfate and vermicompost fertilizers on the growth characteristics and yield of sunflower (Helianthus annuus L. The city Darreh Gaz

    Directory of Open Access Journals (Sweden)

    mahdiyeh zomorrodi

    2015-12-01

    Full Text Available To study the effect of vermicompost and urea and iron sulfate fertilizers on the growth characteristics and yield of sunflower seed (Helianthus annuus L. an pediment was conducted in Darreh Gaz located in Khorasan Razavi province in 2012. Factorial experiment in a randomized complete block design with three factors and three repetition. In this experiment three levels of urea (50; 150 and 250 kg per hectare as the first factor and two level of vermicompost (7 tons per hectare consumption and non-consumption as the second factor and two iron sulfate (80 kilogram per hectare consumption and non- consumption were considered as the third factor. The results showed that the effect of urea × vermicompost treatment combination on stem height, head diameter, stem dry weight and yield was significantly at one percent probability level. The treatment combination of 250 kg. ha-1 × iron sulfate× vermicompost increased plant height, head diameter, petiole dry weight. Vermicompost × iron sulfate treatment combination on the dry weight’s leaf, petiole, stem and head were the highest significant (p≤0.01. The application of vermicompost × iron sulfate treatment combination resulted in the highest rate of stem diameter, leaf dry weight and stem the highest yield belonged to 250 kg.ha-1 × vermicompost. Iron sulfate use different amounts of urea fertilizer redact yield. The lowest yield of 250 kg.ha-1× iron sulfate was related to treatment combination. So it seems that the combined application of organic vermicompost fertilizer and urea and iron sulfate fertilizers on the growth and yield of sunflower Darreh Gaz can be effective in improving properties.

  20. Semantic similarity between ontologies at different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingpeng; Haglin, David J.

    2016-04-01

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea via studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.

  1. Research Analysis of Vermicompost Influence on Bioaccumulation of Heavy Metals in Common Meadow-Grass (Poa pratensis

    Directory of Open Access Journals (Sweden)

    Domas Laurinaitis

    2016-10-01

    Full Text Available The more intensive growth of agricultural crops adding mineral fertilizers, environmental pollution make the soil degraded: reduce the fertility of soil, increase the concentration of heavy metals. Especially dangerous is a common, synergistic effect of heavy metals. Vermicompost optimizes pH, texture and organic material content – the soil indicators, which are the major contributors to migration of heavy metals in the soil and to the plants from it. In the article there is an investigation of vermicompost influence on bioaccumulation of heavy metals in common meadow-grass. After experimental research it is determined that immobilization of heavy metals was the best in soil-vermicompost substrate, prepared in a ratio 1:2. The cadmium (Cd concentrations were lowest and the difference of HM content determined between roots and shoots was the most in biomass grown up in that mixture. In the underground part of plant the concentration equal to 11.10 mg/kg and in the part of above ground – 1.05 mg/kg. The situation of lead (Pb and copper (Cu is analogous. This is the optimal ratio of mixture preparation.

  2. Humic acid batteries derived from vermicomposts at different C/N ratios

    Science.gov (United States)

    Shamsuddin, R. M.; Borhan, A.; Lim, W. K.

    2017-06-01

    Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.

  3. Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology.

    Science.gov (United States)

    Swarnam, T P; Velmurugan, A; Pandey, Sanjay Kumar; Dam Roy, S

    2016-05-01

    Vermicompost was prepared by five different treatments from relatively resistant coconut husk mixed with either pig slurry or poultry manure. The recovery of vermicompost varied from 35% to 43% and it resulted in significant increase in pH, microbial biomass carbon, macro and micro nutrients concentration. Among the treatments highest relative N (1.6) and K (1.3) recovery were observed for 20% feedstock substitution by pig slurry while poultry manure substitution recorded highest P recovery (2.4). Compost maturity parameters significantly differed and well correlated. The characteristics of different treatments established the maturity indices as C/N 15-20; Cw1.5 and HI>15.0. The manurial value of the coconut husk compost was improved by feedstock substitution with pig slurry (80:20). The results revealed the technical feasibility of converting coconut husk into valuable compost by feedstock substitution with pig slurry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting.

    Science.gov (United States)

    Arumugam, Karthika; Renganathan, Seenivasagan; Babalola, Olubukola Oluranti; Muthunarayanan, Vasanthy

    2018-04-01

    Disposable Paper cups are a threat to the environment and are composed of 90% high strength paper with 5% thin coating of polyethylene. This polyethylene prevents the paper cup from undergoing degradation in the soil. Hence, in the present study two different approaches towards the management of paper cup waste through vermicomposting technology has been presented. The experimental setup includes 2 plastic reactors namely Vermicompost (VC) (Cow dung + Paper cup waste + Earthworm (Eudrillus eugeinea)) and Vermicompost with bacterial consortium (VCB) (Cow dung + Paper cup waste + Eudrillus eugeinea + Microbial consortia such as Bacillus anthracis, B. endophyticus, B. funiculus, B. thuringiensis, B. cereus, B. toyonensis, Virigibacillius chiquenigi, Acinetobacter baumanni and Lactobacillus pantheries). After treatment the physicochemical parameters were analysed. The results showed that the values of TOC (26.52 and 37.47%), TOM (36.01 and 33.13%) and C/N (15.02 and 11.92%) ratio are reduced in both VC and VCB whereas, the values of pH (8.01 and 7.56), EC (1.2-1.9 µs -1 and 1.4-1.9 µs -1 ), TP (46.1 and 51%), TMg (50.52 and 64.3%), TCa (50 and 64%), TNa (1.39 and 1.75%) and TK (1.75 and 1.86%) have increased. This study substantiates the addition of the microbial consortia augmenting the degradation in VCB reactor by reducing the period of process from 19 to 12 weeks. Further the characterisation of the vermicompost prepared from paper cup with FT-IR shows high degradation of carboxylic and aliphatic group; SEM analysis shows the disaggregation of cellulose and lignin; XRD shows the degradation of cellulose. All these analyses endorse the degradation of the paper cup waste faster with microbes (VCB). Thus, this present study high lights management of the paper cup waste in a relatively short period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustar

    Directory of Open Access Journals (Sweden)

    Tanushree Mondal

    2017-04-01

    Full Text Available To study the impact of reduced dose of chemical fertilizer and its combination with biofertilizer and vermicompost on morpho-physiological and biochemical traits of mustard (Brassica campestris cv. B9, field experiments were conducted during winter seasons of November to February 2011–2012 and 2012–2013 respectively in an old alluvial soil zone of Crop Research and Seed Multiplication Farm, Burdwan University, Burdwan, West Bengal, India. Mustard was cultivated using a full recommended dose of chemical fertilizer (N:P:K–100:50:50 and along with six different reduced doses of chemical fertilizer combined with biofertilizers and vermicompost. The performance of the crop was adjudged in terms of various parameters viz. leaf area index (LAI, leaf area duration (LAD, leaf area ratio (LAR, crop growth rate (CGR, net assimilation rate (NAR, photosynthetic rate (PR, harvest index (HI and biochemical attributes such as total chlorophyll, sugar and proline content of physiologically active leaves of mustard. Differential significant (p < 0.05 treatment response was reflected for the studied traits during crop maturity. The data revealed that vermicompost application significantly stimulated most of the studied attributes. It was concluded that 25% reduced dose of chemical fertilizer and its combination with vermicompost (T4 was optimum for most of the parameters studied as compared to the control at both crop stages.

  6. Chemical and physicochemical characterization of vermicompost from bovine manure and evaluation of competitive adsorption of cadmium and lead

    International Nuclear Information System (INIS)

    Lamim, Soraida Sozzi Miguel; Jordao, Claudio Pereira; Brune, Walter; Pereira, Jose Luis

    1996-01-01

    The chemical and physicochemical characterization of vermicompost from bovine manure has been studied. It was examined the pH and cation exchangeable capacity (CTC), moistness, ash, organic carbon, total nitrogen, lignin, cellulose and metal concentrations, among other characteristics. The vermicompost was then applied to the retention and competition of metal pollutants (Cd and Pb) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was not relevant to each pH examined. (author)

  7. Humic Fertilizer and Vermicompost Applied to the Soil Can Positively Affect Population Growth Parameters of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) on Eggs of Tuta absoluta (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Mohamadi, P; Razmjou, J; Naseri, B; Hassanpour, M

    2017-12-01

    The tomato leaf miner, Tuta absoluta (Meyrick), is a devastating pest of tomato worldwide. One of the control measures of T. absoluta is the use of biological control agents, such as Trichogramma wasps. Interactions between natural enemies and insect pests may be affected by application of fertilizers, because changes in plant quality through the fertilizer application may therefore affect herbivore characteristics and suitability of them to parasitism. Laboratory tests were carried out to evaluate the life table parameters of Trichogramma brassicae Bezdenko on T. absoluta eggs reared on tomato plants treated either with vermicompost (40%), humic fertilizer (2 g/kg soil), or control (suitable mixture of field soil and sand). Population growth parameters of T. brassicae were affected by fertilizer treatments. Significant differences were found for immature life period and total fecundity of T. brassicae on the treatments. Differences of intrinsic rate of natural increase (r m ), finite rate of increase (λ), net reproductive rate (R 0 ), mean generation time (T), and doubling time (DT) of T. brassicae among treatments were also significant. The lowest values of r m , λ, and R 0 were recorded for T. brassicae developed on T. absoluta eggs on control treatment, whereas the highest values of these parameters were observed on 2 g/kg humic fertilizer. Furthermore, T. brassicae had the shortest T and DT values on 2 g/kg humic fertilizer and 40% vermicompost treatments. Our results showed that application of humic fertilizer and vermicompost could positively affect population growth parameters of T. brassicae on eggs of T. absoluta fed on tomato plants.

  8. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    Science.gov (United States)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  9. Effect of Different Levels of Nitrogen Fertilizer and Vermi-Compost on Yield and Quality of Sweet Corn (Zea mays Hybrid Chase

    Directory of Open Access Journals (Sweden)

    S. Habibi

    2014-04-01

    Full Text Available In order to investigate the effect of source and rate of nitrogen fertilizer on yield and quality of sweet corn, a field study was conducted in 2011 cropping season in Agriculture Experiment Station of College of Agriculture, University of Guilan. A randomized complete block design with three replications was used. Treatment consisted of four levels of nitrogen fertilizer (0, 46, 92 and 138 kg N ha-1 and integrated N of chemical and biological (23 kg N ha-1 + 1 ton ha-1 Vermi-compost, 46 kg N ha-1 + 2 ton ha-1 Vermi-compost, and 69 kg N ha-1 +3 ton ha-1 Vermi-compost and organic sources (2, 4 and 6 ton ha-1. Effect of source and rate of nitrogen fertilizer on fresh ear yield, grain yield canned, grain protein amount and dry matter digestibility percent had significant. With increscent nitrogen at treatments nitrogen fertilizer, organic ant integrated farming yield fresh ear, grain yield, grain protein amount and dry matter digestibility percent increased. Maximum yield fresh ear was obtained with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost with an average 14595.9 kg ha-1. Maximum forage yield and dry forage yield obtained with an average 18619.5 and 3593 kg ha-1 at treatment with 69 kg N ha-1 + 3 ton ha-1 Vermi-compost. Results of this research showed that the best grain yield and quality, and forage yield and quality of sweet corn were obtained in integrated farming and organic methods in Rasht region conditions and same climatology conditions.

  10. EFECTO DEL VERMICOMPOST Y QUITINA SOBRE EL CONTROL DE Meloidogyne incognita EN TOMATE A NIVEL DE INVERNADERO

    Directory of Open Access Journals (Sweden)

    Leida Castro

    2011-01-01

    Full Text Available Meloidogyne incognita es un nematodo endoparásito sedentario, de penetración total y formador de nódulos radicales; tiene una amplia distribución geográfica y causa pérdidas agrícolas importantes. Recientemente se han utilizado abonos orgánicos y compuestos como la quitina en la supresión de plagas y enfermedades de plantas. El objetivo de esta investigación fue evaluar el efecto de la aplicación de vermicompost de estiércol bovino y su enriquecimiento con quitina, sobre la infección de M. incognita en plantas de tomate var. Hayslip bajo condiciones de invernadero. Para esto se inocularon las plantas con 5000 unidades de inóculo (huevos+juveniles en segundo estado por maceta y se compararon con controles que fueron sembrados en suelo sin enmienda orgánica o quitina. La evaluación se llevó a cabo 60 días después y se midió el peso fresco aéreo y radical, peso seco aéreo, población total de nematodos en raíz y suelo, índice de nódulos radicales (INR, índice de masas de huevos (IMH, el factor de reproducción del nematodo (FR y recuento de grupos funcionales (hongos, bacterias y actinomicetes. La adición al suelo de vermicompost provocó un incremento en las variables peso fresco y seco foliar y peso fresco radical: a mayor porcentaje de vermicompost, mayor incremento; así mismo, la aplicación del vermicompost redujo la cantidad del nematodo en raíz y en suelo. La aplicación de quitina acentuó estos resultados, obteniéndose el menor factor de reproducción de M. Incognita, con un valor de 3,76 para la dosis de 50% vermicompost+quitina, mientras que en el testigo este factor fue de 93,20. La aplicación de quitina como enmienda única solo afectó la población de hongos en el suelo, mientras que la de actinomicetes aumentó en los tratamientos enmendados.

  11. Multi-Scale Scattering Transform in Music Similarity Measuring

    Science.gov (United States)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  12. Evaluating Maize Yield and the Quality of Response to Vermicompost, in Thiobacillus and Foliar Application of Fe and Zn

    Directory of Open Access Journals (Sweden)

    Elnaz Davaran Hagh

    2017-08-01

    Full Text Available Introduction Half of the world's population suffers from micronutrients malnutrition. Use of bio-fertilizers in sustainable agricultural systems is important in production and enables plants to absorb more water from soil and improves plant nutrient uptake and photosynthesis. Benefits of vermicompost application in agriculture is due to its content of organic matter, plant nutrients and plant growth promotion. Vermicompost increases the absorption and transition of nutrients from soil to roots and improves plant growth (Simsek-Ersahin, 2011. Zn and Fe application is highly important; foliar application causes faster and higher absorption rate and cures deficiencies symptoms (Ghaffari et al., 2010. Thiobacillus is a chemolithotroph bacterium, receiving energy from sulfur oxidation. This bacterium acidifies microcites in the rhizosphere, increasing the availability of nutrients to plant roots (Kaya et al., 2009. Regarding the benefits of integrated nutrient management, this experiment was conducted with the aim of testing the effects of Fe and Zn foliar spraying, Thiobacillu sthiooxidans inoculation and vermicompost application on growth, yield and bio fortification of popcorn maize. Materials and methods This experiment was conducted in 2012 at the research field of Islamic Azad University, Tabriz branch, Iran. The experiment was conducted in factorial in the form of a randomized complete block design with three replications and four factors: vermicompost application in soil (0 and 2 t.ha-1, applied in strip form below the seeds before cultivation, inoculation with Thiobacillus thiooxidans, with a population of 108cfu.g-1. Sulfur was inoculated with T. thiooxidans prior to application. Fe chelate foliar application (without spraying and two times spraying of 0.002 concentration of 13% Fe chelate and Zn chelate foliar application (without spraying and two times spraying of 0.002 concentration of 15% Zn chelate. Maize seeds (Zea mays L. var

  13. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    Directory of Open Access Journals (Sweden)

    Ogefere, H. O.

    2010-01-01

    Full Text Available Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of composting significantly (p<.0.05 affected microbial counts as the counts decreased from the initial value at week zero to much lower value at week 40. A total of 274 bacterial and fungal isolates were recovered from the composting waste and majority (60.58% were isolated from the open heap. Bacillus subtilis, Pseudomonas aeruginosa and Aspergillus flavus were the predominant isolates recovered (9.49% each, and were the only isolates recovered throughout the period of composting irrespective of the composting technique. Staphylococcus aureus and Salmonella typhimurium were the least isolated (1.09% each. Vermicomposting technique was recommended on health and environmental grounds.

  14. Zinc and Copper Release Kinetics in a Calcareous Soil amended with Manure and Vermicompost

    Directory of Open Access Journals (Sweden)

    hamid reza motaghian

    2017-02-01

    Full Text Available Introduction: Use of organic fertilizers such as vermicompost in agricultural soils with low organic matter content is almost considered as a one way for adding nutrients in these soils. However, application of these fertilizers may affect micronutrient release characteristics. Micronutrient release Kinetics in soils especially in amended soils give information about potential of amended soils to release these elements into solution. Although it is important to study kinetics of micronutrient release from soils to identify soil micronutrients buffering capacity, little attention has been paid to micronutrients desorption rate studies especially in amended soils. The rate of release micronutrients from soil solid phase by considering micronutrients as adsorbed ions or in mineral forms is an important parameter in nutrition of plants by microelements and a dynamic factor that regulates its continuous supply to growing plants; nonetheless, little attention has been paid to micronutrients kinetics inrelease studies. Material and Methods: In this study, kinetics of zinc (Zn and copper (Cu were compared in one calcareous soil amended with 0, 0.5, and 1% (w/w of manure and vermicompost in a completely randomized design and then amended and un-amended soils were incubated at field capacity, for 30 days. After incubation period, amended and un-amended soils were air-dried and were prepared to kinetics study. Kinetics of Zn and Cu release were studied by successive extraction with DTPA-TEA solution. Two grams of the amended and un-amended soils, in triplicate, suspended in 20 ml DTPA-TEA solution were equilibrated at 25±10C for 1, 8, 24, 48, 72, 96, 120, 144, 168, 336 and 504 h by shaking for 15 min. before incubation and 15 min. before the suspensions were centrifuged. Seven drops of toluene were added to each 1000 ml of extractant to inhibit microbial activity. Zinc and copper desorption with time was fitted by using different equations (Zero

  15. Effect of Vermicompost, Sulfur and Thiobacillus on Some Soil Physico-chemical Properties, Yield and Yield Components of Maize (Zea mays L. in Jovain District

    Directory of Open Access Journals (Sweden)

    Mahmmud Ahmadi

    2018-02-01

    Full Text Available Introduction The excessive use of chemical fertilizers causes environmental pollution that is led to imbalance of essential elements in agricultural production system. Organic matter application as compost in the soil can improve chemical quality and biochemical properties that increase essential elements for plant nutrition. Application of organic manure can significantly increase the soil aggregate as well. Reported that application of 7 ton ha-1 of vermicompost increased number of leaves, stem dry weight, and corn plant height as compared to control and water holding capacity increases. Sulphur in plant is near to phosphorus (0.2%. Sulphur deficiency cause severe reduction in plant growth and due to participation in protein building and its deficiency cause yellowish in younger leaves. Sulphur can be applied as elemental sulphur, with ammonium and super phosphate to the soil. Iran is situated in arid and semi arid region of the world and need to reduce the pH with sulphur application due to high pH above 8 in some parts. The aim of this research was to study the effect of above factors in yield and yield components of maize and reducing environmental pollution. Materials and Methods This research carried out at 2012 in Jovein Distract suberb of Sabzevar city. Before conducting the research soil sample were collected from 0-30 cm depth and physical and chemical properties of the soil were estimated. Treatments including sulphur, thiobacillus and vermicompost were applied to soil and well mixed with soil before sowing. Each plot consists of five rows with six m length by 80 cm from each other. Seeds were sown at the depth of five cm and 20 cm from each other. This research carried out as a factorial experiment on the basis of randomized complete block design. In this research three factors including elemental sulphur, vermicompost and thiobacillus were used with three replications. Elemental sulphur in three levels (control, 500 kg ha-1 and

  16. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Drake, R. P.; Remington, B. A.

    2000-01-01

    We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society

  17. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers

    Science.gov (United States)

    The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...

  18. Vermicomposting and anaerobic digestion – viable alternative options for terrestrial weed management – A review

    Directory of Open Access Journals (Sweden)

    Biswanath Saha

    2018-03-01

    Full Text Available The management of terrestrial weed is of great concern for the scientific community as these weeds cause adverse effect in different ecosystems like forest, agriculture and urban. The widespread of these weeds by their adaptive capability and morphological advancement is difficult to control. Parthenium hysterophorous, Lantana camara, Saccharum spontaneum, Ageratum conyzoides are the weeds that spread all over the world. There are various management practices employed for the control of this weeds. But all of these practices have some drawbacks those are neither environment friendly nor economical. In this paper a review has been done to evaluate various alternative management practices for these terrestrial weeds and to analyze their feasibility. Vermicomposting and anaerobic digestion can be viable alternative option which is cost effective as well. There are few studies regarding vermicomposting and anaerobic digestions of terrestrial weeds are done.

  19. Enzymatic dynamics into the Eisenia fetida (Savigny, 1826) gut during vermicomposting of coffee husk and market waste in a tropical environment.

    Science.gov (United States)

    Ordoñez-Arévalo, Berenice; Guillén-Navarro, Karina; Huerta, Esperanza; Cuevas, Raúl; Calixto-Romo, M Angeles

    2018-01-01

    Epigeic worms modify microbial communities through their digestive processes, thereby influencing the decomposition of organic matter in vermicomposting systems. Nevertheless, the enzyme dynamics within the gut of tropically adapted earthworms is unknown, and the enzymes involved have not been simultaneously studied. The activities of 19 hydrolytic enzymes within three different sections of the intestine of Eisenia fetida were determined over a fasting period and at 24 h and 30, 60, and 90 days of vermicomposting, and data were evaluated by multivariate analyses. There were found positive correlations between the maximal activity of glycosyl hydrolases and one esterase with the anterior intestine (coincident with the reduction of hemicellulose in the substrate) and the activity of the protease α-chymotrypsin with posterior intestine. The results suggest that activities of enzymes change in a coordinated manner within each gut section, probably influenced by selective microbial enzyme enrichment and by the availability of nutrients throughout vermicomposting.

  20. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence

    International Nuclear Information System (INIS)

    Urdaneta, Cynthia; Parra, Lue-Meru Marco; Matute, Saida; Garaboto, Mayantino Angel; Barros, Hayden; Vazquez, Cristina

    2008-01-01

    The use of vermicompost as adsorbent substrate for removing Pb, Ni, V and Cr from waste waters is proposed. In this work, after a preliminary physical and chemical characterization of the vermicompost, the optimal parameters for the heavy metal adsorption were obtained. A synthetic multielemental solution of Pb, Cr and Ni and a solution of NH 4 VO 3 for vanadium were evaluated. The optimized parameters were pH, vermicompost mass to volume ratio, agitation time and particle size of the adsorbent. A batch system was employed for the assays. The elements were determined in the supernatant solution after filtration of the substrate. An optimal pH of 4.5 was found for ion removal. The agitation time slightly influences the adsorption of Pb and Cr, but it has a high influence on the Ni and V adsorption. The highest adsorption and removal of the metals was observed for a vermicompost mass of 2 g per 500 mL using a particle size between 75 to 841 μm for Pb, Cr and Ni, and 841 till 1192 μm for V. The mean removal percentage for each element is around 95% for Pb. Ni and Cr in the multielemental synthetic sample, demonstrating a high removal capacity of the substrate. For V it was found a removal efficiency of 50%

  1. Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2015-01-01

    Soil organic amendment addition is an effective practice in Mediterranean areas due to its associated high agricultural benefits and its potential to reduce the pesticide impact on water resources. However, their metabolites have received scarce attention, even when they may pose more risk than their parent compounds. Two winery vermicomposts obtained from spent grape marc (V1) and the mixture vine shoot-biosolid vinasses (V2) have been investigated as low cost organic amendments to minimize the leaching of diuron, imidacloprid and their metabolites in columns packed with a sandy loam (S1) and a silty-clay loam soil (S2) under steady state flow conditions. In the unamended soil columns, leached amounts of diuron were 75% and 53% in S1 and S2, respectively. Its metabolites (3-(3,4-dichlorophenyl)-1-methylurea, DPMU; and 3,4-dichlorophenylurea, DPU) percolated less than 35% of the total applied amount. The amount of the metabolite 3,4-dichloroaniline (DCA) was 2% and 30% for S1 and S2, respectively. Leaching of imidacloprid was 79% and 96% for S1 and S2, respectively, while its metabolite 6-chloronicotinic acid (CNA) was entirely leached. In the vermicompost-amended columns, the leaching of diuron was reduced 2 to 3-fold. DPMU and DPU were also significantly reduced (more than 6-fold). DCA did not appear in any of the leachates of the amended soil columns. Imidacloprid leaching was reduced 1 to 2-folds in the amended columns. The amendments did not affect the transport of CNA. The dissolved organic carbon (DOC) from the vermicomposts did not enhance pesticide transport throughout the soil in any case. This qualitative study presents these vermicomposts as an effective potential low-cost tool in reducing pesticide and metabolite leaching. The next step would be to test them under more realistic conditions.

  2. Evaluation of Yield, Yield Components and Essential Oil Content of Marigold (Calendula officinalis L. with the Use of Nitrogen and Vermicompost

    Directory of Open Access Journals (Sweden)

    Alireza Pazoki

    2016-10-01

    Full Text Available Environmenal problems resulting from application of nitrogen fertilizers in the production plant materials led agricultural specialists to use clean and alternative methods to towards the organic farming and use of organic fertilizers. In this study, thus, the effect of nitrogen and vermicompost fertilizer rates on yield, yield components, essential oil content and some morphological traits of marigold was studied in a split plot experiment based on completely randomized blocks design with 3 replications in Shahr-e-Rey region during 2013 growing season. Nitrogen rates with 3 levels (0, 60, 120 and 180 kg.ha-1 were assigned to main plots and vermicompost with 3 levels (0, 10, and 20 t.ha-1 to the sub plots. Mean comparison of simple effects indicated that the plants treated with 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 organic fertilizer vermicompost produced higher trait values under study than control (non application of vermincompost. Interaction effect of experimented factors was significant on all traits under evaluation. Thus, highest seed yield (1567 kg.ha-1, biological yield (6664 kg.ha-1 and essential oil yield (8.85 kg.ha-1 obtained by the application of 120 kg.ha-1 nitrogen fertilizer and 20 t.ha-1 varmicompost. Based on the results obtained it could be said that nitrogen and vermicompost may improve seed and biological yield and yield components of marigold.

  3. Use of agave bagasse for production of an organic fertilizer by pretreatment with Bjerkandera adusta and vermicomposting with Eisenia fetida.

    Science.gov (United States)

    Moran-Salazar, Rene G; Marino-Marmolejo, Erika N; Rodriguez-Campos, Jacobo; Davila-Vazquez, Gustavo; Contreras-Ramos, Silvia M

    2016-01-01

    Agave tequilana Weber is used in tequila and fructans production, with agave bagasse generated as a solid waste. The main use of bagasse is to produce compost in tequila factories with a long traditional composting that lasts 6-8 months. The aim of this study was to evaluate the degradation of agave bagasse by combining a pretreatment with fungi and vermicomposting. Experiments were carried out with fractionated or whole bagasse, sterilized or not, subjecting it to a pretreatment with Bjerkandera adusta alone or combined with native fungi, or only with native bagasse fungi (non-sterilized), for 45 days. This was followed by a vermicomposting with Eisenia fetida and sewage sludge, for another 45 days. Physicochemical parameters, lignocellulose degradation, stability and maturity changes were measured. The results indicated that up to 90% of the residual sugars in bagasse were eliminated after 30 days in all treatments. The highest degradation rate in pretreatment was observed in non-sterilized, fractionated bagasse with native fungi plus B. adusta (BNFns) (71% hemicellulose, 43% cellulose and 71% lignin) at 45 days. The highest total degradation rates after vermicomposting were in fractionated bagasse pre-treated with native fungi (94% hemicellulose, 86% cellulose and 91% lignin). However, the treatment BNFns showed better maturity and stability parameters compared to that reported for traditional composts. Thus, it seems that a process involving vermicomposting and pretreatment with B. adusta could reduce the degradation time of bagasse to 3 months, compared to the traditional composting process, which requires from 6 to 8 months.

  4. Multi-scale structural similarity index for motion detection

    Directory of Open Access Journals (Sweden)

    M. Abdel-Salam Nasr

    2017-07-01

    Full Text Available The most recent approach for measuring the image quality is the structural similarity index (SSI. This paper presents a novel algorithm based on the multi-scale structural similarity index for motion detection (MS-SSIM in videos. The MS-SSIM approach is based on modeling of image luminance, contrast and structure at multiple scales. The MS-SSIM has resulted in much better performance than the single scale SSI approach but at the cost of relatively lower processing speed. The major advantages of the presented algorithm are both: the higher detection accuracy and the quasi real-time processing speed.

  5. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  6. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  7. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  8. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  9. Genotipos de tomate en mezclas de vermicompost:arena en invernadero

    OpenAIRE

    Moreno Reséndez, Alejandro; Gómez Fuentes, Leocadio; Cano Ríos, Pedro; Martínez Cueto, Víctor; Reyes Carrillo, José Luis; Puente Manríquez, José Luis; Rodríguez Dimas, Norma

    2008-01-01

    Para determinar la respuesta de dos genotipos de tomate (Lycopersicon esculentum Mill.) bola, André y Adela, de crecimiento indeterminado y establecer la concentración óptima de la mezcla vermicompost:arena, que satisfaga sus necesidades nutricionales, se estableció el presente trabajo. La siembra se efectuó en charolas de poliestireno de 200 cavidades rellenas con turba y el trasplante se realizó a los 40 días después de la siembra, utilizando macetas de plástico negro de 20 L. Las mezclas d...

  10. Red worm behavior (Eisenia spp.) in vermicomposting systems of organic residues

    OpenAIRE

    Mamani-Mamani Gladys; Mamani-Pati Francisco; Sainz-Mendoza Humberto; Villca-Huanaco René

    2012-01-01

    This work evaluates the behavior of the vermicomposting red worm (Eisenia spp.) in two environments (greenhouse and unsheltered) and with two solid organic substrates (cow manure=CM and kitchen waste=KW) in the zone of Carmen Pampa, Nor Yungas Province, Department of La Paz – Bolivia, using a factorial design with two factors and three repetitions (ANOVA analysis). The largest number of cocoons was found in the greenhouse treatment, with 64 in CM and 41 in KW. Cocoon viability was also greate...

  11. Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost.

    Science.gov (United States)

    Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Kaul, Sunil C; Pati, Pratap Kumar; Kaur, Arvinder

    2018-01-01

    Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20-100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves.

  12. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    Science.gov (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  13. Microbiology of Composting Pig Waste: Comparison of Vermicomposting and Open Heap Techniques

    OpenAIRE

    Ogefere, H. O.; Ogbimi, A. O.; Omoregie, R.

    2010-01-01

    Against the background of an effective waste management, microbiological studies of composting pig waste were investigated. Freshly deposited excreta from confined pigs in a private pig farm in Benin City, Edo State, Nigeria were composted by two aerobic methods – vermicomposting and open heap. Microbial (bacterial and fungal) counts and characterization were carried out periodically within the 40 weeks of composting, using standard techniques. The results showed that only duration of compos...

  14. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  15. Agricola use of compost and vermicomposts of urban wastes: supplying of nutrients to soil and plant; Uso agricola de compost y vermicompost de basuras urbanas: capacidad de cesion de nutrientes al suelo y la plant

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Dpto. Agroecoliga y Proteccion Vegetal, Estacion Experimental del Zaidin, CSIC (Spain)

    1996-06-01

    Compost and vermicomposts from town refuse can be considered as a valuable resource for supplying nitrogen, potassium and some micro nutrients to soils and plants. Application of these mature organic materials increase crop yield, although they are less efficient than mineral fertilizers in order to obtain inmediate crops. (Author) 79 refs.

  16. Effects of vermicompost and nitrogen fertilizers on growth of Jimson weed (Datura stramonium L. as a medicinal plant

    Directory of Open Access Journals (Sweden)

    Ramin Abbaspour

    2016-05-01

    Full Text Available An experiment was conducted in order to evaluate the effect of organic (3 and 6 ton/ha vermicompost and chemical (150 and 300 kg/ha nitrogen fertilizers on growth, seed dispersal and heteroblasty of jimson weed at green house of Shiraz University in 2012. The results showed that the highest and the lowest plant growth, seed production and seed dispersal was in 300 kg/ha N and 6 ton/ha vermicompost, respectively. Position of the seeds on maternal plant had an important influence on the emergence percentage. Seeds on the middle and lowest parts of the plants had less emergence percentage compared with those on the higher parts. In general, application of 300 kg/ha nitrogen accelerated the growth of jimson weed and increase dispersal and heteroblasty of the jimson seed.

  17. In situ vitrification laboratory-scale test work plan

    International Nuclear Information System (INIS)

    Nagata, P.K.; Smith, N.L.

    1991-05-01

    The Buried Waste Program was established in October 1987 to accelerate the studies needed to develop a long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at Idaho Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act feasibility study format to identify methods for the long-term management of mixed buried waste. To support the overall feasibility study, the situ vitrification treatability investigations are proceeding along the three parallel paths: laboratory-scale tests, intermediate field tests, and field tests. Laboratory-scale tests are being performed to provide data to mathematical modeling efforts, which, in turn, will support design of the field tests and to the health and safety risk assessment. This laboratory-scale test work plan provides overall testing program direction to meet the current goals and objectives of the in situ vitrification treatability investigation. 12 refs., 1 fig., 7 tabs

  18. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    Science.gov (United States)

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  19. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.

    Science.gov (United States)

    Castillo Diaz, Jean Manuel; Delgado-Moreno, Laura; Núñez, Rafael; Nogales, Rogelio; Romero, Esperanza

    2016-08-01

    In biobed bioremediation systems (BBSs) with vermicomposts exposed to a high load of pesticides, 6 bacteria and 4 fungus strains were isolated, identified, and investigated to enhance the removal of pesticides. Three different mixtures of BBSs composed of vermicomposts made from greenhouse (GM), olive-mill (OM) and winery (WM) wastes were contaminated, inoculated, and incubated for one month (GMI, OMI and WMI). The inoculums maintenance was evaluated by DGGE and Q-PCR. Pesticides were monitored by HPLC-DAD. The highest bacterial and fungal abundance was observed in WMI and OMI respectively. In WMI, the consortia improved the removal of tebuconazole, metalaxyl, and oxyfluorfen by 1.6-, 3.8-, and 7.7-fold, respectively. The dissipation of oxyfluorfen was also accelerated in OMI, with less than 30% remaining after 30d. One metabolite for metalaxyl and 4 for oxyfluorfen were identified by GC-MS. The isolates could be suitable to improve the efficiency of bioremediation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. EPOS-WP16: A Platform for European Multi-scale Laboratories

    Science.gov (United States)

    Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants

    2016-04-01

    The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.

  1. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  2. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction.

    Science.gov (United States)

    Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto

    2016-12-01

    Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. EFFECT OF VERMIWASH OF DIFFERENT VERMICOMPOSTS ON THE KHARIF CROPS

    Directory of Open Access Journals (Sweden)

    GORAKH NATH

    2012-06-01

    Full Text Available Use of vermiwash extracted from vermicomposts of different combination of animal agro and kitchen wastes, is one of the effective liquid biofertilizer for growth and productivity of crops. The present study assesses that it has caused significant effect on the growth and productivity of paddy (Oryza sativa, maize (Zea mays and millet (Penisetum typhoides crops. The 10mg/m2 of vermiwash buffalo dung with straw shows significant growth (89.2±2.7cm and 30mg/m2 concentration of similar combination shows highly significant growth in paddy crops(102.6±2.3cm after 75 days. The 10mg/m2concentration of combination horse dung with gram bran caused significant growth (85.2±4.3cm 50days while at the same time 30mg/m2concentration of combination of straw with buffalo dung and horse dung caused highly significant growth in maize crops. The combinations of buffalo dung with gram bran and with straw; and combination of horse dung with gram bran and with straw have significant growth in millet crops. All the concentrations of different combinations of animal agro and kitchen wastes have significant early start in flowering and enhance the productivity of crops.

  4. The Study on the Effect of Different Levels of Vermicompost and Plant Density on Oil Content and Components of Evening Primrose (Oenothera biennis L

    Directory of Open Access Journals (Sweden)

    M Azizi

    2014-03-01

    Full Text Available To investigate the effects of different levels of vermicompost and plant density on oil content of evening primrose and its components, an experiment was conducted as a factorial layout based on Randomised Complete Block Design with 12 treatments and 3 replications in experimental field of Faculty of Agriculture, Ferdowsi University of Mashhad during 2008-2009. The treatments were included 4 levels of vermicompost (0, 2, 3 and 5 kg.m-2 and 3 levels of plant density (9, 12 and 20 plant/m-2. Oil extraction was carried out by Soxhelet apparatus and its percentage was determined as weight. Analysis of fatty acids was done by Gas Chromatography device. Density and refractive index of the oil also was evaluated. According to the results, simple effect of vermicompost and plant density was significant only on oil percentage and its refractive index, while the interaction between them was significant on all of the traits. Fatty acids composition of oil in all treatment was the same. The major saturated fatty acid was palmitic acid and linoleic acid was the major unsaturated fatty acid. The amount of γ-linolenic acid was in optimum range (7-8 %. Overall, treatment of 2 kg.m2 vermicompost and plant density of 20 and 9 plant/m-2 was determined as the best treatments by considering the improving of oil production, oil quality and ratio of unsaturated fatty acids to saturated fatty acids, respectively.

  5. Initial growth of maize in response to application of rock phosphate, vermicompost and endophytic bacteria

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2012-04-01

    Full Text Available Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L. in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.

  6. Experimental methods for laboratory-scale ensilage of lignocellulosic biomass

    International Nuclear Information System (INIS)

    Tanjore, Deepti; Richard, Tom L.; Marshall, Megan N.

    2012-01-01

    Anaerobic fermentation is a potential storage method for lignocellulosic biomass in biofuel production processes. Since biomass is seasonally harvested, stocks are often dried or frozen at laboratory scale prior to fermentation experiments. Such treatments prior to fermentation studies cause irreversible changes in the plant cells, influencing the initial state of biomass and thereby the progression of the fermentation processes itself. This study investigated the effects of drying, refrigeration, and freezing relative to freshly harvested corn stover in lab-scale ensilage studies. Particle sizes, as well as post-ensilage drying temperatures for compositional analysis, were tested to identify the appropriate sample processing methods. After 21 days of ensilage the lowest pH value (3.73 ± 0.03), lowest dry matter loss (4.28 ± 0.26 g. 100 g-1DM), and highest water soluble carbohydrate (WSC) concentrations (7.73 ± 0.26 g. 100 g-1DM) were observed in control biomass (stover ensiled within 12 h of harvest without any treatments). WSC concentration was significantly reduced in samples refrigerated for 7 days prior to ensilage (3.86 ± 0.49 g. 100 g −1 DM). However, biomass frozen prior to ensilage produced statistically similar results to the fresh biomass control, especially in treatments with cell wall degrading enzymes. Grinding to decrease particle size reduced the variance amongst replicates for pH values of individual reactors to a minor extent. Drying biomass prior to extraction of WSCs resulted in degradation of the carbohydrates and a reduced estimate of their concentrations. The methods developed in this study can be used to improve ensilage experiments and thereby help in developing ensilage as a storage method for biofuel production. -- Highlights: ► Laboratory-scale methods to assess the influence of ensilage biofuel production. ► Drying, freezing, and refrigeration of biomass influenced microbial fermentation. ► Freshly ensiled stover exhibited

  7. Centrifugal contractors for laboratory-scale solvent extraction tests

    International Nuclear Information System (INIS)

    Leonard, R.A.; Chamberlain, D.B.; Conner, C.

    1995-01-01

    A 2-cm contactor (minicontactor) was developed and used at Argonne National Laboratory for laboratory-scale testing of solvent extraction flowsheets. This new contactor requires only 1 L of simulated waste feed, which is significantly less than the 10 L required for the 4-cm unit that had previously been used. In addition, the volume requirements for the other aqueous and organic feeds are reduced correspondingly. This paper (1) discusses the design of the minicontactor, (2) describes results from having applied the minicontactor to testing various solvent extraction flowsheets, and (3) compares the minicontactor with the 4-cm contactor as a device for testing solvent extraction flowsheets on a laboratory scale

  8. Nutrient changes and biodynamics of Eisenia fetida during vermicomposting of water lettuce (Pistia sp.) biomass: a noxious weed of aquatic system.

    Science.gov (United States)

    Suthar, Surindra; Pandey, Bhawna; Gusain, Rita; Gaur, Rubia Zahid; Kumar, Kapil

    2017-01-01

    This paper reports the results of vermicomposting of water lettuce biomass (WL) spiked with cow dung at ratios of 20, 40, 60, and 80 % employing Eisenia fetida. A total of four treatments were established and changes in chemical properties of mixtures were observed. Vermicomposting caused a decrease in pH, TOC, volatile solids, and C/N ratio by 1.01-1.08-fold, 0.85-0.92-fold, 0.94-0.96-fold, 0.56-0.70-fold, respectively, but increase in EC, tot N, tot P, tot K, tot Ca, tot Zn, tot Fe, and tot Cu, by 1.19-1.42-fold, 1.33-1.68-fold, 1.38-1.69-fold, 1.13-1.24-fold, 1.04-1.11-fold, 1.16-1.37-fold, 1.05-1.113-fold, 1.10-1.27-fold, respectively. Overall, the treatment with 60-80 % of WL showed the maximum decomposition and mineralization rates. The earthworm showed the growth and reproduction rate in considerable ranges in all treatment setups but setups with 60-80 % WL proportion exhibited the optimum results. Results reveal that biomass of water lettuce can be utilized effectively for production of valuable manure through vermicomposting system.

  9. Changes in the Concentration of Heavy Metals (Cr, Cd, Ni During the Vermicomposting Process of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Aušra Zigmontienė

    2014-10-01

    Full Text Available Sewage sludge treatment and utilization is an important issue for a biodegradable waste management strategy. Heavy metals in sewage sludge complicate its use. Vermicomposting is one of the ways to improve the characteristics of sewage sludge and to reduce the residual concentrations of heavy metals. Study on changes in the concentration of heavy metals (Chromium, Nickel and Cadmium, when vermicomposting sewage sludge, was performed using Californian earthworms (Eisenia fetida. For that purpose, 60 kg of sewage sludge from Vilnius Waste Water Treatment Plant were taken thus inserting 1.5 kg of Californian earthworms into it. Optimal conditions for work (optimum temperature, moisture, pH for earthworms to survive were maintained in the course of the study that lasted 120 days and was conducted in June – August. The samples of sewage sludge and earthworms were taken every 10 days. The concentrations of heavy metals in sewage sludge were measured using atomic absorption spectroscopy.

  10. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes.

    Science.gov (United States)

    Huang, Kui; Li, Fusheng; Wei, Yongfen; Fu, Xiaoyong; Chen, Xuemin

    2014-10-01

    This study aimed to investigate the effect of earthworms on physicochemical and microbial properties during vermicomposting of fresh fruit and vegetable wastes (FVW) by contrasting two decomposing systems of FVW with and without earthworms for 5weeks. Compared to control treatment (without earthworms), vermicomposting treatment resulted in a rapid decrease of electrical conductivity and losses of total carbon and nitrogen from the 2nd week. Quantitative PCR displayed that earthworms markedly enhanced bacterial and fungal densities, showing the higher values than control, during the whole decomposition process. In addition, denaturing gradient gel electrophoresis combined with sequencing analysis revealed that earthworms pronouncedly modified bacterial and fungal community structures, through broadening the community diversities of Actinobacteria, Bacteroidetes, Proteobacteria, and Ascomycotina. These results suggest that the presence of earthworms promoted the activity and population of bacteria and fungi, and modified their communities, thus altering the decomposition pathway of fresh FVW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Management of floral waste generated from temples of Jaipur city through vermicomposting

    OpenAIRE

    Priyanka Tiwari; Shelja K Juneja

    2016-01-01

    This paper aims at management of floral waste generated from temples of Jaipur city through vermicomposting. In this study, flower waste consisted of variety of flowers out of which marigold was chosen as it was found in maximum amount. The vermibeds were prepared by mixing the marigold with cow dung in different proportions viz., 50:50, 60:40, 70:30, 80:20 and 90:10 and they were filled in the earthen pots, individually. Simultaneously, a control (without worms) for each of these concentrati...

  12. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    Science.gov (United States)

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  13. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    Science.gov (United States)

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  14. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  15. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    Science.gov (United States)

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  16. Vegetative growth of raspberry (Rubus idaeus L. ‘Autumn Bliss’ with vermicompost application intercropped with lupine (Lupinus mutabilis Sweet.

    Directory of Open Access Journals (Sweden)

    Enoc Jara-Peña

    2013-06-01

    Full Text Available The present investigation was carried out with objective to determine the response of red raspberry to vermicompost application and lupine (intercropped or not in the phase of vegetative growth under greenhouse conditions in Montecillo, Mexico. In the experiment 11 treatments were studied with 9 replications per treatment, with a complete factorial (5 × 2 plus an additional treatment consisting of a chemical fertilization with N100 P80 K80. As vegetable material adventitious buds of raspberry were used, statistically significant differences were found between treatments in number of leaves, plant height, cane diameter, fresh and dry matter in raspberry. The biggest response was obtained with 90 and 120 g pot–1 of vermicompost. In general, the lupine intercropped with raspberry permitted a slight competion but favored the biggest development in the foliar area.

  17. Earthworms as vectors of Escherichia coli O157:H7 in soil and vermicomposts.

    Science.gov (United States)

    Williams, A Prysor; Roberts, Paula; Avery, Lisa M; Killham, Ken; Jones, David L

    2006-10-01

    Survival and movement of Escherichia coli O157:H7 in both soil and vermicompost is of concern with regards to human health. Whilst it is accepted that E. coli O157:H7 can persist for considerable periods in soils, it is not expected to survive thermophilic composting processes. However, the natural behavior of earthworms is increasingly utilized for composting (vermicomposting), and the extent to which earthworms promote the survival and dispersal of the bacterium within such systems is unknown. The faecal material produced by earthworms provides a ready supply of labile organic substrates to surrounding microbes within soil and compost, thus promoting microbial activity. Earthworms can also cause significant movement of organisms through the channels they form. Survival and dispersal of E. coli O157:H7 were monitored in contaminated soil and farmyard manure subjected to earthworm digestion over 21 days. Our findings lead to the conclusion that anecic earthworms such as Lumbricus terrestris may significantly aid vertical movement of E. coli O157 in soil, whereas epigeic earthworms such as Dendrobaena veneta significantly aid lateral movement within compost. Although the presence of earthworms in soil and compost may aid proliferation of E. coli O157 in early stages of contamination, long-term persistence of the pathogen appears to be unaffected.

  18. Centrifugal fans: Similarity, scaling laws, and fan performance

    Science.gov (United States)

    Sardar, Asad Mohammad

    Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC

  19. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: II - Efeito da fonte de vermicomposto Improving lettuce seedling root growth and ATP hydrolysis with humates from vermicompost: II - Effect of vermicompost source

    Directory of Open Access Journals (Sweden)

    Maria Rita Cardoso Rodda

    2006-08-01

    Full Text Available Um dos fatores mais limitantes para a produção de vermicomposto é a disponibilidade de esterco. Neste trabalho, foi avaliado o efeito da substituição parcial do esterco por bagaço de cana e por resíduos de leguminosa (Gliricidia sepium na vermicompostagem sobre a qualidade do vermicomposto e sobre a bioatividade dos humatos, avaliadas por meio da análise do crescimento radicular e da atividade das bombas de H+ isoladas de raízes de alface. A substituição do esterco por bagaço de cana e por resíduos de leguminosas não acarretou prejuízo às características químicas dos vermicompostos. No entanto, os humatos isolados dos diferentes vermicompostos apresentaram características químicas distintas, tais como: acidez e propriedades óticas distintas. Os humatos produzidos a partir de esterco de bovino e da mistura esterco bovino + bagaço proporcionaram maiores estímulos no crescimento radicular das plantas de alface, sendo os mais indicados para uso na forma solúvel. A inclusão de resíduos de leguminosas no processo de vermicompostagem produziu humatos sem efeito sobre o desenvolvimento das raízes de alface.Cattle manure availability is one of the most limiting factors for vermicompost production. The effects of the partial substitution of manure with sugarcane bagasse or residues of Gliricidia sepium on the quality of vermicomposts and the bioactivity of their humates were evaluated by analyzing the root growth and H+-ATPase activity of lettuce seedling roots. The substitutions of manure by sugar cane bagasse and legume cover crops residues did not affect the chemical properties of humates. Humates isolated from the different vermicomposts, however, presented different chemical characteristics, such as acidity and distinct optical properties. Humates isolated from manure and manure + bagasse enhanced growth; these are more adequate for use in soluble form. Humates isolated from vermicompost with legume substitution were

  20. Temporal self-similar synchronization patterns and scaling in ...

    Indian Academy of Sciences (India)

    Repulsively coupled oscillators; synchronization patterns; self-similar ... system, one expects multistable behavior in analogy to ..... More about the scaling relation between the long-period ... The third type of representation of phases is via.

  1. Self-similarity and scaling theory of complex networks

    Science.gov (United States)

    Song, Chaoming

    Scale-free networks have been studied extensively due to their relevance to many real systems as diverse as the World Wide Web (WWW), the Internet, biological and social networks. We present a novel approach to the analysis of scale-free networks, revealing that their structure is self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a self-similar exponent, which classifies fractal and non-fractal networks. By using the concept of renormalization as a mechanism for the growth of fractal and non-fractal modular networks, we show that the key principle that gives rise to the fractal architecture of networks is a strong effective "repulsion" between the most connected nodes (hubs) on all length scales, rendering them very dispersed. We show that a robust network comprised of functional modules, such as a cellular network, necessitates a fractal topology, suggestive of a evolutionary drive for their existence. These fundamental properties help to understand the emergence of the scale-free property in complex networks.

  2. Source Code Analysis Laboratory (SCALe)

    Science.gov (United States)

    2012-04-01

    products (including services) and processes. The agency has also published ISO / IEC 17025 :2005 General Requirements for the Competence of Testing...SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 also operate in accordance with ISO 9001. • NIST National...assessed by the accreditation body against all of the requirements of ISO / IEC 17025 : 2005 General requirements for the competence of testing and

  3. A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education

    Science.gov (United States)

    Burton, J. C.; MacAyeal, D. R.; Nakamura, N.

    2011-12-01

    Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.

  4. Organic Fertilizer Production From Cattle Waste Vermicomposting Assisted By Lumbricus Rubellus

    Directory of Open Access Journals (Sweden)

    Siswo Sumardiono

    2011-07-01

    Full Text Available Composting is decomposition of compound in organic waste by specific treatment using microorganism aerobically. Natural composting for producing organic fertilizer from manure and market waste utilize long time processing and less equal to the market demand. Vermicomposting is a technique to produce high quality compos fertilizer from biodegradable garbage and mixture of red worm (Lumbricus Rubellus. In conventional compos production took 8 weeks of processing time, in vermicomposting only took half processing time of conventional technique. It is occurred by red worm additional ease cellulose degradation contain in manure which is could not decomposed with composting bacteria. The purposes of this research are to investigate the effect of manure comparison to red worm growth and to evaluate the effect of comparison between manure and market waste to red worm growth. This research was conducted by vary the weight of red worm (100 gr, 200 gr, 300 gr, 400 gr, 500 gr and market waste addition (50 gr, 100 gr, 150 gr, 200 gr, 300 gr. Moreover, 3 kg of manure was mixed by various weight of red worm, while variation of market waste addition was involved 500 gr red worm and 3 kg manure mixture. Optimum increasing weight of red worm that was obtained by 100 gr red worm addition is 160 gr within 2 weeks. In added market waste variation, the highest increasing of red worm was resulted by 50 gr market waste addition, with 60 gr increasing weight of red worm. Production of casting fertilizer was highly effected by composition of used materials such as medium, manure and red worm comparison as well as market waste additional

  5. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    International Nuclear Information System (INIS)

    Yu, Xin-Guo; Choi, Ki-Yong

    2015-01-01

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  6. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  7. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment

    International Nuclear Information System (INIS)

    Hobson, A.M.; Frederickson, J.; Dise, N.B.

    2005-01-01

    Methane (CH 4 ) and nitrous oxide (N 2 O) are included in the six greenhouse gases listed in the Kyoto protocol that require emission reduction. To meet reduced emission targets, governments need to first quantify their contribution to global warming. Composting has been identified as an important source of CH 4 and N 2 O. With increasing divergence of biodegradable waste from landfill into the composting sector, it is important to quantify emissions of CH 4 and N 2 O from all forms of composting and from all stages. This study focuses on the final phase of a two stage composting process and compares the generation and emission of CH 4 and N 2 O associated with two differing composting methods: mechanically turned windrow and vermicomposting. The first stage was in-vessel pre-treatment. Source-segregated household waste was first pre-composted for seven days using an in-vessel system. The second stage of composting involved forming half of the pre-composted material into a windrow and applying half to vermicomposting beds. The duration of this stage was 85 days and CH 4 and N 2 O emissions were monitored throughout for both systems. Waste samples were regularly subjected to respirometry analysis and both processes were found to be equally effective at stabilising the organic matter content. The mechanically turned windrow system was characterised by emissions of CH 4 and to a much lesser extent N 2 O. However, the vermicomposting system emitted significant fluxes of N 2 O and only trace amounts of CH 4 . In-vessel pre-treatment removed considerable amounts of available C and N prior to the second stage of composting. This had the effect of reducing emissions of CH 4 and N 2 O from the second stage compared to emissions from fresh waste found in other studies. The characteristics of each of the two composting processes are discussed in detail. Very different mechanisms for emission of CH 4 and N 2 O are proposed for each system. For the windrow system, development

  8. Building a Laboratory-Scale Biogas Plant and Verifying its Functionality

    Science.gov (United States)

    Boleman, Tomáš; Fiala, Jozef; Blinová, Lenka; Gerulová, Kristína

    2011-01-01

    The paper deals with the process of building a laboratory-scale biogas plant and verifying its functionality. The laboratory-scale prototype was constructed in the Department of Safety and Environmental Engineering at the Faculty of Materials Science and Technology in Trnava, of the Slovak University of Technology. The Department has already built a solar laboratory to promote and utilise solar energy, and designed SETUR hydro engine. The laboratory is the next step in the Department's activities in the field of renewable energy sources and biomass. The Department is also involved in the European Union project, where the goal is to upgrade all existed renewable energy sources used in the Department.

  9. Potential of filter-vermicomposter for household wastewater pre-treatment and sludge sanitisation on site.

    Science.gov (United States)

    Gajurel, D; Deegener, S; Shalabi, M; Otterpohl, R

    2007-01-01

    Septic tank systems have been widely used to separate and digest solid matter in the household wastewater for a long time. However, they contaminate groundwater with pathogens and nutrients and deprive agriculture of valuable nutrients and soil conditioner from human excreta. Compared with septic tank systems the filter-composter (Rottebehaelter), which usually consists of an underground monolithic concrete tank having two filter beds at its bottom or two filter bags that are hung side by side and used alternately at intervals of 6-12 months, is an efficient component for solid-liquid separation, pre-treatment and collection/storage of solid matter in household wastewater. The solids are retained and decompose in the filter bags or on the filter bed while the liquid filters through. However, because of the high moisture content of the retained solids decomposition is slow. Therefore, secondary treatment of the retained solids is required for sanitisation. The breakthrough was the combination of vermicomposting with the filter-composter system. Relatively dry and stable retained materials were obtained in the filter bags in about 3 months only. No secondary treatment is required as the human excreta will be converted to vermicastings, which are hygienically safe and can be reused as soil conditioner. Therefore, further development of the filter-composter with vermicomposting is worthwhile, especially the aspects of sanitisation of the faecal matter and its reuse as a soil conditioner.

  10. Vermicomposting of Vegetable Wastes Using Cow Dung

    Directory of Open Access Journals (Sweden)

    K. Muthukumaravel

    2008-01-01

    Full Text Available Municipal solid wastes are mainly from domestic and commercial areas containing recyclable toxic substances, compostable organic matter and others. With rapid increase in population, the generation of municipal solid wastes has increased several folds during last few years. Disposal of solid wastes can be done by methods like land filling, incineration, recycling, conversion into biogas, disposal into sea and composting. Vermicomposting is one of the recycling technologies which will improve the quality of the products. The present study aims to find out the possibility of utilization of vegetable wastes for vermiculture. Earthworm Megascolex mauritii cultured in plastic trays (45 x 30 x 30 cm containing soil alone (control (T1, soil + cow dung (T2, soil + vegetable waste (T3 and soil + vegetable waste + cow dung (T4 for 60 days. Nutrient values were determined from the compost and compared with that of the control. From these results, it was found that NPK values were maximum in compost obtained from vegetable waste with the use of cow dung.

  11. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  12. Industrial versus Laboratory Clinker Processing Using Grinding Aids (Scale Effect

    Directory of Open Access Journals (Sweden)

    Joseph Jean Assaad

    2015-01-01

    Full Text Available The evaluation of grinding aid (GA effect on clinker processing in laboratory grinding mills is relatively simple. Yet, the results obtained cannot be directly transposed to industrial mills, given the fundamentally different operational modes and grinding parameters. This paper seeks to evaluate the scale effect by comparing the results obtained from a closed-circuit tube mill operating at 90 ton/hr to those determined using a 50-liter laboratory mill. Tests results have shown that the decrease in specific energy consumption (Ec due to glycol or amine-based GA can be evaluated under laboratory conditions. However, such tests underestimate the actual performance that could be achieved in real-scale mills; the Ec reduction due to GA is around twofold higher when grinding is performed in real-scale mill. Compared to industrial tests, the cement particle size distribution curves widened and shifted towards higher diameters when grinding was performed under laboratory conditions, particularly with GA additions. This led to remarkable changes in water demand, setting time, and 1- and 28-day compressive strengths.

  13. Effect of vermicomposts from wastes of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils.

    Science.gov (United States)

    Fernández-Bayo, Jesús D; Nogales, Rogelio; Romero, Esperanza

    2009-06-24

    The persistence and distribution of diuron (D) and imidacloprid (I) in soils amended or not with winery vermicomposts were recorded for several months. Sandy loam (S1) and silty clay loam (S2) soils with organic carbon contents of Diuron was dissipated more rapidly except in the unamended soil S1 with DT(50) values of 259 days. The addition of vermicomposts to S1 soil decreased the persistence of D, and high amounts of DPMU (40%) and DPU (20%) metabolites were found. In unamended and amended S2 soils, the persistence of D was lower than in S1 (DT(50) < 42 days) but only DPMU was determined (up to 5%). Different simulation models from FOCUS guidelines were applied to the experimental data. No relationship between pesticide degradation and soil enzyme activities was found.

  14. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meier, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Orton, Robert D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  15. Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test

    Directory of Open Access Journals (Sweden)

    Shivika Datta

    2018-07-01

    Full Text Available Soil forms a huge reservoir of nutrients that sustains life on earth. Anthropogenic and natural impacts have led to degradation of land which declines the overall quality of soil, water or vegetation. The present study involves comparison of genotoxicity of soil procured from two different agricultural sites, pesticide treated soil (PTS and vermicompost treated soil (VTS. The soil was physico-chemically characterized and showed significant differences in terms of cytotoxicity (root length; mitotic index and genotoxicity (chromosomal aberrations in Allium cepa test. The mitotic index of the control after 24 and 48 h was found to be 26.1 ± 1.6 and 26.1 ± 1.3 respectively. Mitotic index was reduced to 10.3 ± 0.9 and 9.7 ± 0.6 in 100% PTS and 24.4 ± 1.7 and 25.4 ± 0.8 in 100% VTS after 24 and 48 h of exposure, respectively. Clastogenic aberrations were found to be highest (54.5% in 100% PTS which was significantly different from VTS extract. The PTS extracts incurred significantly more cytotoxic and genotoxic effects on A. cepa in comparison to VTS. The result indicates that addition of vermicompost in agriculture field acts as soil ameliorator and plays an important role in promotion of cell division and proliferation, hence good for the plant health and crop productivity.

  16. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  17. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    International Nuclear Information System (INIS)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.

    2010-02-01

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  18. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J. (British Geological Survey (United Kingdom))

    2010-02-15

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  19. Sludge combustion in fluidized bed reactors at laboratory scale

    International Nuclear Information System (INIS)

    Chirone, R.; Cammarota, A.

    2001-01-01

    The combustion of a dried sewage sludge in laboratory scale fluidized bed has been studied in Naples by the Istituto di ricerche sulla combustione (Irc) in the framework of a National project named Thermal Process with Energy Recovery to be used in laboratory and pre-pilot scale apparatus. The attention has been focused on emissions of unreacted carbon as elutriated fines, on the emissions of pollutant gases and on the assessment of the inventory of fly- and bottom ashes. The combustion behaviour of sewage sludge has been compared with those of a market available Tyre Derived Fuel (TDF) and a biomass from Mediterranean area (Robinia Pseudoacacia) and with that of a South African bituminous coal. Stationary combustion tests were carried out at 850 0 C by feeding particles in the size range 0-1 mm into a bed of silica sand without any sorbent addition. The fluidized bed combustor has been operated, at a superficial gas velocity of 0.4 m/s and different excesses of air ranging between 14 and 98%. Relatively high combustion efficiency, larger than 98.9% has been obtained in experiments carried out with sewage sludge and excess of air larger than 20%. These values, are comparable with those obtained in previously experimental activity carried out under similar operative conditions with a South Africa Bituminous coal (97-98%). It is larger than those obtained by using a Tyre Derived Fuel (89-90%) and the Robinia Pseudoacacia Biomass (93-93%). The relative importance of carbon fines elutriation, CO emissions and volatile bypassing the bed in determining the loss of combustion efficiency has been evaluated for the different fuels tested [it

  20. Vermicompostagem de lodo de esgoto urbano e bagaço de cana-de-açúcar Vermicomposting of urban sewage sludge and sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos D. da Silva

    2002-12-01

    Full Text Available Com o objetivo de se avaliar alterações químicas no substrato orgânico no decorrer do processo de vermicompostagem de diferentes combinações de lodo de esgoto urbano (LEU com bagaço de cana-de-açúcar (BC, além de sua qualidade final como adubo orgânico, realizou-se um experimento em laboratório e campo. Os vermicompostos foram obtidos a partir dos tratamentos T1 = 150 kg de LEU; T2 = 121,6 kg de LEU + 97,30 kg de BC; T3 = 59 kg de LEU + 97,30 kg de BC; T4 = 35,5 kg de LEU + 97,30 kg de BC e T5 = 23,10 kg de LEU + 97,30 kg de BC. Para a realização do processo de vermicompostagem, foram utilizadas minhocas vermelhas-da-Califórnia (Eisenia fetida. As características químicas determinadas nos vermicompostos produzidos indicaram que os mesmos podem ser utilizados como adubo orgânico, principalmente no que se refere ao conteúdo de matéria orgânica, pH, relação C/N, concentração de nitrogênio e fósforo. As concentrações de metais pesados situaram-se abaixo dos limites de toxicidade, considerados pela legislação internacional. Aumento da proporção de LEU como substrato proporcionou aumento na concentração final de N, Ca e Mg, diminuídas de K.The purpose of the present study was to evaluate the chemical alterations in the substrate with time of the vermicomposting involving different combinations of urban sewage sludge (USS and sugarcane bagasse (SB, besides it's quality as organic fertilizer. The vermicomposts were obtained from the treatments T1= 150 kg of USS; T2 = 121.6 kg of USS + 97.30 kg of SB; T3 = 59 kg of USS + 97.30 kg of SB; T4 = 35.5 kg of USS + 97.30 kg of SB; T5= 23.10 kg of USS + 97.30 kg of SB. For the vermicomposting process, Red-California earthworm (Eisenia fetida was utilized. Chemical characteristics determined in the vermicomposts indicate that it can be used as organic fertilizer, mainly with regard to organic matter content, pH, C/N ratio, nitrogen and phosphorus levels. Heavy metal

  1. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite.

    Science.gov (United States)

    Alavi, Nadali; Daneshpajou, Monavvar; Shirmardi, Mohammad; Goudarzi, Gholamreza; Neisi, Abdolkazem; Babaei, Ali Akbar

    2017-11-01

    Fermentation of ethanol as a product of sugarcane agro-industry causes the discharge of large amounts of a liquid waste called vinasse into the environment. In this study, co-composting followed by vermicomposting process of the mixtures of vinasse, cow manure, and chopped bagasse was performed for 60days using earthworms of Eisenia fetida species. The results showed that the trend of changes in C/N was decreasing. The pH of the final fertilizer was in alkaline range (8.1-8.4). The total potassium decreased during the process, ranging from 0.062 to 0.15%, while the total phosphorus increased and its values ranged from 0.06 to 0.10%. The germination index (GI) for all samples was 100%, while the cellular respiration maturity index wascompost. The results of this study indicate that the compost obtained from the co-composting-vermicomposting process could be used as a sound soil amendment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multidimensional Scaling Visualization using Parametric Similarity Indices

    OpenAIRE

    Machado, J. A. Tenreiro; Lopes, António M.; Galhano, A.M.

    2015-01-01

    In this paper, we apply multidimensional scaling (MDS) and parametric similarity indices (PSI) in the analysis of complex systems (CS). Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, an...

  3. On similarity and scaling of the radiative transfer equation

    International Nuclear Information System (INIS)

    Mitrescu, C.; Stephens, G.L.

    2004-01-01

    The present paper shows how the well-known similarity and scaling concepts are properties of the radiative transfer equation and not specifically of the degree of anisotropy of the phase function. It is shown that the key assumption regarding the angular dependence of the radiative field is essential in determining both the value for the parameter used to scale the radiative transfer, as well as the number of streams used in calculating the radiances for various atmospheric problems. Simulations performed on realistic type of cirrus clouds, characterized by strongly anisotropic functions, demonstrates the superior computational advantage for accurately simulating radiances. A new approach for determining the scaling parameter is introduced

  4. Effect of vermicompost on soil fertility and crop productivity--beans (Phaseolus vulgaris).

    Science.gov (United States)

    Manivannan, S; Balamurugan, M; Parthasarathi, K; Gunasekaran, G; Ranganathan, L S

    2009-03-01

    Field experiments were conducted at Sivapuri, Chidambaram, Tamil Nadu to evaluate the efficacy of vermicompost, in comparison to inorganic fertilizers-NPK, on the physio-chemical and biological characteristics of the soils--clay loam soil (CLS) and sandy loam soil (SLS) and on the growth, yield and nutrient content of beans--Phaseolus vulgaris. Results showed that the application of vermicompost @ 5 tonnes ha(-1) had enhanced significantly the pore space (1.09 and 1.02 times), water holding capacity (1.1 and 1.3 times), cation exchange capacity (1.2 and 1.2 times). It reduced particles (1.2 and 1.2 times), and bulk density (1.2 and 1.2 times), pH (1 and 1.02 times) and electrical conductivity (1.4 and 1.2 times) and increased organic carbon (37 and 47 times), micro (Ca 3.07 and 1.9 times, Mg 1.6 and 1.6 times, Na 2.4 and 3.8 times, Fe 7 and 7.6 times, Mn 8.2 and 10.6 times, Zn 50 and 52 times and Cu 14 and 22 times) and macro (N 1.6 and 1.7 times, P 1.5 and 1.7 times, K 1.5 and 1.4 times) nutrients and microbial activity (1.4 and 1.5 times) in both soil types, particularly more in CLS. The growth, yield (1.6 times) and quality (protein (1.05 times) and sugar (1.01 times) content in seed) of bean were enhanced in CLS than SLS. On the other hand, the application of inorganic fertilizers @ 20:80:40 kg ha(-1) has resulted in reduced porosity (1.03 and 1.01 times), organic carbon (1.04 and 9.5 times) and microbial activity (1.02 and 1.03 times) in both soil types.

  5. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    Science.gov (United States)

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  6. Single and two-phase similarity analysis of a reduced-scale natural convection loop relative to a full-scale prototype

    International Nuclear Information System (INIS)

    Botelho, David A.; Faccini, Jose L.H.

    2002-01-01

    The main topic in this paper is a new device being considered to improve nuclear reactor safety employing the natural circulation. A scaled experiment used to demonstrate the performance of the device is also described. We also applied a similarity analysis method for single and two-phase natural convection loop flow to the IEN CCN experiment and to an APEX like experiment to verify the degree of similarity relative to a full-scale prototype like the AP600. Most of the CCN similarity numbers that represent important single and two-phase similarity conditions are comparable to the APEX like loop non-dimensional numbers calculated employing the same methodology. Despite the much smaller geometric, pressure, and power scales, we conclude that the IEN CCN has single and two-phase natural circulation similarity numbers that represent fairly well the full-scale prototype. even lacking most complementary primary and safety systems, this IEN circuit provided a much valid experience to develop human, experimental, and analytical resources, besides its utilization as a training tool. (author)

  7. Tests of peak flow scaling in simulated self-similar river networks

    Science.gov (United States)

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  8. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    Directory of Open Access Journals (Sweden)

    Julie Faverial

    Full Text Available Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  9. Multivariate Analysis of the Determinants of the End-Product Quality of Manure-Based Composts and Vermicomposts Using Bayesian Network Modelling.

    Science.gov (United States)

    Faverial, Julie; Cornet, Denis; Paul, Jacky; Sierra, Jorge

    2016-01-01

    Previous studies indicated that the quality of tropical composts is poorer than that of composts produced in temperate regions. The aim of this study was to test the type of manure, the use of co-composting with green waste, and the stabilization method for their ability to improve compost quality in the tropics. We produced 68 composts and vermicomposts that were analysed for their C, lignin and NPK contents throughout the composting process. Bayesian networks were used to assess the mechanisms controlling compost quality. The concentration effect, for C and lignin, and the initial blend quality, for NPK content, were the main factors affecting compost quality. Cattle manure composts presented the highest C and lignin contents, and poultry litter composts exhibited the highest NPK content. Co-composting improved quality by enhancing the concentration effect, which reduced the impact of C and nutrient losses. Vermicomposting did not improve compost quality; co-composting without earthworms thus appears to be a suitable stabilization method under the conditions of this study because it produced high quality composts and is easier to implement.

  10. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2010-10-15

    The objective of conducting experiments in a laboratory is to gain data that helps in designing and operating large-scale biological processes. However, the scale-up and design of industrial-scale biohydrogen production reactors is still uncertain. In this paper, an established and proven Eulerian-Eulerian computational fluid dynamics (CFD) model was employed to perform hydrodynamics assessments of an industrial-scale continuous stirred-tank reactor (CSTR) for biohydrogen production. The merits of the laboratory-scale CSTR and industrial-scale CSTR were compared and analyzed on the basis of CFD simulation. The outcomes demonstrated that there are many parameters that need to be optimized in the industrial-scale reactor, such as the velocity field and stagnation zone. According to the results of hydrodynamics evaluation, the structure of industrial-scale CSTR was optimized and the results are positive in terms of advancing the industrialization of biohydrogen production. (author)

  11. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    Science.gov (United States)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  12. Cometabolic biotreatment of TCE-contaminated groundwater: Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Jennings, H.L.; Lucero, A.J.; Strandberg, G.W.; Morris, M.I.; Palumbo, A.V.; Boerman, P.A.; Tyndall, R.L.

    1992-01-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system

  13. Laboratory-scale thyristor controlled series capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, J.; Ikeda, K.; Abe, M. [Kyoto University, Kyoto (Japan)

    1996-10-20

    This paper describes the results of an experimental study on the characteristics of a thyristor controlled series capacitor (TCSC). At present, there are two major thyristor controlled series compensation projects in the U.S.: the Kayenta ASC and the Slatt TCSC. However, there has been little operating experience and thus further understanding of the characteristics of TCSC is still to be sought. Therefore, a laboratory-scale TCSC was produced and installed in a laboratory power system. The impedance characteristics, waveshapes of voltages and currents in the TCSC circuit, and harmonics, for various thyristor firing angles, and insertion responses were measured and analyzed. In particular, effects of the size of the circuit components, i.e., parasitic resistance, additional damping resistance and series reactor, on the overall TCSC performances were investigated. The results were compared with EMTP simulations. 10 refs., 7 figs.

  14. Cometabolic biotreatment of TCE-contaminated groundwater - Laboratory and bench-scale development studies

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, T L; Palumbo, A V; Boerman, P A; Jennings, H L; Lucero, A J; Tyndall, R L; Strandberg, G W; Morris, M I [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1992-07-01

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system. (author)

  15. Optimization of laboratory scale production and purification of ...

    African Journals Online (AJOL)

    Microcystin content is however highly variable and optimised culture conditions are essential to produce viable yields of microcystin for purification. We describe the optimization of culture conditions and evaluation of various purification methods to enhance the yield of microcystin from laboratory scale culture.

  16. Earthworm: A Natural Ecofriendly Organism for Recycling of Organic Residues and Improvement of Soil Health by Vermicompost

    OpenAIRE

    Sanjeev Kumar Ambasta; Seema Kumari

    2013-01-01

    Vermicompost of agriculture waste is an important method in which organic waste such as leaves or stalks of agricultural field is converted into useful compost by means of worms is useful to the environment. Earthworm and microbes acts together and breaks down the complex organic matter of agricultural field and resulting material is rich in nutrients and oxygen. Composting is becoming an effective way to increase organic matter of soil. In addition to increasing organic matter of soil compos...

  17. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1998-12-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 v -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases

  18. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baity, F.W.

    1999-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝ n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ ∼ q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  19. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    International Nuclear Information System (INIS)

    Petty, C.C.; Luce, T.C.; Baker, D.R.

    2001-01-01

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like τ E ∝n 0.5 P -0.5 . H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling (χ∼q 2 ) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like τ E ∝ B -1 ρ -3.15 β 0.03 ν -0.42 q 95 -1.43 ∝ I 0.84 B 0.39 n 0.18 P -0.41 L 2.0 , which is similar to empirical scalings derived from global confinement databases. (author)

  20. Evaluation of Vermicompost and Nitrogen Biofertilizer Effects on Flowering Shoot Yield, Essential Oil and Mineral Uptake (N, P and K in Summer Savory (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haj Seyed Hadi

    2018-02-01

    Full Text Available Introduction Summer Savory (Satureia hortensis L. is the representative plants of Lamiaceae family, which has high significant nutritional and taste values. Its pharmacopoeial raw material is herb (Satureiae herba, which contains many different biologically active compounds beside essential oil and minerals like calcium, potassium, magnesium, iron, and zinc. Sustainable agricultural systems has became an important issue throughout the world. It is obvious that intensive cultivation has led to a rapid decline in organic matter and nutrient levels as well as affecting the physical soil properties . The biofertilizers practice (such as vermicompost and biological nitrogen fixing bacteria has been recognized for a long time as an effective means of improving the structure and fertility of the soil, increasing the microbial diversity, activity and population, improving the water storage capacity of soils and crop yield. Materials and Methods This investigation was conducted at agricultural research fields of RAN Company at Firouzkuh, Iran in 2015. Factorial experiment based on randomized complete blocks design with two factors and three replications were chosen as an experimental design. The factors were biological nitrogen fertilizer at three levels of Control, Nitroxine and Supernitroplus, and vermicompost at four levels 0, 5, 10 and 15 ton per hectare. Measured traits consisted of fresh and dry plant weight, flowering shoot yield, essential oil content, nitrogen, phosphorus and potassium percentage in aboveground shoots. All data were subjected to statistical analysis (one-way ANOVA using SAS software. Duncan’s multiple range test (DMRT at 5% probability level were performed to calculate means of comparison. Data were transformed when necessary before analysis to satisfy the assumptions of normality. Results and Discussion Results showed that the highest fresh and dry plant weight (41.10 and 12.93g/plant, respectively and essential oil content

  1. Laboratory scale production of glucose syrup by the enzymatic ...

    African Journals Online (AJOL)

    Jen

    Laboratory scale production of glucose syrup by the enzymatic ... The industrial processing of starch to glucose, maltose and dextrin involves gelatinization, ... due to non-availability of appropriate technology and industry to harness these into.

  2. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    Science.gov (United States)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  3. Test Production of Anti-Corrosive Paint in Laboratory Scale

    International Nuclear Information System (INIS)

    Thein Thein Win, Daw; Khin Aye Tint, Daw; Wai Min Than, Daw

    2003-02-01

    The main purpose of this project is to produce the anti-corrosive paint in laboratory scale. In these experiments, local raw materials, natural resin (shellac), pine oil, turpentine and ethyl alcohol wer applied basically. Laboratory trials were undrtaken to determine the suitablity of raw materials ane their composition for anti-corrosive paint manufacture.The results obtained show that the anti-corrosive paint from experiment No.(30) is suitable for steel plate and this is also considered commercially economics

  4. Fate of estrone in laboratory-scale constructed wetlands

    Science.gov (United States)

    A horizontal, subsurface, laboratory-scale constructed wetland (CW) consisting of four cells in series was used to determine the attenuation of the steroid hormone estrone (E1) present in animal wastewater. Liquid swine manure diluted 1:80 with farm pond water and dosed with [14C]E1 flowed through ...

  5. Laboratory-scale simulations with hydrated lime and organic ...

    African Journals Online (AJOL)

    Laboratory-scale simulations with hydrated lime and organic polymer to evaluate the effect of pre-chlorination on motile Ceratium hirundinella cells during ... When organic material is released from algal cells as a result of physical-chemical impacts on the cells, it may result in tasteand odour-related problems or the ...

  6. Examining Similarity Structure: Multidimensional Scaling and Related Approaches in Neuroimaging

    Directory of Open Access Journals (Sweden)

    Svetlana V. Shinkareva

    2013-01-01

    Full Text Available This paper covers similarity analyses, a subset of multivariate pattern analysis techniques that are based on similarity spaces defined by multivariate patterns. These techniques offer several advantages and complement other methods for brain data analyses, as they allow for comparison of representational structure across individuals, brain regions, and data acquisition methods. Particular attention is paid to multidimensional scaling and related approaches that yield spatial representations or provide methods for characterizing individual differences. We highlight unique contributions of these methods by reviewing recent applications to functional magnetic resonance imaging data and emphasize areas of caution in applying and interpreting similarity analysis methods.

  7. Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems.

    Science.gov (United States)

    Shackell, Nancy L; Fisher, Jonathan A D; Frank, Kenneth T; Lawton, Peter

    2012-01-01

    The spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic. Annually, similarities among communities decayed slowly with increasing geographic distance in this open system, but through time the decorrelation distance declined by 33%, concomitant with widespread reductions in biomass, body size, and community evenness. The decline in connectivity stemmed from an erosion of community similarity among local subregions separated by distances as small as 100 km. Larger fish, of the same species, contribute proportionally more viable offspring, so observed body size reductions will have affected maternal output. The cumulative effect of nonlinear maternal influences on egg/larval quality may have compromised the spatial scale of effective larval dispersal, which may account for the delayed recovery of certain member species. Our study adds strong support for using the spatial scale of similarity as an indicator of metacommunity stability both to understand the spatial impacts of exploitation and to refine how spatial structure is used in management plans.

  8. [Organic waste treatment by earthworm vermicomposting and larvae bioconversion: review and perspective].

    Science.gov (United States)

    Zhang, Zhi-jian; Liu, Meng; Zhu, Jun

    2013-05-01

    There is a growing attention on the environmental pollution and loss of potential regeneration of resources due to the poor handling of organic wastes, while earthworm vermicomposting and larvae bioconversion are well-known as two promising biotechnologies for sustainable wastes treatments, where earthworms or housefly larvae are employed to convert the organic wastes into humus like material, together with value-added worm product. Taken earthworm ( Eisenia foetida) and housefly larvae ( Musca domestica) as model species, this work illustrates fundamental definition and principle, operational process, technical mechanism, main factors, and bio-chemical features of organisms of these two technologies. Integrated with the physical and biochemical mechanisms, processes of biomass conversion, intestinal digestion, enzyme degradation and microflora decomposition are comprehensively reviewed on waste treatments with purposes of waste reduction, value-addition, and stabilization.

  9. INFLUENCE OF VERMICOMPOST ON THE PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES IN DIFFERENT TYPES OF SOIL ALONG WITH YIELD AND QUALITY OF THE PULSE CROP-BLACKGRAM

    Directory of Open Access Journals (Sweden)

    K. Parthasarathi, M. Balamurugan, L. S. Ranganathan

    2008-01-01

    Full Text Available Field experiments were conducted during 2002-2003 on clay loam, sandy loam and red loam soil at Sivapuri, Chidambaram, Tamil Nadu, to evaluate the efficacy of vermicompost on the physico-chemical and biological characteristics of the soils and on the yield and nutrient content of blackgram - Vigna mungo, in comparison to inorganic fertilizers nitrogen, phosphorous, potassium. Vermicompost had increased the pore space, reduced particle and bulk density, increased water holding capacity, cation exchange capacity, reduced pH and electrical conductivity, increased organic carbon content, available nitrogen, phosphorous, potassium and microbial population and activity in all the soil types, particularly clay loam. The yield and quality (protein and sugar content in seed of blackgram was enhanced in soils, particularly clay loam soil. On the contrary, the application of inorganic fertilizers has resulted in reduced porosity, compaction of soil, reduced carbon and reduced microbial activity.

  10. Effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some quantitative and qualitative characteristics of sesame (Sesamum indicum L. in a low input cropping system

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2016-03-01

    Full Text Available Introduction In recent years, by increasing human knowledge and using different technology on food production, human concerns have increased on safety of food products especially medicinal crops. In order to achieve healthy food production, application of ecological inputs such as organic and biological fertilizers are inevitable. Organic fertilizers are fertilizer compounds that contain one or more kinds of organic matter. They can improve the soil ability to hold water and nutrients. They create a beneficial environment for earthworms and microbial organisms that break the soil down into rich, fine humus (Motta & Magggiore, 2013. Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost can greatly enhance the physical structure of soil. The addition of compost may provide greater drought resistance and more efficient water utilization. Vermicompost is the final product of composting organic material using different types of worms, such as red wigglers or earthworms, to create a homogenized blend of decomposed vegetable and food waste, bedding materials and manure. Vermicompost helps store nutrients and keeps them safe from leaching and irrigation, functioning to balance hormones within plant physiology, and adding beneficial biology to soil (Raja Sekar & Karmegan, 2010. Mycorrhiza arbuscular fungi are other coexist microorganisms that improves soil fertility, nutrients cycling and agroecosystem health. Mycorrhizal fungi are the most abundant organisms in agricultural soils. Many researchers have pointed to the positive roles of mycorrhizal fungi on plants growth characteristics. Despite of many researches on the effect of organic and biological fertilizers on different crops, information on the effects of these fertilizers for many medicinal plants is scarce, therefore, in this study the effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some

  11. Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting.

    Science.gov (United States)

    Castillo, Jean Manuel; Nogales, Rogelio; Romero, Esperanza

    2014-02-28

    A hazardous contaminant, 3,4-dichloroaniline (DCA) is widespread in the environment due to its extensive use in the manufacture of chemicals and its application in different sectors. The ability of fungi grow on in winery wastes in the preconditioning period of vermicomposting to degrade DCA was investigated. Three filamentous fungi (F1, F2, and F3) were isolated and one identified as Aspergillus niger and two as Fusarium sp. strains. The culture media with the fungus alone or in consortium (Fmix) with DCA as the nitrogen source were analyzed by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC/MS). The fastest degradation rate was measured in Fmix with a DT50 of 0.85day(-1). Fusarium sp. and A. niger differed in the metabolism of DCA. Five metabolites were identified as a result of oxidation, co-denitrification, N-acetylation, and polymerization reactions. The major metabolites were 3,4-dichloroacetanilide and dichloroquinolines. The azo-metabolites tetrachloroazobenzene and tetracloroazoxybenzene and 3,4-dichloronitrobenzene were found in minor amounts but appeared to be the most persistent in the Fusarium cultures (half-lives ranging from 8.3 to 30.9 days). This study highlights the metabolic potential of microorganisms in the preconditioning period of the vermicomposting process and its possible application for in situ bioremediation strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    Science.gov (United States)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Source Code Analysis Laboratory (SCALe) for Energy Delivery Systems

    Science.gov (United States)

    2010-12-01

    technical competence for the type of tests and calibrations SCALe undertakes. Testing and calibration laboratories that comply with ISO / IEC 17025 ...and exec t [ ISO / IEC 2005]. f a software system indicates that the SCALe analysis di by a CERT secure coding standard. Successful conforma antees that...to be more secure than non- systems. However, no study has yet been performed to p t ssment in accordance with ISO / IEC 17000: “a demonstr g to a

  14. Agricultural use of compost and vermicomposts of municipal wastes: risk on soil and plants; Uso agricola de compost y vernicompost de basuras urbanas: riesgos sobre el suelo y la planta

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvaria, C.; Benitez, E.; Gallardo-Lara, F. [Estacion experimental del Zaidin, CSIC, Granada (Spain)

    1996-10-01

    High salinity and presence of high levels of heavy metals and organic pollutants in compost and vermicomposts from town refuse may constitute the main hazards concerning their agricultural use. 53 refs.

  15. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    Science.gov (United States)

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  16. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Are calanco landforms similar to river basins?

    Science.gov (United States)

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chemical and physicochemical characterization of vermicompost from bovine manure and evaluation of competitive adsorption of cadmium and lead; Caracterizacao quimica e fisico-quimica de vermicomposto de esterco bovino e avaliacao da adsorcao competitiva por cadmio e chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Lamim, Soraida Sozzi Miguel [Juiz de Fora Univ., MG (Brazil). Dept. de Quimica; Jordao, Claudio Pereira; Brune, Walter; Pereira, Jose Luis [Vicosa Univ., MG (Brazil). Dept. de Quimica

    1996-09-01

    The chemical and physicochemical characterization of vermicompost from bovine manure has been studied. It was examined the pH and cation exchangeable capacity (CTC), moistness, ash, organic carbon, total nitrogen, lignin, cellulose and metal concentrations, among other characteristics. The vermicompost was then applied to the retention and competition of metal pollutants (Cd and Pb) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was not relevant to each pH examined. (author) 46 refs., 4 figs., 7 tabs.

  19. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  20. Experimental Study of Drag Resistance using a Laboratory Scale Rotary Set-Up

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Olsen, Kenneth N.; Christoffersen, Martin W.

    2003-01-01

    This work covers an experimental study of the drag resistance of different painted surfaces and simulated large-scale irregularities, viz. dry spraying, weld seams, barnacle fouling and paint remains. A laboratory scale rotary set-up was used to determine the drag resistance, and the surface...

  1. Pilot scale, alpha disassembly and decontamination facility at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Cadieux, J.R.; Becker, G.W. Jr.; Richardson, G.W.; Coogler, A.L.

    1982-01-01

    An alpha-contained pilot facility is being built at the Savannah River Laboratory (SRL) for research into the disassembly and dcontamination of noncombustible, Transuranic (TRU) waste. The design and program objectives for the facility are presented along with the initial test results from laboratory scale decontamination experiments with Pu-238 and Cm-244

  2. Mechanical similarity as a generalization of scale symmetry

    International Nuclear Information System (INIS)

    Gozzi, E; Mauro, D

    2006-01-01

    In this paper, we study the symmetry known (Landau and Lifshits 1976 Course of Theoretical Physics vol 1: Mechanics (Oxford: Pergamon)) as mechanical similarity (LMS) and present for any monomial potential. We analyse it in the framework of the Koopman-von Neumann formulation of classical mechanics and prove that in this framework the LMS can be given a canonical implementation. We also show that the LMS is a generalization of the scale symmetry which is present only for the inverse square and a few other potentials. Finally, we study the main obstructions which one encounters in implementing the LMS at the quantum-mechanical level

  3. On the scale similarity in large eddy simulation. A proposal of a new model

    International Nuclear Information System (INIS)

    Pasero, E.; Cannata, G.; Gallerano, F.

    2004-01-01

    Among the most common LES models present in literature there are the Eddy Viscosity-type models. In these models the subgrid scale (SGS) stress tensor is related to the resolved strain rate tensor through a scalar eddy viscosity coefficient. These models are affected by three fundamental drawbacks: they are purely dissipative, i.e. they cannot account for back scatter; they assume that the principal axes of the resolved strain rate tensor and SGS stress tensor are aligned; and that a local balance exists between the SGS turbulent kinetic energy production and its dissipation. Scale similarity models (SSM) were created to overcome the drawbacks of eddy viscosity-type models. The SSM models, such as that of Bardina et al. and that of Liu et al., assume that scales adjacent in wave number space present similar hydrodynamic features. This similarity makes it possible to effectively relate the unresolved scales, represented by the modified Cross tensor and the modified Reynolds tensor, to the smallest resolved scales represented by the modified Leonard tensor] or by a term obtained through multiple filtering operations at different scales. The models of Bardina et al. and Liu et al. are affected, however, by a fundamental drawback: they are not dissipative enough, i.e they are not able to ensure a sufficient energy drain from the resolved scales of motion to the unresolved ones. In this paper it is shown that such a drawback is due to the fact that such models do not take into account the smallest unresolved scales where the most dissipation of turbulent SGS energy takes place. A new scale similarity LES model that is able to grant an adequate drain of energy from the resolved scales to the unresolved ones is presented. The SGS stress tensor is aligned with the modified Leonard tensor. The coefficient of proportionality is expressed in terms of the trace of the modified Leonard tensor and in terms of the SGS kinetic energy (computed by solving its balance equation). The

  4. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: A vermicompost based assessment with vegetable market waste and rice straw feed mixtures.

    Science.gov (United States)

    Hussain, Nazneen; Singh, Archana; Saha, Sougata; Venkata Satish Kumar, Mattaparthi; Bhattacharyya, Pradip; Bhattacharya, Satya Sundar

    2016-12-01

    Vermicomposting is a dependable waste recycling technology which greatly augments N and P levels mainly through microbial action. This paper aims to identify efficient N-fixing (NFB) and P-solubilizing (PSB) bacteria from earthworm intestines. Various combinations of vegetable market waste, rice straw, and cowdung were fed to two earthworm species (Eisenia fetida and Perionyx excavatus). Total organic C decreased, pH shifted towards neutrality, and NPK availability, and microbial (NFB, PSB, and total bacteria) population increased remarkably during vermicomposting with E. fetida. Therefore, 45 NFB and 34 PSB strains isolated from Eisenia gut were initially screened, their inter-dominance assessed, and 8 prolific strains were identified through 16SrRNA sequencing. Interestingly, two novel N-fixing strains of Kluyvera ascorbata emerged as an efficient biofertilizer candidate. Moreover, both N-fixing and P-solubilizing strains of Serratia and Bacillus were isolated from earthworm gut. All the isolated strains significantly improved soil health and facilitated crop growth as compared to commercial biofertilizers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation.

    Science.gov (United States)

    Bertucco, Alberto; Beraldi, Mariaelena; Sforza, Eleonora

    2014-08-01

    In this work, the production of Scenedesmus obliquus in a continuous flat-plate laboratory-scale photobioreactor (PBR) under alternated day-night cycles was tested both experimentally and theoretically. Variation of light intensity according to the four seasons of the year were simulated experimentally by a tunable LED lamp, and effects on microalgal growth and productivity were measured to evaluate the conversion efficiency of light energy into biomass during the different seasons. These results were used to validate a mathematical model for algae growth that can be applied to simulate a large-scale production unit, carried out in a flat-plate PBR of similar geometry. The cellular concentration in the PBR was calculated in both steady-state and transient conditions, and the value of the maintenance kinetic term was correlated to experimental profiles. The relevance of this parameter was finally outlined.

  6. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    Science.gov (United States)

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  7. Authentication scheme for routine verification of genetically similar laboratory colonies: a trial with Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Sutcliffe Alice C

    2009-10-01

    Full Text Available Abstract Background When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers". In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results. Results We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results. Conclusion These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains.

  8. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jerome [Laboratoire de Glaciologie et Geophysique de l' Environnement, CNRS, 54 rue Moliere, BP 96, 38402 St Martin d' Heres Cedex (France); Schulson, Erland M, E-mail: weiss@lgge.obs.ujf-grenoble.f, E-mail: Erland.M.Schulson@Dartmouth.ED [Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755 (United States)

    2009-11-07

    Coulombic faulting, a concept formulated more than two centuries ago, still remains pertinent in describing the brittle compressive failure of various materials, including rocks and ice. Many questions remain, however, about the physical processes underlying this macroscopic phenomenology. This paper reviews the progress made in these directions during the past few years through the study of ice and its mechanical behaviour in both the laboratory and the field. Fault triggering is associated with the formation of specific features called comb-cracks and involves frictional sliding at the micro(grain)-scale. Similar mechanisms are observed at geophysical scales within the sea ice cover. This scale-independent physics is expressed by the same Coulombic phenomenology from laboratory to geophysical scales, with a very similar internal friction coefficient ({mu} {approx} 0.8). On the other hand, the cohesion strongly decreases with increasing spatial scale, reflecting the role of stress concentrators on fault initiation. Strong similarities also exist between ice and other brittle materials such as rocks and minerals and between faulting of the sea ice cover and Earth's crust, arguing for the ubiquitous nature of the underlying physics.

  9. Skills training in laboratory and clerkship: connections, similarities, and differences

    Directory of Open Access Journals (Sweden)

    Berit Eika, MD, PhD

    2003-03-01

    Full Text Available Context: During the third semester of a 6 year long curriculum medical students train clinical skills in the skills laboratory (2 hours per week for 9 weeks as well as in an early, 8 week clinical clerkship at county hospitals. Objectives: to study students’ expectations and attitudes towards skills training in the skills laboratory and clerkship. Subjects: 126 medical students in their 3rd semester. Methods: During the fall of 2001 three consecutive, constructed questionnaires were distributed prior to laboratory training, following laboratory training but prior to clerkships, and following clerkships respectively. Results: Almost all (98% respondents found that training in skills laboratory improved the outcome of the early clerkship and 70% believed in transferability of skills from the laboratory setting to clerkship. Still, a majority (93% of students thought that the clerkship provided students with a better opportunity to learn clinical skills when compared to the skills laboratory. Skills training in laboratory as well as in clerkship motivated students for becoming doctors. Teachers in both settings were perceived as being committed to their teaching jobs, to demonstrate skills prior to practice, and to give students feed back with a small but significant more positive rating of the laboratory. Of the 22 skills that students had trained in the laboratory, a majority of students tried out skills associated with physical examination in the clerkship, whereas only a minority of students tried out more intimate skills. Female medical students tried significantly fewer skills during their clerkship compared to male students. Conclusions: Students believe that skills laboratory training prepare them for their subsequent early clerkship but favour the clerkship over the laboratory

  10. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  11. Parameters examination of a biosurfactant production at laboratory scale

    International Nuclear Information System (INIS)

    Rosero, Neira Gladys; Pimienta, Astrid Lorely; Dugarte, Fanny; Carvajal, Fredy Gonzalo

    2003-01-01

    This work presents the results obtained from the laboratory-scale experimentation for the optimization of production of rhamnolipid type biosurfactant in a batch process, through the calculation and analysis of yield parameters. Different carbon/nitrogen ratios were studied, for which the production rates of rhamnolipid under nitrogen limitation was defined. Bacterial growth yield parameters Y X/N and Y X/C , were also calculated

  12. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William; Dietiker, Jean-François; Li, Tingwen; Sarkar, Avik; Sun, Xin

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of their inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.

  13. Experiment using laboratory scale extruder. Fluid behavior in twin-screw extruder

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Miura, Akihiko

    1999-09-01

    All evidences and chemical data suggest non-chemical heating mechanism raised the filling temperature of the bituminized product. But they indicate the filling temperature was higher than before at the incident. We estimated the physical heat mechanism in the extruder. It is well known that the viscous-heating occurs in mixing process in extruders. In order to confirm the behavior of the torque and temperature, some experiment using laboratory scale extruder were performed. The result of the experiment using laboratory scale extruder showed that the phenomena of salt enrichment and salt accumulation were observed and they raised mixture temperature at the decreased feed rate. These phenomena depend on the feed rate. It is considered that they have large contribution to heat transportation and operational torque due to the friction between screw and mixture. In this report, all experiment result are explained. (author)

  14. A comprehensive field and laboratory study of scale control and scale squeezes in Sumatra, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Reizer, J.M.; Sitz, C.D. [Champion Technologies, Inc., Houston, TX (United States); Setia, D.E.A. [FMT Production Duri P.T. Caltex Pacific Indonesia (Indonesia); Hinrichsen, C.J. [Texaco Panama, Bellaire, TX (United States); Sujana, W. [P.T. Champion Kumia Djaja Technologies, Jakarta (Indonesia)

    1999-11-01

    Scale squeezes were performed on thirteen wells in the Duri Field, Sumatra. At the time the squeezes were completed, seven were designed to be `Acid Squeezes` and six were designed to be `Neutral Squeezes.` In the course of preparing for the scale squeezes, produced waters were collected and analyzed. In addition, scale inhibitor evaluations, and inhibitor compatibility studies were completed. Simulated squeezes were done in the laboratory to predict field performance. The methodologies and results of the background work are reported. In addition, the relative effectiveness of the two sets of squeezes is discussed. The inhibitor flowback concentrations alter the squeezes, in all cases, can be explained using speciation chemistry and the amorphous and crystalline phase solubilities of the inhibitor used. The wells squeezed with a more acidic inhibitor have more predictable and uniform inhibitor return concentration curves than the wells squeezed with a more neutral scale inhibitor.

  15. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  16. Emissions from waste combustion. An application of statistical experimental design in a laboratory-scale boiler and an investigation from large-scale incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojing, Zhang

    1997-05-01

    The aim of this thesis is a study of the emissions from the combustion of household refuse. The experiments were both on a laboratory-scale boiler and on full-scale incineration plants. In the laboratory, an artificial household refuse with known composition was fed into a pilot boiler with a stationary grate. Combustion was under non-optimum conditions. Direct sampling with a Tenax adsorbent was used to measure a range of VOCs. Measurements were also made of incompletely burnt hydrocarbons, carbon monoxide, carbon dioxide, oxygen and flue gas temperature. Combustion and emission parameters were recorded continuously by a multi-point data logger. VOCs were analysed by gas chromatography and mass spectrometry (GC/MS). The full-scale tests were on seven Swedish incineration plants. The data were used to evaluate the emissions from large-scale incineration plants with various type of fuels and incinerators, and were also compared with the laboratory results. The response surface model developed from the laboratory experiments was also validated. This thesis also includes studies on the gasification of household refuse pellets, estimations of particulate and soot emissions, and a thermodynamic analysis of PAHs from combustion flue gas. For pellet gasification, experiments were performed on single, well characterised refuse pellets under carefully controlled conditions. The aim was to see if the effects of pellets were different from those of untreated household refuse. The results from both laboratory and full-scale tests showed that the main contributions to emissions from household refuse are plastics and moisture. 142 refs, 82 figs, 51 tabs

  17. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C D; Chandler, N A; Brown, Anton

    1994-09-01

    The potential for large-scale fracturing (> 10 m{sup 2}) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to {sigma}{sub 3} and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because {sigma}{sub 3} is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs.

  18. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    International Nuclear Information System (INIS)

    Martin, C.D.; Chandler, N.A.; Brown, Anton.

    1994-09-01

    The potential for large-scale fracturing (> 10 m 2 ) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to σ 3 and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because σ 3 is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs

  19. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Science.gov (United States)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  20. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    International Nuclear Information System (INIS)

    2014-01-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  1. Multidimensional Scaling Visualization Using Parametric Similarity Indices

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2015-03-01

    Full Text Available In this paper, we apply multidimensional scaling (MDS and parametric similarity indices (PSI in the analysis of complex systems (CS. Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a globalMDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, theMinkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.

  2. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  3. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    Science.gov (United States)

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  4. Development of indigenous laboratory scale gas atomizer for producing metal powders

    International Nuclear Information System (INIS)

    Khan, K.K.; Qasim, A.M.; Ahmed, P.

    2011-01-01

    Gas atomization is one of the methods for production of clean metal powders at relatively moderate cost. A laboratory scale gas atomizer was designed and fabricated indigenously to produce metal powders with a batch capacity of 500 g of copper (Cu). The design includes several features regarding fabrication and operation to provide optimum conditions for atomization. The inner diameter of atomizing chamber is 440 mm and its height is 1200 mm. The atomizing nozzle is of annular confined convergent type with an angle of 25 degree. Argon gas at desired pressure has been used for atomizing the metals to produce relatively clean powders. A provision has also been made to view the atomization process. The indigenous laboratory scale gas atomizer was used to produce tin (Sn) and copper (Cu) powders with different atomizing gas pressures ranging from 2 to 10 bar. The particle size of different powders produced ranges from 40 to 400 im. (author)

  5. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  6. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  7. Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.

    Science.gov (United States)

    Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U

    2017-08-01

    Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, 1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under

  8. Principles, equipment, and operation of two laboratory scale biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.C.

    1979-10-01

    The major factors influencing the rate and efficiency of biogas production, which include type of substrate, carbon to nitrogen ratio, temperature, pH, agitation, influent solids concentration, and organic loading rate, are briefly discussed. Two laboratory scale biodigesters are described in detail. One system is a simple, batch biodigester with a water displacement gas collector. The second system uses an anaerobic filter technique which can reduce the overall digestion time of fresh plant material up to 75%.

  9. Scaling of peak flows with constant flow velocity in random self-similar networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios

  10. Heap leach studies on the removal of uranium from soil. Report of laboratory-scale test results

    Energy Technology Data Exchange (ETDEWEB)

    Turney, W.R.J.R.; York, D.A.; Mason, C.F.V.; Chisholm-Brause, C.J.; Dander, D.C.; Longmire, P.A.; Morris, D.E.; Strait, R.K.; Brewer, J.S.

    1994-05-01

    This report details the initial results of laboratory-scale testing of heap leach that is being developed as a method for removing uranium from uranium-contaminated soil. The soil used was obtained from the site of the Feed Materials Production Center (FMPC) near the village of Fernald in Ohio. The testing is being conducted on a laboratory scale, but it is intended that this methodology will eventually be enlarged to field scale where, millions of cubic meters of uranium-contaminated soil can be remediated. The laboratory scale experiments show that, using carbonate/bicarbonate solutions, uranium can be effectively removed from the soil from initial values of around 600 ppM down to 100 ppM or less. The goal of this research is to selectively remove uranium from the contaminated soil, without causing serious changes in the characteristics of the soil. It is also hoped that the new technologies developed for soil remediation at FEMP will be transferred to other sites that also have uranium-contaminated soil.

  11. EFRT M-12 Issue Resolution: Caustic-Leach Rate Constants from PEP and Laboratory-Scale Tests

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Rassat, Scot D.; Eslinger, Paul W.; Aaberg, Rosanne L.; Aker, Pamela M.; Golovich, Elizabeth C.; Hanson, Brady D.; Hausmann, Tom S.; Huckaby, James L.; Kurath, Dean E.; Minette, Michael J.; Sundaram, S. K.; Yokuda, Satoru T.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. The work described in this report addresses caustic leaching under WTP conditions, based on tests performed with a Hanford waste simulant. Because gibbsite leaching kinetics are rapid (gibbsite is expected to be dissolved by the time the final leach temperature is reached), boehmite leach kinetics are the main focus of the caustic-leach tests. The tests were completed at the laboratory-scale and in the PEP, which is a 1/4.5-scale mock-up of key PTF process equipment. Two laboratory-scale caustic-leach tests were performed for each of the PEP runs. For each PEP run, unleached slurry was taken from the PEP caustic-leach vessel for one batch and used as feed for both of the corresponding laboratory-scale tests.

  12. Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.

    Science.gov (United States)

    Sharma, A S; Moarref, R; McKeon, B J

    2017-03-13

    Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  13. Design and installation of a laboratory-scale system for radioactive waste treatment

    International Nuclear Information System (INIS)

    Berger, D.N.; Knox, C.A.; Siemens, D.H.

    1980-05-01

    Described are the mechanical design features and remote installation of a laboratory-scale radiochemical immobilization system which is to provide a means at Pacific Northwest Laboratory of studying effluents generated during solidification of high-level liquid radioactive waste. Detailed are the hot cell, instrumentation, two 4-in. and 12-in. service racks, the immobilization system modules - waste feed, spray calciner unit, and effluent - and a gamma emission monitor system for viewing calcine powder buildup in the spray calciner/in-can melter

  14. Properties of slate mining wastes incubated with grape marc compost under laboratory conditions.

    Science.gov (United States)

    Paradelo, Remigio; Moldes, Ana Belén; Barral, María Teresa

    2009-02-01

    The effect of the addition of spent grape marc compost (GMC) and vermicompost (GMV) as amendments to slate mining wastes was evaluated in a laboratory incubation experiment. Mixtures of slate processing fines (SPF), with three doses of each amendment (4%, 8% and 16% compost, dry weight), plus a control were incubated at 25 degrees C in the laboratory for 90 days. The changes in the chemical and biological properties of the mixtures (pH, total C, total N, inorganic N, available nutrients, microbial biomass carbon and dehydrogenase activity) were investigated during the incubation period, and once it was finished, the phytotoxicity of the mixtures was determined by the germination of Lolium multiflorum Lam. seeds. The addition of the amendments significantly increased the nutrient concentrations of the SPF and enhanced biological activity by increasing microbial biomass and enzymatic activity. Results improved with higher doses; within the composts, GMV showed a better performance than GMC. These results prove the suitability of grape marc-derived amendments for the biochemical amelioration of mining wastes, and highlight the benefits of organic amendment in restoration projects.

  15. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  16. Self-similar pattern formation and continuous mechanics of self-similar systems

    Directory of Open Access Journals (Sweden)

    A. V. Dyskin

    2007-01-01

    Full Text Available In many cases, the critical state of systems that reached the threshold is characterised by self-similar pattern formation. We produce an example of pattern formation of this kind – formation of self-similar distribution of interacting fractures. Their formation starts with the crack growth due to the action of stress fluctuations. It is shown that even when the fluctuations have zero average the cracks generated by them could grow far beyond the scale of stress fluctuations. Further development of the fracture system is controlled by crack interaction leading to the emergence of self-similar crack distributions. As a result, the medium with fractures becomes discontinuous at any scale. We develop a continuum fractal mechanics to model its physical behaviour. We introduce a continuous sequence of continua of increasing scales covering this range of scales. The continuum of each scale is specified by the representative averaging volume elements of the corresponding size. These elements determine the resolution of the continuum. Each continuum hides the cracks of scales smaller than the volume element size while larger fractures are modelled explicitly. Using the developed formalism we investigate the stability of self-similar crack distributions with respect to crack growth and show that while the self-similar distribution of isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the isotropically oriented cracks scaling of permeability is determined. For permeable materials (rocks with self-similar crack distributions permeability scales as cube of crack radius. This property could be used for detecting this specific mechanism of formation of self-similar crack distributions.

  17. Improving laboratory efficiencies to scale-up HIV viral load testing.

    Science.gov (United States)

    Alemnji, George; Onyebujoh, Philip; Nkengasong, John N

    2017-03-01

    Viral load measurement is a key indicator that determines patients' response to treatment and risk for disease progression. Efforts are ongoing in different countries to scale-up access to viral load testing to meet the Joint United Nations Programme on HIV and AIDS target of achieving 90% viral suppression among HIV-infected patients receiving antiretroviral therapy. However, the impact of these initiatives may be challenged by increased inefficiencies along the viral load testing spectrum. This will translate to increased costs and ineffectiveness of scale-up approaches. This review describes different parameters that could be addressed across the viral load testing spectrum aimed at improving efficiencies and utilizing test results for patient management. Though progress is being made in some countries to scale-up viral load, many others still face numerous challenges that may affect scale-up efficiencies: weak demand creation, ineffective supply chain management systems; poor specimen referral systems; inadequate data and quality management systems; and weak laboratory-clinical interface leading to diminished uptake of test results. In scaling up access to viral load testing, there should be a renewed focus to address efficiencies across the entire spectrum, including factors related to access, uptake, and impact of test results.

  18. Laboratory Modelling of Volcano Plumbing Systems: a review

    Science.gov (United States)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  19. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  20. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  1. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  2. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater.

    Science.gov (United States)

    Colleran, E; Pender, S; Philpott, U; O'Flaherty, V; Leahy, B

    1998-01-01

    This paper reviews the operation of a full-scale, fixed-bed digester treating a citric acid production wastewater with a COD:sulphate ratio of 3-4:1. Support matrix pieces were removed from the digester at intervals during the first 5 years of operation in order to quantify the vertical distribution of biomass within the digester. Detailed analysis of the digester biomass after 5 years of operation indicated that H2 and propionate-utilising SRB had outcompeted hydrogenophilic methanogens and propionate syntrophs. Acetoclastic methanogens were shown to play the dominant role in acetate conversion. Butyrate and ethanol-degrading syntrophs also remained active in the digester after 5 years of operation. Laboratory-scale hybrid reactor treatment at 55 degrees C of a diluted molasses influent, with and without sulphate supplementation, showed that the reactors could be operated with high stability at volumetric loading rates of 24 kgCOD.m-3.d-1 (12 h HRT). In the presence of sulphate (2 g/l-1; COD/sulphate ratio of 6:1), acetate conversion was severely inhibited, resulting in effluent acetate concentrations of up to 4000 mg.l-1.

  3. Combustion of biodiesel in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    Pereira, Caio; Wang, Gongliang; Costa, Mário

    2014-01-01

    Combustion tests in a large-scale laboratory furnace were carried out to assess the feasibility of using biodiesel as a fuel in industrial furnaces. For comparison purposes, petroleum-based diesel was also used as a fuel. Initially, the performance of the commercial air-assisted atomizer used in the combustion tests was scrutinized under non-reacting conditions. Subsequently, flue gas data, including PM (particulate matter), were obtained for various flame conditions to quantify the effects of the atomization quality and excess air on combustion performance. The combustion data was complemented with in-flame temperature measurements for two representative furnace operating conditions. The results reveal that (i) CO emissions from biodiesel and diesel combustion are rather similar and not affected by the atomization quality; (ii) NO x emissions increase slightly as spray quality improves for both liquid fuels, but NO x emissions from biodiesel combustion are always lower than those from diesel combustion; (iii) CO emissions decrease rapidly for both liquid fuels as the excess air level increases up to an O 2 concentration in the flue gas of 2%, beyond which they remain unchanged; (iv) NO x emissions increase with an increase in the excess air level for both liquid fuels; (v) the quality of the atomization has a significant impact on PM emissions, with the diesel combustion yielding significantly higher PM emissions than biodiesel combustion; and (vi) diesel combustion originates PM with elements such as Cr, Na, Ni and Pb, while biodiesel combustion produces PM with elements such as Ca, Mg and Fe. - Highlights: • CO emissions from biodiesel and diesel tested are similar. • NO x emissions from biodiesel tested are lower than those from diesel tested. • Diesel tested yields significantly higher PM (particulate matter) emissions than biodiesel tested. • Diesel tested originates PM with Cr, Na, Ni and Pb, while biodiesel tested produces PM with Ca, Mg and Fe

  4. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Science.gov (United States)

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  5. On the dominant noise components of tactical aircraft: Laboratory to full scale

    Science.gov (United States)

    Tam, Christopher K. W.; Aubert, Allan C.; Spyropoulos, John T.; Powers, Russell W.

    2018-05-01

    This paper investigates the dominant noise components of a full-scale high performance tactical aircraft. The present study uses acoustic measurements of the exhaust jet from a single General Electric F414-400 turbofan engine installed in a Boeing F/A-18E Super Hornet aircraft operating from flight idle to maximum afterburner. The full-scale measurements are to the ANSI S12.75-2012 standard employing about 200 microphones. By comparing measured noise spectra with those from hot supersonic jets observed in the laboratory, the dominant noise components specific to the F/A-18E aircraft at different operating power levels are identified. At intermediate power, it is found that the dominant noise components of an F/A-18E aircraft are essentially the same as those of high temperature supersonic laboratory jets. However, at military and afterburner powers, there are new dominant noise components. Their characteristics are then documented and analyzed. This is followed by an investigation of their origin and noise generation mechanisms.

  6. Pengaruh Pemberian Vermikompos dan Biochar Jerami Padi terhadap Sifat Biologi Tanah dan Kapasitas Menyimpan Air pada Tanah Ultisol

    OpenAIRE

    Ramadhan, Azhari

    2016-01-01

    Soil biology and soil water holding capacity is an important aspect in determining the health of the soil. Giving vermicompost and paddy straw biochar can affect the biological properties of the soil and ultisol soil water holding capacity. This study aimed to determine the effect of vermicompost and paddy straw biochar on biological properties of the soil and the ultisol water holding capacity. The research was conducted in the laboratory. This research used randomized block design with one ...

  7. Fully predictive simulation of real-scale cable tray fire based on small-scale laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beji, Tarek; Merci, Bart [Ghent Univ. (Belgium). Dept. of Flow, Heat and Combustion Mechanics; Bonte, Frederick [Bel V, Brussels (Belgium)

    2015-12-15

    This paper presents a computational fluid dynamics (CFD)-based modelling strategy for real-scale cable tray fires. The challenge was to perform fully predictive simulations (that could be called 'blind' simulations) using solely information from laboratory-scale experiments, in addition to the geometrical arrangement of the cables. The results of the latter experiments were used (1) to construct the fuel molecule and the chemical reaction for combustion, and (2) to estimate the overall pyrolysis and burning behaviour. More particularly, the strategy regarding the second point consists of adopting a surface-based pyrolysis model. Since the burning behaviour of each cable could not be tracked individually (due to computational constraints), 'groups' of cables were modelled with an overall cable surface area equal to the actual value. The results obtained for one large-scale test (a stack of five horizontal trays) are quite encouraging, especially for the peak Heat Release Rate (HRR) that was predicted with a relative deviation of 3 %. The time to reach the peak is however overestimated by 4.7 min (i.e. 94 %). Also, the fire duration is overestimated by 5 min (i.e. 24 %). These discrepancies are mainly attributed to differences in the HRRPUA (heat release rate per unit area) profiles between the small-scale and large-scale. The latter was calculated by estimating the burning area of cables using video fire analysis (VFA).

  8. Distribuição e caracterização de substâncias húmicas em vermicompostos de origem animal e vegetal Distribution and characterization of humic substances in animal and plant vermicompost

    Directory of Open Access Journals (Sweden)

    Rosa Maria Vargas Castilhos

    2008-12-01

    Full Text Available A utilização de resíduos orgânicos, como fertilizantes e condicionadores de solo, requer sua maturação e monitoramento da qualidade do material resultante. A vermicompostagem é uma técnica que, ao longo do processo, elimina os potenciais efeitos adversos dos resíduos à saúde humana e ao solo. A avaliação das substâncias húmicas (SH nos produtos finais quanto à quantidade e à qualidade permite inferir sobre o grau de estabilidade e maturidade dos vermicompostos. Este trabalho objetivou avaliar a qualidade de seis vermicompostos das seguintes matérias-primas: esterco bovino (EB, esterco ovino (EO, esterco suíno (ES, esterco de codorna (EC, borra de café (BC e de erva-mate (BE com respeito ao teor de ácidos húmicos (AH e de ácidos fúlvicos (AF e às suas características químicas, após 70 dias de compostagem. O fracionamento químico da matéria orgânica foi realizado com base na solubilidade em meio básico e ácido e a distribuição de cada fração calculada como percentual do C total. Foram calculados os índices de humificação: percentual de AH e razão AH/AF. Nos AH e AF purificados, determinaram-se a composição elementar (CHNO, a composição química por espectroscopia de infravermelho com transformada de Fourier (FTIR e o índice de aromaticidade I1630/I2920. O teor de substâncias húmicas (AH+AF decresceu na seqüência: BC > EO≈ BE≈ EB > ES > EC, tendo sua composição química também diferido entre os vermicompostos. O grau de maturidade foi superior nos vermicompostos de resíduos de origem vegetal (borra de café e de erva-mate. Os AH desses dois vermicompostos apresentaram menor proporção de grupos oxigenados e menor caráter aromático.The use of organic residues as fertilizers and soil conditioners requires their maturation and the quality monitoring of the final product. Vermicomposting is a technique which, along with the composting process, eliminates the potential harmful effect of manure

  9. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    International Nuclear Information System (INIS)

    Jackson, R.E.; Fountain, J.C.

    1994-01-01

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well

  10. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  11. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: I - efeito da concentração Improving lettuce seedling root growth and ATP hydrolysis with humates from vermicompost: I - effect of vermicompost concentration

    Directory of Open Access Journals (Sweden)

    Maria Rita Cardoso Rodda

    2006-08-01

    Full Text Available O vermicomposto contém uma concentração elevada de substâncias húmicas e já é bem conhecido o efeito do seu uso sobre as propriedades do solo. No entanto, a ação direta das substâncias húmicas sobre o metabolismo das plantas é menos conhecida. O objetivo deste trabalho foi avaliar o uso de humatos extraídos de vermicomposto de esterco de curral com KOH 0,1 mol L-1 sobre o desenvolvimento e metabolismo de ATP em plântulas de alface. Após a germinação, plântulas de alface foram tratadas com os humatos em concentrações que variaram de 0 a 100 mg L-1 de C, durante quinze dias. Foram avaliados o crescimento da raiz e a atividade das bombas de H+ isoladas da fração microssomal do sistema radicular. Foi observado aumento na matéria fresca e seca do sistema radicular, bem como no número de sítios de mitose, raízes emergidas do eixo principal, na área e no comprimento radiculares, com o uso do humato na concentração de 25 mg L-1 de C. Também foi observado, nessa concentração, aumento significativo na hidrólise de ATP pelas bombas de H+, responsáveis pela geração de energia necessária à absorção de íons e pelo crescimento celular.Vermicomposts present a high content of humic substances and their effects on soil properties are well-documented. However, direct effects of humic substances on plant metabolism are less known. The aim of this work was to evaluate the use of humates isolated from cattle manure vermicompost with 0.1 mol L-1 KOH on root growth and ATP metabolism of lettuce seedlings. After germination, lettuce seedlings were treated with different humate concentrations (0 to 100 mg L-1 of C for 15 days. The root growth and the H+-ATPase activity of root cell microsomes isolated by differential centrifugation were evaluated. The humate treatment, at the concentration of 25 mg L-1 of C, increased fresh and dry root mass as well as root area and total length. Also there was a large increase in the number of

  12. Reactor similarity for plasma–material interactions in scaled-down tokamaks as the basis for the Vulcan conceptual design

    International Nuclear Information System (INIS)

    Whyte, D.G.; Olynyk, G.M.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Hartwig, Z.S.; Mumgaard, R.T.; Podpaly, Y.A.

    2012-01-01

    Highlights: ► Discussion of similarity scalings for reduced-size tokamaks. ► Proposal of a new set of scaling laws for divertor similarity. ► Discussion of how the new scaling provides fidelity to a reactor. ► The new scaling is used as the basis for the Vulcan conceptual design. - Abstract: Dimensionless parameter scaling techniques are a powerful tool in the study of complex physical systems, especially in tokamak fusion experiments where the cost of full-size devices is high. It is proposed that dimensionless similarity be used to study in a small-scale device the coupled issues of the scrape-off layer (SOL) plasma, plasma–material interactions (PMI), and the plasma-facing material (PFM) response expected in a tokamak fusion reactor. Complete similarity is not possible in a reduced-size device. In addition, “hard” technological limits on the achievable magnetic field and peak heat flux, as well as the necessity to produce non-inductive scenarios, must be taken into account. A practical approach is advocated, in which the most important dimensionless parameters are matched to a reactor in the reduced-size device, while relaxing those parameters which are far from a threshold in behavior. “Hard” technological limits are avoided, so that the reduced-size device is technologically feasible. A criticism on these grounds is offered of the “P/R” model, in which the ratio of power crossing the last closed flux surface (LCFS), P, to the device major radius, R, is held constant. A new set of scaling rules, referred to as the “P/S” scaling (where S is the LCFS area) or the “PMI” scaling, is proposed: (i) non-inductive, steady-state operation; (ii) P is scaled with R 2 so that LCFS areal power flux P/S is constant; (iii) magnetic field B constant; (iv) geometry (elongation, safety factor q * , etc.) constant; (v) volume-averaged core density scaled as n≈n ¯ e ∼R −2/7 ; and (vi) ambient wall material temperature T W,0 constant. It is

  13. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    International Nuclear Information System (INIS)

    Singh, Akanksha; Jain, Akansha; Sarma, Birinchi K.; Abhilash, P.C.; Singh, Harikesh B.

    2013-01-01

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC

  14. Solid waste management of temple floral offerings by vermicomposting using Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Akanksha, E-mail: bhuaks29@gmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Jain, Akansha, E-mail: akansha007@rediffmail.com [Department of Botany, Banaras Hindu University, Varanasi 221 005 (India); Sarma, Birinchi K., E-mail: birinchi_ks@yahoo.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India); Abhilash, P.C., E-mail: pca.iesd@bhu.ac.in [Institute for Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005 (India); Singh, Harikesh B., E-mail: hbs1@rediffmail.com [Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221 005 (India)

    2013-05-15

    Highlights: ► Effective management of temple floral offerings using E. fetida. ► Physico-chemical properties in TW VC were better especially EC, C/N, C/P and TK. ► TW VC as plant growth promoter at much lower application rates than KW and FYW VC. - Abstract: Recycling of temple waste (TW) mainly comprising of floral offerings was done through vermitechnology using Eisenia fetida and its impact on seed germination and plant growth parameters was studied by comparing with kitchen waste (KW) and farmyard waste (FYW) vermicompost (VC). The worm biomass was found to be maximum in TW VC compared to KW and FYW VCs at both 40 and 120 days old VCs. Physico-chemical analysis of worm-worked substrates showed better results in TW VC especially in terms of electrical conductivity, C/N, C/P and TK. 10% TW VC–water extract (VCE) showed stimulatory effect on germination percentage of chickpea seeds while KW and FYW VCE proved effective at higher concentration. Variation in growth parameters was also observed with change in the VC–soil ratio and TW VC showed enhanced shoot length, root length, number of secondary roots and total biomass at 12.5% VC compared to KW and FYW VC.

  15. Laboratory-scale sodium-carbonate aggregate concrete interactions

    International Nuclear Information System (INIS)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600 0 C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30 0 C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10 0 C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na 2 CO 3 , Na 2 O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients

  16. Scaling similarities of multiple fracturing of solid materials

    Directory of Open Access Journals (Sweden)

    P. G. Kapiris

    2004-01-01

    Full Text Available It has recently reported that electromagnetic flashes of low-energy -rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002. The neutron starquakes may release strain energies up to erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998.

  17. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  18. Laboratory and field scale demonstration of reactive barrier systems

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Marozas, D.C.; Cantrell, K.; Stewart, W.

    1996-10-01

    In an effort to devise a cost efficient technology for remediation of uranium contaminated groundwater, the Department of Energy's Uranium Mill Tailings Remedial Action (DOE-UMTRA) Program through Sandia National Laboratories (SNL) fabricated a pilot scale research project utilizing reactive subsurface barriers at an UMTRA site in Durango, Colorado. A reactive subsurface barrier is produced by placing a reactant material (in this experiment, metallic iron) in the flow path of the contaminated groundwater. The reactive media then removes and/or transforms the contaminant(s) to regulatory acceptable levels. Experimental design and results are discussed with regard to other potential applications of reactive barrier remediation strategies at other sites with contaminated groundwater problems

  19. Similarity from multi-dimensional scaling: solving the accuracy and diversity dilemma in information filtering.

    Directory of Open Access Journals (Sweden)

    Wei Zeng

    Full Text Available Recommender systems are designed to assist individual users to navigate through the rapidly growing amount of information. One of the most successful recommendation techniques is the collaborative filtering, which has been extensively investigated and has already found wide applications in e-commerce. One of challenges in this algorithm is how to accurately quantify the similarities of user pairs and item pairs. In this paper, we employ the multidimensional scaling (MDS method to measure the similarities between nodes in user-item bipartite networks. The MDS method can extract the essential similarity information from the networks by smoothing out noise, which provides a graphical display of the structure of the networks. With the similarity measured from MDS, we find that the item-based collaborative filtering algorithm can outperform the diffusion-based recommendation algorithms. Moreover, we show that this method tends to recommend unpopular items and increase the global diversification of the networks in long term.

  20. Similarity from multi-dimensional scaling: solving the accuracy and diversity dilemma in information filtering.

    Science.gov (United States)

    Zeng, Wei; Zeng, An; Liu, Hao; Shang, Ming-Sheng; Zhang, Yi-Cheng

    2014-01-01

    Recommender systems are designed to assist individual users to navigate through the rapidly growing amount of information. One of the most successful recommendation techniques is the collaborative filtering, which has been extensively investigated and has already found wide applications in e-commerce. One of challenges in this algorithm is how to accurately quantify the similarities of user pairs and item pairs. In this paper, we employ the multidimensional scaling (MDS) method to measure the similarities between nodes in user-item bipartite networks. The MDS method can extract the essential similarity information from the networks by smoothing out noise, which provides a graphical display of the structure of the networks. With the similarity measured from MDS, we find that the item-based collaborative filtering algorithm can outperform the diffusion-based recommendation algorithms. Moreover, we show that this method tends to recommend unpopular items and increase the global diversification of the networks in long term.

  1. Compressional Alfven Eigenmode Similarity Study

    Science.gov (United States)

    Heidbrink, W. W.; Fredrickson, E. D.; Gorelenkov, N. N.; Rhodes, T. L.

    2004-11-01

    NSTX and DIII-D are nearly ideal for Alfven eigenmode (AE) similarity experiments, having similar neutral beams, fast-ion to Alfven speed v_f/v_A, fast-ion pressure, and shape of the plasma, but with a factor of 2 difference in the major radius. Toroidicity-induced AE with ˜100 kHz frequencies were compared in an earlier study [1]; this paper focuses on higher frequency AE with f ˜ 1 MHz. Compressional AE (CAE) on NSTX have a polarization, dependence on the fast-ion distribution function, frequency scaling, and low-frequency limit that are qualitatively consistent with CAE theory [2]. Global AE (GAE) are also observed. On DIII-D, coherent modes in this frequency range are observed during low-field (0.6 T) similarity experiments. Experiments will compare the CAE stability limits on DIII-D with the NSTX stability limits, with the aim of determining if CAE will be excited by alphas in a reactor. Predicted differences in the frequency splitting Δ f between excited modes will also be used. \\vspace0.25em [1] W.W. Heidbrink, et al., Plasmas Phys. Control. Fusion 45, 983 (2003). [2] E.D. Fredrickson, et al., Princeton Plasma Physics Laboratory Report PPPL-3955 (2004).

  2. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  3. Lyme Disease Diagnosed by Alternative Methods: A Phenotype Similar to That of Chronic Fatigue Syndrome.

    Science.gov (United States)

    Patrick, David M; Miller, Ruth R; Gardy, Jennifer L; Parker, Shoshana M; Morshed, Muhammad G; Steiner, Theodore S; Singer, Joel; Shojania, Kam; Tang, Patrick

    2015-10-01

    A subset of patients reporting a diagnosis of Lyme disease can be described as having alternatively diagnosed chronic Lyme syndrome (ADCLS), in which diagnosis is based on laboratory results from a nonreference Lyme specialty laboratory using in-house criteria. Patients with ADCLS report symptoms similar to those reported by patients with chronic fatigue syndrome (CFS). We performed a case-control study comparing patients with ADCLS and CFS to each other and to both healthy controls and controls with systemic lupus erythematosus (SLE). Subjects completed a history, physical exam, screening laboratory tests, 7 functional scales, reference serology for Lyme disease using Centers for Disease Control and Prevention criteria, reference serology for other tick-associated pathogens, and cytokine expression studies. The study enrolled 13 patients with ADCLS (12 of whom were diagnosed by 1 alternative US laboratory), 25 patients with CFS, 25 matched healthy controls, and 11 SLE controls. Baseline clinical data and functional scales indicate significant disability among ADCLS and CFS patients and many important differences between these groups and controls, but no significant differences between each other. No ADCLS patient was confirmed as having positive Lyme serology by reference laboratory testing, and there was no difference in distribution of positive serology for other tick-transmitted pathogens or cytokine expression across the groups. In British Columbia, a setting with low Lyme disease incidence, ADCLS patients have a similar phenotype to that of CFS patients. Disagreement between alternative and reference laboratory Lyme testing results in this setting is most likely explained by false-positive results from the alternative laboratory. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars

    Science.gov (United States)

    Yang, Gang; Wu, Lin; Xian, Qiming; Shen, Fei; Wu, Jun; Zhang, Yanzong

    2016-01-01

    Biochars, produced by pyrolyzing vermicompost at 300, 500, and 700°C were characterized and their ability to adsorb the dyes Congo red (CR) and Methylene blue (MB) in an aqueous solution was investigated. The physical and chemical properties of biochars varied significantly based on the pyrolysis temperatures. Analysis of the data revealed that the aromaticity, polarity, specific surface area, pH, and ash content of the biochars increased gradually with the increase in pyrolysis temperature, while the cation exchange capacity, and carbon, hydrogen, nitrogen and oxygen contents decreased. The adsorption kinetics of CR and MB were described by pseudo-second-order kinetic models. Both of Langmuir and Temkin model could be employed to describe the adsorption behaviors of CR and MB by these biochars. The biochars generated at higher pyrolysis temperature displayed higher CR adsorption capacities and lower MB adsorption capacities than those compared with the biochars generated at lower pyrolysis temperatures. The biochar generated at the higher pyrolytic temperature displayed the higher ability to adsorb CR owing to its promoted aromaticity, and the cation exchange is the key factor that positively affects adsorption of MB. PMID:27144922

  5. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  6. Large-scale laboratory observations of beach morphodynamics and turbulence beneath shoaling and breaking waves

    NARCIS (Netherlands)

    Winter, W. de; Wesselman, D.; Grasso, F.R.; Ruessink, B.G.

    2013-01-01

    In 2012, large-scale laboratory experiments were carried out in the Deltagoot in the framework of the Hydralab IV-funded BARDEXII project. The overall project aims were to examine the effect of swash/groundwater interactions to sand transport and morphological development in the swash zone and,

  7. Performance assessment of laboratory and field-scale multi-step passive treatment of iron-rich acid mine drainage for design improvement.

    Science.gov (United States)

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Genty, Thomas; Zagury, Gérald J

    2018-04-17

    Multi-step passive systems for the treatment of iron-rich acid mine drainage (Fe-rich AMD) perform satisfactorily at the laboratory scale. However, their field-scale application has revealed dissimilarities in performance, particularly with respect to hydraulic parameters. In this study, the assessment of factors potentially responsible for the variations in performance of laboratory and field-scale multi-step systems was undertaken. Three laboratory multi-step treatment scenarios, involving a combination of dispersed alkaline substrate (DAS) units, anoxic dolomitic drains, and passive biochemical reactors (PBRs), were set up in 10.7-L columns. The field-scale treatment consisted of two PBRs separated by a wood ash (WA) reactor. The parameters identified as possibly influencing the performances of the laboratory and field-scale experiments were the following: AMD chemistry (electrical conductivity and Fe and SO 4 2- concentrations), flow rate (Q), and saturated hydraulic conductivity (k sat ). Based on these findings, the design of an efficient passive multi-step treatment system is suggested to consider the following: (1) Fe pretreatment, using materials with high k sat and low HRT. If a PBR is to be used, the Fe load should be PBR/DAS filled with a mixture with at least 20% of neutralizing agent; (3) include Q and k sat (> 10 -3  cm/s) in the long-term prediction. Finally, mesocosm testing is strongly recommended prior to construction of full-scale systems for the treatment of Fe-rich AMD.

  8. THE LABORATORY WOOD DRIER - FROM THEORY TO PRACTICE

    OpenAIRE

    Daniela ŞOVA; Virgil-Barbu UNGUREANU; Adrian POSTELNICU

    2012-01-01

    Based on the principle of similarity, the wood drying process can be investigated on a scale model, which is the laboratory drier, instead of the full-size industrial drier. Thus, the investigation is simplified and the drying time reduced. The laboratory drying kiln, developed by the research team, is a controlled climate air duct with closed circuit, fitted with a rectangular test section. The air flow is circulated by a centrifugal fan and the air heating is carried out by a set of electri...

  9. The effect of different type of vermicompost organic fertilizer litter on quantitive, qualitative and biochemical characteristics of green mung bean (Vigna radiata L.) in drought stress conditions in Varamin

    OpenAIRE

    Seyyed Vahid Reza Mahmoudi; Mohammad Nasri; Peyman Azizi

    2016-01-01

    Vermicompost in sustainable agriculture is very useful for improving soil porosity and thereby providing more nutrients to plants; accordingly, a split plot experiment was performed on mung bean in a randomized complete block design from with three replications in research farm of Islamic Azad University, Varamin – Pishva. The first factor was drought stress including lack of drought stress, irrigation cut in podding stage and irrigation cut in grain filling stage as the main plot and the sec...

  10. Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories

    Science.gov (United States)

    Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst

    2016-04-01

    The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and

  11. An applet for the Gabor similarity scaling of the differences between complex stimuli.

    Science.gov (United States)

    Margalit, Eshed; Biederman, Irving; Herald, Sarah B; Yue, Xiaomin; von der Malsburg, Christoph

    2016-11-01

    It is widely accepted that after the first cortical visual area, V1, a series of stages achieves a representation of complex shapes, such as faces and objects, so that they can be understood and recognized. A major challenge for the study of complex shape perception has been the lack of a principled basis for scaling of the physical differences between stimuli so that their similarity can be specified, unconfounded by early-stage differences. Without the specification of such similarities, it is difficult to make sound inferences about the contributions of later stages to neural activity or psychophysical performance. A Web-based app is described that is based on the Malsburg Gabor-jet model (Lades et al., 1993), which allows easy specification of the V1 similarity of pairs of stimuli, no matter how intricate. The model predicts the psycho physical discriminability of metrically varying faces and complex blobs almost perfectly (Yue, Biederman, Mangini, von der Malsburg, & Amir, 2012), and serves as the input stage of a large family of contemporary neurocomputational models of vision.

  12. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    Science.gov (United States)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  13. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  14. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  15. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process: Laboratory scale studies modelling and technical assessment. Final report, [October 1, 1988--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Popper, G.A.; Smith, T.O.

    1993-06-01

    Reported herein are the details and results of Laboratory-Scale experiments using sub-bituminous and bituminous coal concluded at Hydrocarbon Research, Inc., under DOE Contract No. AC22-88PCB8818 during the period October 1, 1988 to June 30, 1993. The work described in this report is primarily concerned with tests on a Laboratory Scale primarily using microautoclaves. Experiments were conducted evaluating coal, solvents, start-up oils, catalysts, thermal treatments, C0{sub 2} addition and sulfur compound effects. Other microautoclave tests are included in the companion topical reports for this contract, DE-88818-TOP-01 & 02 on Sub-Bituminous and Bituminous Bench-Scale and PDU activities. In addition to the Laboratory Scale Studies, kinetic data and modelling results from Bench-Scale and Microautoclave tests are interpreted and presented along with some economic updates and sensitivity studies.

  16. In search of late time evolution self-similar scaling laws of Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instabilities - recent theorical advance and NIF Discovery-Science experiments

    Science.gov (United States)

    Shvarts, Dov

    2017-10-01

    Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.

  17. Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

    NARCIS (Netherlands)

    Naeimi, M.; Li, Z.; Petrov, R.H.; Dollevoet, R.P.B.J.; Sietsma, J.; Wu, J.

    2014-01-01

    The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined

  18. EPOS Multi-Scale Laboratory platform: a long-term reference tool for experimental Earth Sciences

    Science.gov (United States)

    Trippanera, Daniele; Tesei, Telemaco; Funiciello, Francesca; Sagnotti, Leonardo; Scarlato, Piergiorgio; Rosenau, Matthias; Elger, Kirsten; Ulbricht, Damian; Lange, Otto; Calignano, Elisa; Spiers, Chris; Drury, Martin; Willingshofer, Ernst; Winkler, Aldo

    2017-04-01

    With continuous progress on scientific research, a large amount of datasets has been and will be produced. The data access and sharing along with their storage and homogenization within a unique and coherent framework is a new challenge for the whole scientific community. This is particularly emphasized for geo-scientific laboratories, encompassing the most diverse Earth Science disciplines and typology of data. To this aim the "Multiscale Laboratories" Work Package (WP16), operating in the framework of the European Plate Observing System (EPOS), is developing a virtual platform of geo-scientific data and services for the worldwide community of laboratories. This long-term project aims at merging the top class multidisciplinary laboratories in Geoscience into a coherent and collaborative network, facilitating the standardization of virtual access to data, data products and software. This will help our community to evolve beyond the stage in which most of data produced by the different laboratories are available only within the related scholarly publications (often as print-version only) or they remain unpublished and inaccessible on local devices. The EPOS multi-scale laboratory platform will provide the possibility to easily share and discover data by means of open access, DOI-referenced, online data publication including long-term storage, managing and curation services and to set up a cohesive community of laboratories. The WP16 is starting with three pilot cases laboratories: (1) rock physics, (2) palaeomagnetic, and (3) analogue modelling. As a proof of concept, first analogue modelling datasets have been published via GFZ Data Services (http://doidb.wdc-terra.org/search/public/ui?&sort=updated+desc&q=epos). The datasets include rock analogue material properties (e.g. friction data, rheology data, SEM imagery), as well as supplementary figures, images and movies from experiments on tectonic processes. A metadata catalogue tailored to the specific communities

  19. Desarrollo del cultivo de melón (Cucumis melo con vermicompost bajo condiciones de invernadero / Development of muskmelon (Cucumis melo with vermicompost under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Alejandro Moreno-Reséndez

    2014-04-01

    Full Text Available Se determinó el efecto del vermicompost (VC sobre el desarrollo del melón en invernadero utilizando como sustratos cuatro tipos de VC mezclados con arena de río (AR, con relaciones 25 : 75, 30 : 70, 35 : 65 y 40 : 60 (% en volumen. Los VC se prepararon a partir de estiércoles de caballo, cabra, conejo y bovino. Los sustratos se colocaron en bolsas de polietileno negro, de 20 kg de capacidad, en donde se sembraron semillas del melón Cantaloupe. Las plantas se condujeron a un solo tallo, tutorando con rafia y la demanda hídrica se cubrió con riego por goteo. Las bolsas, utilizadas como macetas, se colocaron en fila a doble hilera, con arreglo a tresbolillo. Se utilizó un diseño de bloques completos al azar en arreglo factorial 4x4 con cuatro repeticiones. El factor A fueron las mezclas VC : AR y el B los diferentes VC. El análisis de varianza mostró que con 40 % de VC, independientemente del VC usado, se registraron diferencias altamente significativas (P ≤ 0.01 para rendimiento, peso de fruto, diámetros ecuatorial y polar, espesor de pulpa, cavidad de la placenta y días a cosecha, con 96.386 t ha-1, 1.688 kg fruto-1, 14.55 cm, 16.73 cm, 3.77 cm, 5.57 cm y 89 d respectivamente, sin importar el tipo de estiércol utilizado en las mezclas con VC. El contenido promedio de sólidos solubles en los frutos resultó estadísticamente igual en cualquier nivel y tipo de VC empleado.

  20. Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Shaw, P.; Anderson, B.

    1993-07-01

    INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program

  1. MM-MDS: a multidimensional scaling database with similarity ratings for 240 object categories from the Massive Memory picture database.

    Directory of Open Access Journals (Sweden)

    Michael C Hout

    Full Text Available Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of "sameness" among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16-17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of "sameness."

  2. MM-MDS: a multidimensional scaling database with similarity ratings for 240 object categories from the Massive Memory picture database.

    Science.gov (United States)

    Hout, Michael C; Goldinger, Stephen D; Brady, Kyle J

    2014-01-01

    Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of "sameness" among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16-17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of "sameness."

  3. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  4. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  5. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    Science.gov (United States)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  6. Anaerobic treatment of animal byproducts from slaughterhouses at laboratory and pilot scale.

    Science.gov (United States)

    Edström, Mats; Nordberg, Ake; Thyselius, Lennart

    2003-01-01

    Different mixtures of animal byproducts, other slaughterhouse waste (i.e., rumen, stomach and intestinal content), food waste, and liquid manure were codigested at mesophilic conditions (37 degrees C) at laboratory and pilot scale. Animal byproducts, including blood, represent 70-80% of the total biogas potential from waste generated during slaughter of animals. The total biogas potential from waste generated during slaughter is about 1300 MJ/cattle and about 140 MJ/pig. Fed-batch digestion of pasteurized (70 degrees C, 1 h) animal byproducts resulted in a fourfold increase in biogas yield (1.14 L/g of volatile solids [VS]) compared with nonpasteurized animal byproducts (0.31 L/g of VS). Mixtures with animal byproducts representing 19-38% of the total dry matter were digested in continuous-flow stirred tank reactors at laboratory and pilot scale. Stable processes at organic loading rates (OLRs) exceeding 2.5 g of VS/(L.d) and hydraulic retention times (HRTs) less than 40 d could be obtained with total ammonia nitrogen concentrations (NH4-N + NH3-N) in the range of 4.0-5.0 g/L. After operating one process for more than 1.5 yr at total ammonia nitrogen concentrations >4 g/L, an increase in OLR to 5 g of VS/(L.d) and a decrease in HRT to 22 d was possible without accumulation of volatile fatty acids.

  7. Diffusion Experiments in Opalinus Clay: Laboratory, Large-Scale Diffusion Experiments and Microscale Analysis by RBS.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso de los Rios, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2008-08-06

    The Opalinus Clay (OPA) formation in the Zurcher Weiland (Switzerland) is a potential host rock for a repository for high-level radioactive waste. Samples collected in the Mont Terri Underground Rock Laboratory (URL), where the OPA formation is located at a depth between -200 and -300 m below the surface, were used to study the radionuclide diffusion in clay materials. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), to understand the transport properties of the OPA and to enhance the methodologies used for in situ diffusion experiments. Through-Diffusion and In-Diffusion conventional laboratory diffusion experiments were carried out with HTO, 36{sup C}l-, I-, 22{sup N}a, 75{sup S}e, 85{sup S}r, 233{sup U}, 137{sup C}s, 60{sup C}o and 152{sup E}u. Large-scale diffusion experiments were performed with HTO, 36{sup C}l, and 85{sup S}r, and new experiments with 60{sup C}o, 137{sup C}s and 152{sup E}u are ongoing. Diffusion experiments with RBS technique were done with Sr, Re, U and Eu. (Author) 38 refs.

  8. Electrolytic production of light lanthanides from molten chloride alloys on a large laboratory scale

    International Nuclear Information System (INIS)

    Szklarski, W.; Bogacz, A.; Strzyzewska, M.

    1979-01-01

    Literature data relating to electrolytic production of rare earth metals are presented. Conditions and results are given of own investigations into the electrolytic process of light lanthanide chloride solutions (LA-Nd) in molten potassium and sodium chlorides conducted on a large laboratory scale using molybdenic, iron, cobaltic and zinc cathodes. Design schemes of employed electrolysers are enclosed. (author)

  9. Preparation of glibenclamide nanocrystals by a simple laboratory scale ultra cryo-milling

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Martino, Piera Di, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2013-06-15

    The objective of this study is to evaluate the ability to reduce the particle size of glibenclamide (GBC) to the nanometric scale through a very simple and well-known laboratory scale method, the laboratory scale ultra cryo-milling. The effect of milling on GBC crystalline properties and dissolution behaviour was deliberately evaluated in the absence of any surfactants as stabilizers. The milling procedure consisted in adding particles to liquid nitrogen and milling them by hand in a mortar with a pestle for different time intervals (15, 30, 40 min). For comparison, the same milling procedure was also applied without liquid nitrogen. The particle size reduction was evaluated for the coarsest samples (>3 {mu}m) by measuring the particle Ferret's diameter through scanning electron microscopy, while for the smallest one (<3 {mu}m) by dynamic light scattering. A time grinding of 40 min in the presence of liquid nitrogen was revealed highly efficacious to obtain particles of nanodimensions, with a geometric mean particle size of 0.55 {+-} 0.23 {mu}m and more than the 80 % of particles lower than 1,000 nm. Interestingly, non-agglomerated particles were obtained. Differential scanning calorimetry and X-ray powder diffractometry allowed to assess that under mechanical treatment no polymorphic transitions were observed, while a decrease in crystallinity degree occurred depending on the milling procedure (presence or absence of liquid nitrogen) and the milling time (crystallinity decreases at increasing milling time from 15 to 40 min). A comparison of the intrinsic dissolution rate and the dissolution from particles revealed an interesting improvement of particle dissolution particularly for particles milled in the presence of liquid nitrogen due to an increase in particle surface area and concentration gradient, according to the Noyes-Whitney equation.

  10. Decreasing scoring errors on Wechsler Scale Vocabulary, Comprehension, and Similarities subtests: a preliminary study.

    Science.gov (United States)

    Linger, Michele L; Ray, Glen E; Zachar, Peter; Underhill, Andrea T; LoBello, Steven G

    2007-10-01

    Studies of graduate students learning to administer the Wechsler scales have generally shown that training is not associated with the development of scoring proficiency. Many studies report on the reduction of aggregated administration and scoring errors, a strategy that does not highlight the reduction of errors on subtests identified as most prone to error. This study evaluated the development of scoring proficiency specifically on the Wechsler (WISC-IV and WAIS-III) Vocabulary, Comprehension, and Similarities subtests during training by comparing a set of 'early test administrations' to 'later test administrations.' Twelve graduate students enrolled in an intelligence-testing course participated in the study. Scoring errors (e.g., incorrect point assignment) were evaluated on the students' actual practice administration test protocols. Errors on all three subtests declined significantly when scoring errors on 'early' sets of Wechsler scales were compared to those made on 'later' sets. However, correcting these subtest scoring errors did not cause significant changes in subtest scaled scores. Implications for clinical instruction and future research are discussed.

  11. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  12. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    Science.gov (United States)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  13. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be

  14. Laboratory scale tests of electrical impedence tomography

    International Nuclear Information System (INIS)

    Binley, A; Daily, W; LaBredcque, D; Ramirez, A.

    1998-01-01

    Electrical impedance tomographs (magnitude and phase) of known, laboratory-scale targets are reported. Three methods are used to invert electrical impedance data and their tomographs compared. The first method uses an electrical resistance tomography (ERT) algonthm (designed for DC resistivity inversion) to perform impedance magnitude inversion and a linearized perturbation approach (PA) to invert the imaginary part. The second approximate method compares ERT magnitude inversions at two frequencies and uses the frequency effect (FE) to compute phase tomographs. The third approach, electrrcal impedance tomography (EIT), employs fully complex algebra to account for the real and imaginary components of electrical impedance data. The EIT approach provided useful magnitude and phase images for the frequency range of 0.0625 to 64 Hz; images for higher frequencies were not reliable. Comparisons of the ERT and EIT magnitude images show that both methods provided equivalent results for the water blank, copper rod and PVC rod targets. The EIT magnitude images showed better spatial resolutron for a sand-lead mixture target. Phase images located anomalies of both high and low contrast IP and provided better spatial resolution than the magnitude images. When IP was absent from the data, the EIT algorithm reconstructed phase values consistent with the data noise levels

  15. Comparison of organic emissions from laboratory and full-scale thermal degradation of sewage sludge

    International Nuclear Information System (INIS)

    Tirey, D.A.; Striebich, R.C.; Dellinger, B.; Bostian, H.E.

    1991-01-01

    Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing in both pyrolytic and oxidative atmospheres. The time/temperature conditions of the laboratory testing were established to simulate as closely as possible full-scale incineration conditions so that a direct comparison of results could be made. The laboratory test results indicated that biomass decomposition products, not toxic industrial contaminants, comprised the majority of the emissions. Benzene, toluene, ethylbenzene, acrylonitrile, and acetonitrile were consistently the most environmentally significant products of thermal degradation. Comparison of the results from this study with those obtained in field tests was complicated by an apparent loss of volatile chlorocarbons from the sludge samples received for laboratory testing. However, qualitative comparison of emission factors derived from lab and field results for those compounds observed in both studies, showed reasonably good correlation for the pyrolysis testing. Results suggested that the upper stages of multiple-hearth units may vaporize many volatile components of the sludge before they enter the combustion stages of the incinerator and thus represent a direct source of introduction of pollutants into the atmosphere

  16. Self-similar rupture implied by scaling properties of volcanic earthquakes occurring during the 2004-2008 eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Harrington, Rebecca M.; Kwiatek, Grzegorz; Moran, Seth C.

    2015-01-01

    We analyze a group of 6073 low-frequency earthquakes recorded during a week-long temporary deployment of broadband seismometers at distances of less than 3 km from the crater at Mount St. Helens in September of 2006. We estimate the seismic moment (M0) and spectral corner frequency (f0) using a spectral ratio approach for events with a high signal-to-noise (SNR) ratio that have a cross-correlation coefficient of 0.8 or greater with at least five other events. A cluster analysis of cross-correlation values indicates that the group of 421 events meeting the SNR and cross-correlation criteria forms eight event families that exhibit largely self-similar scaling. We estimate the M0 and f0 values of the 421 events and calculate their static stress drop and scaled energy (ER/M0) values. The estimated values suggest self-similar scaling within families, as well as between five of eight families (i.e.,  and  constant). We speculate that differences in scaled energy values for the two families with variable scaling may result from a lack of resolution in the velocity model. The observation of self-similar scaling is the first of its kind for such a large group of low-frequency volcanic tectonic events occurring during a single active dome extrusion eruption.

  17. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  18. Self-similarity in incompressible Navier-Stokes equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2015-12-01

    The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space.

  19. Towards very large scale laboratory simulation of structure-foundation-soil interaction (SFSI) problems

    OpenAIRE

    Taylor, Colin A.; Crewe, Adam J.; Mylonakis, George

    2016-01-01

    We are at the maturity convergence point of a set of actuation, control, instrumentation and data analysis technologies that make it feasible to construct laboratory experimental rigs that will allow us to address key controlling uncertainties in SFS I assessment and design, which can only be addressed by testing at, or near to, prototype scale. This paper will explore the process of innovation that must be established in order to integrate these enabling technologies and thereby create novel...

  20. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs

  1. Prediction and optimisation of Pb/Zn/Fe sulphide scales in gas production fields

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Sarah; Orski, Karine; Menezes, Carlos; Heath, Steve; MacPherson, Calum; Simpson, Caroline; Graham, Gordon

    2006-03-15

    Lead, zinc and iron sulphide scales are known to be a particular issue with gas production fields, particularly those producing from HP/HT reservoirs. However the prediction of sulphide scale and the methodologies available for their laboratory assessment are not as well developed as those for the more conventional sulphate and carbonate scales. This work examines a particular sulphide scaling regime from a North Sea high temperature gas condensate production field containing only 0.8ppm of sulphide ions. Sulphide scales were identified in the production system which was shown to be a mixture of lead and zinc sulphide, primarily lead sulphide. This formed as a result of cooling during production resulting in the over saturation of these minerals. This paper describes scale prediction and modified laboratory test protocols used to re-create the scales formed in the field prior to chemical performance testing. From the brine composition, scale prediction identified that the major scales that could be formed were calcium carbonate, iron carbonate, iron sulphide, lead sulphide and zinc sulphide. In addition, modification of the brine compositions led to prediction of primarily one scale or the other. Given the predicted over saturation of various minerals, preliminary laboratory tests were therefore conducted in order to ensure that the scale formed under laboratory conditions was representative of the field scale. Laboratory protocols were therefore developed to ensure that the scales formed in fully anaerobic dynamic performance tests and static performance tests were similar to those encountered in the field. The paper compares results from field analysis, scale predictions and laboratory scale formation tests using newly developed test protocols and shows differences between prediction and laboratory data. The paper therefore demonstrates the importance of ensuring that the correct scale is formed under laboratory test conditions and also indicates some potential

  2. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  3. Experimental co-digestion of corn stalk and vermicompost to improve biogas production

    International Nuclear Information System (INIS)

    Chen Guangyin; Zheng Zheng; Yang Shiguan; Fang Caixia; Zou Xingxing; Luo Yan

    2010-01-01

    Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 ± 1 o C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 ± 1 o C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 ± 13.87 mL/g TS added was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 ± 11.01 mL/g TS added and methane yield of 259.35 ± 13.85 mL/g TS added were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

  4. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    Science.gov (United States)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  5. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  6. Characterization of a High-Level Waste Cold Cap in a Laboratory-Scale Melter

    Energy Technology Data Exchange (ETDEWEB)

    Dixona, Derek R; Schweiger, Michael J; Hrma, Pavel [Pacific Northwest National Laboratory, Richland (United States)

    2013-05-15

    The feed, slurry or calcine, is charged to the melter from above. The conversion of the melter feed to molten glass occurs within the cold cap, a several centimeters thin layer of the reacting material blanketing the surface of the melt. Between the cold-cap top, which is covered by boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by ∼900 .deg. C. The heat is delivered to the cold cap from the melt that is stirred mainly by bubbling. The feed contains oxides, hydroxides, acids, inorganic salts and organic materials. On heating, these components react, releasing copious amounts of gases, while molten salts decompose, glass-forming melt is generated, and crystalline phases precipitate and dissolve in the melt. Most of these processes have been studied in detail and became sufficiently understood for a mathematical model to represent the heat and mass transfer within the cold cap. This allows US to relate the rate of melting to the feed properties. While the melting reactions can be studied, and feed properties, such as heat conductivity and density, measured in the laboratory, the actual cold-cap dynamics, as it evolves in the waste glass melter, is not accessible to direct investigation. Therefore, to bridge the gap between the laboratory crucible and the waste glass melter, we explored the cold cap formation in a laboratory-scale melter (LSM) and studied the structure of quenched cold caps. The LSM is a suitable tool for investigating the cold cap. The cold cap that formed in the LSM experiments exhibited macroscopic features observed in scaled melters, as well as microscopic features accessible through laboratory studies and mathematical modeling. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open shafts through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move

  7. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Science.gov (United States)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  8. Hydroscoop - Bulletin of the small-scale hydraulic laboratory MHyLab; Hydroscoop - Bulletin d'information MHyLab laboratoire de petite hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Denis, V.

    2009-07-01

    This is issue Nr. 5 of the news bulletin of MHyLab, the small-scale hydraulic laboratory in Montcherand, Switzerland. The history of MHyLab development is recalled. The objective of the laboratory is given: the laboratory development of efficient and reliable turbines for the entire small-scale hydraulic range (power: 10 to 2000 kW, flow rate: 0.01 to 10 m{sup 3}/s, hydraulic head: 1 m up to more than 700 m). The first period (1997-2001) was devoted to Pelton turbines for high heads (60 to 70 m) and the second (2001-2009) to Kaplan turbines for low and very low heads (1 to 30 m). In the third period (beginning 2008) diagonal turbines for medium heads (25 to 100 m) are being developed. MHyLab designed, modelled and tested all these different types. The small-scale hydraulic market developed unexpectedly quickly. The potential of small-scale hydraulics in the Canton of Vaud, western Switzerland is presented. Three implemented projects are reported on as examples for MHyLab activities on the market place. The MHyLab staff is presented.

  9. THE LABORATORY WOOD DRIER - FROM THEORY TO PRACTICE

    Directory of Open Access Journals (Sweden)

    Daniela ŞOVA

    2012-03-01

    Full Text Available Based on the principle of similarity, the wood drying process can be investigated on a scale model, which is the laboratory drier, instead of the full-size industrial drier. Thus, the investigation is simplified and the drying time reduced. The laboratory drying kiln, developed by the research team, is a controlled climate air duct with closed circuit, fitted with a rectangular test section. The air flow is circulated by a centrifugal fan and the air heating is carried out by a set of electric resistances. The selection of the fan and of the heating resistances was performed according to the aerodynamic and thermal calculations, presented in the paper. For the air humidification, in accordance to the drying schedule requirements, the drier has a steam generator that prepares steam which is injected in the air. The wood sample is placed within the drier on a device conceived for both sample support and vertical motion and also, for continuous weighing. By applying the principle of similarity for both, the industrial kiln and the laboratory drier, the required air velocity for the laboratory drier is determined, for constant values of the temperature and relative humidity of air. Different invariants,characteristic to the drying schedule that was applied, have been also calculated.

  10. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  11. Frictional sliding in layered rock: laboratory-scale experiments

    International Nuclear Information System (INIS)

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ''wearing-in'' effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs

  12. Oil water laboratory

    International Nuclear Information System (INIS)

    P Junior, Oswaldo A.; Verli, Fernando; Lopes, Humberto E.

    2000-01-01

    Usually, the oily water effluent from petroleum processes needs to be treated prior to its environment discard and/or reuse. The synthesis of such water effluent residues in an Oily Water Laboratory - equipped with Water Treatment Pilot Scale Units - is fundamental to the study and effectiveness comparison among the typical industrial water treatment processes. The Oily Water Laboratory will allow the reproduction - in a small scale - of any oily water effluent produced in the industrial PETROBRAS units - such reproduction can be obtained by using the same fluids, oily concentration, salinity, process temperature, particle size distribution etc. Such Laboratory also allows the performance analysis of typical industrial equipment used throughout the water treatment schemes (e.g., hydro-cyclones), resulting in design and/or operational guidelines for these industrial scale schemes. In the particular niche of very small diameter oil droplet removal, more efficient and non-conventional schemes - such as centrifuges and/or membrane filtration - will be also studied in the Laboratory. In addition, the Laboratory shall be used in the certification of in-line oily water analyzers (e.g., TOC - Total Organic Carbon and OWC - Oil Wax Content). This paper describes the characteristics of such Laboratory and its main operational philosophy. (author)

  13. Indomethacin nanocrystals prepared by different laboratory scale methods: effect on crystalline form and dissolution behavior

    Energy Technology Data Exchange (ETDEWEB)

    Martena, Valentina; Censi, Roberta [University of Camerino, School of Pharmacy (Italy); Hoti, Ela; Malaj, Ledjan [University of Tirana, Department of Pharmacy (Albania); Di Martino, Piera, E-mail: piera.dimartino@unicam.it [University of Camerino, School of Pharmacy (Italy)

    2012-12-15

    The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the {gamma} form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of {alpha} and {gamma} polymorphic forms. IDM obtained by the two other methods remained in the {gamma} form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of {alpha} form than {gamma} form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.

  14. Laboratory-scale shielded cell for 252Cf

    International Nuclear Information System (INIS)

    Anderl, R.A.; Cargo, C.H.

    1979-01-01

    A shielded-cell facility for storing and handling remotely up to 2 milligram quantities of unencapsulated 252 Cf has been built in a radiochemistry laboratory at the Test Reactor Area of the Idaho National Engineering Laboratory. Unique features of this facility are its compact bulk radiation shield of borated gypsum and transfer lines which permit the transport of fission product activity from 252 Cf fission sources within the cell to a mass separator and to a fast radiochemistry system in nearby rooms

  15. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  16. New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale.

    Science.gov (United States)

    Oishi, Sana; Kimura, Shin-Ichiro; Noguchi, Shuji; Kondo, Mio; Kondo, Yosuke; Shimokawa, Yoshiyuki; Iwao, Yasunori; Itai, Shigeru

    2018-01-15

    A new scale-down methodology from commercial rotary die scale to laboratory scale was developed to optimize a plant-derived soft gel capsule formulation and eventually manufacture superior soft gel capsules on a commercial scale, in order to reduce the time and cost for formulation development. Animal-derived and plant-derived soft gel film sheets were prepared using an applicator on a laboratory scale and their physicochemical properties, such as tensile strength, Young's modulus, and adhesive strength, were evaluated. The tensile strength of the animal-derived and plant-derived soft gel film sheets was 11.7 MPa and 4.41 MPa, respectively. The Young's modulus of the animal-derived and plant-derived soft gel film sheets was 169 MPa and 17.8 MPa, respectively, and both sheets showed a similar adhesion strength of approximately 4.5-10 MPa. Using a D-optimal mixture design, plant-derived soft gel film sheets were prepared and optimized by varying their composition, including variations in the mass of κ-carrageenan, ι-carrageenan, oxidized starch and heat-treated starch. The physicochemical properties of the sheets were evaluated to determine the optimal formulation. Finally, plant-derived soft gel capsules were manufactured using the rotary die method and the prepared soft gel capsules showed equivalent or superior physical properties compared with pre-existing soft gel capsules. Therefore, we successfully developed a new scale-down methodology to optimize the formulation of plant-derived soft gel capsules on a commercial scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit

    International Nuclear Information System (INIS)

    Gunes, M.

    1998-01-01

    In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically

  18. Numerical Investigation of Earthquake Nucleation on a Laboratory-Scale Heterogeneous Fault with Rate-and-State Friction

    Science.gov (United States)

    Higgins, N.; Lapusta, N.

    2014-12-01

    Many large earthquakes on natural faults are preceded by smaller events, often termed foreshocks, that occur close in time and space to the larger event that follows. Understanding the origin of such events is important for understanding earthquake physics. Unique laboratory experiments of earthquake nucleation in a meter-scale slab of granite (McLaskey and Kilgore, 2013; McLaskey et al., 2014) demonstrate that sample-scale nucleation processes are also accompanied by much smaller seismic events. One potential explanation for these foreshocks is that they occur on small asperities - or bumps - on the fault interface, which may also be the locations of smaller critical nucleation size. We explore this possibility through 3D numerical simulations of a heterogeneous 2D fault embedded in a homogeneous elastic half-space, in an attempt to qualitatively reproduce the laboratory observations of foreshocks. In our model, the simulated fault interface is governed by rate-and-state friction with laboratory-relevant frictional properties, fault loading, and fault size. To create favorable locations for foreshocks, the fault surface heterogeneity is represented as patches of increased normal stress, decreased characteristic slip distance L, or both. Our simulation results indicate that one can create a rate-and-state model of the experimental observations. Models with a combination of higher normal stress and lower L at the patches are closest to matching the laboratory observations of foreshocks in moment magnitude, source size, and stress drop. In particular, we find that, when the local compression is increased, foreshocks can occur on patches that are smaller than theoretical critical nucleation size estimates. The additional inclusion of lower L for these patches helps to keep stress drops within the range observed in experiments, and is compatible with the asperity model of foreshock sources, since one would expect more compressed spots to be smoother (and hence have

  19. The humic acids from vermicompost protect rice (Oryza sativa L.) plants against a posterior hidric stress

    International Nuclear Information System (INIS)

    Guridi-Izquierdo, Fernando; Martínez-Balmori, Dariellys; Rosquete-Bassó, Mayelín; Calderín-García, Andrés; Louro-Berbara, Ricardo L.

    2017-01-01

    The humic acids (HA) from two different vermicompost were extracted, isolated, purified and partially characterized, to evaluate their possible protection in rice (Oryza sativa L.) plants against an hydric stress. Differences in elemental composition, as the coagulation threshold value and E4/E6 relation in their UV-Vis spectra were found. Two concentrations (40 and 60 mg L-1) of both HA were included in the nutritive solutions for rice plants in controlled conditions. It was verified that the previous treatment with the HA during six days stimulated the root biomass production. Later the HA were excluded and was an hydric deficit induced by adding polietilenglicol (PEG-6000) in the initially treated plants and in a group of those used as control. After 96 hours of this final condition the net radical biomass, the photosynthetic pigments content and the root membrane permeability were evaluated. In the plants previously treated with HA (at the concentration 60 mg HA L-1), the root membrane permeability, the net radical biomass production and the “a” chlorophyll content had no differences when compared with those without stress. It was concluded that the previous treatment with the HA protected the rice plants against a posterior hydric stress that was induced. (author)

  20. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  1. In-situ, real time micro-CT imaging of pore scale processes, the next frontier for laboratory based micro-CT scanning

    OpenAIRE

    Boone, Marijn; Bultreys, Tom; Masschaele, Bert; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-01-01

    Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex reservoir rocks, improving the understanding of pore scale processes and providing crucial information for pore scale modelling. Especially in-situ imaging using X-ray optimized Hassler type cells has enabled the direct visualization of fluid distributions at the pore scale under reservoir conditions. While sub-micrometre spatial resolutions are achi...

  2. Similar or different?: the importance of similarities and differences for support between siblings

    NARCIS (Netherlands)

    Voorpostel, M.; van der Lippe, T.; Dykstra, P.A.; Flap, H.

    2007-01-01

    Using a large-scale Dutch national sample (N = 7,126), the authors examine the importance of similarities and differences in the sibling dyad for the provision of support. Similarities are assumed to enhance attraction and empathy; differences are assumed to be related to different possibilities for

  3. Similar or Different? The Importance of Similarities and Differences for Support Between Siblings

    NARCIS (Netherlands)

    Voorpostel, Marieke; Lippe, Tanja van der; Dykstra, Pearl A.; Flap, Henk

    2007-01-01

    Using a large-scale Dutch national sample (N = 7,126), the authors examine the importance of similarities and differences in the sibling dyad for the provision of support. Similarities are assumed to enhance attraction and empathy; differences are assumed to be related to different possibilities for

  4. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  5. Pre-test simulations of laboratory-scale heater experiments in tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Ho, Clifford K.

    1995-09-01

    Laboratory-scale heater experiments are Proposed to observe thermohydrologic Processes in tuffaceous rock using existing equipment and x-ray imaging techniques. The purpose of the experiments is to gain understanding of the near-field behavior and thermodynamic environment surrounding a heat source. As a prelude to these experiments, numerical simulations are performed to determine design-related parameters such as optimal heating power and heating duration. In addition, the simulations aid in identifying and understanding thermal processes and mechanisms that may occur under a variety of experimental conditions. Results of the simulations show that convection may play an important role in the heat transfer and thermodynamic environment of the heater if the Rayleigh-Darcy number exceeds a critical value (= 10 for the laboratory experiments) depending on the type of backfill material within the annulus (or drift)

  6. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    International Nuclear Information System (INIS)

    Oji, L.

    2014-01-01

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min -1 and 1.07E-03 ± 7.51E-05 min -1 . Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours

  7. Inter-relationship between scaling exponents for describing self-similar river networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock

    2015-04-01

    Natural river networks show well-known self-similar characteristics. Such characteristics are represented by various power-law relationships, e.g., between upstream length and drainage area (exponent h) (Hack, 1957), and in the exceedance probability distribution of upstream area (exponent ɛ) (Rodriguez-Iturbe et al., 1992). It is empirically revealed that these power-law exponents are within narrow ranges. Power-law is also found in the relationship between drainage density (the total stream length divided by the total basin area) and specified source area (the minimum drainage area to form a stream head) (exponent η) (Moussa and Bocquillon, 1996). Considering that above three scaling relationships all refer to fundamental measures of 'length' and 'area' of a given drainage basin, it is natural to hypothesize plausible inter-relationship between these three scaling exponents. Indeed, Rigon et al. (1996) demonstrated the relationship between ɛ and h. In this study, we expand this to a more general ɛ-η-h relationship. We approach ɛ-η relationship in an analytical manner while η-h relationship is demonstrated for six study basins in Korea. Detailed analysis and implications will be presented. References Hack, J. T. (1957). Studies of longitudinal river profiles in Virginia and Maryland. US, Geological Survey Professional Paper, 294. Moussa, R., & Bocquillon, C. (1996). Fractal analyses of tree-like channel networks from digital elevation model data. Journal of Hydrology, 187(1), 157-172. Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti. A., Tarboton, D. G., & Rinaldo, A. (1996). On Hack's Law. Water Resources Research, 32(11), 3367-3374. Rodríguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., & Tarboton, D. G. (1992). Power law distributions of discharge mass and energy in river basins. Water Resources Research, 28(4), 1089-1093.

  8. An Algorithm Creating Thumbnail for Web Map Services Based on Information Entropy and Trans-scale Similarity

    Directory of Open Access Journals (Sweden)

    CHENG Xiaoqiang

    2017-11-01

    Full Text Available Thumbnail can greatly increase the efficiency of browsing pictures,videos and other image resources and improve the user experience prominently. Map service is a kind of graphic resource coupling spatial information and representation scale,its crafting,retrieval and management will not function well without the support of thumbnail. Sophisticated designed thumbnails bring users vivid first impressions and help users make efficient exploration. On the contrast,coarse thumbnail cause negative emotion and discourage users to explore the map service positively. Inspired by video summarization,key position and key scale of web map service were proposed. Meanwhile,corresponding quantitative measures and an automatic algorithm were drawn up and implemented. With the help of this algorithm,poor visual quality,lack of map information and low automation of current thumbnails was solved successfully. Information entropy was used to determine areas richer in content and tran-scale similarity was calculated to judge at which scale the appearance of the map service has changed drastically,and finally a series of static pictures were extracted which can represent the content of the map service. Experimental results show that this method produced medium-sized,content-rich and well-representative thumbnails which effectively reflect the content and appearance of map service.

  9. Exploring diffusion and sorption processes at the Mont Terri rock laboratory (Switzerland): lessons learned from 20 years of field research

    Energy Technology Data Exchange (ETDEWEB)

    Leupin, O.X. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Van Loon, L.R. [Paul Scherrer Institute PSI, Villigen (Switzerland); Gimmi, T. [Institute of Geological Sciences, University of Berne, Berne (Switzerland); Gimmi, T. [Institute of Environmental Assessment and Water Research IDAEA-CSIC, Barcelona (Spain); and others

    2017-04-15

    Transport and retardation parameters of radionuclides, which are needed to perform a safety analysis for a deep geological repository for radioactive waste in a compacted claystone such as Opalinus Clay, must be based on a detailed understanding of the mobility of nuclides at different spatial scales (laboratory, field, geological unit). Thanks to steadily improving experimental designs, similar tracer compositions in different experiments and complementary small laboratory-scale diffusion tests, a unique and large database could be compiled. This paper presents the main findings of 20 years of diffusion and retention experiments at the Mont Terri rock laboratory and their impact on safety analysis. (authors)

  10. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    International Nuclear Information System (INIS)

    Ittner, Henrik

    2009-01-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  11. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ittner, Henrik (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-07-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  12. Raising Virtual Laboratories in Australia onto global platforms

    Science.gov (United States)

    Wyborn, L. A.; Barker, M.; Fraser, R.; Evans, B. J. K.; Moloney, G.; Proctor, R.; Moise, A. F.; Hamish, H.

    2016-12-01

    Across the globe, Virtual Laboratories (VLs), Science Gateways (SGs), and Virtual Research Environments (VREs) are being developed that enable users who are not co-located to actively work together at various scales to share data, models, tools, software, workflows, best practices, etc. Outcomes range from enabling `long tail' researchers to more easily access specific data collections, to facilitating complex workflows on powerful supercomputers. In Australia, government funding has facilitated the development of a range of VLs through the National eResearch Collaborative Tools and Resources (NeCTAR) program. The VLs provide highly collaborative, research-domain oriented, integrated software infrastructures that meet user community needs. Twelve VLs have been funded since 2012, including the Virtual Geophysics Laboratory (VGL); Virtual Hazards, Impact and Risk Laboratory (VHIRL); Climate and Weather Science Laboratory (CWSLab); Marine Virtual Laboratory (MarVL); and Biodiversity and Climate Change Virtual Laboratory (BCCVL). These VLs share similar technical challenges, with common issues emerging on integration of tools, applications and access data collections via both cloud-based environments and other distributed resources. While each VL began with a focus on a specific research domain, communities of practice have now formed across the VLs around common issues, and facilitate identification of best practice case studies, and new standards. As a result, tools are now being shared where the VLs access data via data services using international standards such as ISO, OGC, W3C. The sharing of these approaches is starting to facilitate re-usability of infrastructure and is a step towards supporting interdisciplinary research. Whilst the focus of the VLs are Australia-centric, by using standards, these environments are able to be extended to analysis on other international datasets. Many VL datasets are subsets of global datasets and so extension to global is a

  13. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-01-01

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  14. Environmental data from laboratory- and bench-scale Pressurized Fluidized-Bed Hydroretorting of Eastern oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Mensinger, M.C.; Rue, D.M.; Roberts, M.J.

    1991-12-31

    As part of a 3-year program to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) Process for Eastern oil shales, IGT conducted tests in laboratory-scale batch and continuous units as well as a 45-kg/h bench-scale unit to generate a data base for 6 Eastern shales. Data were collected during PFH processing of raw Alabama and Indiana shales and a beneficiated Indiana shale for environmental mitigation analyses. The data generated include trace element analyses of the raw feeds and spent shales, product oils, and sour waters. The sulfur compounds present in the product gas and trace components in the sour water were also determined. In addition, the leaching characteristics of the feed and residue solids were determined. The data obtained were used to evaluate the environmental impact of a shale processing plant based on the PFH process. This paper presents the environmental data obtained from bench-scale tests conducted during the program.

  15. Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment.

    Science.gov (United States)

    Cardoza, Yasmin J

    2011-02-01

    Vermicompost is an organic soil amendment produced by earthworm digestion of organic waste. Studies show that plants grown in soil amended with vermicompost grow faster, are more productive and are less susceptible to a number of arthropod pests. In light of these studies, the present study was designed to determine the type of insect resistance (antixenosis or antibiosis) present in plants grown in vermicompost-amended potting soil. Additionally, the potential role of microarthropods, entomopathogenic organisms and non-pathogenic microbial flora found in vermicompost on insect resistance induction was investigated. Findings show that vermicompost from two different sources (Raleigh, North Carolina, and Portland, Oregon) were both effective in causing Arabidopsis plants to be resistant to the generalist herbivore Helicoverpa zea (Boddie). However, while the Raleigh (Ral) vermicompost plant resistance was expressed as both non-preference (antixenosis) and milder (lower weight and slower development) toxic effect (antibiosis) resistance, Oregon (OSC) vermicompost plant resistance was expressed as acute antibiosis, resulting in lower weights and higher mortality rates. Vermicompost causes plants to have non-preference (antixenosis) and toxic (antibiosis) effects on insects. This resistance affects insect development and survival on plants grown in vermicompost-amended soil. Microarthropods and entomopathogens do not appear to have a role in the resistance, but it is likely that resistance is due to interactions between the microbial communities in vermicompost with plant roots, as is evident from vermicompost sterilization assays conducted in this study. Copyright © 2010 Society of Chemical Industry.

  16. Validity of thermally-driven small-scale ventilated filling box models

    Science.gov (United States)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  17. Prediction of desulfurization in torpedo gas from laboratory scale simulation; Previsao da dessulfuracao do gusa em carro-torpedo a partir de simulacoes em escala de laboratorio

    Energy Technology Data Exchange (ETDEWEB)

    Souza Costa, Sergio L. de [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisa e Desenvolvimento; Figueira, Renato M. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Escola de Engenharia

    1996-12-31

    A general criterion for laboratory scale data transposing to industrial practice, based on Navier-Stokes equation is developed. The criterion is a dimensional relation between the rate of energy dissipation, dimensions such as the height and diameter of the reactor and the inertial forces. The criterion was used to predict the evolution of the pig iron desulfurization reaction in torpedo car from results obtained in laboratory scale. The agreement between values predicted from laboratory experiments and data generated from actual industrial desulfurization operation is excellent. (author) 10 refs., 5 figs., 7 tabs.

  18. Stochastic self-similar and fractal universe

    International Nuclear Information System (INIS)

    Iovane, G.; Laserra, E.; Tortoriello, F.S.

    2004-01-01

    The structures formation of the Universe appears as if it were a classically self-similar random process at all astrophysical scales. An agreement is demonstrated for the present hypotheses of segregation with a size of astrophysical structures by using a comparison between quantum quantities and astrophysical ones. We present the observed segregated Universe as the result of a fundamental self-similar law, which generalizes the Compton wavelength relation. It appears that the Universe has a memory of its quantum origin as suggested by R. Penrose with respect to quasi-crystal. A more accurate analysis shows that the present theory can be extended from the astrophysical to the nuclear scale by using generalized (stochastically) self-similar random process. This transition is connected to the relevant presence of the electromagnetic and nuclear interactions inside the matter. In this sense, the presented rule is correct from a subatomic scale to an astrophysical one. We discuss the near full agreement at organic cell scale and human scale too. Consequently the Universe, with its structures at all scales (atomic nucleus, organic cell, human, planet, solar system, galaxy, clusters of galaxy, super clusters of galaxy), could have a fundamental quantum reason. In conclusion, we analyze the spatial dimensions of the objects in the Universe as well as space-time dimensions. The result is that it seems we live in an El Naschie's E-infinity Cantorian space-time; so we must seriously start considering fractal geometry as the geometry of nature, a type of arena where the laws of physics appear at each scale in a self-similar way as advocated long ago by the Swedish school of astrophysics

  19. Installation of laboratory scale flue gas treatment system at ALURTRON, MINT

    International Nuclear Information System (INIS)

    Siti A'iasah Hashim; Khairul Zaman Dahlan; Zulkafli Ghazali; Khomsaton Abu Bakar, Ayub Muhamad

    2002-01-01

    A laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-irradiation center, MINT. The experiment test rig was proposed as a result of a feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consisted of several components, among other, diesel generator, gas analyzers and spray cooler. The installation was completed and commissioned in October 2001. Results from the commissioning test runs and subsequent experimental work showed that the efficiency of the gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  20. Novel laboratory simulations of astrophysical jets

    Science.gov (United States)

    Brady, Parrish Clawson

    This thesis was motivated by the promise that some physical aspects of astrophysical jets and collimation processes can be scaled to laboratory parameters through hydrodynamic scaling laws. The simulation of astrophysical jet phenomena with laser-produced plasmas was attractive because the laser- target interaction can inject energetic, repeatable plasma into an external environment. Novel laboratory simulations of astrophysical jets involved constructing and using the YOGA laser, giving a 1064 nm, 8 ns pulse laser with energies up to 3.7 + 0.2 J . Laser-produced plasmas were characterized using Schlieren, interferometry and ICCD photography for their use in simulating jet and magnetosphere physics. The evolution of the laser-produced plasma in various conditions was compared with self-similar solutions and HYADES computer simulations. Millimeter-scale magnetized collimated outflows were produced by a centimeter scale cylindrically symmetric electrode configuration triggered by a laser-produced plasma. A cavity with a flared nozzle surrounded the center electrode and the electrode ablation created supersonic uncollimated flows. This flow became collimated when the center electrode changed from an anodeto a cathode. The plasma jets were in axially directed permanent magnetic fields with strengths up to 5000 Gauss. The collimated magnetized jets were 0.1-0. 3 cm wide, up to 2.0 cm long, and had velocities of ~4.0 × 10 6 cm/s. The dynamics of the evolution of the jet were compared qualitatively and quantitatively with fluxtube simulations from Bellan's formulation [6] giving a calculated estimate of ~2.6 × 10 6 cm/s for jet evolution velocity and evidence for jet rotation. The density measured with interferometry was 1.9 ± 0.2 × 10 17 cm -3 compared with 2.1 × 10 16 cm -3 calculated with Bellan's pressure balance formulation. Kinks in the jet column were produced consistent with the Kruskal-Shafranov condition which allowed stable and symmetric jets to form with

  1. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    Directory of Open Access Journals (Sweden)

    Graham Cormode

    Full Text Available Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines, computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH methods and evaluate four variants in a distributed computing environment (specifically, Hadoop. We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  2. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-01-01

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10 - 10 to 1.10 - 12 m 2 /s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m 2 /s; europium present the lowest diffusion coefficient (5.10 - 15 m 2 /s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs

  3. Examination of the behaviour of escherichia coli in biofilms established in laboratory- scale units receiving chlorinated and chloraminated water

    CSIR Research Space (South Africa)

    Momba, MNB

    1999-09-01

    Full Text Available Groundwater was treated with chlorine and chloramine to study the incorporation and survival of Escherichia coli (E. coli) in developing biofilms in laboratory-scale units. Membrane filter and standard spread plate procedure were used to enumerate...

  4. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim; Fokoue, Achille; Hassanzadeh, Oktie; Zhang, Ping; Sadoghi, Mohammad

    2017-01-01

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  5. Large-scale structural and textual similarity-based mining of knowledge graph to predict drug-drug interactions

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-06-12

    Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.

  6. CORRELATIONS BETWEEN HOMOLOGUE CONCENTRATIONS OF PCDD/FS AND TOXIC EQUIVALENCY VALUES IN LABORATORY-, PACKAGE BOILER-, AND FIELD-SCALE INCINERATORS

    Science.gov (United States)

    The toxic equivalency (TEQ) values of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are predicted with a model based on the homologue concentrations measured from a laboratory-scale reactor (124 data points), a package boiler (61 data points), and ...

  7. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  8. Use of fresh versus frozen or blast-frozen grapes for small-scale fermentation

    Directory of Open Access Journals (Sweden)

    Schmid F

    2011-10-01

    Full Text Available Frank Schmid, Vladimir Jiranek School of Agriculture, Food and Wine, The University of Adelaide; and Wine Innovation Cluster, The Waite Campus, Glen Osmond, South Australia, Australia Background: This paper firstly examines the validity of using laboratory-scale fermentations as a means of correlating winemaking outcomes with larger industrial scale fermentations. Secondly, conventional and blast-freezing of whole bunches were investigated for their relative suitability as methods of preservation as determined by the nature of the resulting wines. Methods: Red must fermentations were compared at the laboratory 80 kg scale, and the more industrially representative 500 kg pilot scale. Fermentation profiles and duration for both scales were found to be very similar. Whole bunches were either slow/conventionally frozen (−20°C, or quickly/blast-frozen (−25°C. Results: Wines made from frozen grapes compared well with the wine made from the fresh must. Color and chemical analyses of the wines revealed few differences. A duo-trio sensory evaluation showed that wine from blast-frozen grapes was more similar to the fresh wines than wines from conventional frozen grapes. Conclusion: The findings of this research suggest that whole-bunch blast-freezing of grapes is preferable to conventional freezing. Keywords: wine color, research winemaking, frozen grapes

  9. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  10. Criterious Preparation and Characterization of Earthworm-composts in View of Animal Waste Recycling: Part II. A Synergistic Utilization of EPR and 1H NMR Spectroscopies on the Characterization of Humic Acids from Vermicomposts

    Directory of Open Access Journals (Sweden)

    Guimarães Elisete

    2001-01-01

    Full Text Available Humic acids (HA extracted from sheep (SHHA, cow (COHA, goat (GOHA and rabbit (RAHA vermicomposted manure were analyzed by electron paramagnetic resonance and hydrogen nuclear magnetic resonance spectroscopies. Carboxylic acids, amine, amide, ester, ether and phenol functions bonded to saturated aliphatic, unsaturated aliphatic conjugated double and single bonds, and aromatic chains constitute the backbone structure of these fresh humic substances (HS. Mn2+ outer sphere complexes (SHHA, COHA, Fe3+ axial (COHA, RAHA or rhombic (SHAHA, COHA, GOHA, RAHA complexes and Cu2+ as weak field (COHA, GOHA, RAHA and strong field (SHAHA, COHA, GOHA, RAHA complexes were characterized.

  11. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-09-25

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10{sup -}10 to 1.10{sup -}12 m{sup 2}/s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m{sup 2}/s; europium present the lowest diffusion coefficient (5.10{sup -}15 m{sup 2}/s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs.

  12. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.

    Science.gov (United States)

    Islam, R S; Tisi, D; Levy, M S; Lye, G J

    2008-04-01

    Fermentation optimization experiments are ideally performed at small scale to reduce time, cost and resource requirements. Currently microwell plates (MWPs) are under investigation for this purpose as the format is ideally suited to automated high-throughput experimentation. In order to translate an optimized small-scale fermentation process to laboratory and pilot scale stirred-tank reactors (STRs) it is necessary to characterize key engineering parameters at both scales given the differences in geometry and the mechanisms of aeration and agitation. In this study oxygen mass transfer coefficients are determined in three MWP formats and in 7.5 L and 75 L STRs. k(L)a values were determined in cell-free media using the dynamic gassing-out technique over a range of agitation conditions. Previously optimized culture conditions at the MWP scale were then scaled up to the larger STR scales on the basis of matched k(L)a values. The accurate reproduction of MWP (3 mL) E. coli BL21 (DE3) culture kinetics at the two larger scales was shown in terms of cell growth, protein expression, and substrate utilization for k(L)a values that provided effective mixing and gas-liquid distribution at each scale. This work suggests that k(L)a provides a useful initial scale-up criterion for MWP culture conditions which enabled a 15,000-fold scale translation in this particular case. This work complements our earlier studies on the application of DoE techniques to MWP fermentation optimization and in so doing provides a generic framework for the generation of large quantities of soluble protein in a rapid and cost-effective manner.

  13. Numerical Simulation of a Laboratory-Scale Turbulent SlotFlame

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski,Michael J.; Driscoll, James F.; Filatyev, Sergei A.

    2006-04-20

    We present three-dimensional, time-dependent simulations ofthe flowfield of a laboratory-scale slot burner. The simulations areperformed using an adaptive time-dependent low Mach number combustionalgorithm based on a second-order projection formulation that conservesboth species mass and total enthalpy. The methodology incorporatesdetailed chemical kinetics and a mixture model for differential speciesdiffusion. Methane chemistry and transport are modeled using the DRM-19mechanism along with its associated thermodynamics and transportdatabases. Adaptive mesh refinementdynamically resolves the flame andturbulent structures. Detailedcomparisons with experimental measurementsshow that the computational results provide a good prediction of theflame height, the shape of the time-averaged parabolic flame surfacearea, and the global consumption speed (the volume per second ofreactants consumed divided by the area of the time-averaged flame). Thethickness of the computed flamebrush increases in the streamwisedirection, and the flamesurface density profiles display the same generalshapes as the experiment. The structure of the simulated flame alsomatches the experiment; reaction layers are thin (typically thinner than1 mm) and the wavelengths of large wrinkles are 5--10 mm. Wrinklesamplify to become long fingers of reactants which burn through at a neckregion, forming isolated pockets of reactants. Thus both the simulatedflame and the experiment are in the "corrugated flameletregime."

  14. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  15. Building laboratory infrastructure to support scale-up of HIV/AIDS treatment, care, and prevention: in-country experience.

    Science.gov (United States)

    Abimiku, Alash'le G

    2009-06-01

    An unprecedented influx of funds and support through large programs such as the Global Fund for AIDS, Malaria and Tuberculosis and the World Health Organization's and President's Emergency Plan for AIDS Relief (PEPFAR) has made it possible for more than 1 million persons in resource-limited settings to access AIDS treatment and several million more to be in care and prevention programs. Nevertheless, there remain major challenges that prevent AIDS drugs and care from reaching many more in need, especially in rural settings. The roll-out of a high-quality treatment, care, and prevention program depends on an effective and reliable laboratory infrastructure. This article presents a strategy used by the Institute of Human Virology (IHV)-University of Maryland and its affiliate IHV-Nigeria to establish a multifaceted, integrated tier laboratory program to support a PEPFAR-funded scale-up of its AIDS Care Treatment in Nigeria program, in collaboration with the Centers for Disease Control and Prevention and the Nigerian government, as a possible model for overcoming a key challenge that faces several resource-limited countries trying to roll out and scale-up their HIV/AIDS treatment, care, and prevention program.

  16. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  17. Bench-scale/field-scale interpretations: Session overview

    International Nuclear Information System (INIS)

    Cunningham, A.B.; Peyton, B.M.

    1995-04-01

    In situ bioremediation involves complex interactions between biological, chemical, and physical processes and requires integration of phenomena operating at scales ranging from that of a microbial cell (10 -6 ) to that of a remediation site (10 to 1000 m). Laboratory investigations of biodegradation are usually performed at a relatively small scale, governed by convenience, cost, and expedience. However, extending the results from a laboratory-scale experimental system to the design and operation of a field-scale system introduces (1) additional mass transport mechanisms and limitations; (2) the presence of multiple phases, contants, and competing microorganisms (3) spatial geologic heterogeneities; and (4) subsurface environmental factors that may inhibit bacterial growth such as temperature, pH, nutrient, or redox conditions. Field bioremediation rates may be limited by the availability of one of the necessary constituents for biotransformation: substrate, contaminant, electron acceptor, nutrients, or microorganisms capable of degrading the target compound. The factor that limits the rate of bioremediation may not be the same in the laboratory as it is in the field, thereby leading, to development of unsuccessful remediation strategies

  18. Earthquake source properties from instrumented laboratory stick-slip

    Science.gov (United States)

    Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.

    2017-01-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.

  19. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity.

    Science.gov (United States)

    Schneider, Nadine; Lowe, Daniel M; Sayle, Roger A; Landrum, Gregory A

    2015-01-26

    Fingerprint methods applied to molecules have proven to be useful for similarity determination and as inputs to machine-learning models. Here, we present the development of a new fingerprint for chemical reactions and validate its usefulness in building machine-learning models and in similarity assessment. Our final fingerprint is constructed as the difference of the atom-pair fingerprints of products and reactants and includes agents via calculated physicochemical properties. We validated the fingerprints on a large data set of reactions text-mined from granted United States patents from the last 40 years that have been classified using a substructure-based expert system. We applied machine learning to build a 50-class predictive model for reaction-type classification that correctly predicts 97% of the reactions in an external test set. Impressive accuracies were also observed when applying the classifier to reactions from an in-house electronic laboratory notebook. The performance of the novel fingerprint for assessing reaction similarity was evaluated by a cluster analysis that recovered 48 out of 50 of the reaction classes with a median F-score of 0.63 for the clusters. The data sets used for training and primary validation as well as all python scripts required to reproduce the analysis are provided in the Supporting Information.

  20. Performance of A Pilot-Scale Vermifilter for the Treatment of A Real Hospital Wastewater

    Directory of Open Access Journals (Sweden)

    Nahid Ghobadi

    2016-12-01

    Full Text Available In this study, the performance of a pilot-scale vermifilter (VF for the treatment of hospital wastewater using the earthworm species Eisenia fetida was evaluated. The earthworms’ gut acts as a bioreactor and can ingest the wastewater solid and liquid organic wastes and expel these as vermicompost. A pilot-scale vermifilter was installed and operated for 133 days in one of hospitals in Hamadan city; the designed system was fed with the influent passed through coarse and fine grillage and the sedimentation tank of the hospital’s sanitary collection system. In order to study the efficiency of the system, the variations of pH value, chemical oxygen demand (COD, biochemical oxygen demand (BOD5, and total suspended solids (TSS were measured. In addition, a conventional geofilter (GF without Earthworm was used as the experimental control. The vermifiltration caused a significant decrease in the levels of COD (75%, BOD5 (93%, and TSS (89% as well as neutralized pH in the wastewater. Also, these contents in the geofilter were observed to be 65%, 71%, and 71%, respectively. The vermifiltration technology can, therefore, be applied as an environmentally friendly method for hospital wastewater treatment.

  1. Multi-scale data visualization for computational astrophysics and climate dynamics at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ahern, Sean; Daniel, Jamison R; Gao, Jinzhu; Ostrouchov, George; Toedte, Ross J; Wang, Chaoli

    2006-01-01

    Computational astrophysics and climate dynamics are two principal application foci at the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL). We identify a dataset frontier that is shared by several SciDAC computational science domains and present an exploration of traditional production visualization techniques enhanced with new enabling research technologies such as advanced parallel occlusion culling and high resolution small multiples statistical analysis. In collaboration with our research partners, these techniques will allow the visual exploration of a new generation of peta-scale datasets that cross this data frontier along all axes

  2. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  3. Introducing sequential managed aquifer recharge technology (SMART) - From laboratory to full-scale application.

    Science.gov (United States)

    Regnery, Julia; Wing, Alexandre D; Kautz, Jessica; Drewes, Jörg E

    2016-07-01

    Previous lab-scale studies demonstrated that stimulating the indigenous soil microbial community of groundwater recharge systems by manipulating the availability of biodegradable organic carbon (BDOC) and establishing sequential redox conditions in the subsurface resulted in enhanced removal of compounds with redox-dependent removal behavior such as trace organic chemicals. The aim of this study is to advance this concept from laboratory to full-scale application by introducing sequential managed aquifer recharge technology (SMART). To validate the concept of SMART, a full-scale managed aquifer recharge (MAR) facility in Colorado was studied for three years that featured the proposed sequential configuration: A short riverbank filtration passage followed by subsequent re-aeration and artificial recharge and recovery. Our findings demonstrate that sequential subsurface treatment zones characterized by carbon-rich (>3 mg/L BDOC) to carbon-depleted (≤1 mg/L BDOC) and predominant oxic redox conditions can be established at full-scale MAR facilities adopting the SMART concept. The sequential configuration resulted in substantially improved trace organic chemical removal (i.e. higher biodegradation rate coefficients) for moderately biodegradable compounds compared to conventional MAR systems with extended travel times in an anoxic aquifer. Furthermore, sorption batch experiments with clay materials dispersed in the subsurface implied that sorptive processes might also play a role in the attenuation and retardation of chlorinated flame retardants during MAR. Hence, understanding key factors controlling trace organic chemical removal performance during SMART allows for systems to be engineered for optimal efficiency, resulting in improved removal of constituents at shorter subsurface travel times and a potentially reduced physical footprint of MAR installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alpha-contained laboratory scale pulse column facility for SRL

    International Nuclear Information System (INIS)

    Reif, D.J.; Cadieux, J.R.; Fauth, D.J.; Thompson, M.C.

    1980-01-01

    For studying solvent extraction processes, a laboratory-sized pulse column facility was constructed at the Savannah River Laboratory. This facility, in conjunction with existing miniature mixer-settler equipment and the centrifugal contactor facility currently under construction at SRL, provides capability for cross comparison of solvent extraction technology. This presentation describes the design and applications of the Pulse Column Facility at SRL

  5. A SIMPLE METHOD TO CONTROL THE MOISTURE CONTENT OF THE FERMENTING MEDIUM DURING LABORATORY-SCALE SOLID-STATE FERMENTATION EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    W. BORZANI

    1999-03-01

    Full Text Available When the moisture content of the fermenting medium significantly decreases during laboratory-scale solid-state fermentation tests, the quantity of water to be periodically added to the medium in order to control its moisture content may be evaluated from the water evaporation rate of the non-inoculated medium.

  6. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

    Science.gov (United States)

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C

    2016-10-07

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  7. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    International Nuclear Information System (INIS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  8. A vermicompostagem do lodo de lagoas de tratamento de efluentes industriais consorciada com composto de lixo urbano The vermicomposting of an industrial sludge combined with a compost of municipal solid refuse

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Valadares Veras

    2004-09-01

    Full Text Available A destinação dos resíduos sólidos constitui um sério problema ambiental para a humanidade, principalmente em regiões de grande concentração urbana, onde a disponibilidade de áreas para disposição dos rejeitos é quase sempre restrita. Com a intenção de fornecer mais uma alternativa para solução do problema, desenvolveu-se um estudo para avaliar a vermicompostagem de um lodo industrial, resultante do processamento de frutas, consorciado com composto de lixo urbano. Através desse processo, pode-se obter a reciclagem dos resíduos, produzindo-se um composto denominado húmus ou vermicomposto. Dentre os resultados obtidos pode-se destacar bons indicadores do nível de maturidade dos resíduos, representados pela relação carbono/nitrogênio, a influência da minhoca na elevação do pH e sua contribuição para uma estabilização mais acelerada da matéria orgânica.The final disposal of solid wastes is a serious environmental problem, mainly in big towns, where the areas to put the refuses on are not much available. To provide one more alternative to solve this problem, a research was developed to analyse the vermicomposting of industrial sludge combined with a compost of municipal solid refuse. By this process, it was possible to obtain the recycling of the wastes, producing a material called humus or vermicompost. The results showed good maturity levels of the refuses, presented by the carbon/nitrogen relations, the worms influence in the pH elevation and their possible acceleration of the organic material stabilization.

  9. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  10. Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory

    Science.gov (United States)

    Carmer, Carl F. v.; Heider, André; Schröder, Andreas; Konrath, Robert; Agocs, Janos; Gilliot, Anne; Monnier, Jean-Claude

    Multiple-vortex systems of aircraft wakes have been investigated experimentally in a unique large-scale laboratory facility, the free-flight B20 catapult bench, ONERA Lille. 2D/2C PIV measurements have been performed in a translating reference frame, which provided time-resolved crossvelocity observations of the vortex systems in a Lagrangian frame normal to the wake axis. A PIV setup using a moving multiple-camera array and a variable double-frame time delay has been employed successfully. The large-scale quasi-2D structures of the wake-vortex system have been identified using the QW criterion based on the 2D velocity gradient tensor ∇H u, thus illustrating the temporal development of unequal-strength corotating vortex pairs in aircraft wakes for nondimensional times tU0/b≲45.

  11. Similarity scaling of surface-released smoke plumes

    DEFF Research Database (Denmark)

    Mikkelsen, T.; Ejsing Jørgensen, Hans; Nielsen, M.

    2002-01-01

    Concentration fluctuation data from surface-layer released smoke plumes have been investigated with the purpose of finding suitable scaling parameters for the corresponding two-particle, relative diffusion process. Dispersion properties have been measured at downwind ranges between 0.1 and 1 km...... from a continuous, neutrally buoyant ground level source. A combination of SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatial resolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detection...... and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance...

  12. Flow and transport properties of a 200 meters multi scale fractured block at the Aespoe (Sweden) underground laboratory

    International Nuclear Information System (INIS)

    Grenier, C.; Bernard-Michel, G.; Fourno, A.; Benaderrahmane, H.

    2005-01-01

    Full text of publication follows: Within the framework of nuclear spent fuel storage, special care is put on experimentation and modelling work to improve the modelling capabilities for the transfers of radionuclides within a natural fractured media. Several aspects make it a challenging task, among which the heterogeneity of the system, the scarcity of the available information, the strong contrasts in the parameter values between mobile and immobile zones. In addition to these difficulties relative to the system, the assessment of storage capacity of a repository involves predictions at very large time scales (typically 100.000 years) which are not accessible to experimentation. We provide here with some of the results obtained within the SKB Task Force (Task6) related with the Aespoe granitic underground laboratory in Sweden. The purpose of this task, involving several other modelling teams, is to provide a bridge between detailed SC (Site Characterization) models operating at experimental and local time scale and more simple PA (Performance Assessment) models operating at large spatial and time scales used for sensitivity analysis to different scenarios. The present step involves a study of a 200 meters complex and realistic fractured system considering several scales of fracturing or heterogeneity according to the in situ observations: deterministic features identified from the Block Scale project, synthetic background fractures simulated based on in situ measurements of smaller scale fracturing and finally complexity of the fractures at different scales (fault zones with several channels along Cataclasite to simple joints with fracture coating). Tracer tests conducted within local portions of the system during Block Scale project are provided as well as laboratory measurements of the properties of the system. We present an overview of our modelling strategy and transport results as well as associated studies highlighting the role played by the different sub

  13. Los Alamos National Laboratory plans for a laboratory microfusion facility

    International Nuclear Information System (INIS)

    Harris, D.B.

    1988-01-01

    Los Alamos National Laboratory is actively participating in the National Laboratory Microfusion Facility (LMF) Scoping Study. We are currently performing a conceptual design study of a krypton-fluoride laser system that appears to meet all of the diver requirements for the LMF. A new theory of amplifier module scaling has been developed recently and it appears that KrF amplifier modules can be scaled up to output energies much larger than thought possible a few years ago. By using these large amplifier modules, the reliability and availability of the system is increased and its cost and complexity is decreased. Final cost figures will be available as soon as the detailed conceptual design is complete

  14. In-situ vitrification: pilot-scale development

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Brouns, R.A.; Buelt, J.L.; Oma, K.H.

    1983-01-01

    Pacific Northwest Laboratory (PNL) is developing in-situ vitrification (ISV) as an in-place stabilization technique for buried radioactive and hazardous chemical wastes. The process melts the wastes and surrounding soil to produce a durable glass and crystalline waste form. These in situ vitrification process development testing and product evaluation studies are being conducted for the U.S. Department of Energy. This report discusses the results of four ISV pilot-scale field tests simulating radioactive and hazardous waste site conditions. The primary objectives of the field tests were to: demonstrate process scale-up from engineering-scale laboratory tests; verify equipment performance of the power system, electrodes and off-gas system; characterize the behavior of simulated wastes in the vitrified soil; identify waste losses to the off-gas system; and evaluate waste form durability. Test results have been encouraging. Process scaleup has been successfully demonstrated, with equipment and electrode performance equally as successful. The off-gas system effectively contained any volatile or entrained hazardous species. Vitrified soil analysis also indicated effective containment and a homogeneous distribution of nonradioactive radionuclide and hazardous waste simulants due to convective mixing during vitrification. Waste form leaching studies revealed that the ISV product has a durability similar to Pyrex glass

  15. Electrokinetic soil decontamination - summary of results of various studies in laboratory, bench-scale and field

    Energy Technology Data Exchange (ETDEWEB)

    Kutschan, B.; Wutzler, R.; Goldmann, T. [INTUS Inst. fuer Technologie und Umweltschutz e.V., Berlin (Germany)

    2001-07-01

    In electroremediation, contaminants are removed form soil and groundwater by the action of an electric potential applied across electrodes embedded in the contaminated medium. Driving the remediation are the electrokinetic phenomena of electro-osmosis, ion migration and electrophoresis. Other common physicochemical phenomena that are also present are diffusion, chemical reactions, hydrolysis (change of pH-value), ion exchange, complexation and others. The complex interactions between all these phenomena determine the processes. Important process parameters are transition rates, bulk liquid velocity, {zeta}-potential (Helmholtz-Smoluchowski-equation) and others. Some parameters are determined at laboratory-, bench- and field scale. (orig.)

  16. Potential Electrokinetic Remediation Technologies of Laboratory Scale into Field Application- Methodology Overview

    Science.gov (United States)

    Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman

    2018-04-01

    Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.

  17. Supplementing the Braden scale for pressure ulcer risk among medical inpatients: the contribution of self-reported symptoms and standard laboratory tests.

    Science.gov (United States)

    Skogestad, Ingrid Johansen; Martinsen, Liv; Børsting, Tove Elisabet; Granheim, Tove Irene; Ludvigsen, Eirin Sigurdssøn; Gay, Caryl L; Lerdal, Anners

    2017-01-01

    To evaluate medical inpatients' symptom experience and selected laboratory blood results as indicators of their pressure ulcer risk as measured by the Braden scale. Pressure ulcers reduce quality of life and increase treatment costs. The prevalence of pressure ulcers is 6-23% in hospital populations, but literature suggests that most pressure ulcers are avoidable. Prospective, cross-sectional survey. Three hundred and twenty-eight patients admitted to medical wards in an acute hospital in Oslo, Norway consented to participate. Data were collected on 10 days between 2012-2014 by registered nurses and nursing students. Pressure ulcer risk was assessed using the Braden scale, and scores indicated pressure ulcer risk. Skin examinations were categorised as normal or stages I-IV using established definitions. Comorbidities were collected by self-report. Self-reported symptom occurrence and distress were measured with 15 items from the Memorial Symptom Assessment Scale, and pain was assessed using two numeric rating scales. Admission laboratory data were collected from medical records. Prevalence of pressure ulcers was 11·9, and 20·4% of patients were identified as being at risk for developing pressure ulcers. Multivariable analysis showed that pressure ulcer risk was positively associated with age ≥80 years, vomiting, severe pain at rest, urination problems, shortness of breath and low albumin and was negatively associated with nervousness. Our study indicates that using patient-reported symptoms and standard laboratory results as supplemental indicators of pressure ulcer risk may improve identification of vulnerable patients, but replication of these findings in other study samples is needed. Nurses play a key role in preventing pressure ulcers during hospitalisation. A better understanding of the underlying mechanisms may improve the quality of care. Knowledge about symptoms associated with pressure ulcer risk may contribute to a faster clinical judgment of

  18. Large-Scale Laboratory Facility For Sediment Transport Research

    Data.gov (United States)

    Federal Laboratory Consortium — Effective design and maintenance of inlet navigation and shore protection projects require accurate estimates of the quantity of sand that moves along the beach. The...

  19. On the influence of the magnetization of a model solar wind on a laboratory magnetosphere

    International Nuclear Information System (INIS)

    Rahman, H.U.; Yur, G.; White, R.S.; Birn, J.; Wessel, F.J.

    1991-01-01

    The interaction of a magnetized plasma beam with a stationary dipole field, analogous to the interaction of the solar wind with the Earth's magnetosphere, is explored in a laboratory experiment. Experimental parameters are chosen to scale qualitatively similar to the parameters in the Earth's magnetosphere. The authors find that the magnetization of the laboratory solar wind, generated by injecting a plasma across a preexisting magnetic field, requires a certain minimum magnetic field strength. Differences between the resulting magnetospheres for northward and southward solar wind or interplanetary magnetic fields (IMF) are demonstrated by global pictures and by magnetic field measurements above the north polar region. These measurements show patterns of the variation of the transverse field component which are similar to those found by satellite measurements above the Earth. This indicates the presence of similar field-aligned current systems. They demonstrate particularly the presence (for northward IMF) and absence (for southward IMF) of the pattern attributed to the NBZ (northward B z ) current system

  20. Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346

    International Nuclear Information System (INIS)

    Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D.

    2013-01-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

  1. Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation

    Science.gov (United States)

    Kelley, Christopher; Berg, Jonathan

    2014-11-01

    A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  2. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  3. Vortex forcing model for turbulent flow over spanwise-heterogeneous topogrpahies: scaling arguments and similarity solution

    Science.gov (United States)

    Anderson, William; Yang, Jianzhi

    2017-11-01

    Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.

  4. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  5. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    International Nuclear Information System (INIS)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E.; Baldis, H.A.; Constantin, C.G.; Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C.; Pellinen, D.; Watts, P.

    2006-01-01

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  6. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Lab., Livermore, CA (United States); Baldis, H.A.; Constantin, C.G. [California at Davis Univ., CA (United States); Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, NY (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  7. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    International Nuclear Information System (INIS)

    Horvath, J. A.

    1998-01-01

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design

  8. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.

  9. Laboratory Experiments and their Applicability

    OpenAIRE

    Steinhaus, Thomas; Jahn, Wolfram

    2007-01-01

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These were conducted prior to and post the tests in Dalmarnock. Before the tests, ignition experiments were carried out in the laboratory to ensure flame spread from the wastepaper basket to the sofa. The later series of lab tests comprised of small scale cone calori...

  10. A laboratory scale model of abrupt ice-shelf disintegration

    Science.gov (United States)

    Macayeal, D. R.; Boghosian, A.; Styron, D. D.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Abbot, D. S.

    2010-12-01

    An important mode of Earth’s disappearing cryosphere is the abrupt disintegration of ice shelves along the Peninsula of Antarctica. This disintegration process may be triggered by climate change, however the work needed to produce the spectacular, explosive results witnessed with the Larsen B and Wilkins ice-shelf events of the last decade comes from the large potential energy release associated with iceberg capsize and fragmentation. To gain further insight into the underlying exchanges of energy involved in massed iceberg movements, we have constructed a laboratory-scale model designed to explore the physical and hydrodynamic interactions between icebergs in a confined channel of water. The experimental apparatus consists of a 2-meter water tank that is 30 cm wide. Within the tank, we introduce fresh water and approximately 20-100 rectangular plastic ‘icebergs’ having the appropriate density contrast with water to mimic ice. The blocks are initially deployed in a tight pack, with all blocks arranged in a manner to represent the initial state of an integrated ice shelf or ice tongue. The system is allowed to evolve through time under the driving forces associated with iceberg hydrodynamics. Digitized videography is used to quantify how the system of plastic icebergs evolves between states of quiescence to states of mobilization. Initial experiments show that, after a single ‘agitator’ iceberg begins to capsize, an ‘avalanche’ of capsizing icebergs ensues which drives horizontal expansion of the massed icebergs across the water surface, and which stimulates other icebergs to capsize. A surprise initially evident in the experiments is the fact that the kinetic energy of the expanding mass of icebergs is only a small fraction of the net potential energy released by the rearrangement of mass via capsize. Approximately 85 - 90 % of the energy released by the system goes into water motion modes, including a pervasive, easily observed seich mode of the tank

  11. Effects of Cohesive Sediment on Estuarine Morphology in Laboratory Scale Experiments

    Science.gov (United States)

    Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2017-12-01

    Mud plays a major role in forming and filling of river estuaries. River estuaries are typically build of sand and flanked by mudflats, which affect channel-shoal dynamics on time scales of centuries to millennia. In our research we aim to study the effects of mud on the shape and evolution of estuaries and where the largest effects occur. Recently a 20 m by 3 m flume (the Metronome) was developed at Utrecht University for tidal experiments. Complete estuaries are simulated in the Metronome by driving tidal flow by periodically tilting of the flume to counteract scaling problems. To simulate the effects of cohesive mud we supply nutshell grains to the system together with the river discharge. Three scenarios were tested, one with only sand, one with a low supply concentration of nutshell and one with a high concentration (left to right in figure).Estuaries that developed from an initial convergent shape are self-formed through bank erosion, continuous channel-shoal migration and bar and mud flat sedimentation (figure shows development over 15000 tilting cycles). The cohesive sediment deposits occur mainly on bars, but also on the flanks of the estuary and in abandoned channels. Due to its different erosional and depositional characteristics, the nutshell increases the elevation of the bars, which reduces storage and ebb-dominance and causes reduction of bar mobility and short cuts. These results agree with numerical model results. The large-scale effect is less widening of the estuary in the presence of mud and a decrease in channel-shoal migration, suggesting that mud confines estuary width in a similar manner as river floodplains.

  12. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Science.gov (United States)

    Mount, G. J.; Comas, X.

    2015-12-01

    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  13. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  14. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2011-07-01

    Full Text Available Abstract We recently demonstrated the utility of quantifying spontaneous pain in mice via the blinded coding of facial expressions. As the majority of preclinical pain research is in fact performed in the laboratory rat, we attempted to modify the scale for use in this species. We present herein the Rat Grimace Scale, and show its reliability, accuracy, and ability to quantify the time course of spontaneous pain in the intraplantar complete Freund's adjuvant, intraarticular kaolin-carrageenan, and laparotomy (post-operative pain assays. The scale's ability to demonstrate the dose-dependent analgesic efficacy of morphine is also shown. In addition, we have developed software, Rodent Face Finder®, which successfully automates the most labor-intensive step in the process. Given the known mechanistic dissociations between spontaneous and evoked pain, and the primacy of the former as a clinical problem, we believe that widespread adoption of spontaneous pain measures such as the Rat Grimace Scale might lead to more successful translation of basic science findings into clinical application.

  15. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  16. The baryonic self similarity of dark matter

    International Nuclear Information System (INIS)

    Alard, C.

    2014-01-01

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M 1/4 . These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  17. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Science.gov (United States)

    Schwartz, R. E.; Russell, L. M.; Sjostedt, S. J.; Vlasenko, A.; Slowik, J. G.; Abbatt, J. P. D.; MacDonald, A. M.; Li, S. M.; Liggio, J.; Toom-Sauntry, D.; Leaitch, W. R.

    2010-06-01

    Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) techniques for organic functional groups (OFG) and elemental composition. Organic mass (OM) concentrations ranged from less than 0.5 to 3.1 μg m-3, with a project mean and standard deviation of 1.3±1.0 μg m-3 and 0.21±0.16 μg m-3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and volatile organic compounds (VOC), including isoprene and monoterpenes from biogenic VOC (BVOC) emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR), were made using co-located proton transfer reaction mass spectrometry (PTR-MS). We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF) analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups) was similar to that of secondary organic aerosol (SOA) reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional group composition and morphology of single particles, which were analyzed by scanning transmission X-ray microscopy near edge X

  18. Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation.

    Science.gov (United States)

    Garg, Nidhi; Lata, Pushp; Jit, Simran; Sangwan, Naseer; Singh, Amit Kumar; Dwivedi, Vatsala; Niharika, Neha; Kaur, Jasvinder; Saxena, Anjali; Dua, Ankita; Nayyar, Namita; Kohli, Puneet; Geueke, Birgit; Kunz, Petra; Rentsch, Daniel; Holliger, Christof; Kohler, Hans-Peter E; Lal, Rup

    2016-06-01

    Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.

  19. From the Collaborative Environment of the Remote Laboratory NetLab to the Global Collaboration

    Directory of Open Access Journals (Sweden)

    Jan Machotka

    2008-07-01

    Full Text Available The remote laboratory (RL can be considered as a modern collaborative learning environment, where students acquire skills required for efficient collaboration and communication on a local and global scale, both today and in the near future. The majority of current existing RLs are not constructed to allow the involved participants to collaborate in real time. This paper describes the collaborative RL NetLab, developed at the University of South Australia (UniSA, which allows up to three onshore and/or offshore students to conduct remote experiments at the same time as a team. This allows the online RL environment to become very similar, if not nearly identical to its real laboratory counterpart. The collaboration in the real laboratory is replaced by the “global” on-line collaboration.

  20. Overview and challenges of molecular technologies in the veterinary microbiology laboratory.

    Science.gov (United States)

    Cunha, Mónica V; Inácio, João

    2015-01-01

    Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes. Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to "secure" biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.

  1. SCALE-6 Sensitivity/Uncertainty Methods and Covariance Data

    International Nuclear Information System (INIS)

    Williams, Mark L.; Rearden, Bradley T.

    2008-01-01

    Computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. The methodology used to calculate sensitivity coefficients and similarity coefficients and to perform nuclear data adjustment is discussed. A description is provided of the SCALE-6 covariance library based on ENDF/B-VII and other nuclear data evaluations, supplemented by 'low-fidelity' approximate covariances. SCALE (Standardized Computer Analyses for Licensing Evaluation) is a modular code system developed by Oak Ridge National Laboratory (ORNL) to perform calculations for criticality safety, reactor physics, and radiation shielding applications. SCALE calculations typically use sequences that execute a predefined series of executable modules to compute particle fluxes and responses like the critical multiplication factor. SCALE also includes modules for sensitivity and uncertainty (S/U) analysis of calculated responses. The S/U codes in SCALE are collectively referred to as TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation). SCALE-6-scheduled for release in 2008-contains significant new capabilities, including important enhancements in S/U methods and data. The main functions of TSUNAMI are to (a) compute nuclear data sensitivity coefficients and response uncertainties, (b) establish similarity between benchmark experiments and design applications, and (c) reduce uncertainty in calculated responses by consolidating integral benchmark experiments. TSUNAMI includes easy-to-use graphical user interfaces for defining problem input and viewing three-dimensional (3D) geometries, as well as an integrated plotting package.

  2. Residual strain, scale effects, and time-dependent behaviour at the 240-m level of the underground research laboratory

    International Nuclear Information System (INIS)

    Read, R.S.

    1990-01-01

    Two subhorizontal, orthogonal boreholes were monitored continuously during concentric overcoring at the 240-m level of the Underground Research Laboratory (URL). The magnitude and orientation of principal residual strain components in the near-field stress regime were determined assuming linear elastic behaviour of the rock mass and isotropic conditions. In terms of magnitude, results compared favourably with those from previous tests at the 240-m level. However, orientation results were inconclusive. The effects of scale and borehole orientation relative to the principal stress direction on the results from a modified CSIR triaxial cell overcore test were also investigated; no scale effects were apparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored between successive overcore tests in one of the boreholes. Results on residual strain, scale effects, and time-dependent behaviour are presented, along with limitations and possible modifications to the testing procedure

  3. A measure of association between vectors based on "similarity covariance"

    OpenAIRE

    Pascual-Marqui, Roberto D.; Lehmann, Dietrich; Kochi, Kieko; Kinoshita, Toshihiko; Yamada, Naoto

    2013-01-01

    The "maximum similarity correlation" definition introduced in this study is motivated by the seminal work of Szekely et al on "distance covariance" (Ann. Statist. 2007, 35: 2769-2794; Ann. Appl. Stat. 2009, 3: 1236-1265). Instead of using Euclidean distances "d" as in Szekely et al, we use "similarity", which can be defined as "exp(-d/s)", where the scaling parameter s>0 controls how rapidly the similarity falls off with distance. Scale parameters are chosen by maximizing the similarity corre...

  4. Preparing laboratory and real-world EEG data for large-scale analysis: A containerized approach

    Directory of Open Access Journals (Sweden)

    Nima eBigdely-Shamlo

    2016-03-01

    Full Text Available Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain-computer interface (BCI models.. However, the absence of standard-ized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the diffi-culty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a containerized approach and freely available tools we have developed to facilitate the process of an-notating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-analysis. The EEG Study Schema (ESS comprises three data Levels, each with its own XML-document schema and file/folder convention, plus a standardized (PREP pipeline to move raw (Data Level 1 data to a basic preprocessed state (Data Level 2 suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are in-creasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at eegstudy.org, and a central cata-log of over 850 GB of existing data in ESS format is available at study-catalog.org. These tools and resources are part of a larger effort to ena-ble data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org.

  5. CFD analysis of laboratory scale phase equilibrium cell operation

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process.: Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  6. CFD analysis of laboratory scale phase equilibrium cell operation.

    Science.gov (United States)

    Jama, Mohamed Ali; Nikiforow, Kaj; Qureshi, Muhammad Saad; Alopaeus, Ville

    2017-10-01

    For the modeling of multiphase chemical reactors or separation processes, it is essential to predict accurately chemical equilibrium data, such as vapor-liquid or liquid-liquid equilibria [M. Šoóš et al., Chem. Eng. Process Intensif. 42(4), 273-284 (2003)]. The instruments used in these experiments are typically designed based on previous experiences, and their operation verified based on known equilibria of standard components. However, mass transfer limitations with different chemical systems may be very different, potentially falsifying the measured equilibrium compositions. In this work, computational fluid dynamics is utilized to design and analyze laboratory scale experimental gas-liquid equilibrium cell for the first time to augment the traditional analysis based on plug flow assumption. Two-phase dilutor cell, used for measuring limiting activity coefficients at infinite dilution, is used as a test case for the analysis. The Lagrangian discrete model is used to track each bubble and to study the residence time distribution of the carrier gas bubbles in the dilutor cell. This analysis is necessary to assess whether the gas leaving the cell is in equilibrium with the liquid, as required in traditional analysis of such apparatus. Mass transfer for six different bio-oil compounds is calculated to determine the approach equilibrium concentration. Also, residence times assuming plug flow and ideal mixing are used as reference cases to evaluate the influence of mixing on the approach to equilibrium in the dilutor. Results show that the model can be used to predict the dilutor operating conditions for which each of the studied gas-liquid systems reaches equilibrium.

  7. Acompanhamento químico da vermicompostagem de lodo de esgoto doméstico

    Directory of Open Access Journals (Sweden)

    Paulo R. Dores-Silva

    2011-01-01

    Full Text Available This research aims to monitor the humification process of domestic sewage sludge resulted from the vermicomposting, evaluating, also, the possibility of using the final product (vermicompost in agricultural soils. The monitored chemical variables during the 90 days of vermicomposting were: humidity rate, organic matter content, nitrogen and phosphorus content, pathogenic organisms concentration, total organic carbon, acidity, CEC, C/N ratio, CEC/TOC ratio, and humic and fulvic acids content. The change in these variables during the vermicomposting process showed that this technique is effective for use in the maturation of the residue.

  8. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    Science.gov (United States)

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  9. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Sohal; J.E. O' Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites

  10. Curbing the Growth of Wax Bean (Vigna unguiculata L. via a Novel Complex of Nano Zinc Oxide/Vermicompost

    Directory of Open Access Journals (Sweden)

    Farideh BEHBOUDI

    2016-12-01

    Full Text Available Vermicompost (VC samples were prepared from manure and spent mushroom compost (SMC and were impregnated with zinc oxide nanoparticles (ZnO NPs, giving ZnO NPs/VC complexes that were added into the soil in which wax beans (Vigna unguiculata L. were then planted. The study was carried out through a factorial experiment in a randomized complete block design with three factors. The experimental factors included: ZnO NPs (0, 0.4, 0.8 and 1.2 mg kg-1, two substrate types (cow manure and SMC and VC (2.5, 5 and 7.5 weight percentages. To the substrate types, adult earthworms (Eisenia fetida were added. Specifically, after three months, the prepared VC was soaked in ZnO NPs solutions, mixed with soil (according to cultivation substrate weight, then employed in wet plantation of wax beans. The obtained results showed that with increasing ZnO NPs, leaves’ chlorophyll, grains number per pod, stem length, hundred grains weight, grain yield, and the grain protein content significantly decreased. In general, the usage of these NPs in the applied amounts could curb the undesired growth of this species.

  11. Quantifying the role that laboratory experiment sample scale has on observed material properties and mechanistic behaviors that cause well systems to fail

    Science.gov (United States)

    Huerta, N. J.; Fahrman, B.; Rod, K. A.; Fernandez, C. A.; Crandall, D.; Moore, J.

    2017-12-01

    Laboratory experiments provide a robust method to analyze well integrity. Experiments are relatively cheap, controlled, and repeatable. However, simplifying assumptions, apparatus limitations, and scaling are ubiquitous obstacles for translating results from the bench to the field. We focus on advancing the correlation between laboratory results and field conditions by characterizing how failure varies with specimen geometry using two experimental approaches. The first approach is designed to measure the shear bond strength between steel and cement in a down-scaled (cement-casing geometries that either mimic the scaling ratios found in the field or maximize the amount of metal and cement in the sample. We subject the samples to thermal shock cycles to simulate damage to the interfaces from operations. The bond was then measured via a push-out test. We found that not only did expected parameters, e.g. curing time, play a role in shear-bond strength but also that scaling of the geometry was important. The second approach is designed to observe failure of the well system due to pressure applied on the inside of a lab-scale (1.5" diameter) cylindrical casing-cement-rock geometry. The loading apparatus and sample are housed within an industrial X-ray CT scanner capable of imaging the system while under pressure. Radial tension cracks were observed in the cement after an applied internal pressure of 3000 psi and propagated through the cement and into the rock as pressure was increased. Based on our current suite of tests we find that the relationship between sample diameters and thicknesses is an important consideration when observing the strength and failure of well systems. The test results contribute to our knowledge of well system failure, evaluation and optimization of new cements, as well as the applicability of using scaled-down tests as a proxy for understanding field-scale conditions.

  12. Popularity versus similarity in growing networks

    Science.gov (United States)

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian

    2012-02-01

    Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  13. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-10-01

    Full Text Available Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination. Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC and intact (ICC cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change, significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min. Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes both in laboratory-scale research and full-scale system investigations in practice.

  14. Laboratory scale electron beam system for treatment of flue gases from diesel combustion

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Khairul Zaman Mohd Dahlan; Khomsaton Abu Bakar; Ayub Muhammad

    2004-01-01

    Laboratory scale test rig to treat simulated flue gas using electron beam technology was installed at the Alurtron EB-Irradiation Center, MINT. The experiment test rig was proposed as a result of feasibility studies conducted jointly by IAEA, MINT and TNB Research in 1997. The test rig system consists of several components, among other, diesel generator sets, pipe ducts, spray cooler, ammonia dosage system, irradiation vessel, bag filter and gas analyzers. The installation was completed and commissioned in October 2001. results from the commissioning test runs and subsequent experimental work showed that the efficiency of flue gas treatment is high. It was proven that electron beam technology might be applied in the treatment of air pollutants. This paper describes the design and work function of the individual major components as well as the full system function. Results from the initial experimental works are also presented. (Author)

  15. Anomalous scaling due to correlations: limit theorems and self-similar processes

    International Nuclear Information System (INIS)

    Stella, Attilio L; Baldovin, Fulvio

    2010-01-01

    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, explain their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance

  16. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  17. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  18. Large-scale laboratory study of breaking wave hydrodynamics over a fixed bar

    Science.gov (United States)

    van der A, Dominic A.; van der Zanden, Joep; O'Donoghue, Tom; Hurther, David; Cáceres, Iván.; McLelland, Stuart J.; Ribberink, Jan S.

    2017-04-01

    A large-scale wave flume experiment has been carried out involving a T = 4 s regular wave with H = 0.85 m wave height plunging over a fixed barred beach profile. Velocity profiles were measured at 12 locations along the breaker bar using LDA and ADV. A strong undertow is generated reaching magnitudes of 0.8 m/s on the shoreward side of the breaker bar. A circulation pattern occurs between the breaking area and the inner surf zone. Time-averaged turbulent kinetic energy (TKE) is largest in the breaking area on the shoreward side of the bar where the plunging jet penetrates the water column. At this location, and on the bar crest, TKE generated at the water surface in the breaking process reaches the bottom boundary layer. In the breaking area, TKE does not reduce to zero within a wave cycle which leads to a high level of "residual" turbulence and therefore lower temporal variation in TKE compared to previous studies of breaking waves on plane beach slopes. It is argued that this residual turbulence results from the breaker bar-trough geometry, which enables larger length scales and time scales of breaking-generated vortices and which enhances turbulence production within the water column compared to plane beaches. Transport of TKE is dominated by the undertow-related flux, whereas the wave-related and turbulent fluxes are approximately an order of magnitude smaller. Turbulence production and dissipation are largest in the breaker zone and of similar magnitude, but in the shoaling zone and inner surf zone production is negligible and dissipation dominates.

  19. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...... and recommendations elaborated from the tests are included in the other companion papers of the Coastal Engineering Special Issue on DELOS....

  20. Hollow Fiber Membrane Contactors for Post-Combustion CO2 Capture: A Scale-Up Study from Laboratory to Pilot Plant

    Directory of Open Access Journals (Sweden)

    Chabanon E.

    2014-11-01

    Full Text Available Membrane contactors have been proposed for decades as a way to achieve intensified mass transfer processes. Post-combustion CO2 capture by absorption into a chemical solvent is one of the currently most intensively investigated topics in this area. Numerous studies have already been reported, unfortunately almost systematically on small, laboratory scale, modules. Given the level of flue gas flow rates which have to be treated for carbon capture applications, a consistent scale-up methodology is obviously needed for a rigorous engineering design. In this study, the possibilities and limitations of scale-up strategies for membrane contactors have been explored and will be discussed. Experiments (CO2 absorption from a gas mixture in a 30%wt MEA aqueous solution have been performed both on mini-modules and at pilot scale (10 m2 membrane contactor module based on PTFE hollow fibers. The results have been modelled utilizing a resistance in series approach. The only adjustable parameter is in fitting the simulations to experimental data is the membrane mass transfer coefficient (km, which logically plays a key role. The difficulties and uncertainties associated with scaleup computations from lab scale to pilot scale modules, with a particular emphasis on the km value, are presented and critically discussed.