WorldWideScience

Sample records for similar ionic radii

  1. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  2. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    Science.gov (United States)

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  3. Dependence of ion-water distances on covalent radii, ionic radii in water and distances of oxygen and hydrogen of water from ion/water boundaries

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 429, č. 4-6 (2006), s. 600-605 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : ion-water distances * covalent and ionic radius Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  4. Similar nature of ionic imbalances in cardiovascular and renal disorders

    International Nuclear Information System (INIS)

    Shahid, S.M.; Jawed, M.; Akram, H.; Mahboob, T.

    2004-01-01

    Background: Several studies have reported improper ionic environment in cardiovascular and renal patients but how the diseases are associated on ionic basis is still not clear. Objective: The present study was aimed to investigate sodium and potassium concentrations and their transport abnormalities in cardiovascular and renal patients. Patients and Methods: Thirty patients of various cardiovascular and thirty patients of various renal disorders (53.33% males, 46.67% females) were selected. Erythrocytes were isolated from freshly drawn blood samples, washed and used for the estimation of sodium and potassium levels using flame photometer (Corning 410). Serum sodium and potassium were measured by flame photometer. RBC membranes were prepared for the estimation of Na/sup +/-K/sup +/-ATPase activity in terms of inorganic phosphate released/mg protein/hour. Results: Intra-erythrocyte and serum sodium and potassium concentrations and Na/sup +/-K/sup +/-ATPase activity were different in cardiovascular and renal patients from controls. Intra-erythrocyte sodium level was increased significantly (P<0.01) in cardiovascular patients and non-significantly in renal patients as compared to controls. Na/sup +/-K/sup +/-ATPase activity and serum sodium level were decreased significantly (P<0.01) in both the groups as compared to controls. Serum potassium was found to be decreased significantly (P<0.01) in cardiovascular patients whereas it was raised significantly (P<0.01) in renal patients as compared to control subjects. Conclusion: The results indicated similar nature of ionic and electrolyte imbalances in cardiovascular and renal disorders resulting from impaired Na/sup +/-K/sup +/-ATPase system. Further investigations in the same area, may be of help to establish an understanding of the progression of diseases, associated complications and the preventive steps that should-be taken to arrest the progression of these disorders. (author)

  5. Dependences of molar volumes in solids, partial molal and hydrated ionic volumes of alkali halides on covalent and ionic radii and the golden ratio

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2007-01-01

    Roč. 436, č. 1-3 (2007), s. 287-293 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040702 Keywords : alkali halides * ionic hydration * golden ratio Subject RIV: BO - Biophysics Impact factor: 2.207, year: 2007

  6. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  7. Cepheid radii and effective temperatures

    International Nuclear Information System (INIS)

    Fernley, J.A.; Skillen, I.; Jameson, R.F.

    1989-01-01

    New infrared photometry for the Cepheid variables T Vul, δ Cephei and XCyg is presented. Combining this with published infrared photometry of T Vul, ηAql, S Sge and XCyg and published optical photometry we use the infrared flux method to determine effective temperatures and angular radii at all phases of the pulsation cycle. These angular radii combined with published radial velocity curves then give the radii of the stars. Knowing the radii and effective temperatures we obtain the absolute magnitudes. (author)

  8. The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro

    DEFF Research Database (Denmark)

    Hadrup, Niels; Loeschner, Katrin; Mortensen, Alicja

    2012-01-01

    We compared the neurotoxic effects of 14nm silver nanoparticles (AgNPs) and ionic silver, in the form of silver acetate (AgAc), in vivo and in vitro. In female rats, we found that AgNPs (4.5 and 9mg AgNP/kg bw/day) and ionic silver (9mg Ag/kg bw/day) increased the dopamine concentration...... in the brain following 28 days of oral administration. The concentration of 5-hydroxytryptamine (5-HT) in the brain was increased only by AgNP at a dose of 9mg Ag/kg bw/day. Only AgAc (9mg Ag/kg bw/day) was found to increase noradrenaline concentration in the brain. In contrast to the results obtained from...... a 28-day exposure, the dopamine concentration in the brain was decreased by AgNPs (2.25 and 4.5mg/kg bw/day) following a 14-day exposure. These data suggest that there are differential effects of silver on dopamine depending on the length of exposure. In vitro, AgNPs, AgAc and a 12kDa filtered sub...

  9. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  10. The Golden ratio, ionic and atomic radii and bond lengths

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2005-01-01

    Roč. 103, 6-8 (2005), s. 877-882 ISSN 0026-8976 R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : Bohr radius * bond lengths * axial ratios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.351, year: 2005

  11. Form factors and charge radii in a quantum chromodynamics ...

    Indian Academy of Sciences (India)

    tic form factors and charge radii of D, Ds,B,Bs and Bc mesons in a quantum chromodynamics. (QCD)-inspired ... as pointed out in [12,13], one can expect a similar success here too. .... 0 were large and the formalism failed to account for large ...

  12. Variation of diffusivity with the cation radii in molten salts of ...

    Indian Academy of Sciences (India)

    Abstract. A molecular dynamics study of the dependence of diffusivity of the cation on ionic radii in molten. AgI is reported. ... potential) to carry out molecular dynamics simulations on α-AgI. ..... There is no clustering of these ions. The anionic.

  13. Diquark correlations from nucleon charge radii

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Lebed, Richard F.

    2006-01-01

    We argue that precise measurements of charge and magnetic radii can meaningfully constrain diquark models of the nucleon. We construct properly symmetrized, nonrelativistic three-quark wave functions that interpolate between the limits of a pointlike diquark pair and no diquark correlation. We find that good fits to the data can be obtained for a wide range of diquark sizes, provided that the diquark wave functions are close to those that reduce to a purely scalar state in the pointlike limit. A modest improvement in the experimental uncertainties will render a fit to the charge radii a more telling diagnostic for the presence of spatially correlated quark pairs within the nucleon

  14. Distribution of correlation radii in disordered ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Glinchuk, M. D.; Eliseev, E. A.; Stepanovich, V. A.; Jastrabík, Lubomír

    2002-01-01

    Roč. 81, č. 25 (2002), s. 4808-4810 ISSN 0003-6951 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered ferroelectrics * distribution of correlation radii * polar nanoregions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002

  15. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  16. Isospin dependence of nuclear charge radii and its microscopic demonstration

    International Nuclear Information System (INIS)

    Lei Yian; Zeng Jinyan

    2007-01-01

    The analysis of experimental nuclear charge radii R c indicates that R c deviates systematically from the A 1/3 law, i.e., R c /A 1/3 gradually decreases with increasing A, whereas R c /Z 1/3 remains almost a constant. This statement is also supported by the analysis of a large amount of experimental nuclear giant monopole resonance energy data E x ∝R -1 . The deviation of nuclear charge radii from the A 1/3 law is basically caused by the isospin independence of A 1/3 law, and the isospin dependence has been partly included in Z 1/3 law. In the frame of nuclear shell model, a microscopic demonstration of the Z 1/3 law is given. The difference in the harmonic oscillator potential strength between proton and neutron (ω p and ω n ) can be accounted for by the Z 1/3 law. Similar to Wigner's nuclear isobaric multiplet mass equation (IMME), a modified Z 1/3 law for nuclear charge radii is proposed. (authors)

  17. Systematics of nuclear RMS charge radii

    International Nuclear Information System (INIS)

    Brown, B.A.; Bronk, C.; Hodgson, P.E.

    1984-01-01

    The experimental RMS charge radii of isotopic sequences of nuclei are compared with calculations based on the spherical droplet model and spherical single-particle potential models. Harmonic-oscillator, Woods-Saxon and Skyrme Hartree-Fock single-particle potentials are considered. Deviations between experiment and theory are discussed in terms of the model parameters and in terms of the fundamental inadequacies of the models. The experimental B(E2) values connecting the ground states to the lowest 2 + states are used to estimate the increase in RMS radius due to the effects of deformation and zero-point vibrational motion. (author)

  18. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  19. Spins, moments and radii of Cd isotopes

    International Nuclear Information System (INIS)

    Hammen, Michael

    2013-01-01

    , the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I=11/2 - isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.

  20. Spins, moments and radii of Cd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hammen, Michael

    2013-10-30

    recorded and the magnetic dipole moments, the electric quadrupole moments, spins and changes in mean square charge radii are extracted. The obtained data reveal among other features an extremely linear behaviour of the quadrupole moments of the I=11/2{sup -} isomeric states and a parabolic development in differences in mean square nuclear charge radii between ground and isomeric state. The development of charge radii between the shell closures is smooth, exposes a regular odd-even staggering and can be described and interpreted in the model of Zamick and Thalmi.

  1. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  2. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  3. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  4. On radii of neutron distributions in nuclei

    International Nuclear Information System (INIS)

    Varma, G.K.; Zamick, L.

    1978-01-01

    The analyses of the differences between rms radii (Δ=rsub(n) - rsub(p) of neutron and proton distributions are considered in a wide variety of nuclei. It is noted that apart from its own intrinsic interest, the quantity Δ is of importance for isotope shifts, core polarization contributions to the Coulomb energy difference of mirror pairs (Nolen-Schiffer anomaly) and the renormalization of the effective interaction. For example, if Δ were very small in 48 Ca then the Nolen-Schiffer anomaly could be explained by a core polarization mechanism. The various methods of determining Δ are considered critically and it is concluded that at present probably the most reliable method is high energy (approximately 1 GeV) proton-nucleon scattering. The different theoretical analyses based upon, e.g. the multiple diffraction theory (where Glauber amplitude is the leading term) or the optical potential (KMT) formalisms appear to be converging to essentially the same answer when analyzing the same data. High energy α-particles and medium energy pions can also become useful sources of information if higher order optical potentials are treated with care. It is found that Δ is rather large in 48 Ca, i.e. there is a neutron skin, so that the Nolen-Schiffer anomaly cannot be explained by a core polarization mechanism. The results of high energy proton-nucleus scattering are in excellent agreement with current density dependent Hartree-Fock calculation. (Auth.)

  5. The radii and masses of dwarf Cepheids

    International Nuclear Information System (INIS)

    Fernley, J.A.; Jameson, R.F.; Sherrington, M.R.; Skillen, I.

    1987-01-01

    The authors present VJK photometry for the dwarf Cepheids CY Aqr, YZ Boo and VZ Cnc, and a radial velocity curve for CY Aqr. Using these data, plus radial velocity curves taken from the literature, Wesselink-type radii, and hence absolute magnitudes and masses, are derived for the three stars. Using these results, plus previously published work, a mean 'pulsation' mass for dwarf Cepheids of 1.2 +-0.3M solar mass is determined. If dwarf Cepheids are early post-main-sequence stars this is less than their 'evolutionary' mass by the ratio Msub(puls)/Msub(evol)approx.0.75. Previously published data on period changes show an order of magnitude larger than predicted by early post-main-sequence evolutionary tracks. The possibility that these stars are at a more advanced evolutionary state is briefly discussed. The properties of fundamental and possible/probable overtone pulsators are compared. Finally attention is drawn to the small cycle-to-cycle variations in dwarf Cepheid light curves noted by many observers and the possible link between these variations and delta Scuti behaviour. (author)

  6. Table of nuclear root mean square charge radii. Summary

    International Nuclear Information System (INIS)

    Paviotti-Corcuera, R.; McLaughlin, P.K.

    1999-01-01

    This document describes a table of nuclear root-mean-square (rms) charge radii evaluated by two different procedures. The data are available from the IAEA Nuclear Data Section via INTERNET or on PC diskettes upon request. This document supersedes the previous IAEA-NDS-163, 1990, 'Nuclear Charge Radii'. (author)

  7. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  8. Symmetry dependence of rms charge radii

    International Nuclear Information System (INIS)

    Angeli, I.

    2000-01-01

    Complete text of publication follows. The nucleon number dependence of rms charge radii is often approximated by some simple formula containing the mass number A only, R(A) = r(A) x A 1/3 where r(A) is a slowly varying function of A e.g. r(A) = r 0 + r 1 A -2/3 + r 2 A -4/3 ; r 0 , r 1 and r 2 are determined from a fit to experimental data. These simple mass-dependent formulae R(A) may be useful for nuclei along the valley of stability. However, for nuclei of the stability line, the mass number A = N + Z in itself is not enough to characterise the dependence of the R(Z,N) radius surface of the nucleon numbers Z and N. Changing a neutron to a proton a change in the charge radius can be expected, although A remains constant. In the present work, to extend the traditional radius formula, an additional term has been included, depending on the symmetry parameter I = (N-Z)/A. Several parametrisations were tried, using weighted least-squares (minimum χ 2 ) procedures for the fit to present-day data base (1). The best fit (with χ 2 /n'∼16) was found for R b (A,I) = r(A) x A 1/3 + b(I-I st ), where I st = (N st -Z st )/A is the value of the symmetry parameter of the stable isobar with the given mass number A, and b = -0.83. The alternative formula R a (A,I) = [r(A) + a(I-I st ) x A 1/3 is only slightly inferior to the previous one; here a = -0.20 and χ 2 /n'∼18. These results are practically independent of the ways of minimum search: fixing the parameters r 0 , r 1 and r 2 and varying teh parameter b (a) or varying the radius parameters r 0 , r 1 and r 2 and b (a) simultaneously. The main difficulty in determining the right parametrisation is caused by the fact that the experimental surface R exp (A,I) is not smooth. On the contrary, there are significant shell- and deformation effects (2,3) and isolated irregular points that may strongly affect the result of the fit. In order to avoid the effect of these strong deviations on the smooth symmetry dependence, more than

  9. Analysis of transverse mass dependence of Bose-Einstein correlation radii using the DELPHI data

    International Nuclear Information System (INIS)

    Loerstad, B.; Smirnova, O.G.

    1997-01-01

    The study of the directional dependence of two-particle correlations in the hadronic decays of the Z boson is performed, using the data collected by the DELPHI experiment. Investigation of the dependence of correlation radii on the transverse mass reveals a behaviour similar to that in heavy ion collisions, namely, an approximate 1/√m t dependence. Comparison to a simple Monte Carlo model shows a similar tendency

  10. Variation of nuclear radii in the drip line regions

    CERN Document Server

    Beiner, M; Mas, D

    1976-01-01

    The authors are concerned with predictions of the energy density method with respect to the nuclear sizes (RMS radii). It is known that the commonly accepted A/sup 1/3/-type laws are only approximative and deviations are expected to grow significantly as one goes away from the beta -stability region. Particular attention is paid to the variation of nuclear radii in the drip line regions. Implications of the resulting large total Coulomb energy variations between neighbouring nuclei will be emphasized.

  11. Consistent van der Waals radii for the whole main group.

    Science.gov (United States)

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  12. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  13. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  14. Influence of the ionic radii on the transition temperature of tilted perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, A S [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Fisica

    1979-03-01

    It is shown that the temperature of the transition to the cubic phase in the perovskites with tilted octahedra, considering compounds with the same central ion, is a decreasing function of the tolerance factor. An explanation is given in terms of empty spaces of the crystal structure and the rms thermal necessary to fill them.

  15. The measurement of dynamic radii for passenger car tyre

    Science.gov (United States)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  16. A differential equation for the Generalized Born radii.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2013-06-28

    The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.

  17. Charge radii of neutron-deficient Ca isotopes

    Science.gov (United States)

    Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.

    2017-09-01

    Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.

  18. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  19. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  20. The 3H–3He Charge Radii Difference

    Directory of Open Access Journals (Sweden)

    Myers L. S.

    2016-01-01

    Full Text Available The upcoming E12-14-009 [1] experiment at Jefferson Lab will determine the ratio of the electric form factors for the A=3 mirror nuclei 3He and 3H. The measurement will use a 1.1 GeV electron beam, a special collimator plate to allow for simultaneous optics measurements, and the low-activity tritium target being prepared for Jefferson Lab. By observing the dependence of the form factor ratio as a function of Q2 over 0.05–0.09 GeV2, the dependence of the radii extraction on the shape of the form factors is minimized. As a result, we anticipate the uncertainty of the extracted charge radii difference to be 0.03 fm, a reduction of 70% from the current measurement. Using precise measurements of the 3He charge radius from isotopic shift or μHe measurements [2–4], we can deduce the absolute 3H charge radius. The results will provide a direct comparison to recent calculations of the charge radii.

  1. Ionic thermometers

    International Nuclear Information System (INIS)

    Strnad, M.

    1975-01-01

    An original method of temperature measurement based on conductivity changes near the phase transition point of ionic compounds and suitable for the range from 200 to 700 0 C according to the thermometric compound used, is given. By choosing between two approaches it is posible to evaluate either a discrete value of temperature or continuous measurement in a range to about 50 0 C below the phase transition point of thermometric compounds. The extreme nonlinearity of conductivity of the chosen group of ionic crystals used as well as the technical applications developed in the laboratories have not previously been published. The aim of the research is the application of this measuring method for temperature indication in nuclear reactors. Preliminary tests in radiation fields in an experimental reactor are yielding a real hope in this direction. (author)

  2. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  3. Charge radii and electromagnetic moments of At-211195

    Science.gov (United States)

    Cubiss, J. G.; Barzakh, A. E.; Seliverstov, M. D.; Andreyev, A. N.; Andel, B.; Antalic, S.; Ascher, P.; Atanasov, D.; Beck, D.; Bieroń, J.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Fritzsche, S.; Gaffney, L. P.; George, S.; Ghys, L.; Heßberger, F. P.; Huyse, M.; Imai, N.; Kalaninová, Z.; Kisler, D.; Köster, U.; Kowalska, M.; Kreim, S.; Lane, J. F. W.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Marsh, B. A.; Mitsuoka, S.; Molkanov, P. L.; Nagame, Y.; Neidherr, D.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Revill, J. P.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Sandhu, K.; Schweikhard, L.; Sels, S.; Truesdale, V. L.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.; Van Duppen, P.; Wendt, K. D. A.; Wienholtz, F.; Whitmore, B. W.; Wilson, G. L.; Wolf, R. N.; Zuber, K.

    2018-05-01

    Hyperfine-structure parameters and isotope shifts of At-211195 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α -decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At,199197, for which a significant difference in the charge radii for ground (9 /2- ) and isomeric (1 /2+ ) states has been observed.

  4. The inflated radii of M dwarfs in the Pleiades

    Science.gov (United States)

    Jackson, R. J.; Deliyannis, Constantine P.; Jeffries, R. D.

    2018-05-01

    Rotation periods obtained with the Kepler satellite have been combined with precise measurements of projected rotation velocity from the WIYN 3.5-m telescope to determine the distribution of projected radii for several hundred low-mass (0.1 ≤ M/M⊙ ≤ 0.8), fast-rotating members of the Pleiades cluster. A maximum likelihood modelling technique, that takes account of observational uncertainties, selection effects and censored data, and considers the effects of differential rotation and unresolved binarity, has been used to find that the average radius of these stars is 14 ± 2 per cent larger at a given luminosity than predicted by current evolutionary models of Dotter et al. and Baraffe et al. The same models are a reasonable match to the interferometric radii of older, magnetically inactive field M dwarfs, suggesting that the over-radius may be associated with the young, magnetically active nature of the Pleiades objects. No evidence is found for any change in this over-radius above and below the boundary marking the transition to full convection. Published evolutionary models that incorporate either the effects of magnetic inhibition of convection or the blocking of flux by dark star-spots do not individually explain the radius inflation, but a combination of the two effects might. The distribution of projected radii is consistent with the adopted hypothesis of a random spatial orientation of spin axes; strong alignments of the spin vectors into cones with an opening semi-angle <30° can be ruled out. Any plausible but weaker alignment would increase the inferred over-radius.

  5. On the extended and Allan spectra and topological radii

    Directory of Open Access Journals (Sweden)

    Hugo Arizmendi-Peimbert

    2012-01-01

    Full Text Available In this paper we prove that the extended spectrum \\(\\Sigma(x\\, defined by W. Żelazko, of an element \\(x\\ of a pseudo-complete locally convex unital complex algebra \\(A\\ is a subset of the spectrum \\(\\sigma_A(x\\, defined by G.R. Allan. Furthermore, we prove that they coincide when \\(\\Sigma(x\\ is closed. We also establish some order relations between several topological radii of \\(x\\, among which are the topological spectral radius \\(R_t(x\\ and the topological radius of boundedness \\(\\beta_t(x\\.

  6. Charge radii and moments of tin nuclei by laser spectroscopy

    International Nuclear Information System (INIS)

    Anselment, M.; Bekk, K.; Hanser, A.; Hoeffgen, H.; Meisel, G.; Goering, S.; Rebel, H.; Schatz, G.

    1986-04-01

    The isotope shift and hyperfine structure of the optical Sn I resonance transition 5p 2 3 P 0 ->5p6s 3 P 1 at lambda=286.3 nm have been studied for 18 Sn nuclei including 2 isomers. Laser induced resonance fluorescence from a collimated atomic beam of tin was observed using a tunable cw dye laser with frequency doubler. The electromagnetic nuclear moments and changes of the mean square charge radii of the nuclear charge distributions were determined. The results are discussed with respect to the information they provide on the nuclear structure of the nuclei investigated; they are compared with various theoretical models. (orig.) [de

  7. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  8. Resonance contributions to Hanbury-Brown endash Twiss correlation radii

    International Nuclear Information System (INIS)

    Wiedemann, U.A.; Heinz, U.

    1997-01-01

    We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum K. This opens the possibility to reconstruct the dynamics of the source from the K dependence of the measured Hanburg-Brown endash Twiss (HBT) radii. Here we address the question to what extent resonance decays can fake such a flow signal. Within a simple parametrization for the emission function we present a comprehensive analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second-order q moments of the correlator C(q,K). We show that this yields a more reliable characterisation of the correlator in terms of its width and the correlation strength λ than other commonly used fit procedures. The normalized fourth-order q moments (kurtosis) provide a quantitative measure for the non-Gaussian features of the correlator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without transverse flow. copyright 1997 The American Physical Society

  9. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  10. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at $\\sqrt{\\mathbf{s_{NN}}}$=2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-02-04

    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb--Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV as a function of collision centrality and the average transverse momentum of the pair $k_{\\rm T}$. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with $k_{\\rm T}$, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with $\\left^{1/3}$. This behaviour is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller $\\sqrt{s_{\\rm NN}}$, a decrease in the $R_{\\rm out}/R_{\\rm side}$ ratio is seen, which is in qualitative agreement with specific predictions from hydrodynamic models. The results provide further evidence for the production of a collective, strongly c...

  11. CHARACTERIZATIONS ON BENDING EFFECT ON CUSTOMIZED SPLITTERS USING VARIOUS RADII OF ELLIPTICAL-SHAPED BLOCKS

    Directory of Open Access Journals (Sweden)

    L. S. SUPIAN

    2016-11-01

    Full Text Available Macro-bending effect unto polymer optical fiber (POF based splitters study is done to analyse the performance and characterizations using several bending radii of geometrical blocks that hold a customized prepared polymer fiber splitter. A pair of etched fibers with similar core diameters are attached to the ellipse-shaped blocks built using matching refractive index material where the blocks were built with various bending radii. The tapered fibers were lapped closely with some forces exerted upon them in order to stimulate the splitting of modes between the two fibers. This study is done by experimental set-up where each of the splitter ports is connected with optical power meter to measure the power output while pressure is exerted. Characterization is executed in order to investigate and analyse which bending radius gives the most optimize splitting ratio with considerable low loss for the particular splitter prepared. As for normal force of 0.3 lbF, the optimum splitting ratio with low loss is specified having bending radius, Rc, of 13 mm whilst for external force of 3.0 lbF, bending radius is found to be 19 mm. Small bending radius stimulates the radiation of rays into the second fiber while larger Rc gives longer coupling length that optimize the splitting ratios. Efficiencies between simulated values and experimental values are also analysed.

  12. A new perspective on charge radii around Z = 82

    Energy Technology Data Exchange (ETDEWEB)

    Cocolios, T. E., E-mail: thomas.cocolios@kuleuven.be [KU Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2017-11-15

    In the last 35 years, a large amount of data on the changes in the mean-square charge radii, δ〈r{sup 2}〉, around the lead region has been gathered. Isotopic chains are often normalised and compared to reduce the impact of systematic uncertainties of the extracted δ〈r{sup 2}〉 from the isotope shifts. However, this biased picture can obscure other interesting effects that are apparent in absolute scale. In this contribution, we review the extent of the knowledge on the δ〈r{sup 2}〉 in the lead region in addition to observations on the absolute scale.

  13. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    Science.gov (United States)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  14. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  15. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  16. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  17. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  18. Charge radii of magnesium isotopes by laser spectroscopy a structural study over the $sd$ shell

    CERN Multimedia

    Schug, M; Krieger, A R

    We propose to study the evolution of nuclear sizes and shapes over the magnesium chain by measuring the root-mean-square charge radii of $^{21 - 32}$Mg, essentially covering the entire $\\textit{sd}$ shell. Our goal is to detect the structural changes, which in the neutron-deficient isotopes may originate from clustering, in a way similar to neon, and on the neutron-rich side would characterize the transition to the "island of inversion". We will combine, for the first time, the sensitive $\\beta$-detection technique with traditional fluorescence spectroscopy for isotope-shift measurements and in such a way gain access to the exotic species near the ${N}$ = 8 and ${N}$ = 20 shell closures.

  19. Small radii of neutron stars as an indication of novel in-medium effects

    International Nuclear Information System (INIS)

    Jiang, Wei-Zhou; Li, Bao-An; Fattoyev, F.J.

    2015-01-01

    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii. (orig.)

  20. Uniformity of cylindrical imploding underwater shockwaves at very small radii

    Science.gov (United States)

    Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.

    2017-11-01

    We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.

  1. On the Radii of Close-in Giant Planets.

    Science.gov (United States)

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  2. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  3. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  4. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  5. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  6. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  7. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  8. Fossil hominin radii from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis

    2016-01-01

    Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-01-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  10. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    Science.gov (United States)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  11. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  12. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  13. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  14. Role of rare-earth ionic radii on the spin-phonon coupling in multiferroic ordered double perovskites

    Czech Academy of Sciences Publication Activity Database

    Macedo Filho, R.B.; Barbosa, D.A.B.; Reichlová, Helena; Martí, Xavier; de Menezes, A.S.; Ayala, A.P.; Paschoal, C.W.A.

    2015-01-01

    Roč. 7, č. 2 (2015), 075201 ISSN 2053-1591 Institutional support: RVO:68378271 Keywords : double perovskites * spin-phonon coupling * multiferroics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.968, year: 2015

  15. Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia

    DEFF Research Database (Denmark)

    Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.

    2018-01-01

    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models...... overestimate radii and masses at high temperatures, and that they are accurate to within 5% in radius and 13% in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars....

  16. Nuclear charge radii of 8,9Li determined by laser spectroscopy

    International Nuclear Information System (INIS)

    Ewald, G.; Dax, A.; Goette, S.; Kirchner, R.; Kluge, H.J.; Kuehl, T.; Sanchez, R.; Wojtaszek, A.; Noertershaeuser, W.; Drake, G.W.F.; Yan, Z.C.; Zimmermann, C.

    2004-06-01

    The 2S → 3S transition of 6,7,8,9 Li was studied by high-resolution laser spectroscopy using two-photon Doppler-free excitation and resonance-ionization detection. The hyperfine structure splitting and the isotope shift were determined with precision at the 100 kHz level. Combined with recent theoretical work, the changes in nuclear charge radii of 8,9 Li were determined. These are now the lightest short-lived isotopes for which the charge radii have been measured. It is found that the charge radii monotonically decrease with increasing neutron number from 6 Li to 9 Li. (orig.)

  17. Measurements of interaction cross sections and nuclear radii of Li isotopes

    International Nuclear Information System (INIS)

    Tanihata, I.; Hamagaki, H.; Hashimoto, O.; Shida, Y.; Yoshikawa, N.; Sugimoto, K.; Yamakawa, O.; Kobayashi, T.; Takahashi, N.

    1985-08-01

    Interaction cross sections(σ sub(I)) for all known Li isotopes ( 6 Li - 11 Li) and 9 Be on targets Be, C, and Al have been measured at 790 MeV/nucleon. Nuclear radii(R sub(I)) of these isotopes have been deduced from the σ sub(I). The differences of radii among isobars( 6 He - 6 Li, 8 He - 8 Li, and 9 Li - 9 Be) have been found for the first time. A comparison of R sub(I) with the rms radii obtained from electron-scattering is presented. (author)

  18. Hvad enhver kordreng skal kunne. Betragtning af motetten Ut Phebi radiis af Josquin Desprez

    DEFF Research Database (Denmark)

    Christoffersen, Peter Woetmann

    2003-01-01

    Josquin Desprez, Ut Phebi radiis, motet, prayer mode, hexachord, Ockeghem, Brumel, Isaac, Compère, sound, udtryk......Josquin Desprez, Ut Phebi radiis, motet, prayer mode, hexachord, Ockeghem, Brumel, Isaac, Compère, sound, udtryk...

  19. Sub-coulomb transfer method of a nucleon for measure orbital radii

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O.

    1986-04-01

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system 209 Bi(d,t) 208 Bi. (Author)

  20. Interaction cross-sections and matter radii of A = 20 isobars

    International Nuclear Information System (INIS)

    Chulkov, L.; Bochkarev, O.; Geissel, H.; Golovkov, M.; Janas, Z.; Keller, H.; Kobayashi, T.; Muenzenberg, G.; Nickel, F.; Ogloblin, A.; Patra, S.; Piechaczek, A.; Roeckl, E.; Schwab, W.; Suemmerer, K.; Suzuki, T.; Tanihata, I.; Yoshida, K.

    1995-11-01

    High-energy interaction cross-sections of A=20 nuclei ( 20 N, 20 O, 20 F, 20 Ne, 20 Na, 20 Mg) on carbon were measured with accuracies of ∼1%. The nuclear matter rms radii derived from the measured cross-sections show an irregular dependence on isospin projection. The largest difference in radii, which amounts to approximately 0.2 fm, has been obtained for the mirror nuclei 20 O and 20 Mg. The influenc of nuclear deformation and binding energy on the radii is discussed. By evaluating the difference in rms radii of neutron and proton distributions, evidence has been found for the existence of a proton skin for 20 Mg and of a neutron skin for 20 N. (orig.)

  1. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  2. Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia

    Science.gov (United States)

    Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.

    2018-05-01

    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.

  3. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    Science.gov (United States)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  4. LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara

    2011-01-01

    The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them provide a universal resolution to this observation, despite significant progress in the past years. We refine the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry. We find that 14% of them are likely false positives, based on their secondary eclipse depth. We report on planet radii versus stellar flux. We find an increase in planet radii with increased stellar irradiation for the Kepler giant planet candidates, in good agreement with existing hot Jupiter systems. We find that in the case of modest irradiation received from the stellar host, giant planets do not have inflated radii, and appear to have radii independent of the host star incident flux. This finding suggests that the physical mechanisms inflating hot Jupiters become ineffective below a given orbit-averaged stellar irradiation level of ∼2 × 10 8 erg s –1 cm –2 .

  5. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  6. Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470

    Science.gov (United States)

    Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney

    2018-01-01

    We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.

  7. THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-09-20

    We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

  8. ON THE RADII OF BROWN DWARFS MEASURED WITH AKARI NEAR-INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Sorahana, S.; Yamamura, I.; Murakami, H.

    2013-01-01

    We derive the radii of 16 brown dwarfs observed by AKARI using their parallaxes and the ratios of observed to model fluxes. We find that the brown dwarf radius ranges between 0.64-1.13 R J with an average radius of 0.83 R J . We find a trend in the relation between radii and T eff ; the radius is at a minimum at T eff ∼ 1600 K, which corresponds to the spectral types of mid- to late-L. The result is interpreted by a combination of radius-mass and radius-age relations that are theoretically expected for brown dwarfs older than 10 8 yr.

  9. On the odd-even effect in the charge radii of isotopes

    International Nuclear Information System (INIS)

    Talmi, I.

    1984-01-01

    Core polarization by valence neutrons is suggested as a possible mechanism for producing odd-even variation in the charge radii of isotopes. The nuclei considered have closed proton shells and neutrons in states with lowest seniority or generalized seniority. Simple expressions are derived for jsup(n) neutron configurations and various multipole terms of the pn interaction. The resulting expressions give a good fit to the radii of calcium isotopes and also of lead isotopes for which these expressions are only approximate. (orig.)

  10. Reanalysis of the radii of the Benchmark eclipsing binary V578 Mon

    International Nuclear Information System (INIS)

    Garcia, E. V.; Stassun, Keivan G.; Torres, Guillermo

    2013-01-01

    V578 Mon is an eclipsing binary system in which both stars have masses above 10 M ☉ determined with an accuracy better than 3%. It is one of only five such massive eclipsing binaries known that also possess eccentric orbits and measured apsidal motions, thus making it an important benchmark for theoretical stellar evolution models. However, recently reported determinations of the radii of V578 Mon differ significantly from previously reported values. We reanalyze the published data for V578 Mon and trace the discrepancy to the use of an incorrect formulation for the stellar potentials in the most recent analysis. Here we report corrected radii for this important benchmark eclipsing binary.

  11. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  12. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  13. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  14. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  15. Consequences of the proposed near equality of neutron and proton radii in the calcium isotopes

    International Nuclear Information System (INIS)

    Zamick, L.

    1976-01-01

    If the difference in neutron and proton radii in the Calcium Isotopes is much less than has up to now been calculated, one does have a mechanism for solving the Nolen-Schiffer anomaly; but then one runs into difficulty with other quantities such as the renormalized effective interaction between identical nucleons. (B.G.)

  16. ELLIPTICAL GALAXY MASSES OUT TO FIVE EFFECTIVE RADII: THE REALM OF DARK MATTER

    International Nuclear Information System (INIS)

    Deason, A. J; Belokurov, V.; Evans, N. W.; McCarthy, I. G.

    2012-01-01

    We estimate the masses of elliptical galaxies out to five effective radii using planetary nebulae and globular clusters as tracers. A sample of 15 elliptical galaxies with a broad variation in mass is compiled from the literature. A distribution function-maximum likelihood analysis is used to estimate the overall potential slope, normalization, and velocity anisotropy of the tracers. We assume power-law profiles for the potential and tracer density and a constant velocity anisotropy. The derived potential power-law indices lie in between the isothermal and Keplerian regime and vary with mass: there is tentative evidence that the less massive galaxies have steeper potential profiles than the more massive galaxies. We use stellar mass-to-light ratios appropriate for either a Chabrier/KTG (Kroupa, Tout and Gilmore) or Salpeter initial mass function to disentangle the stellar and dark matter components. The fraction of dark matter within five effective radii increases with mass, in agreement with several other studies. We employ simple models to show that a combination of star formation efficiency and baryon extent are able to account for this trend. These models are in good agreement with both our measurements out to five effective radii and recent Sloan Lens ACS Survey measurements within one effective radii when a universal Chabrier/KTG initial mass function is adopted.

  17. Investigation of the Effects of Expectation Values for Radii on the ...

    Indian Academy of Sciences (India)

    mation (NCA) wave functions to calculate expectation values of radii. The transition probability ... 1. Introduction. The optical properties of carbon, nitrogen and oxygen atoms are important in both atmospheric and ...... Zheng, N. W. 1988a, A new outline of atomic theory (Jiang Su Education Press). Zheng, N. W. 1988b, Chin.

  18. Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models

    Science.gov (United States)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-04-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.

  19. Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-01-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data

  20. Fitted HBT radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Lisa, Mike; Frodermann, Evan; Heinz, Ulrich

    2007-01-01

    The inability of otherwise successful dynamical models to reproduce the 'HBT radii' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the 'RHIC HBT Puzzle'. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models some of which exhibit significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we compute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and measured HBT radii remain, we show that a more 'apples-to-apples' comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data. (author)

  1. The axial dipole moment of two intersecting spheres of equal radii

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1988-01-01

    The use of a finite number of image charges to solve electrostatic problems associated with two conducting spheres intersecting at an angle of pi/n (n an integer) has been known for over a century. If, however, only spheres of equal radii are considered, it is possible to extend the permissible...

  2. A study on the service radii and accessibility to health facilities in ...

    African Journals Online (AJOL)

    Government policies over the years has centered on the provision and delivery of healthcare to all. Spatial distribution of health facilities is subject to a number of social and commercial influences and healthcare needs of the population. The objective of this paper analyzed the service radii and accessibility of health ...

  3. Laser measurements of radii and moments of barium nuclei near the proton drip line

    International Nuclear Information System (INIS)

    Eastham; Smith, J.R.H.; Groves, J.

    1987-01-01

    A new technique of laser spectroscopy has been used to measure the magnetic dipole and electric quadrupole moment of /sup 121/Ba, and the r.m.s. charge radii of /sup 120,121/Ba. The results are discussed in terms of the unified model

  4. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    Science.gov (United States)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  5. Mechanism of equalization of proton and neutron radii and the Coulomb anomaly

    International Nuclear Information System (INIS)

    Caurier, E.; Poves, A.; Zuker, A.

    1980-01-01

    It is shown that a one parameter modification of the effective forces allows to resolve the Coulomb energy anomalies in the Ca region within the framework of Hartree Fock (HF) and isospin projected Hartree Fock (IPHF) theories. A simple microscopic mechanism of equalization of neutron and proton radii is invoked to produce results consistent with available data

  6. Thermal correction of the radii of curvature of mirrors for GEO 600

    International Nuclear Information System (INIS)

    Lueck, H; Freise, A; Gossler, S; Hild, S; Kawabe, K; Danzmann, K

    2004-01-01

    A mismatch of the radii of curvature of the mirrors in the arms of an interferometric gravitational-wave detector can be partly compensated by creating a thermal gradient inside the mirror. This paper shows how the interference quality at the output of the German/British GEO 600 gravitational-wave detector could be improved with a simple ring heater

  7. Systematics of interaction and strong absorption radii determined from heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    Various methods for determining the strong absorption radius for light and intermediate mass nuclei are discussed. It is found that this determination in terms of the half-density radii of the target and projectile is more accurate over the whole range of available data than the other simple parametrizations. 62 references

  8. Effects of ionic radius of redox-inactive bio-related metal ions on the radical-scavenging activity of flavonoids evaluated using photometric titration.

    Science.gov (United States)

    Waki, Tsukasa; Kobayashi, Shigeki; Matsumoto, Ken-ichiro; Ozawa, Toshihiko; Kamada, Tadashi; Nakanishi, Ikuo

    2013-10-28

    Mg(2+) enhanced the scavenging activity of (+)-catechin and quercetin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙), while Al(3+) decreased their activity. Such effects of Mg(2+) and Al(3+) were not observed for kaempferol. Na(+) and Ca(2+) with large ionic radii showed little effect on the DPPH˙-scavenging activity of these three flavonoids.

  9. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  10. Lewis Acidic Ionic Liquids.

    Science.gov (United States)

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  11. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  12. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    International Nuclear Information System (INIS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  13. The radii of the Wolf-Rayet stars and the extent of their chromosphere-corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Zorec, J [College de France, Paris, France

    1981-03-01

    The radii of 14 Wolf-Rayet stars are computed on the basis of previously reported absolute fluxes in the region from 4150 to 8000 A for 10 WN stars and from 3650 to 8000 A for four WC stars. For comparison, the radii of 11 Of stars are also calculated. The Wolf-Rayet radii are found to range from about 10 to 35 solar radii, values that do not appear to provide supporting evidence for the hypothesis that Of stars evolve into late WN stars. Available UV observations of Gamma-2 Vel are used to investigate the extent of the chromosphere-corona structure in Wolf-Rayet stars. It is suggested that the second electron-temperature maximum in a recently proposed model for the extended envelopes of Wolf-Rayet stars should be further than about 300 solar radii from the center of a star.

  14. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  15. Commissioning of a new photon detection system for charge radii measurements of neutron-deficient Ca

    Science.gov (United States)

    Watkins, J.; Garand, D.; Miller, A. J.; Minamisono, K.; Everett, N.; Powel, R. C.; Maaß, B.; Nörtershäuser, W.; Kalman, C.; Lantis, J.; Kujawa, C.; Mantica, P.

    2017-09-01

    Calcium is unique for its possession of two stable isotopes of ``doubly magic'' nuclei at proton and neutron numbers (Z , N) = (20 , 20) and (20 , 28) . Recent charge radii measurements of neutron-rich calcium isotopes yielded an upward trend beyond current theoretical predictions. At the BECOLA facility at NSCL/MSU, Ca charge radii measurements will be extended to the neutron-deficient regime using collinear laser spectroscopy. A new photon detection system with an ellipsoidal reflector and a compound parabolic concentrator has been commissioned for the experiment. The system increases the signal-to-noise ratio by reducing background, which is critical for the low production rates of the Ca experiment. Details of the system and results of the characterization tests will be discussed. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft Grant SFB 1245.

  16. Nuclear charge radii from X-ray transitions in muonic C, O and N

    CERN Document Server

    Dubler, T; Schellenberg, L; Schneuwly, H; Vuilleumier, J L; Walter, H K

    1973-01-01

    Energies of muonic X-rays permit an almost model independent determination of nuclear root mean square (rms) radii for light and medium nuclei, which can be compared to those obtained from elastic electron scattering experiments at low momentum transfer. In the present experiment the X-ray energies of the K series of C, N and O up to the 6p-1s transition are determined with an accuracy of +or-15 eV from which rms radii are deduced comparable in precision to the electron scattering data. Muons from the CERN muon channel were stopped in a target, which contained 70 gr dimethylglyoxim (C/sub 4/H /sub 8/N/sub 2/O/sub 2/) and 18 gr rhodium powder. (0 refs).

  17. Research on Flow Pattern of Nitrogen Tetroxide Liquid in the Different Bend Radii Pipes

    Directory of Open Access Journals (Sweden)

    Hao Pengfei

    2016-01-01

    Full Text Available N2O4 is a common rocket fuel propellants, it has the characteristics of low boiling point and a large viscosity , the friction between viscosity fluids and pipeline dramatic leads to a huge sticky heat, therefore, the vaporization phenomenon often occurs in the pipeline, particularly in bending of the viscous heat. For this reason, the research of the different bending radii vaporized fluid conditions for optimizing the piping and precise the filling flow is significant. In this paper, the MIXTURE mixed flow model is used to achieve the numerical simulation the pipelines filling of the three different bending radii, it still have not solved the mass transfer problem between the different phases. Therefore, the custom functions are needed to define the mass transfer problems from the liquid phase to the vapor phase. Though the contrast among the volume phase cloud of six different elbow models , we have the following conclusions: 1 In the entire pipeline transportation, the distribution vaporization rate from the inlet pipe to the outlet pipe follows the distribution of the first increasing and then decreasing, the gas rates of the elbow area is highest; 2Analyzing the sticky heat for different bend radii, we have the conclusion that the lowest bending vaporization the of the optimal radius is 0.45m. The above conclusions are drawn in good agreement with the actual law, can effectively guide the engineering practice, have important significance for the future design for the optimization of the fuel pipeline transportation.

  18. Moments and mean square charge radii of short-lived argon isotopes

    CERN Document Server

    Klein, A; Georg, U; Keim, M; Lievens, P; Neugart, R; Neuroth, M; Silverans, R E; Vermeeren, L

    1996-01-01

    We report on the measurement of optical isotope shifts for $^{32-40}$Ar and for $^{46}$Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of $\\beta$-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z $\\approx$ 20). Contrary to all major neutron shell closures with N $\\geq$ 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of $^{33}$Ar (I=1/2) and $^{39}$Ar (I=7/2), and the quadrupole moments of $^{35}$Ar, $^{37}$Ar (I=3/2) and $^{39}$Ar. The electromagnetic moments are compared to shell-model predictions fo...

  19. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  20. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  1. Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.

    Science.gov (United States)

    Yadav, Anita; Pandey, Siddharth

    2017-12-07

    Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py

  2. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  3. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  4. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  5. The mechanism of diffusion and ionic transport of alkali metal ions in the particles of tin(IV) antimonate

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Aly, S.I.; Atomic Energy Establishment, Cairo

    1992-01-01

    The kinetics of exchange Li + , Na + , K + and Cs + ions of tin(IV) antimonate with H + form was studied under particle-diffusion-control conditions at different temperatures. The value of activation energy, diffusion coefficient and entropy of activation increase with the ionic mobilities and radii, and decrease with the hydration energy of the alkali metal ions. On the basis of the kinetic parameters, the exchange of alkali metal ions occurs in the unhydrated form. (author). 29 refs.; 4 figs.; 2 tabs

  6. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert; Herrera, Rafael; Archer, Lynden A.; Giannelis, Emmanuel P.

    2008-01-01

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  7. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  8. Ionic liquid marbles.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  9. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  10. POSS Ionic Liquid.

    Science.gov (United States)

    Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki

    2010-12-22

    We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.

  11. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model

    Science.gov (United States)

    Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.

    2017-05-01

    Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.

  12. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  13. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  14. Application of the method of maximum likelihood to the determination of cepheid radii

    International Nuclear Information System (INIS)

    Balona, L.A.

    1977-01-01

    A method is described whereby the radius of any pulsating star can be obtained by applying the Principle of Maximum Likelihood. The relative merits of this method and of the usual Baade-Wesselink method are discussed in an Appendix. The new method is applied to 54 well-observed cepheids which include a number of spectroscopic binaries and two W Vir stars. An empirical period-radius relation is constructed and discussed in terms of two recent period-luminosity-colour calibrations. It is shown that the new method gives radii with an error of no more than 10 per cent. (author)

  15. Relativistic calculations of screening parameters and atomic radii of neutral atoms

    Science.gov (United States)

    Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.

    2017-09-01

    Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.

  16. The magnetic field of the equatorial magnetotail - AMPTE/CCE observations at R less than 8.8 earth radii

    Science.gov (United States)

    Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.

    1987-01-01

    The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.

  17. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    Science.gov (United States)

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Corrections for hydrostatic atmospheric models: radii and effective temperatures of Wolf Rayet stars

    International Nuclear Information System (INIS)

    Loore, C. de; Hellings, P.; Lamers, H.J.G.L.M.

    1982-01-01

    With the assumption of plane-parallel hydrostatic atmospheres, used generally for the computation of evolutionary models, the radii of WR stars are seriously underestimated. The true atmospheres may be very extended, due to the effect of the stellar wind. Instead of these hydrostatic atmospheres the authors consider dynamical atmospheres adopting a velocity law. The equation of the optical depth is integrated outwards using the equation of continuity. The ''hydrostatic'' radii are to be multiplied with a factor 2 to 8, and the effective temperatures with a factor 0.8 to 0.35 when Wolf Rayet characteristics for the wind are considered, and WR mass loss rates are used. With these corrections the effective temperatures of the theoretical models, which are helium burning Roche lobe overflow remnants, range between 30,000 K and 50,000 K. Effective temperatures calculated in the hydrostatic hypothesis can be as high as 150,000 K for helium burning RLOF-remnants with WR mass loss rates. (Auth.)

  19. Laser-spectroscopy measurements of 72-96Kr spins, moments and charge radii

    International Nuclear Information System (INIS)

    Keim, M.

    1995-01-01

    The spins, moments and radii of krypton isotopes have been investigated by collinear fast-beam laser spectroscopy in combination with ultra-sensitive collisional ionization detection. The sequence of isotopes under study ranges from the neutron-deficient N=Z=36 isotope 72 Kr to the neutron-rich 96 Kr (N=60). The mean-square charge radii in the neighbourhood of the N=50 neutron-shell closure exhibit a pronounced shell effect which has recently been explained in the framework of relativistic mean-field theory. The results for the neutron-deficient nuclei are related to the shape coexistence of strongly prolate and near-spherical states which is known from nuclear spectroscopy. Here, an inversion of the odd-even staggering is observed below the neutron number N=45. The neutron-rich transitional nuclei are influenced by the N=56 subshell closure. In contrast to the N=60 isotones 97 Rb, 98 Sr and 100 Zr, the new isotope 96 Kr is not strongly deformed. ((orig.))

  20. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  1. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  2. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  3. Excitation strengths and transition radii differences of one-phonon quadrupole excitations from electron scattering on {sup 92,94}Zr and {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh Obeid, Abdulrahman

    2014-11-01

    In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states

  4. Ionic conductivity of the lithium titanium phosphate (Li/sub 1+x/M/sub x/Ti/sub 2-x/(PO/sub 4/)/sub 3/, M=Al, Sc, Y, and La) systems

    International Nuclear Information System (INIS)

    Aono, H.; Sugimoto, E.; Sadaaka, Y.; Imanaka, N.; Adachi, G.Y.

    1989-01-01

    High lithium ionic conductivity was obtained in Li/sub 1+X/M/sub X/Ti/sub 2-X/(PO/sub 4/)/sub 3/ (M=Al, Sc, Y, and La) systems. Lithium titanium phosphate, LiTi/sub 2/(PO/sub 4/)/sub 3/, is composed of both TiO/sub 6/ octahedra and PO/sub 4/ tetrahedra, which are linked by corners to form a three dimensional network, with a space group R3-barC. Some workers have already described that the conductivity increased considerably if Ti/sup 4+/ in LiTi/sub 2/(PO/sub 4/)/sub 3/ was substituted by slightly larger cations such as Ga/sup 3+/(1),Sc/sup 3+/(2), and In/sup 3+/(3,4). These results are similar to each other because of their close ionic radii. In this communication, substitution effects of Ti/sup 4+/ in LiTi/sub 2/(PO/sub 4/)/sub 3/ by various ions (Al/sup 3+/, Sc/sup 3+/, Y/sup 3+/, and La/sup 3+/) on their conductivities are reported

  5. Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-12-12

    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collecti...

  6. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  7. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  8. The distribution of masses and radii of white-dwarf stars

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1978-01-01

    The status of determinations of white dwarf radii by model atmosphere methods is reviewed. The results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R(Sun); (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R(Sun), indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R(Sun). (Auth.)

  9. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    Science.gov (United States)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  10. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  11. Center-of-mass correction and confinement radii of the composite vector bosons

    International Nuclear Information System (INIS)

    Tadic, D.; Tadic, G.

    1985-01-01

    Describing a composite W boson by a center-of-mass--corrected bag model one finds a relation R/sub W/ 3 M/sub W/ 3 / f/sub W/ 2 approx. =R/sub rho/ 3 m/sub rho/ 3 / f/sub rho/ 2 for the confinement radii (R), masses, and coupling constants (f) of W and rho bosons. Using experimental values for f/sub rho/, m/sub rho/, and M/sub W/ and with f/sub W/ = 0.66, one obtains R/sub W//R/sub rho/approx. =2 x 10 -3 . f/sub rho/, f/sub W/, and masses can be calculated separately

  12. Neutron star radii, universal relations, and the role of prior distributions

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A.W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Lattimer, J.M. [Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY (United States); Brown, E.F. [Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, The Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements, East Lansing, MI (United States); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-02-15

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4M {sub CircleDot} neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia. (orig.)

  13. Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia

    Science.gov (United States)

    Stassun, Keivan G.; Corsaro, Enrico; Pepper, Joshua A.; Gaudi, B. Scott

    2018-01-01

    We present a methodology for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars for which these measures are available in the literature, and show that the stellar masses can be measured with this method to a precision of ∼25%, limited by the surface-gravity precision of the granulation “flicker” method (∼0.1 dex) and by the parallax uncertainties (∼10% for the Kepler sample). We explore the impact of expected improvements in the surface gravity determinations—through the application of granulation background fitting and the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival of the Gaia second data release. We show that the application of this methodology to stars that will be observed by TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface. Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including those that will ultimately be found to host planets.

  14. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    Science.gov (United States)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  15. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  16. Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids.

    Science.gov (United States)

    Pinkert, André; Ang, Keng L; Marsh, Kenneth N; Pang, Shusheng

    2011-03-21

    Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented.

  17. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach

    Science.gov (United States)

    Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.

    2018-05-01

    Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.

  18. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    Science.gov (United States)

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  20. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  1. Lattice dynamics of ionic crystals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1990-01-01

    The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces

  2. Nuclear charge radii of light isotopes based on frequency comb measurements

    International Nuclear Information System (INIS)

    Zakova, Monika

    2010-01-01

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10 -10 . Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10 -9 contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes 6,7 Li was performed in order to determine the absolute frequency of the 2S → 3S transition. The achieved relative accuracy of 2 x 10 -10 is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D 1 and D 2 lines in beryllium ions for the isotopes 7,9,10,11 Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of 7,10 Be and the one-neutron halo nucleus 11 Be were determined. Obtained charge radii are decreasing from 7 Be to 10 Be and increasing again for 11 Be. While the monotone decrease can be explained by a

  3. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  4. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  5. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  6. Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.

    1979-01-01

    The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)

  7. Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields

    Science.gov (United States)

    Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team

    2018-01-01

    We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.

  8. Collinear Laser Spectroscopy of Potassium Nuclear Charge Radii beyond N = 28

    CERN Document Server

    AUTHOR|(CDS)2078903; Jochim, Selim

    Nuclear ground-state properties, such as spin, charge radius, and magnetic dipole and electric quadrupole moments are important quantities to describe the nucleus. The comparison of experimental data to shell-model calculations gives insight in the underlying nuclear structure and composition of ground-state wave functions. Spins and charge radii can also be used to test the predictions of state-of-the-art microscopic models. This work contributes to these studies providing new measurements in the region of the nuclear chart around the magic proton number Z = 20. The data have been obtained at the collinear laser spectroscopy setup COLLAPS located at the radioactive-ion-beam facility ISOLDE at CERN. Using bunched-beam laser spectroscopy hyperne structure spectra of the potassium isotopes with mass number A = 48 51 could be recorded for the first time. Ground-state spins and isotope shifts could be deduced for 4851K contributing to the evolution of the d3=2 orbital beyond the shell closure at the magi...

  9. Nuclear Charge Radii in the Region of Shape Isomerism at Z $\\leq$ 80

    CERN Multimedia

    2002-01-01

    The determination of isotope shifts in the isotopic chain of Hg has led to quite a number of unexpected observations as the transition from slightly oblate to strongly prolate deformation below A~=~186, the shape coexistence in |1|8|5Hg and a huge odd-even staggering of the charge radii in the region 181~@$<$~ Until now it is quite open if the observed instability of the nuclear shape is an isolated and unique feature of the light Hg isotopes and how it changes with Z and depends on the shell and pairing energies.\\\\ \\\\ Therefore we propose to carry out a study of the isotope shifts in the neighbouring isotopes of the elements Au and Pt which can be obtained at ISOLDE as daughters of a primary Hg beam. Resonance ionization spectroscopy will be applied as a novel technique at ISOLDE. The time of flight of the photo ionized Au (or Pt) isotope in a drift tube will be used to get rid of any background events.

  10. Molecular single-bond covalent radii for elements 1-118.

    Science.gov (United States)

    Pyykkö, Pekka; Atsumi, Michiko

    2009-01-01

    A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.

  11. VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)

    Science.gov (United States)

    Lehmann, I.; Scholz, R.-D.

    1998-02-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).

  12. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  13. A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This program is a modification of the Eisenstein-Miller program (1974) for calculating elastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the use of separate proton and neutron radii for the nuclear density function rho(r). (Auth.)

  14. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon?

    DEFF Research Database (Denmark)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.

    2014-01-01

    gravitational radii (R-G) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 R-G as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3 sigma confidence level. By adding a spin-dependent upper...

  15. New Similarity Functions

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Kwasnicka, Halina

    2016-01-01

    spaces, in addition to their similarity in the vector space. Prioritized Weighted Feature Distance (PWFD) works similarly as WFD, but provides the ability to give priorities to desirable features. The accuracy of the proposed functions are compared with other similarity functions on several data sets....... Our results show that the proposed functions work better than other methods proposed in the literature....

  16. Phoneme Similarity and Confusability

    Science.gov (United States)

    Bailey, T.M.; Hahn, U.

    2005-01-01

    Similarity between component speech sounds influences language processing in numerous ways. Explanation and detailed prediction of linguistic performance consequently requires an understanding of these basic similarities. The research reported in this paper contrasts two broad classes of approach to the issue of phoneme similarity-theoretically…

  17. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at $\\sqrt{\\mathbf{s_{NN}}}$=2.76 TeV

    OpenAIRE

    Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno

    2015-01-01

    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb--Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV as a function of collision centrality and the average transverse momentum of the pair $k_{\\rm T}$. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with $k_{\\rm T}$, following a power-law behavior. This is qualitatively consistent with expectations from ...

  18. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  19. Nuclear charge radii of light isotopes based on frequency comb measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Monika

    2010-02-11

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10{sup -10}. Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10{sup -9} contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes {sup 6,7}Li was performed in order to determine the absolute frequency of the 2S {yields} 3S transition. The achieved relative accuracy of 2 x 10{sup -10} is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D{sub 1} and D{sub 2} lines in beryllium ions for the isotopes {sup 7,9,10,11}Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of {sup 7,10}Be and the one-neutron halo nucleus {sup 11}Be were determined. Obtained charge radii are decreasing from {sup 7}Be to {sup 10}Be and increasing again for

  20. Molecular similarity measures.

    Science.gov (United States)

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  1. Ionic conductivity in irradiated KCL; Conductiviad ionica de KCL irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Vignolo Rubio, J

    1979-07-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  2. Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems

    DEFF Research Database (Denmark)

    Omar, Shobit; Wachsman, Eric D.; Jones, Jacob L.

    2009-01-01

    lattice strain of 10 mol% trivalent cation-doped ceria systems at the same temperatures. A consistent set of ionic conductivity data is developed, where the samples are synthesized under similar experimental conditions. On comparing the grain ionic conductivity, Nd0.10Ce0.90O2−δ exhibits the highest ionic...... conductivity among other doped ceria systems. The grain ionic conductivity is around 17% higher than that of Gd0.10Ce0.90O2−δ at 500°C, in air. X-ray diffraction profiles are collected on the sintered powder of all the compositions, from room temperature to 600°C, in air. From the lattice expansion data...... at high temperatures, the minimal elastic strain due to the presence of dopant is observed in Dy0.10Ce0.90O2−δ. Nd0.10Ce0.90O2−δ exhibits larger elastic lattice strain than Dy0.10Ce0.90O2−δ with better ionic conductivity at intermediate temperatures. Therefore, it is shown that the previously proposed...

  3. Picosecond radiolysis of ionic liquids

    International Nuclear Information System (INIS)

    Funston, A.M.; Wishart, J.F.; Neta, P.; Lall, S.I.; Engel, R.

    2003-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Ionic liquids are completely nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. Kinetic studies with a picosecond electron accelerator, such as the BNL Laser-Electron Accelerator Facility (LEAF), allow one to observe primary radiation products and their reactions on short time scales. For example, the solvated electron lifetime in neat methyltributylammonium bis(trifluoromethylsulfonyl)imide is ∼300 ns and its absorption maximum is ∼1400 nm. Kinetic studies of primary radiolytic products and their reactivities will be described for several types of ionic liquids. Supported in part by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under contract DE-AC02-98-CH1088

  4. Thermophysical properties of ionic liquids.

    Science.gov (United States)

    Rooney, David; Jacquemin, Johan; Gardas, Ramesh

    2010-01-01

    Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

  5. Similarity Measure of Graphs

    Directory of Open Access Journals (Sweden)

    Amine Labriji

    2017-07-01

    Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and  offers a contribution to solving the problem mentioned above.

  6. Processes of Similarity Judgment

    Science.gov (United States)

    Larkey, Levi B.; Markman, Arthur B.

    2005-01-01

    Similarity underlies fundamental cognitive capabilities such as memory, categorization, decision making, problem solving, and reasoning. Although recent approaches to similarity appreciate the structure of mental representations, they differ in the processes posited to operate over these representations. We present an experiment that…

  7. Judgments of brand similarity

    NARCIS (Netherlands)

    Bijmolt, THA; Wedel, M; Pieters, RGM; DeSarbo, WS

    This paper provides empirical insight into the way consumers make pairwise similarity judgments between brands, and how familiarity with the brands, serial position of the pair in a sequence, and the presentation format affect these judgments. Within the similarity judgment process both the

  8. Ionic dependence of sulphur mustard cytotoxicity

    International Nuclear Information System (INIS)

    Sawyer, Thomas W.; Nelson, Peggy; Bjarnason, Stephen; Vair, Cory; Shei Yimin; Tenn, Catherine; Lecavalier, Pierre; Burczyk, Andrew

    2010-01-01

    The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC 50 values of ∼ 100-150 μM when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.

  9. The semantic similarity ensemble

    Directory of Open Access Journals (Sweden)

    Andrea Ballatore

    2013-12-01

    Full Text Available Computational measures of semantic similarity between geographic terms provide valuable support across geographic information retrieval, data mining, and information integration. To date, a wide variety of approaches to geo-semantic similarity have been devised. A judgment of similarity is not intrinsically right or wrong, but obtains a certain degree of cognitive plausibility, depending on how closely it mimics human behavior. Thus selecting the most appropriate measure for a specific task is a significant challenge. To address this issue, we make an analogy between computational similarity measures and soliciting domain expert opinions, which incorporate a subjective set of beliefs, perceptions, hypotheses, and epistemic biases. Following this analogy, we define the semantic similarity ensemble (SSE as a composition of different similarity measures, acting as a panel of experts having to reach a decision on the semantic similarity of a set of geographic terms. The approach is evaluated in comparison to human judgments, and results indicate that an SSE performs better than the average of its parts. Although the best member tends to outperform the ensemble, all ensembles outperform the average performance of each ensemble's member. Hence, in contexts where the best measure is unknown, the ensemble provides a more cognitively plausible approach.

  10. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  11. Form factors and charge radii in a quantum chromodynamics-inspired potential model using variationally improved perturbation theory

    International Nuclear Information System (INIS)

    Hazarika, Bhaskar Jyoti; Choudhury, D.K.

    2015-01-01

    We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of D, D s , B, B s and B c mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer Q 2 , hinting at a workable range of Q 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option. (author)

  12. Measurement of Moments and Radii of Light Nuclei by Collinear Fast-Beam Laser Spectroscopy and $\\beta$-NMR Spectroscopy

    CERN Multimedia

    Marinova, K P

    2002-01-01

    Nuclear Moments and radii of light unstable isotopes are investigated by applying different high-sensitivity and high-resolution techniques based on collinear fast-beam laser spectroscopy. A study of nuclear structure in the sd shell is performed on neon isotopes in the extended chain of $^{17-28}$Ne, in particular on the proton-halo candidate $^{17}$Ne. Measurements of hyperfine structure and isotope shift have become possible by introducing an ultra-sensitive non-optical detection method which is based on optical pumping, state-selective collisional ionization and $\\beta$-activity counting. The small effect of nuclear radii on the optical isotope shifts of light elements requires very accurate measurements. The errors are dominated by uncertainties of the Doppler shifts which are conventionally determined from precisely measured acceleration voltages. These uncertainties are removed by measuring the beam energy with simultaneous excitation of two optical lines in parallel / antiparallel beam configuration. ...

  13. Charge radii and electromagnetic moments of Li and Be isotopes from the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Forssen, C.; Caurier, E.; Navratil, P.

    2009-01-01

    Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign

  14. Gender similarities and differences.

    Science.gov (United States)

    Hyde, Janet Shibley

    2014-01-01

    Whether men and women are fundamentally different or similar has been debated for more than a century. This review summarizes major theories designed to explain gender differences: evolutionary theories, cognitive social learning theory, sociocultural theory, and expectancy-value theory. The gender similarities hypothesis raises the possibility of theorizing gender similarities. Statistical methods for the analysis of gender differences and similarities are reviewed, including effect sizes, meta-analysis, taxometric analysis, and equivalence testing. Then, relying mainly on evidence from meta-analyses, gender differences are reviewed in cognitive performance (e.g., math performance), personality and social behaviors (e.g., temperament, emotions, aggression, and leadership), and psychological well-being. The evidence on gender differences in variance is summarized. The final sections explore applications of intersectionality and directions for future research.

  15. Ionic liquid-tolerant cellulase enzymes

    Science.gov (United States)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  16. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  17. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    Science.gov (United States)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  18. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-01-01

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ( f licker ) of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T eff = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested

  19. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  20. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  1. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  2. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  3. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  4. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  5. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    Science.gov (United States)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  6. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  7. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  8. Similarity or difference?

    DEFF Research Database (Denmark)

    Villadsen, Anders Ryom

    2013-01-01

    While the organizational structures and strategies of public organizations have attracted substantial research attention among public management scholars, little research has explored how these organizational core dimensions are interconnected and influenced by pressures for similarity....... In this paper I address this topic by exploring the relation between expenditure strategy isomorphism and structure isomorphism in Danish municipalities. Different literatures suggest that organizations exist in concurrent pressures for being similar to and different from other organizations in their field......-shaped relation exists between expenditure strategy isomorphism and structure isomorphism in a longitudinal quantitative study of Danish municipalities....

  9. Comparing Harmonic Similarity Measures

    NARCIS (Netherlands)

    de Haas, W.B.; Robine, M.; Hanna, P.; Veltkamp, R.C.; Wiering, F.

    2010-01-01

    We present an overview of the most recent developments in polyphonic music retrieval and an experiment in which we compare two harmonic similarity measures. In contrast to earlier work, in this paper we specifically focus on the symbolic chord description as the primary musical representation and

  10. Application of Ionic Liquids in Hydrometallurgy

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  11. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  12. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  13. Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids

    International Nuclear Information System (INIS)

    Valero-Pedraza, María José; Martín-Cortés, Alexandra; Navarrete, Alexander; Bermejo, María Dolores; Martín, Ángel

    2015-01-01

    Ammonia borane is a promising hydrogen storage material that liberates hydrogen by thermolysis at moderate temperatures, but it also presents major limitations for practical applications including a long induction time before the initiation of hydrogen release and a difficult regeneration. Previous works have demonstrated that by dissolution of ammonia borane into several ionic liquids, and particularly in 1-butyl-3-methylimidazolium chloride bmimCl, the induction period at the beginning of the thermolysis is eliminated, but some problems persist, including foaming and the formation of a residue after thermolysis that is insoluble in the ionic liquid. In this work, the release of hydrogen from ammonia borane dissolved in different ionic liquids has been analyzed, measuring the kinetics of hydrogen release, visually following the evolution of the sample during the process using pressure glass tube reactors, and analyzing the residue by spectroscopic techniques. While dissolutions of ammonia borane in most ionic liquids analyzed show similar properties as dissolutions in bmimCl, using ionic liquids with bis(trifluoromethylsulfanyl)imide Tf_2N anion the foaming problem is reduced, and in some cases the residue remains dissolved in the ionic liquid, while with ionic liquids with choline anion higher hydrogen yields are achieved that indicate that the decomposition of ammonia borane proceeds through a different path. - Highlights: • Hydrogen release from ammonia borane dissolved in 13 ionic liquids has been studied. • Induction time is shortened and hydrogen release rate is accelerated in all cases. • The best results are obtained using ionic liquids with Tf_2N anion. • Ch cation ionic liquids enable higher H_2 yield, but cyclotriborazane is produced.

  14. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mahesh K. Potdar

    2015-09-01

    Full Text Available Over the past decade, a variety of ionic liquids have emerged as greener solvents for use in the chemical manufacturing industries. Their unique properties have attracted the interest of chemists worldwide to employ them as replacement for conventional solvents in a diverse range of chemical transformations including biotransformations. Biocatalysts are often regarded as green catalysts compared to conventional chemical catalysts in organic synthesis owing to their properties of low toxicity, biodegradability, excellent selectivity and good catalytic performance under mild reaction conditions. Similarly, a selected number of specific ionic liquids can be considered as greener solvents superior to organic solvents owing to their negligible vapor pressure, low flammability, low toxicity and ability to dissolve a wide range of organic and biological substances, including proteins. A combination of biocatalysts and ionic liquids thus appears to be a logical and promising opportunity for industrial use as an alternative to conventional organic chemistry processes employing organic solvents. This article provides an overview of recent developments in this field with special emphasis on the application of more sustainable enzyme-catalyzed reactions and separation processes employing ionic liquids, driven by advances in fundamental knowledge, process optimization and industrial deployment.

  15. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  16. Ionic versus nonionic contrast media

    International Nuclear Information System (INIS)

    Zylak, C.J.; Gafni, A.

    1988-01-01

    The efficacy and effectiveness of the nonionic contrast media have been established. Widespread usage has been hampered because of the approximate tenfold increase in cost compared with the ionic media. An economic evaluation considering costs and consequences of both interventions (ionic vs nonionic contrast media) was performed; it is a cost effectiveness (CEA) and a cost-benefit analysis (CBA) for the Canadian experience. The results of the CEA demonstrate a value per life-year saved within an acceptable range when compared with value for quality-adjusted life years for programs such as treatment of severe (diastolic≥ 105 mm Hg) and mild (diastolic 95-104 mm Hg) hypertension in men aged 40. The CBA showed a net cost to society when benefits were measured as future treatment costs saved plus productivity gained. However, if people are willing to pay a small amount for the comfort of the new intervention, this will result in a break-even situation

  17. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    polymerization. Chitin is not only the main component of the shells of crustaceans, but also exists as a structural polysaccharide of insects, mushrooms...combination of the dissolution of the biomass with the acid catlaysts to depolymerize the biomass into feedstock type chemicals. By using an imidazolium...Technical Section Technical Objective Ionic liquids have demonstrated the ability to effectively dissolve biomass ,1,2 including chitin and

  18. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power and ...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  19. Sub-coulomb transfer method of a nucleon for measure orbital radii; Metodo de transferencia sub-coulombiana de un nucleon para medir radios orbitales

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-04-15

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system {sup 209} Bi(d,t) {sup 208} Bi. (Author)

  20. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  1. Ionic Liquids in Biomass Processing

    Science.gov (United States)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  2. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  3. On the chemical stabilities of ionic liquids.

    Science.gov (United States)

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  4. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  5. Azimuthal dependence of pion source radii in Pb + Au collisions at 158 A GeV

    CERN Document Server

    AUTHOR|(CDS)2073202; Andronic, A; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, J; Braun-Munzinger, P; Busch, O; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Dubitzky, W; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kalisky, M; Kniege, S; Kushpil, V; Maas, A; Marin, A; Milosevic, J; Miskowiec, D; Ortega, R; Panebratsev, Yu A; Petchenova, O; Petracek, V; Ploskon, M; Radomski, S; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schuchmann, S; Schükraft, J; Sedykh, S; Shimansky, S; Soualah, R; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Tsiledakis, G; Wessels, J P; Wienold, T; Wurm, J P; Yurevich, S; Yurevich, V

    2008-01-01

    We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the AGS and at RHIC.

  6. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  7. Theoretical assessment of the disparity in the electrostatic forces between two point charges and two conductive spheres of equal radii

    Science.gov (United States)

    Kolikov, Kiril

    2016-11-01

    The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.

  8. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  9. Similar or different?

    DEFF Research Database (Denmark)

    Cornér, Solveig; Pyhältö, Kirsi; Peltonen, Jouni

    2018-01-01

    Previous research has identified researcher community and supervisory support as key determinants of the doctoral journey contributing to students’ persistence and robustness. However, we still know little about cross-cultural variation in the researcher community and supervisory support experien...... counter partners, whereas the Finnish students perceived lower levels of instrumental support than the Danish students. The findings imply that seemingly similar contexts hold valid differences in experienced social support and educational strategies at the PhD level....... experienced by PhD students within the same discipline. This study explores the support experiences of 381 PhD students within the humanities and social sciences from three research-intensive universities in Denmark (n=145) and Finland (n=236). The mixed methods design was utilized. The data were collected...... counter partners. The results also indicated that the only form of support in which the students expressed more matched support than mismatched support was informational support. Further investigation showed that the Danish students reported a high level of mismatch in emotional support than their Finnish...

  10. The graph-theoretic minimum energy path problem for ionic conduction

    Directory of Open Access Journals (Sweden)

    Ippei Kishida

    2015-10-01

    Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  11. Pysico-chemical properties of hydrophobic ionic liquids containing1-octylpyridinium, 1-octyl-2-methylpyridinium or1-octyl-4-methylpyridinium cations

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-09-15

    This paper reports synthesis of some ionic liquids based on cations 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium and anions dicyanamide [N(CN)2]-, bis(trifluoromethylsulfonyl)imide [Tf2N]-, bis(pentafluoroethylsulfonyl)imide [BETI]-, trifluoromethyl sulfonate [TfO]-, nonafluorobutyl sulfonate [NfO]-, tetrafluoroborate [BF4]-, trifluorophenylborate [BF3Ph]- or hexafluoroarsenate [AsF6]-. Melting points, decomposition temperatures, densities, mutual solubilities with water, and viscosities have been measured. Unlike similar ionic liquids containing imidazolium cations, pyridinium ionic liquids studied here are nearly immiscible in water. Viscosities are similar and water content is slightly lower than those for ionic liquids containing imidazolium cations.

  12. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  13. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  14. On the Chemical Stabilities of Ionic Liquids

    OpenAIRE

    Yen-Ho Chu; Ming-Chung Tseng; Venkatesan Srinivasadesikan; Subbiah Sowmiah

    2009-01-01

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transfor...

  15. Prediction of Osmotic Pressure of Ionic Liquids Inside a Nanoslit by MD Simulation and Continuum Approach

    Science.gov (United States)

    Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok

    2017-11-01

    Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).

  16. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  17. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  18. Screening in dense ionic fluids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1991-01-01

    There has been great progress in recent years in determining and understanding the structure of molten salts. I focus on molten alkali halides and discuss two main points concerning their liquid structure and its relationship with static electrical response in these dense ionic conductors. These are (i) the nature of screening and the related definitions and properties of the screening length and of the dielectric function, and (ii) developments in integral equations techniques for the evaluation of molten salt structure and static screening from given pair potentials. (author). 26 refs, 3 figs, 2 tabs

  19. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  20. Communication: Glass transition and melting lines of an ionic liquid

    Science.gov (United States)

    Lima, Thamires A.; Faria, Luiz F. O.; Paschoal, Vitor H.; Ribeiro, Mauro C. C.

    2018-05-01

    The phase diagram of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesufonyl)imide, [Pyrr1,4][NTf2], was explored by synchroton X-ray diffraction and Raman scattering measurements as a function of temperature and pressure. Glass transition Tg(p) and melting Tm(p) temperatures were obtained from atmospheric pressure up to ca. 2.0 GPa. We found that both the Tg(p) and Tm(p) curves follow essentially the same pressure dependence. The similarity of pressure coefficients, dTg/dp ≈ dTm/dp, is explained within the non-equilibrium thermodynamics approach for the glass transition by assuming that one of the Ehrenfest equations is appropriated for Tg(p), whereas Tm(p) follows the Clausius-Clapeyron equation valid for the first-order transitions. The results highlight that ionic liquids are excellent model systems to address fundamental questions related to the glass transition.

  1. Controlling Initial and Final Radii to Achieve a Low-Complexity Sphere Decoding Technique in MIMO Channels

    Directory of Open Access Journals (Sweden)

    Fatemeh Eshagh Hosseini

    2012-01-01

    Full Text Available In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.

  2. Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

    Science.gov (United States)

    Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.

    2018-05-01

    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.

  3. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    Though the reactions have both electrostatic control and frontier orbital control the former dominates in the initial stages of the reaction. Keywords. Stereoselectivity; ionic cycloaddition; density functional theory; acridizinium ion; methyl vinyl ether; 2,3-dimethylisoquinolinium ion. 1. Introduction. In polar or ionic cycloadditions ...

  4. Principle and applications of ionic thermometric detectors

    International Nuclear Information System (INIS)

    Rosenkranz, J.; Jakes, D.

    1989-01-01

    The basic principles of electric conductivity of ionic compounds as well as causes and the character of phase transformation in these systems are briefly explained. The design of ionic thermometric detectors, their function and some applications in thermometry are also described. (author). 3 figs., 1 tab., 7 refs

  5. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  6. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  7. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-05-14

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of $1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  8. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Wechsler, Risa H.; Lu, Yu; Busha, Michael T. [Physics Department, Stanford University, Department of Particle and Particle Astrophysics, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology Stanford, CA 94305 (United States); Hahn, Oliver [Institute for Astronomy, ETH Zurich, 8093-CH Zurich (Switzerland); Klypin, Anatoly [Astronomy Department, New Mexico State University, Las Cruces, NM 88003 (United States); Primack, Joel R., E-mail: behroozi@stsci.edu [Department of Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    2014-06-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8{sub −1.0}{sup +2.3} R{sub vir,host} for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7{sub −2.2}{sup +3.3} R{sub vir,host} at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R {sub vir,} {sub host}) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  9. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    International Nuclear Information System (INIS)

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Busha, Michael T.; Hahn, Oliver; Klypin, Anatoly; Primack, Joel R.

    2014-01-01

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of 1.8 −1.0 +2.3 R vir,host for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances (3.7 −2.2 +3.3 R vir,host at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ∼1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (∼1.9 R vir, host ) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  10. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  11. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  13. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  14. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  15. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    Science.gov (United States)

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  16. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  17. Ionic and viscoelastic mechanisms of a bucky-gel actuator

    Science.gov (United States)

    Kruusamäe, Karl; Sugino, Takushi; Asaka, Kinji

    2015-07-01

    Ionic electromechanically active polymers (IEAPs) are considered attractive candidates for soft, miniature, and lightweight actuators. The bucky-gel actuator is a carbonaceous subtype of IEAP that due to its structure (i.e. two highly porous electrodes sandwiching a thin ion-permeable electrolyte layer) and composition (i.e. being composed of soft porous polymer, carbon nanotubes, and ionic liquid) is very similar to an electric double-layer capacitor. In response to the voltage applied between the electrodes of a bucky-gel actuator, the laminar structure bends. The time domain behavior exhibits, however, a phenomenon called the back-relaxation, i.e., after some time the direction of bending is reversed even though voltage remains constant. In spite of the working mechanism of IEAP actuators being generally attributed to the transport of ions within the soft multilayer system, the specific details remain unclear. A so-called two-carrier model proposes that the bending and subsequent back-relaxation are caused by the relocation of two ionic species having different mobilities as they enter and exit the electrode layers. By adopting the two-carrier model for bucky-gel actuators, we see very good agreement between the mathematical representation and the experimental data of the electromechanical behavior. Furthermore, since the bucky-gel actuator is viscoelastic, we propose to use the time domain response of a blocking force as the key parameter related to the inner ionic mechanism. We also introduce a method to estimate the viscoelastic creep compliance function from the time domain responses for curvature and blocking force. This analysis includes four types of bucky-gel actuators of varying composition and structure.

  18. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  19. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Scavenging of the excess electron before it becomes fully solvated is a significant facet of the overall radiation sensitivity of ionic liquids, possibly due to less competition from slower electron solvation processes. Parallel measurements of excess electron solvation processes and emission dynamics (Stokes shift and polarization anisotropy decay) of solvatochromic coumarin-153 show that the reorganization dynamics of ionic liquids extend to much longer timescales (nanoseconds) than in conventional polar solvents (picoseconds). This phenomenon profoundly influences the reactivity and energetics of radiolytically-generated excess electrons. The slow solvation dynamics would also be expected to significantly alter transition state dynamics and provide a potential means to control product distribution. This becomes particularly important for transition states with a very different polarity from the reactants and/or products. Electron reactions with several aromatic acceptors, acids, and oxygen were measured in (MeBu 3 N + )(NTf 2 - ). Rate constants for solvated electron capture by benzophenone, pyrene and phenanthrene were on the order of 1.6x10 8 M -1 ·s -1 , typically 100 times slower than observed in conventional polar solvents. The reactions of hydrogen atoms with several of the same reactants were measured in the same ionic liquid. H-atoms react very rapidly with pyrene and phenanthrene (∼3 x 10 9 L·mol -1 ·s -1 ) to form H-adduct radicals. The H-atom rate constants are similar to the values measured or estimated for the same reactions in aqueous solutions. The H-atom reactions with the aromatic hydrocarbons must be diffusion-controlled, but are faster than diffusion-controlled reactions for solvated electrons in the same ionic liquid. The results indicate

  20. Effect of Ionic Correlations on the Surface Forces in Thin Liquid Films: Influence of Multivalent Coions and Extended Theory

    Directory of Open Access Journals (Sweden)

    Krassimir D. Danov

    2016-03-01

    Full Text Available Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions.

  1. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  2. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  3. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  4. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    DEFF Research Database (Denmark)

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...... specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can...

  5. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  6. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  7. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  8. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  9. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  10. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Al Amin [Kent State Univ., Kent, OH (United States)

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  11. Optimum radii and heights of U-shaped baffles in a square duct heat exchanger using surrogate-assisted optimization

    Directory of Open Access Journals (Sweden)

    Kittinan Wansasueb

    2017-06-01

    Full Text Available In this paper, optimum U-shaped baffles in a square channel heat exchanger using air as a working fluid were developed using surrogate-assisted optimization. The design problem is set to maximize heat transfer performance and simultaneously minimize pressure loss across the channel. Design variables determine the radii and heights of the baffles, whereas the optimization problem is treated as box-constrained optimization. The work in this paper is aimed at finding an appropriate surrogate model for designing such a heat exchanger system. Function evaluations are performed by means of computational fluid dynamics (CFD. The computations are based on the finite volume method and are carried out at a Reynolds number of 4000. It has been found that the use of U-shaped baffles as heat transfer enhancement devices improves the thermal performance of the heat exchanger. Comparative results reveal that the Kriging model is the most accurate surrogate model, however, the surrogate model giving the best result is support vector regression.

  12. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

    Science.gov (United States)

    Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y. Y.; Anderson, J. M.; D'Ammando, F.; Hodgson, J.; Honma, M.; Krichbaum, T. P.; Lee, S.-S.; Lico, R.; Lisakov, M. M.; Lobanov, A. P.; Petrov, L.; Sohn, B. W.; Sokolovsky, K. V.; Voitsik, P. A.; Zensus, J. A.; Tingay, S.

    2018-04-01

    Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem1. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations5 and allows us to measure the jet collimation profile from 102 to 104 gravitational radii (rg) from the black hole. The previously found5, almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk.

  13. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  14. Stellar kinematics and populations out to 1.5 effective radii in the elliptical galaxy NGC 4636

    International Nuclear Information System (INIS)

    Pu Shibi; Han Zhanwen

    2011-01-01

    We present high quality long slit spectra along the major and minor axes out to 1.5 effective radii of the massive galaxy NGC 4636 taken by the Hobby-Eberly Telescope. Using the Fourier Correlation Quotient method, we measured the stellar line-of-sight velocity distribution along the axes. Furthermore, six Lick/IDS indices (Hβ, Mgb, Fe 5015 , Fe 5270 , Fe 5335 , Fe 5406 ) are derived from the clean spectrum. By comparing the measured absorption line strengths with the predictions of Simple Stellar Population (SSP) models, we derived ages, total metallicity and α abundance profiles of the galaxy. This galaxy presents old and [α/Fe] overabundant stellar populations. Indeed, using the SSP model, we obtained the broadband color profiles. The theoretical colors match well with the measured colors and present red sharp peaks at the galaxy center. The sharp peaks of the colors are mainly shaped by the high metallicity in the galaxy's center. Interestingly, the galaxy has steep negative metallicity gradients, but the trend flattens outwards. This result likely suggests that the center and outer regions of the galaxy formed through different formation processes.

  15. Nuclear moments and charge radii of magnesium isotopes from N=8 up to (and beyond) N=20

    CERN Multimedia

    Mattolat, C F; Mallion, S N; Himpe, P

    2002-01-01

    We propose to measure the nuclear monopole, dipole and quadrupole moments of magnesium isotopes from the neutron deficient nuclei near the N=8 shell closure ($^{21}$Mg), up to the neutron rich Mg nuclei beyond N=20 ($^{33}$Mg). The physics issues that will be addressed in this project are related to: \\begin{itemize} \\item The properties of mirror nuclei (e.g. $^{21}$Mg - $^{21}$F being members of a T=3/2 multiplet) \\item The evolution of shell structure and deformation with isospin. \\item Changes in the shell structure in the "island of inversion" around $^{32}$Mg and along the N=9 isotones. \\end{itemize} Radioactive beams of Mg isotopes will be produced by the RILlS ion source. The Mg isotopes will be resonantly polarized at the COLLAPS set-up. With $\\beta$-NMR techniques, precision measurements of g-factors and quadrupole moments of the radioactive $^{21,23}$Mg and $^{29,31,33}$Mg isotopes will be performed. Isotope shifts, thus changes in mean square charge radii, will be deduced from hyperfine spectra mea...

  16. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  17. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  18. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  19. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    have the advantages of liquid and solid phase together.11. Task-specific ionic liquids ... more attention as alternative reaction media in green chemistry than conventional ..... The reaction mixture was divided into two. Figure 3. Reusability of ...

  20. ELECTROCATALYSIS OF HEMOGLOBIN IN IONIC LIQUID ...

    African Journals Online (AJOL)

    Preferred Customer

    thermal stability, relatively high ionic conductivity, negligible vapor pressure and wide ... through the opposite end of the tube to establish an electrical contact and the ... support to assembly the Hb molecules and form a biocompatible porous ...

  1. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  2. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  3. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    the matrix of a polymer electrode – thereby causing volume expansion which can be converted into work. Solvent molecules are able to penetrate the polymer too. A precise description of the nature of these ionic and solvent movements is therefore important for understanding and improving the performance....... This work examines the influence of solvent, ionic species and electrolyte concentration on the fundamental question about the ionic mechanism involved: Is the actuation process driven by anion motion, cation motion, or a mixture of the two? In addition: What is the extent of solvent motion? The discussion...... is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  4. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  5. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  6. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  7. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  8. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  9. Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, T. O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, T. O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage

  10. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  11. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  12. Ionic liquids in the synthesis of nanoobjects

    International Nuclear Information System (INIS)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A

    2010-01-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  13. Recent development of ionic liquid membranes

    OpenAIRE

    Wang, Junfeng; Luo, Jianquan; Feng, Shicao; Li, Haoran; Wan, Yinhua; Zhang, Xiangping

    2016-01-01

    The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquidâliquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive ov...

  14. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  15. Ionic secondary emission SIMS principles and instrumentation

    International Nuclear Information System (INIS)

    Darque-Ceretti, E.; Migeon, H.N.; Aucouturier, M.

    1998-01-01

    The ionic analysis by secondary emission (SIMS) is one of material analysis based on the ions bombardment. That is micro-analysis method in taking into account that the dimensions of the analysed volume are under the micrometer. This paper details in a first part some ionic secondary emission principle to introduce a description of the instrumentation: microprobe, ions production, spectrometers. (A.L.B.)

  16. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  17. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  18. Probing Lipid Bilayers under Ionic Imbalance.

    Science.gov (United States)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  20. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  1. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  2. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  3. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  4. The Nustar Spectrum of Mrk 335: Extreme Relativistic Effects Within Two Gravitational Radii of the Event Horizon?

    Science.gov (United States)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; hide

    2014-01-01

    We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within approx. 2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3(sigma) confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.

  5. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  6. A COMPARISON OF SEMANTIC SIMILARITY MODELS IN EVALUATING CONCEPT SIMILARITY

    Directory of Open Access Journals (Sweden)

    Q. X. Xu

    2012-08-01

    Full Text Available The semantic similarities are important in concept definition, recognition, categorization, interpretation, and integration. Many semantic similarity models have been established to evaluate semantic similarities of objects or/and concepts. To find out the suitability and performance of different models in evaluating concept similarities, we make a comparison of four main types of models in this paper: the geometric model, the feature model, the network model, and the transformational model. Fundamental principles and main characteristics of these models are introduced and compared firstly. Land use and land cover concepts of NLCD92 are employed as examples in the case study. The results demonstrate that correlations between these models are very high for a possible reason that all these models are designed to simulate the similarity judgement of human mind.

  7. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  8. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  9. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  10. Renewing the Respect for Similarity

    Directory of Open Access Journals (Sweden)

    Shimon eEdelman

    2012-07-01

    Full Text Available In psychology, the concept of similarity has traditionally evoked a mixture of respect, stemmingfrom its ubiquity and intuitive appeal, and concern, due to its dependence on the framing of the problemat hand and on its context. We argue for a renewed focus on similarity as an explanatory concept, bysurveying established results and new developments in the theory and methods of similarity-preservingassociative lookup and dimensionality reduction — critical components of many cognitive functions, aswell as of intelligent data management in computer vision. We focus in particular on the growing familyof algorithms that support associative memory by performing hashing that respects local similarity, andon the uses of similarity in representing structured objects and scenes. Insofar as these similarity-basedideas and methods are useful in cognitive modeling and in AI applications, they should be included inthe core conceptual toolkit of computational neuroscience.

  11. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparative Experimental Study on Ionic Polymer Mental Composite based on Nafion and Aquivion Membrane as Actuators

    Science.gov (United States)

    Luo, B.; Chen, Z.

    2017-11-01

    Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.

  13. Synthesis and characterization of new ionic liquids; Sintese e caracterizacao de novos liquidos ionicos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S., E-mail: luanaufrn@hotmail.co [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Iglesias, M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Universidad de Santiago de Compostela (Spain). Escuela Tecnica Superior de Ingenieria. Dept. de Ingenieria Quimica

    2010-07-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  14. Structural simulation and ionic conductivity mechanisms in lithium thio-borate based glasses

    International Nuclear Information System (INIS)

    Estournes, C.

    1992-04-01

    We propose in this work a structural study of B 2 S 3 -Li 2 S glass system through the use of neutron scattering, X-ray photo-electron spectroscopy and computerized simulation. We have got information on the order at low and short distance range of these glasses. This information has been correlated to changes in physical features like ionic conductivity, density and temperature of the vitreous transition according to their chemical compositions. The knowledge of the local order in the most modified binary glasses has allowed us to propose a model for ionic conduction similar to the model used for ionic crystals. This model has been validated: it yields an activation energy that agrees well with experimental data

  15. Task-specific ionic liquids for An and Ln extraction: unusual speciation and extraction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Billard, Isabelle; Jobin, Emilie; Ouadi, Ali; Gaillard, Clotilde [IPHC-DRS, Chimie nucleaire, 23 rue du Loess, BP28, 67037 Strasbourg cedex 2 (France)

    2008-07-01

    Extraction mechanisms of uranium by TBP (tributylphosphate) diluted in an ionic liquid BumimTf{sub 2}N (1-butyl-3-methyl-imidazolium bis(tri-fluoro-methyl-sulfonyl)imide) and by Task-Specific Ionic Liquids (TSILs) bearing a phosphoryl group were investigated. Great differences between these mechanisms and the one in the industrial solvent, dodecane, have been put in evidence. While in dodecane, the neutral species, UO{sub 2}(NO{sub 3}){sub 2}(TBP){sub 2}, is the major extracted complex, in BumimTf{sub 2}N and TSILs, at least two species are extracted with more or less similar proportions. Moreover, no uranyl species with two nitrates could be observed in these ionic liquids. Finally, the mechanisms vary from TBP in BumimTf{sub 2}N to TSILs. These results led to a so-to-say new kind of actinide chemistry. (authors)

  16. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis

    Directory of Open Access Journals (Sweden)

    Lletta Lewis

    2018-04-01

    Full Text Available Zebrafish (Danio rerio have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct. Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na+, Cl− and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.

  17. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    Directory of Open Access Journals (Sweden)

    Juan P. Tafur

    2015-11-01

    Full Text Available Gel Polymer Electrolytes (GPEs composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP, and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2.

  18. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. Ionic Liquids as Unforeseen Assets to Fight Life-Threatening Mycotic Diseases.

    Science.gov (United States)

    Hartmann, Diego O; Petkovic, Marija; Silva Pereira, Cristina

    2016-01-01

    Ionic liquids discovery has celebrated 100 years. They consist solely of ions, one of which is typically organic and asymmetrical. Remarkable physical and chemical properties stirred their use as alternative solvents in many chemical processes. The recent demonstration of their occurrence in nature might boost their interest in biological sciences. In the search of mechanistic understandings of ionic liquids' ecotoxicological impacts in fungi, we have analyzed the proteome, transcriptome, and metabolome responses to this chemical stress. Data illuminated new hypotheses that altered our research path - exploit ionic liquids as tools for the discovery of pathways and metabolites that may impact fungal development and pathogenicity. As we get closer to solve the primary effects of each ionic liquid family and their specific gene targets, the vision of developing antifungal ionic liquids and/or materials, by taking advantage of elegant progresses in this field, might become a reality. Task-designed formulations may improve the performance of conventional antifungal drugs, build functional coatings for reducing allergens production, or aid in the recovery of antifungal plant polymers. The frontier research in this cross-disciplinary field may provide us unforeseen means to address the global concern of mycotic diseases. Pathogenic and opportunistic fungi are responsible for numerous infections, killing annually nearly 1.5 million immunocompromised individuals worldwide, a similar rate to malaria or tuberculosis. This perspective will review our major findings and current hypotheses, contextualizing how they might bring us closer to efficient strategies to prevent and fight mycotic diseases.

  1. Ionic liquids as unforeseen assets to fight life-threatening mycotic diseases

    Directory of Open Access Journals (Sweden)

    Diego O. Hartmann

    2016-02-01

    Full Text Available Ionic liquids discovery has celebrated 100 years. They consist solely of ions, one of which is typically organic and asymmetrical. Remarkable physical and chemical properties stirred their use as alternative solvents in many chemical processes. The recent demonstration of their occurrence in nature might boost their interest in biological sciences. In the search of mechanistic understandings of ionic liquids’ ecotoxicological impacts in fungi, we have analyzed the proteome, transcriptome and metabolome responses to this chemical stress. Data illuminated new hypotheses that altered our research path – exploit ionic liquids as tools for the discovery of pathways and metabolites that may impact fungal development and pathogenicity. As we get closer to solve the primary effects of each ionic liquid family and their specific gene targets, the vision of developing antifungal ionic liquids and/or materials, by taking advantage of elegant progresses in this field, might become a reality. Task-designed formulations may improve the performance of conventional antifungal drugs, build functional coatings for reducing allergens production, or aid in the recovery of antifungal plant polymers. The frontier research in this cross-disciplinary field may provide us unforeseen means to address the global concern of mycotic diseases. Pathogenic and opportunistic fungi are responsible for numerous infections, killing annually nearly 1.5 million immunocompromised individuals worldwide, a similar rate to malaria or tuberculosis. This perspective will review our major findings and current hypotheses, contextualizing how they might bring us closer to efficient strategies to prevent and fight mycotic diseases.

  2. Ionic Liquids as Unforeseen Assets to Fight Life-Threatening Mycotic Diseases

    Science.gov (United States)

    Hartmann, Diego O.; Petkovic, Marija; Silva Pereira, Cristina

    2016-01-01

    Ionic liquids discovery has celebrated 100 years. They consist solely of ions, one of which is typically organic and asymmetrical. Remarkable physical and chemical properties stirred their use as alternative solvents in many chemical processes. The recent demonstration of their occurrence in nature might boost their interest in biological sciences. In the search of mechanistic understandings of ionic liquids’ ecotoxicological impacts in fungi, we have analyzed the proteome, transcriptome, and metabolome responses to this chemical stress. Data illuminated new hypotheses that altered our research path – exploit ionic liquids as tools for the discovery of pathways and metabolites that may impact fungal development and pathogenicity. As we get closer to solve the primary effects of each ionic liquid family and their specific gene targets, the vision of developing antifungal ionic liquids and/or materials, by taking advantage of elegant progresses in this field, might become a reality. Task-designed formulations may improve the performance of conventional antifungal drugs, build functional coatings for reducing allergens production, or aid in the recovery of antifungal plant polymers. The frontier research in this cross-disciplinary field may provide us unforeseen means to address the global concern of mycotic diseases. Pathogenic and opportunistic fungi are responsible for numerous infections, killing annually nearly 1.5 million immunocompromised individuals worldwide, a similar rate to malaria or tuberculosis. This perspective will review our major findings and current hypotheses, contextualizing how they might bring us closer to efficient strategies to prevent and fight mycotic diseases. PMID:26903990

  3. Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Kar, Mega [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Leyma, Raphlin; Chib, Sonia; Roller, Alexander [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg (South Africa); Krachler, Regina [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); MacFarlane, Douglas R. [School of Chemistry, Monash University, Clayton, Victoria 3800 (Australia); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria); Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna (Austria)

    2017-02-15

    Highlights: • Thioglycolate-based ionic liquids have been synthesized and their physicochemical properties have been examined. • The developed ionic liquids can efficiently remove Cu(II) and Cd(II). • Loaded ionic liquids can be recycled by application of different stripping protocols. - Abstract: Eight novel task-specific ionic liquids (TSILs) based on the thioglycolate anion designed for heavy metal extraction have been prepared and characterized by {sup 1}H and {sup 13}C NMR, UV-Vis, infrared, ESI-MS, conductivity, viscosity, density and thermal properties. Evaluation of their time-resolved extraction abilities towards cadmium(II) and copper(II) in aqueous solutions have been investigated where distribution ratios up to 1200 were observed. For elucidation of the IL extraction mode, crystals were grown where Cd(II) was converted with an excess of S-butyl thioglycolate. It was found by X-ray diffraction analysis that cadmium is coordinated by five oxygen and one sulfur donor atoms provided by two thioglycolate molecules and one water molecule. Leaching behavior of the hydrophobic ionic liquids into aqueous systems was studied by TOC (total dissolved organic carbon) measurements. Additionally, the immobilization on polypropylene was elucidated and revealed slower metal extraction rates and similar leaching behavior. Finally, recovery processes for cadmium and copper after extraction were performed and recyclability was successfully proven for both metals.

  4. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  6. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  7. Self-similar cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Chao, W Z [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1981-07-01

    The kinematics and dynamics of self-similar cosmological models are discussed. The degrees of freedom of the solutions of Einstein's equations for different types of models are listed. The relation between kinematic quantities and the classifications of the self-similarity group is examined. All dust local rotational symmetry models have been found.

  8. Self-similar factor approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  9. Dynamic similarity in erosional processes

    Science.gov (United States)

    Scheidegger, A.E.

    1963-01-01

    A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.

  10. Personalized recommendation with corrected similarity

    International Nuclear Information System (INIS)

    Zhu, Xuzhen; Tian, Hui; Cai, Shimin

    2014-01-01

    Personalized recommendation has attracted a surge of interdisciplinary research. Especially, similarity-based methods in applications of real recommendation systems have achieved great success. However, the computations of similarities are overestimated or underestimated, in particular because of the defective strategy of unidirectional similarity estimation. In this paper, we solve this drawback by leveraging mutual correction of forward and backward similarity estimations, and propose a new personalized recommendation index, i.e., corrected similarity based inference (CSI). Through extensive experiments on four benchmark datasets, the results show a greater improvement of CSI in comparison with these mainstream baselines. And a detailed analysis is presented to unveil and understand the origin of such difference between CSI and mainstream indices. (paper)

  11. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    International Nuclear Information System (INIS)

    Wang, Yadong; Zaghib, K.; Guerfi, A.; Bazito, Fernanda F.C.; Torresi, Roberto M.; Dahn, J.R.

    2007-01-01

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF 6 ) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li 1 Si, Li 7 Ti 4 O 12 and Li 0.45 CoO 2 . The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI - are safer than those with FSI - , and liquids with EMI + are worse than those with BMMI + , Py13 + , Pp14 + and TMBA +

  12. Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics

    Science.gov (United States)

    Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert

    2014-01-01

    The rapid adoption of electronic health records (EHR) provides a comprehensive source for exploratory and predictive analytic to support clinical decision-making. In this paper, we investigate how to utilize EHR to tailor treatments to individual patients based on their likelihood to respond to a therapy. We construct a heterogeneous graph which includes two domains (patients and drugs) and encodes three relationships (patient similarity, drug similarity, and patient-drug prior associations). We describe a novel approach for performing a label propagation procedure to spread the label information representing the effectiveness of different drugs for different patients over this heterogeneous graph. The proposed method has been applied on a real-world EHR dataset to help identify personalized treatments for hypercholesterolemia. The experimental results demonstrate the effectiveness of the approach and suggest that the combination of appropriate patient similarity and drug similarity analytics could lead to actionable insights for personalized medicine. Particularly, by leveraging drug similarity in combination with patient similarity, our method could perform well even on new or rarely used drugs for which there are few records of known past performance. PMID:25717413

  13. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  14. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  15. Thermophysical properties of hydroxyl ammonium ionic liquids

    International Nuclear Information System (INIS)

    Kurnia, K.A.; Wilfred, C.D.; Murugesan, T.

    2009-01-01

    The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices n D , T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature 'T d ' for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA)

  16. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  17. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  18. Desulfurization of oxidized diesel using ionic liquids

    Science.gov (United States)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  19. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  20. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  1. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  2. A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This is a modification of the Eisenstein-Miller program for calculation of collective inelastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the additional use of microscopic (shell model) proton and neutron form factors. It also incorporates separate proton and neutron radii for the nuclear density rho(r) generating the distorted wave optical potential. (Auth.)

  3. Variations of nuclear charge radii in mercury isotopes with A = 198, 199, 200, 201, 202, and 204 from x-ray isotope shifts

    International Nuclear Information System (INIS)

    Lee, P.L.; Boehm, F.; Hahn, A.A.

    1978-01-01

    The isotope shifts of atomic K x rays were measured for pairs of the six mercury isotopes with A = 198, 199, 200, 201, 202, and 204, using a curved crystal spectrometer. The changes of the nuclear charge radii were derived in terms of delta 2 > and deltaR/sub k/ and compared with optical an muonic isotope shift data. From our results, a renormalization of the optical data was obtained

  4. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  5. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  6. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  7. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  8. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  9. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....

  10. Steven's orbital reduction factor in ionic clusters

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  11. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  12. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  13. Ionic systems in materials research : new materials and processes based on ionic polymerizations and/or ionic liquids

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.

    2007-01-01

    Systems based on ionic interactions are usually related to reversible processes and/or transitory chemical states and, nowadays, they are believed to be key factors for the understanding and for the development of processes in several branches of chemistry and materials research. During the last

  14. Domain similarity based orthology detection.

    Science.gov (United States)

    Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich

    2015-05-13

    Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .

  15. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  16. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  17. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  18. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  19. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  20. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  1. Development of an Ionic-Liquid Absorption Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  2. Structural analysis of zwitterionic liquids vs. homologous ionic liquids

    Science.gov (United States)

    Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.

    2018-05-01

    Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.

  3. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  4. Similarity measures for face recognition

    CERN Document Server

    Vezzetti, Enrico

    2015-01-01

    Face recognition has several applications, including security, such as (authentication and identification of device users and criminal suspects), and in medicine (corrective surgery and diagnosis). Facial recognition programs rely on algorithms that can compare and compute the similarity between two sets of images. This eBook explains some of the similarity measures used in facial recognition systems in a single volume. Readers will learn about various measures including Minkowski distances, Mahalanobis distances, Hansdorff distances, cosine-based distances, among other methods. The book also summarizes errors that may occur in face recognition methods. Computer scientists "facing face" and looking to select and test different methods of computing similarities will benefit from this book. The book is also useful tool for students undertaking computer vision courses.

  5. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes

    International Nuclear Information System (INIS)

    Herath, Mahesha B.; Creager, Stephen E.; Rajagopal, Rama V.; Geiculescu, Olt E.; DesMarteau, Darryl D.

    2009-01-01

    We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 x 10 -6 S/cm at 30 deg. C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.

  6. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  7. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Li+, its lower weight, ease of handling and its poten- tial use in high energy density batteries. Li2SiO4 is one of the .... that influence the ionic conductivity of a crystal the activation energy is of utmost importance since the .... fraction techniques are commonly employed to elu- cidate the structure features of superionic solids.

  8. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  9. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  10. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  11. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  12. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  13. Desalination of aqueous media using ionic liquids

    NARCIS (Netherlands)

    2014-01-01

    The present invention relates to a method for extracting metal and/or metalloid ions from an aqueous medium, comprising the steps of: a) mixing the aqueous medium with an ionic liquid comprising an aliphatic carboxylate anion having at least one unsaturated carbon-carbon bond, or and/or with a

  14. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  15. Vaporisation of a dicationic ionic liquid.

    Science.gov (United States)

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  16. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  17. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  18. Analysis of survival of C-18 cells after irradiation in suspension with chelated and ionic bismuth-212 using microdosimetry

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1994-01-01

    A previous analysis of non-stochastic dose based on data obtained during irradiations of C-18 cells in suspension by α particles emitted from two forms (chelated and ionic) of 212 Bi was made using survival curves. No appreciable difference in slope (1/D o ) was found between the two forms. Such non-stochastic analyses do not account for the large differences in specific energies deposited in the individual cell nuclei. This microdosimetric (1/z o ) of the individual C-18 cells using the distribution of specific energies deposited in the individual cell nuclei. The resulting sensitivity is greater for the α particles emitted from the chelated 212 Bi than from the ionic 212 Bi. An attempt to account for this greater sensitivity in terms of greater LET of α particles passing through the cell nuclei from the chelated 212 Bi is unsuccessful. Instead the greater sensitivity disappears if the microdosimetric analysis uses average values for the radii of the cell and of its nucleus rather than the values (from the peak in the cell size distribution) used by the non-stochastic dose analysis. 13 refs., 7 figs

  19. Revisiting Inter-Genre Similarity

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Gouyon, Fabien

    2013-01-01

    We revisit the idea of ``inter-genre similarity'' (IGS) for machine learning in general, and music genre recognition in particular. We show analytically that the probability of error for IGS is higher than naive Bayes classification with zero-one loss (NB). We show empirically that IGS does...... not perform well, even for data that satisfies all its assumptions....

  20. Fast business process similarity search

    NARCIS (Netherlands)

    Yan, Z.; Dijkman, R.M.; Grefen, P.W.P.J.

    2012-01-01

    Nowadays, it is common for organizations to maintain collections of hundreds or even thousands of business processes. Techniques exist to search through such a collection, for business process models that are similar to a given query model. However, those techniques compare the query model to each

  1. Glove boxes and similar containments

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    According to the present invention a glove box or similar containment is provided with an exhaust system including a vortex amplifier venting into the system, the vortex amplifier also having its main inlet in fluid flow connection with the containment and a control inlet in fluid flow connection with the atmosphere outside the containment. (U.S.)

  2. Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid

    International Nuclear Information System (INIS)

    Egashira, Minato; Asai, Takahito; Yoshimoto, Nobuko; Morita, Masayuki

    2011-01-01

    Highlights: ► Ternary electrolyte containing NaBF 4 , polyether and ionic liquid has been prepared. ► The conductivity of the electrolytes has been evaluated toward content of ionic liquid. ► The conductivity shows maximum 1.2 mS cm −1 and is varied in relation to solution structure. - Abstract: For the development of novel non-aqueous sodium ion conductor with safety of sodium secondary cell, non-flammable ionic liquid is attractive as electrolyte component. A preliminary study has been carried out for the purpose of constructing sodium ion conducting electrolyte based on ionic liquid. The solubility of sodium salt such as NaBF 4 in ionic liquid is poor, thus the ternary electrolyte has been prepared where NaBF 4 with poly(ethylene glycol) dimethyl ether (PEGDME) as coordination former is dissolved with ionic liquid diethyl methoxyethyl ammonium tetrafluoroborate (DEMEBF 4 ). The maximum conductivity among the prepared solutions, ca. 1.2 mS cm −1 at 25 °C, was obtained when the molar ratio (ethylene oxide unit in PEGDME):NaBF 4 :DEMEBF 4 was 8:1:2. The relationship between the conductivity of the ternary electrolyte and its solution structure has been discussed.

  3. The shape-memory effect in ionic elastomers: fixation through ionic interactions.

    Science.gov (United States)

    González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L

    2017-04-19

    Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.

  4. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-04

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  6. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  7. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  8. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  9. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  10. An Alfven eigenmode similarity experiment

    International Nuclear Information System (INIS)

    Heidbrink, W W; Fredrickson, E; Gorelenkov, N N; Hyatt, A W; Kramer, G; Luo, Y

    2003-01-01

    The major radius dependence of Alfven mode stability is studied by creating plasmas with similar minor radius, shape, magnetic field (0.5 T), density (n e ≅3x10 19 m -3 ), electron temperature (1.0 keV) and beam ion population (near-tangential 80 keV deuterium injection) on both NSTX and DIII-D. The major radius of NSTX is half the major radius of DIII-D. The super-Alfvenic beam ions that drive the modes have overlapping values of v f /v A in the two devices. Observed beam-driven instabilities include toroidicity-induced Alfven eigenmodes (TAE). The stability threshold for the TAE is similar in the two devices. As expected theoretically, the most unstable toroidal mode number n is larger in DIII-D

  11. Compressional Alfven Eigenmode Similarity Study

    Science.gov (United States)

    Heidbrink, W. W.; Fredrickson, E. D.; Gorelenkov, N. N.; Rhodes, T. L.

    2004-11-01

    NSTX and DIII-D are nearly ideal for Alfven eigenmode (AE) similarity experiments, having similar neutral beams, fast-ion to Alfven speed v_f/v_A, fast-ion pressure, and shape of the plasma, but with a factor of 2 difference in the major radius. Toroidicity-induced AE with ˜100 kHz frequencies were compared in an earlier study [1]; this paper focuses on higher frequency AE with f ˜ 1 MHz. Compressional AE (CAE) on NSTX have a polarization, dependence on the fast-ion distribution function, frequency scaling, and low-frequency limit that are qualitatively consistent with CAE theory [2]. Global AE (GAE) are also observed. On DIII-D, coherent modes in this frequency range are observed during low-field (0.6 T) similarity experiments. Experiments will compare the CAE stability limits on DIII-D with the NSTX stability limits, with the aim of determining if CAE will be excited by alphas in a reactor. Predicted differences in the frequency splitting Δ f between excited modes will also be used. \\vspace0.25em [1] W.W. Heidbrink, et al., Plasmas Phys. Control. Fusion 45, 983 (2003). [2] E.D. Fredrickson, et al., Princeton Plasma Physics Laboratory Report PPPL-3955 (2004).

  12. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  13. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  14. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  15. Membrane interactions of ionic liquids and imidazolium salts.

    Science.gov (United States)

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  16. Concerning the trapping of positrons in ionic solids

    International Nuclear Information System (INIS)

    Kunz, A.B.; Waber, J.T.

    1982-01-01

    The total energy of several ionic crystals which contain lattice defects plus a positron were studied in the Hartree-Fock limit. Large uncontracted basis sets of GTO's were used to ensure binding if it would occur. Specifically, the attraction of a positron to a cation vacancy was sought for alkali halides as well as for nickel oxide. While the binding energy to nickel oxide was 8.1 eV, there was very little tendency for the positron to be trapped in the alkali halides. The trapping at a Vsub(k) site was also investigated using similar restricted HF approximation with large sets of GTO's. This defect in LiF was shown to be stable by 0.73 eV, by itself but was unable to bind a positron. These two results are not compatible with qPs being localized in such crystals. (Auth.)

  17. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  18. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and nonionic iodine containing contrast material in experimental animals

    International Nuclear Information System (INIS)

    McAlister, W.H.; Kissane, J.M.

    1990-01-01

    Conventional, low osmolar, and non-ionic iodine containing contrast media and saline controls were placed in the paws, muscles, and subcutaneous tissues of Sprague-Dawley rat thighs. The paw injections were observed and photographed, while the thighs were examined histologically. Results showed that although the low osmolar and non-ionic agents did produce inflammatory reactions and focal necrosis in the soft tissues, they were much better tolerated than were the conventional ionic agents. A non-ionic or low osmolar ionic contrast agent should be strongly considered when a possibility for extravasation exists. (orig.)

  19. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  20. On the Sizes of the North Atlantic Basin Tropical Cyclones Based on 34- and 64-kt Wind Radii Data, 2004-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.

  1. Similarity analysis between quantum images

    Science.gov (United States)

    Zhou, Ri-Gui; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou

    2018-06-01

    Similarity analyses between quantum images are so essential in quantum image processing that it provides fundamental research for the other fields, such as quantum image matching, quantum pattern recognition. In this paper, a quantum scheme based on a novel quantum image representation and quantum amplitude amplification algorithm is proposed. At the end of the paper, three examples and simulation experiments show that the measurement result must be 0 when two images are same, and the measurement result has high probability of being 1 when two images are different.

  2. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  3. Self-similar gravitational clustering

    International Nuclear Information System (INIS)

    Efstathiou, G.; Fall, S.M.; Hogan, C.

    1979-01-01

    The evolution of gravitational clustering is considered and several new scaling relations are derived for the multiplicity function. These include generalizations of the Press-Schechter theory to different densities and cosmological parameters. The theory is then tested against multiplicity function and correlation function estimates for a series of 1000-body experiments. The results are consistent with the theory and show some dependence on initial conditions and cosmological density parameter. The statistical significance of the results, however, is fairly low because of several small number effects in the experiments. There is no evidence for a non-linear bootstrap effect or a dependence of the multiplicity function on the internal dynamics of condensed groups. Empirical estimates of the multiplicity function by Gott and Turner have a feature near the characteristic luminosity predicted by the theory. The scaling relations allow the inference from estimates of the galaxy luminosity function that galaxies must have suffered considerable dissipation if they originally formed from a self-similar hierarchy. A method is also developed for relating the multiplicity function to similar measures of clustering, such as those of Bhavsar, for the distribution of galaxies on the sky. These are shown to depend on the luminosity function in a complicated way. (author)

  4. Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes.

    Science.gov (United States)

    Hart, Kyle E; Colina, Coray M

    2014-10-14

    This work presents the predictive molecular simulations of a functionalized polymer of intrinsic microporosity (PIM) with an ionic backbone (carboxylate) and extra-framework counterions (Na(+)) for CO2 gas storage and separation applications. The CO2-philic carboxylate-functionalized polymers are predicted to contain similar degrees of free volume to PIM-1, with Brunauer-Emmett-Teller (BET) surface areas from 510 to 890 m(2)/g, depending on concentration of ionic groups from 100% to 17%. As a result of ionic groups enhancing the CO2 enthalpy of adsorption (to 42-50 kJ/mol), the uptake of the proposed polymers at 293 K exceeded 1.7 mmol/g at 10 kPa and 3.3 mmol/g at 100 kPa for the polymers containing 100% and 50% ionic functional groups, respectively. In addition, CO2/CH4 and CO2/N2 mixed-gas separation performance was evaluated under several industrially relevant conditions, where the IonomIMs are shown to increase both the working capacity and selection performance in certain pressure swing applications (e.g., natural gas separations). These simulations reveal that intrinsically microporous ionomers show great potential as the future of energy-efficient gas-separation polymeric materials.

  5. Electrotransport in ionic crystals: Pt. 1. Application of liquid electrolyte theory

    International Nuclear Information System (INIS)

    Janek, J.

    1994-01-01

    Transport of matter and charge in ionic crystals is only possible by the existence of irregular structure elements (defects) which are often charged relative to the crystal lattice. A comparison between the transport behaviour of a crystalline matrix containing such charged defects and a liquid electrolyte containing dissolved ions shows a lot of similarities. As is well known the transport properties of liquid electrolytes are strongly affected by interactions between the dissolved ions. We have applied the well elaborated concept of mixed electrolytes by Onsager and Fuoss which was originally devoted to liquid electrolytes to ionic crystals containing charged point defects. The equations of Onsager and Fuoss allow in principle the calculation of the concentration dependence of the phenomenological transport coefficients L ij of all charge carriers of n-component electrolytes. We will use these equations to predict the transport behaviour of ionic crystals containing differently charged point defects. As examples we have calculated transport coefficients for electrolyte systems which can be regarded as models for the transition metal oxides Co 1-δ O and Cu 2-δ O. One major result concerns the magnitude of the cross effect between the ionic and electronic fluxes in those materials. The implications of these results with respect to experimental observations are discussed. (orig.)

  6. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert [Ecole Polytechnique Federale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), Neuchatel CH-2002 (Switzerland)

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  7. Nontoxic Ionic Liquid Fuels for Exploration Applications

    Science.gov (United States)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  8. A Review of Ionic Liquid Lubricants

    OpenAIRE

    Anthony E. Somers; Patrick C. Howlett; Douglas R. MacFarlane; Maria Forsyth

    2013-01-01

    Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs) are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in th...

  9. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  10. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  11. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  12. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  13. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  14. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  15. Understanding SO2 Capture by Ionic Liquids.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.

  16. Seniority bosons from similarity transformations

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1986-01-01

    The requirement of associating in the boson space seniority with twice the number of non-s bosons defines a similarity transformation which re-expresses the Dyson pair boson images in terms of seniority bosons. In particular the fermion S-pair creation operator is mapped onto an operator which, unlike the pair boson image, does not change the number of non-s bosons. The original results of Otsuka, Arima and Iachello are recovered by this procedure while at the same time they are generalized to include g-bosons or even bosons with J>4 as well as any higher order boson terms. Furthermore the seniority boson images are valid for an arbitrary number of d- or g-bosons - a result which is not readily obtainable within the framework of the usual Marumori- or OAI-method

  17. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    Science.gov (United States)

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in

  18. Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture

    NARCIS (Netherlands)

    Meindersma, G.W.; Haan, de A.B.

    2012-01-01

    Ionic liquids can replace conventional solvents in aromatic/aliphatic extractions, if they have higher aromatic distribution coefficients and higher or similar aromatic/aliphatic selectivities. Also physical properties, such as density and viscosity, must be taken into account if a solvent is

  19. Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the Clostridium thermocellum cellulosome

    Science.gov (United States)

    Chwastyk, Mateusz; Poma Bernaola, Adolfo; Cieplak, Marek

    2015-07-01

    We propose to improve and simplify protein refinement procedures through consideration of which pairs of amino acid residues should form native contacts. We first consider 11 330 proteins from the CATH database to determine statistical distributions of contacts associated with a given type of amino acid. The distributions are set across the distances between the α-C atoms that are in contact. Based on this data, we determine typical radii of effective spheres that can be placed on the α-C atoms in order to reconstruct the distribution of the contact lengths. This is done by checking for overlaps with enlarged van der Waals spheres associated with heavy atoms on other amino acids. The resulting contacts can be used to identify non-native contacts that may arise during the time evolution of structure-based models. Here, the radii are used to guide reconstruction of nine missing side chains in a type I cohesin domain with the Protein Data Bank code 1AOH. We first identify the likely missing contacts and then sculpt the corresponding side chains by standard refinement tools to achieve consistency with the expected contact map. One ambiguity in refinement is resolved by determining all-atom conformational energies.

  20. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    Science.gov (United States)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  1. Clinical trial of non-ionic contrast media -comparison of efficacy and safety between non-ionic iopromide (Ultravist) and ionic contrast media-

    International Nuclear Information System (INIS)

    Lee, Ghi Jai; Kim, Seung Hyup; Park, Jae Hyung; Chang, Kee Hyun; Han, Man Chung; Kim, Chu Wan

    1988-01-01

    Non-ionic contrast media, iopromide (Ultravist) was compared with ioxitalamate (Telebrix) and/or ioxaglate (Hexabrix) for efficacy and safety in 203 patients undergoing cardiac angiography, neurovascular angiography, peripheral and visceral angiography and intravenous pyelography. In all patients, adverse symptoms and signs including heat sense, pain, nausea, vomiting, etc. were checked during and after the injection. In addition, EKG and LV pressure were monitored during the cardiac angiography. And also CBC, UA, BUN and creatinine were checked before and 24 hours after the cardiac angiography. Serious adverse effect did not occur in any case. Minor effects, such as nausea and abdominal pain, were less frequently caused by non-ionic contrast media than by ionic contrast media, especially in cardiac angiography and intravenous pyelography. There was no significant difference between ionic and non-ionic contrast media in regard to electrophysiologic parameters such as EKG and LV pressure. In case of intravenous pyelography, nonionic contrast media seemed to be superior to ionic contrast media in image quality. It is suggested that, in spite of higher cost, non-ionic contrast media be needed for the safety and image quality, particularly in those patients at high risk of adverse effects by ionic contrast media

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  3. Alaska, Gulf spills share similarities

    International Nuclear Information System (INIS)

    Usher, D.

    1991-01-01

    The accidental Exxon Valdez oil spill in Alaska and the deliberate dumping of crude oil into the Persian Gulf as a tactic of war contain both glaring differences and surprising similarities. Public reaction and public response was much greater to the Exxon Valdez spill in pristine Prince William Sound than to the war-related tragedy in the Persian Gulf. More than 12,000 workers helped in the Alaskan cleanup; only 350 have been involved in Kuwait. But in both instances, environmental damages appear to be less than anticipated. Natures highly effective self-cleansing action is primarily responsible for minimizing the damages. One positive action growing out of the two incidents is increased international cooperation and participation in oil-spill clean-up efforts. In 1990, in the aftermath of the Exxon Valdez spill, 94 nations signed an international accord on cooperation in future spills. The spills can be historic environmental landmarks leading to creation of more sophisticated response systems worldwide

  4. Clinical application and side effects of non-ionic, low-osmolar contrast media: Iopromide (Ultavist)

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Suh, Jung Ho; Suh, Jin Suk; Lee, Yeon Hee

    1988-01-01

    Generally non-ionic, water-soluble contrast media has been known to be considerably better than the conventional ionic contrast agents, because of its physiochemical properties which are more hydrophilic, lower in osmolality than the ionic agents of equivalent iodine concentration. It means that the non-ionic agent has less side reaction and better general tolerance. Iopromide (Ultavist) is a newly developed non-ionic contrast media that is suitable for angiography. Some non-ionic contrast media such as Metrizamide and lopamidol were clinically introduced and proved tobe the most compromising agents for neuroradiographic study, but lopromide is not yet freely available in the vascular study. In order to evaluate the clinical fitness and its side effects of lopromide for angiography various type of angiography were done in 136 patients using lopromide and 51 received Diatrizoate meglumine (DTM). Similar volumes of the contrast media was administered at similar rate to both groups. The results were as the follows: 1. In celiac angiography of 31 patients with lopromide (Ultravist 370) and 18 with DTM 60, there were observed 9.7% mild pain and 25.8% mild heat sensation in lopromide. In DTM 60 mild pain was approximately 3 times more frequently observed than lopromide. Heat sensation is mild and similar in frequency of both groups. There was no clinically significant side effects related to the osmolality and its difference between two groups. 2. In peripheral angiography of 47 patients with lopromide 300 and 24 with DTM 60, there were observed 19.1% mild, 6.4 moderate in pain and 46.8% mild, 1% moderate heat sensation in lopromide. But in DTM there were 33.3% mild, 58.3% moderate and 8.3% severe pain, and also 70.8% mild and 16.7% moderate heat sensation in DTM were observed. lopromide is more advantageous and better contrast agents than the DTM for peripheral vascular study on the point of low side effect related to osmolality. 3. In renal angiography, there was no

  5. Azimuthal dependence of pion source radii in Pb+Au collisions at 158A GeV/c

    International Nuclear Information System (INIS)

    Adamova, D.; Kushpil, V.; Sumbera, M.; Agakichiev, G.; Belaga, V.; Fomenko, K.; Panebrattsev, Y.; Petchenova, O.; Shimansky, S.; Yurevich, V.; Andronic, A.; Braun-Munzinger, P.; Garabatos, C.; Hering, G.; Holeczek, J.; Maas, A.; Marin, A.; Miskowiec, D.; Rak, J.; Sako, H.

    2008-01-01

    We present results of a two-pion correlation analysis performed with the Pb+Au collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the Brookhaven National Laboratory Alternating Gradient Synchrotron and Relativistic Heavy Ion Collider

  6. Azimuthal dependence of pion source radii in Pb+Au collisions at 158A GeV/c

    Science.gov (United States)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Kniege, S.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Ortega, R.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Schukraft, J.; Sedykh, S.; Shimansky, S.; Soualah, R.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.

    2008-12-01

    We present results of a two-pion correlation analysis performed with the Pb+Au collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the Brookhaven National Laboratory Alternating Gradient Synchrotron and Relativistic Heavy Ion Collider.

  7. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  8. Ionic liquids for addressing unmet needs in healthcare

    Science.gov (United States)

    Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.

    2018-01-01

    Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130

  9. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  10. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xueming [Beijing Univ. of Chemical Technology (China); Duan, Yonghao [Beijing Univ. of Chemical Technology (China); He, Lilin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Seema [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Simmons, Blake [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Gang [Beijing Univ. of Chemical Technology (China); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-08

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.

  11. Gems in the outer galaxy: Near-infrared imaging of three young clusters at large galactic radii

    International Nuclear Information System (INIS)

    Davidge, T. J.

    2014-01-01

    Images recorded with the Gemini South Adaptive Optics Imager (GSAOI) and corrected for atmospheric seeing by the Gemini Multi-conjugate Adaptive Optics System are used to investigate the stellar contents of the young outer Galactic disk clusters Haffner 17, NGC 2401, and NGC 3105. Ages estimated from the faint end of the main sequence (MS) and the ridgeline of the pre-main sequence on the (K, J – K) color-magnitude diagrams are consistent with published values that are based on the MS turnoff, with the GSAOI data favoring the younger end of the age range for NGC 2401 in the literature. The mass function (MF) of NGC 2401 is similar to that in the solar neighborhood, and stars spanning a wide range of masses in this cluster have similar clustering properties on the sky. It is concluded that NGC 2401 is not evolved dynamically. In contrast, the MF of Haffner 17 differs significantly from that in the solar neighborhood over all masses covered by these data, while the MF of NGC 3105 is deficient in objects with sub-solar masses when compared with the solar neighborhood. Low-mass objects in Haffner 17 and NGC 3105 are also more uniformly distributed on the sky than brighter, more massive, MS stars. This is consistent with both clusters having experienced significant dynamical evolution.

  12. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile

    International Nuclear Information System (INIS)

    Viau, L.; Hihn, J.Y.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B.

    2014-01-01

    Highlights: • Polypyrrole films were electrodeposited from three room temperature ionic liquids. • Polymer films were characterized using many surface analysis techniques. • The incorporation of anions and/or cations inside the polymer films was evidenced. • The influence of the ionic liquid on the polymer properties was deeply studied. - Abstract: Pyrrole was electrochemically oxidized in two conventional media (water and acetonitrile) and in three room temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Infrared and Raman Spectroscopies confirmed the formation of polypyrrole by electropolymerization but were unable to demonstrate the presence of anions in the polymer films. The use of ionic liquids as growth media resulted in polymer films having a good electrochemical activity. The difference of activity from one polymer film to the other was mainly attributed to the difference of viscosity between the solvents used. The morphological features of the polypyrrole films were also fully studied. Profilometric measurements demonstrated that polymer films grown, at the same potential, in ionic liquids were thinner and had a smaller roughness than those grown in other solvents. Atomic Force Microscopy showed that polypyrrole films had nearly similar micrometric nodular structure whatever the growth medium even if some differences of porosity and homogeneity were observed using Scanning Electron Microscopy. The incorporation of counter-anions at the top surface of the films was finally evidenced by X-ray Photoelectron Spectroscopy. These anions were also incorporated inside the polymer film with a uniform distribution as shown by Glow Discharge Optical Emission Spectroscopy

  13. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    reviewed journals (N/A for none) C. Zibart, D. Parr, B. Egan, H. Morris, A. Tivanski, L. M. Haverhals, “Investigation of Structure at Gold- Ionic Liquid ...into our electrochemistry program. In short, the instrument has been of great service to characterize ionic liquid -based (IL-based) electrolyte...Aug-2014 14-Nov-2014 Approved for Public Release; Distribution Unlimited Final Report: Potentiostat for Characterizing Microstructures at Ionic Liquid

  14. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    of Papers published in non peer- reviewed journals: Final Report: Ionic Liquids in Polymer Design: From Energy to Health Report Title ACS Symposium...SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for

  15. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  16. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  17. Use of ionic liquids as coordination ligands for organometallic catalysts

    Science.gov (United States)

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  18. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  19. Ionic Liquids in HPLC and CE: A Hope for Future.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  20. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  1. Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective

    Directory of Open Access Journals (Sweden)

    Romain Lhermerout

    2018-01-01

    Full Text Available The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication.

  2. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  3. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  5. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  6. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  7. Improved Ionic Liquids as Space Lubricants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  8. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    International Nuclear Information System (INIS)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-01-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements. (paper)

  9. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  10. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F. [Univ. of Notre Dame, IN (United States)

    2017-03-07

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILs and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.

  11. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    Science.gov (United States)

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  12. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells

    International Nuclear Information System (INIS)

    Rana, Usman Ali; Forsyth, Maria; MacFarlane, Douglas R.; Pringle, Jennifer M.

    2012-01-01

    Highlights: ► Polymer electrolyte membrane fuel cells that can operate above 120 °C, without humidification, would be much more commercially viable. ► Protic ionic liquids and organic ionic plastic crystals are showing increasing promise as anhydrous proton conductors in fuel cells. ► Here we review the recent progress in these two areas. - Abstract: There is increasing demand for the development of anhydrous proton conducting electrolytes, most notably to allow the development of fuel cells that can operate at temperatures above 120 °C, without the need for constant and controlled humidification. The emerging field of protic ionic liquids (PILs) represents a promising new direction for this research and the development of these materials has made significant progress in recent years. In a related but as yet little-explored avenue, proton conducting organic ionic plastic crystals offer the potential advantage of providing a solid state matrix for anhydrous proton conductivity. Here we discuss the recent progress in these areas and identify the key challenges for future research.

  13. Simulations of phase transitions in ionic systems

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2005-01-01

    A review of recent simulation work in the area of phase transitions in ionic systems is presented. The vapour-liquid transition for the restricted primitive model has been studied extensively in the past decade. The critical temperature is now known to excellent accuracy and the critical density to moderate accuracy. There is also strong simulation-based evidence that the model is in the Ising universality class. Discretized lattice versions of the model are reviewed. Other systems covered are size- and charge-asymmetric electrolytes, colloid-salt mixtures, realistic salt models and charged chains. Areas of future research needs are briefly discussed

  14. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  15. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  16. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    Peng-noo, Worawit; Kulajanpeng, Kusuma; Gani, Rafiqul

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  17. Study of an ionic smoke sensor

    International Nuclear Information System (INIS)

    Mokhtari, Z; Holé, S; Lewiner, J

    2013-01-01

    Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors. (paper)

  18. Study of an ionic smoke sensor

    Science.gov (United States)

    Mokhtari, Z.; Holé, S.; Lewiner, J.

    2013-05-01

    Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors.

  19. Nonextensive statistical mechanics of ionic solutions

    International Nuclear Information System (INIS)

    Varela, L.M.; Carrete, J.; Munoz-Sola, R.; Rodriguez, J.R.; Gallego, J.

    2007-01-01

    Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q

  20. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    Science.gov (United States)

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Molar Surface Gibbs Energy of the Aqueous Solution of Ionic Liquid [C4mim][Oac

    Institute of Scientific and Technical Information of China (English)

    TONG Jing; ZHENG Xu; TONG Jian; QU Ye; LIU Lu; LI Hui

    2017-01-01

    The values of density and surface tension for aqueous solution of ionic liquid(IL) 1-butyl-3-methylimidazolium acetate([C4mim][OAc]) with various molalities were measured in the range of 288.15-318.15 K at intervals of 5 K.On the basis of thermodynamics,a semi-empirical model-molar surface Gibbs energy model of the ionic liquid solution that could be used to predict the surface tension or molar volume of solutions was put forward.The predicted values of the surface tension for aqueous [C4im][OAc] and the corresponding experimental ones were highly correlated and extremely similar.In terms of the concept of the molar Gibbs energy,a new E(o)tv(o)s equation was obtained and each parameter of the new equation has a clear physical meaning.

  2. Safety of non-ionic contrast media during renal artery stenting

    International Nuclear Information System (INIS)

    Ni Jun; Shen Weifeng; Zhang Ruiyan; Zhang Qi; Zhang Xian; Zheng Aifang

    2004-01-01

    Objective: To evaluate the safety of non-ionic contras media during interventional treatment of renal artery stenosis (RAS). Methods: Fifty four coronary artery disease patients associated with RAS (luminal narrowing > 50%) underwent renal artery stent implantation and percutaneous coronary intervention, only 10 of them with merely renoarterial stenosis undergone renal artery stent implantation. The successful rates of the procedure and complication together with the volumes of contrast media were recorded respectively. And the serum creatine before and 12 hours after the successful procedure were also measured. Results: Both rates of procedural success and complication were similar among the three groups. The serum creatine levels, 12 hours after the procedure, showed no difference in comparing with the baseline. Conclusion: Non-ionic contrast media (Iopamiro 370) could be safely used in patients with RAS. (authors)

  3. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    Science.gov (United States)

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  4. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  5. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us [Dept. Earth and Space Sciences, Box 351310, University of Washington, Seattle, WA (United States)

    2017-08-20

    Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at a mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.

  6. Ionic diffusion in superionic-conductor melts

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Tosi, M.P.

    1991-03-01

    The self-diffusion coefficients D + and D - of the two ionic species in molten AgI, CuCl, CuBr and CuI are evaluated and contrasted with those calculated for molten NaCl. The evaluation adopts a simple model for liquid state dynamics, earlier proposed by Zwanzig to justify the Stokes-Einstein formula for monatomic fluids, and by suitable approximations relates the self-diffusion coefficients to pair potentials and to the pair structure of the melt. The results offer an interpretation for molecular dynamics data showing that, whereas for a ''normal'' system such as NaCl the ratio D + /D - in the melt is of the order unity, a sizable difference between D + and D - persists in salts melting from a fast-cation conducting solid. This difference is explicitly related to liquid structure through differences in the structural backscattering of cations by cations and of halogens by halogens. The calculated magnitudes of D + /D - are quite satisfactory, while the absolute magnitudes of D + and D - are in good agreement with the data only for those salts (AgI, CuBr and NaCl) in which the masses of the two ionic species are not greatly different. (author). 21 refs, 2 tabs

  7. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  8. Furfural production using ionic liquids: A review.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Magnetic ionic liquids: synthesis and characterization

    International Nuclear Information System (INIS)

    Medeiros, Anderson M.M.S.; Parize, Alexandre L.; Oliveira, Vanda M.; Neto, Brenno A.D.; Rubim, Joel C.

    2010-01-01

    The synthesis of magnetic ionic liquids (MILs) based on the stable dispersions of magnetic nanoparticles (MNPs) of γ-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf 2 ) is reported. The MNPs were obtained by the coprecipitation method. The surface of the α-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 MNPs with mean sizes (XRD) of 9.3, 12.3, and 11.0 nm, respectively were functionalized by 1-n-butyl-3-(3'-trimethoxypropylsilane)- imidazolium chloride. The non functionalized and functionalized MNPs were further characterized by Raman, FTIR-ATR, and FTNIR spectroscopy and by TGA. The stability of the MILs was assigned to the formation of at least one monolayer of the surface modifier agent that mimics the structure of the BMI.NTf 2 IL. (author)

  10. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  11. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin

  12. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O22d

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2012-01-01

    -plane ionic conductivity in CGO epitaxial thin films. The ionic conductivity is found to increase with decrease in buffer layer thickness. The tailored ionic conductivity enhancement is explained in terms of close relationships among epitaxy, strain, and ionic conductivity....

  13. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction of ...

    African Journals Online (AJOL)

    Conclusion: Compared with traditional methods, IL-UMAE method uses Ionic liquid-solvent which greatly shortens the extraction time. IL-UMAE as a simple, effective and environmentally friendly approach shows a broad prospect for active ingredient extraction. Keywords: Dioscorea zingiberensis Steroidal saponins, Ionic ...

  14. Synergistic extraction of europium(III) in ammonium ionic liquid

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.

    2016-01-01

    Room temperature ionic liquids have been receiving increased attention for possible applications in the area of nuclear fuel reprocessing and waste management due to their fascinating properties such as good ionicity, high solvation capability, properties tunable etc. Most of the studies in the literature on the extraction of metal ions with molecular extractants dissolved in ionic liquid diluents are making use of the hydrophobic ionic liquids containing imidazolium cations such as the 1-alkyl-3-methylimidazolium ion. From an environmental point of view, such ionic liquids are not suitable as the primary mode of the metal extraction is by cation exchange mechanism wherein ionic liquid cation is lost to the aqueous phase leading to aqueous contamination and issue of recyclability of organic phase. However, there are some hydrophobic ionic liquids such as trioctylmethylammonium chloride ((N 1888 )(Cl)), and trihexyl(tetradecyl)phoshonium chloride (Cyphos IL 101) that exhibit no cation exchange in the aqueous phase during extraction. In this context, the extraction behavior of europium(III) using a neutral extractant, octyl, phenyl-N.N-diisobutylmethylcarbamoylphophinoxide (CMPO) and/or an acidic extractant bis(ethylhexyl)phosphoric acid (D2EHPA) dissolved in the ammonium ionic liquid diluent, trioctylmethylammonium bis(trifluoromethanesulfonyl)imide, (N 1888 )(NTf 2 ). The extraction behavior of CMPO (or D2EHPA)/(N 1888 )((Tf 2 ) system was investigated as a function of different extraction parameters such as feed acidity, extractant concentration, equilibration time etc.

  15. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    The antimicrobial effect of ionic liquids (ILs) as comonomers in polyurethane surface coatings was investigated. Ionic liquid-containing coatings were prepared from a hydroxyl end-capped liquid oligoester and a triisocyanate crosslinker. Three different commercially available hydroxyl end-capped

  16. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  17. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  18. Thermochemistry of ionic liquid heat-transfer fluids

    International Nuclear Information System (INIS)

    Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.

    2005-01-01

    Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications

  19. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  20. Multi-responsive ionic liquid emulsions stabilized by microgels

    NARCIS (Netherlands)

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  1. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  2. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Science.gov (United States)

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  3. Thermal annealing and ionic abrasion in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.

    1975-01-01

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence [fr

  4. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Science.gov (United States)

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  5. The Hildebrand solubility parameters of ionic liquids-part 2.

    Science.gov (United States)

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  6. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2011-06-01

    Full Text Available The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  7. Absorption of Flue-Gas Components by Ionic Liquids

    DEFF Research Database (Denmark)

    Kolding, Helene; Thomassen, Peter Langelund; Mossin, Susanne

    2014-01-01

    Gas separation by ionic liquids (ILs) is a promising new research field with several potential applications of industrial interest. Thus cleaning of industrial off gases seems to be attractive by use of ILs and Supported Ionic Liquid Phase (SILP) materials. The potential of selected ILs...

  8. Interfacial Structure and Double Layer Capacitance of Ionic Liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai

    2018-01-01

    Ionic liquids are organic salts that are in liquid phase at room temperature. Their wide liquidus range, particularly at room temperature, results from the liquids’ large and asymmetric molecular geometry. This leads to a collection of unique properties, such as, high ionic strength, extremely low

  9. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  10. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  11. Near-wall molecular ordering of dilute ionic liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai; Seddon, James Richard Thorley

    2017-01-01

    The interfacial behavior of ionic liquids promises tunable lubrication as well as playing an integral role in ion diffusion for electron transfer. Diluting the ionic liquids optimizes bulk parameters, such as electric conductivity, and one would expect dilution to disrupt the near-wall molecular

  12. Reversible physical absorption of SO2 by ionic liquids

    DEFF Research Database (Denmark)

    Huang, Jun; Riisager, Anders; Fehrmann, Rasmus

    2006-01-01

    Ionic liquids can reversibly absorb large amounts of molecular SO2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO2 to probe the internal cavity structures in ionic liquids besides being useful for SO2 removal in pollution control....

  13. Polymer synthesis in ionic liquids : towards a green industry

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Schubert, U.S.

    2004-01-01

    The screening of six ionic liqs. used as reaction media in free radical polymn. of Me methacrylate and styrene was performed. AIBN was used as initiator for the polymn. of Me methacrylate and benzoyl peroxide in the case of styrene. Soly. of the used ionic liqs. in these monomers and water was also

  14. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  15. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  16. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  17. Molecular simulation of ionic liquids: current status and future opportunities

    International Nuclear Information System (INIS)

    Maginn, E J

    2009-01-01

    Ionic liquids are salts that are liquid near ambient conditions. Interest in these unusual compounds has exploded in the last decade, both at the academic and commercial level. Molecular simulations based on classical potentials have played an important role in helping researchers understand how condensed phase properties of these materials are linked to chemical structure and composition. Simulations have also predicted many properties and unexpected phenomena that have subsequently been confirmed experimentally. The beneficial impact molecular simulations have had on this field is due in large part to excellent timing. Just when computing power and simulation methods matured to the point where complex fluids could be studied in great detail, a new class of materials virtually unknown to experimentalists came on the scene and demanded attention. This topical review explores some of the history of ionic liquid molecular simulations, and then gives examples of the recent use of molecular dynamics and Monte Carlo simulation in understanding the structure of ionic liquids, the sorption of small molecules in ionic liquids, the nature of ionic liquids in the vapor phase and the dynamics of ionic liquids. This review concludes with a discussion of some of the outstanding problems facing the ionic liquid modeling community and how condensed phase molecular simulation experts not presently working on ionic liquids might help advance the field. (topical review)

  18. Absorption and oxidation of no in ionic liquids

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature.......The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature....

  19. Natural gas purification using supported ionic liquid membrane

    NARCIS (Netherlands)

    Althuluth, M.A.M.; Overbeek, J.P.; Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.S.; Peters, C.J.; Kroon, M.C.

    2015-01-01

    This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the ¿-alumina layer of a tubular

  20. New Culture Medium Containing Ionic Concentrations of Nutrients Similar to Concentrations Found in the Soil Solution †

    Science.gov (United States)

    Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.

    1991-01-01

    A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614