WorldWideScience

Sample records for similar intracellular localization

  1. Intracellular localization of Na + /H + antiporter from Malus zumi ...

    African Journals Online (AJOL)

    In this study, we examined the intracellular localization of the product of Na+/H+ antiporter gene (MzNHX1) cloned from Malus zumi. Analysis using yeast cells expressing a fusion protein of MzNHX1 and green fluorescent protein confirmed the localization of MzNHX1 on the tonoplast.

  2. Intracellular localization of Arabidopsis sulfurtransferases.

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D; Papenbrock, Jutta

    2004-06-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism.

  3. Intracellular Localization of Arabidopsis Sulfurtransferases1

    Science.gov (United States)

    Bauer, Michael; Dietrich, Christof; Nowak, Katharina; Sierralta, Walter D.; Papenbrock, Jutta

    2004-01-01

    Sulfurtransferases (Str) comprise a group of enzymes widely distributed in archaea, eubacteria, and eukaryota which catalyze the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. In all organisms analyzed to date, small gene families encoding Str proteins have been identified. The gene products were localized to different compartments of the cells. Our interest concerns the localization of Str proteins encoded in the nuclear genome of Arabidopsis. Computer-based prediction methods revealed localization in different compartments of the cell for six putative AtStrs. Several methods were used to determine the localization of the AtStr proteins experimentally. For AtStr1, a mitochondrial localization was demonstrated by immunodetection in the proteome of isolated mitochondria resolved by one- and two-dimensional gel electrophoresis and subsequent blotting. The respective mature AtStr1 protein was identified by mass spectrometry sequencing. The same result was obtained by transient expression of fusion constructs with the green fluorescent protein in Arabidopsis protoplasts, whereas AtStr2 was exclusively localized to the cytoplasm by this method. Three members of the single-domain AtStr were localized in the chloroplasts as demonstrated by transient expression of green fluorescent protein fusions in protoplasts and stomata, whereas the single-domain AtStr18 was shown to be cytoplasmic. The remarkable subcellular distribution of AtStr15 was additionally analyzed by transmission electron immunomicroscopy using a monospecific antibody against green fluorescent protein, indicating an attachment to the thylakoid membrane. The knowledge of the intracellular localization of the members of this multiprotein family will help elucidate their specific functions in the organism. PMID:15181206

  4. Studies on the intracellular localization of hHR23B

    International Nuclear Information System (INIS)

    Katiyar, Samiksha; Lennarz, William J.

    2005-01-01

    Yeast Rad23, originally identified as a DNA repair protein, has been proposed to participate in other cellular functions, i.e., the proteasome-degradation pathway, the process of spindle pole body duplication and as a component of the anaphase checkpoint. Two human homologs of yeast Rad23, hHR23A and hHR23B, exhibit high sequence homology with yRad23 and also have been shown to be involved in DNA repair and proteasome-dependent degradation. Previous studies on the intracellular localization of hHR23A and hHR23B revealed their predominant localization in the nucleus during interphase and in the cytoplasm during mitosis. We have analyzed the localization of hHR23B during all the phases of the cell cycle using immunofluorescence. Unlike previous studies, our results suggest localization of hHR23B in the nucleus as well as in the cytoplasm during G1 phase. The nuclear levels of hHR23B decrease during S-phase of the cell cycle. When the cell enters mitosis, hHR23B relocalizes in the cytoplasm without association with chromatin. These results indicate that the intracellular distribution hHR23B is cell cycle dependent

  5. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available Shwachman-Diamond Syndrome (SDS is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  6. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, Carl; Subramaniam, Vinod; Kanger, Johannes S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  7. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.

    NARCIS (Netherlands)

    Shekhar, S.; Cambi, A.; Figdor, C.G.; Subramaniam, V.; Kanger, J.S.

    2012-01-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and

  8. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    Directory of Open Access Journals (Sweden)

    Maria Grazia Romanelli

    2011-05-01

    Full Text Available Human T-lymphotropic viruses type 1 (HTLV-1 and type 2 (HTLV-2 present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.

  9. Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes

    DEFF Research Database (Denmark)

    Westgate, G E; Weaver, A C; Couchman, J R

    1985-01-01

    immunofluorescent staining for BPA is linear at the basement membrane zone (BMZ) of skin and many other epithelial tissues. At higher magnification however, we observed a punctate staining pattern for BPA which was regular in appearance and suggested localization of BPA to discrete structures at the BMZ. Subsequent...... intracellularly both in vivo and in vitro. We suggest that BPA is not normally a lamina lucida component, but that it may form part of a linkage between the cytoskeleton and the basement membrane....

  10. Tissue- and Cell-Specific Co-localization of Intracellular Gelatinolytic Activity and Matrix Metalloproteinase 2

    Science.gov (United States)

    Solli, Ann Iren; Fadnes, Bodil; Winberg, Jan-Olof; Uhlin-Hansen, Lars

    2013-01-01

    Matrix metalloproteinase 2 (MMP-2) is a proteolytic enzyme that degrades extracellular matrix proteins. Recent studies indicate that MMP-2 also has a role in intracellular proteolysis during various pathological conditions, such as ischemic injuries in heart and brain and in tumor growth. The present study was performed to map the distribution of intracellular MMP-2 activity in various mouse tissues and cells under physiological conditions. Samples from normal brain, heart, lung, liver, spleen, pancreas, kidney, adrenal gland, thyroid gland, gonads, oral mucosa, salivary glands, esophagus, intestines, and skin were subjected to high-resolution in situ gelatin zymography and immunohistochemical staining. In hepatocytes, cardiac myocytes, kidney tubuli cells, epithelial cells in the oral mucosa as well as in excretory ducts of salivary glands, and adrenal cortical cells, we found strong intracellular gelatinolytic activity that was significantly reduced by the metalloprotease inhibitor EDTA but not by the cysteine protease inhibitor E-64. Furthermore, the gelatinolytic activity was co-localized with MMP-2. Western blotting and electron microscopy combined with immunogold labeling revealed the presence of MMP-2 in different intracellular compartments of isolated hepatocytes. Our results indicate that MMP-2 takes part in intracellular proteolysis in specific tissues and cells during physiological conditions. PMID:23482328

  11. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Gorantla, Yamini; Paulos, Simon A; Sharma, Pankaj; Chaudhary, Jaideep; Palaniappan, Ravi

    2015-01-01

    Prostate cancer (PCa) disease progression is associated with significant changes in intracellular and extracellular proteins, intracellular signaling mechanism, and cancer cell phenotype. These changes may have direct impact on the cellular interactions with nanocarriers; hence, there is the need for a much-detailed understanding, as nanocarrier cellular internalization and intracellular sorting mechanism correlate directly with bioavailability and clinical efficacy. In this study, we report the differences in the rate and mechanism of cellular internalization of a biocompatible polycaprolactone (PCL)/maltodextrin (MD) nanocarrier system for intracellular drug delivery in LNCaP, PC3, and DU145 PCa cell lines. PCL/MD nanocarriers were designed and characterized. PCL/MD nanocarriers significantly increased the intracellular concentration of coumarin-6 and fluorescein isothiocyanate-labeled bovine serum albumin, a model hydrophobic and large molecule, respectively. Fluorescence microscopy and flow cytometry analysis revealed rapid internalization of the nanocarrier. The extent of nanocarrier cellular internalization correlated directly with cell line aggressiveness. PCL/MD internalization was highest in PC3 followed by DU145 and LNCaP, respectively. Uptake in all PCa cell lines was metabolically dependent. Extraction of endogenous cholesterol by methyl-β-cyclodextrin reduced uptake by 75%±4.53% in PC3, 64%±6.01% in LNCaP, and 50%±4.50% in DU145, indicating the involvement of endogenous cholesterol in cellular internalization. Internalization of the nanocarrier in LNCaP was mediated mainly by macropinocytosis and clathrin-independent pathways, while internalization in PC3 and DU145 involved clathrin-mediated endocytosis, clathrin-independent pathways, and macropinocytosis. Fluorescence microscopy showed a very diffused and non-compartmentalized subcellular localization of the PCL/MD nanocarriers with possible intranuclear localization and minor colocalization in

  12. Determination of Six Transmembrane Protein of Prostate 2 Gene Expression and Intracellular Localization in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Bora İrer

    2017-12-01

    Full Text Available Objective: In this study, we aimed to determine the relationship between the RNA and protein expression profile of six transmembrane protein of prostate 2 (STAMP2 gene and androgen and the intracellular localization of STAMP2. Materials and Methods: RNA and protein were obtained from androgen treated lymph node carcinoma of the prostate (LNCaP cells, untreated LNCaP cells, DU145 cells with no androgen receptor, and STAMP2 transfected COS-7 cells. The expression profile of STAMP2 gene and the effect of androgenes on the expression was shown in RNA and protein levels by using Northern and Western blotting methods. In addition, intracellular localization of the naturally synthesized STAMP2 protein and the transfected STAMP2 protein in COS-7 cells after androgen administration in both LNCaP cells was determined by immunofluorescence microscopy. Results: We found that the RNA and protein expression of STAMP2 gene in LNCaP cells are regulated by androgenes, the power of expression is increased with the duration of androgen treatment and there is no STAMP2 expression in DU145 cells which has no androgen receptor. As a result of the immunofluorescence microscopy study we observed that STAMP2 protein was localized at golgi complex and cell membrane. Conclusion: In conclusion, we have demonstrated that STAMP2 may play an important role in the pathogenesis of the prostate cancer and in the androgen-dependent androgen-independent staging of prostate cancer. In addition, STAMP2 protein, which is localized in the intracellular golgi complex and cell membrane, may be a new target molecule for prostate cancer diagnosis and treatment.

  13. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9.

    Directory of Open Access Journals (Sweden)

    Manuela Pedrazzi

    Full Text Available Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts, defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36 have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.

  14. A space-efficient algorithm for local similarities.

    Science.gov (United States)

    Huang, X Q; Hardison, R C; Miller, W

    1990-10-01

    Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.

  15. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Emilia Marttila

    2014-07-01

    Full Text Available Treponema denticola is an important periodontal pathogen capable of tissue invasion. Its chymotrypsin-like proteinase (CTLP can degrade a number of basement membrane components in vitro, thus suggesting a contribution to tissue invasion by the spirochete. The aim of this study was to analyze the localization of CTLP in chronic periodontitis tissues ex vivo. A polyclonal antibody specific to T. denticola cell-bound CTLP was used to detect the spirochetes in the gingival tissues of patients with moderate to severe chronic periodontitis (n=25 by immunohistochemistry and periodic acid-Schiff staining (PAS. The presence of T. denticola in the periodontal tissue samples was analyzed by PCR. Periodontal tissue samples of 12 of the 25 patients were found to be positive for T. denticola by PCR. Moreover, CTLP could be detected in the periodontal tissues of all these patients by immunohistochemistry. In the epithelium, the CTLP was mostly intracellular. Typically, the positive staining could be seen throughout the whole depth of the epithelium. When detected extracellularly, CTLP was localized mainly as granular deposits. The connective tissue stained diffusely positive in four cases. The positive staining co-localized with the PAS stain in nine cases. T. denticola and its CTLP could be detected in diseased human periodontium both intra- and extracellularly. The granular staining pattern was suggestive of the presence of T. denticola bacteria, whereas the more diffused staining pattern was indicative of the recent presence of the bacterium and shedding of the cell-bound proteinase.

  16. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  17. Dihydroceramide biology - Structure-specific metabolism and intracellular localization

    NARCIS (Netherlands)

    Kok, JW; NikolovaKarakashian, M; Klappe, K; Alexander, C; Merrill, AH

    1997-01-01

    This study utilized fluorescent analogs to characterize the intracellular transport and metabolism of dihydroceramide (DN-Cer), an intermediate in de novo sphingolipid biosynthesis, When 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]hexanoyl-DH-Cer (C-6-NBD-DH-Cer) was incubated with HT29, NRK, BHK,

  18. A new similarity index for nonlinear signal analysis based on local extrema patterns

    Science.gov (United States)

    Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher

    2018-02-01

    Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.

  19. Immunomicroscopic localization of aminopeptidase N in the pig enterocyte. Implications for the route of intracellular transport

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Sjöström, H; Norén, Ove

    1987-01-01

    The subcellular localization of aminopeptidase N (EC 3.4.11.2) in the pig enterocyte was investigated by immunofluorescence and immunoelectron microscopy (immunogold staining). By indirect immunofluorescence on either frozen or paraffin-embedded sections, a very intense staining in the microvillar....... Labelling was demonstrated in the Golgi apparatus and in a minor fraction of the intracellular smooth vesicles positioned between the Golgi apparatus and the microvillar membrane. These observations are compatible with the view that newly synthesized aminopeptidase N is delivered directly to the microvillar...

  20. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    International Nuclear Information System (INIS)

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken.

    2007-01-01

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences

  1. Expanding the boundaries of local similarity analysis.

    Science.gov (United States)

    Durno, W Evan; Hanson, Niels W; Konwar, Kishori M; Hallam, Steven J

    2013-01-01

    Pairwise comparison of time series data for both local and time-lagged relationships is a computationally challenging problem relevant to many fields of inquiry. The Local Similarity Analysis (LSA) statistic identifies the existence of local and lagged relationships, but determining significance through a p-value has been algorithmically cumbersome due to an intensive permutation test, shuffling rows and columns and repeatedly calculating the statistic. Furthermore, this p-value is calculated with the assumption of normality -- a statistical luxury dissociated from most real world datasets. To improve the performance of LSA on big datasets, an asymptotic upper bound on the p-value calculation was derived without the assumption of normality. This change in the bound calculation markedly improved computational speed from O(pm²n) to O(m²n), where p is the number of permutations in a permutation test, m is the number of time series, and n is the length of each time series. The bounding process is implemented as a computationally efficient software package, FASTLSA, written in C and optimized for threading on multi-core computers, improving its practical computation time. We computationally compare our approach to previous implementations of LSA, demonstrate broad applicability by analyzing time series data from public health, microbial ecology, and social media, and visualize resulting networks using the Cytoscape software. The FASTLSA software package expands the boundaries of LSA allowing analysis on datasets with millions of co-varying time series. Mapping metadata onto force-directed graphs derived from FASTLSA allows investigators to view correlated cliques and explore previously unrecognized network relationships. The software is freely available for download at: http://www.cmde.science.ubc.ca/hallam/fastLSA/.

  2. Ortholog-based screening and identification of genes related to intracellular survival.

    Science.gov (United States)

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  3. Interspecific variation of intracellular localization and postirradiation movement of Ku70-protein in fibroblastic cells

    International Nuclear Information System (INIS)

    Endoh, Daiji; Hayashi, Masanobu; Okui, Toyo; Kawase, Shiro; Kon, Yasushiro

    2003-01-01

    Ku (Ku70 and Ku80) Proteins are known as components of DNA-dependent protein kinase (DNA-PK) and play an important role for DNA repair. We previously reported that more than 70% of Ku proteins were located in cytoplasm of rat cells, the Ku proteins moved into nuclei of normal rat cells after X-irradiation, Ku proteins also moved into nuclei after X-irradiation but were not retained in nucleus of radiosensitive LEC rat cells. While reports have been shown about mechanisms on nuclear localization of Ku proteins, how Ku proteins export from nucleus is poorly understood. Here we show that C-terminal region of Ku70 protein is important for its cytoplasmic localization. When transfected into LEC rat cells, exogenous intact Ku70 (1-609) tagged with enhanced green fluorescent protein (EGFP-Ku70) localized mainly in the cytoplasm, whereas C-terminal-deletion mutant of Ku70 (1-593) tagged with EGFP (EGFP-Ku70D) was mainly localized in the nucleus. After X-irradiation, the endogenous intact EGFP-Ku70 once moved into nucleus, but returned into the cytoplasm. On the other hand, EGFP-Ku70D was retained in nucleus for two hours after X-irradiation. These results suggest that C-terminal region of Ku70 is included in the postirradiation nuclear export. Next, we investigated the intracellular localization of Ku70 proteins and the movement after X-irradiation of fibroblastic cells prepared from some mammalian species. Ku70 proteins were localized in nucleus and the postirradiation-extranuclear transport was not observed in human and African green monkey cells. On the other hand, Ku70 proteins were mainly localized in cytoplasm and moved into nucleus in mouse, Chinese hamster, Golden hamster, cotton rat, squirrel, cat and dog cells. These results may show that alternatively Ku70 protein is localized in the cytoplasm or nucleus depends on species and translocation of cytoplasmic Ku70 into nucleus is a response against low dose irradiation in fibroblasts of rodents, cats and dogs

  4. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  5. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    Science.gov (United States)

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  6. Intracellular calcium levels can regulate Importin-dependent nuclear import

    International Nuclear Information System (INIS)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A.

    2014-01-01

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca 2+ on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery

  7. Intracellular calcium levels can regulate Importin-dependent nuclear import

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurpreet; Ly-Huynh, Jennifer D.; Jans, David A., E-mail: David.Jans@monash.edu

    2014-07-18

    Highlights: • High intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import. • The effect of Ca{sup 2+} on nuclear import does not relate to changes in the nuclear pore. • High intracellular calcium can result in mislocalisation of Impβ1, Ran and RCC1. - Abstract: We previously showed that increased intracellular calcium can modulate Importin (Imp)β1-dependent nuclear import of SRY-related chromatin remodeling proteins. Here we extend this work to show for the first time that high intracellular calcium inhibits Impα/β1- or Impβ1-dependent nuclear protein import generally. The basis of this relates to the mislocalisation of the transport factors Impβ1 and Ran, which show significantly higher nuclear localization in contrast to various other factors, and RCC1, which shows altered subnuclear localisation. The results here establish for the first time that intracellular calcium modulates conventional nuclear import through direct effects on the nuclear transport machinery.

  8. Cell array-based intracellular localization screening reveals novel functional features of human chromosome 21 proteins

    Directory of Open Access Journals (Sweden)

    Kahlem Pascal

    2006-06-01

    Full Text Available Abstract Background Trisomy of human chromosome 21 (Chr21 results in Down's syndrome, a complex developmental and neurodegenerative disease. Molecular analysis of Down's syndrome, however, poses a particular challenge, because the aneuploid region of Chr21 contains many genes of unknown function. Subcellular localization of human Chr21 proteins may contribute to further understanding of the functions and regulatory mechanisms of the genes that code for these proteins. Following this idea, we used a transfected-cell array technique to perform a rapid and cost-effective analysis of the intracellular distribution of Chr 21 proteins. Results We chose 89 genes that were distributed over the majority of 21q, ranging from RBM11 (14.5 Mb to MCM3AP (46.6 Mb, with part of them expressed aberrantly in the Down's syndrome mouse model. Open reading frames of these genes were cloned into a mammalian expression vector with an amino-terminal His6 tag. All of the constructs were arrayed on glass slides and reverse transfected into HEK293T cells for protein expression. Co-localization detection using a set of organelle markers was carried out for each Chr21 protein. Here, we report the subcellular localization properties of 52 proteins. For 34 of these proteins, their localization is described for the first time. Furthermore, the alteration in cell morphology and growth as a result of protein over-expression for claudin-8 and claudin-14 genes has been characterized. Conclusion The cell array-based protein expression and detection approach is a cost-effective platform for large-scale functional analyses, including protein subcellular localization and cell phenotype screening. The results from this study reveal novel functional features of human Chr21 proteins, which should contribute to further understanding of the molecular pathology of Down's syndrome.

  9. Local-global alignment for finding 3D similarities in protein structures

    Science.gov (United States)

    Zemla, Adam T [Brentwood, CA

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  10. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  11. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    Science.gov (United States)

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state. PMID:24204687

  12. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells.

    Science.gov (United States)

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.

  13. pH-sensitive intracellular photoluminescence of carbon nanotube-fluorescein conjugates in human ovarian cancer cells

    International Nuclear Information System (INIS)

    Chen, M T; Ishikawa, F N; Gundersen, M A; Gomez, L M; Vernier, P T; Zhou, C

    2009-01-01

    To add to the understanding of the properties of functionalized carbon nanotubes in biological applications, we report a monotonic pH sensitivity of the intracellular fluorescence emission of single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates in human ovarian cancer cells. Light-stimulated intracellular hydrolysis of the amide linkage and localized intracellular pH changes are proposed as mechanisms. SWCNT-FC conjugates may serve as intracellular pH sensors.

  14. Relevance of intracellular polarity to accuracy of eukaryotic chemotaxis

    International Nuclear Information System (INIS)

    Hiraiwa, Tetsuya; Nishikawa, Masatoshi; Shibata, Tatsuo; Nagamatsu, Akihiro; Akuzawa, Naohiro

    2014-01-01

    Eukaryotic chemotaxis is usually mediated by intracellular signals that tend to localize at the front or back of the cell. Such intracellular polarities frequently require no extracellular guidance cues, indicating that spontaneous polarization occurs in the signal network. Spontaneous polarization activity is considered relevant to the persistent motions in random cell migrations and chemotaxis. In this study, we propose a theoretical model that connects spontaneous intracellular polarity and motile ability in a chemoattractant solution. We demonstrate that the intracellular polarity can enhance the accuracy of chemotaxis. Chemotactic accuracy should also depend on chemoattractant concentration through the concentration-dependent correlation time in the polarity direction. Both the polarity correlation time and the chemotactic accuracy depend on the degree of responsiveness to the chemical gradient. We show that optimally accurate chemotaxis occurs at an intermediate responsiveness of intracellular polarity. Experimentally, we find that the persistence time of randomly migrating Dictyostelium cells depends on the chemoattractant concentration, as predicted by our theory. At the optimum responsiveness, this ameboid cell can enhance its chemotactic accuracy tenfold. (paper)

  15. MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, David [Statistical and Applied Mathematical Sciences Institute (United States); Budavári, Tamás [Dept. of Applied Mathematics and Statistics, The Johns Hopkins University (United States); Mahoney, Michael W. [International Computer Science Institute (United States)

    2016-12-10

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors . Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  16. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    Science.gov (United States)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  17. MAPPING THE SIMILARITIES OF SPECTRA: GLOBAL AND LOCALLY-BIASED APPROACHES TO SDSS GALAXIES

    International Nuclear Information System (INIS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-01-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors . Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  18. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells

    KAUST Repository

    Ferraro, Daniela

    2017-01-09

    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANES (μXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles.

  19. Dependence of the Ce(iii)/Ce(iv) ratio on intracellular localization in ceria nanoparticles internalized by human cells

    KAUST Repository

    Ferraro, Daniela; Tredici, Ilenia G.; Ghigna, Paolo; Castillio-Michel, Hiram; Falqui, Andrea; Di Benedetto, Cristiano; Alberti, Giancarla; Ricci, Vittorio; Anselmi-Tamburini, Umberto; Sommi, Patrizia

    2017-01-01

    CeO2 nanoparticles (CNPs) have been investigated as promising antioxidant agents with significant activity in the therapy of diseases involving free radicals or oxidative stress. However, the exact mechanism responsible for CNP activity has not been completely elucidated. In particular, in situ evidence of modification of the oxidative state of CNPs in human cells and their evolution during cell internalization and subsequent intracellular distribution has never been presented. In this study we investigated modification of the Ce(iii)/Ce(iv) ratio following internalization in human cells by X-ray absorption near edge spectroscopy (XANES). From this analysis on cell pellets, we observed that CNPs incubated for 24 h showed a significant increase in Ce(iii). By coupling on individual cells synchrotron micro-X-ray fluorescence (μXRF) with micro-XANES (μXANES) we demonstrated that the Ce(iii)/Ce(iv) ratio is also dependent on CNP intracellular localization. The regions with the highest CNP concentrations, suggested to be endolysosomes by transmission electron microscopy, were characterized by Ce atoms in the Ce(iv) oxidation state, while a higher Ce(iii) content was observed in regions surrounding these areas. These observations suggest that the interaction of CNPs with cells involves a complex mechanism in which different cellular areas play different roles.

  20. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method.

    Science.gov (United States)

    Yokobori, Kosuke; Kobayashi, Kaoru; Azuma, Ikuko; Akita, Hidetaka; Chiba, Kan

    2017-10-01

    Pregnane X receptor (PXR) is localized in the cytoplasm of liver cells, whereas it is localized in the nucleus of monolayer-cultured HepG2 cells. Since cultured cells are affected by the microenvironment in which they are grown, we studied the effect of three-dimensional (3D) culture on the localization of PXR in HepG2 cells using the hanging drop method. The results showed that PXR was retained in the cytoplasm of HepG2 cells and other human hepatocarcinoma cell lines (FLC5, FLC7 and Huh7) when they were cultured by the hanging drop method. Treatment with rifampicin, a ligand of PXR, translocated PXR from the cytoplasm to nucleus and increased expression levels of CYP3A4 mRNA in HepG2 cells cultured by the hanging drop method. These findings suggest that 3D culture is a key factor determining the intracellular localization of PXR in human hepatocarcinoma cells and that PXR that becomes retained in the cytoplasm of HepG2 cells with 3D culture has functions of nuclear translocation and regulation of target genes in response to human PXR ligands. Three-dimensionally cultured hepatocarcinoma cells would be a useful tool to evaluate induction potency of drug candidates and also to study mechanisms of nuclear translocation of PXR by human PXR ligands. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints.

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2016-11-01

    Full Text Available Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213, we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.

  2. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells.

    Science.gov (United States)

    Khan, Selina; Bijker, Martijn S; Weterings, Jimmy J; Tanke, Hans J; Adema, Gosse J; van Hall, Thorbald; Drijfhout, Jan W; Melief, Cornelis J M; Overkleeft, Hermen S; van der Marel, Gijsbert A; Filippov, Dmitri V; van der Burg, Sjoerd H; Ossendorp, Ferry

    2007-07-20

    Covalent conjugation of Toll-like receptor ligands (TLR-L) to synthetic antigenic peptides strongly improves antigen presentation in vitro and T lymphocyte priming in vivo. These molecularly well defined TLR-L-peptide conjugates, constitute an attractive vaccination modality, sharing the peptide antigen and a defined adjuvant in one single molecule. We have analyzed the intracellular trafficking and processing of two TLR-L conjugates in dendritic cells (DCs). Long synthetic peptides containing an ovalbumin cytotoxic T-cell epitope were chemically conjugated to two different TLR-Ls the TLR2 ligand, Pam(3)CysSK(4) (Pam) or the TLR9 ligand CpG. Rapid and enhanced uptake of both types of TLR-L-conjugated peptide occurred in DCs. Moreover, TLR-L conjugation greatly enhanced antigen presentation, a process that was dependent on endosomal acidification, proteasomal cleavage, and TAP translocation. The uptake of the CpG approximately conjugate was independent of endosomally-expressed TLR9 as reported previously. Unexpectedly, we found that Pam approximately conjugated peptides were likewise internalized independently of the expression of cell surface-expressed TLR2. Further characterization of the uptake mechanisms revealed that TLR2-L employed a different uptake route than TLR9-L. Inhibition of clathrin- or caveolin-dependent endocytosis greatly reduced uptake and antigen presentation of the Pam-conjugate. In contrast, internalization and antigen presentation of CpG approximately conjugates was independent of clathrin-coated pits but partly dependent on caveolae formation. Importantly, in contrast to the TLR-independent uptake of the conjugates, TLR expression and downstream TLR signaling was required for dendritic cell maturation and for priming of naïve CD8(+) T-cells. Together, our data show that targeting to two distinct TLRs requires distinct uptake mechanism but follows similar trafficking and intracellular processing pathways leading to optimal antigen

  3. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.

  4. USP2 Regulates the Intracellular Localization of PER1 and Circadian Gene Expression

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Fahrenkrug, Jan

    2014-01-01

    . Although Per1 mRNA expression rhythm remained intact in the Usp2 KO MEFs, the expression profiles of other core clock genes were altered. This was also true for the expression of clock-controlled genes (e.g., Dbp, Tef, Hlf, E4bp4). A similar phase advance of PER1 nuclear localization rhythm and alteration...

  5. Conformational determinants of the intracellular localization of midkine

    International Nuclear Information System (INIS)

    Dai Lichen; Xu, Diyong; Yao Xing; Lu Yongliang; Xu Zhengping

    2005-01-01

    Midkine (MK) is a multifunctional growth factor and has been discovered to play important roles in carcinogenesis. MK has been reported to localize to the nucleus and nucleolus, however, the data are not consistent and the signals responsible for the localization are unknown. Here we reported that human MK exclusively localized to the nucleus and nucleolus in HepG2 cells by using GFP as a tracking molecule. In order to identify the motifs required for the nuclear localization and nucleolar accumulation, point- and deletion-mutations were introduced and the corresponding subcellular localizations were analyzed. Data revealed that (i) K79R81, K86K87, and the C-terminal tail of MK constitute the nuclear localization determinant of MK, and (ii) the C-terminal tail is the key element controlling MK nucleolar accumulation though the N-terminal tail, K79R81, and K86K87 also contribute to this process. Taken together, our results provide the first documentation about the determinants required for MK nuclear and nucleolar localization

  6. Measuring transferring similarity via local information

    Science.gov (United States)

    Yin, Likang; Deng, Yong

    2018-05-01

    Recommender systems have developed along with the web science, and how to measure the similarity between users is crucial for processing collaborative filtering recommendation. Many efficient models have been proposed (i.g., the Pearson coefficient) to measure the direct correlation. However, the direct correlation measures are greatly affected by the sparsity of dataset. In other words, the direct correlation measures would present an inauthentic similarity if two users have a very few commonly selected objects. Transferring similarity overcomes this drawback by considering their common neighbors (i.e., the intermediates). Yet, the transferring similarity also has its drawback since it can only provide the interval of similarity. To break the limitations, we propose the Belief Transferring Similarity (BTS) model. The contributions of BTS model are: (1) BTS model addresses the issue of the sparsity of dataset by considering the high-order similarity. (2) BTS model transforms uncertain interval to a certain state based on fuzzy systems theory. (3) BTS model is able to combine the transferring similarity of different intermediates using information fusion method. Finally, we compare BTS models with nine different link prediction methods in nine different networks, and we also illustrate the convergence property and efficiency of the BTS model.

  7. Cytoplasmic tail of coronavirus spike protein has intracellular

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/042/02/0231-0244. Keywords. Coronavirus spike protein trafficking; cytoplasmic tail signal; endoplasmic reticulum–Golgi intermediate complex; lysosome. Abstract. Intracellular trafficking and localization studies of spike protein from SARS and OC43 showed that SARS spikeprotein is ...

  8. Detecting Local Ligand-Binding Site Similarity in Non-Homologous Proteins by Surface Patch Comparison

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2012-01-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074

  9. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  10. Global similarity and local divergence in human and mouse gene co-expression networks

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-09-01

    Full Text Available Abstract Background A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species. Results At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction ( Conclusion The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.

  11. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiangzi [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Preventive Medicine, Yanbian University College of Medicine, Yanji (China); Ju, Ji-hyun [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  12. A Framework for Similarity Search with Space-Time Tradeoffs using Locality Sensitive Filtering

    DEFF Research Database (Denmark)

    Christiani, Tobias Lybecker

    2017-01-01

    that satisfies certain locality-sensitivity properties, we can construct a dynamic data structure that solves the approximate near neighbor problem in $d$-dimensional space with query time $dn^{\\rho_q + o(1)}$, update time $dn^{\\rho_u + o(1)}$, and space usage $dn + n^{1 + \\rho_u + o(1)}$ where $n$ denotes......We present a framework for similarity search based on Locality-Sensitive Filtering~(LSF),generalizing the Indyk-Motwani (STOC 1998) Locality-Sensitive Hashing~(LSH) framework to support space-time tradeoffs. Given a family of filters, defined as a distribution over pairs of subsets of space...... the number of points in the data structure.The space-time tradeoff is tied to the tradeoff between query time and update time (insertions/deletions), controlled by the exponents $\\rho_q, \\rho_u$ that are determined by the filter family. \\\\ Locality-sensitive filtering was introduced by Becker et al. (SODA...

  13. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    to engage a monensin and bafilomycin sensitive degradation process in lysosomes. Together, our results provide novel data concerning the uptake, intracellular localization and transport of leptin.

  14. Construction of patient specific atlases from locally most similar anatomical pieces

    Science.gov (United States)

    Ramus, Liliane; Commowick, Olivier; Malandain, Grégoire

    2010-01-01

    Radiotherapy planning requires accurate delineations of the critical structures. To avoid manual contouring, atlas-based segmentation can be used to get automatic delineations. However, the results strongly depend on the chosen atlas, especially for the head and neck region where the anatomical variability is high. To address this problem, atlases adapted to the patient’s anatomy may allow for a better registration, and already showed an improvement in segmentation accuracy. However, building such atlases requires the definition of a criterion to select among a database the images that are the most similar to the patient. Moreover, the inter-expert variability of manual contouring may be high, and therefore bias the segmentation if selecting only one image for each region. To tackle these issues, we present an original method to design a piecewise most similar atlas. Given a query image, we propose an efficient criterion to select for each anatomical region the K most similar images among a database by considering local volume variations possibly induced by the tumor. Then, we present a new approach to combine the K images selected for each region into a piecewise most similar template. Our results obtained with 105 CT images of the head and neck show that our method reduces the over-segmentation seen with an average atlas while being robust to inter-expert manual segmentation variability. PMID:20879395

  15. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  16. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  17. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    Science.gov (United States)

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  18. Antibody- and TRIM21-dependent intracellular restriction of Salmonella enterica.

    Science.gov (United States)

    Rakebrandt, Nikolas; Lentes, Sabine; Neumann, Heinz; James, Leo C; Neumann-Staubitz, Petra

    2014-11-01

    TRIM21 ('tripartite motif-containing protein 21', Ro52) is a ubiquitously expressed cytosolic Fc receptor, which has a potent role in protective immunity against nonenveloped viruses. TRIM21 mediates intracellular neutralisation of antibody-coated viruses, a process called ADIN (antibody-dependent intracellular neutralisation). Our results reveal a similar mechanism to fight bacterial infections. TRIM21 is recruited to the intracellular pathogen Salmonella enterica in epithelial cells early in infection. TRIM21 does not bind directly to S. enterica, but to antibodies opsonising it. Most importantly, bacterial restriction is dependent on TRIM21 as well as on the opsonisation state of the bacteria. Finally, Salmonella and TRIM21 colocalise with the autophagosomal marker LC3, and intracellular defence is enhanced in starved cells suggesting an involvement of the autophagocytic pathway. Our data extend the protective role of TRIM21 from viruses to bacteria and thereby strengthening the general role of ADIN in cellular immunity. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Relations between perceptual and conceptual scope: how global versus local processing fits a focus on similarity versus dissimilarity.

    Science.gov (United States)

    Förster, Jens

    2009-02-01

    Nine studies showed a bidirectional link (a) between a global processing style and generation of similarities and (b) between a local processing style and generation of dissimilarities. In Experiments 1-4, participants were primed with global versus local perception styles and then asked to work on an allegedly unrelated generation task. Across materials, participants generated more similarities than dissimilarities after global priming, whereas for participants with local priming, the opposite was true. Experiments 5-6 demonstrated a bidirectional link whereby participants who were first instructed to search for similarities attended more to the gestalt of a stimulus than to its details, whereas the reverse was true for those who were initially instructed to search for dissimilarities. Because important psychological variables are correlated with processing styles, in Experiments 7-9, temporal distance, a promotion focus, and high power were predicted and shown to enhance the search for similarities, whereas temporal proximity, a prevention focus, and low power enhanced the search for dissimilarities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  20. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  1. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  2. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.

  3. Intracellular signaling by diffusion: can waves of hydrogen peroxide transmit intracellular information in plant cells?

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Flyvbjerg, Henrik; Møller, Ian Max

    2012-01-01

    of the physical and biochemical conditions in plant cells. As model system, we use a H(2)O(2) signal originating at the plasma membrane (PM) and spreading through the cytosol. We consider two maximally simple types of signals, isolated pulses and harmonic oscillations. First we consider the basic limits......Amplitude- and frequency-modulated waves of Ca(2+) ions transmit information inside cells. Reactive Oxygen Species (ROS), specifically hydrogen peroxide, have been proposed to have a similar role in plant cells. We consider the feasibility of such an intracellular communication system in view...

  4. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-photon uncaging.

    Directory of Open Access Journals (Sweden)

    Erwin Idoux

    Full Text Available The variations of the intracellular concentration of calcium ion ([Ca(2+](i are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+](i imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+](i changes is difficult to attain. The tools designed so far to modify [Ca(2+](i, even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+](i, in real time and with sub-cellular resolution, using two-photon Ca(2+ uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+](i variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+ channels, and the standardization of [Ca(2+](i patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.

  5. Changes in lymphocyte subsets due to local irradiation of a portion of the maxilla in mice. A study of intracellular cytokine detection

    International Nuclear Information System (INIS)

    Momoi, Yukiko; Shirakawa, Masayori; Satoh, Daigo; Yosue, Takashi

    2008-01-01

    It is critical for dentists who perform radiation therapy to comprehend immunity, because irradiation therapy may damage lymphocytes. After local irradiation to the maxillary area of mice, naive T cells and memory T cells in the spleen, and Th1/Th2 balance and Tc1/Tc2 balance were investigated by intracellular cytokine detection. Female BALB/c mice at 5 weeks of age were adopted for the experiments. In the irradiation groups, a portion of the maxilla was exposed to X-rays (2.0 Gy/min, 10 Gy). Then lymphocytes were analyzed using flow cytometry (anti-CD4, CD62L-selectin and CD45RB monoclonal antibodies). The percentage of Th1 cells, Th2 cells, Tc1 cells, and Tc2 cells and the ratio of Th1/Th2 and Tc1/Tc2 were analyzed by intracellular cytokine detection, and the findings were compared with those of non-irradiated groups. The observation was performed 1 day before irradiation and 1, 3, 7, and 14 days after irradiation. The absolute number of naive T cells was significantly lower 1 and 3 days after irradiation. However, the absolute number of memory T cells did not change significantly after irradiation. The percentage of Th1, Th2, Tc1, and Tc2 cells did not change significantly after irradiation, either. There were no significant differences in the Th1/Th2 ratio and Tc1/Tc2 ratio were observed after irradiation. It was suggested that after the local irradiation the absolute number of naive T cells decreased, that the effect on memory T cells was minimal, and that irradiation did not affect either the ratio of Th1/Th2 nor that of Tc1/Tc2. (author)

  6. Relations between perceptual and conceptual scope: how global versus local processing fits a focus on similarity versus dissimilarity

    NARCIS (Netherlands)

    Förster, J.

    2009-01-01

    Nine studies showed a bidirectional link (a) between a global processing style and generation of similarities and (b) between a local processing style and generation of dissimilarities. In Experiments 1-4, participants were primed with global versus local perception styles and then asked to work on

  7. Pathogenic mechanisms of intracellular bacteria.

    Science.gov (United States)

    Niller, Hans Helmut; Masa, Roland; Venkei, Annamária; Mészáros, Sándor; Minarovits, Janos

    2017-06-01

    We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.

  8. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy

    OpenAIRE

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-01-01

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the...

  9. Intracellular distribution of organic anions (131I-BSP and 3H-bilirubin)

    International Nuclear Information System (INIS)

    Kamisaka, Kazuaki; Iida, Yoshitaka; Azegami, Nobuhisa; Oda, Hiroyuki; Maezawa, Hidenori

    1981-01-01

    About 2 μ Ci of 131 I-BSP were injected intravenously into normal wister rats and the distributions of the isotope were determined in subcellular fractions of rat liver by the method of De Duve et al. Approximately 33% of the total activity was localized in nuclear fraction and cell debris, 28.5% was in supernatant fraction, 16.5% in microsome, 13% in lysosome and 8% in mitochondrial fraction. The subcellular distributions of radioactivity remained unchanged for 1.5 hours. Using autoradiographic method, the intracellular distribution of 3 H-bilirubin was examined by the extracted liver, 5 min, after intravenous injection of 3 H-bilirubin. 3 H-bilirubin was localized mainly in the cytoplasm and small amounts was already distributed on the canalicular membrane. It is suggested that these small molecules are mainly transported through cytoplasm and there is no specific pathway for the hepatic intracellular transport system. (author)

  10. EKF-GPR-Based Fingerprint Renovation for Subset-Based Indoor Localization with Adjusted Cosine Similarity.

    Science.gov (United States)

    Yang, Junhua; Li, Yong; Cheng, Wei; Liu, Yang; Liu, Chenxi

    2018-01-22

    Received Signal Strength Indicator (RSSI) localization using fingerprint has become a prevailing approach for indoor localization. However, the fingerprint-collecting work is repetitive and time-consuming. After the original fingerprint radio map is built, it is laborious to upgrade the radio map. In this paper, we describe a Fingerprint Renovation System (FRS) based on crowdsourcing, which avoids the use of manual labour to obtain the up-to-date fingerprint status. Extended Kalman Filter (EKF) and Gaussian Process Regression (GPR) in FRS are combined to calculate the current state based on the original fingerprinting radio map. In this system, a method of subset acquisition also makes an immediate impression to reduce the huge computation caused by too many reference points (RPs). Meanwhile, adjusted cosine similarity (ACS) is employed in the online phase to solve the issue of outliers produced by cosine similarity. Both experiments and analytical simulation in a real Wireless Fidelity (Wi-Fi) environment indicate the usefulness of our system to significant performance improvements. The results show that FRS improves the accuracy by 19.6% in the surveyed area compared to the radio map un-renovated. Moreover, the proposed subset algorithm can bring less computation.

  11. EKF–GPR-Based Fingerprint Renovation for Subset-Based Indoor Localization with Adjusted Cosine Similarity

    Science.gov (United States)

    Yang, Junhua; Li, Yong; Cheng, Wei; Liu, Yang; Liu, Chenxi

    2018-01-01

    Received Signal Strength Indicator (RSSI) localization using fingerprint has become a prevailing approach for indoor localization. However, the fingerprint-collecting work is repetitive and time-consuming. After the original fingerprint radio map is built, it is laborious to upgrade the radio map. In this paper, we describe a Fingerprint Renovation System (FRS) based on crowdsourcing, which avoids the use of manual labour to obtain the up-to-date fingerprint status. Extended Kalman Filter (EKF) and Gaussian Process Regression (GPR) in FRS are combined to calculate the current state based on the original fingerprinting radio map. In this system, a method of subset acquisition also makes an immediate impression to reduce the huge computation caused by too many reference points (RPs). Meanwhile, adjusted cosine similarity (ACS) is employed in the online phase to solve the issue of outliers produced by cosine similarity. Both experiments and analytical simulation in a real Wireless Fidelity (Wi-Fi) environment indicate the usefulness of our system to significant performance improvements. The results show that FRS improves the accuracy by 19.6% in the surveyed area compared to the radio map un-renovated. Moreover, the proposed subset algorithm can bring less computation. PMID:29361805

  12. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    Science.gov (United States)

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Lyngsø, Rune B.; Stormo, Gary D.

    2005-01-01

    detect two genes with low sequence similarity, where the genes are part of a larger genomic region. Results: Here we present such an approach for pairwise local alignment which is based on FILDALIGN and the Sankoff algorithm for simultaneous structural alignment of multiple sequences. We include...... the ability to conduct mutual scans of two sequences of arbitrary length while searching for common local structural motifs of some maximum length. This drastically reduces the complexity of the algorithm. The scoring scheme includes structural parameters corresponding to those available for free energy....... The structure prediction performance for a family is typically around 0.7 using Matthews correlation coefficient. In case (2), the algorithm is successful at locating RNA families with an average sensitivity of 0.8 and a positive predictive value of 0.9 using a BLAST-like hit selection scheme. Availability...

  14. Heavy metals toxicity after acute exposure of cultured renal cells. Intracellular accumulation and repartition

    International Nuclear Information System (INIS)

    Khodja, Hicham; Carriere, Marie; Avoscan, Laure; Gouget, Barbara

    2005-01-01

    Lead (Pb), cadmium (Cd) and uranium (U) present no known biological function but are toxic in various concentration ranges. Pb and Cd lead generally to nephrotoxicity consisting in proximal renal tubular dysfunction and accumulation while U has been reported to induce chemical kidney toxicity, functional and histological damages being as well mainly observed in proximal tubule cells. This work address the question of Cd, Pb, and U cytotoxicity, intracellular accumulation and repartition after acute intoxication of renal proximal tubule epithelial cells. After cells exposure to different concentrations of metals for various times, morphological changes were observed and intracellular concentrations and distributions of toxic metals were specified by PIXE coupled to RBS. Cell viability, measured by biochemical tests, was used as toxicity indicator. A direct correlation between cytotoxicity and intracellular accumulation in renal epithelial cells have been established. Finally, intracellular Pb and U localizations were detected while Cd was found to be uniformly distributed in renal cells. (author)

  15. Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

    Directory of Open Access Journals (Sweden)

    Audrey Bernut

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeru-ginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosaMgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.

  16. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells.

    Science.gov (United States)

    Peng, Tao; Hang, Howard C

    2016-11-02

    Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.

  17. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...only allow entirely new investigations into the replication of these viruses, but also how this method can be applied to any virus with a known...localization, TurboFISH, hemorrhagic fever virus replication 1. Introduction RNA FISH was developed as a method to visualize cellular RNA by binding a

  18. Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.

    Science.gov (United States)

    Kim, Suk; Kurokawa, Daisuke; Watanabe, Kenta; Makino, Sou-Ichi; Shirahata, Toshikazu; Watarai, Masahisa

    2004-05-15

    Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and showed a lower rate of intracellular replication than that of wild-type strain in macrophages. Addition of nicotinic acid, but not nicotinamide, into medium supported intracellular replication of pncA mutant in HeLa cells and macrophages. The pncA mutant was not co-localizing with either late endosomes or lysosomes. The B. abortus virB4 mutant was completely cleared from the spleens of mice after 4 weeks, while the pncA mutant showed a 1.5-log reduction of the number of bacteria isolated from spleens after 10 weeks. Although pncA mutant showed reduced virulence in mice and defective intracellular replication, its ability to confer protection against the virulent B. abortus strain 544 was fully retained. These results suggest that PncA does not contribute to intracellular trafficking of B. abortus, but contributes to utilization of nutrients required for intracellular growth. Our results indicate that detailed characterizations of the pncA mutant may help the improvement of currently available live vaccines. Copyright 2004 Federation of European Microbiological Societies

  19. Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus

    Science.gov (United States)

    García Fernández, Lucía; DelVecchio, Vito G.; Briones, Gabriel

    2013-01-01

    Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells. PMID:23230297

  20. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells......, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped...... in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods....

  1. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy); Caligo, Maria Adelaide [Section of Genetic Oncology, University Hospital and University of Pisa, via Roma 57, 56125 Pisa (Italy); Galli, Alvaro, E-mail: alvaro.galli@ifc.cnr.it [Yeast Genetics and Genomics, Institute of Clinical Physiology, National Council of Research (CNR), via Moruzzi 1, 56122 Pisa (Italy)

    2015-04-15

    Highlights: • The human poly (ADP-ribose) polymerase 1 (PARP-1) gene affects growth and UV-induced homologous recombination in yeast. • PARP-1 chemical inhibition impacts yeast growth and UV-induced recombination. • A genome-wide screen identifies 99 yeast genes that suppress the growth defect inferred by PARP-1. • Bioinformatics analysis identifies 41 human orthologues that may have a role in PARP-1 intracellular localization. • The findings suggest that PARP-1 nuclear localization may affect the response to PARP inhibitors in cancer therapy. - Abstract: The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the

  2. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    Science.gov (United States)

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  3. Intracellular trafficking of a pH-responsive drug metal complex.

    Science.gov (United States)

    Kheirolomoom, Azadeh; Ingham, Elizabeth S; Commisso, Joel; Abushaban, Neveen; Ferrara, Katherine W

    2016-12-10

    We previously developed a pH-responsive copper-doxorubicin (CuDox) cargo in lysolipid-based temperature-sensitive liposomes (LTSLs). The CuDox complex is released from the particle by elevated temperature; however, full release of doxorubicin from CuDox requires a reduced pH, such as that expected in lysosomes. The primary goal of this study is to evaluate the cellular uptake and intracellular trafficking of the drug-metal complex in comparison with intact liposomes and free drug. We found that the CuDox complex was efficiently internalized by mammary carcinoma cells after release from LTSLs. Intracellular doxorubicin and copper were 6-fold and 5-fold greater, respectively, after a 0.5h incubation with the released CuDox complex, as compared to incubation with intact liposomes containing the complex. Total cellular doxorubicin fluorescence was similar following CuDox and free doxorubicin incubation. Imaging and mass spectrometry assays indicated that the CuDox complex was initially internalized intact but breaks down over time within cells, with intracellular copper decreasing more rapidly than intracellular doxorubicin. Doxorubicin fluorescence was reduced when complexed with copper, and nuclear fluorescence was reduced when cells were incubated with the CuDox complex as compared with free doxorubicin. Therapeutic efficacy, which typically results from intercalation of doxorubicin with DNA, was equivalent for the CuDox complex and free doxorubicin and was superior to that of liposomal doxorubicin formulations. Taken together, the results suggest that quenched CuDox reaches the nucleus and remains efficacious. In order to design protocols for the use of these temperature-sensitive particles in cancer treatment, the timing of hyperthermia relative to drug administration must be examined. When cells were heated to 42°C prior to the addition of free doxorubicin, nuclear drug accumulation increased by 1.8-fold in cancer cells after 5h, and cytotoxicity increased 1

  4. START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology

    International Nuclear Information System (INIS)

    Kawai, Katsuhisa; Kiyota, Minoru; Seike, Junichi; Deki, Yuko; Yagisawa, Hitoshi

    2007-01-01

    In the human genome there are three genes encoding RhoGAPs that contain the START (steroidogenic acute regulatory protein (StAR)-related lipid transfer)-domain. START-GAP3/DLC3 is a tumor suppressor gene similar to two other human START-GAPs known as DLC1 or DLC2. Although expression of START-GAP3/DLC3 inhibits the proliferation of cancer cells, its molecular function is not well understood. In this study we carried out biochemical characterization of START-GAP3/DLC3, and explored the effects of its expression on cell morphology and intracellular localization. We found that START-GAP3/DLC3 serves as a stimulator of PLCδ1 and as a GAP for both RhoA and Cdc42 in vitro. Moreover, we found that the GAP activity is responsible for morphological changes. The intracellular localization of endogenous START-GAP3/DLC3 was explored by immunocytochemistry and was revealed in focal adhesions. These results indicate that START-GAP3/DLC3 has characteristics similar to other START-GAPs and the START-GAP family seems to share common characteristics

  5. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates.

    Science.gov (United States)

    Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu

    2011-01-01

    The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.

  7. Intracellular Hg(0) Oxidation in Desulfovibrio desulfuricans ND132.

    Science.gov (United States)

    Wang, Yuwei; Schaefer, Jeffra K; Mishra, Bhoopesh; Yee, Nathan

    2016-10-03

    The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of D. desulfuricans ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in D. desulfuricans ND132 is an intracellular process that occurs by reaction with thiol-containing molecules.

  8. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karpus, Olga N.; Hsiao, Cheng-Chih; Kort, Hanneke de; Tak, Paul P.; Hamann, Jörg, E-mail: j.hamann@amc.uva.nl

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. - Highlights: • Intracellular poly(I:C) and 3pRNA evoke immune responses in FLS. • Only intracellular delivery of poly(I:C) induces FLS apoptosis. • FLS do not require MDA5 for their response to intracellular poly(I:C). • FLS respond to intracellular poly(I:C) independent of IPS and STING. • An unknown intracellular sensor recognizes linear dsRNA in FLS.

  9. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Science.gov (United States)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  10. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    Energy Technology Data Exchange (ETDEWEB)

    Volland, Stefanie, E-mail: Stefanie.Volland@stud.sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria); Luetz, Cornelius, E-mail: cornelius.luetz@uibk.ac.at [Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck (Austria); Michalke, Bernhard, E-mail: bernhard.michalke@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, German Research Centre for Environmental Health, Institute of Ecological Chemistry, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Luetz-Meindl, Ursula, E-mail: ursula.luetz-meindl@sbg.ac.at [Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstr 34, 5020 Salzburg (Austria)

    2012-03-15

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 {mu}M Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron-oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  11. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias

    International Nuclear Information System (INIS)

    Volland, Stefanie; Lütz, Cornelius; Michalke, Bernhard; Lütz-Meindl, Ursula

    2012-01-01

    Various contaminants like metals and heavy metals are constantly released into the environment by anthropogenic activities. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. Chromium can cause harm to cell metabolism and development, when it is taken up by plants instead of necessary micronutrients such as for example iron. The uptake of Cr VI into plant cells has been reported to be an active process via carriers of essential anions, while the cation Cr III seems to be taken up inactively. Micrasterias denticulata, an unicellular green alga of the family Desmidiaceae is a well-studied cell biological model organism. Cr III and VI had inhibiting effects on its cell development, while cell division rates were only impaired by Cr VI. Transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization, condensed cytoplasm and dark precipitations in the cell wall after 3 weeks of Cr VI treatment. Electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) were applied to measure intracellular chromium distribution. Chromium was only detected after 3 weeks of 10 μM Cr VI treatment in electron dense precipitations found in bag-like structures along the inner side of the cell walls together with iron and elevated levels of oxygen, pointing toward an accumulation respectively extrusion of chromium in form of an iron–oxygen compound. Atomic emission spectroscopy (EMS) revealed that Micrasterias cells are able to accumulate considerable amounts of chromium and iron. During chromium treatment the Cr:Fe ratio shifted in favor of chromium, which implied that chromium may be taken up instead of iron. Significant and rapid increase of ROS production within the first 5 min of treatment confirms an active Cr VI uptake. SOD and CAT activity after Cr VI treatment did not show a response, while the glutathione pool determined by immuno-TEM decreased

  12. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  13. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Science.gov (United States)

    Calle-Guisado, Violeta; de Llera, Ana Hurtado; Martin-Hidalgo, David; Mijares, Jose; Gil, Maria C; Alvarez, Ignacio S; Bragado, Maria J; Garcia-Marin, Luis J

    2017-01-01

    AMP-activated kinase (AMPK), a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work's aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%–80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS) in the presence or absence of the AMPK inhibitor compound C (CC). AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied. PMID:27678462

  14. AMP-activated kinase in human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility

    Directory of Open Access Journals (Sweden)

    Violeta Calle-Guisado

    2017-01-01

    Full Text Available AMP-activated kinase (AMPK, a protein that regulates energy balance and metabolism, has recently been identified in boar spermatozoa where regulates key functional sperm processes essential for fertilization. This work′s aims are AMPK identification, intracellular localization, and their role in human spermatozoa function. Semen was obtained from healthy human donors. Sperm AMPK and phospho-Thr172-AMPK were analyzed by Western blotting and indirect immunofluorescence. High- and low-quality sperm populations were separated by a 40%-80% density gradient. Human spermatozoa motility was evaluated by an Integrated Semen Analysis System (ISAS in the presence or absence of the AMPK inhibitor compound C (CC. AMPK is localized along the human spermatozoa, at the entire acrosome, midpiece and tail with variable intensity, whereas its active form, phospho-Thr172-AMPK, shows a prominent staining at the acrosome and sperm tail with a weaker staining in the midpiece and the postacrosomal region. Interestingly, spermatozoa bearing an excess residual cytoplasm show strong AMPK staining in this subcellular compartment. Both AMPK and phospho-Thr172-AMPK human spermatozoa contents exhibit important individual variations. Moreover, active AMPK is predominant in the high motility sperm population, where shows a stronger intensity compared with the low motility sperm population. Inhibition of AMPK activity in human spermatozoa by CC treatment leads to a significant reduction in any sperm motility parameter analyzed: percent of motile sperm, sperm velocities, progressivity, and other motility coefficients. This work identifies and points out AMPK as a new molecular mechanism involved in human spermatozoa motility. Further AMPK implications in the clinical efficiency of assisted reproduction and in other reproductive areas need to be studied.

  15. Arylthiazole antibiotics targeting intracellular methicillin-resistant Staphylococcus aureus (MRSA) that interfere with bacterial cell wall synthesis.

    Science.gov (United States)

    Eid, Islam; Elsebaei, Mohamed M; Mohammad, Haroon; Hagras, Mohamed; Peters, Christine E; Hegazy, Youssef A; Cooper, Bruce; Pogliano, Joe; Pogliano, Kit; Abulkhair, Hamada S; Seleem, Mohamed N; Mayhoub, Abdelrahman S

    2017-10-20

    The promising antibacterial potency of arylthiazole antibiotics is offset by their limited activity against intracellular bacteria (namely methicillin-resistant Staphylococcus aureus (MRSA)), similar to many clinically-approved antibiotics. The failure to target these hidden pathogens is due to the compounds' lack of proper characteristics to accumulate intracellularly. Fine tuning of the size and polar-surface-area of the linking heteroaromatic ring provided a new series of 5-thiazolylarylthiazoles with balanced properties that allow them to sufficiently cross and accumulate inside macrophages infected with MRSA. The most promising compound 4i exhibited rapid bactericidal activity, good metabolic stability and produced over 80% reduction of intracellular MRSA in infected macrophages. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    Science.gov (United States)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  17. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales.

    Directory of Open Access Journals (Sweden)

    Lucía eLopez

    2012-09-01

    Full Text Available Many natural phenomena display "self-organized criticality'' (SOC. This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium Ca2+ signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local or propagate throughout the cell (global. Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of self-organized criticality. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals ("puffs'' observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not.

  18. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.

    Science.gov (United States)

    Uusitalo, Larissa M; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.

  19. Functional characterization of the protein C A267T mutation: evidence for impaired secretion due to defective intracellular transport

    Directory of Open Access Journals (Sweden)

    Tjeldhorn Lena

    2010-09-01

    Full Text Available Abstract Background Activated protein C (PC is a serine protease that regulates blood coagulation by inactivating coagulation factors Va and VIIIa. PC deficiency is an autosomally inherited disorder associated with a high risk of recurrent venous thrombosis. The aim of the study was to explore the mechanisms responsible for severe PC deficiency in a patient with the protein C A267T mutation by in-vitro expression studies. Results Huh7 and CHO-K1 cells were transiently transfected with expression vectors containing wild-type (WT PC and mutated PC (A267T PC cDNAs. PC mRNA levels were assessed by qRT-PCR and the PC protein levels were measured by ELISA. The mRNA levels of WT PC and A267T PC were similar, while the intracellular protein level of A267T PC was moderately decreased compared to WT PC. The secretion of A267T PC into the medium was severely impaired. No differences in molecular weights were observed between WT and A267T PC before and after treatment with endo-β-N-acetylglucosaminidase. Proteasomal and lysosomal degradations were examined using lactacystin and bafilomycin, respectively, and revealed that A267T PC was slightly more susceptible for proteasomal degradation than WT PC. Intracellular co-localization analysis indicated that A267T PC was mainly located in the endoplasmic reticulum (ER, whereas WT PC was observed in both ER and Golgi. Conclusions In contrast to what has been reported for other PC mutants, intracellular degradation of A267T PC was not the main/dominant mechanism underlying the reduced intracellular and secretion levels of PC. Our results indicate that the A267T mutation most likely caused misfolding of PC, which might lead to increased retention of the mutated PC in ER.

  20. Long-term inhibition of cyclophilin D results in intracellular translocation of calcein AM from mitochondria to lysosomes.

    Science.gov (United States)

    Shinohe, Daisuke; Kobayashi, Asuka; Gotoh, Marina; Tanaka, Kotaro; Ohta, Yoshihiro

    2017-01-01

    Cyclophilin D is a peptidyl-prolyl cis-trans isomerase localized in the mitochondrial matrix. Although its effects on mitochondrial characteristics have been well studied, its relation to the uptake of molecules by mitochondria remains unknown. Here, we demonstrated the effects of cyclophilin D on the intracellular translocation of calcein AM. Following addition of calcein AM to control cells or cells overexpressing wild-type cyclophilin D, calcein fluorescence was observed in mitochondria. However, long-term inhibition of cyclophilin D in these cells altered the localization of calcein fluorescence from mitochondria to lysosomes without changing mitochondrial esterase activity. In addition, depletion of glucose from the medium recovered calcein localization from lysosomes to mitochondria. This is the first demonstration of the effects of cyclophilin D on the intracellular translocation of molecules other than proteins and suggests that cyclophilin D may modify mitochondrial features by inducing the translocation of molecules to the mitochondria through the mechanism associated with cellular energy metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  2. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout

    Directory of Open Access Journals (Sweden)

    Birkedal Rikke

    2009-12-01

    Full Text Available Abstract Background Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss, which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20°C in the absence and presence of creatine. Results Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. Conclusions The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that

  3. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  4. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  5. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  6. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E

    1990-01-01

    The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  7. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Directory of Open Access Journals (Sweden)

    Yves Briers

    Full Text Available Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  8. Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria.

    Science.gov (United States)

    Briers, Yves; Staubli, Titu; Schmid, Markus C; Wagner, Michael; Schuppler, Markus; Loessner, Martin J

    2012-01-01

    Cell wall-deficient bacteria, or L-forms, represent an extreme example of bacterial plasticity. Stable L-forms can multiply and propagate indefinitely in the absence of a cell wall. Data presented here are consistent with the model that intracellular vesicles in Listeria monocytogenes L-form cells represent the actual viable reproductive elements. First, small intracellular vesicles are formed along the mother cell cytoplasmic membrane, originating from local phospholipid accumulation. During growth, daughter vesicles incorporate a small volume of the cellular cytoplasm, and accumulate within volume-expanding mother cells. Confocal Raman microspectroscopy demonstrated the presence of nucleic acids and proteins in all intracellular vesicles, but only a fraction of which reveals metabolic activity. Following collapse of the mother cell and release of the daughter vesicles, they can establish their own membrane potential required for respiratory and metabolic processes. Premature depolarization of the surrounding membrane promotes activation of daughter cell metabolism prior to release. Based on genome resequencing of L-forms and comparison to the parental strain, we found no evidence for predisposing mutations that might be required for L-form transition. Further investigations revealed that propagation by intracellular budding not only occurs in Listeria species, but also in L-form cells generated from different Enterococcus species. From a more general viewpoint, this type of multiplication mechanism seems reminiscent of the physicochemical self-reproducing properties of abiotic lipid vesicles used to study the primordial reproduction pathways of putative prokaryotic precursor cells.

  9. Localization Study of Co-Phthalocyanines in Cells by Raman Micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S.Y.; Arzhantsev, S.Y.; Chikishev, A.Y.; Chikishev, A.Y.; Koroteev, N.I.; Greve, Jan; Otto, Cornelis; Sijtsema, N.M.

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  10. Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S Y; Chikishev, A Y; Koroteev, N I; Greve, J; Otto, C; Sijtsema, N M

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  11. Localization of SERBP1 in stress granules and nucleoli.

    Science.gov (United States)

    Lee, Yu-Jen; Wei, Hung-Ming; Chen, Ling-Yun; Li, Chuan

    2014-01-01

    SERPINE1 mRNA-binding protein 1 (SERBP1) is an arginine-methylated RNA-binding protein whose modification affects protein interaction and intracellular localization. In the present study, we show that, under normal growth conditions without stress, SERBP1 interacts with arginine-methylated and stress granule-associated proteins such as heterogeneous nuclear ribonucleoprotein A1, fragile X mental retardation protein and fragile X mental retardation syndrome-related protein 1 in an RNA-dependent manner. We also show that, after arsenite treatment, a proportion of full-length SERBP1 protein co-localizes with the typical stress granule marker T-cell intracellular antigen-1 in the cytoplasmic stress granules. Truncated SERBP1 with an N-terminal, central RG or C-terminal deletion, or single-domain segments comprising the N-terminal, central or C-terminal region, were recruited to stress granules upon arsenite treatment but with reduced efficiency. In addition, upon arsenite treatment, the localization of SERBP1 changed from a diffuse cytoplasmic localization to nuclear-dominant (concentrated in the nucleolus) A similar distribution was observed when cells were treated with the methylation inhibitor adenosine periodate, and was also detected for N- or C-terminal domain deletions and all three single-domain fragments even without stress induction. We further demonstrate that adenosine periodate treatment delays the association/dissociation of SERBP1 with stress granules. Hypomethylation retains SERBP1 in the nucleus/nucleolus regardless of arsenite treatment. Our study indicates that arginine methylation is correlated with recruitment of SERBP to stress granules and nucleoli and its retention therein. To our knowledge, this is the first report of an RNA-binding protein that is shifted simultaneously to cytoplasmic stress granules and nucleoli, two ribonucleoprotein-enriched subcellular compartments, upon stress. © 2013 FEBS.

  12. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  13. Role of UBIAD1 in Intracellular Cholesterol Metabolism and Vascular Cell Calcification.

    Directory of Open Access Journals (Sweden)

    Sha Liu

    Full Text Available Vascular calcification is an important risk factor associated with mortality among patients with chronic kidney disease. Intracellular cholesterol metabolism is involved in the process of vascular cell calcification. In this study, we investigated the role of UbiA prenyltransferase domain containing 1 (UBIAD1 in intracellular cholesterol metabolism and vascular cell calcification, and identified its subcellular location. Primary human umbilical vein smooth muscle cells (HUVSMCs were incubated with either growth medium (1.4 mmol/L Pi or calcification medium (CM (3.0 mmol/L Pi. Under treatment with CM, HUVSMCs were further incubated with exogenous cholesterol, or menaquinone-4, a product of UBIAD1. The plasmid and small interfering RNA were transfected in HUVSMCs to alter the expression of UBIAD1. Matrix calcium quantitation, alkaline phosphatase activity, intracellular cholesterol level and menaquinone-4 level were measured. The expression of several genes involved in cholesterol metabolism were analyzed. Using an anti-UBIAD1 antibody, an endoplasmic reticulum marker and a Golgi marker, the subcellular location of UBIAD1 in HUVSMCs was analyzed. CM increased matrix calcium, alkaline phosphatase activity and intracellular cholesterol level, and reduced UBIAD1 expression and menaquinone-4 level. Addition of cholesterol contributed to increased matrix calcification and alkaline phosphatase activity in a dose-dependent manner. Elevated expression of UBIAD1 or menaquinone-4 in HUVSMCs treated with CM significantly reduced intracellular cholesterol level, matrix calcification and alkaline phosphatase activity, but increased menaquinone-4 level. Elevated expression of UBIAD1 or menaquinone-4 reduced the gene expression of sterol regulatory element-binding protein-2, and increased gene expression of ATP binding cassette transporters A1, which are in charge of cholesterol synthesis and efflux. UBIAD1 co-localized with the endoplasmic reticulum marker and

  14. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  15. Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication

    International Nuclear Information System (INIS)

    Kadyshevich, E.A.; Ostrovskii, V.E.

    2007-01-01

    A DNA replication, mitosis, and binary fission hydrate hypothesis (MRH hypothesis) allowing non-trivial explanations for the physicochemical mechanisms of some intracellular processes is proposed. The hypothesis has a thermodynamic basis and is initiated by original experimental calorimetric and kinetic studies of the behavior of functional organic polymer and monomer substances in highly concentrated aqueous solutions. Experimental data demonstrating the occurrence of a short-range ordering in concentrated aqueous solutions of such substances are included. Hypothetical simple non-enzymatic unified mechanisms for the natural processes of DNA local unwinding preceding the start of duplication, DNA replication, formation and disappearance of the protein bonds between sister chromatids in the centromere region of eukaryotic DNA and in the centromere-like region of prokaryotic DNA, moving of daughter chromosomes apart to the opposite sides of cells in late anaphase, and formation of the nuclear envelopes in telophase and intracellular membranes between the newly formed nuclei in cytokinesis are formulated. The nature of a number of other intracellular phenomena is discussed

  16. An intracellular interaction network regulates conformational transitions in the dopamine transporter

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Shi, Lei; Løland, Claus Juul

    2008-01-01

    Neurotransmitter:sodium symporters (NSS)(1) mediate sodium-dependent reuptake of neurotransmitters from the synaptic cleft and are targets for many psychoactive drugs. The crystal structure of the prokaryotic NSS protein, LeuT, was recently solved at high resolution; however, the mechanistic...... and the intracellular milieu. The mechanism that emerges from these findings may be unique to the NSS family, where the local disruption of ionic interactions modulates the transition of the transporter between the outward- and inward-facing conformations....

  17. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Directory of Open Access Journals (Sweden)

    Li Gong-Hua

    2010-08-01

    Full Text Available Abstract Background The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB, thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm, has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods. Results The evaluation of CMASA shows that the CMASA is highly accurate (0.96, sensitive (0.86, and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function and SPASM (a local structure alignment method; and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods. The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA. Conclusions The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the

  18. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    Energy Technology Data Exchange (ETDEWEB)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Fujita, Norihisa, E-mail: nori@ph.ritsumei.ac.jp [Laboratory of Pharmacoinformatics, Graduate School of Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); School of Pharmacy, Ristumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delay of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.

  19. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania

    2014-04-09

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  20. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    KAUST Repository

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-01-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment-where particles are abundantly internalized-is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. The Royal Society of Chemistry 2014.

  1. Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2013-06-01

    Full Text Available Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI and sum of squared differences (SSD cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal image registration method by combining Weber local descriptor (WLD based similarity metrics with the normalized mutual information (NMI using the diffeomorphic free-form deformation (FFD model. The first phase aims at recovering the large deformation component using the WLD based non-local SSD (wldNSSD or weighted structural similarity (wldWSSIM. Based on the output of the former phase, the second phase is focused on getting accurate transformation parameters related to the small deformation using the NMI. Extensive experiments on T1, T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or wldWSSIM-NMI method outperforms the registration methods based on the NMI, the conditional mutual information (CMI, the SSD on entropy images (ESSD and the ESSD-NMI in terms of registration accuracy and computation efficiency.

  2. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  3. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  4. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  5. Intracellular distribution of histone mRNAs in human fibroblasts studied by in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Singer, R.H.; Villnave, C.A.; Stein, J.L.; Stein, G.S.

    1988-01-01

    We have used in situ hybridization to study the intracellular distribution of mRNAs for cell cycle-dependent core and H1 histone proteins in human WI-38 fibroblasts. Because histones are abundant nuclear proteins and histone mRNA expression is tightly coupled to DNA synthesis, it was of interest to determine whether histone mRNAs are localized near the nucleus. Cells were hybridized with tritiated DNA probes specific for either histone H1, histone H4, actin, or poly(A)+ mRNA and were processed for autoradiography. In exponentially growing cultures, the fraction of histone mRNA-positive cells correlated well with the fraction of cells in S phase and was eliminated by hydroxyurea inhibition of DNA synthesis. Within individual cells the label for histone mRNA was widely distributed throughout the cytoplasm and did not appear to be more heavily concentrated near the nucleus. However, histone mRNA appeared to exhibit patchy, nonhomogeneous localization, and a quantitative evaluation confirmed that grain distributions were not as uniform as they were after hybridizations to poly(A)+ mRNA. Actin mRNA in WI-38 cells was also widely distributed throughout the cytoplasm but differed from histone mRNA in that label for actin mRNA was frequently most dense at the outermost region of narrow cell extensions. The localization of actin mRNA was less pronounced but qualitatively very similar to that previously described for chicken embryonic myoblasts and fibroblasts. We conclude that localization of histones in WI-38 cells is not facilitated by localization of histone protein synthesis near the nucleus and that there are subtle but discrete and potentially functional differences in the distributions of histone, actin, and poly(A)+ mRNAs

  6. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  7. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  8. Modulating intracellular acidification by regulating the incubation time of proton caged compounds.

    Science.gov (United States)

    Carbone, Marilena; Sabbatella, Gianfranco; Antonaroli, Simonetta; Orlando, Viviana; Biagioni, Stefano; Nucara, Alessandro

    2016-09-01

    A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.

  9. Mechanism of H. pylori intracellular entry: an in vitro study

    Directory of Open Access Journals (Sweden)

    Hui eLiu

    2012-03-01

    Full Text Available The majority of H. pylori reside on gastric epithelial cell surfaces and in the overlying mucus, but a small fraction of H. pylori enter host epithelial and immune cells. To explore the role of the nudA invasin in host cell entry, a ΔnudA deletion derivative of strain J99 was constructed and transformants were verified by PCR and by fluorescence in situ hybridization. AGS cells were inoculated with either wild type (WT strain J99 or its ΔnudA mutant to determine the fraction of bacteria that were bound to the cells and inside these cells using the gentamicin protection assay. We observed no significant difference between either the density of H. pylori bound to AGS cell membranes or the density of intracellular H. pylori. To further explore this finding, separate chambers of each culture were fixed in glutaraldehyde for transmission electron microscopy (TEM and immunogold TEM. This addition to the classical gentamicin assay demonstrated that there were significantly more intracellular, and fewer membrane-bound, H. pylori in WT-infected AGS cells than in ΔnudA allele infected cells. Thus, the sum of intracellular and membrane-bound H. pylori was similar in the two groups. Since no other similar TEM study has been performed, it is at present unknown whether our observations can be reproduced by others Taken together however, our observations suggest that the classical gentamicin protection assay is not sufficiently sensitive to analyze H. pylori cell entry and that the addition of TEM to the test demonstrate that nudA plays a role in H. pylori entry into AGS cells in vitro. In addition, deletion of the invasin gene appears to limit H. pylori to the AGS cell surface, where it may be partly protected against gentamicin. In contrast, this specific environment may render H. pylori more vulnerable to host defense and therapeutic intervention, and less prone to trigger normal immune, carcinogenic, and other developmental response pathways.

  10. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    Science.gov (United States)

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    Human sirtuin 2 (SIRT2) is an NAD + -dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a

  11. Self-similar cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Chao, W Z [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1981-07-01

    The kinematics and dynamics of self-similar cosmological models are discussed. The degrees of freedom of the solutions of Einstein's equations for different types of models are listed. The relation between kinematic quantities and the classifications of the self-similarity group is examined. All dust local rotational symmetry models have been found.

  12. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    Science.gov (United States)

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  13. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  14. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  15. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    Science.gov (United States)

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  16. Intracellular calcium mobilization in human lymphocytes in the presence of synthetic IgG Fc peptides

    International Nuclear Information System (INIS)

    Plummer, J.M.; Panahi, Y.P.; McClurg, M.R.; Hahn, G.S.; Naemura, J.R.

    1986-01-01

    Certain synthetic peptides derived from the Fc region of human IgG can suppress the mixed lymphocyte response. These peptides were tested for the ability to induce intracellular calcium mobilization in human lymphocytes using fura-2/calcium fluorescence. T cells were isolated by rosetting and were > 90% OKT3 positive. Lymphocytes were incubated with the acetoxymethyl ester of fura-2 (10 μM) for 60 minutes at 37 0 C. Fluorescence intensity changes at 505 nm were monitored at an excitation lambda of 340 nm. Fura-2 was not cytotoxic compared to quin-2 since fura-2 loaded mononuclear cells incorporated 3 H-thymidine when stimulated by PHA, succinyl Con A, PWM or LPS-STM whereas quin-2 loaded cells showed a dose dependent inhibition of proliferation. Those synthetic peptides (5 to 400 μg/ml) that suppressed the MLR induced a dose dependent increase in intracellular calcium in mononuclear cells, lymphocytes, non-T cells and T cells. The fura-2 calcium fluorescence time course response was similar for peptide, PHA and succinyl Con A. These results suggest that these immunoregulatory peptides suppress 3 H-thymidine incorporation at a point after intracellular calcium mobilization and that fura-2 has advantages over quin-2 in measuring intracellular calcium levels in lymphocytes

  17. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  18. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  19. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Studying biomolecule localization by engineering bacterial cell wall curvature.

    Directory of Open Access Journals (Sweden)

    Lars D Renner

    Full Text Available In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria.

  1. Specific intracellular signal transduction pathways downstream of CSF-1 receptors: their relationship to breast cancer local recurrence and distant relapse in vivo. Potential targets for the development of new, specific anti-breast cancer therapies to improve local control and block metastatic spread?

    International Nuclear Information System (INIS)

    Kacinski, Barry M.; Sapi, Eva; Flick, Maryann B.; Turner, Bruce; Perrotta, Peter; Maher, M. Grey; Carter, Darryl; Haffy, Bruce

    1997-01-01

    analogues such as Matrigel. Agents which pharmacologically mimic a TYR-721 →PHE mutation by interfering with the activation of elements of intracellular signal transduction downstream of this tyrosine (PI-3 kinase. pp70-S6kinase) produced similar effects. In contrast, a TYR-809→PHE mutation was without effect on anchorage independent growth or the generation of pulmonary metastases but did completely abolish protease production and rendered the transfected cells unable to invade basement membrane analogues. In a parallel line of research, we employed antibodies which recognized CSF-1R and a novel antibody we prepared to recognize CSF-1R only when phosphorylated on TYR-721 in a study of 80 T1 and T2 breast cancer patients treated with tylectomy and primary radiation therapy. Strong staining with the generic anti-CSF-1R antibody correlated strongly with local relapse (P values <.03) in this patient cohort. Staining with the antibody specific for CSF-1R phosphorylated at TYR-721 was not associated with local relapse but did correlate with the development of distant metastases in this cohort of patients, particularly in axillary node-negative patients (P < .006). Conclusion: In summary, our observations demonstrate that CSF-1R activation and phosphorylation at specific tyrosines regulates invasiveness, anchorage, independent growth and tumorigenicity in vitro and in animal models and correlates with metastatic relapse in vivo. They also suggest that such intracellular signaling pathways--particularly those triggered by the phosphorylation of TYR-721 of CSF-1R--are logical targets for the development of a new class of anti-cancer agents which specifically block breast cancer cell metastatic potential without perturbing other normal cellular metabolic processes

  2. Contribution of local thyroxine monodeiodination to intracellular 3,5, 3'-triiodothyronine in several tissues of hyperthyroid rats at isotopic equilibrium

    International Nuclear Information System (INIS)

    van Doorn, J.; van der Heide, D.; Roelfsema, F.

    1984-01-01

    The local conversion of T4 as a source of intracellular T3 in several organs of both hypothyroid and euthyroid rats has recently been recognized to be an important phenomenon. In the present study the source and quantity of T3 in various peripheral tissues of hyperthyroid rats were investigated. Athyreotic rats received a continuous iv infusion of T4 over a prolonged period in order to attain hyperthyroid conditions. At the same time, the animals also received a continuous iv infusion of [ 125 I]T4 and [ 131 I]T3 until isotopic equilibrium was achieved. After the animals were bled and perfused, the source and quantity of T3 in various tissue homogenates and subcellular preparations of liver, kidney, and the anterior pituitary gland were analyzed. In spite of the elevated plasma T3 and T4 levels, the concentration of T3 in the cerebral cortex and cerebellum was within the normal range. The contribution of T3 derived from local T4 to T3 conversion [Lc T3(T4)] was rather low in both parts of the brain when compared with values previously determined for euthyroid rats. Whereas previous studies revealed that Lc T3(T4) contributes significantly to the T3 in the pituitary glands of both hypothyroid and euthyroid rats, this was not the case for the hyperthyroid animals; virtually all T3 was derived from plasma. It was found that the T3 in muscle was derived exclusively from plasma. Both the liver and kidney showed high concentrations of T3. Whereas Lc T3(T4) was the main source of T3 in the liver, it contributed only a minor fraction of the total T3 content in the kidney

  3. Factors influencing intracellular uptake and radiosensitization by 2-nitroimidazoles in vitro

    International Nuclear Information System (INIS)

    Brown, D.M.; Gonzalez-Mendez, R.; Brown, J.M.

    1983-01-01

    In this study it is shown that the radiosensitization of hypoxic Chinese hamster ovary (HA-1) cells in vitro by misonidazole (MIS) and other 1-substituted 2-nitroimidazoles depends on the rate and extent of intracellular uptake of these radiosensitizers, which in turn is governed by their lipophilicity [expressed as the octanol:water partition coefficient (P)]. As the lipophilicity of the compounds decreased, the rate of drug entry into the cells was slower, and below P values of approximately 0.05, peak intracellular drug concentrations were found to be lower than that of MIS (P=0.43). In addition, the number of hydroxyl groups on the side chain of the nitroimidazole molecule influenced the uptake of drug into the cells. For compounds of similar P, but differing in the number of side-chain hydroxyl groups, the addition of a single hydroxyl group to the molecule decreased the amount of drug entering the cell by a factor of approximately 2. These compounds enter the cell by nonmediated passive diffusion since altering the energy (ATP) capacity of the cell by 2-deoxyglucose did not affect uptake. It is also shown that increases in temperature or decreases in pH can increase the intracellular uptake of MIS. For example, equal intracellular and extracellular concentrations (100% uptake) of MIS were obtained if cells were heated to 44-45 0 C for 15 min compared to 20-40% uptake at 37 0 C. Increases in MIS uptake by factors of 2 to 3 could be demonstrated within 30 min when cells were incubated in Hanks' balanced salt solution at pH between 6.0 and 6.3 without loss of cell viability. In addition, MIS uptake in aerobic cultured cells varied from 15 to 60% depending on the cell line and culure conditions used

  4. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    International Nuclear Information System (INIS)

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A.

    2006-01-01

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype

  5. Local self-similarity descriptor for point-of-interest reconstruction of real-world scenes

    International Nuclear Information System (INIS)

    Gao, Xianglu; Wan, Weibing; Zhao, Qunfei; Zhang, Xianmin

    2015-01-01

    Scene reconstruction is utilized commonly in close-range photogrammetry, with diverse applications in fields such as industry, biology, and aerospace industries. Presented surfaces or wireframe three-dimensional (3D) model reconstruction applications are either too complex or too inflexible to accommodate various types of real-world scenes, however. This paper proposes an algorithm for acquiring point-of-interest (referred to throughout the study as POI) coordinates in 3D space, based on multi-view geometry and a local self-similarity descriptor. After reconstructing several POIs specified by a user, a concise and flexible target object measurement method, which obtains the distance between POIs, is described in detail. The proposed technique is able to measure targets with high accuracy even in the presence of obstacles and non-Lambertian surfaces. The method is so flexible that target objects can be measured with a handheld digital camera. Experimental results further demonstrate the effectiveness of the algorithm. (paper)

  6. Blockade of intracellular Zn2+ signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP.

    Science.gov (United States)

    Fujise, Yuki; Kubota, Mitsuyasu; Suzuki, Miki; Tamano, Haruna; Takeda, Atsushi

    2017-09-01

    Hippocampus-dependent memory is modulated by the amygdala. However, it is unknown whether intracellular Zn 2+ signaling in the amygdala is involved in hippocampus-dependent memory. On the basis of the evidence that intracellular Zn 2+ signaling in dentate granule cells (DGC) is necessary for object recognition memory via LTP at medial perforant pathway (PP)-DGC synapses, the present study examined whether intracellular Zn 2+ signaling in the amygdala influences object recognition memory via modulation of LTP at medial PP-DGC synapses. When ZnAF-2DA (100 μM, 2 μl) was injected into the basolateral amygdala (BLA), intracellular ZnAF-2 locally chelated intracellular Zn 2+ in the amygdala. Recognition memory was affected when training of object recognition test was performed 20 min after ZnAF-2DA injection into the BLA. Twenty minutes after injection of ZnAF-2DA into the BLA, LTP induction at medial PP-DGC synapses was attenuated, while LTP induction at PP-BLA synapses was potentiated and LTP induction at BLA-DGC synapses was attenuated. These results suggest that intracellular Zn 2+ signaling in the BLA is involved in BLA-associated LTP and modulates LTP at medial PP-DGC synapses, followed by modulation of object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    Science.gov (United States)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  8. Fungal ABC Transporter Deletion and Localization Analysis

    NARCIS (Netherlands)

    Kovalchuk, A.; Weber, S.S.; Nijland, J.G.; Bovenberg, R.A.L.; Driessen, A.J.M.

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological

  9. pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

    KAUST Repository

    H. Müller, Karin; Kulkarni, Jaideep; Motskin, Michael; Goode, Angela; Winship, Peter; Skepper, Jeremy N.; Ryan, Mary P.; Porter, Alexandra E.

    2010-01-01

    exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, Zn

  10. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  11. Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.

    2015-01-01

    In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260

  12. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    Science.gov (United States)

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Plectasin shows intracellular activity against Staphylococcus aureus in human THP-1 monocytes and in a mouse peritonitis model

    DEFF Research Database (Denmark)

    Brinch, Karoline Sidelmann; Sandberg, Anne; Baudoux, Pierre

    2009-01-01

    was maintained (maximal relative efficacy [E(max)], 1.0- to 1.3-log reduction in CFU) even though efficacy was inferior to that of extracellular killing (E(max), >4.5-log CFU reduction). Animal studies included a novel use of the mouse peritonitis model, exploiting extra- and intracellular differentiation assays...... concentration. These findings stress the importance of performing studies of extra- and intracellular activity since these features cannot be predicted from traditional MIC and killing kinetic studies. Application of both the THP-1 and the mouse peritonitis models showed that the in vitro results were similar...

  14. Getting Across the Plasma Membrane and Beyond: Intracellular Uses of Colloidal Semiconductor Nanocrystals

    Directory of Open Access Journals (Sweden)

    Camilla Luccardini

    2007-01-01

    Full Text Available Semiconductor nanocrystals (NCs are increasingly being used as photoluminescen markers in biological imaging. Their brightness, large Stokes shift, and high photostability compared to organic fluorophores permit the exploration of biological phenomena at the single-molecule scale with superior temporal resolution and spatial precision. NCs have predominantly been used as extracellular markers for tagging and tracking membrane proteins. Successful internalization and intracellular labelling with NCs have been demonstrated for both fixed immunolabelled and live cells. However, the precise localization and subcellular compartment labelled are less clear. Generally, live cell studies are limited by the requirement of fairly invasive protocols for loading NCs and the relatively large size of NCs compared to the cellular machinery, along with the subsequent sequestration of NCs in endosomal/lysosomal compartments. For long-period observation the potential cytotoxicity of cytoplasmically loaded NCs must be evaluated. This review focuses on the challenges of intracellular uses of NCs.

  15. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  16. Synthesis and analysis of separation networks for the recovery of intracellular chemicals generated from microbial-based conversions.

    Science.gov (United States)

    Yenkie, Kirti M; Wu, Wenzhao; Maravelias, Christos T

    2017-01-01

    Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the

  17. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  18. Brucella abortus Induces a Warburg Shift in Host Metabolism That Is Linked to Enhanced Intracellular Survival of the Pathogen.

    Science.gov (United States)

    Czyż, Daniel M; Willett, Jonathan W; Crosson, Sean

    2017-08-01

    Intracellular bacterial pathogens exploit host cell resources to replicate and survive inside the host. Targeting these host systems is one promising approach to developing novel antimicrobials to treat intracellular infections. We show that human macrophage-like cells infected with Brucella abortus undergo a metabolic shift characterized by attenuated tricarboxylic acid cycle metabolism, reduced amino acid consumption, altered mitochondrial localization, and increased lactate production. This shift to an aerobic glycolytic state resembles the Warburg effect, a change in energy production that is well described in cancer cells and also occurs in activated inflammatory cells. B. abortus efficiently uses lactic acid as its sole carbon and energy source and requires the ability to metabolize lactate for normal survival in human macrophage-like cells. We demonstrate that chemical inhibitors of host glycolysis and lactate production do not affect in vitro growth of B. abortus in axenic culture but decrease its survival in the intracellular niche. Our data support a model in which infection shifts host metabolism to a Warburg-like state, and B. abortus uses this change in metabolism to promote intracellular survival. Pharmacological perturbation of these features of host cell metabolism may be a useful strategy to inhibit infection by intracellular pathogens. IMPORTANCE Brucella spp. are intracellular bacterial pathogens that cause disease in a range of mammals, including livestock. Transmission from livestock to humans is common and can lead to chronic human disease. Human macrophage-like cells infected with Brucella abortus undergo a Warburg-like metabolic shift to an aerobic glycolytic state where the host cells produce lactic acid and have reduced amino acid catabolism. We provide evidence that the pathogen can exploit this change in host metabolism to support growth and survival in the intracellular niche. Drugs that inhibit this shift in host cell metabolism

  19. An active matter analysis of intracellular Active Transport

    Science.gov (United States)

    Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve

    2012-02-01

    Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.

  20. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  1. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  2. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    International Nuclear Information System (INIS)

    Siyam, Arwa; Wang, Suzhen; Qin, Chunlin; Mues, Gabriele; Stevens, Roy; D’Souza, Rena N.; Lu, Yongbo

    2012-01-01

    Highlights: ► Nuclear localization of DMP1 in various cell lines. ► Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. ► Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  3. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia

    DEFF Research Database (Denmark)

    Alexander, R Todd; Beggs, Megan R; Zamani, Reza

    2015-01-01

    role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestine, while pan-specific Pmca antibodies...... the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In human kidney, a similar pattern of distribution was observed, with highest PMCA4 expression in NCC positive tubules. Electron microscopy demonstrated Pmca4 localization...... in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments, but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing...

  4. Ultrastructural autoradiographic localization of exogenous arachidonic acid in cultured endothelial and smooth muscle cells

    International Nuclear Information System (INIS)

    Tasca, S.I.; Galis, Z.

    1988-01-01

    The uptake and intracellular localization of exogenous arachidonic acid (AA) were investigated in cultured endothelial (EC) and smooth muscle cells (SMC) isolated from bovine aorta. The [ 14 C]AA uptake was assessed biochemically and by light and electron microscopic autoradiography. The highest values of silver grain surface density were associated with the mitochondria, lysosomes, and the Golgi apparatus of the EC. The grain linear density was greater on the nuclear envelope than on plasmalemma. On SMC, the grain density was highest on lipid droplets whereas the linear densities of the nuclear envelope and plasmalemma were similar. The share of each subcellular compartment in the AA distribution was estimated as the percentage of the individual silver grain count out of the total cell-associated radioactivity. The results showed that cytoplasm (including endoplasmic reticulum, ribosomes, and small vesicles) made the main contribution followed by the nucleus and at lower values by other organelles. These subcompartments may represent the intracellular sites from which AA could be mobilized for prostanoid synthesis by EC and SMC. (author)

  5. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  6. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  7. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  8. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts.

  9. Yersinia pestis intracellular parasitism of macrophages from hosts exhibiting high and low severity of plague.

    Directory of Open Access Journals (Sweden)

    Duraisamy Ponnusamy

    Full Text Available BACKGROUND: Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV, and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. CONCLUSION/SIGNIFICANCE: Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.

  10. Nuclear localization of DMP1 proteins suggests a role in intracellular signaling

    Energy Technology Data Exchange (ETDEWEB)

    Siyam, Arwa [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); Wang, Suzhen; Qin, Chunlin; Mues, Gabriele [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Stevens, Roy [Department of Endodontology, Kornberg School of Dentistry, Temple University, 3223 North Broad Street, Philadelphia, PA 19140-5007 (United States); D' Souza, Rena N. [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States); Lu, Yongbo, E-mail: ylu@bcd.tamhsc.edu [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A and M Health Science Center, 3302 Gaston Ave., Dallas, TX 75246-2013 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nuclear localization of DMP1 in various cell lines. Black-Right-Pointing-Pointer Non-synchronized cells show either nuclear or cytoplasmic localization of DMP1. Black-Right-Pointing-Pointer Nuclear DMP1 is restricted to the nucleoplasm but absent in the nucleolus. -- Abstract: Dentin matrix protein 1 (DMP1) is highly expressed in odontoblasts and osteoblasts/osteocytes and plays an essential role in tooth and bone mineralization and phosphate homeostasis. It is debatable whether DMP1, in addition to its function in the extracellular matrix, can enter the nucleus and function as a transcription factor. To better understand its function, we examined the nuclear localization of endogenous and exogenous DMP1 in C3H10T1/2 mesenchymal cells, MC3T3-E1 preosteoblast cells and 17IIA11 odontoblast-like cells. RT-PCR analyses showed the expression of endogenous Dmp1 in all three cell lines, while Western-blot analysis detected a major DMP1 protein band corresponding to the 57 kDa C-terminal fragment generated by proteolytic processing of the secreted full-length DMP1. Immunofluorescent staining demonstrated that non-synchronized cells presented two subpopulations with either nuclear or cytoplasmic localization of endogenous DMP1. In addition, cells transfected with a construct expressing HA-tagged full-length DMP1 also showed either nuclear or cytoplasmic localization of the exogenous DMP1 when examined with an antibody against the HA tag. Furthermore, nuclear DMP1 was restricted to the nucleoplasm but was absent in the nucleolus. In conclusion, these findings suggest that, apart from its role as a constituent of dentin and bone matrix, DMP1 might play a regulatory role in the nucleus.

  11. Contribution of local thyroxine monodeiodination to intracellular 3,5, 3'-triiodothyronine in several tissues of hyperthyroid rats at isotopic equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    van Doorn, J.; van der Heide, D.; Roelfsema, F.

    1984-07-01

    The local conversion of T4 as a source of intracellular T3 in several organs of both hypothyroid and euthyroid rats has recently been recognized to be an important phenomenon. In the present study the source and quantity of T3 in various peripheral tissues of hyperthyroid rats were investigated. Athyreotic rats received a continuous iv infusion of T4 over a prolonged period in order to attain hyperthyroid conditions. At the same time, the animals also received a continuous iv infusion of (/sup 125/I)T4 and (/sup 131/I)T3 until isotopic equilibrium was achieved. After the animals were bled and perfused, the source and quantity of T3 in various tissue homogenates and subcellular preparations of liver, kidney, and the anterior pituitary gland were analyzed. In spite of the elevated plasma T3 and T4 levels, the concentration of T3 in the cerebral cortex and cerebellum was within the normal range. The contribution of T3 derived from local T4 to T3 conversion (Lc T3(T4)) was rather low in both parts of the brain when compared with values previously determined for euthyroid rats. Whereas previous studies revealed that Lc T3(T4) contributes significantly to the T3 in the pituitary glands of both hypothyroid and euthyroid rats, this was not the case for the hyperthyroid animals; virtually all T3 was derived from plasma. It was found that the T3 in muscle was derived exclusively from plasma. Both the liver and kidney showed high concentrations of T3. Whereas Lc T3(T4) was the main source of T3 in the liver, it contributed only a minor fraction of the total T3 content in the kidney.

  12. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    Science.gov (United States)

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  13. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics?

    Directory of Open Access Journals (Sweden)

    Cruz Luisa Ana B

    2012-12-01

    Full Text Available Abstract Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. Results Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. Conclusions From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.

  14. Modeling HIV-1 intracellular replication: two simulation approaches

    NARCIS (Netherlands)

    Zarrabi, N.; Mancini, E.; Tay, J.; Shahand, S.; Sloot, P.M.A.

    2010-01-01

    Many mathematical and computational models have been developed to investigate the complexity of HIV dynamics, immune response and drug therapy. However, there are not many models which consider the dynamics of virus intracellular replication at a single level. We propose a model of HIV intracellular

  15. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  16. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  17. Mycobacterium intracellulare Infection Mimicking Progression of Scleroderma

    DEFF Research Database (Denmark)

    Krabbe, Simon; Engelhart, Merete; Thybo, Sören

    2017-01-01

    This case report describes a patient with scleroderma who developed Mycobacterium intracellulare infection, which for more than a year mimicked worsening of her connective tissue disorder. The patient was diagnosed with scleroderma based on puffy fingers that developed into sclerodactyly, abnormal......, unfortunately with significant scarring. Immunodeficiency testing was unremarkable. In summary, an infection with Mycobacterium intracellulare was mistaken for an unusually severe progression of scleroderma....

  18. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Uptake and intracellular activity of AM-1155 in phagocytic cells.

    Science.gov (United States)

    Yamamoto, T; Kusajima, H; Hosaka, M; Fukuda, H; Oomori, Y; Shinoda, H

    1996-01-01

    The uptake and intracellular activity of AM-1155 in murine J774.1 macrophages and human polymorphonuclear leukocytes were investigated. AM-1155 penetrated phagocytic cells rapidly and reversibly, although the penetration process was not affected by metabolic inhibitors such as sodium fluoride, cyanide m-chlorophenylhydrazone, or ouabain or by nucleoside transport system inhibitors such as adenosine. The intracellular concentration-to-extracellular concentration ratio of AM-1155 in both cell types of phagocytes ranged from 5 to 7. These ratios were almost equal to those for sparfloxacin. The intracellular activity of AM-1155 in J774.1 macrophages, examined with Staphylococcus aureus 209P as a test bacterium, was dependent on the extracellular concentration. AM-1155 at a concentration of 1 microgram/ml reduced the number of viable cells of S. aureus ingested by more than 90%. The intracellular activity of AM-1155 was more potent than those of sparfloxacin, ofloxacin, ciprofloxacin, flomoxef, and erythromycin. These results suggest that the potent intracellular activity of AM-1155 might mainly be due to the high intracellular concentration and its potent in vitro activity. PMID:9124835

  20. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    Science.gov (United States)

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  1. Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds

    International Nuclear Information System (INIS)

    Nam, Dong-Ha; Anan, Yasumi; Ikemoto, Tokutaka; Tanabe, Shinsuke

    2005-01-01

    This study was aimed at determining multielemental concentration and its intracellular distribution in selected tissues of cormorant and waterfowl species. Non-essential elements such as Hg, Tl, Cd, Pb and V in tissues were generally consistent with those in ingested items, indicating the significance of food sources of non-essential metal accumulation in great cormorants and mallards. Great cormorants and four waterfowl species examined reflected natural background levels of toxic metals such as Cd, Hg and Pb as well as some essential elements, indicating no specific metal exposure from local sources. Most of Cu, Zn, Se, Rb, Ag, Cd, Cs, and Hg contents were present in the hepatocytosolic fraction, whereas a large percentage of V and Mo were present in insoluble fraction in great cormorant, mallard, and spot-billed duck. The major role of these subcelluar fractions in elemental regulation accounts for the high percentage contribution of each cellular fraction to the total metal contents. Cadmium and Cu are chiefly sequestered through binding to metallothioneins (MTs) of hepatocytosolic fraction in these three avian species. Both MTs and high-molecular-weight substance (HMWS) for Zn and low-molecular-weight substance (LMWS) for Rb were also involved in their sequestration in cytosolic fractions. Relatively different species-specific cytosolic substances were responsible for varying degrees of Ag, Mn, and Co accumulation. It is worth noting that these intracellular metal levels in birds are closely regulated by metal-associated cellular constituents. Therefore, risk assessment studies of metal accumulation in such wild birds should take intracellular metal distribution and specific cellular constituents into account

  2. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans

    Energy Technology Data Exchange (ETDEWEB)

    Omajali, Jacob B., E-mail: JBO037@bham.ac.uk, E-mail: jbomajali@gmail.com; Mikheenko, Iryna P. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom); Merroun, Mohamed L. [University of Granada, Department of Microbiology, Faculty of Sciences (Spain); Wood, Joseph [University of Birmingham, School of Chemical Engineering (United Kingdom); Macaskie, Lynne E. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom)

    2015-06-15

    Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H{sub 2,} with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.

  3. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G; Aggio, Raphael

    2017-10-23

    Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  4. Influence of intracellular acidosis on contractile function in the working rat heart

    International Nuclear Information System (INIS)

    Jeffrey, F.M.H.; Malloy, C.R.; Radda, G.K.

    1987-01-01

    The decrease in myocardial contractility during ischemia, hypoxia, and extracellular acidosis has been attributed to intracellular acidosis. Previous studies of the relationship between pH and contractile state have utilized respiratory or metabolic acidosis to alter intracellular pH. The authors developed a model in the working perfused rat heart to study the effects of intracellular acidosis with normal external pH and optimal O 2 delivery. Intracellular pH and high-energy phosphates were monitored by 31 P nuclear magnetic resonance spectroscopy. Hearts were perfused to a steady state with a medium containing 10 mM NH 4 Cl. Acidosis induced a substantial decrease in aortic flow and stroke volume which was associated with little change in peak systolic pressure. It was concluded that (1) for the same intracellular acidosis the influence on tension development was more pronounced with a combined extra- and intracellular acidosis than with an isolated intracellular acidosis, and (2) stroke volume at constant preload was impaired by intracellular acidosis even though changes in developed pressure were minimal. These observations suggest that isolated intracellular acidosis has adverse effects on diastolic compliance and/or relaxation

  5. Intracellular trafficking of new anticancer therapeutics: antibody–drug conjugates

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody–drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs. PMID:28814834

  6. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-01-01

    Antibody-drug conjugate (ADC) is a milestone in targeted cancer therapy that comprises of monoclonal antibodies chemically linked to cytotoxic drugs. Internalization of ADC takes place via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and pinocytosis. Conjugation strategies, endocytosis and intracellular trafficking optimization, linkers, and drugs chemistry present a great challenge for researchers to eradicate tumor cells successfully. This inventiveness of endocytosis and intracellular trafficking has given considerable momentum recently to develop specific antibodies and ADCs to treat cancer cells. It is significantly advantageous to emphasize the endocytosis and intracellular trafficking pathways efficiently and to design potent engineered conjugates and biological entities to boost efficient therapies enormously for cancer treatment. Current studies illustrate endocytosis and intracellular trafficking of ADC, protein, and linker strategies in unloading and also concisely evaluate practically applicable ADCs.

  7. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    Science.gov (United States)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  8. Aprataxin localizes to mitochondria and preserves mitochondrial function

    DEFF Research Database (Denmark)

    Sykora, Peter; Croteau, Deborah L; Bohr, Vilhelm A

    2011-01-01

    aborted ligation reactions. We report herein that aprataxin localizes to mitochondria in human cells and we identify an N-terminal amino acid sequence that targets certain isoforms of the protein to this intracellular compartment. We also show that transcripts encoding this unique N-terminal stretch...

  9. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  10. Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-10-01

    Full Text Available Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells.

  11. MUC1 intra-cellular trafficking is clathrin, dynamin, and rab5 dependent

    International Nuclear Information System (INIS)

    Liu Xiaolong; Yuan Zhenglong; Chung, Maureen

    2008-01-01

    MUC1, a transmembrane glycoprotein, is abnormally over-expressed in most human adenocarcinomas. MUC1 association with cytoplasmic cell signal regulators and nuclear accumulation are important for its tumor related activities. Little is known about how MUC1 translocates from the cell membrane to the cytoplasm. In this study, live cell imaging was used to study MUC1 intracellular trafficking. The interaction between EGFR and MUC1 was mapped by FRET analysis and EGF stimulated MUC1 endocytosis was observed directly through live cell imaging. MUC1-CT endocytosis was clathrin and dynamin dependent. Rab5 over-expression resulted in decreased cell membrane localization of MUC1, with accumulation of MUC1 endocytic vesicles in the peri-nuclear region. Conversely, over-expression of a Rab5 dominant negative mutant (S34N) resulted in redistribution of MUC1 from the peri-nuclear region to the cytoplasm. Collectively, these results indicated that MUC1 intra-cellular trafficking occurs through a regulated process that was stimulated by direct EGFR and MUC1 interaction, mediated by clathrin coated pits that were dynamin dependent and regulated by Rab5

  12. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  13. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  14. A Thapsigargin-Resistant Intracellular Calcium Sequestering Compartment in Rat Brain

    Science.gov (United States)

    2000-03-31

    have a major impact on neuronal intracellular signaling. Most of the ER in neurons and glia appears to accumulate calcium by energy driven ion pumps...secretion of exocrine, endocrine, and neurocrine products, regulation of glycogenolysis and gluconeogenesis , intracellular transport, secretion of fluids...the RyRs [140]. Furthermore, the intracellular expression of these receptor-channels in neuronal ER is also reciprocal with RyRs located primarily in

  15. Nuclear magnetic resonance studies of intracellular ions in perfused from heart

    International Nuclear Information System (INIS)

    Burnstein, D.; Fossel, E.T.

    1987-01-01

    Intracellular sodium, potassium, and lithium were observed in a perfused frog heart by nuclear magnetic resonance (NMR) spectroscopy. A perfusate buffer containing the shift reagent, dysprosium tripolyphosphate, was used in combination with mathematical filtering or presaturation of the extracellular resonance to separate the intra- and extracellular sodium NMR signals. Addition of 10 μM ouabain to the perfusate, perfusion with a zero potassium, low-calcium buffer, and replacement of 66% of the perfusate sodium with lithium resulted in changes in the intracellular sodium levels. An increase of 45% in the intracellular sodium was observed when changing the pacing rate from 0 to 60 beats/min (with proportional changes for intermediate pacing rates). The ratio of intracellular potassium to sodium concentration was determined to be 2.3 by NMR, indicating that a substantial amount of the intracellular potassium is undetectable with these NMR method. In addition, intracellular lithium was observed during perfusion with a lithium-containing perfusate

  16. Intracellular pH homeostasis in Leishmania donovani amastigotes and promastigotes

    International Nuclear Information System (INIS)

    Glaser, T.A.; Baatz, J.E.; Kreishman, G.P.; Mukkada, A.J.

    1988-01-01

    Intracellular pH and pH gradients of Leishmania donovani amastigotes and promastigotes were determined over a broad range of extracellular pH values. Intracellular pH was determined by 31 P NMR and by equilibrium distribution studies with 5,5-dimethyloxazolidine-2,4-dione or methylamine. Promastigotes maintain intracellular pH values close to neutral between extracellular pH values of 5.0 and 7.4. Amastigote intracellular pH is maintained close to neutral at external pH values as low as 4.0. Both life stages maintain a positive pH gradient to an extracellular pH of 7.4, which is important for active transport of substrates. Treatment with ionophores, such as nigericin and carbonyl cyanide m-chlorophenylhydrazone and the ATPase inhibitor dicyclohexylcarbodiimide, reduced pH gradients in both stages. Maintenance of intracellular pH in the physiologic range is especially relevant for the survival of the amastigote in its acidic in vivo environment

  17. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus.

    Science.gov (United States)

    Deng, Qiji; Weng, Yuejin; Lu, Wuxun; Demers, Andrew; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-09-01

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    Science.gov (United States)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to

  19. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen

    Science.gov (United States)

    Bouwer, H. G. Archie; Alberti-Segui, Christine; Montfort, Megan J.; Berkowitz, Nathan D.; Higgins, Darren E.

    2006-03-01

    We have developed a vaccine strategy for generating an attenuated strain of an intracellular bacterial pathogen that, after uptake by professional antigen-presenting cells, does not replicate intracellularly and is readily killed. However, after degradation of the vaccine strain within the phagolysosome, target antigens are released into the cytosol for endogenous processing and presentation for stimulation of CD8+ effector T cells. Applying this strategy to the model intracellular pathogen Listeria monocytogenes, we show that an intracellular replication-deficient vaccine strain is cleared rapidly in normal and immunocompromised animals, yet antigen-specific CD8+ effector T cells are stimulated after immunization. Furthermore, animals immunized with the intracellular replication-deficient vaccine strain are resistant to lethal challenge with a virulent WT strain of L. monocytogenes. These studies suggest a general strategy for developing safe and effective, attenuated intracellular replication-deficient vaccine strains for stimulation of protective immune responses against intracellular bacterial pathogens. CD8+ T cell | replication-deficient | Listeria monocytogenes

  20. Structure-Function Correlation Analysis of Connexin50 Missense Mutations Causing Congenital Cataract: Electrostatic Potential Alteration Could Determine Intracellular Trafficking Fate of Mutants

    Directory of Open Access Journals (Sweden)

    Devroop Sarkar

    2014-01-01

    Full Text Available Connexin50 (Cx50 mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.

  1. Intracellular Enzymes Contribution to the Biocatalytic Removal of Pharmaceuticals by Trametes hirsuta.

    Science.gov (United States)

    Haroune, Lounès; Saibi, Sabrina; Cabana, Hubert; Bellenger, Jean-Philippe

    2017-01-17

    The use of white rot fungi (WRF) for bioremediation of recalcitrant trace organic contaminants (TrOCs) is becoming greatly popular. Biosorption and lignin modifying enzymes (LMEs) are the most often reported mechanisms of action. Intracellular enzymes, such as cytochrome P450 (CYP450), have also been suggested to contribute. However, direct evidence of TrOCs uptake and intracellular transformation is lacking. The aim of this study was to evaluate the relative contribution of biosorption, extracellular LMEs activity, TrOCs uptake, and intracellular CYP450 on the removal of six nonsteroidal anti-inflammatories (NSAIs) by Trametes hirsuta. Results show that for most tested NSAIs, LMEs activity and biosorption failed to explain the observed removal. Most tested TrOCs are quickly taken up and intracellularly transformed. Fine characterization of intracellular transformation using ketoprofen showed that CYP450 is not the sole intracellular enzyme responsible for intracellular transformation. The contribution of CYP450 in further transformation of ketoprofen byproducts is also reported. These results illustrate that TrOCs transformation by WRF is a more complex process than previously reported. Rapid uptake of TrOCs and intracellular transformation through diverse enzymatic systems appears to be important components of WRF efficiency toward TrOCs.

  2. Plasmalemmal V-H+-ATPases regulate intracellular pH in human lung microvascular endothelial cells

    International Nuclear Information System (INIS)

    Rojas, Jose D.; Sennoune, Souad R.; Maiti, Debasish; Martinez, Gloria M.; Bakunts, Karina; Wesson, Donald E.; Martinez-Zaguilan, Raul

    2004-01-01

    The lung endothelium layer is exposed to continuous CO 2 transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na + /H + exchanger and HCO 3 - -dependent H + -transporting mechanisms regulate intracellular pH (pH cyt ) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H + -ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na + /H + exchanger and HCO 3 - -based H + -transporting mechanisms, to maintain pH cyt homeostasis. Immunocytochemical studies revealed V-H + -ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na + and HCO 3 - that were similar to those observed in the presence of either Na + , or Na + and HCO 3 - . The Na + - and HCO 3 - -independent pH cyt recovery was inhibited by bafilomycin A 1 , a V-H + -ATPase inhibitor. These studies show a Na + - and HCO 3 - -independent pH cyt regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases

  3. DMPD: Intracellular DNA sensors in immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18573338 Intracellular DNA sensors in immunity. Takeshita F, Ishii KJ. Curr Opin Im...munol. 2008 Aug;20(4):383-8. Epub 2008 Jun 23. (.png) (.svg) (.html) (.csml) Show Intracellular DNA sensors ...in immunity. PubmedID 18573338 Title Intracellular DNA sensors in immunity. Authors Takeshita F, Ishii KJ. P

  4. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  5. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections.

    Science.gov (United States)

    Garcia, L G; Lemaire, S; Kahl, B C; Becker, K; Proctor, R A; Denis, O; Tulkens, P M; Van Bambeke, F

    2012-07-01

    Staphylococcus aureus small-colony variants (SCVs) persist intracellularly, which may contribute to persistence/recurrence of infections and antibiotic failure. We have studied the intracellular fate of menD and hemB mutants (corresponding to menadione- and hemin-dependent SCVs, respectively) of the COL methicillin-resistant S. aureus (MRSA) strain and the antibiotic pharmacodynamic profile against extracellular (broth) and intracellular (human THP-1 monocytes) bacteria. Compared to the parental strain, SCVs showed slower extracellular growth (restored upon medium supplementation with menadione or hemin), reduced phagocytosis, and, for the menD SCV, lower intracellular counts at 24 h postinfection. Against extracellular bacteria, daptomycin, gentamicin, rifampin, moxifloxacin, and oritavancin showed similar profiles of activity against all strains, with a static effect obtained at concentrations close to their MICs and complete eradication as maximal effect. In contrast, vancomycin was not bactericidal against SCVs. Against intracellular bacteria, concentration-effect curves fitted sigmoidal regressions for vancomycin, daptomycin, gentamicin, and rifampin (with maximal effects lower than a 2-log decrease in CFU) but biphasic regressions (with a maximal effect greater than a 3-log decrease in CFU) for moxifloxacin and oritavancin, suggesting a dual mode of action against intracellular bacteria. For all antibiotics, these curves were indistinguishable between the strains investigated, except for the menD mutant, which systematically showed a lower amplitude of the concentration-effect response, with markedly reduced minimal efficacy (due to slower growth) but no change in maximal efficacy. The data therefore show that the maximal efficacies of antibiotics are similar against normal-phenotype and menadione- and hemin-dependent strains despite their different intracellular fates, with oritavancin, and to some extent moxifloxacin, being the most effective.

  6. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Directory of Open Access Journals (Sweden)

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  7. Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization.

    Science.gov (United States)

    Dong, Lemeng; Miettinen, Karel; Goedbloed, Miriam; Verstappen, Francel W A; Voster, Alessandra; Jongsma, Maarten A; Memelink, Johan; van der Krol, Sander; Bouwmeester, Harro J

    2013-11-01

    Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    Science.gov (United States)

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas; Rodriguez de Cordoba, Santiago; Afzali, Behdad; Atkinson, John P.; Kemper, Claudia

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While “tonic” intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance. PMID:24315997

  9. Renewing the Respect for Similarity

    Directory of Open Access Journals (Sweden)

    Shimon eEdelman

    2012-07-01

    Full Text Available In psychology, the concept of similarity has traditionally evoked a mixture of respect, stemmingfrom its ubiquity and intuitive appeal, and concern, due to its dependence on the framing of the problemat hand and on its context. We argue for a renewed focus on similarity as an explanatory concept, bysurveying established results and new developments in the theory and methods of similarity-preservingassociative lookup and dimensionality reduction — critical components of many cognitive functions, aswell as of intelligent data management in computer vision. We focus in particular on the growing familyof algorithms that support associative memory by performing hashing that respects local similarity, andon the uses of similarity in representing structured objects and scenes. Insofar as these similarity-basedideas and methods are useful in cognitive modeling and in AI applications, they should be included inthe core conceptual toolkit of computational neuroscience.

  10. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology.

    Science.gov (United States)

    Abbott, Jeffrey; Ye, Tianyang; Ham, Donhee; Park, Hongkun

    2018-03-20

    Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane

  11. Investigating Internalization and Intracellular Trafficking of GPCRs

    DEFF Research Database (Denmark)

    Foster, Simon R; Bräuner-Osborne, Hans

    2017-01-01

    for signal transduction. One of the major mechanisms for GPCR regulation involves their endocytic trafficking, which serves to internalize the receptors from the plasma membrane and thereby attenuate G protein-dependent signaling. However, there is accumulating evidence to suggest that GPCRs can signal...... independently of G proteins, as well as from intracellular compartments including endosomes. It is in this context that receptor internalization and intracellular trafficking have attracted renewed interest within the GPCR field. In this chapter, we will review the current understanding and methodologies...

  12. Similar local, but different systemic, metabolomics responses of closely related pine subspecies to folivory by caterpillars of the processionary moth

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, A. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Sardans, J. [CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Hódar, J. A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, Granada Spain; Garcia-Porta, J. [Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona Spain; Guenther, A. [Department of Earth System Science, University of California, Irvine CA USA; Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Oravec, M. [Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Urban, O. [Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno Czech Republic; Peñuelas, J. [CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia Spain; Cerdanyola del Vallès, CREAF, Catalonia Spain; Leiss, K.

    2016-05-16

    Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at elemental and molecular levels have focused on nutrients or/and certain molecular compounds or specific families of defensive metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and to avoid those with higher levels of phenolics and terpenes. Unfortunately, the defensive role of phenolics in conifers is still unclear. We performed stoichiometric and metabolomics, local and systemic, analyses in two subspecies of Pinus sylvestris under the herbivorous attack by the caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Herbivorous attack was not associated with any of the elements analyzed. Both pine subspecies responded locally to folivory mainly by increasing the concentrations of various terpenes and phenolics. Systemic responses differed between subspecies and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Contrary as usually thought, foliar nutrient concentrations did not show to be a main factor of an alleged plant selection by adult female processionary moths for oviposition. Local increases in phenolics were more associated with antioxidant function for protection against oxidative damage produced by folivory. On the other hand, terpenes were directly related to defense against herbivores. Herbivory attack produced a general systemic shift in pines, including both primary and secondary metabolisms, that was, however, less intense and chemically different from the local responses. Subspecies responded similarly locally but differently to folivory at systemic level.

  13. The epithelial cell cytoskeleton and intracellular trafficking. I. Shiga toxin B-subunit system: retrograde transport, intracellular vectorization, and more.

    Science.gov (United States)

    Johannes, Ludger

    2002-07-01

    Many intracellular transport routes are still little explored. This is particularly true for retrograde transport between the plasma membrane and the endoplasmic reticulum. Shiga toxin B subunit has become a powerful tool to study this pathway, and recent advances on the molecular mechanisms of transport in the retrograde route and on its physiological function(s) are summarized. Furthermore, it is discussed how the study of retrograde transport of Shiga toxin B subunit allows one to design new methods for the intracellular delivery of therapeutic compounds.

  14. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen.

    Directory of Open Access Journals (Sweden)

    Kwang-Hyung Kim

    2009-11-01

    Full Text Available The regulation of intracellular levels of reactive oxygen species (ROS is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus DeltatmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola DeltatmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus DeltatmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola DeltatmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the DeltatmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola DeltatmpL background. Collectively, we

  15. New perspective in the assessment of total intracellular magnesium

    Directory of Open Access Journals (Sweden)

    Azzurra Sargenti

    2014-01-01

    Full Text Available Magnesium (Mg is essential for biological processes, but its cellular homeostasis has not been thoroughly elucidated, mainly because of the inadequacy of the available techniques to map intracellular Mg distribution. Recently, particular interest has been raised by a new family of fluorescent probes, diaza-18-crown-hydroxyquinoline (DCHQ, that shows remarkably high affinity and specificity for Mg, thus permitting the detection of the total intracellular Mg. The data obtained by fluori- metric and cytofluorimetric assays performed with DCHQ5 are in good agreement with atomic absorption spectroscopy, confirming that DCHQ5 probe allows both qualitative and quantitative determination of total intracellular Mg.

  16. Advances in genetic manipulation of obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Paul eBeare

    2011-05-01

    Full Text Available Infections by obligate intracellular bacterial pathogens result in significant morbidity and mortality worldwide. These bacteria include Chlamydia spp., which causes millions of cases of sexually transmitted disease and blinding trachoma annually, and members of the α-proteobacterial genera Anaplasma, Ehrlichia, Orientia and Rickettsia, agents of serious human illnesses including epidemic typhus. Coxiella burnetii, the agent of human Q fever, has also been considered a prototypical obligate intracellular bacterium, but recent host cell-free (axenic growth has rescued it from obligatism. The historic genetic intractability of obligate intracellular bacteria has severely limited molecular dissection of their unique lifestyles and virulence factors involved in pathogenesis. Host cell restricted growth is a significant barrier to genetic transformation that can make simple procedures for free-living bacteria, such as cloning, exceedingly difficult. Low transformation efficiency requiring long term culture in host cells to expand small transformant populations is another obstacle. Despite numerous technical limitations, the last decade has witnessed significant gains in genetic manipulation of obligate intracellular bacteria including allelic exchange. Continued development of genetic tools should soon enable routine mutation and complementation strategies for virulence factor discovery and stimulate renewed interest in these refractory pathogens. In this review, we discuss the technical challenges associated with genetic transformation of obligate intracellular bacteria and highlight advances made with individual genera.

  17. Intracellular transport of fat-soluble vitamins A and E.

    Science.gov (United States)

    Kono, Nozomu; Arai, Hiroyuki

    2015-01-01

    Vitamins are compounds that are essential for the normal growth, reproduction and functioning of the human body. Of the 13 known vitamins, vitamins A, D, E and K are lipophilic compounds and are therefore called fat-soluble vitamins. Because of their lipophilicity, fat-soluble vitamins are solubilized and transported by intracellular carrier proteins to exert their actions and to be metabolized properly. Vitamin A and its derivatives, collectively called retinoids, are solubilized by intracellular retinoid-binding proteins such as cellular retinol-binding protein (CRBP), cellular retinoic acid-binding protein (CRABP) and cellular retinal-binding protein (CRALBP). These proteins act as chaperones that regulate the metabolism, signaling and transport of retinoids. CRALBP-mediated intracellular retinoid transport is essential for vision in human. α-Tocopherol, the main form of vitamin E found in the body, is transported by α-tocopherol transfer protein (α-TTP) in hepatic cells. Defects of α-TTP cause vitamin E deficiency and neurological disorders in humans. Recently, it has been shown that the interaction of α-TTP with phosphoinositides plays a critical role in the intracellular transport of α-tocopherol and is associated with familial vitamin E deficiency. In this review, we summarize the mechanisms and biological significance of the intracellular transport of vitamins A and E. © 2014 The Authors. Traffic published by John Wiley & Sons Ltd.

  18. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  19. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    International Nuclear Information System (INIS)

    Akbari, Vajihe; Abedi, Daryoush; Pardakhty, Abbas; Sadeghi-Aliabadi, Hojjat

    2013-01-01

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300–600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  20. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Vajihe; Abedi, Daryoush [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of); Pardakhty, Abbas [Kerman University of Medical Sciences, Pharmaceutics Research Center (Iran, Islamic Republic of); Sadeghi-Aliabadi, Hojjat, E-mail: sadeghi@pharm.mui.ac.ir [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of)

    2013-04-15

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300-600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  1. Secondary Metabolite Localization by Autofluorescence in Living Plant Cells

    Directory of Open Access Journals (Sweden)

    Pascale Talamond

    2015-03-01

    Full Text Available Autofluorescent molecules are abundant in plant cells and spectral images offer means for analyzing their spectra, yielding information on their accumulation and function. Based on their fluorescence characteristics, an imaging approach using multiphoton microscopy was designed to assess localization of the endogenous fluorophores in living plant cells. This method, which requires no previous treatment, provides an effective experimental tool for discriminating between multiple naturally-occurring fluorophores in living-tissues. Combined with advanced Linear Unmixing, the spectral analysis extends the possibilities and enables the simultaneous detection of fluorescent molecules reliably separating overlapping emission spectra. However, as with any technology, the possibility for artifactual results does exist. This methodological article presents an overview of the applications of tissular and intra-cellular localization of these intrinsic fluorophores in leaves and fruits (here for coffee and vanilla. This method will provide new opportunities for studying cellular environments and the behavior of endogenous fluorophores in the intracellular environment.

  2. pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

    KAUST Repository

    H. Müller, Karin

    2010-11-23

    High-aspect ratio ZnO nanowires have become one of the most promising products in the nanosciences within the past few years with a multitude of applications at the interface of optics and electronics. The interaction of zinc with cells and organisms is complex, with both deficiency and excess causing severe effects. The emerging significance of zinc for many cellular processes makes it imperative to investigate the biological safety of ZnO nanowires in order to guarantee their safe economic exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, ZnO nanowires dissolved very rapidly in a simulated body fluid of lysosomal pH, whereas they were comparatively stable at extracellular pH. Bright-field transmission electron microscopy (TEM) showed a rapid macrophage uptake of ZnO nanowire aggregates by phagocytosis. Nanowire dissolution occurred within membrane-bound compartments, triggered by the acidic pH of the lysosomes. ZnO nanowire dissolution was confirmed by scanning electron microscopy/energy-dispersive X-ray spectrometry. Deposition of electron-dense material throughout the ZnO nanowire structures observed by TEM could indicate adsorption of cellular components onto the wires or localized zinc-induced protein precipitation. Our study demonstrates that ZnO nanowire toxicity in HMMs is due to pH-triggered, intracellular release of ionic Zn2+ rather than the high-aspect nature of the wires. Cell death had features of necrosis as well as apoptosis, with mitochondria displaying severe structural changes. The implications of these findings for the application of ZnO nanowires are discussed. © 2010 American Chemical Society.

  3. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    Directory of Open Access Journals (Sweden)

    Graham Cormode

    Full Text Available Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines, computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH methods and evaluate four variants in a distributed computing environment (specifically, Hadoop. We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  4. The Intracellular Localization of the Vanillin Biosynthetic Machinery in Pods of Vanilla planifolia.

    Science.gov (United States)

    Gallage, Nethaji J; Jørgensen, Kirsten; Janfelt, Christian; Nielsen, Agnieszka J Z; Naake, Thomas; Dunski, Eryk; Dalsten, Lene; Grisoni, Michel; Møller, Birger Lindberg

    2018-02-01

    Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast.

  5. A bacteriophage endolysin that eliminates intracellular streptococci

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  6. Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Devasena Ponnalagu

    2016-06-01

    Full Text Available Chloride intracellular channel (CLICs proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016 [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

  7. Sequence relationships between the genome and the intracellular RNA species 1,3,6 and 7 of mouse hepatitis virus strain A59

    NARCIS (Netherlands)

    Horzinek, M.C.; Spaan, W.J.M.; Rottier, P.J.M.; Zeijst, B.A.M. van der

    1982-01-01

    We have shown by T1 oligonucleotide fingerprinting that the genome of mouse hepatitis virus strain A59 and its intracellular RNA 1 have identical fingerprints and that RNA 1 and the subgenomic RNAs 3, 6, and 7 contain common sequences. To localize the homologous region between the RNAs, we compared

  8. Sigma-1 receptor: The novel intracellular target of neuropsychotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Teruo Hayashi

    2015-01-01

    Full Text Available Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane. In specific types of neurons (e.g., those at the spinal cord, sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  9. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  10. Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H+-ATPase.

    Science.gov (United States)

    Haruta, Miyoshi; Tan, Li Xuan; Bushey, Daniel B; Swanson, Sarah J; Sussman, Michael R

    2018-01-01

    A P-type H + -ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis ( Arabidopsis thaliana ) plant expressing H + -ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H + secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H + -ATPase. © 2018 American Society of Plant Biologists. All Rights Reserved.

  11. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  12. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2016-09-30

    Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis.

  13. Production and localization of cellulases and. beta. -glucosidase from the thermophilic fungus Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Breuil, C; Wojtczak, G; Saddler, J N

    1986-01-01

    The enzyme production and localization of Thielavia terrestris strains C464 and NRRL 8126 were compared to determine their optimum temperature and pH for cellulase activity. High levels of intracellular ..beta..-glucosidase activity were detected in the former strain. The intracellular ..beta..-glucosidase of both strains were more thermostable than the extra-cellular enzyme; the half life of T. terrestris (C464) endoglucanase activity at 60 degrees C was greater than 96 hours. 12 references.

  14. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    International Nuclear Information System (INIS)

    De Silva, T; Ketcha, M; Siewerdsen, J H; Uneri, A; Reaungamornrat, S; Vogt, S; Kleinszig, G; Lo, S F; Wolinsky, J P; Gokaslan, Z L; Aygun, N

    2015-01-01

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperative mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such

  15. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, T; Ketcha, M; Siewerdsen, J H [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD (United States); Uneri, A; Reaungamornrat, S [Department of Computer Science, Johns Hopkins University, Baltimore, MD (United States); Vogt, S; Kleinszig, G [Siemens Healthcare XP Division, Erlangen, DE (Germany); Lo, S F; Wolinsky, J P; Gokaslan, Z L [Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD (United States); Aygun, N [Department of Raiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, MD (United States)

    2015-06-15

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperative mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such

  16. Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation.

    Science.gov (United States)

    Finke, Stefan; Granzow, Harald; Hurst, Jose; Pollin, Reiko; Mettenleiter, Thomas C

    2010-02-01

    Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.

  17. Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells.

    Science.gov (United States)

    Rimpelä, Anna-Kaisa; Hagström, Marja; Kidron, Heidi; Urtti, Arto

    2018-05-31

    Melanin binding affects drug distribution and retention in pigmented ocular tissues, thereby affecting drug response, duration of activity and toxicity. Therefore, it is a promising possibility for drug targeting and controlled release in the pigmented cells and tissues. Intracellular unbound drug concentrations determine pharmacological and toxicological actions, but analyses of unbound vs. total drug concentrations in pigmented cells are lacking. We studied intracellular binding and cellular drug uptake in pigmented retinal pigment epithelial cells and in non-pigmented ARPE-19 cells with five model drugs (chloroquine, propranolol, timolol, diclofenac, methotrexate). The unbound drug fractions in pigmented cells were 0.00016-0.73 and in non-pigmented cells 0.017-1.0. Cellular uptake (i.e. distribution ratio Kp), ranged from 1.3 to 6300 in pigmented cells and from 1.0 to 25 in non-pigmented cells. Values for intracellular bioavailability, F ic , were similar in both cells types (although larger variation in pigmented cells). In vitro melanin binding parameters were used to predict intracellular unbound drug fraction and cell uptake. Comparison of predictions with experimental data indicates that other factors (e.g. ion-trapping, lipophilicity-related binding to other cell components) also play a role. Melanin binding is a major factor that leads to cellular uptake and unbound drug fractions of a range of 3-4 orders of magnitude indicating that large reservoirs of melanin bound drug can be generated in the cells. Understanding melanin binding has important implications on retinal drug targeting, efficacy and toxicity. Copyright © 2017. Published by Elsevier B.V.

  18. The interferon response to intracellular DNA: why so many receptors?

    Science.gov (United States)

    Unterholzner, Leonie

    2013-11-01

    The detection of intracellular DNA has emerged to be a key event in the innate immune response to viruses and intracellular bacteria, and during conditions of sterile inflammation and autoimmunity. One of the consequences of the detection of DNA as a 'stranger' and a 'danger' signal is the production of type I interferons and pro-inflammatory cytokines. Much work has been dedicated to the elucidation of the signalling cascades that activate this DNA-induced gene expression programme. However, while many proteins have been proposed to act as sensors for intracellular DNA in recent years, none has been met with universal acceptance, and a theory linking all the recent observations is, as yet, lacking. This review presents the evidence for the various interferon-inducing DNA receptors proposed to date, and examines the hypotheses that might explain why so many different receptors appear to be involved in the innate immune recognition of intracellular DNA. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    Science.gov (United States)

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  20. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    Science.gov (United States)

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  1. Assimilation as Attraction: Computing Distance, Similarity, and Locality in Phonology

    Science.gov (United States)

    Wayment, Adam

    2009-01-01

    This dissertation explores similarity effects in assimilation, proposing an Attraction Framework to analyze cases of parasitic harmony where a trigger-target pair only results in harmony if the trigger and target agree on other features. Attraction provides a natural model of these effects by relating the pressure for assimilation to the…

  2. Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21

    Directory of Open Access Journals (Sweden)

    William A. McEwan

    2016-11-01

    Full Text Available TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a cytosolic Fc receptor and briefly discusses pathological circumstances where intracellular antibodies have been described, or are hypothesized to occur, and may benefit from further investigations of the role of TRIM21.

  3. Dysfunction of bovine endogenous retrovirus K2 envelope glycoprotein is related to unsuccessful intracellular trafficking.

    Science.gov (United States)

    Nakaya, Yuki; Miyazawa, Takayuki

    2014-06-01

    Endogenous retroviruses (ERVs) are the remnants of retroviral infection of ancestral germ cells. Mutations introduced into ERVs halt the production of infectious agents, but their effects on the function of retroviral proteins are not fully understood. Retroviral envelope glycoproteins (Envs) are utilized in membrane fusion during viral entry, and we recently identified intact coding sequences for bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2 Envs. Amino acid sequences of BERV-K1 Env (also called Fematrin-1) and BERV-K2 Env are similar, and both viruses are classified in the genus Betaretrovirus. While Fematrin-1 plays an important role in cell-to-cell fusion in bovine placenta, the BERV-K2 envelope gene is marginally expressed in vivo, and its recombinant Env protein is defective in membrane fusion due to inefficient cleavage of surface (SU) and transmembrane subunits. Here, we conducted chimeric analyses of Fematrin-1 and BERV-K2 Envs and revealed that defective maturation of BERV-K2 Env contributed to failed intracellular trafficking. Fluorescence microscopy and flow cytometric analysis suggested that in contrast to Fematrin-1 Env, BERV-K2 Env could not be transported from the endoplasmic reticulum to the trans-Golgi network, where cellular proteases required for processing retroviral Envs are localized. We also identified that one of the responsive regions of this phenomenon resided within a 65-amino-acid region of BERV-K2 SU. This is the first report to identify that retroviral Env SU is involved in the regulation of intracellular trafficking, and it may help to elucidate the maturation process of Fematrin-1 and other related Envs. Retroviruses utilize envelope glycoproteins (Envs) to enter host target cells. Mature retroviral Env is a heterodimer, which consists of surface (SU) and transmembrane (TM) subunits that are generated by the cleavage of an Env precursor protein in the trans-Golgi network. SU and TM mediate the recognition of the entry

  4. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.

    Science.gov (United States)

    La Ferla, Marco; Mercatanti, Alberto; Rocchi, Giulia; Lodovichi, Samuele; Cervelli, Tiziana; Pignata, Luca; Caligo, Maria Adelaide; Galli, Alvaro

    2015-04-01

    The poly (ADP-ribose) polymerase 1 (PARP-1) actively participates in a series of functions within the cell that include: mitosis, intracellular signaling, cell cycle regulation, transcription and DNA damage repair. Therefore, inhibition of PARP1 has a great potential for use in cancer therapy. As resistance to PARP inhibitors is starting to be observed in patients, thus the function of PARP-1 needs to be studied in depth in order to find new therapeutic targets. To gain more information on the PARP-1 activity, we expressed PARP-1 in yeast and investigated its effect on cell growth and UV induced homologous recombination. To identify candidate genes affecting PARP-1 activity and cellular localization, we also developed a yeast genome wide genetic screen. We found that PARP-1 strongly inhibited yeast growth, but when yeast was exposed to the PARP-1 inhibitor 6(5-H) phenantridinone (PHE), it recovered from the growth suppression. Moreover, we showed that PARP-1 produced PAR products in yeast and we demonstrated that PARP-1 reduced UV-induced homologous recombination. By genome wide screening, we identified 99 mutants that suppressed PARP-1 growth inhibition. Orthologues of human genes were found for 41 of these yeast genes. We determined whether the PARP-1 protein level was altered in strains which are deleted for the transcription regulator GAL3, the histone H1 gene HHO1, the HUL4 gene, the deubiquitination enzyme gene OTU1, the nuclear pore protein POM152 and the SNT1 that encodes for the Set3C subunit of the histone deacetylase complex. In these strains the PARP-1 level was roughly the same as in the wild type. PARP-1 localized in the nucleus more in the snt1Δ than in the wild type strain; after UV radiation, PARP-1 localized in the nucleus more in hho1 and pom152 deletion strains than in the wild type indicating that these functions may have a role on regulating PARP-1 level and activity in the nucleus. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Relationship between genetic similarity and some productive traits ...

    African Journals Online (AJOL)

    Admin

    Random amplified polymorphic DNA (RAPD) technique was applied to detect genetic similarity between five local chicken strains that have been selected for eggs and meat production in Egypt. Based on six oligonucleotide primers, the genetic similarity between the egg-producing strains (Anshas, Silver. Montazah and ...

  6. Legionella pneumophila transcriptome during intracellular multiplication in human macrophages

    Directory of Open Access Journals (Sweden)

    Sebastien P Faucher

    2011-04-01

    Full Text Available Legionella pneumophila is the causative agent of Legionnaires’ disease, an acute pulmonary infection. L. pneumophila is able to infect and multiply in both phagocytic protozoa, such as Acanthamoeba castellanii, and mammalian professional phagocytes. The best-known L. pneumophila virulence determinant is the Icm/Dot Type IVB secretion system (TFBSS, which is used to translocate more than 150 effector proteins to host cells. While the transcriptional response of Legionella to the intracellular environment of A. castellanii has been investigated, much less is known about the Legionella transcriptional response inside human macrophages. In this study, the transcriptome of L. pneumophila was monitored during exponential and post-exponential phase in rich AYE broth as well as during infection of human cultured macrophages. This was accomplished with microarrays and an RNA amplification procedure called SCOTS to detect small amounts of mRNA from low numbers of intracellular bacteria. Among the genes induced intracellularly are those involved in amino acid biosynthetic pathways leading to L-arginine, L-histidine and L-proline as well as many transport systems involved in amino acid and iron uptake. Gene involved in catabolism of glycerol is also induced during intracellular growth and could be used as a carbon source. The genes encoding the Icm/Dot system are not differentially expressed inside cells compared to control bacteria grown in rich broth, but the genes encoding several translocated effectors are strongly induced. Moreover, we used the transcriptome data to predict previously unrecognized Icm/Dot effector genes based on their expression pattern and confirmed translocation for three candidates. This study provides a comprehensive view of how L. pneumophila responds to the human macrophage intracellular environment.

  7. New insights into valve-related intramural and intracellular bacterial diversity in infective endocarditis.

    Science.gov (United States)

    Oberbach, Andreas; Schlichting, Nadine; Feder, Stefan; Lehmann, Stefanie; Kullnick, Yvonne; Buschmann, Tilo; Blumert, Conny; Horn, Friedemann; Neuhaus, Jochen; Neujahr, Ralph; Bagaev, Erik; Hagl, Christian; Pichlmaier, Maximilian; Rodloff, Arne Christian; Gräber, Sandra; Kirsch, Katharina; Sandri, Marcus; Kumbhari, Vivek; Behzadi, Armirhossein; Behzadi, Amirali; Correia, Joao Carlos; Mohr, Friedrich Wilhelm; Friedrich, Maik

    2017-01-01

    In infective endocarditis (IE), a severe inflammatory disease of the endocardium with an unchanged incidence and mortality rate over the past decades, only 1% of the cases have been described as polymicrobial infections based on microbiological approaches. The aim of this study was to identify potential biodiversity of bacterial species from infected native and prosthetic valves. Furthermore, we compared the ultrastructural micro-environments to detect the localization and distribution patterns of pathogens in IE. Using next-generation sequencing (NGS) of 16S rDNA, which allows analysis of the entire bacterial community within a single sample, we investigated the biodiversity of infectious bacterial species from resected native and prosthetic valves in a clinical cohort of 8 IE patients. Furthermore, we investigated the ultrastructural infected valve micro-environment by focused ion beam scanning electron microscopy (FIB-SEM). Biodiversity was detected in 7 of 8 resected heart valves. This comprised 13 bacterial genera and 16 species. In addition to 11 pathogens already described as being IE related, 5 bacterial species were identified as having a novel association. In contrast, valve and blood culture-based diagnosis revealed only 4 species from 3 bacterial genera and did not show any relevant antibiotic resistance. The antibiotics chosen on this basis for treatment, however, did not cover the bacterial spectra identified by our amplicon sequencing analysis in 4 of 8 cases. In addition to intramural distribution patterns of infective bacteria, intracellular localization with evidence of bacterial immune escape mechanisms was identified. The high frequency of polymicrobial infections, pathogen diversity, and intracellular persistence of common IE-causing bacteria may provide clues to help explain the persistent and devastating mortality rate observed for IE. Improved bacterial diagnosis by 16S rDNA NGS that increases the ability to tailor antibiotic therapy may

  8. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    Directory of Open Access Journals (Sweden)

    Beijing K. Huang

    2014-01-01

    Full Text Available Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies.

  9. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  10. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  11. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism.

    Directory of Open Access Journals (Sweden)

    Eleanor C Saunders

    2014-01-01

    Full Text Available Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13C-stable isotope resolved metabolomics and (2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.

  12. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  13. Development of viral nanoparticles for efficient intracellular delivery

    Science.gov (United States)

    Wu, Zhuojun; Chen, Kevin; Yildiz, Ibrahim; Dirksen, Anouk; Fischer, Rainer; Dawson, Philip E.; Steinmetz, Nicole F.

    2012-05-01

    Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform

  14. Local non-similarity method through the Crocco's transformation in boundary layer problem

    International Nuclear Information System (INIS)

    Jardim, R.G.M.

    1981-04-01

    The coordinate transformation developed by L. Crocco to obtain the solution of the compressible fluid flows over isotermal flat plates is originally employed in the present work, with the purpose of adding its inherent advantage to the Non-Similarity Method idealized by E.M. Sparrow, in the solution of the incompressible non-similar boundary layers. The Crocco's transformation is applied to the conservation equation for forced convection, laminar, constant properties and two-dimensional flows over solids. Two non-similar problems arisen from freestream velocity distribution, the cylinder in crossflow and the Howarth's retarded flow, are solved with a view to illustrating the new procedure. In those solutions the effect of frictional heat is also considered. The results of hydrodynamic and thermal problems are compared with available published information and good agreement was observed. (Author) [pt

  15. Bactericidal and Anti-biofilm Effects of Polyhexamethylene Biguanide in Models of Intracellular and Biofilm of Staphylococcus aureus Isolated from Bovine Mastitis

    Directory of Open Access Journals (Sweden)

    Nor F. Kamaruzzaman

    2017-08-01

    Full Text Available Staphylococcus aureus infection is a common cause of mastitis, reducing milk yield, affecting animal welfare and causing huge economic losses within the dairy industry. In addition to the problem of acquired drug resistance, bacterial invasion into udder cells and the formation of surface biofilms are believed to reduce antibiotic efficacy, leading to treatment failure. Here, we investigated the antimicrobial activities of enrofloxacin, an antibiotic that is commonly used in mastitis therapy and polyhexamethylene biguanide (PHMB, an antimicrobial polymer. The antimicrobial activities were tested against intracellular S. aureus in infected Mac-T cells (host cells. Also, fluorescein-tagged PHMB was used to study PHMB uptake and localization with S. aureus within the infected Mac-T cells. Anti-biofilm activities were tested by treating S. aureus biofilms and measuring effects on biofilm mass in vitro. Enrofloxacin and PHMB at 15 mg/L killed between 42 to 92 and 99.9% of intracellular S. aureus, respectively. PHMB-FITC entered and colocalized with the intracellular S. aureus, suggesting direct interaction of the drug with the bacteria inside the host cells. Enrofloxacin and PHMB at 15 mg/L reduced between 10 to 27% and 28 to 37% of biofilms’ mass, respectively. The half-maximal inhibitory concentrations (IC50 obtained from a cytotoxicity assay were 345 ± 91 and 21 ± 2 mg/L for enrofloxacin and PHMB, respectively; therefore, both compounds were tolerated by the host cells at high concentrations. These findings suggest that both antimicrobials are effective against intracellular S. aureus and can disrupt biofilm structures, with PHMB being more potent against intracellular S. aureus, highlighting the potential application of PHMB in mastitis therapy.

  16. Cationic Antimicrobial Peptide LL-37 Is Effective against both Extra- and Intracellular Staphylococcus aureus

    Science.gov (United States)

    Noore, Jabeen; Noore, Adly

    2013-01-01

    The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens. PMID:23274662

  17. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria

    International Nuclear Information System (INIS)

    Lamhonwah, Anne-Marie; Tein, Ingrid

    2006-01-01

    Carnitine is a zwitterion essential for the β-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[ 3 H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K m of 422 μM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[ 3 H]carnitine uptake (K m 1324 μM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis

  18. Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H+-ATPase1[OPEN

    Science.gov (United States)

    Tan, Li Xuan; Bushey, Daniel B.; Swanson, Sarah J.

    2018-01-01

    A P-type H+-ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis (Arabidopsis thaliana) plant expressing H+-ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H+ secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H+-ATPase. PMID:29042459

  19. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  20. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella, and Vibrio

    Science.gov (United States)

    de Souza Santos, Marcela; Orth, Kim

    2018-01-01

    Summary Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. PMID:25440316

  1. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda

    2012-01-01

    Cerebral arteries subjected to different types of experimental stroke upregulate their expression of certain G-protein-coupled vasoconstrictor receptors, a phenomenon that worsens the ischemic brain damage. Upregulation of contractile endothelin B (ET(B)) and 5-hydroxytryptamine 1B (5-HT(1B......)) receptors has been demonstrated after subarachnoid hemorrhage and global ischemic stroke, but the situation is less clear after focal ischemic stroke. Changes in smooth muscle calcium handling have been implicated in different vascular diseases but have not hitherto been investigated in cerebral arteries...... and extracellular sources, whereas 5-HT(1B) receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential...

  2. Tethering factors as organizers of intracellular vesicular traffic.

    Science.gov (United States)

    Yu, I-Mei; Hughson, Frederick M

    2010-01-01

    Intracellular trafficking entails the budding, transport, tethering, and fusion of transport vesicles and other membrane carriers. Here we review recent progress toward a mechanistic understanding of vesicle tethering. The known tethering factors are large complexes important for one or more intracellular trafficking pathways and are capable of interacting directly with many of the other principal components of the cellular trafficking machinery. Our review emphasizes recent developments in the in vitro reconstitution of vesicle tethering and the structural characterization of multisubunit tethering factors. The combination of these and other approaches has led to exciting progress toward understanding how these essential nanomachines work.

  3. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Hye; Joo, Sang-Woo [Department of Chemistry, Soongsil University, Seoul 156-743 (Korea, Republic of); Cho, Keunchang [Logos Biosystems, Incorporated, Anyang 431-070 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr, E-mail: sjoo@ssu.ac.kr [Laboratory of Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2011-06-10

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  4. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Joo, Sang-Woo; Cho, Keunchang; Lee, So Yeong

    2011-01-01

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  5. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  6. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  7. Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses

    Directory of Open Access Journals (Sweden)

    Jinhua Li

    2016-02-01

    Full Text Available The recent discovery of intracellular carbonatogenesis in several cyanobacteria species has challenged the traditional view that this process was extracellular and not controlled. However, a detailed analysis of the size distribution, chemical composition and 3-D-arrangement of carbonates in these cyanobacteria is lacking. Here, we characterized these features in Candidatus Gloeomargarita lithophora C7 and Candidatus Synechococcus calcipolaris G9 by conventional transmission electron microscopy, tomography, ultramicrotomy, and scanning transmission X-ray microscopy (STXM. Both Ca. G. lithophora C7 and Ca. S. calcipolaris G9 formed numerous polyphosphate granules adjacent or engulfing Ca-carbonate inclusions when grown in phosphate-rich solutions. Ca-carbonates were scattered within Ca. G. lithophora C7 cells under these conditions, but sometimes arranged in one or several chains. In contrast, Ca-carbonates formed at cell septa in Ca. S. calcipolaris G9 and were segregated equally between daughter cells after cell division, arranging as distorted disks at cell poles. The size distribution of carbonates evolved from a positively to a negatively skewed distribution as particles grew. Conventional ultramicrotomy did not preserve Ca-carbonates explaining partly why intracellular calcification has been overlooked in the past. All these new observations allow discussing with unprecedented insight some nucleation and growth processes occurring in intracellularly calcifying cyanobacteria with a particular emphasis on the possible involvement of intracellular compartments and cytoskeleton.

  8. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  9. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    Science.gov (United States)

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  10. INTRACELLULAR COPPER ACCUMULATION ENHANCES THE GROWTH OF KINEOCOCCUS RADIOTOLERANS DURING CHRONIC IRRADIATION

    International Nuclear Information System (INIS)

    Bagwell, C; Charles Milliken, C

    2007-01-01

    The actinobacteria Kineococcus radiotolerans is highly resistant to ionizing radiation, desiccation, and oxidative stress; though the underlying biochemical mechanisms are unknown. The purpose of this study was to explore a possible linkage between the uptake of transition metals and extreme resistance to ionizing radiation and oxidative stress. The effects of 6 different divalent cationic metals on growth were examined in the absence of ionizing radiation. None of the metals tested were stimulatory, though cobalt was inhibitory to growth. In contrast, copper supplementation dramatically increased cell growth during chronic irradiation. K. radiotolerans exhibited specific uptake and intracellular accumulation of copper compared to only a weak response to both iron and manganese supplementation. Copper accumulation sensitized cells to hydrogen peroxide. Acute irradiation induced DNA damage was similar between the copper-loaded culture as the age-synchronized no copper control culture, though low molecular weight DNA was more persistent during post-irradiation recovery in the Cu-loaded culture. Still, the estimated times for genome restoration differed by only 1 hr between treatments. While we cannot discount the possibility that copper fulfills an unexpectedly important biochemical role in a radioactive environment; K. radiotolerans has a high capacity for intracellular copper sequestration, and presumably efficiently coordinated oxidative stress defenses and detoxification systems, which confers cross-protection from the damaging affects ionizing radiation

  11. Histopathological confirmation of similar intramucosal distribution of fluorescein in both intravenous administration and local mucosal application for probe-based confocal laser endomicroscopy of the normal stomach.

    Science.gov (United States)

    Nonaka, Kouichi; Ohata, Ken; Ban, Shinichi; Ichihara, Shin; Takasugi, Rumi; Minato, Yohei; Tashima, Tomoaki; Matsuyama, Yasushi; Takita, Maiko; Matsuhashi, Nobuyuki; Neumann, Helmut

    2015-12-16

    Probe-based confocal laser endomicroscopy (pCLE) is capable of acquiring in vivo magnified cross-section images of the gastric mucosa. Intravenous injection of fluorescein sodium is used for confocal imaging. However, it is still under debate if local administration of the dye to the mucosa is also effective for confocal imaging as it is not yet clear if topical application also reveals the intramucosal distribution of fluorescein. The objective of this study was to evaluate the intramucosal distribution of fluorescein sodium after topical application and to compare the distribution to the conventional intravenous injection used for confocal imaging. pCLE of the stomach uninfected with Helicobacter pylori was performed in a healthy male employing intravenous administration and local mucosal application of fluorescein. The mucosa of the lower gastric body was biopsied 1 min and 5 min after intravenous administration or local mucosal application of fluorescein, and the distribution of fluorescein in the biopsy samples was examined histologically. Green fluorescence was already observed in the cytoplasm of fundic glandular cells in the biopsied deep mucosa 1 min after local mucosal application of fluorescein. It was also observed in the foveolar lumen and inter-foveolar lamina propria, although it was noted at only a few sites. In the tissue biopsied 5 min after the local mucosal application of fluorescein, green fluorescence was more frequently noted in the cytoplasm of fundic glandular cells than in that 1 min after the local mucosal application of fluorescein, although obvious green fluorescence was not identified in the foveolar lumen or inter-foveolar lamina propria. The distribution of intravenously administered fluorescein in the cytoplasm of fundic glandular cells was also clearly observed similarly to that after local mucosal application of fluorescein. Green fluorescence in more cells was observed in many cells 5 min after intravenous administration compared

  12. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection.

    Science.gov (United States)

    Mentzer, Robert M; Lasley, Robert D; Jessel, Andreas; Karmazyn, Morris

    2003-02-01

    Although the mechanisms underlying ischemia/reperfusion injury remain elusive, evidence supports the etiologic role of intracellular calcium overload and oxidative stress induced by reactive oxygen species. Activation of the sodium hydrogen exchanger (NHE) is associated with intracellular calcium accumulation. Inhibition of the NHE-1 isoform may attenuate the consequences of this injury. Although there is strong preclinical and early clinical evidence that NHE inhibitors may be cardioprotective, definitive proof of this concept in humans awaits the results of ongoing clinical trials.

  13. The effect of sodium bicarbonate on intracellular pH using 31P-MR spectroscopy

    International Nuclear Information System (INIS)

    Nakashima, Kazuya; Kashiwagi, Shiro; Ito, Haruhide; Yamashita, Tetsuo; Kitahara, Tetsuhiro; Nakayama, Naoto; Saito, Kennichi

    1997-01-01

    This report deals with the effects of sodium bicarbonate on the intracellular pH of the brain and cerebral blood flow (CBF); five normal volunteers were studied. Intracellular pH and CBF were measured by phosphorus 31 magnetic resonance spectroscopy ( 31 P-MRS) and stable xenon computed tomography (Xe-CT), respectively. Each individual received 7% sodium bicarbonate (3.5 ml/kg body weight), infused intravenously over a 15-min period. Intracellular pH, CBF, and physiological parameters were determined before and after the injection. Intracellular pH was significantly decreased and CBF was increased. Among the physiological parameters, the hematocrit was significantly decreased and arterial pressure of carbon dioxide (PaCO 2 ), increased. These results suggest that increasing CO 2 contributes to the decrease in intracellular pH. In conclusion, three factors increase CBF during the administration of sodium bicarbonate to humans: arterial dilatation in response to carbon dioxide; decrease of the hematocrit, and intracellular cerebral acidosis. (author)

  14. Members of the HCMV US12 family of predicted heptaspanning membrane proteins have unique intracellular distributions, including association with the cytoplasmic virion assembly complex

    International Nuclear Information System (INIS)

    Das, Subhendu; Pellett, Philip E.

    2007-01-01

    The human cytomegalovirus (HCMV) US12 gene family is a group of 10 predicted seven-transmembrane domain proteins that have some features in common with G-protein-coupled receptors. Little is known of their patterns of expression, localization, or functional interactions. Here, we studied the intracellular localization of three US12 family members, US14, US17, and US18, with respect to various intracellular markers and the cytoplasmic virion assembly compartment (AC). The three proteins have distinct patterns of expression, which include associations with the AC. US14 is often distributed in a uniform granular manner throughout the cytoplasm, concentrating in the AC in some cells. US17 is expressed in a segmented manner, with its N-terminal domain localizing to the periphery of what we show here to be the AC and the C-terminal domain localizing to nuclei and the cytoplasm [Das, S., Skomorovska-Prokvolit, Y., Wang, F. Z., Pellett, P.E., 2006. Infection-dependent nuclear localization of US17, a member of the US12 family of human cytomegalovirus-encoded seven-transmembrane proteins. J. Virol. 80, 1191-1203]. Here, we show that the C-terminal domain is present at the center of the AC, in close association with markers of early endosomes; the N-terminal staining corresponds to an area stained by markers for the Golgi and trans-Golgi. US18 is distributed throughout the cytoplasm, concentrating in the AC at later stages of infection; it is localized more to the periphery of the AC than are US14 and US17C, in association with markers of the trans-Golgi. Although not detected in virions, their structures and localization in various zones within the AC suggest possible roles for these proteins in the process of virion maturation and egress

  15. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  16. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  17. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  18. Kinetic Properties of α-Galactosidase and the Localization of Total Proteins in Erwinia chrysanthemi

    Directory of Open Access Journals (Sweden)

    John Morgan Brand

    2004-01-01

    Full Text Available Erwinia chrysanthemi is an enterobacterium that causes soft-rot in plants in general, resulting in enormous economic losses annually. For the pathogen to survive in the host plant, it has to use the readily assimilable compounds from the host fluids and degrade the host tissue. To accomplish this, E. chrysanthemi produces several extracellular and intracellular enzymes. Among the intracellular enzymes there is a special digestive class, the galactosidases, which can be either periplasmic or cytoplasmic. α-Galactosidase is known to degrade melibiose and raffinose into glucose and galactose, and into galactose and sucrose respectively. The aim of the present study was to investigate the kinetic properties of α-galactosidase in E. chrysanthemi, and the localization of total proteins, after culturing it in the presence of raffinose and melibiose. The α-galactosidase that degrades melibiose seems to be the same enzyme that is also responsible for the breakdown of raffinose in E. chrysanthemi. It is localized mainly in the cytoplasm with a fraction of between 2.4 and 5.4 % localized in the periplasm. The majority of E. chrysanthemi proteins have cytoplasmic localization.

  19. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  20. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  1. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    Science.gov (United States)

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  2. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  3. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants

    Directory of Open Access Journals (Sweden)

    Lapin Alexei

    2011-05-01

    Full Text Available Abstract Background In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules. Molecules can also unspecifically bind to membranes or the cytoskeleton affecting (i the fraction of unbound molecules in the cytosol and (ii furthermore reducing the mobility. Binding of molecules to intracellular structures or scaffolds can in turn lead to a microcompartmentalization of the cell. Especially the formation of enzyme complexes promoting metabolic channeling, e.g. in glycolysis, depends on the co-localization of the proteins. Results While the co-localization of enzymes leads to faster reaction rates, the reduced mobility decreases the collision rate of reactants, hence reducing the reaction rate, as expected. This effect is most prominent in diffusion limited reactions. Furthermore, anomalous diffusion can occur due to molecular crowding in the cell. In the context of diffusion controlled reactions, anomalous diffusion leads to fractal reaction kinetics. The simulation framework is used to quantify and separate the effects originating from molecular crowding or the reduced mobility of the reactants. We were able to define three factors which describe the effective reaction rate, namely f diff for the diffusion effect, f volume for the crowding, and f access for the reduced accessibility of the molecules. Conclusions Molecule distributions, reaction rate constants and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of a realistic cell environment. As such, the present simulation can help to bridge the gap between in vivo and in vitro

  4. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  5. A method for functional trans-complementation of intracellular Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Shaun Steele

    Full Text Available Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1β secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1β secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional

  6. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  7. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  8. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis.

    Science.gov (United States)

    Micheva-Viteva, Sofiya N; Shou, Yulin; Ganguly, Kumkum; Wu, Terry H; Hong-Geller, Elizabeth

    2017-01-01

    Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis , we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host

  9. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  10. DMPD: NOD-like receptors (NLRs): bona fide intracellular microbial sensors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18585455 NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Shaw...tml) (.csml) Show NOD-like receptors (NLRs): bona fide intracellular microbial sensors. PubmedID 18585455 Ti...tle NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Authors

  11. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  12. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  13. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-05-01

    The intracellular glutathione (GSH) content in HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulfoximine (BSO) or diethyl maleate (DEM). Clonogenicity, single strand DNA breaks (ssb) and double strand DNA breaks (dsb) were used as criteria for radiation induced damage after X- or γ irradiation. In survival experiments DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the OER was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (Auth.)

  14. Reduction of intracellular glutathione content and radiosensitivity

    International Nuclear Information System (INIS)

    Vos, O.; Schans, G.P. van der; Roos-Verheij, W.S.D.

    1986-01-01

    The intracellular glutathione (GSH) content of HeLa, CHO and V79 cells was reduced by incubating the cells in growth medium containing buthionine sulphoximine or diethyl maleate (DEM). Clonogenicity, single-strand DNA breaks (ssb) and double-strand DNA breaks (dsb) were used as criteria for radiation-induced damage after X- or γ-irradiation. In survival experiments, DEM gave a slightly larger sensitization although it gave a smaller reduction of the intracellular GSH. In general, sensitization was larger for dsb than for ssb, also the reduction of the o.e.r. was generally larger for dsb than for ssb. This may be due to the higher dose rate in case of dsb experiments resulting in a higher rate of radiochemical oxygen consumption. In general, no effect was found on post-irradiation repair of ssb and dsb. (author)

  15. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  16. Mixed quantization dimensions of self-similar measures

    International Nuclear Information System (INIS)

    Dai Meifeng; Wang Xiaoli; Chen Dandan

    2012-01-01

    Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.

  17. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Khaled Alkhuder

    2009-01-01

    Full Text Available Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative gamma-glutamyl transpeptidase (GGT. This gene (FTL_0766 was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, gamma-glutamyl-cysteinyl-glycine and gamma-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria-host adaptation.

  18. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes.

    Science.gov (United States)

    Smitha, K T; Nisha, N; Maya, S; Biswas, Raja; Jayakumar, R

    2015-03-01

    Polymorphonuclear leukocytes (PMNs) provide the primary host defence against invading pathogens by producing reactive oxygen species (ROS) and microbicidal products. However, few pathogens can survive for a prolonged period of time within the PMNs. Additionally their intracellular lifestyle within the PMNs protect themselves from the additional lethal action of host immune systems such as antibodies and complements. Antibiotic delivery into the intracellular compartments of PMNs is a major challenge in the field of infectious diseases. In order to deliver antibiotics within the PMNs and for the better treatment of intracellular bacterial infections we synthesized rifampicin (RIF) loaded amorphous chitin nanoparticles (RIF-ACNPs) of 350±50 nm in diameter. RIF-ACNPs nanoparticles are found to be non-hemolytic and non-toxic against a variety of host cells. The release of rifampicin from the prepared nanoparticles was ∼60% in 24 h, followed by a sustained pattern till 72 h. The RIF-ACNPs nanoparticles showed 5-6 fold enhanced delivery of RIF into the intracellular compartments of PMNs. The RIF-ACNPs showed anti-microbial activity against Escherichia coli, Staphylococcus aureus and a variety of other bacteria. In summary, our results suggest that RIF-ACNPs could be used to treat a variety of intracellular bacterial infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  20. Model Linking Plasma and Intracellular Tenofovir/Emtricitabine with Deoxynucleoside Triphosphates.

    Directory of Open Access Journals (Sweden)

    Xinhui Chen

    Full Text Available The coformulation of the nucleos(tide analogs (NA tenofovir (TFV disoproxil fumarate (TDF and emtricitabine (FTC is approved for HIV-infection treatment and prevention. Plasma TFV and FTC undergo complicated hybrid processes to form, accumulate, and retain as their active intracellular anabolites: TFV-diphosphate (TFV-DP and FTC-triphosphate (FTC-TP. Such complexities manifest in nonlinear intracellular pharmacokinetics (PK. In target cells, TFV-DP/FTC-TP compete with endogenous deoxynucleoside triphosphates (dNTP at the active site of HIV reverse transcriptase, underscoring the importance of analog:dNTP ratios for antiviral efficacy. However, NA such as TFV and FTC have the potential to disturb the dNTP pool, which could augment or reduce their efficacies. We conducted a pharmacokinetics-pharmacodynamics (PKPD study among forty subjects receiving daily TDF/FTC (300 mg/200 mg from the first-dose to pharmacological intracellular steady-state (30 days. TFV/FTC in plasma, TFV-DP/FTC-TP and dNTPs in peripheral blood mononuclear cells (PBMC were quantified using validated LC/MS/MS methodologies. Concentration-time data were analyzed using nonlinear mixed effects modeling (NONMEM. Formations and the accumulation of intracellular TFV-DP/FTC-TP was driven by plasma TFV/FTC, which was described by a hybrid of first-order formation and saturation. An indirect response link model described the interplay between TFV-DP/FTC-TP and the dNTP pool change. The EC50 (interindividual variability, (%CV of TFV-DP and FTC-TP on the inhibition of deoxyadenosine triphosphate (dATP and deoxycytidine triphosphate (dCTP production were 1020 fmol/106 cells (130% and 44.4 pmol/106 cells (82.5%, resulting in (90% prediction interval 11% (0.45%, 53% and 14% (2.6%, 35% reductions. Model simulations of analog:dNTP molar ratios using IPERGAY dosing suggested that FTC significantly contributes to the protective effect of preexposure prophylaxis (PrEP. Simulation

  1. Molecular detection and characterization of sustainable intracellular ...

    African Journals Online (AJOL)

    3Centre for Biopolymer and Bio-Molecular Research, Athlone College of Technology, Republic of Ireland. ... cells was associated with the elongation of micro-villar extension that ... Keywords: Intracellular contaminants, cell cultures, bacteria culture, pre-clinical studies. ... production work involving culture technology.

  2. Cationic polymers for intracellular delivery of proteins

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.; Samal, Sangram; Dubruel, Peter

    2015-01-01

    Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering

  3. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  4. The effect of sodium bicarbonate on intracellular pH using {sup 31}P-MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Kazuya; Kashiwagi, Shiro; Ito, Haruhide [Yamaguchi Univ., Ube (Japan). School of Medicine; Yamashita, Tetsuo; Kitahara, Tetsuhiro; Nakayama, Naoto; Saito, Kennichi

    1997-03-01

    This report deals with the effects of sodium bicarbonate on the intracellular pH of the brain and cerebral blood flow (CBF); five normal volunteers were studied. Intracellular pH and CBF were measured by phosphorus 31 magnetic resonance spectroscopy ({sup 31}P-MRS) and stable xenon computed tomography (Xe-CT), respectively. Each individual received 7% sodium bicarbonate (3.5 ml/kg body weight), infused intravenously over a 15-min period. Intracellular pH, CBF, and physiological parameters were determined before and after the injection. Intracellular pH was significantly decreased and CBF was increased. Among the physiological parameters, the hematocrit was significantly decreased and arterial pressure of carbon dioxide (PaCO{sub 2}), increased. These results suggest that increasing CO{sub 2} contributes to the decrease in intracellular pH. In conclusion, three factors increase CBF during the administration of sodium bicarbonate to humans: arterial dilatation in response to carbon dioxide; decrease of the hematocrit, and intracellular cerebral acidosis. (author)

  5. Intracellular insulin processing is altered in monocytes from patients with type II diabetes mellitus

    International Nuclear Information System (INIS)

    Trischitta, V.; Benzi, L.; Brunetti, A.; Cecchetti, P.; Marchetti, P.; Vigneri, R.; Navalesi, R.

    1987-01-01

    We studied total cell-associated A14-[ 125 I]insulin radioactivity (including surface-bound and internalized radioactivity), insulin internalization, and its intracellular degradation at 37 C in monocytes from nonobese type II untreated diabetic patients (n = 9) and normal subjects (n = 7). Total cell-associated radioactivity was decreased in diabetic patients [2.65 +/- 1.21% (+/- SD) vs. 4.47 +/- 1.04% of total radioactivity. Insulin internalization was also reduced in diabetic patients (34.0 +/- 6.8% vs. 59.0 +/- 11.3% of cell-associated radioactivity. Using high performance liquid chromatography six intracellular forms of radioactivity derived from A14-[ 125 I] insulin were identified; 10-20% of intracellular radioactivity had approximately 300,000 mol wt and was identified as radioactivity bound to the insulin receptor, and the remaining intracellular radioactivity included intact A14-[ 125 I]insulin, [ 125 I]iodide, or [ 125 I]tyrosine, and three intermediate compounds. A progressive reduction of intact insulin and a corresponding increase in iodine were found when the incubation time was prolonged. Intracellular insulin degradation was reduced in monocytes from diabetic patients; intracellular intact insulin was 65.6 +/- 18.1% vs. 37.4 +/- 18.0% of intracellular radioactivity after 2 min and 23.6 +/- 22.3% vs. 3.9 +/- 2.3% after 60 min in diabetic patients vs. normal subjects, respectively. In conclusion, 1) human monocytes internalize and degrade insulin in the intracellular compartment in a stepwise time-dependent manner; and 2) in monocytes from type II diabetic patients total cell-associated radioactivity, insulin internalization, and insulin degradation are significantly reduced. These defects may be related to the cellular insulin resistance present in these patients

  6. Simple Recovery of Intracellular Gold Nanoparticles from Peanut Seedling Roots.

    Science.gov (United States)

    Raju, D; Mehta, Urmil J; Ahmad, Absar

    2015-02-01

    Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.

  7. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  8. Mycobacterium avium-intracellulare cellulitis occurring with septic arthritis after joint injection: a case report

    Directory of Open Access Journals (Sweden)

    Murdoch David M

    2007-02-01

    Full Text Available Abstract Background Cellulitis caused by Mycobacterium avium-intracellulare has rarely been described. Mycobacterium avium-intracellulare is a rare cause of septic arthritis after intra-articular injection, though the causative role of injection is difficult to ascertain in such cases. Case presentation A 57-year-old with rheumatoid arthritis treated with prednisone and azathioprine developed bilateral painful degenerative shoulder arthritis. After corticosteroid injections into both acromioclavicular joints, he developed bilateral cellulitis centered over the injection sites. Skin biopsy showed non-caseating granulomas, and culture grew Mycobacterium avium-intracellulare. Joint aspiration also revealed Mycobacterium avium-intracellulare infection. Conclusion Although rare, skin and joint infections caused by Mycobacterium avium-intracellulare should be considered in any immunocompromised host, particularly after intra-articular injection. Stains for acid-fast bacilli may be negative in pathologic samples even in the presence of infection; cultures of tissue specimens should always be obtained.

  9. Chemical similarity and local community assembly in the species rich tropical genus Piper.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J

    2016-11-01

    Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.

  10. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    Science.gov (United States)

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    Science.gov (United States)

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  12. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    Directory of Open Access Journals (Sweden)

    Anubha Sagar

    Full Text Available S. agalactiae (group B streptococci, GBS is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  13. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  14. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  15. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.

    Science.gov (United States)

    Lu, Ming; Zhu, Xiao-Hong; Chen, Wei

    2016-07-01

    NAD(+) and NADH play key roles in cellular respiration. Intracellular redox state defined by the NAD(+) /NADH ratio (RX) reflects the cellular metabolic and physiopathological status. By taking advantage of high/ultrahigh magnetic field strengths, we have recently established a novel in vivo (31) P MRS-based NAD assay for noninvasive and quantitative measurements of intracellular NAD concentrations and redox state in animal and human brains at 16.4 T, 9.4 T and 7 T. To explore its potential for clinical application, in this study we investigated the feasibility of assessing the NAD metabolism and redox state in human brain at a lower field of 4 T by incorporating the (1) H-decoupling technique with the in vivo (31) P NAD assay. The use of (1) H decoupling significantly narrowed the linewidths of NAD and α-ATP resonances, resulting in higher sensitivity and better spectral resolution as compared with the (1) H-coupled (31) P spectrum. These improvements made it possible to reliably quantify cerebral NAD concentrations and RX, consistent with previously reported results obtained from similar age human subjects at 7 T. In summary, this work demonstrates the capability and utility of the (1) H-decoupled (31) P MRS-based NAD assay at lower field strength; thus, it opens new opportunities for studying intracellular NAD metabolism and redox state in human brain at clinical settings. This conclusion is supported by the simulation results, indicating that similar performance and reliability as observed at 4T can be achieved at 3 T with the same signal-to-noise ratio. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. A Similarity Search Using Molecular Topological Graphs

    Directory of Open Access Journals (Sweden)

    Yoshifumi Fukunishi

    2009-01-01

    Full Text Available A molecular similarity measure has been developed using molecular topological graphs and atomic partial charges. Two kinds of topological graphs were used. One is the ordinary adjacency matrix and the other is a matrix which represents the minimum path length between two atoms of the molecule. The ordinary adjacency matrix is suitable to compare the local structures of molecules such as functional groups, and the other matrix is suitable to compare the global structures of molecules. The combination of these two matrices gave a similarity measure. This method was applied to in silico drug screening, and the results showed that it was effective as a similarity measure.

  17. Tissue localization and extracellular matrix degradation by PI, PII and PIII snake venom metalloproteinases: clues on the mechanisms of venom-induced hemorrhage.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2015-04-01

    Full Text Available Snake venom hemorrhagic metalloproteinases (SVMPs of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.

  18. Dynamic Regulation of Ero1α and Peroxiredoxin 4 Localization in the Secretory Pathway*

    Science.gov (United States)

    Kakihana, Taichi; Araki, Kazutaka; Vavassori, Stefano; Iemura, Shun-ichiro; Cortini, Margherita; Fagioli, Claudio; Natsume, Tohru; Sitia, Roberto; Nagata, Kazuhiro

    2013-01-01

    In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis. PMID:23979138

  19. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  20. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    International Nuclear Information System (INIS)

    Majumdar, S.; Basu, S.K.

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  1. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Zhenghang Zhao

    Full Text Available Recent studies have suggested that mitochondria may play important roles in the Ca(2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+ flux can regulate the generation of Ca(2+ waves (CaWs and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+ (Cai (2+ was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR Ca(2+ release and CaWs were induced in the presence of high (4 mM external Ca(2+ (Cao (2+. The protonophore carbonyl cyanide p-(trifluoromethoxyphenylhydrazone (FCCP reversibly raised basal Cai (2+ levels even after depletion of SR Ca(2+ in the absence of Cao (2+ , suggesting Ca(2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m or Ru360 (a mitochondrial Ca(2+ uniporter inhibitor, but not by oligomycin (an ATP synthase inhibitor or iodoacetic acid (a glycolytic inhibitor, excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+ release and uptake exquisitely control the local Ca(2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.

  2. Complexation of intracellular cyanide by hydroxocobalamin using a human cellular model.

    Science.gov (United States)

    Astier, A; Baud, F J

    1996-01-01

    1. The rational for administering hydroxocobalamin (OHCbl) as an antidote to cyanide poisoning is based on the high affinity of CN ion for cobalt compounds. However, only few data are available on the influence of OHCbl on the intracellular cyanide pool. 2. In human fibroblasts incubated for 10 min with 500 microM of [14C] cyanide, the accumulation ratio was 25 at 37 degrees C (10.45 +/- 1.51 mM) and 11.9 at 4 degrees C. 3. Using the monoblastic U-937 cell line, a rapid uptake of radioactive cyanide was observed with a maximum accumulation ratio of 1.97 at 5 min. 4. A linear relationship between cyanide uptake by U-937 cells and cyanide concentration in incubation medium (10-500 microM; 5 min) was found suggesting a first order process (k = 0.25 min-1). 5. After incubation of fibroblasts with 500 microM of OHCbl, a 75% decrease of intracellular cyanide was observed, with concomittant formation of intracellular cyanocobalamin CNCbl (intracellular/extracellular ratio: 158). 6. These findings suggest that OHCbl is able to penetrate into heavily cyanide loaded cells and to complex cyanide to the non-toxic CNCbl form.

  3. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  5. Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro

    DEFF Research Database (Denmark)

    Skydsgaard, Morten Arnika; Hounsgaard, J

    1994-01-01

    1. Integration of responses to local activation of transmitter receptors in the dendrites of motoneurones was investigated in a slice preparation of the turtle spinal cord. Membrane-active substances were applied from up to three independent iontophoresis electrodes during intracellular recording...

  6. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    Science.gov (United States)

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  7. Multi-Scale Scattering Transform in Music Similarity Measuring

    Science.gov (United States)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  8. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  9. Stronger activation of SREBP-1a by nucleus-localized HBx

    International Nuclear Information System (INIS)

    Wu, Qi; Qiao, Ling; Yang, Jian; Zhou, Yan; Liu, Qiang

    2015-01-01

    We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of the nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication

  10. Stronger activation of SREBP-1a by nucleus-localized HBx

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qi [VIDO-InterVac, Veterinary Microbiology, University of Saskatchewan, Saskatoon (Canada); Qiao, Ling [VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Yang, Jian [Drug Discovery Group, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Zhou, Yan [VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [VIDO-InterVac, Veterinary Microbiology, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2015-05-08

    We previously showed that hepatitis B virus (HBV) X protein activates the sterol regulatory element-binding protein-1a (SREBP-1a). Here we examined the role of nuclear localization of HBx in this process. In comparison to the wild-type and cytoplasmic HBx, nuclear HBx had stronger effects on SREBP-1a and fatty acid synthase transcription activation, intracellular lipid accumulation and cell proliferation. Furthermore, nuclear HBx could activate HBV enhancer I/X promoter and was more effective on up-regulating HBV mRNA level in the context of HBV replication than the wild-type HBx, while the cytoplasmic HBx had no effect. Our results demonstrate the functional significance of the nucleus-localized HBx in regulating host lipogenic pathway and HBV replication. - Highlights: • Nuclear HBx is more effective on activating SREBP-1a and FASN transcription. • Nuclear HBx is more effective on enhancing intracellular lipid accumulation. • Nuclear HBx is more effective on enhancing cell proliferation. • Nuclear HBx up-regulates HBV enhancer I/X promoter activity. • Nuclear HBx increases HBV mRNA level in the context of HBV replication.

  11. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  12. Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors.

    Science.gov (United States)

    Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre; Bouvier, Michel; Benovic, Jeffrey L; Shukla, Arun K

    2018-05-04

    G protein-coupled receptors (GPCRs) recognize a diverse array of extracellular stimuli, and they mediate a broad repertoire of signaling events involved in human physiology. Although the major effort on targeting GPCRs has typically been focused on their extracellular surface, a series of recent developments now unfold the possibility of targeting them from the intracellular side as well. Allosteric modulators binding to the cytoplasmic surface of GPCRs have now been described, and their structural mechanisms are elucidated by high-resolution crystal structures. Furthermore, pepducins, aptamers, and intrabodies targeting the intracellular face of GPCRs have also been successfully utilized to modulate receptor signaling. Moreover, small molecule compounds, aptamers, and synthetic intrabodies targeting β-arrestins have also been discovered to modulate GPCR endocytosis and signaling. Here, we discuss the emerging paradigm of intracellular targeting of GPCRs, and outline the current challenges, potential opportunities, and future outlook in this particular area of GPCR biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The effect of high pressure on the intracellular trehalose synthase activity of Thermus aquaticus.

    Science.gov (United States)

    Dong, Yongsheng; Ma, Lei; Duan, Yuanliang

    2016-01-01

    To understand the effect of high pressure on the intracellular trehalose synthase activity, Thermus aquaticus (T. aquaticus) in the logarithmic growth phase was treated with high-pressure air, and its intracellular trehalose synthase (TSase) activity was determined. Our results indicated that pressure is a factor strongly affecting the cell growth. High pressure significantly attenuated the growth rate of T. aquaticus and shortened the duration of stationary phase. However, after 2 h of culture under 1.0 MPa pressure, the activity of intracellular TSase in T. aquaticus reached its maximum value, indicating that pressure can significantly increase the activity of intracellular TSase in T. aquaticus. Thus the present study provides an important guide for the enzymatic production of trehalose.

  14. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    Science.gov (United States)

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  15. The role of visual similarity and memory in body model distortions.

    Science.gov (United States)

    Saulton, Aurelie; Longo, Matthew R; Wong, Hong Yu; Bülthoff, Heinrich H; de la Rosa, Stephan

    2016-02-01

    Several studies have shown that the perception of one's own hand size is distorted in proprioceptive localization tasks. It has been suggested that those distortions mirror somatosensory anisotropies. Recent research suggests that non-corporeal items also show some spatial distortions. In order to investigate the psychological processes underlying the localization task, we investigated the influences of visual similarity and memory on distortions observed on corporeal and non-corporeal items. In experiment 1, participants indicated the location of landmarks on: their own hand, a rubber hand (rated as most similar to the real hand), and a rake (rated as least similar to the real hand). Results show no significant differences between rake and rubber hand distortions but both items were significantly less distorted than the hand. Experiments 2 and 3 explored the role of memory in spatial distance judgments of the hand, the rake and the rubber hand. Spatial representations of items measured in experiments 2 and 3 were also distorted but showed the tendency to be smaller than in localization tasks. While memory and visual similarity seem to contribute to explain qualitative similarities in distortions between the hand and non-corporeal items, those factors cannot explain the larger magnitude observed in hand distortions. Copyright © 2015. Published by Elsevier B.V.

  16. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    CERN Document Server

    Lim, S C

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansi...

  17. Generalized Ornstein-Uhlenbeck processes and associated self-similar processes

    International Nuclear Information System (INIS)

    Lim, S C; Muniandy, S V

    2003-01-01

    We consider three types of generalized Ornstein-Uhlenbeck processes: the stationary process obtained from the Lamperti transformation of fractional Brownian motion, the process with stretched exponential covariance and the process obtained from the solution of the fractional Langevin equation. These stationary Gaussian processes have many common properties, such as the fact that their local covariances share a similar structure and they exhibit identical spectral densities at large frequency limit. In addition, the generalized Ornstein-Uhlenbeck processes can be shown to be local stationary representations of fractional Brownian motion. Two new self-similar Gaussian processes, in addition to fractional Brownian motion, are obtained by applying the (inverse) Lamperti transformation to the generalized Ornstein-Uhlenbeck processes. We study some of the properties of these self-similar processes such as the long-range dependence. We give a simulation of their sample paths based on numerical Karhunan-Loeve expansion

  18. Subcellular localization of hepatitis E virus (HEV) replicase

    International Nuclear Information System (INIS)

    Rehman, Shagufta; Kapur, Neeraj; Durgapal, Hemlata; Panda, Subrat Kumar

    2008-01-01

    Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of ∼ 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication

  19. An introduction to proteoglycans and their localization

    DEFF Research Database (Denmark)

    Couchman, John R; Pataki, Andreea Csilla

    2012-01-01

    and in vivo location, and have important roles in invertebrate and vertebrate development, maintenance, and tissue repair. Many biologically potent small proteins can bind glycosaminoglycan chains as a key part of their function in the extracellular matrix, at the cell surface, and also in some intracellular...... locations. Therefore, the participation of proteoglycans in disease is receiving increased attention. In this short review, proteoglycan structure, function, and localizations are summarized, with reference to accompanying reviews in this issue as well as other recent literature. Included are some remarks...

  20. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 1698221...1 Title Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Author

  1. Intracellular pH and inorganic phosphate content of heart in vivo: A 31P-NMR study

    International Nuclear Information System (INIS)

    Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S.

    1988-01-01

    Studies were performed to determine the contribution of red blood cells to the 31 P-nuclear magnetic resonance (NMR) spectrum of the canine heart in vivo and the feasibility of measuring myocardial intracellular phosphate and pH. This was accomplished by replacing whole blood with a perfluorochemical perfusion emulsion blood substitute, Oxypherol, and noting the difference in the 31 P-NMR spectrum of the heart. NMR data were collected with a NMR transmitter-receiver coil on the surface of the distal portion of the left ventricle. These studies demonstrated that a small contribution from 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters in the blood could be detected. The magnitude and shift of these blood-borne signals permitted the relative quantification of intracellular inorganic phosphate (P i ) content as well as intracellular pH. Under resting conditions, the intracellular ATP/P i was 7.0 ± 0.08. This corresponds to a free intracellular P 1 content of ∼ 0.8 μmol./g wet wt. The intracellular pH was 7.10 ± 0.01. Acute respiratory alkalosis and acidosis, with the arterial pH ranging from ∼7.0 to 7.7, resulted in only small changes in the intracellular pH. These latter results demonstrate an effective myocardial intracellular proton-buffering mechanism in vivo

  2. Chelation of intracellular calcium blocks insulin action in the adipocyte

    International Nuclear Information System (INIS)

    Pershadsingh, H.A.; Shade, D.L.; Delfert, D.M.; McDonald, J.M.

    1987-01-01

    The hypothesis that intracellular Ca 2+ is an essential component of the intracellular mechanism of insulin action in the adipocyte was evaluated. Cells were loaded with the Ca 2+ chelator quin-2, by preincubating them with quin-2 AM, the tetrakis(acetoxymethyl) ester of quin-2. Quin-2 loading inhibited insulin-stimulated glucose transport without affecting basal activity. The ability of insulin to stimulate glucose uptake in quin-2-loaded cells could be partially restored by preincubating cells with buffer supplemented with 1.2 mM CaCl 2 and the Ca 2+ ionophore A23187. These conditions had no effect on basal activity and omission of CaCl 2 from the buffer prevented the restoration of insulin-stimulated glucose uptake by A23187. Quin-2 loading also inhibited insulin-stimulated glucose oxidation and the ability of insulin to inhibit cAMP-stimulated lipolysis without affecting their basal activities. Incubation of cells with 100 μM quin-2 or quin-2 AM had no effect on intracellular ATP concentration or the specific binding of 125 I=labeled insulin to adipocytes. These findings suggest that intracellular Ca 2+ is an essential component in the coupling of the insulin-activated receptor complex to cellular physiological/metabolic machinery. Furthermore, differing quin-2 AM dose-response profiles suggest the presence of dual Ca 2+ -dependent pathways in the adipocyte. One involves insulin stimulation of glucose transport and oxidation, whereas the other involves the antilipolytic action of insulin

  3. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  4. Distributed and dynamic intracellular organization of extracellular information.

    Science.gov (United States)

    Granados, Alejandro A; Pietsch, Julian M J; Cepeda-Humerez, Sarah A; Farquhar, Iseabail L; Tkačik, Gašper; Swain, Peter S

    2018-06-05

    Although cells respond specifically to environments, how environmental identity is encoded intracellularly is not understood. Here, we study this organization of information in budding yeast by estimating the mutual information between environmental transitions and the dynamics of nuclear translocation for 10 transcription factors. Our method of estimation is general, scalable, and based on decoding from single cells. The dynamics of the transcription factors are necessary to encode the highest amounts of extracellular information, and we show that information is transduced through two channels: Generalists (Msn2/4, Tod6 and Dot6, Maf1, and Sfp1) can encode the nature of multiple stresses, but only if stress is high; specialists (Hog1, Yap1, and Mig1/2) encode one particular stress, but do so more quickly and for a wider range of magnitudes. In particular, Dot6 encodes almost as much information as Msn2, the master regulator of the environmental stress response. Each transcription factor reports differently, and it is only their collective behavior that distinguishes between multiple environmental states. Changes in the dynamics of the localization of transcription factors thus constitute a precise, distributed internal representation of extracellular change. We predict that such multidimensional representations are common in cellular decision-making.

  5. Intracellular pH gradients in migrating cells

    DEFF Research Database (Denmark)

    Martin, Christine; Pedersen, Stine Helene Falsig; Schwab, Albrecht

    2011-01-01

    might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of p...

  6. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent. Production of nanoparticles was confirmed by the colour ...

  7. Endothelial remodelling and intracellular calcium machinery.

    Science.gov (United States)

    Moccia, F; Tanzi, F; Munaron, L

    2014-05-01

    Rather being an inert barrier between vessel lumen and surrounding tissues, vascular endothelium plays a key role in the maintenance of cardiovascular homeostasis. The de-endothelialization of blood vessels is regarded as the early event that results in the onset of severe vascular disorders, including atherosclerosis, acute myocardial infarction, brain stroke, and aortic aneurysm. Restoration of the endothelial lining may be accomplished by the activation of neighbouring endothelial cells (ECs) freed by contact inhibition and by circulating endothelial progenitor cells (EPCs). Intracellular Ca(2+) signalling is essential to promote wound healing: however, the molecular underpinnings of the Ca(2+) response to injury are yet to be fully elucidated. Similarly, the components of the Ca(2+) toolkit that drive EPC incorporation into denuded vessels are far from being fully elucidated. The present review will survey the current knowledge on the role of Ca(2+) signalling in endothelial repair and in EPC activation. We propose that endothelial regeneration might be boosted by intraluminal release of specific Ca(2+) channel agonists or by gene transfer strategies aiming to enhance the expression of the most suitable Ca(2+) channels at the wound site. In this view, connexin (Cx) channels/hemichannels and store-operated Ca(2+) entry (SOCE) stand amid the most proper routes to therapeutically induce the regrowth of denuded vessels. Cx stimulation might trigger the proliferative and migratory behaviour of ECs facing the lesion site, whereas activation of SOCE is likely to favour EPC homing to the wounded vessel.

  8. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation.

    Science.gov (United States)

    Hayashi, Kentaro; Yamamoto, Takamasa S; Ueno, Naoto

    2018-02-05

    During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca 2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca 2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca 2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca 2+ signals play an essential role in the active cell migration during gastrulation.

  9. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus

    International Nuclear Information System (INIS)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-01-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. - Highlights: • HIV-1 NC possess a NLS and leads to nuclear and nucleolus localization. • Mutations in basic residues between two ZFs in NC decrease the nucleus localization. • ZFs of NC affect cytoplasmic organelles localization rather than nucleus localization.

  10. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang, E-mail: jiyou@catholic.ac.kr

    2016-05-15

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. - Highlights: • HIV-1 NC possess a NLS and leads to nuclear and nucleolus localization. • Mutations in basic residues between two ZFs in NC decrease the nucleus localization. • ZFs of NC affect cytoplasmic organelles localization rather than nucleus localization.

  11. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  12. Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Mehrmohammadi, Mohammad; Qu Min; Sokolov, Konstantin V; Emelianov, Stanislav Y; Ma, Li L; Johnston, Keith P; Romanovicz, Dwight K

    2011-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.

  13. Getting “Inside” Type I IFNs: Type I IFNs in Intracellular Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Deann T. Snyder

    2017-01-01

    Full Text Available Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial “sensing” mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.

  14. Enhancing community detection by using local structural information

    International Nuclear Information System (INIS)

    Xiang, Ju; Bao, Mei-Hua; Tang, Liang; Li, Jian-Ming; Hu, Ke; Chen, Benyan; Hu, Jing-Bo; Zhang, Yan; Tang, Yan-Ni; Gao, Yuan-Yuan

    2016-01-01

    Many real-world networks, such as gene networks, protein–protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods. (paper: interdisciplinary statistical mechanics)

  15. Mycobacterium intracellulare Pleurisy Identified on Liquid Cultures of the Pleural Fluid and Pleural Biopsy.

    Science.gov (United States)

    Lim, Jong Gu; O, Sei Won; Lee, Ki Dong; Suk, Dong Keun; Jung, Tae Young; Shim, Tae Sun; Chon, Gyu Rak

    2013-03-01

    Pleural effusion is a rare complication in non-tuberculous mycobacterial infection. We report a case of Mycobacterium intracellulare pleuritis with idiopathic pulmonary fibrosis in a 69-year-old man presenting with dyspnea. Pleural effusion revealed lymphocyte dominant exudate. M. intracellulare was identified using a polymerase chain reaction-restriction fragment length polymorphism method and liquid cultures of pleural effusion and pleural biopsy. After combination therapy for M. intracellulare pulmonary disease, the patient was clinically well at a 1-month follow-up.

  16. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  17. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  18. Local anesthetic inhibition of G protein-coupled receptor signaling by interference with Galpha(q) protein function

    NARCIS (Netherlands)

    Hollmann, M. W.; Wieczorek, K. S.; Berger, A.; Durieux, M. E.

    2001-01-01

    Although local anesthetics are considered primarily Na(+) channel blockers, previous studies suggest a common intracellular site of action on different G protein-coupled receptors. In the present study, we characterized this site for the LPA, m1 muscarinic, and trypsin receptor. Xenopus laevis

  19. Promotion and Rescue of Intracellular Brucella neotomae Replication during Coinfection with Legionella pneumophila.

    Science.gov (United States)

    Kang, Yoon-Suk; Kirby, James E

    2017-05-01

    We established a new Brucella neotomae in vitro model system for study of type IV secretion system-dependent (T4SS) pathogenesis in the Brucella genus. Importantly, B. neotomae is a rodent pathogen, and unlike B. abortus , B. melitensis , and B. suis , B. neotomae has not been observed to infect humans. It therefore can be handled more facilely using biosafety level 2 practices. More particularly, using a series of novel fluorescent protein and lux operon reporter systems to differentially label pathogens and track intracellular replication, we confirmed T4SS-dependent intracellular growth of B. neotomae in macrophage cell lines. Furthermore, B. neotomae exhibited early endosomal (LAMP-1) and late endoplasmic reticulum (calreticulin)-associated phagosome maturation. These findings recapitulate prior observations for human-pathogenic Brucella spp. In addition, during coinfection experiments with Legionella pneumophila , we found that defective intracellular replication of a B. neotomae T4SS virB4 mutant was rescued and baseline levels of intracellular replication of wild-type B. neotomae were significantly stimulated by coinfection with wild-type but not T4SS mutant L. pneumophila Using confocal microscopy, it was determined that intracellular colocalization of B. neotomae and L. pneumophila was required for rescue and that colocalization came at a cost to L. pneumophila fitness. These findings were not completely expected based on known temporal and qualitative differences in the intracellular life cycles of these two pathogens. Taken together, we have developed a new system for studying in vitro Brucella pathogenesis and found a remarkable T4SS-dependent interplay between Brucella and Legionella during macrophage coinfection. Copyright © 2017 American Society for Microbiology.

  20. Local electric stimulation causes conducted calcium response in rat interlobular arteries

    DEFF Research Database (Denmark)

    Salomonsson, Max; Gustafsson, Finn; Andreasen, Ditte

    2002-01-01

    microscope. Local electrical pulse stimulation (200 ms, 100 V) was administered by means of an NaCl-filled microelectrode (0.7-1 M(Omega)) juxtaposed to one end of the vessel. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured with an image system at a site approximately 500 microm from......The purpose of the present study was to investigate the conducted Ca(2+) response to local electrical stimulation in isolated rat interlobular arteries. Interlobular arteries were isolated from young Sprague-Dawley rats, loaded with fura 2, and attached to pipettes in a chamber on an inverted...

  1. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  2. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang’andu

    2018-04-01

    Full Text Available Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.

  3. Semiconductor quantum dots as Förster resonance energy transfer donors for intracellularly-based biosensors

    Science.gov (United States)

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2017-02-01

    Förster resonance energy transfer (FRET)-based assemblies currently comprise a significant portion of intracellularly based sensors. Although extremely useful, the fluorescent protein pairs typically utilized in such sensors are still plagued by many photophysical issues including significant direct acceptor excitation, small changes in FRET efficiency, and limited photostability. Luminescent semiconductor nanocrystals or quantum dots (QDs) are characterized by many unique optical properties including size-tunable photoluminescence, broad excitation profiles coupled to narrow emission profiles, and resistance to photobleaching, which can cumulatively overcome many of the issues associated with use of fluorescent protein FRET donors. Utilizing QDs for intracellular FRET-based sensing still requires significant development in many areas including materials optimization, bioconjugation, cellular delivery and assay design and implementation. We are currently developing several QD-based FRET sensors for various intracellular applications. These include sensors targeting intracellular proteolytic activity along with those based on theranostic nanodevices for monitoring drug release. The protease sensor is based on a unique design where an intracellularly expressed fluorescent acceptor protein substrate assembles onto a QD donor following microinjection, forming an active complex that can be monitored in live cells over time. In the theranostic configuration, the QD is conjugated to a carrier protein-drug analogue complex to visualize real-time intracellular release of the drug from its carrier in response to an external stimulus. The focus of this talk will be on the design, properties, photophysical characterization and cellular application of these sensor constructs.

  4. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    Science.gov (United States)

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    Science.gov (United States)

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  6. Intracellular bacteria: the origin of dinoflagellate toxicity.

    Science.gov (United States)

    Silva, E S

    1990-01-01

    Dinoflagellate blooms of the same species have been registered either as toxic or nontoxic and, in the latter case, toxicity may be of different types. A hypothesis has been formulated according to which the bacteria having in some way taken part in the toxin formation are either inside the dinoflagellate cell or in the nutritive liquid. The presence of intracellular bacteria in those microorganisms has been studied mainly in material from cultures, a few from the sea, and several strains were isolated from different species. Experiments with crossed inoculations have shown that the bacterial strain from Gonyaulax tamarensis caused the cells of some other species to become toxic. From nontoxic clonal cultures of Prorocentrum balticum, Glenodinium foliaceum, and Gyrodinium instriatum, after inoculation of that bacterial strain, cultures were obtained whose cell extracts showed the same kind of toxicity as G. tamarensis. No toxic action could be found in the extracts of the bacterial cells form the assayed strains. The interference of intracellular bacteria in the metabolism of dinoflagellates must be the main cause of their toxicity.

  7. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  8. Generalized method for sorting Shack-Hartmann spot patterns using local similarity

    International Nuclear Information System (INIS)

    Smith, Daniel G.; Greivenkamp, John E.

    2008-01-01

    The sensitivity and dynamic range of a Shack-Hartmann wavefront sensor is enhanced when the spots produced by the lenslet array are allowed to shift more than one lenslet radius from their on-axis positions. However, this presents the problem of accurately and robustly associating the spots with their respective subapertures. This paper describes a method for sorting spots that takes advantage of the local spot position distortions to unwrap the spot pattern. The described algorithm is both simple and robust and also applicable to any lenslet array geometry that can be described as a two-dimensional lattice, including hexagonal arrays, which are shown here to be more efficient than square arrays

  9. Current algebra and the local nature of symmetries in local quantum theory

    International Nuclear Information System (INIS)

    Doplicher, S.

    In this report we mainly discuss the problem of finding local observables which measure the charges in a volume smaller than their localization region, in particular providing the existence of local observables with a specific physical interpretation. In the same way we can also establish the existence of a version of the current algebra structure. Similar local observables can be constructed for the energy-momentum; we also comment on the local implementation of supersymmetries. (orig./HSI)

  10. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat (MIRU-VNTR) Genotyping of Mycobacterium intracellulare for Strain Comparison with Establishment of a PCR-Based Database

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A.; Falkinham, Joseph O.; Williams, Myra D.; Vasireddy, Ravikiran; Wilson, Rebecca W.; Turenne, Christine

    2013-01-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the “gold standard” of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible. PMID:23175249

  12. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of mycobacterium intracellulare for strain comparison with establishment of a PCR-based database.

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A; Falkinham, Joseph O; Williams, Myra D; Vasireddy, Ravikiran; Wilson, Rebecca W; Turenne, Christine; Wallace, Richard J

    2013-02-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the "gold standard" of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible.

  13. Regulation of dopamine transporter trafficking by intracellular amphetamine

    DEFF Research Database (Denmark)

    Kahlig, Kristopher M; Lute, Brandon J; Wei, Yuqiang

    2006-01-01

    -induced cell surface DAT redistribution may result in long-lasting changes in DA homeostasis. The molecular mechanism by which AMPH induces trafficking is not clear. Because AMPH is a substrate, we do not know whether extracellular AMPH stimulates trafficking through its interaction with DAT and subsequent...... alteration in DAT function, thereby triggering intracellular signaling or whether AMPH must be transported and then act intracellularly. In agreement with our previous studies, extracellular AMPH caused cytosolic redistribution of the wild-type human DAT (WT-hDAT). However, AMPH did not induce cytosolic...... redistribution in an uptake-impaired hDAT (Y335A-hDAT) that still binds AMPH. The divalent cation zinc (Zn(2+)) inhibits WT-hDAT activity, but it restores Y335A-hDAT uptake. Coadministration of Zn(2+) and AMPH consistently reduced WT-hDAT trafficking but stimulated cytosolic redistribution of Y335A...

  14. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available Intracellular pH (pHi and Ca(2+ regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+. The sources of the Ca(2+ increase are from the endoplasmic reticulum (ER Ca(2+ pools as well as from Ca(2+ influx. The store-mobilization component of the Ca(2+ increase induced by the pHi rise was not sensitive to antagonists for either IP(3-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA, leading to depletion of the ER Ca(2+ store. We further showed that the physiological consequence of depletion of the ER Ca(2+ store by pHi rise is the activation of store-operated channels (SOCs of Orai1 and Stim1, leading to increased Ca(2+ influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+ leak from ER pools followed by Ca(2+ influx via SOCs.

  15. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    Science.gov (United States)

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  16. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  17. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  18. Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections.

    Science.gov (United States)

    Aparna, V; Shiva, M; Biswas, Raja; Jayakumar, R

    2018-04-15

    Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    Science.gov (United States)

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Intracellular Immunohistochemical Detection of Tetrodotoxin in Pleurobranchaea maculata (Gastropoda and Stylochoplana sp. (Turbellaria

    Directory of Open Access Journals (Sweden)

    Lauren R. Salvitti

    2015-01-01

    Full Text Available Tetrodotoxin (TTX, is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.

  1. Intracellular immunohistochemical detection of tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria).

    Science.gov (United States)

    Salvitti, Lauren R; Wood, Susanna A; Winsor, Leigh; Cary, Stephen Craig

    2015-01-28

    Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.

  2. Estimating the biophysical properties of neurons with intracellular calcium dynamics.

    Science.gov (United States)

    Ye, Jingxin; Rozdeba, Paul J; Morone, Uriel I; Daou, Arij; Abarbanel, Henry D I

    2014-06-01

    We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.

  3. Cultural similarity, cultural competence, and nurse workforce diversity.

    Science.gov (United States)

    McGinnis, Sandra L; Brush, Barbara L; Moore, Jean

    2010-11-01

    Proponents of health workforce diversity argue that increasing the number of minority health care providers will enhance cultural similarity between patients and providers as well as the health system's capacity to provide culturally competent care. Measuring cultural similarity has been difficult, however, given that current benchmarks of workforce diversity categorize health workers by major racial/ethnic classifications rather than by cultural measures. This study examined the use of national racial/ethnic categories in both patient and registered nurse (RN) populations and found them to be a poor indicator of cultural similarity. Rather, we found that cultural similarity between RN and patient populations needs to be established at the level of local labor markets and broadened to include other cultural parameters such as country of origin, primary language, and self-identified ancestry. Only then can the relationship between cultural similarity and cultural competence be accurately determined and its outcomes measured.

  4. Azithromycin effectiveness against intracellular infections of Francisella

    Directory of Open Access Journals (Sweden)

    Mann Barbara J

    2010-04-01

    Full Text Available Abstract Background Macrolide antibiotics are commonly administered for bacterial respiratory illnesses. Azithromycin (Az is especially noted for extremely high intracellular concentrations achieved within macrophages which is far greater than the serum concentration. Clinical strains of Type B Francisella (F. tularensis have been reported to be resistant to Az, however our laboratory Francisella strains were found to be sensitive. We hypothesized that different strains/species of Francisella (including Type A may have different susceptibilities to Az, a widely used and well-tolerated antibiotic. Results In vitro susceptibility testing of Az confirmed that F. tularensis subsp. holarctica Live Vaccine Strain (LVS (Type B was not sensitive while F. philomiragia, F. novicida, and Type A F. tularensis (NIH B38 and Schu S4 strain were susceptible. In J774A.1 mouse macrophage cells infected with F. philomiragia, F. novicida, and F. tularensis LVS, 5 μg/ml Az applied extracellularly eliminated intracellular Francisella infections. A concentration of 25 μg/ml Az was required for Francisella-infected A549 human lung epithelial cells, suggesting that macrophages are more effective at concentrating Az than epithelial cells. Mutants of RND efflux components (tolC and ftlC in F. novicida demonstrated less sensitivity to Az by MIC than the parental strain, but the tolC disc-inhibition assay demonstrated increased sensitivity, indicating a complex role for the outer-membrane transporter. Mutants of acrA and acrB mutants were less sensitive to Az than the parental strain, suggesting that AcrAB is not critical for the efflux of Az in F. novicida. In contrast, F. tularensis Schu S4 mutants ΔacrB and ΔacrA were more sensitive than the parental strain, indicating that the AcrAB may be important for Az efflux in F. tularensis Schu S4. F. novicida LPS O-antigen mutants (wbtN, wbtE, wbtQ and wbtA were found to be less sensitive in vitro to Az compared to the wild

  5. Study on the inactivation of intracellular enzyme molecules by X-ray irradiation

    International Nuclear Information System (INIS)

    Lee, S.B.

    1977-01-01

    Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzyme molecules were irradiated by the X-ray radiation under the condition of 65 kV, 1 Amp under the atmosphere of nitrogen gases and by 4 0 C. Thereby, irradiation doses were 580 KR/min(error: +-3%). After irradiation, the cell homogentes were prepared through liquid air techniques. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were 6.5x10 6 and 5.0x10 6 R respectively. These results showed one side that the inactivation process of the intracellular enzyme molecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzyme molecules was discussed. (author)

  6. Intracellular pH-sensing using core/shell silica nanoparticles.

    Science.gov (United States)

    Korzeniowska, B; Woolley, R; DeCourcey, J; Wencel, D; Loscher, C E; McDonagh, C

    2014-07-01

    An in-depth understanding of biochemical processes occurring within biological systems is key for early diagnosis of disease and identification of appropriate treatments. Nanobiophotonics offers huge potential benefits for intracellular diagnostics and therapeutics. Intracellular sensing using fluorescent nanoparticles is a potentially useful tool for real-time, in vivo monitoring of important cellular analytes. This work is focused on synthesis of optical chemical nanosensors for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly silica matrix with co-encapsulated Texas Red, acting as a reference dye, and pH-sensitive fluorescein isothiocyanate enabling ratiometric quantitative environmental detection. In order to obtain silica-based nanoparticles -70 nm in size, a modified sol-gel-based Stöber method was employed. The potential of these nanosensors for intracellular pH monitoring is demonstrated inside a live human embryonic kidney cell line whereby a significant change in fluorescence is observed when the cell pH is switched from acidic to basic. High loading efficiencies of nanoparticles into the cells is seen, with little effect on cell morphology even following extended nanoparticle exposure (up to 72 h). Nanoparticle incubation time and the fast response of the nanosensor (-2 s) make it a very powerful tool in monitoring the processes occurring within the cytosol.

  7. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms.

    Science.gov (United States)

    Pareja, Maria Eugenia Mansilla; Colombo, Maria I

    2013-01-01

    Autophagy is involved in several physiological and pathological processes. One of the key roles of the autophagic pathway is to participate in the first line of defense against the invasion of pathogens, as part of the innate immune response. Targeting of intracellular bacteria by the autophagic machinery, either in the cytoplasm or within vacuolar compartments, helps to control bacterial proliferation in the host cell, controlling also the spreading of the infection. In this review we will describe the means used by diverse bacterial pathogens to survive intracellularly and how they are recognized by the autophagic molecular machinery, as well as the mechanisms used to avoid autophagic clearance.

  8. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission.

    Science.gov (United States)

    Pucciarelli, M Graciela; García-Del Portillo, Francisco

    2017-07-01

    More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.

  9. Similar pathogen targets in Arabidopsis thaliana and homo sapiens protein networks.

    Directory of Open Access Journals (Sweden)

    Paulo Shakarian

    Full Text Available We study the behavior of pathogens on host protein networks for humans and Arabidopsis - noting striking similarities. Specifically, we preform [Formula: see text]-shell decomposition analysis on these networks - which groups the proteins into various "shells" based on network structure. We observe that shells with a higher average degree are more highly targeted (with a power-law relationship and that highly targeted nodes lie in shells closer to the inner-core of the network. Additionally, we also note that the inner core of the network is significantly under-targeted. We show that these core proteins may have a role in intra-cellular communication and hypothesize that they are less attacked to ensure survival of the host. This may explain why certain high-degree proteins are not significantly attacked.

  10. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    Science.gov (United States)

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties. © 2014 Wiley Periodicals, Inc.

  11. Intracellular serpins, firewalls and tissue necrosis.

    Science.gov (United States)

    Marciniak, Stefan J; Lomas, David A

    2008-02-01

    Luke and colleagues have recently attributed a new role to a member of the serpin superfamily of serine proteinase inhibitors. They have used Caenorhabditis elegans to show that an intracellular serpin is crucial for maintaining lysosomal integrity. We examine the role of this firewall in preventing necrosis and attempt to integrate this with current theories of stress-induced protein degradation. We discuss how mutant serpins cause disease either through polymerization or now, perhaps, by unleashing necrosis.

  12. Similarity solutions for phase-change problems

    Science.gov (United States)

    Canright, D.; Davis, S. H.

    1989-01-01

    A modification of Ivantsov's (1947) similarity solutions is proposed which can describe phase-change processes which are limited by diffusion. The method has application to systems that have n-components and possess cross-diffusion and Soret and Dufour effects, along with convection driven by density discontinuities at the two-phase interface. Local thermal equilibrium is assumed at the interface. It is shown that analytic solutions are possible when the material properties are constant.

  13. Facilitating Intracellular Drug Delivery by Ultrasound-Activated Microbubbles

    NARCIS (Netherlands)

    Lammertink, BHA

    2017-01-01

    The goal of this thesis was to investigate the combination of ultrasound and microbubbles (USMB) for intracellular delivery of (model) drugs in vitro. We have focused on clinically approved drugs, i.e. cisplatin, and microbubbles, i.e. SonoVue™, to facilitate clinical translation. In addition, model

  14. Detection of Intracellular Factor VIII Protein in Peripheral Blood Mononuclear Cells by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Gouri Shankar Pandey

    2013-01-01

    Full Text Available Flow cytometry is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. Detection of specific host proteins for diagnosis predominantly uses quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based detection assay for Factor VIII protein in peripheral blood mononuclear cells (PBMCs. An indirect intracellular staining (ICS method was standardized using monoclonal antibodies to different domains of human Factor VIII protein. The FVIII protein expression level was estimated by calculating the mean and median fluorescence intensities (MFI values for each monoclonal antibody. ICS staining of transiently transfected cell lines supported the method's specificity. Intracellular FVIII protein expression was also detected by the monoclonal antibodies used in the study in PBMCs of five blood donors. In summary, our data suggest that intracellular FVIII detection in PBMCs of hemophilia A patients can be a rapid and reliable method to detect intracellular FVIII levels.

  15. Pathway analysis for intracellular Porphyromonas gingivalis using a strain ATCC 33277 specific database

    Directory of Open Access Journals (Sweden)

    Wang Tiansong

    2009-09-01

    provides a more energy rich environment compared to the extracellular milieu. Shifts in the production of cytotoxic fatty acids by intracellular P. gingivalis may play a role in virulence. Moreover, despite extensive genomic re-arrangements between strains W83 and 33277, there is sufficient sequence similarity at the peptide level for proteomic abundance trends to be largely accurate when using the heterologous strain annotated genome as the reference for database searching.

  16. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA.

    Science.gov (United States)

    McLaggan, Debra; Adjimatera, Noppadon; Sepcić, Kristina; Jaspars, Marcel; MacEwan, David J; Blagbrough, Ian S; Scott, Roderick H

    2006-01-16

    Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12 degrees C compared to 21 degrees C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12 degrees C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  17. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA

    Directory of Open Access Journals (Sweden)

    Blagbrough Ian S

    2006-01-01

    Full Text Available Abstract Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS, which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen. DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  18. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.

    Directory of Open Access Journals (Sweden)

    Harshini Sarojini

    Full Text Available We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery-extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold

  19. Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Ju Chou

    2018-02-01

    Full Text Available Intracellular protein delivery may provide a safe and non-genome integrated strategy for targeting abnormal or specific cells for applications in cell reprogramming therapy. Thus, highly efficient intracellular functional protein delivery would be beneficial for protein drug discovery. In this study, we generated a cationic polyethyleneimine (PEI-modified gelatin nanoparticle and evaluated its intracellular protein delivery ability in vitro and in vivo. The experimental results showed that the PEI-modified gelatin nanoparticle had a zeta potential of approximately +60 mV and the particle size was approximately 135 nm. The particle was stable at different biological pH values and temperatures and high protein loading efficiency was observed. The fluorescent image results revealed that large numbers of particles were taken up into the mammalian cells and escaped from the endosomes into the cytoplasm. In a mouse C26 cell-xenograft cancer model, particles accumulated in cancer cells. In conclusion, the PEI-modified gelatin particle may provide a biodegradable and highly efficient protein delivery system for use in regenerative medicine and cancer therapy.

  20. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  1. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  2. Intracellular thiol levels and radioresistance: Studies with glutathione and glutathione mono ethyl ester

    International Nuclear Information System (INIS)

    Astor, M.B.; Meister, A.; Anderson, M.E.

    1987-01-01

    Intracellular thiols such as glutathione (GSH) protect cells against free radicals formed during oxidative metabolism or from exposure to drugs or ionizing radiation. The role of intracellular GSH in the repair of radiation induced free radical damage was studied using GSH or its analog glutathione mono ethyl ester (GEE), which readily penetrates into the cell. Chinese hamster V79 cells with normal GSH levels were afforded equal protection under aerated and hypoxic conditions (DMF = 1.2 OER = 3.7) by both 10 mM GSH and GEE although GEE had raised interacellular GSH levels three-fold. Growth of V79 cells in cysteine free media resulted in undetectable levels of GSH and OER of 2.2 with no change in aerated survival. Restoration of intracellular GSH by 10 mM GEE resulted in an increase of the OER from 2.2. to 3.8 (DMF = 1.7). Only 14% of the intracellular GSH needs to be repleted to give an OER of 3.0. These experiments provide evidence that thiols do play a role in the oxygen effect and are present at levels in excess of what is necessary for maximal radioprotection

  3. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  4. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    Science.gov (United States)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Aygun, N.; Lo, S.-F.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-04-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14% however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric

  5. Palatal Actinomycosis and Kaposi Sarcoma in an HIV-Infected Subject with Disseminated Mycobacterium avium-intracellulare Infection

    Directory of Open Access Journals (Sweden)

    Yuria Ablanedo-Terrazas

    2012-01-01

    Full Text Available Actinomyces and Mycobacterium avium-intracellulare are facultative intracellular organisms, members of the bacterial order actinomycetales. Although Actinomyces can behave as copathogen when anatomic barriers are compromised, its coinfection with Mycobacterium avium-intracellulare has not previously been reported. We present the first reported case of palatal actinomycosis co-infection with disseminated MAC, in an HIV-infected subject with Kaposi sarcoma and diabetes. We discuss the pathogenesis of the complex condition of this subject.

  6. Intracellular nitrate in sediments of an oxygen-deficient marine basin is linked to pelagic diatoms

    DEFF Research Database (Denmark)

    Kamp, Anja; Petro, Caitlin; Røy, Hans

    2018-01-01

    Intracellular nitrate is an important electron acceptor in oxygen-deficient aquatic environments, either for the nitrate-storing microbes themselves, or for ambient microbial communities through nitrate leakage. This study links the spatial distribution of intracellular nitrate with the abundance...... and identity of nitrate-storing microbes in sediments of the Bornholm Basin, an environmental showcase for severe hypoxia. Intracellular nitrate (up to 270 nmol cm−3 sediment) was detected at all 18 stations along a 35-km transect through the basin and typically extended as deep as 1.6 cm into the sediment...

  7. Activation of Host IRE1α-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Aseem Pandey

    2018-04-01

    Full Text Available Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR sensor IRE1α (inositol-requiring enzyme 1 and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1 conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.

  8. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    Directory of Open Access Journals (Sweden)

    Paolo Napoletano

    2018-01-01

    Full Text Available Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  9. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion

    International Nuclear Information System (INIS)

    Francia, Maria E.; Wicher, Sarah; Pace, Douglas A.; Sullivan, Jack; Moreno, Silvia N.J.; Arrizabalaga, Gustavo

    2011-01-01

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na + /H + exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca 2+ concentration [Ca 2+ ] i , and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  10. Resolution of intracellular calcium metabolism in intact segments of rabbit aorta

    International Nuclear Information System (INIS)

    Phair, R.D.; Hai, C.M.

    1986-01-01

    A new method, based on computer-assisted kinetic analysis of 45 Ca efflux data, was used to measure calcium contents and fluxes for extracellular and intracellular compartments in intact segments of rabbit aorta. After a 1-hour loading period, efflux data were collected for 8 hours using a flow-through tissue chamber. These long-term effluxes were necessary because information on intracellular calcium metabolism was concentrated in the slow components of the efflux curves while earlier components appeared to be dominated by washout of extracellular calcium. Intracellular compartments were identified as those whose calcium contents were altered by 10 microM phenylephrine. This method complements previous approaches by providing simultaneous estimates of compartmental calcium contents and fluxes without requiring the assumption of isotopic equilibrium and without recourse to standard wash techniques for removal of extracellular calcium. In normal, calcium-containing, bicarbonate-buffered physiological salt solution these compartments contained a total of approximately 300 nmol Ca/g wet aorta. Of this total, 55 nmol/g were associated with the slowest resolvable compartment whose turnover time was 170 minutes and whose exchange flux was 0.32 nmol min-1g-1. Two other intracellular compartments had turnover times of 30 minutes. One of these was phenylephrine releasable and contained 145 nmol/g; it exchanged calcium at 4.9 nmol min-1g-1. In normal physiological salt solution the plasma membrane was, surprisingly, not rate limiting for Ca efflux; and in 10 microM phenylephrine the membrane Ca flux was even greater, increasing 3.5-fold compared to control

  11. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    Science.gov (United States)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Model-based control of the temporal patterns of intracellular signaling in silico

    Science.gov (United States)

    Murakami, Yohei; Koyama, Masanori; Oba, Shigeyuki; Kuroda, Shinya; Ishii, Shin

    2017-01-01

    The functions of intracellular signal transduction systems are determined by the temporal behavior of intracellular molecules and their interactions. Of the many dynamical properties of the system, the relationship between the dynamics of upstream molecules and downstream molecules is particularly important. A useful tool in understanding this relationship is a methodology to control the dynamics of intracellular molecules with an extracellular stimulus. However, this is a difficult task because the relationship between the levels of upstream molecules and those of downstream molecules is often not only stochastic, but also time-inhomogeneous, nonlinear, and not one-to-one. In this paper, we present an easy-to-implement model-based control method that makes the target downstream molecule to trace a desired time course by changing the concentration of a controllable upstream molecule. Our method uses predictions from Monte Carlo simulations of the model to decide the strength of the stimulus, while using a particle-based approach to make inferences regarding unobservable states. We applied our method to in silico control problems of insulin-dependent AKT pathway model and EGF-dependent Akt pathway model with system noise. We show that our method can robustly control the dynamics of the intracellular molecules against unknown system noise of various strengths, even in the absence of complete knowledge of the true model of the target system. PMID:28275530

  13. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages.

    Directory of Open Access Journals (Sweden)

    M Azevedo

    Full Text Available The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10-6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects.

  14. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    Science.gov (United States)

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  15. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  16. Induction of Intracellular Ca2+ and pH Changes in Sf9 Insect Cells by Rhodojaponin-III, A Natural Botanic Insecticide Isolated from Rhododendron molle

    Directory of Open Access Journals (Sweden)

    Yan-Bo Zhang

    2011-04-01

    Full Text Available Many studies on intracellular calcium ([Ca2+]i and intracellular pH (pHi have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III on [Ca2+]i and pHi and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+]i and intracellular pH (pHi in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL increase in [Ca2+]i and pHi of Sf9 cells in presence of Ca2+-containing solution (Hanks and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+]i, because completely treating Sf9 cells with CdCl2 (5 mM, a Ca2+ channels blocker, R-III (100 μg/mL induced a transient elevation of [Ca2+]i in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pHi showed similar changes with that of [Ca2+]i on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+]i, cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.

  17. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Yuan, X.L.; Munster, J.M. van; Ram, A.F.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  18. Extracellular and Intracellular Mechanisms Mediating Metastatic Activity of Exogenous Osteopontin

    Science.gov (United States)

    Mandelin, Jami; Lin, Emme C. K.; Hu, Dana D.; Knowles, Susan K.; Do, Kim-Anh; Wang, Xuemei; Sage, E. Helene; Smith, Jeffrey W.; Arap, Wadih; Pasqualini, Renata

    2009-01-01

    BACKGROUND Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. We used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo designed to test extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS In the extracellular environment, we confirm that soluble osteopontin is required for its pro-metastatic effects; this phenomenon is specific, RGD-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induces rapid Tyr-418 dephosphorylation of c-Src, with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation is followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSION Our results reveal a complex molecular interaction as well as a dual role for osteopontin in metastasis that is dependent on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to anti-metastasis strategies. PMID:19224553

  19. Immuno-localization of galanin receptor-1 (GALR1) in rat brain

    International Nuclear Information System (INIS)

    Larm, J.M.; Gundlach, A.L.

    2002-01-01

    Full text: Galanin is expressed in discrete areas throughout the central nervous system and has several putative physiological actions including effects on hormone secretion, reproduction and cognition, via actions at multiple G-protein-coupled receptors. Currently, three galanin receptors - GalR1, -R2, -R3 - have been identified that differ in pharmacology, signalling and distribution. The distribution of [ 125 I]-galanin binding sites presumably represents multiple receptors and so the precise regional and cellular localization of each receptor subtype is unknown. This study examined the distribution in rat brain of GalR1 receptors by immunohistochemistry, using polyclonal antibodies raised against short peptide sequences from the third intracellular loop and the proximal C-terminal. Adult rats were deeply anaesthetized (pentobarbitone 60 mg/kg, ip.) and perfusion-fixed with 4% paraformaldehyde. Specific GalR1 immunoreactivity (IR) was detected in neurons in various brain regions including cells within the olfactory bulb, piriform cortex, dorsomedial thalamus, hypothalamus (PVN, SON, ARC), midbrain/pons (intense staining in ventrolateral/medial PAG) and medulla. The localization pattern was qualitatively similar with both antisera and was consistent with that observed for GalR1 mRNA in normal rat brain. Recent evidence also reveals that GalR1- mRNA and -IR levels are coordinately altered after neuronal stimulation. These studies demonstrate a method for the identification of GalR1-containing cells that should assist in better differentiating the phenotype of galanin-receptive neurons. Copyright (2002) Australian Neuroscience Society

  20. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  1. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    Science.gov (United States)

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus -infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus -containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  2. Work-related pain in extrinsic finger extensor musculature of instrumentalists is associated with intracellular pH compartmentation during exercise.

    Directory of Open Access Journals (Sweden)

    Angel Moreno-Torres

    Full Text Available BACKGROUND: Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy ((31P-MRS. We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls. We used (31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr, inorganic phosphate (Pi, Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in (31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. CONCLUSIONS/SIGNIFICANCE: Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by (31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.

  3. Work-Related Pain in Extrinsic Finger Extensor Musculature of Instrumentalists Is Associated with Intracellular pH Compartmentation during Exercise

    Science.gov (United States)

    Moreno-Torres, Angel; Rosset-Llobet, Jaume; Pujol, Jesus; Fàbregas, Sílvia; Gonzalez-de-Suso, Jose-Manuel

    2010-01-01

    Background Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. Methodology/Principal Findings We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. Conclusions/Significance Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself. PMID:20161738

  4. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei; Bissell, Mina J.

    2009-06-03

    Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcripts that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of

  5. User recommendation in healthcare social media by assessing user similarity in heterogeneous network.

    Science.gov (United States)

    Jiang, Ling; Yang, Christopher C

    2017-09-01

    The rapid growth of online health social websites has captured a vast amount of healthcare information and made the information easy to access for health consumers. E-patients often use these social websites for informational and emotional support. However, health consumers could be easily overwhelmed by the overloaded information. Healthcare information searching can be very difficult for consumers, not to mention most of them are not skilled information searcher. In this work, we investigate the approaches for measuring user similarity in online health social websites. By recommending similar users to consumers, we can help them to seek informational and emotional support in a more efficient way. We propose to represent the healthcare social media data as a heterogeneous healthcare information network and introduce the local and global structural approaches for measuring user similarity in a heterogeneous network. We compare the proposed structural approaches with the content-based approach. Experiments were conducted on a dataset collected from a popular online health social website, and the results showed that content-based approach performed better for inactive users, while structural approaches performed better for active users. Moreover, global structural approach outperformed local structural approach for all user groups. In addition, we conducted experiments on local and global structural approaches using different weight schemas for the edges in the network. Leverage performed the best for both local and global approaches. Finally, we integrated different approaches and demonstrated that hybrid method yielded better performance than the individual approach. The results indicate that content-based methods can effectively capture the similarity of inactive users who usually have focused interests, while structural methods can achieve better performance when rich structural information is available. Local structural approach only considers direct connections

  6. Clinical significance and epidemiologic analyses of Mycobacterium avium and Mycobacterium intracellulare lung disease from post-marketing surveillance.

    Science.gov (United States)

    Suzuki, Katsuhiro; Kurashima, Atsuyuki; Tatsuno, Kinji; Kadota, Jun-Ichi

    2018-01-01

    In Japan, nontuberculous mycobacterial lung disease is mostly attributable to Mycobacterium avium complex (MAC), i.e., M. avium or M. intracellulare. However, clinical features of the disease caused by these two pathogens have not been studied sufficiently yet. A post-marketing survey of clarithromycin was performed at 130 facilities across Japan. The data on patients with M. avium infection and patients with M. intracellulare infection were selected from this survey for comparison of background variables and clinical features of the two pathogens. Among the patients analyzed (n = 368), 67.4% had M. avium infection and 32.6% had M. intracellulare infection. Stratified analysis revealed no significant differences between the ratio of the two pathogens based on gender, disease type, complication, past medical history, or smoking history. However, the percentage of patients with M. intracellulare infection was significantly higher among those with underlying lung disease than among those without lung disease (p = 0.0217). The percentage of patients with M. intracellulare infection rose significantly with age (p = 0.0296). This age-related change was more significant in women (p = 0.0018). When district-wise analysis was performed for Japan, the percentage of M. intracellulare infection was higher in the Chugoku/Shikoku and Kyushu districts whereas the percentage of M. avium infection was higher in the other districts. This survey revealed some differences in the clinical and epidemiologic features of M. avium and M. intracellulare infection. The significant predominance of M. avium infection among relatively young women is suggestive of an increase in the M. avium/M. intracellulare infection ratio among women in the future. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  7. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  8. Intracellular uptake and degradation of extracellular tracers in mouse skeletal muscle in vitro: the effect of denervation

    International Nuclear Information System (INIS)

    Libelius, R.; Lundquist, I.; Templeton, W.; Thesleff, S.

    1978-01-01

    Innervated and chronically denervated mouse skeletal muscles have been incubated under various conditions in a Ringer solution containing one of the three macromolecules [ 3 H] α-neurotoxin, [ 3 H]inulin and horseradish peroxidase. Following extensive wash-out for 4 h of the extracellular compartment, the amount of each macromolecule retained intracellularly was obtained. Intracellular uptake of a [ 3 H]monoacetylated α-neurotoxin in vitro at 37 C was found to be increased in denervated mouse extensor digitorum longus muscles compared to innervated control muscles. Similarly, the uptake in vitro at 37 C of [ 3 H] inulin and horseradish peroxidase was also increased in denervated muscles. At 4 C the uptake of [ 3 H]inulin and horseradish peroxidase was markedly reduced. Protamine was found to stimulate the uptake of [ 3 H]inulin at 37 C, but not at 4 C. Reduction in specific activity by addition of 50-fold excess of unlabelled inulin failed to affect the uptake of [ 3 H]inulin suggesting that this uptake process obeyed bulk kinetics. Furthermore, the endocytized [ 3 H]inulin was found to be strongly retained in the muscles since prolonged washing or addition of unlabelled inulin to the washing solution did not reduce the uptake. Characterization of [ 3 H]inulin taken up by the muscles was performed by gel chromatography on Sephadex G-25. Using a purified [ 3 H]inulin solution it was observed that about 45% of the total radioactivity remaining in the muscles was eluted as [ 3 H]inulin. Additional radioactivity consisted of lower molecular weight compounds. These degradation products of [ 3 H]inulin were only present in the muscle homogenate and were not detected in the incubation solution. The results suggest that intracellular uptake of different macromolecules by endocytosis in skeletal muscles increases following denervation, and that following uptake, degradation of the endocytized material may occur. (author)

  9. Localization of CORO1A in the Macrophages Containing Mycobacterium leprae

    International Nuclear Information System (INIS)

    Suzuki, Koichi; Takeshita, Fumihiko; Nakata, Noboru; Ishii, Norihisa; Makino, Masahiko

    2006-01-01

    Mycobacteria have acquired an intracellular lifestyle within the macrophage, which is best exemplified by the enlarged infected histiocytes seen in lepromatous leprosy. To survive within the cell, mycobacteria must escape intracellular bactericidal mechanisms. In a study of Mycobacterium bovis Bacille Calmette-Guérin (M. bovis BCG) infection, it was shown that the host protein, CORO1A, also known as tryptophan aspartate-containing coat protein (TACO), accumulates on the phagosomal membrane, resulting in inhibition of phagosome-lysosome fusion, and thus augmenting intracellular survival. In this study, we show that CORO1A strongly localizes on the membrane of phagosomes that contain Mycobacterium leprae (M. leprae), where Toll-like receptor 2 was also visualized by immunostaining. When cultured macrophages were infected with M. leprae, CORO1A recruitment from the plasma membrane to the phagosomal membrane was observed. Moderate to strong CORO1A retention was observed in late lesions that contained foamy histiocytes, in which M. leprae were difficult to detect by acid-fast staining. These results suggest that components accumulating within the phagosome rather than viable bacilli are responsible for the retention of CORO1A, and that there is also a bactericidal mechanism in the macrophage that might counter the effects of CORO1A

  10. Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and Ca2+ in the U937 monocyte cell line.

    Science.gov (United States)

    Chang, Young-Ja; Lee, Yun-Kyung; Lee, Eun-Hee; Park, Jeong-Ju; Chung, Sung-Kee; Im, Dong-Soon

    2006-08-01

    We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and Ca2+ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and Ca2+ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and Ca2+, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and Ca(2+)-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

  11. An intracellular adrenomedullin system reduces IL-6 release via a NF-kB-mediated, cAMP-independent transcriptional mechanism in rat thymic epithelial cells.

    Science.gov (United States)

    Castellani, Giulia; Paliuri, Giovanna; Orso, Genny; Paccagnella, Nicola; D'Amore, Claudio; Facci, Laura; Cima, Francesca; Caicci, Federico; Palatini, Pietro; Bova, Sergio; De Martin, Sara

    2016-12-01

    Thymic epithelial cells (TECs) play a key role in the regulation of central immune tolerance by expressing autoantigens and eliminating self-reactive T cells. In a previous paper we reported that adrenomedullin (ADM) and its co-receptor protein RAMP2 are located intracellularly in newborn human thymic epithelial cells (TECs). This work has two main aims: (1) to examine the cellular localization of ADM and its receptor in TECs of adult Wistar rats to validate this animal model for the study of the ADM system and its function(s) in thymus; (2) to investigate the potential modulating effect of ADM on the NF-kB pathway, which is involved through the production of cytokines such as IL-6, in the maturation of T-lymphocytes and immunological tolerance. Our results show that, similarly to human newborn TECs, ADM is localized to the cytoplasm of adult rat TECs, and RAMP2 is expressed in the nucleus but not in the plasma membrane. Pretreatment of TECs for 4h with ADM significantly reduced lipopolysaccharide (LPS)-induced release of IL-6 (PkB, while doubled the expression of IkBα (PkB nuclear translocation. These effects were not mediated by activation of the cAMP pathway, a signalling cascade that is rapidly activated by ADM in cells that express plasma membrane RAMP2, but were the consequence of a reduction in the transcription of p65 (PkB genes transcription through an interaction with a receptor localized to the nucleus. This may partly explain the protective effects of ADM in autoimmune diseases and points to the ADM system of TECs as a novel potential target for immunomodulating drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System.

    Science.gov (United States)

    Huang, Yanyan; Liu, Zhen; Liu, Chaoqun; Ju, Enguo; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    In this work, for the first time, we constructed a novel multi-nanozymes cooperative platform to mimic intracellular antioxidant enzyme-based defense system. V2 O5 nanowire served as a glutathione peroxidase (GPx) mimic while MnO2 nanoparticle was used to mimic superoxide dismutase (SOD) and catalase (CAT). Dopamine was used as a linker to achieve the assembling of the nanomaterials. The obtained V2 O5 @pDA@MnO2 nanocomposite could serve as one multi-nanozyme model to mimic intracellular antioxidant enzyme-based defense procedure in which, for example SOD, CAT, and GPx co-participate. In addition, through assembling with dopamine, the hybrid nanocomposites provided synergistic antioxidative effect. Importantly, both in vitro and in vivo experiments demonstrated that our biocompatible system exhibited excellent intracellular reactive oxygen species (ROS) removal ability to protect cell components against oxidative stress, showing its potential application in inflammation therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Chao Ding

    2017-01-01

    Full Text Available Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs, adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.

  14. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Bjerrum, Poul J; Jessen, Torben E

    2011-01-01

    BACKGROUND The vitamin D receptor (VDR) is expressed in human spermatozoa, and VDR-knockout mice and vitamin D (VD) deficiency in rodents results in impaired fertility, low sperm counts and a low number of motile spermatozoa. We investigated the role of activated VD (1,25(OH)(2)D(3)) in human...... spermatozoa and whether VD serum levels are associated with semen quality. METHODS Cross-sectional association study of semen quality and VD serum level in 300 men from the general population, and in vitro studies on spermatozoa from 40 men to investigate the effects of VD on intracellular calcium, sperm......M). 1,25(OH)(2)D(3) increased intracellular calcium concentration in human spermatozoa through VDR-mediated calcium release from an intracellular calcium storage, increased sperm motility and induced the acrosome reaction in vitro. CONCLUSIONS 1,25(OH)(2)D(3) increased intracellular calcium...

  15. Engineering of obligate intracellular bacteria: progress, challenges and paradigms

    Science.gov (United States)

    Over twenty years have passed since the first report of genetic manipulation of an obligate intracellular bacterium. Through progress interspersed by bouts of stagnation, microbiologists and geneticists have developed approaches to genetically manipulate obligates. A brief overview of the current ge...

  16. Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia.

    Science.gov (United States)

    Ludwar, Bjoern Ch; Evans, Colin G; Cropper, Elizabeth C

    2012-07-15

    It has been suggested that changes in intracellular calcium mediate the induction of a number of important forms of synaptic plasticity (e.g., homosynaptic facilitation). These hypotheses can be tested by simultaneously monitoring changes in intracellular calcium and alterations in synaptic efficacy. We demonstrate how this can be accomplished by combining calcium imaging with intracellular recording techniques. Our experiments are conducted in a buccal ganglion of the mollusc Aplysia californica. This preparation has a number of experimentally advantageous features: Ganglia can be easily removed from Aplysia and experiments use adult neurons that make normal synaptic connections and have a normal ion channel distribution. Due to the low metabolic rate of the animal and the relatively low temperatures (14-16 °C) that are natural for Aplysia, preparations are stable for long periods of time. To detect changes in intracellular free calcium we will use the cell impermeant version of Calcium Orange which is easily 'loaded' into a neuron via iontophoresis. When this long wavelength fluorescent dye binds to calcium, fluorescence intensity increases. Calcium Orange has fast kinetic properties and, unlike ratiometric dyes (e.g., Fura 2), requires no filter wheel for imaging. It is fairly photo stable and less phototoxic than other dyes (e.g., fluo-3). Like all non-ratiometric dyes, Calcium Orange indicates relative changes in calcium concentration. But, because it is not possible to account for changes in dye concentration due to loading and diffusion, it can not be calibrated to provide absolute calcium concentrations. An upright, fixed stage, compound microscope was used to image neurons with a CCD camera capable of recording around 30 frames per second. In Aplysia this temporal resolution is more than adequate to detect even a single spike induced alteration in the intracellular calcium concentration. Sharp electrodes are simultaneously used to induce and record

  17. BLAST and FASTA similarity searching for multiple sequence alignment.

    Science.gov (United States)

    Pearson, William R

    2014-01-01

    BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.

  18. Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Sun Jie

    2008-08-01

    Full Text Available Abstract Background Phenylobacterium zucineum is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, P. zucineum maintains a stable association with its host cell without affecting the growth and morphology of the latter. Results Here, we report the whole genome sequence of the type strain HLK1T. The genome consists of a circular chromosome (3,996,255 bp and a circular plasmid (382,976 bp. It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to Caulobacter crescentus, a model species for cell cycle research. Notably, P. zucineum has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of C. crescentus, and most of the genes directly regulated by CtrA in the latter have orthologs in the former. Conclusion This work presents the first complete bacterial genome in the genus Phenylobacterium. Comparative genomic analysis indicated that the CtrA regulon is well conserved between C. crescentus and P. zucineum.

  19. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Loan [Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010 (United States); Aleid, Adham [Department of Biomedical Technology, King Saud University, Riyadh 12372 (Saudi Arabia); Alassaf, Ahmad [Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 (United States); Department of Medical Equipment Technology, Majmaah University, Majmaah City 11952 (Saudi Arabia); Wilson, Otto C.; Raub, Christopher B. [Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064 (United States); Frenkel, Victor, E-mail: vfrenkel@som.umaryland.edu [Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2017-01-01

    In vitro investigations of ultrasound mediated, intracellular drug and gene delivery (i.e. sonoporation) are typically carried out in cells cultured in standard plastic well plates. This creates conditions that poorly resemble in vivo conditions, as well as generating unwanted ultrasound phenomena that may confound the interpretation of results. Here, we present our results in the development of a biological scaffold for sonoporation studies. The scaffolds were comprised of cellulose fibers coated with chitosan and gelatin. Scaffold formulation was optimized for adherence and proliferation of mouse fibroblasts in terms of the ratio and relative concentration of the two constituents. The scaffolds were also shown to significantly reduce ultrasound reflections compared to the plastic well plates. A custom treatment chamber was designed and built, and the occurrence of acoustic cavitation in the chamber during the ultrasound treatments was detected; a requirement for the process of sonoporation. Finally, experiments were carried out to optimize the ultrasound exposures to minimize cellular damage. Ultrasound exposure was then shown to enable the uptake of 100 nm fluorescently labeled polystyrene nanoparticles in suspension into the cells seeded on scaffolds, compared to incubation of cell-seeded scaffolds with nanoparticles alone. These preliminary results set the basis for further development of this platform. They also provide motivation for the development of similar platforms for the controlled investigation of other ultrasound mediated cell and tissue therapies. - Highlights: • A custom, biological scaffold was developed, comprised of chitosan and gelatin. • The scaffold formulation was optimized for adhesion and proliferation of fibroblasts. • Investigations showed the scaffolds to be less reflective to ultrasound than plastic well plates. • The scaffolds were found to be suitable for investigations of ultrasound mediated intracellular nanoparticle

  20. [Intracellular signaling mechanisms in thyroid cancer].

    Science.gov (United States)

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  1. Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy

    Science.gov (United States)

    There is increasing interest in using live-cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of multip...

  2. Gold-carbon dots for the intracellular imaging of cancer-derived exosomes

    Science.gov (United States)

    Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping

    2018-04-01

    As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.

  3. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  4. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Science.gov (United States)

    Wang, Jinli; Yang, Kun; Zhou, Lin; Minhaowu; Wu, Yongjian; Zhu, Min; Lai, Xiaomin; Chen, Tao; Feng, Lianqiang; Li, Meiyu; Huang, Chunyu; Zhong, Qiu; Huang, Xi

    2013-01-01

    Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7) reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb), a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  5. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb.

    Directory of Open Access Journals (Sweden)

    Jinli Wang

    Full Text Available Mycobacterium tuberculosis is a hard-to-eradicate intracellular pathogen that infects one-third of the global population. It can live within macrophages owning to its ability to arrest phagolysosome biogenesis. Autophagy has recently been identified as an effective way to control the intracellular mycobacteria by enhancing phagosome maturation. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-mycobacterial response. Both in vivo and in vitro studies showed that miR-155 expression was significantly enhanced after mycobacterial infection. Forced expression of miR-155 accelerated the autophagic response in macrophages, thus promoting the maturation of mycobacterial phagosomes and decreasing the survival rate of intracellular mycobacteria, while transfection with miR-155 inhibitor increased mycobacterial survival. However, macrophage-mediated mycobacterial phagocytosis was not affected after miR-155 overexpression or inhibition. Furthermore, blocking autophagy with specific inhibitor 3-methyladenine or silencing of autophagy related gene 7 (Atg7 reduced the ability of miR-155 to promote autophagy and mycobacterial elimination. More importantly, our study demonstrated that miR-155 bound to the 3'-untranslated region of Ras homologue enriched in brain (Rheb, a negative regulator of autophagy, accelerated the process of autophagy and sequential killing of intracellular mycobacteria by suppressing Rheb expression. Our results reveal a novel role of miR-155 in regulating autophagy-mediated mycobacterial elimination by targeting Rheb, and provide potential targets for clinical treatment.

  6. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.

    Science.gov (United States)

    Tu, Yu-Hsuan; Ho, Yu-Hsuan; Chuang, Ying-Chih; Chen, Po-Chung; Chen, Chien-Sheng

    2011-01-01

    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.

  7. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Tu

    Full Text Available Lactoferricin B (LfcinB is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP assays. Sixteen proteins were identified, and an E. coli interaction database (EcID analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.

  8. Intracellular magnetophoresis of amyloplasts and induction of root curvature

    Science.gov (United States)

    Kuznetsov, O. A.; Hasenstein, K. H.

    1996-01-01

    High-gradient magnetic fields (HGMFs) were used to induce intracellular magnetophoresis of amyloplasts. The HGMFs were generated by placing a small ferromagnetic wedge into a uniform magnetic field or at the gap edge between two permanent magnets. In the vicinity of the tip of the wedge the dynamic factor of the magnetic field, delta(H2/2), was about 10(9) Oe2.cm-1, which subjected the amyloplasts to a force comparable to that of gravity. When roots of 2-d-old seedlings of flax (Linum usitatissimum L.) were positioned vertically and exposed to an HGMF, curvature away from the wedge was transient and lasted approximately 1 h. Average curvature obtained after placing magnets, wedge and seedlings on a 1-rpm clinostat for 2 h was 33 +/- 5 degrees. Roots of horizontally placed control seedlings without rotation curved about 47 +/- 4 degrees. The time course of curvature and changes in growth rate were similar for gravicurvature and for root curvature induced by HGMFs. Microscopy showed displacement of amyloplasts in vitro and in vivo. Studies with Arabidopsis thaliana (L.) Heynh. showed that the wild type responded to HGMFs but the starchless mutant TC7 did not. The data indicate that a magnetic force can be used to study the gravisensing and response system of roots.

  9. Simultaneous quantification by HPLC of purines in umami soup stock and evaluation of their effects on extracellular and intracellular purine metabolism.

    Science.gov (United States)

    Fukuuchi, T; Iyama, N; Yamaoka, N; Kaneko, K

    2018-04-13

    Ribonucleotide flavor enhancers such as inosine monophosphate (IMP) and guanosine monophosphate (GMP) provide umami taste, similarly to glutamine. Japanese cuisine frequently uses soup stocks containing these nucleotides to enhance umami. We quantified 18 types of purines (nucleotides, nucleosides, and purine bases) in three soup stocks (chicken, consommé, and dried bonito soup). IMP was the most abundant purine in all umami soup stocks, followed by hypoxanthine, inosine, and GMP. The IMP content of dried bonito soup was the highest of the three soup stocks. We also evaluated the effects of these purines on extracellular and intracellular purine metabolism in HepG2 cells after adding each umami soup stock to the cells. An increase in inosine and hypoxanthine was evident 1 h and 4 h after soup stock addition, and a low amount of xanthine and guanosine was observed in the extracellular medium. The addition of chicken soup stock resulted in increased intracellular and extracellular levels of uric acid and guanosine. Purine metabolism may be affected by ingredients present in soups.

  10. Measurement of Intracellular Ionized Calcium in a Free-living Soil Nematode, Caenorhabditis elegans.

    Science.gov (United States)

    Kawaii, S; Yoshizawa, Y; Mizutani, J

    1993-01-01

    A calcium chelating fluorescence indicator, fura-2, was used to measure intracellular ionized calcium in Caenorhabditis elegans. The indicator loading process was harmless to the nematode, and completed within 2-3 h. Fura-2 was loaded mainly at its intestinal tract. The effects of DOPA on locomotion and the level of intracellular calcium were investigated and measured by using a microfluorometer. The addition of DOPA temporarily increased [Ca(2+)]i for several minutes.

  11. Lens design and local minima

    International Nuclear Information System (INIS)

    Brixner, B.

    1981-01-01

    The widespread belief that local minima exist in the least squares lens-design error function is not confirmed by the Los Alamos Scientific Laboratory (LASL) optimization program. LASL finds the optimum-mimimum region, which is characterized by small parameter gradients of similar size, small performance improvement per iteration, and many designs that give similar performance. Local minima and unique prescriptions have not been found in many-parameter problems. The reason for these absences is that image errors caused by a change in one parameter can be compensated by changes in the remaining parameters. False local minima have been found, and four cases are discussed

  12. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition.

    Science.gov (United States)

    Ki, Bo-Min; Ryu, Hee Wook; Cho, Kyung-Suk

    2018-02-22

    Soil burial and composting methods have been widely used for the disposal of pig carcasses. The relationship between bacterial community structure and odor emission was examined using extended local similarity analysis (eLSA) during the degradation of pig carcasses in soil and compost. In soil, Hyphomicrobium, Niastella, Rhodanobacter, Polaromonas, Dokdonella and Mesorhizobium were associated with the emission of sulfur-containing odors such as hydrogen sulfide, methyl mercaptan and dimethyl disulfide. Sphingomonas, Rhodanobacter, Mesorhizobium, Dokdonella, Leucobacter and Truepera were associated with the emission of nitrogen-containing odors including ammonia and trimetylamine. In compost, however, Carnobacteriaceae, Lachnospiaceae and Clostridiales were highly correlated with the emission of sulfur-containing odors, while Rumincoccaceae was associated with the emission of nitrogen-containing odors. The emission of organic acids was closely related to Massilia, Sphaerobacter and Bradyrhizobiaceae in soil, but to Actinobacteria, Sporacetigenium, Micromonosporaceae and Solirubrobacteriales in compost. This study suggests that network analysis using eLSA is a useful strategy for exploring the mechanisms of odor emission during biodegradation of pig carcasses.

  13. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Antimycobacterial Efficacy of Andrographis paniculata Leaf Extracts Under Intracellular and Hypoxic Conditions.

    Science.gov (United States)

    Bhatter, Purva; Gupta, Pooja; Daswani, Poonam; Tetali, Pundarikakshudu; Birdi, Tannaz

    2015-01-01

    The inhibition of the growth of Mycobacterium tuberculosis by the extracts of Andrographis paniculata has been studied using intracellular and axenic hypoxic conditions. The inhibition (confirmed using the gold standard colony forming unit assay) was found to increase with "double stimuli" or higher concentration of the extract. Organic solvent extracts were found to inhibit bacterial growth more than the aqueous extracts under microaerophilic conditions mimicked through axenic and intracellular assays. This could be further explored to evaluate the potential of the plant to be used against nonreplicating/dormant bacilli. © The Author(s) 2014.

  15. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios

    Directory of Open Access Journals (Sweden)

    Kovanci Gökhan

    2016-10-01

    Full Text Available The CELLmicrocosmos 4.2 PathwayIntegration (CmPI is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  16. Dynamics of inorganic nutrients in intertidal sediments: porewater, exchangeable and intracellular pools

    Directory of Open Access Journals (Sweden)

    Emilio eGarcia-Robledo

    2016-05-01

    Full Text Available The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: the porewater (PW nutrients and the exchangeable (EX ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB and other microorganisms can accumulate large amounts of nutrients intracellularly (IC, highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC and EX and their relation to chlorophylls (used as a proxy for MPB abundance and organic matter (OM contents in an intertidal mudflat of Cadiz Bay (Spain. MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an

  17. Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles in proliferating and nonproliferating mammalian cells

    International Nuclear Information System (INIS)

    Korbelik, M.; Osmak, M.; Suhar, A.; Turk, V.; Skrk, J.

    1990-01-01

    Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles were examined in proliferating and nonproliferating Chinese hamster fibroblasts (V 79). The results show that there are significant alterations in cysteine and aspartic intracellular proteinases activity already in the early postirradiation period, which are different in proliferating and nonproliferating cells. Irradiation of the cells examined to low doses and up to 15 Gy induced an increase in cysteine proteinases activity in the early postexposure period, while at higher irradiation doses applied, the activity of these proteinases was decreased. These observations suggest that intracellular proteinases are actively participating in process involving recovery from radiation injury or cell killing. (orig.) [de

  18. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome.

    Science.gov (United States)

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A; Landau, Daniel; Birk, Ohad S

    2017-04-01

    A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through

  19. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  20. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  1. Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1.

    Science.gov (United States)

    Marr, A K; Jenssen, H; Moniri, M Roshan; Hancock, R E W; Panté, N

    2009-01-01

    Although both lactoferrin (Lf), a component of the innate immune system of living organisms, and its N-terminal pepsin cleavage product lactoferricin (Lfcin) have anti-herpes activity, the precise mechanisms by which Lf and Lfcin bring about inhibition of herpes infections are not fully understood. In the present study, experiments were carried out to characterize the activity of bovine Lf and Lfcin (BLf and BLfcin) against the Herpes simplex virus-1 (HSV-1). HSV-1 cellular uptake and intracellular trafficking were studied by immunofluorescence microscopy. In comparison to the untreated infected control cells, both the BLf- and BLfcin-treated cells showed a significant reduction in HSV-1 cellular uptake. The few virus particles that were internalized appeared to have a delayed intracellular trafficking. Thus, in addition to their interference with the uptake of the virus into host cells, Lf and Lfcin also exert their antiviral effect intracellularly.

  2. Single quantum dot tracking reveals the impact of nanoparticle surface on intracellular state.

    Science.gov (United States)

    Zahid, Mohammad U; Ma, Liang; Lim, Sung Jun; Smith, Andrew M

    2018-05-08

    Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone. We derive new quantitative metrics of particle loading, cluster distribution, and vesicular release in single cells, and evaluate intracellular nanoparticles with diverse surfaces following osmotic delivery. Surface properties have a major impact on cell uptake, but little impact on the absolute cytoplasmic numbers. A key outcome is that stable zwitterionic surfaces yield uniform cytosolic behavior, ideal for imaging agents. We anticipate that this combination of quantum dots and single-particle tracking can be widely applied to design and optimize next-generation imaging probes, nanoparticle therapeutics, and biologics.

  3. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  4. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  5. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    Science.gov (United States)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  6. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    Fluorescent dyes sensitive to changes in intracellular calcium have become increasingly popular in G protein-coupled receptor (GPCR) drug discovery for several reasons. First of all, the assays using the dyes are easy to perform and are of low cost compared to other assays. Second, most non...

  7. Mycobacterium intracellulare Pleurisy Identified on Liquid Cultures of the Pleural Fluid and Pleural Biopsy

    OpenAIRE

    Lim, Jong Gu; O, Sei Won; Lee, Ki Dong; Suk, Dong Keun; Jung, Tae Young; Shim, Tae Sun; Chon, Gyu Rak

    2013-01-01

    Pleural effusion is a rare complication in non-tuberculous mycobacterial infection. We report a case of Mycobacterium intracellulare pleuritis with idiopathic pulmonary fibrosis in a 69-year-old man presenting with dyspnea. Pleural effusion revealed lymphocyte dominant exudate. M. intracellulare was identified using a polymerase chain reaction-restriction fragment length polymorphism method and liquid cultures of pleural effusion and pleural biopsy. After combination therapy for M. intracellu...

  8. Demand for Zn2+ in acid-secreting gastric mucosa and its requirement for intracellular Ca2+.

    Directory of Open Access Journals (Sweden)

    JingJing Liu

    Full Text Available Recent work has suggested that Zn(2+ plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+ in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+ were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70Zn(2+, from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg. In in vitro studies, uptake of (70Zn(2+ from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+ was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+ {[Zn(2+](i} during exposure to standard extracellular concentrations of Zn(2+ (10 µM for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+ increased with exposure to secretagogues (forskolin, carbachol/histamine and under conditions associated with increased intracellular Ca(2+ {[Ca(2+](i}. Uptake of Zn(2+ was abolished following removal of extracellular Ca(2+ or depletion of intracellular Ca(2+ stores, suggesting that demand for extracellular Zn(2+ increases and depends on influx of extracellular Ca(2+.This study is the first to characterize the content and distribution of Zn(2+ in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+ integrates basolateral demand for Zn(2+ with stimulation of secretion of HCl into the lumen of the gastric

  9. Molecular characterization of a novel intracellular ADP-ribosyl cyclase.

    Directory of Open Access Journals (Sweden)

    Dev Churamani

    2007-08-01

    Full Text Available ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates.Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1 is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained.Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized.

  10. Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces.

    Science.gov (United States)

    Présent, Romain M; Rotureau, Elise; Billard, Patrick; Pagnout, Christophe; Sohm, Bénédicte; Flayac, Justine; Gley, Renaud; Pinheiro, José P; Duval, Jérôme F L

    2017-11-08

    Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator. Depletion kinetics of Cd(ii) from bulk solution following biouptake and intracellular accumulation is addressed as a function of cell volume fraction using electroanalytical probes and ligand exchange-based analyses. It is shown that metal biouptake in the absence and presence of MTc is successfully interpreted on the basis of a formalism recently developed for metal partitioning dynamics at biointerfaces with integration of intracellular metal speciation. The analysis demonstrates how fast sequestration of metals by intracellular MTc bypasses metal excretion (efflux) and enhances the rate of metal depletion to an extent such that complete removal is achieved at sufficiently large cell volume fractions. The magnitude of the stability constant of nanoparticulate metal-MTc complexes, as derived from refined analysis of macroscopic bulk metal depletion data, is further confirmed by independent electrochemical measurement of metal binding by purified MTc extracts.

  11. A new type of intracellular retention signal identified in a pestivirus structural glycoprotein.

    Science.gov (United States)

    Burrack, Sandra; Aberle, Daniel; Bürck, Jochen; Ulrich, Anne S; Meyers, Gregor

    2012-08-01

    Sorting of membrane proteins into intracellular organelles is crucial for cell function. Viruses exploit intracellular transport and retention systems to concentrate envelope proteins at the site of virus budding. In pestiviruses, a group of important pathogens of pigs and ruminants closely related to human hepatitis C virus, the E(rns) protein translated from the viral RNA is secreted from the infected cells and found in the serum of infected animals. Secretion of the protein is regarded as crucial for its function as a viral virulence factor associated with its RNase activity. However, ∼95% of the E(rns) molecules are retained within the infected cell. Fusion of different E(rns) fragments to the C terminus of CD72 allowed identification of a retention signal within the C-terminal 65 aa of the viral protein. This C-terminal sequence represents its membrane anchor and folds into an amphipathic helix binding in-plane to the membrane surface. Residues L183, I190, and L208 are important for intracellular location of E(rns). Presentation of the retention signal on the cytoplasmic instead of the luminal face of the ER membrane in CD8α fusion proteins still led to retention. Thus, E(rns) contains in its C-terminal amphipathic helix an intracellular retention signal that is active on both faces of the membrane.

  12. Large margin classification with indefinite similarities

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2016-01-07

    Classification with indefinite similarities has attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Examples of such indefinite similarities in machine learning applications are ample including, for instance, the BLAST similarity score between protein sequences, human-judged similarities between concepts and words, and the tangent distance or the shape matching distance in computer vision. Nevertheless, previous works on classification with indefinite similarities are not fully satisfactory. They have either introduced sources of inconsistency in handling past and future examples using kernel approximation, settled for local-minimum solutions using non-convex optimization, or produced non-sparse solutions by learning in Krein spaces. Despite the large volume of research devoted to this subject lately, we demonstrate in this paper how an old idea, namely the 1-norm support vector machine (SVM) proposed more than 15 years ago, has several advantages over more recent work. In particular, the 1-norm SVM method is conceptually simpler, which makes it easier to implement and maintain. It is competitive, if not superior to, all other methods in terms of predictive accuracy. Moreover, it produces solutions that are often sparser than more recent methods by several orders of magnitude. In addition, we provide various theoretical justifications by relating 1-norm SVM to well-established learning algorithms such as neural networks, SVM, and nearest neighbor classifiers. Finally, we conduct a thorough experimental evaluation, which reveals that the evidence in favor of 1-norm SVM is statistically significant.

  13. 3D–2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    International Nuclear Information System (INIS)

    De Silva, T; Ketcha, M D; Siewerdsen, J H; Uneri, A; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P

    2016-01-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D–2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D–2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1–2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  14. Phosphoinositide 3-kinaseγ controls the intracellular localization of CpG to limit DNA-PKcs-dependent IL-10 production in macrophages.

    Directory of Open Access Journals (Sweden)

    Kaoru Hazeki

    Full Text Available Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-. By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/- cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/- cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/- cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/- cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.

  15. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Li, Yingying

    2017-01-01

    Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm...... cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents...... possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP...

  16. Intracellular ion monitoring using a gold-core polymer-shell nanosensor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanca, S E; Cranfield, C G; Biskup, C [Biomolecular Photonics Group, University Hospital Jena, Teichgraben 8, 07743 Jena (Germany); Nietzsche, S [Centre for Electron Microscopy, University Hospital Jena, Ziegel-muehlenweg 1, 07743 Jena (Germany); Fritzsche, W, E-mail: sarmiza.stanca@mti.uni-jena.de, E-mail: charles.cranfield@mti.uni-jena.de, E-mail: christoph.biskup@mti.uni-jena.de [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745 Jena (Germany)

    2010-02-05

    In this study, we describe the design of new ratiometric fluorescent nanosensors, whose architecture is based on a gold core surrounded by a poly(vinyl alcohol)-polyacetal shell. To the gold core, indicator dyes and reference dyes are attached via a cysteine linker. This nanosensor architecture is flexible with regards to the number and types of fluorophore linkages possible. The robust poly(vinyl alcohol)-polyacetal shell protects the fluorophores linked to the core from non-specific interactions with intracellular proteins. The nanosensors developed in this way are biocompatible and can be easily incorporated into mammalian cells without the use of transfection agents. Here, we show the application of these nanosensors for intracellular pH and sodium ion measurements.

  17. Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Zheng-Wei Lee

    2017-10-01

    Full Text Available Slow and continuous release of H2S by GYY4137 has previously been demonstrated to kill cancer cells by increasing glycolysis and impairing anion exchanger and sodium/proton exchanger activity. This action is specific for cancer cells. The resulting lactate overproduction and defective pH homeostasis bring about intracellular acidification-induced cancer cell death. The present study investigated the potency of H2S released by GYY4137 against invasive and radio- as well as chemo-resistant cancers, known to be glycolytically active. We characterized and utilized cancer cell line pairs of various organ origins, based on their aggressive behaviors, and assessed their response to GYY4137. We compared glycolytic activity, via lactate production, and intracellular pH of each cancer cell line pair after exposure to H2S. Invasive and therapy resistant cancers, collectively termed aggressive cancers, are receptive to H2S-mediated cytotoxicity, albeit at a higher concentration of GYY4137 donor. While lactate production was enhanced, intracellular pH of aggressive cancers was only modestly decreased. Inherently, the magnitude of intracellular pH decrease is a key determinant for cancer cell sensitivity to H2S. We demonstrated the utility of coupling GYY4137 with either simvastatin, known to inhibit monocarboxylate transporter 4 (MCT4, or metformin, to further boost glycolysis, in bringing about cell death for aggressive cancers. Simvastatin inhibiting lactate extrusion thence contained excess lactate induced by GYY4137 within intracellular compartment. In contrast, the combined exposure to both GYY4137 and metformin overwhelms cancer cells with lactate over-production exceeding its expulsion rate. Together, GYY4137 and simvastatin or metformin synergize to induce intracellular hyper-acidification-mediated cancer cell death.

  18. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells.

    Science.gov (United States)

    Toyoda, Akemi; Itagaki, Hiroshi

    2018-01-01

    Photoreactive compounds that may experience exposure to ultraviolet (UV) radiation can lead to the intracellular production of reactive oxygen species (ROS), which may cause phototoxic and photoallergenic responses. Here, we developed a novel in vitro photosafety assay and investigated whether it could be used to predict phototoxicity and photosensitivity by measuring changes in intracellular ROS production. THP-1 cells that had previously taken up 5-(and-6)-carboxy-2',7'-difluorodihydrofluorescein diacetate (carboxy-H 2 DFFDA), a ROS-sensitive fluorescent reagent, were exposed to photoreactive substances such as phototoxic and photoallergenic materials and then subjected to with UV-A irradiation (5 J/cm 2 ). The fluorescence intensity was subsequently measured using a flow cytometer, and the intracellular ROS production was calculated. A statistically significant increase in ROS following treatment with photoreactive substances was observed in cells irradiated with UV-A. In contrast, no significant increase was observed for non-photoreactive substances in comparison to the control solution. Next, to confirm the impact of intracellular ROS on the photosensitive response, changes in CD86 and CD54 expression were measured following quencher addition during the photo human cell line activation test (photo h-CLAT). The results confirmed the reduction of CD86 and CD54 expression in response to photoallergenic substances following quencher addition. Together, these findings suggest that intracellular ROS production is involved in photosensitizing reactions. Therefore, we suggest that the developed method utilizing intracellular ROS production as an index may be useful as a novel in vitro evaluation tool for photoreactive substances.

  19. Monitoring Intracellular Redox Changes in Ozone-exposed airway epithelial cells

    Science.gov (United States)

    Background: The toxicity of many compounds involves oxidative injury to cells. Direct assessment of mechanistic events involved in xenobiotic-induced oxidative stress is not easily achievable. Development of genetically-encoded probes designed for monitoring intracellular redox s...

  20. A Bombesin-Shepherdin Radioconjugate Designed for Combined Extra- and Intracellular Targeting

    Directory of Open Access Journals (Sweden)

    Christiane A. Fischer

    2014-05-01

    Full Text Available Radiolabeled peptides which target tumor-specific membrane structures of cancer cells represent a promising class of targeted radiopharmaceuticals for the diagnosis and therapy of cancer. A potential drawback of a number of reported radiopeptides is the rapid washout of a substantial fraction of the initially delivered radioactivity from cancer cells and tumors. This renders the initial targeting effort in part futile and results in a lower imaging quality and efficacy of the radiotracer than achievable. We are investigating the combination of internalizing radiopeptides with molecular entities specific for an intracellular target. By enabling intracellular interactions of the radioconjugate, we aim at reducing/decelerating the externalization of radioactivity from cancer cells. Using the “click-to-chelate” approach, the 99mTc-tricarbonyl core as a reporter probe for single-photon emission computed tomography (SPECT was combined with the binding sequence of bombesin for extracellular targeting of the gastrin-releasing peptide receptor (GRP-r and peptidic inhibitors of the cytosolic heat shock 90 protein (Hsp90 for intracellular targeting. Receptor-specific uptake of the multifunctional radioconjugate could be confirmed, however, the cellular washout of radioactivity was not improved. We assume that either endosomal trapping or lysosomal degradation of the radioconjugate is accountable for these observations.

  1. Intracellular photoinduced oxidative stress by zinc phthalocyanine photosensitization: a study of the early events in real time using confocal microscopy

    Science.gov (United States)

    Alexandratou, Eleni; Yova, Dido; Handris, Panagiotis; Kletsas, Dimitris; Loukas, Spyros

    2003-10-01

    Oxidative stress has been implicated in several biological and pathological aspects. Reactive oxygen species (ROS) have been proposed to act as signal transduction molecules activating reactions leading to cell rescue or to cell apoptosis/necrosis. In the present study, oxidative stress was induced by photosensitization of zinc phthalocyanine (ZnPc) in human fibroblasts using a photodynamic dose that did not lead to apoptosis or necrosis. The induction of oxidative stress was performed at the microscope stage in preassigned time. The cascade of phenomena evoked was studied in real time and at the single cell level using confocal laser scanning microscopy. Using specific vital fluorescent probes, alterations induced by oxidative stress in mitochondria membrane potential, in intracellular pH and in calcium concentration were recorded. Image processing and analysis techniques were used to quantify the observed changes. Subcellular localization of the photosensitizer was studied in order to determine the primary and immediate ROS target. It was found that ZnPc is mainly localized in the mitochondria region.

  2. Transient fluctuations of intracellular zinc ions in cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Maret, Wolfgang, E-mail: womaret@utmb.edu [Division of Human Nutrition, Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2009-08-15

    Zinc is essential for cell proliferation, differentiation, and viability. When zinc becomes limited for cultured cells, DNA synthesis ceases and the cell cycle is arrested. The molecular mechanisms of actions of zinc are believed to involve changes in the availability of zinc(II) ions (Zn{sup 2+}). By employing a fluorescent Zn{sup 2+} probe, FluoZin-3 acetoxymethyl ester, intracellular Zn{sup 2+} concentrations were measured in undifferentiated and in nerve growth factor (NGF)-differentiated rat pheochromocytoma (PC12) cells. Intracellular Zn{sup 2+} concentrations are pico- to nanomolar in PC12 cells and are higher in the differentiated than in the undifferentiated cells. When following cellular Zn{sup 2+} concentrations for 48 h after the removal of serum, a condition that is known to cause cell cycle arrest, Zn{sup 2+} concentrations decrease after 30 min but, remarkably, increase after 1 h, and then decrease again to about one half of the initial concentration. Cell proliferation, measured by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, decreases after both serum starvation and zinc chelation. Two peaks of Zn{sup 2+} concentrations occur within one cell cycle: one early in the G1 phase and the other in the late G1/S phase. Thus, fluctuations of intracellular Zn{sup 2+} concentrations and established modulation of phosphorylation signaling, via an inhibition of protein tyrosine phosphatases at commensurately low Zn{sup 2+} concentrations, suggest a role for Zn{sup 2+} in the control of the cell cycle. Interventions targeted at these picomolar Zn{sup 2+} fluctuations may be a way of controlling cell growth in hyperplasia, neoplasia, and diseases associated with aberrant differentiation.

  3. Self-similar slip distributions on irregular shaped faults

    Science.gov (United States)

    Herrero, A.; Murphy, S.

    2018-06-01

    We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.

  4. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  5. Intracellular trafficking of superparamagnetic iron oxide nanoparticles conjugated with TAT peptide: 3-dimensional electron tomography analysis

    International Nuclear Information System (INIS)

    Nair, Baiju G.; Fukuda, Takahiro; Mizuki, Toru; Hanajiri, Tatsuro; Maekawa, Toru

    2012-01-01

    Highlights: ► We study the intracellular localisation of TAT-SPIONs using 3-D electron tomography. ► 3-D images of TAT-SPIONs in a cell are clearly shown. ► Release of TAT-SPIONs from endocytic vesicles into the cytoplasm is clearly shown. -- Abstract: Internalisation of nanoparticles conjugated with cell penetrating peptides is a promising approach to various drug delivery applications. Cell penetrating peptides such as transactivating transcriptional activator (TAT) peptides derived from HIV-1 proteins are effective intracellular delivery vectors for a wide range of nanoparticles and pharmaceutical agents thanks to their amicable ability to enter cells and minimum cytotoxicity. Although different mechanisms of intracellular uptake and localisation have been proposed for TAT conjugated nanoparticles, it is necessary to visualise the particles on a 3-D plane in order to investigate the actual intracellular uptake and localisation. Here, we study the intracellular localisation and trafficking of TAT peptide conjugated superparamagnetic ion oxide nanoparticles (TAT-SPIONs) using 3-D electron tomography. 3-D tomograms clearly show the location of TAT-SPIONs in a cell and their slow release from the endocytic vesicles into the cytoplasm. The present methodology may well be utilised for further investigations of the behaviours of nanoparticles in cells and eventually for the development of nano drug delivery systems.

  6. Horizontal Transmission of Intracellular Insect Symbionts via Plants

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    2017-11-01

    Full Text Available Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.

  7. Construction of 2D quasi-periodic Rauzy tiling by similarity transformation

    International Nuclear Information System (INIS)

    Zhuravlev, V. G.; Maleev, A. V.

    2009-01-01

    A new approach to constructing self-similar fractal tilings is proposed based on the construction of semigroups generated by a finite set of similarity transformations. The Rauzy tiling-a 2D analog of 1D Fibonacci tiling generated by the golden mean-is used as an example to illustrate this approach. It is shown that the Rauzy torus development and the elementary fractal boundary of Rauzy tiling can be constructed in the form of a set of centers of similarity semigroups generated by two and three similarity transformations, respectively. A centrosymmetric tiling, locally dual to the Rauzy tiling, is constructed for the first time and its parameterization is developed.

  8. Intracellular disposition of chitosan nanoparticles in macrophages: intracellular uptake, exocytosis, and intercellular transport

    Directory of Open Access Journals (Sweden)

    Jiang LQ

    2017-08-01

    Full Text Available Li Qun Jiang,1 Ting Yu Wang,1 Thomas J Webster,2 Hua-Jian Duan,1 Jing Ying Qiu,1 Zi Ming Zhao,1 Xiao Xing Yin,1,* Chun Li Zheng3,* 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Biodegradable nanomaterials have been widely used in numerous medical fields. To further improve such efforts, this study focused on the intracellular disposition of chitosan nanoparticles (CsNPs in macrophages, a primary cell of the mononuclear phagocyte system (MPS. Such interactions with the MPS determine the nanoparticle retention time in the body and consequently play a significant role in their own clinical safety. In this study, various dye-labeled CsNPs (about 250 nm were prepared, and a murine macrophage cell line (RAW 264.7 was selected as a model macrophage. The results showed two mechanisms of macrophage incorporation of CsNPs, ie, a clathrin-mediated endocytosis pathway (the primary and phagocytosis. Following internalization, the particles partly dissociated in the cells, indicating cellular digestion of the nanoparticles. It was proved that, after intracellular uptake, a large proportion of CsNPs were exocytosed within 24 h; this excretion induced a decrease in fluorescence intensity in cells by 69%, with the remaining particles possessing difficulty being cleared. Exocytosis could be inhibited by both wortmannin and vacuolin-1, indicating that CsNP uptake was mediated by lysosomal and multivesicular body pathways, and after exocytosis, the reuptake of CsNPs by neighboring cells was verified by further experiments. This study, thus, elucidated the fate of CsNPs in macrophages as well as identified cellular disposition

  9. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    Directory of Open Access Journals (Sweden)

    Eric Venner

    Full Text Available High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  10. The monophasic action potential upstroke: a means of characterizing local conduction.

    Science.gov (United States)

    Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F

    1986-11-01

    The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.

  11. Fully glutathione degradable waterborne polyurethane nanocarriers: Preparation, redox-sensitivity, and triggered intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Omrani, Ismail; Babanejad, Niloofar; Shendi, Hasan Kashef; Nabid, Mohammad Reza, E-mail: m-nabid@sbu.ac.ir

    2017-01-01

    Polyurethanes are important class of biomaterials that are extensively used in medical devices. In spite of their easy synthesis, polyurethanes that are fully degradable in response to the intracellular reducing environment are less explored for controlled drug delivery. Herein, a novel glutathione degradable waterborne polyurethane (WPU) nanocarrier for redox triggered intracellular delivery of a model lipophilic anticancer drug, doxorubicin (DOX) is reported. The WPU was prepared from polyaddition reaction of isophorone diisocyanate (IPDI) and a novel linear polyester polyol involving disulfide linkage, disulfide labeled chain extender, dimethylolpropionic acid (DMPA) using dibutyltin dilaurate (DBTDL) as a catalyst. The resulting polyurethane self-assembles into nanocarrier in water. The dynamic light scattering (DLS) measurements and scanning electron microscope (SEM) revealed fast swelling and disruption of nanocarriers under an intracellular reduction-mimicking environment. The in vitro release studies showed that DOX was released in a controlled and redox-dependent manner. MTT assays showed that DOX-loaded WPU had a high in vitro antitumor activity in both HDF noncancer cells and MCF- 7 cancer cells. In addition, it is found that the blank WPU nanocarriers are nontoxic to HDF and MCF-7 cells even at a high concentration of 2 mg/mL. Hence, nanocarriers based on disulfide labeled WPU have appeared as a new class of biocompatible and redox-degradable nanovehicle for efficient intracellular drug delivery. - Highlights: • A novel fully glutathione degradable waterborne polyurethane was developed. • The waterborne nanocarrier with disulfide bonds in both hard and soft segment were developed for redox-triggered intracellular delivery of DOX. • The polyester diol bearing disulfide bonds in the backbone was prepared by a polycondensation polymerization reaction.

  12. Bee venom induces apoptosis through intracellular Ca2+ -modulated intrinsic death pathway in human bladder cancer cells.

    Science.gov (United States)

    Ip, Siu-Wan; Chu, Yung-Lin; Yu, Chun-Shu; Chen, Po-Yuan; Ho, Heng-Chien; Yang, Jai-Sing; Huang, Hui-Ying; Chueh, Fu-Shin; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    To focus on bee venom-induced apoptosis in human bladder cancer TSGH-8301 cells and to investigate its signaling pathway to ascertain whether intracellular calcium iron (Ca(2+)) is involved in this effect. Bee venom-induced cytotoxic effects, productions of reactive oxygen species and Ca(2+) and the level of mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry. Apoptosis-associated proteins were examined by Western blot analysis and confocal laser microscopy. Bee venom-induced cell morphological changes and decreased cell viability through the induction of apoptosis in TSGH-8301 cell were found. Bee venom promoted the protein levels of Bax, caspase-9, caspase-3 and endonuclease G. The enhancements of endoplasmic reticulum stress-related protein levels were shown in bee venom-provoked apoptosis of TSGH-8301 cells. Bee venom promoted the activities of caspase-3, caspase-8, and caspase-9, increased Ca(2+) release and decreased the level of ΔΨm. Co-localization of immunofluorescence analysis showed the releases of endonuclease G and apoptosis-inducing factor trafficking to nuclei for bee venom-mediated apoptosis. The images revealed evidence of nuclear condensation and formation of apoptotic bodies by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis showed the DNA fragmentation in TSGH-8301 cells. Bee venom treatment induces both caspase-dependent and caspase-independent apoptotic death through intracellular Ca(2+) -modulated intrinsic death pathway in TSGH-8301 cells. © 2011 The Japanese Urological Association.

  13. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  14. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules

    DEFF Research Database (Denmark)

    Niemann, Carsten U; Cowland, Jack B; Ralfkiaer, Elisabeth

    2009-01-01

    Storage and release of proteins from granules forms the basis of cellular functions as diverse as cell mediated cytotoxicity, neuronal communication, activation of muscle fibres, and release of hormones or digestive enzymes from endocrine and exocrine glands, such as the pancreas. Serglycin...... is the major intracellular proteoglycan of haematopoietic cells. Serglycin is important for localization of proteins in granules of different haematopoietic cell types. Previous reports have indicated a role for serglycin in granule formation and localization of zymogens in granules of the exocrine pancreas...... in rat. We here present data showing that serglycin is not present at the protein level in human or murine pancreas. Furthermore, the amount and localization of three exocrine pancreas zymogens (amylase, trypsinogen, and carboxypeptidase A) is not affected by the absence of serglycin in a serglycin knock...

  15. LDL Receptors as Gateways for Intracellular Porphyrin Uptake

    International Nuclear Information System (INIS)

    Novick, S.; Laster, B.; Quastel, M.

    2004-01-01

    Boronated compounds are currently being studied for possible use in Boron Neutron Capture Therapy (BNCT). We found that one of these agents, BOPP (tetrakis-carborane-carboxylate, esters of 2,4-bis (a,b- dihydroxyethyl) deuteroporphyrin IX), could also be labeled with indium (In-BOPP) and, therefore, could also be used potentially to transport high Z atoms into tumor cell DNA for AET (Auger Electron Therapy). In order to assess the uptake of these agents into cells, the role of the LDL receptor in the intracellular accumulation of BOPP and In-BOPP was investigated. Pre-incubation of V-79 Chinese hamster cells in medium containing delipidized fetal bovine serum (FBS) markedly increased the subsequent uptake of intracellular boron transported by both BOPP and In-BOPP when compared with cells that had been pre-incubated with medium containing 10% normal FBS (lipidized). The increased uptake was characterized by elevated levels of receptor, and greater affinity was shown for both BOPP and In-BOPP, although less marked with the latter. Positive cooperativity was demonstrated by sigmoid saturation curves, Scatchard analysis and Hill plots. Increasing the amount of LDL in the incubation medium had a relatively small effect on the total accumulation of either indium or boron atoms inside the cell. Furthermore, chemical acetylation of LDL did not decrease the intracellular uptake of either boron or indium transported by BOPP or In-BOPP. It is thus concluded that BOPP and In-BOPP preferentially enter the cells directly by way of the LDL receptor and that only a small fraction of these molecules are transported into the cells indirectly using serum LDLs as their carriers. These data suggest a novel way of bringing greater amounts of boron and indium (and perhaps other agents) into tissues. Porphyrins can be used to transport different agents into tumor cells because they are tumor affinic molecules. Tumors express a higher number of LDL receptors than do most normal tissues

  16. Self-Similar Spin Images for Point Cloud Matching

    Science.gov (United States)

    Pulido, Daniel

    based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  17. The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins.

    Science.gov (United States)

    Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin

    2015-03-24

    Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside

  18. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms

    DEFF Research Database (Denmark)

    Carlsson, Carl Michael; Bengtson, Per; Cucak, Helena

    2013-01-01

    these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3 bound glycoform increased in cancer, suggesting...

  19. Weakened Intracellular Zn2+-Buffering in the Aged Dentate Gyrus and Its Involvement in Erasure of Maintained LTP.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Murakami, Taku; Nakada, Hiroyuki; Minamino, Tatsuya; Koike, Yuta

    2018-05-01

    Memory is lost by the increased influx of extracellular Zn 2+ into neurons. It is possible that intracellular Zn 2+ dynamics is modified even at non-zincergic medial perforant pathway-dentate granule cell synapses along with aging and that vulnerability to the modification is linked to age-related cognitive decline. To examine these possibilities, vulnerability of long-term potentiation (LTP) maintenance, which underlies memory retention, to modification of synaptic Zn 2+ dynamics was compared between young and aged rats. The influx of extracellular Zn 2+ into dentate granule cells was increased in aged rats after injection of high K + into the dentate gyrus, but not in young rats. This increase impaired maintained LTP in aged rats. However, the impairment was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator, or CNQX, an AMPA receptor antagonist, which suppressed the Zn 2+ influx. Maintained LTP was also impaired in aged rats after injection of ZnAF-2DA into the dentate gyrus that chelates intracellular Zn 2+ , but not in young rats. Interestingly, the capacity of chelating intracellular Zn 2+ with intracellular ZnAF-2 was almost lost in the aged dentate gyrus 2 h after injection of ZnAF-2DA into the dentate gyrus, suggesting that intracellular Zn 2+ -buffering is weakened in the aged dentate gyrus, compared to the young dentate gyrus. In the dentate gyrus of aged rats, maintained LTP is more vulnerable to modification of intracellular Zn 2+ dynamics than in young rats, probably due to weakened intracellular Zn 2+ -buffering.

  20. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.