WorldWideScience

Sample records for similar ache activities

  1. Measurement of acetylcholinesterase (AChE) activity in living brain by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-07-01

    Central cholinergic neuronal system has been known to be related to learning and memory, and its deficit is found in the brain of Alzheimer's disease (AD) and other degenerative disorders. Postmortem studies have shown that acetylcholinesterase (AChE), one of biochemical markers of central cholinergic nerve system, is consistently reduced in the cerebral cortex of patients with Alzheimer's disease (AD). Non-invasive mapping and/or measuring AChE activity in the living brain by positron emission tomography (PET) would be a useful tool for assessment of cholinergic dysfunction in AD and other disorders, and provide a direct method for validation of therapeutic efficacy of drugs, AChE inhibitors. We have challenged to measure AChE activity using tracers of substrate type, radiolabelled acetylcholine analogs, which are lipophilic enough to go across blood brain barrier and are metabolically trapped by AChE in the brain. The analogs designed, N-methylpiperidyl esters, were evaluated in terms of their metabolic rate and specificity against AChE. Studies examining the response to AChE activity showed metabolic accumulation of some analogs responded well to changes in cortical AChE activity in an animal model of AD. The study was further applied to living human by PET using [{sup 11}C]N-methylpiperidyl-4-acetate (MP4A), which was chosen on the basis of its reactivity and specificity suitable for the human cortical AChE. Regional cerebral metabolic rate of MP4A reflecting AChE activity was quantitatively determined using three compartment model analysis of dynamic PET data and the arterial input function obtained by TLC-radioluminography or plasma samples. The kinetic analyses showed that AChE activities estimated were well agree with those of postmortem examination in cerebral cortices and thalamus in healthy subjects, and that there was significant reduction of cortical AChE activity in patients with AD. The results suggest feasibility of the present method for

  2. Selenofuranoside Ameliorates Memory Loss in Alzheimer-Like Sporadic Dementia: AChE Activity, Oxidative Stress, and Inflammation Involvement

    Directory of Open Access Journals (Sweden)

    Cristiano Chiapinotto Spiazzi

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is becoming more common due to the increase in life expectancy. This study evaluated the effect of selenofuranoside (Se in an Alzheimer-like sporadic dementia animal model. Male mice were divided into 4 groups: control, Aβ, Se, and Aβ + Se. Single administration of Aβ peptide (fragments 25–35; 3 nmol/3 μL or distilled water was administered via intracerebroventricular (i.c.v. injection. Selenofuranoside (5 mg/kg or vehicle (canola oil was administered orally 30 min before Aβ and for 7 subsequent days. Memory was tested through the Morris water maze (MWM and step-down passive-avoidance (SDPA tests. Antioxidant defenses along with reactive species (RS were assessed. Inflammatory cytokines levels and AChE activity were measured. SOD activity was inhibited in the Aβ group whereas RS were increased. AChE activity, GSH, and IL-6 levels were increased in the Aβ group. These changes were reflected in impaired cognition and memory loss, observed in both behavioral tests. Se compound was able to protect against memory loss in mice in both behavioral tests. SOD and AChE activities as well as RS and IL-6 levels were also protected by Se administration. Therefore, Se is promising for further studies.

  3. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    Science.gov (United States)

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  4. Chlorpyrifos and Malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-01-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063

  5. Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity.

    Science.gov (United States)

    Richendrfer, Holly; Creton, Robbert

    2015-07-01

    Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Centrally Acting Oximes in Reactivation of Tabun-Phosphoramidated AChE

    Science.gov (United States)

    Kovarik, Zrinka; Maček, Nikolina; Sit, Rakesh K.; Radić, Zoran; Fokin, Valery V.; Sharpless, K. Barry; Taylor, Palmer

    2012-01-01

    Organophosphates (OP) inhibit acetylcholinesterase (AChE, E.C.3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM. PMID:22960624

  7. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    OpenAIRE

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the le...

  8. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer's Disease Therapy.

    Science.gov (United States)

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-07-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer's disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer's disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition.

  9. THE ROLES OF DETOXIFYING ENZYMES AND AChE INSENSITIVITY IN METHAMIDOPHOS RESISTANCE DEVELOPMENT AND DECLINE IN NILAPARVATA LUGENS

    Institute of Scientific and Technical Information of China (English)

    Ze-wenLiu; Zhao-junHan; Ling-chunZhang

    2003-01-01

    Methamidophos resistance of brown planthopper (Nilaparvata lugens Stal, BPH) was selected in laboratory. After successive selection for 9 generations, the selection was ceased by rearing BPH without contact with any insecticide for 9 generations. In the full course, the successive changes of esterase activity, MFO activity, GSTs activity and AChE insensitivity were analyzed. The results showed that the change of esterase activity was high correlated with that of methamidophos in the full course, which indicated that esterase played very important role both in the resistance development and in the resistance decline. However, the change of AChE insensitivity only significantly correlated with that of resistance in the development stage, and the change of MFO activity or GSTs activity only significantly correlated with that of the resistance in the decline stage, which indicated the changes of AChE insensitivity, MFO activity or GSTs activity only played some roles in different stages of the resistance change.

  10. Interactions of AChE with Aβ Aggregates in Alzheimer’s Brain: Therapeutic Relevance of IDN 5706

    Directory of Open Access Journals (Sweden)

    Francisco Javier Carvajal

    2011-09-01

    Full Text Available Acetylcholinesterase (AChE; EC 3.1.1.7 plays a crucial role in the rapid hydrolysis of the neurotransmitter acetylcholine, in the central and peripheral nervous system and might also participate in non-cholinergic mechanism related to neurodegenerative diseases. Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a progressive deterioration of cognitive abilities, amyloid-β peptide (Aβ accumulation and synaptic alterations. We have previously shown that AChE is able to accelerate the Aβ peptide assembly into Alzheimer-type aggregates increasing its neurotoxicity. Furthermore, AChE activity is altered in brain and blood of Alzheimer’s patients. The enzyme associated to amyloid plaques changes its enzymatic and pharmacological properties, as well as, increases its resistant to low pH, inhibitors and excess of substrate. Here, we reviewed the effects of IDN 5706, a hyperforin derivative that has potential preventive effects on the development of AD. Our results show that treatment with IDN5706 for 10 weeks increases brain AChE activity in seven month-old double transgenic mice (APPswe - PS1 and decreases the content of AChE associated with different types of amyloid plaques in this Alzheimer’s model. We concluded that early treatment with IDN 5706 decreases AChE-Aβ interaction and this effect might be of therapeutic interest in the treatment of AD.

  11. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.

    Science.gov (United States)

    Khan, Md Abdul Shafeeuulla; Ganguly, Bishwajit

    2012-05-01

    Oximate anions are used as potential reactivating agents for OP-inhibited AChE because of they possess enhanced nucleophilic reactivity due to the α-effect. We have demonstrated the process of reactivating the VX-AChE adduct with formoximate and hydroxylamine anions by applying the DFT approach at the B3LYP/6-311 G(d,p) level of theory. The calculated results suggest that the hydroxylamine anion is more efficient than the formoximate anion at reactivating VX-inhibited AChE. The reaction of formoximate anion and the VX-AChE adduct is a three-step process, while the reaction of hydroxylamine anion with the VX-AChE adduct seems to be a two-step process. The rate-determining step in the process is the initial attack on the VX of the VX-AChE adduct by the nucleophile. The subsequent steps are exergonic in nature. The potential energy surface (PES) for the reaction of the VX-AChE adduct with hydroxylamine anion reveals that the reactivation process is facilitated by the lower free energy of activation (by a factor of 1.7 kcal mol(-1)) than that of the formoximate anion at the B3LYP/6-311 G(d,p) level of theory. The higher free energy of activation for the reverse reactivation reaction between hydroxylamine anion and the VX-serine adduct further suggests that the hydroxylamine anion is a very good antidote agent for the reactivation process. The activation barriers calculated in solvent using the polarizable continuum model (PCM) for the reactivation of the VX-AChE adduct with hydroxylamine anion were also found to be low. The calculated results suggest that V-series compounds can be more toxic than G-series compounds, which is in accord with earlier experimental observations.

  12. The Role of AChE in Swimming Behavior of Daphnia magna: Correlation Analysis of Both Parameters Affected by Deltamethrin and Methomyl Exposure

    Directory of Open Access Journals (Sweden)

    Qing Ren

    2017-01-01

    Full Text Available The unpredictable toxicity of insecticides may cause behavior disorder of biological organisms. In order to assess the role of acetylcholinesterase (AChE in swimming behavior of Daphnia magna, a correlation analysis of both parameters in 24 h exposure of deltamethrin (DM and methomyl (MT was investigated. The behavior responses of D. magna in DM (13.36 μg/L and 33.40 μg/L and MT (19.66 μg/L and 49.15 μg/L suggested that recovery behavior in the adjustment phase was crucial, and behavior homeostasis provided them with an optimal way to achieve a wider tolerance against environmental stress. During the experiment, positive effects on AChE activity occurred in the beginning of the exposure. Even though the de novo synthesis of AChE in D. magna might help it recover, the AChE inhibition in different treatments could be observed. Some induction effects on AChE activity at the beginning of exposure occurred, and a 50% decrease may cause toxic effects on behavior. In most treatments, the results showed that both behavior strength and AChE activity stayed in the same field within a correlation circle. These results illustrated that the environmental stress caused by both DM and MT could inhibit AChE activity and subsequently induce a stepwise behavior response, though both pesticides affect it as direct and indirect inhibitors, respectively.

  13. Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory.

    Science.gov (United States)

    Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K

    2017-02-15

    Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC 50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biochemical effects of glyphosate based herbicide, Excel Mera 71 on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content on teleostean fishes.

    Science.gov (United States)

    Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan

    2014-09-01

    Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Common SAR Derived from Linear and Non-linear QSAR Studies on AChE Inhibitors used in the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Pulikkal, Babitha Pallikkara; Marunnan, Sahila Mohammed; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2017-11-14

    Deficits in cholinergic neurotransmission due to the degeneration of cholinergic neurons in the brain are believed to be one of the major causes of the memory impairments associated with AD. Targeting acetyl cholinesterase (AChE) surfaced as a potential therapeutic target in the treatment of Alzheimer's disease. The present study is pursued to develop quantitative structure activity relationship (QSAR) models to determine chemical descriptors responsible for AChE activity. Two different sets of AChE inhibitors, dataset-I (30 compounds) and dataset-II (20 compounds) were investigated through MLR aided linear and SVM aided non-linear QSAR models. The obtained QSAR models were found statistically fit, stable and predictive on validation scales. These QSAR models were further investigated for their common structure-activity relationship in terms of overlapping molecular descriptors selection. Atomic mass weighted 3D Morse descriptors (MATS5m) and Radial Distribution Function (RDF045m) descriptors were found in common SAR for both the datasets. Electronegativity weighted (MATS5e, HATSe, and Mor17e) descriptors have also been identified in regulative roles towards endpoint values of dataset-I and dataset-II. The common SAR identified in these linear and non-linear QSAR models could be utilized to design novel inhibitors of AChE with improved biological activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    Science.gov (United States)

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  17. Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

    Science.gov (United States)

    Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun

    2018-01-01

    Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.

  18. Research of small quaternary AChE inhibitors as pretreatment of OP poisoning

    International Nuclear Information System (INIS)

    Musilek, K.; Komloova, M.; Holas, O.; Opletalova, V.; Pohanka, M.; Kuca, K.

    2009-01-01

    Small quaternary AChE inhibitors are used (e.g. pyridostigmine) or scoped (e.g. SAD-128) for pretreatment against organophosphate intoxication [1]. The pretreatment is based on competitive inhibition of AChE prior to organophosphate (OP) poisoning. Consequently, the OP can not influence the inhibited AChE and is degraded by other esterases. Although various competitive inhibitors are used globally, pyridostigmine still remains the most broaden. Its side effects including gastrointestinal effects (nausea, intestinal obstruction), increased bronchial secretion, cardiac arrhythmia or cholinergic crisis are well described. Moreover, some bisquaternary competitive inhibitors (e.g. SAD-128) were used to decrease lethal effects of OP poisoning in vivo. The further studies dealing with SAD-128 showed its increased ability to interact with brain muscarinic acetylcholine receptors as allosteric inhibitors [2]. The small molecules derived from quaternized pyridine, quinoline and isoquinoline were designed as AChE inhibitors. Their ability to inhibit AChE or BChE was determined in vitro using IC50. The IC50 data were compared within each group of compounds with emphasis on selectivity AChE versus BChE. The overall study will be presented. The work was supported by Ministry of Defence of Czech Republic No. OVUOFVZ200805.(author)

  19. 大白鼠海马神经元NOS与AChE活性的研究%Study on the NOS and AChE Activity in the Hippocampus Neurons of Rat

    Institute of Scientific and Technical Information of China (English)

    夏保芦; 杨荣; 杨友华; 杨敏; 黄丹

    2005-01-01

    目的:观察大白鼠海马不同亚区一氧化氮合酶(NOS)与乙酰胆碱酯酶(AChE)阳性神经元的活性.方法:分别采用还原型尼克酰胺嘌呤二核苷酸脱氢酶(NADPH-d)和乙酰胆碱酯酶(AChE)组织化学方法对大白鼠海马不同亚区NOS和AChE阳性神经元的分布以及活性进行研究.结果:海马不同亚区均含有NOS和AChE阳性神经元,其中CA2区NOS呈强阳性反应,CA3区AChE呈强阳性反应.结论:实验表明,NOS和AChE阳性神经元广泛分布于大白鼠海马不同亚区,为进一步探讨海马的学习记忆功能机制提供了形态学佐证.

  20. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    . delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].

  1. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae

    Science.gov (United States)

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    Abstract The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity ( KM ) and hydrolyzing efficiency ( Vmax ) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed

  2. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei [Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 200032 (China); NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032 (China); Li, Juan [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025 (China); Qiu, Zhuibai [Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 200032 (China); Xia, Zheng [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025 (China); Li, Wei [Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 200032 (China); Yu, Lining; Chen, Hailin; Chen, Jianxing [NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032 (China); Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025 (China); Xie, Qiong, E-mail: xiejoanxq@gmail.com [Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 200032 (China); Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025 (China)

    2012-10-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC{sub 50} values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC{sub 50} values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  3. Novel bis-(−)-nor-meptazinol derivatives act as dual binding site AChE inhibitors with metal-complexing property

    International Nuclear Information System (INIS)

    Zheng, Wei; Li, Juan; Qiu, Zhuibai; Xia, Zheng; Li, Wei; Yu, Lining; Chen, Hailin; Chen, Jianxing; Chen, Yan; Hu, Zhuqin; Zhou, Wei; Shao, Biyun; Cui, Yongyao; Xie, Qiong; Chen, Hongzhuan

    2012-01-01

    The strategy of dual binding site acetylcholinesterase (AChE) inhibition along with metal chelation may represent a promising direction for multi-targeted interventions in the pathophysiological processes of Alzheimer's disease (AD). In the present study, two derivatives (ZLA and ZLB) of a potent dual binding site AChE inhibitor bis-(−)-nor-meptazinol (bis-MEP) were designed and synthesized by introducing metal chelating pharmacophores into the middle chain of bis-MEP. They could inhibit human AChE activity with IC 50 values of 9.63 μM (for ZLA) and 8.64 μM (for ZLB), and prevent AChE-induced amyloid-β (Aβ) aggregation with IC 50 values of 49.1 μM (for ZLA) and 55.3 μM (for ZLB). In parallel, molecular docking analysis showed that they are capable of interacting with both the catalytic and peripheral anionic sites of AChE. Furthermore, they exhibited abilities to complex metal ions such as Cu(II) and Zn(II), and inhibit Aβ aggregation triggered by these metals. Collectively, these results suggest that ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency, and may be potential leads of value for further study on disease-modifying treatment of AD. -- Highlights: ► Two novel bis-(−)-nor-meptazinol derivatives are designed and synthesized. ► ZLA and ZLB may act as dual binding site AChEIs with metal-chelating potency. ► They are potential leads for disease-modifying treatment of Alzheimer's disease.

  4. Discovery of potent and selective acetylcholinesterase (AChE) inhibitors: acacetin 7-O-methyl ether Mannich base derivatives synthesised from easy access natural product naringin.

    Science.gov (United States)

    Liu, Hao-Ran; Men, Xue; Gao, Xiao-Hui; Liu, Lin-Bo; Fan, Hao-Qun; Xia, Xin-Hua; Wang, Qiu-An

    2018-03-01

    Naringin, as a component universal existing in the peel of some fruits or medicinal plants, was usually selected as the material to synthesise bioactive derivates since it was easy to gain with low cost. In present investigation, eight new acacetin-7-O-methyl ether Mannich base derivatives (1-8) were synthesised from naringin. The bioactivity evaluation revealed that most of them exhibited moderate or potent acetylcholinesterase (AChE) inhibitory activity. Among them, compound 7 (IC 50 for AChE = 0.82 ± 0.08 μmol•L -1 , IC 50 for BuChE = 46.30 ± 3.26 μmol•L -1 ) showed a potent activity and high selectivity compared with the positive control Rivastigmine (IC 50 for AChE = 10.54 ± 0.86 μmol•L -1 , IC 50 for BuChE = 0.26 ± 0.08 μmol•L -1 ). The kinetic study suggested that compound 7 bind to AChE with mix-type inhibitory profile. Molecular docking study revealed that compound 7 could combine both catalytic active site (CAS) and peripheral active site (PAS) of AChE with four points (Trp84, Trp279, Tyr70 and Phe330), while it could bind with BuChE via only His 20.

  5. Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice.

    Science.gov (United States)

    Somm, Emmanuel; Guérardel, Audrey; Maouche, Kamel; Toulotte, Audrey; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise; Maskos, Uwe; Hüppi, Petra S; Schwitzgebel, Valérie M

    2014-05-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated cation channels well characterized in neuronal signal transmission. Moreover, recent studies have revealed nAChR expression in nonneuronal cell types throughout the body, including tissues involved in metabolism. In the present study, we screen gene expression of nAChR subunits in pancreatic islets and adipose tissues. Mice pancreatic islets present predominant expression of α7 and β2 nAChR subunits but at a lower level than in central structures. Characterization of glucose and energy homeostasis in α7β2nAChR(-/-) mice revealed no major defect in insulin secretion and sensitivity but decreased glycemia apparently unrelated to gluconeogenesis or glycogenolysis. α7β2nAChR(-/-) mice presented an increase in lean and bone body mass and a decrease in fat storage with normal body weight. These observations were associated with elevated spontaneous physical activity in α7β2nAChR(-/-) mice, mainly due to elevation in fine vertical (rearing) activity while their horizontal (ambulatory) activity remained unchanged. In contrast to α7nAChR(-/-) mice presenting glucose intolerance and insulin resistance associated to excessive inflammation of adipose tissue, the present metabolic phenotyping of α7β2nAChR(-/-) mice revealed a metabolic improvement possibly linked to the increase in spontaneous physical activity related to central β2nAChR deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Science.gov (United States)

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  7. Crystal structure of Lymnaea stagnalis AChBP complexed with the potent nAChR antagonist DHβE suggests a unique mode of antagonism.

    Directory of Open Access Journals (Sweden)

    Azadeh Shahsavar

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed, activated (open, and desensitized (closed states. The acetylcholine binding protein (AChBP is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls in complex with dihydro-β-erythroidine (DHβE, which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.

  8. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation.

    Science.gov (United States)

    Zhang, Yao; Jia, Yanfei; Li, Ping; Li, Huanjie; Xiao, Dongjie; Wang, Yunshan; Ma, Xiaoli

    2017-07-20

    Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  9. Preliminary Screening a Potential AChE Inhibitor in Thai Golden Shower (Leguminosae mimosoideae Extracts

    Directory of Open Access Journals (Sweden)

    Jakkaphun Nanuam

    2013-07-01

    Full Text Available Pesticides are used to control pests of agriculture products in many countries including Thailand. Since they can exert harmful effects not only on target pests but also on other useful organisms, alternative agents are investigated. We studied the capacity of the Thai golden shower (Leguminosae mimosoideae extracts (root and pod to inhibit acetyl cholinestarese (AChE in the golden apple snail (Pomacea canaliculata as a pest representative. The results showed that the percentage of AChE inhibition increased with increasing in exposure times. The inhibition expressed the same trend in both male and female apple snails. AChE inhibition was higher in extracts from root than from pod. Chromatography-Mass Spectrometer (GC-MS chromatograms demonstrated anthraquinone, an AChE inhibitor, in extracts of golden shower. Our data indicate that a potential AChE inhibitor tends to accumulate more in the root part than in the pod.

  10. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT Assay and Larvicidal Activities.

    Science.gov (United States)

    Tavakoli, Saeed; Vatandoost, Hassan; Zeidabadinezhad, Reza; Hajiaghaee, Reza; Hadjiakhoondi, Abbas; Abai, Mohammad Reza; Yassa, Narguess

    2017-09-01

    We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant. Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Antioxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anopheles stephensi was carried out according to the method described by WHO. In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-verbenol (9.66%), isobutyl acetate (25.73%) and E-β-caryophyllene (8.68%) were main compounds. The oil showed (IC 50 = 111.2μg/ml) in DPPH and IC 50 = 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD 50 = 1.1μg/ml) in brine shrimp lethality test and with (IC 50 = 22.0, 25.0 and 42.55 μg/ml) on three cancerous cell lines (MCF-7, A-549 and HT-29) respectively. LC 50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli , Aspergillus niger and Candida albicans. The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  11. Lack of Ach1 CoA-Transferase Triggers Apoptosis and Decreases Chronological Lifespan in Yeast

    International Nuclear Information System (INIS)

    Orlandi, Ivan; Casatta, Nadia; Vai, Marina

    2012-01-01

    ACH1 encodes a mitochondrial enzyme of Saccharomyces cerevisiae endowed with CoA-transferase activity. It catalyzes the CoASH transfer from succinyl-CoA to acetate generating acetyl-CoA. It is known that ACH1 inactivation results in growth defects on media containing acetate as a sole carbon and energy source which are particularly severe at low pH. Here, we show that chronological aging ach1Δ cells which accumulate a high amount of extracellular acetic acid display a reduced chronological lifespan. The faster drop of cell survival is completely abrogated by alleviating the acid stress either by a calorie restricted regimen that prevents acetic acid production or by transferring chronologically aging mutant cells to water. Moreover, the short-lived phenotype of ach1Δ cells is accompanied by reactive oxygen species accumulation, severe mitochondrial damage, and an early insurgence of apoptosis. A similar pattern of endogenous severe oxidative stress is observed when ach1Δ cells are cultured using acetic acid as a carbon source under acidic conditions. On the whole, our data provide further evidence of the role of acetic acid as cell-extrinsic mediator of cell death during chronological aging and highlight a primary role of Ach1 enzymatic activity in acetic acid detoxification which is important for mitochondrial functionality.

  12. Gas Chromatography, GC/Mass Analysis and Bioactivity of Essential Oil from Aerial Parts of Ferulago trifida: Antimicrobial, Antioxidant, AChE Inhibitory, General Toxicity, MTT assay and Larvicidal Activities

    Directory of Open Access Journals (Sweden)

    Saeed Tavakoli

    2017-10-01

    Full Text Available Background: We aimed to investigate different biological properties of aerial parts essential oil of Ferulago trifida Boiss and larvicidal activity of its volatile oils from all parts of plant.Methods: Essential oil was prepared by steam distillation and analyzed by Gas chromatography and GC/Mass. Anti­oxidant, antimicrobial, cytotoxic effects and AChE inhibitory of the oil were investigated using DPPH, disk diffusion method, MTT assay and Ellman methods. Larvicidal activity of F. trifida essential oil against malaria vector Anoph­eles stephensi was carried out according to the method described by WHO.Results: In GC and GC/MS analysis, 58 compounds were identified in the aerial parts essential oil, of which E-ver­benol (9.66%, isobutyl acetate (25.73% and E-β-caryophyllene (8.68% were main compounds. The oil showed (IC50= 111.2µg/ml in DPPH and IC50= 21.5 mg/ml in the investigation of AChE inhibitory. Furthermore, the oil demonstrated toxicity with (LD50= 1.1µg/ml in brine shrimp lethality test and with (IC50= 22.0, 25.0 and 42.55 µg/ml on three cancerous cell lines (MCF-7, A-549 and HT-29 respectively. LC50 of stem, root, aerial parts, fruits, and flowers essential oils against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively. In antimicrobial activities, essential oil was effective on all specimens except Escherichia coli, Asper­gillus niger and Candida albicans.Conclusion: The essential oil showed moderate antioxidant activity, strong antimicrobial properties and good toxic effect in brine shrimp test and MTT assay on three cancerous cell lines.

  13. Dual Inhibition of AChE and BChE with the C-5 Substituted Derivative of Meldrum’s Acid: Synthesis, Structure Elucidation, and Molecular Docking Studies

    Directory of Open Access Journals (Sweden)

    Haroon Mehfooz

    2017-07-01

    Full Text Available Alzheimer’s disease (AD lies in the category of those diseases which are still posing challenges to medicinal chemists, and the search for super-effective drugs for the treatment of AD is a work in progress. The inhibition of cholinesterase is considered a viable strategy to enhance the level of acetylcholine in the brain. The C-5 substituted derivative of Meldrum’s acid was synthesized and screened against acetylcholinesterase (AChE and butyrylcholinesterase (BChE enzyme inhibition activity. The simple and unique structure of synthesized derivative 3 was found to be good for the dual inhibition of both enzymes (AChE and BChE. 2,2-Dimethyl-5-(([2-(trifluoromethyl phenyl]aminomethylidene-1,3-dioxane-4,6-dione (3 showed significant inhibition against AChE, with an IC50 value of 1.13 ± 0.03 µ M (Standard Neostigmine 22.2 ± 3.2 µM, and moderate inhibition against BChE, with an IC50 value of 2.12 ± 1.22 µM (Standard Neostigmine 49.6 ± 6.11 µM. The structural insights reveal that compound 3 possesses intriguing reactive groups, which can potentially evoke the non-covalent interactions and possibly assist by binding in the active site of the target protein. Docking simulations revealed that the compound 3 showed binding inside the active site gorges of both AChE and BChE. An excellent agreement was obtained, as the best docked poses showed important binding features mostly based on interactions due to oxygen atoms and the aromatic moieties of the compound. The docking computations coupled with the experimental findings ascertained that the compound 3 can serve as a scaffold for the dual inhibitors of the human acetylcholine esterases.

  14. Acetylcholinesterase Regulates Skeletal In Ovo Development of Chicken Limbs by ACh-Dependent and -Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janine Spieker

    Full Text Available Formation of the vertebrate limb presents an excellent model to analyze a non-neuronal cholinergic system (NNCS. Here, we first analyzed the expression of acetylcholinesterase (AChE by IHC and of choline acetyltransferase (ChAT by ISH in developing embryonic chicken limbs (stages HH17-37. AChE outlined formation of bones, being strongest at their distal tips, and later also marked areas of cell death. At onset, AChE and ChAT were elevated in two organizing centers of the limb anlage, the apical ectodermal ridge (AER and zone of polarizing activity (ZPA, respectively. Thereby ChAT was expressed shortly after AChE, thus strongly supporting a leading role of AChE in limb formation. Then, we conducted loss-of-function studies via unilateral implantation of beads into chicken limb anlagen, which were soaked in cholinergic components. After varying periods, the formation of cartilage matrix and of mineralizing bones was followed by Alcian blue (AB and Alizarin red (AR stainings, respectively. Both acetylcholine (ACh- and ChAT-soaked beads accelerated bone formation in ovo. Notably, inhibition of AChE by BW284c51, or by the monoclonal antibody MAB304 delayed cartilage formation. Since bead inhibition of BChE was mostly ineffective, an ACh-independent action during BW284c51 and MAB304 inhibition was indicated, which possibly could be due to an enzymatic side activity of AChE. In conclusion, skeletogenesis in chick is regulated by an ACh-dependent cholinergic system, but to some extent also by an ACh-independent aspect of the AChE protein.

  15. A Green Method for Synthesis of 7H-thiazolo[3,2-b][1,2, 4]-triazin-7-one Derivatives as AChE Inhibitors

    Directory of Open Access Journals (Sweden)

    Liu Sijie

    2015-01-01

    Full Text Available The authors study an efficient and green approach for the synthesis of 7H-thiazolo [3, 2-b][1,2,4]triazin-7-one derivatives as AChE inhibitors. The 7H-thiazolo[3,2-b][1,2,4]triazin-7-ones were designed by molecular docking, and readily prepared via a one-pot reaction in morpholine hydrosulfate ([Hnhm]HSO4 lonic liquid as the catalyst and solvent. The study of AChE inhibitory activity was carried out through using the Ellman colorimetric assay. The 7H-thiazolo[3,2-b][1,2,4]triazin-7-ones had been successfully synthesized by green catalyst. Most of the target compounds exhibited more than 50% inhibition at 10μM.

  16. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    Science.gov (United States)

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  17. Peripheral Inhibitor of AChE, Neostigmine, Prevents the Inflammatory Dependent Suppression of GnRH/LH Secretion during the Follicular Phase of the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2017-01-01

    Full Text Available The study was designed to test the hypothesis that the inhibition of acetylcholinesterase (AChE activity at the periphery by Neostigmine (0.5 mg/animal will be sufficient to prevent inflammatory dependent suppression of the gonadotropin-releasing hormone (GnRH/luteinising hormone (LH secretion in ewes in the follicular phase of the estrous cycle, and this effect will be comparable with the systemic AChE inhibitor, Donepezil (2.5 mg/animal. An immune/inflammatory challenge was induced by peripheral administration of lipopolysaccharide (LPS; 400 ng/kg. Peripheral treatment with Donepezil and Neostigmine prevented the LPS-induced decrease (P<0.05 in LHβ gene expression in the anterior pituitary gland (AP and in LH release. Moreover, Donepezil completely abolished (P<0.05 the suppressory effect of inflammation on GnRH synthesis in the preoptic area, when pretreatment with Neostigmine reduced (P<0.05 the decrease in GnRH content in this hypothalamic structure. Moreover, administration of both AChE inhibitors diminished (P<0.05 the inhibitory effect of LPS treatment on the expression of GnRH receptor in the AP. Our study shows that inflammatory dependent changes in the GnRH/LH secretion may be eliminated or reduced by AChE inhibitors suppressing inflammatory reaction only at the periphery such as Neostigmine, without the need for interfering in the central nervous system.

  18. Facile synthesis of new carbon-11 labeled conformationally restricted rivastigmine analogues as potential PET agents for imaging AChE and BChE enzymes

    International Nuclear Information System (INIS)

    Wang Min; Wang Jiquan; Gao Mingzhang; Zheng Qihuang

    2008-01-01

    Rivastigmine is a newer-generation inhibitor with a dual inhibitory action on both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, and is used for the treatment of AChE- and BChE-related diseases such as brain Alzheimer's disease and cardiovascular disease. New carbon-11 labeled conformationally restricted rivastigmine analogues radiolabeled quaternary ammonium triflate salts, (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(methylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]8) and (3aR,9bS)-1-[ 11 C]methyl-1-methyl-6-(heptylcarbamoyloxy)-2,3,3a,4,5, 9b-hexahy dro-1H-benzo[g]indolium triflate ([ 11 C]9), were designed and synthesized as potential positron emission tomography (PET) agents for imaging AChE and BChE enzymes. The appropriate precursors were labeled with [ 11 C]CH 3 OTf through N-[ 11 C]methylation, and the target tracers were isolated by solid-phase extraction (SPE) using a cation-exchange CM Sep-Pak cartridge in 40-50% radiochemical yields decay corrected to end of bombardment (EOB), 15-20 min overall synthesis time, and 148-222 GBq/μmol specific activity at EOB

  19. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    Science.gov (United States)

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.

  20. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    Full Text Available The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the entire pyramidal neuron and occasionally

  1. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  2. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  3. Relationship between calcium entry and ACh release in K+ -stimulated rat brain synaptosomes

    International Nuclear Information System (INIS)

    Suszkiw, J.B.; O'Leary, M.E.; Toth, G.P.

    1986-01-01

    This paper examines the pattern of Ca ++ entry-dependent ACh release in relation to the kinetics of Ca ++ entry, and its inactivation in rat brain synaptosomes exposed to 50 mM K 0 + for short and prolonged durations. Intrasynaptosomal ACh was radiolabeled from tritium-choline in the presence of 20 um Paraoxon to inhibit the acetylcholinesterase activity. The release of tritium-ACh was studied in superfused synaptosomal beds formed on glass microfiber filters and by rapid filtration. The intermittent stimulation of superfused synaptosomal beds by 3-min pulses of 50 mM K + evoked decremental output of tritium-ACh which reached nearly undetectable levels after the fifth stimulus

  4. Layer 2/3 synapses in monocular and binocular regions of tree shrew visual cortex express mAChR-dependent long-term depression and long-term potentiation.

    Science.gov (United States)

    McCoy, Portia; Norton, Thomas T; McMahon, Lori L

    2008-07-01

    Acetylcholine is an important modulator of synaptic efficacy and is required for learning and memory tasks involving the visual cortex. In rodent visual cortex, activation of muscarinic acetylcholine receptors (mAChRs) induces a persistent long-term depression (LTD) of transmission at synapses recorded in layer 2/3 of acute slices. Although the rodent studies expand our knowledge of how the cholinergic system modulates synaptic function underlying learning and memory, they are not easily extrapolated to more complex visual systems. Here we used tree shrews for their similarities to primates, including a visual cortex with separate, defined regions of monocular and binocular innervation, to determine whether mAChR activation induces long-term plasticity. We find that the cholinergic agonist carbachol (CCh) not only induces long-term plasticity, but the direction of the plasticity depends on the subregion. In the monocular region, CCh application induces LTD of the postsynaptic potential recorded in layer 2/3 that requires activation of m3 mAChRs and a signaling cascade that includes activation of extracellular signal-regulated kinase (ERK) 1/2. In contrast, layer 2/3 postsynaptic potentials recorded in the binocular region express long-term potentiation (LTP) following CCh application that requires activation of m1 mAChRs and phospholipase C. Our results show that activation of mAChRs induces long-term plasticity at excitatory synapses in tree shrew visual cortex. However, depending on the ocular inputs to that region, variation exists as to the direction of plasticity, as well as to the specific mAChR and signaling mechanisms that are required.

  5. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  6. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations.

    Science.gov (United States)

    McLatchie, L M; Young, J S; Fry, C H

    2014-07-01

    The aim of this study was to quantify and characterize the mechanism of non-neuronal ACh release from bladder urothelial cells and to determine if urothelial cells could be a site of action of anti-muscarinic drugs. A novel technique was developed whereby ACh could be measured from freshly isolated guinea pig urothelial cells in suspension following mechanical stimulation. Various agents were used to manipulate possible ACh release pathways in turn and to study the effects of muscarinic receptor activation and inhibition on urothelial ATP release. Minimal mechanical stimulus achieved full ACh release, indicating a small dynamic range and possible all-or-none signal. ACh release involved a mechanism dependent on the anion channel CFTR and intracellular calcium concentration, but was independent of extracellular calcium, vesicular trafficking, connexins or pannexins, organic cation transporters and was not affected by botulinum-A toxin. Stimulating ACh receptors increased ATP production and antagonizing them reduced ATP release, suggesting a link between ACh and ATP release. These results suggest that release of non-neuronal ACh from the urothelium is large enough and well located to act as a modulator of ATP release. It is hypothesized that this pathway may contribute to the actions of anti-muscarinic drugs in reducing the symptoms of lower urinary tract syndromes. Additionally the involvement of CFTR in ACh release suggests an exciting new direction for the treatment of these conditions. © 2014 The British Pharmacological Society.

  7. Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative

    Science.gov (United States)

    Ahmad, Faheem; Alam, Mohammad Jane; Alam, Mahboob; Azaz, Shaista; Parveen, Mehtab; Park, Soonheum; Ahmad, Shabbir

    2018-01-01

    The present study reports the synthesis and evaluation of biological properties of 3a,8a-dihydroxy-8-oxo-1,3,3a,8a-tetrahydroindeno[1,2-d]imidazol-2(1H)-iminium chloride (3). The structure was confirmed by the FTIR, NMR, MS, CHN microanalysis and X-ray crystallographic analysis. Quantum chemical calculations have been performed at B3LYP-D3/6-311++G(d,p) level of theory to study the molecular geometry, IR, (1H and 13C) NMR, UV/Vis spectra and other molecular parameters of the asymmetric unit of crystal of imidazole compound (3). An empirical dispersion correction to hybrid functional (B3LYP-D3) has been incorporated in the present calculations due to presence of non-covalent interaction, Cl⋯H-O, in the present compound. The remarkable agreement has been observed between theoretical data and those measured experimentally. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The synthesized imidazole derivative showed promising antioxidant property and inhibitory activity against acetylcholinesterase (AChE). Molecular docking was also performed in order to explain in silico antioxidant studies and to ascertain the probable binding mode of compound with the amino acid residues of protein.

  8. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    AChR binding sites in several brain regions, particularly in the prefrontal cortex. The alpha7 nAChR agonists SSR180711 and PNU-282987 also increase [(125)I]-BTX binding, suggesting that this is a general consequence of alpha7 nAChR agonism. Interestingly, the alpha7 nAChR positive allosteric modulators PNU......The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n...

  9. Confirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista

    Directory of Open Access Journals (Sweden)

    Xiaorong Xu Parks

    2017-11-01

    Full Text Available In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs and small-conductance, calcium-dependent potassium channels (SK in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near −90 mV to produce outward currents that typically peaked around −20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh

  10. AChR-specific immunosuppressive therapy of myasthenia gravis.

    Science.gov (United States)

    Luo, Jie; Lindstrom, Jon

    2015-10-15

    Myasthenia gravis (MG) is an organ-specific autoimmune disease characterized by muscle fatigability. In most cases, it is mediated by autoantibodies targeting muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. Experimental autoimmune myasthenia gravis (EAMG) is an animal model for MG, which is usually induced by immunization with AChR purified from fish electric organ. Pathological autoantibodies to AChRs are directed at the extracellular surface, especially the main immunogenic region (MIR). Current treatments for MG can help many but not all patients. Antigen-specific immunosuppressive therapy for MG that specifically suppresses the autoimmune response without affecting the entire immune system and avoids side effects of general immunosuppression is currently unavailable. Early attempts at antigen-specific immunosuppression for EAMG using AChR extracellular domain sequences that form epitopes for pathological autoantibodies risked provoking autoimmunity rather than suppressing it. We discovered a novel approach to specific immunosuppression of EAMG with a therapeutic vaccine consisting of bacterially-expressed human AChR cytoplasmic domains, which has the potential to specifically suppress MG without danger of causing exacerbation. This approach prevents development of chronic EAMG when initiated immediately after the acute phase of EAMG, and rapidly reverses established chronic EAMG when started during the chronic phase of EAMG. Successfully treated rats exhibited long-term resistance to re-induction of EAMG. In this review we also discuss the current understanding of the mechanisms by which the therapy works. Vaccination with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Insect nicotinic acetylcholine receptors (nAChRs): Important amino ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... nAChRs within the insect central nervous system has led to the development of insecticides targeting .... binding protein (AChBP), a homopentameric structural and functional homolog of ..... of the honey bee, Apis mellifera.

  12. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  13. Fabrication of a Highly-sensitive Acetylcholine Sensor Based on AChOx Immobilized Smart-chips

    Directory of Open Access Journals (Sweden)

    M. M. RAHMAN

    2011-03-01

    Full Text Available Acetylcholine (ACh sensor based on acetylcholine oxidase (AChOx on EDC activated thioglycolic acid self-assembled monolayer (TGA-SAM using smart-chip has been developed. The simple cyclic voltammetry (CV, at 0.1 V/s technique is performed in total investigation, where 0.5M K3Fe(CN6 is utilized as a standard mediator in phosphate buffer solution (PBS, 0.1M. The ACh sensor exhibited a lower detection limit (DL, 0.1392 ± 0.005 nM, a wide linear dynamic range (LDR, 1.0 nM to 1.0 mM, good linearity (R=0.9951, and higher sensitivity (7.3543 ± 0.2 μAμM-1cm-2, and required small sample volume (70.0 μL as well as good stability and reproducibility. The smart-chip system employed a simple and efficient approach to the immobilization of enzymes onto active sensitive surface, which can enhance sensor performances to a large group of bio-molecules for wide range of biomedical applications in health care fields.

  14. MRI of hyperacute stroke in the AChA territory

    Energy Technology Data Exchange (ETDEWEB)

    Hamoir, Xavier L.; Grandin, Cecile B.; Cosnard, Guy; Duprez, Thierry [Department of Medical Imaging, Cliniques Universitaires Saint-Luc, Universite Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Peeters, Andre [Department of Neurology, Cliniques Universitaires Saint-Luc, Universite Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium); Robert, Annie [Department of Epidemiology, Biostatistics Unit of the Public Health School, Cliniques Universitaires Saint-Luc, Universite Catholique de Louvain, Avenue Hippocrate 10, 1200, Brussels (Belgium)

    2004-03-01

    The purpose of our study was to derive from the anatomical literature an easy-to-use map of the brain areas supplied by the anterior choroidal artery (AChA) and to assess the correspondence between damage within the putative AChA areas and clinical symptoms. A thorough review of the literature led to the recognition of 16 anatomical areas which could be delineated on routine diffusion-weighted MR images. A database of 138 consecutive ischemic stroke patients examined with MRI less than 6 h after symptoms onset was thereafter processed in a retrospective way. Patients presenting with at least one damaged AChA area were selected so as to assess the prevalence of AChA infarction and the clinical correlates of the condition. Fifteen patients (11%) had at least one damaged AChA area. Only two of them had ''pure'' AChA-restricted infarction. Contralateral hemiparesis and contralateral hemianesthesia were best predicted by lesions within the tail of the caudate nucleus with a sensitivity of 87% and 83%, respectively. Homonymous hemianopsia best correlated with lesions within the posterior limb of the internal capsule and within the retrolenticular part of the internal capsule, with a sensitivity of 100% and a specificity of 70% for both areas. We concluded that the clinical-radiological correlations did not match the neurophysiological standards, thereby highlighting the limitation of this study, which involved a cohort of acute stroke patients recruited from clinical practice and investigated the clinical impact of these brain lesions, even when documented with the most sensitive imaging modality. (orig.)

  15. MRI of hyperacute stroke in the AChA territory

    International Nuclear Information System (INIS)

    Hamoir, Xavier L.; Grandin, Cecile B.; Cosnard, Guy; Duprez, Thierry; Peeters, Andre; Robert, Annie

    2004-01-01

    The purpose of our study was to derive from the anatomical literature an easy-to-use map of the brain areas supplied by the anterior choroidal artery (AChA) and to assess the correspondence between damage within the putative AChA areas and clinical symptoms. A thorough review of the literature led to the recognition of 16 anatomical areas which could be delineated on routine diffusion-weighted MR images. A database of 138 consecutive ischemic stroke patients examined with MRI less than 6 h after symptoms onset was thereafter processed in a retrospective way. Patients presenting with at least one damaged AChA area were selected so as to assess the prevalence of AChA infarction and the clinical correlates of the condition. Fifteen patients (11%) had at least one damaged AChA area. Only two of them had ''pure'' AChA-restricted infarction. Contralateral hemiparesis and contralateral hemianesthesia were best predicted by lesions within the tail of the caudate nucleus with a sensitivity of 87% and 83%, respectively. Homonymous hemianopsia best correlated with lesions within the posterior limb of the internal capsule and within the retrolenticular part of the internal capsule, with a sensitivity of 100% and a specificity of 70% for both areas. We concluded that the clinical-radiological correlations did not match the neurophysiological standards, thereby highlighting the limitation of this study, which involved a cohort of acute stroke patients recruited from clinical practice and investigated the clinical impact of these brain lesions, even when documented with the most sensitive imaging modality. (orig.)

  16. Preparation and comparison of a-C:H coatings using reactive sputter techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keunecke, M., E-mail: martin.keunecke@ist.fraunhofer.d [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Weigel, K.; Bewilogua, K. [Fraunhofer Institute for Surface Engineering and Thin Films (IST), Braunschweig (Germany); Cremer, R.; Fuss, H.-G. [CemeCon AG, Wuerselen (Germany)

    2009-12-31

    Amorphous hydrogenated carbon (a-C:H) coatings are widely used in several industrial applications. These coatings commonly will be prepared by plasma activated chemical vapor deposition (PACVD). The main method used to prepare a-C:H coating in industrial scale is based on a glow discharge in a hydrocarbon gas like acetylene or methane using a substrate electrode powered with medium frequency (m.f. - some 10 to 300 kHz). Some aims of further development are adhesion improvement, increase of hardness and high coating quality on complex geometries. A relatively new and promising technique to fulfil these requirements is the deposition of a-C:H coatings by a reactive d.c. magnetron sputter deposition from a graphite target with acetylene as reactive gas. An advancement of this technique is the deposition in a pulsed magnetron sputter process. Using these three mentioned techniques a-C:H coatings were prepared in the same deposition machine. For adhesion improvement different interlayer systems were applied. The effect of different substrate bias voltages (d.c. and d.c. pulse) was investigated. By applying the magnetron sputter technique in the d.c. pulse mode, plastic hardness values up to 40 GPa could be reached. Besides hardness other mechanical properties like resistance against abrasive wear were measured and compared. Cross sectional SEM images showed the growth structure of the coatings.

  17. 热应激复合敌敌畏中毒对小鼠全血乙酰胆碱脂酶和组织抗氧化能力的影响%Effects of heat stress with organophosphorus pesticide intoxication on blood AChE activity and tissue anti-oxidation ability in mice

    Institute of Scientific and Technical Information of China (English)

    蔡颖; 谢首佳; 赵远鹏; 董兆君; 邹仲敏

    2012-01-01

    Objective To explore the combined effect of heat stress with organophosphorus O , O-dimethyl-O-2, 2-di-chlorovinylphosphate (DDVP) intoxication on blood acetyl choli nest erase (AChE) activity and tissue lipid peroxidation. Methods Fifty-four mice were randomly divided into control group , heat stress group and heat stress combined with DDVP poisoning group (the combined group). Mice were put into experiment chamber with (60 ±5)% relative humidity. The chamber temperature was 24℃ for control group , and 38 or 40℃; for heat stress group. One hour later, mice in combined group were intraperitoneally given 9 or 15 mg/kg DDVP. Saline of an equal volume was applied to control and heat stress groups. After 30 minutes, the mice were sacrificed and samples of the blood , heart, brain, and liver were collected. Blood AChE activity, tissue SOD activity, MDA content and · OH inhibiting ability in tissue homogenates of the brain , heart and liver were determined respectively. Results Mice became agitated and restless with increased activity when exposed to 38 or 40℃ ambient temperature. Water intake and body mass were decreased . Compared with temperature-matched controls, the heat exposure combined with DDVP poisoning at 38 or 40℃ caused significant decline of blood AChE activity , tissue SOD activity and · OH inhibiting ability, and increase of tissue MDA content in the brain , heart and liver ( P < 0. 05 ). Heat stress and organophosphorus pesticide intoxication showed synergistic interaction between the above parameters . Conclusion Under present experimental conditions , both ambient temperature and organophosphorus poisoning can significant -ly suppress the blood AChE activity while causing enhanced tissue lipid peroxidation . These data suggest that oxidative stress plays a role in the aggregative effect of organophosphorus intoxication under high ambient temperature .%目的 研究热应激复合有机磷敌敌畏(O,O-dimethyl-O-2,2-dichlorovinylphosphate

  18. Comparative functional expression of nAChR subtypes in rodent DRG neurons.

    Science.gov (United States)

    Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W

    2013-01-01

    We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

  19. Study on the Highly Sensitive AChE Electrode Based on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Shuping Zhang

    2014-01-01

    Full Text Available Using chitosan (CS as carrier, the method named layer-by-layer (LBL self-assembly modification to modify the glassy carbon electrode (GCE with multiwalled carbon nanotubes (MWNTs and acetylcholine esterase (AChE was proposed to prepare the acetylcholine esterase electrode with high sensitivity and stability. The modified electrode was used to detect pesticide of aldicarb, and the enzyme inhibition rate of the electrode showed good linearity with pesticide concentrations in the range of 10−10 g·L−1 to 10−3 g·L−1. The detection limit was 10−11 g·L−1. The modified electrode was also used to detect the actual sample, and the recovery rate range was from 97.72% to 107.15%, which could meet the rapid testing need of the aldicarb residue. After being stored in the phosphate buffer solution (PBS in 4°C for 30 days, the modified electrode showed good stability with the response current that was 80% of the original current.

  20. Inhibitory effects of psychotropic drugs on the acetylcholine receptor-operated potassium current (IK.ACh) in guinea-pig atrial myocytes.

    Science.gov (United States)

    Okada, Muneyoshi; Watanabe, Shinya; Matada, Takashi; Asao, Yoko; Hamatani, Ramu; Yamawaki, Hideyuki; Hara, Yukio

    2013-01-01

    Influences of psychotropic drugs, six antipsychotics and three antidepressants, on acetylcholine receptor-operated potassium current (IK.ACh) were examined by a whole-cell patch clamp method in freshly isolated guinea-pig atrial myocyte. IK.ACh was induced by a superfusion of carbachol (CCh) or by an intracellular application of guanosine 5'-[thio] triphosphate (GTPγS). To elucidate mechanism for anticholinergic action, IC50 ratio, the ratio of IC50 for GTPγS-activated IK.ACh to CCh-induced IK.ACh, was calculated. Antipsychotics and antidepressants inhibited CCh-induced IK.ACh in a concentration-dependent manner. The IC50 values were as follows; chlorpromazine 0.53 μM, clozapine 0.06 μM, fluphenazine 2.69 μM, haloperidol 2.66 μM, sulpiride 42.3 μM, thioridazine 0.07 μM, amitriptyline 0.03 μM, imipramine 0.22 μM and maprotiline 1.81 μM. The drugs, except for sulpiride, inhibited GTPγS-activated IK.ACh with following IC50 values; chlorpromazine 1.71 μM, clozapine 14.9 μM, fluphenazine 3.55 μM, haloperidol 2.73 μM, thioridazine 1.90 μM, amitriptyline 7.55 μM, imipramine 7.09 μM and maprotiline 5.93 μM. The IC50 ratio for fluphenazine and haloperidol was close to unity. The IC50 ratio for chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine and maprotiline was much higher than unity. The present findings suggest that the psychotropics studied suppress IK.ACh. Chlorpromazine, clozapine, thioridazine, amitriptyline, imipramine, maprotiline and sulpiride are preferentially acting on muscarinic receptor. Fluphenazine and haloperidol may act on G protein and/or potassium channel.

  1. In vitro activity of ACH-702, a new isothiazoloquinolone, against Nocardia brasiliensis compared with econazole and the carbapenems imipenem and meropenem alone or in combination with clavulanic acid.

    Science.gov (United States)

    Vera-Cabrera, Lucio; Campos-Rivera, Mayra Paola; Escalante-Fuentes, Wendy G; Pucci, Michael J; Ocampo-Candiani, Jorge; Welsh, Oliverio

    2010-05-01

    The in vitro activities of ACH-702 and other antimicrobials against 30 Nocardia brasiliensis isolates were tested. The MIC(50) (MIC for 50% of the strains tested) and MIC(90) values of ACH-702 were 0.125 and 0.5 microg/ml. The same values for econazole were 2 and 4 microg/ml. The MIC(50) and MIC(90) values of imipenem and meropenem were 64 and >64 microg/ml and 2 and 8 microg/ml, respectively; the addition of clavulanic acid to the carbapenems had no effect.

  2. Targeting α4β2 nAChRs in CNS disorders: Perspectives on positive allosteric modulation as a therapeutic approach

    DEFF Research Database (Denmark)

    Grupe, Morten; Grunnet, Morten; Bastlund, Jesper F.

    2015-01-01

    The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional character......The nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels broadly involved in regulating neurotransmission in the central nervous system (CNS) by conducting cation currents through the membrane of neurons. Many different nAChR subtypes exist with each their functional...... characteristics, expression pattern and pharmacological profile. The focus of the present MiniReview is on the heteromeric α4β2 nAChR, as activity at this subtype contributes to cognitive functioning through interactions with multiple neurotransmitter systems and is implicated in various CNS disorders...... and temporal aspects of neurotransmission as well as higher subtype selectivity, hypothetically resulting in high clinical efficacy with minimal adverse effects. In this MiniReview, we describe the currently identified compounds, which potentiate the effects of agonists at the α4β2 nAChR. The potential...

  3. α7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile-Duct Ligated Mice.

    Science.gov (United States)

    Ehrlich, Laurent; O'Brien, April; Hall, Chad; White, Tori; Chen, Lixian; Wu, Nan; Venter, Julie; Scrushy, Marinda; Mubarak, Muhammad; Meng, Fanyin; Dostal, David; Wu, Chaodong; Lairmore, Terry C; Alpini, Gianfranco; Glaser, Shannon

    2018-03-26

    α7-nAChR is a nicotinic acetylcholine receptor (specifically expressed on hepatic stellate cells, Kupffer cells, and cholangiocytes) that regulates inflammation and apoptosis in the liver. Thus, targeting α7-nAChR may be therapeutic in biliary diseases. Bile-duct ligation (BDL) was performed on wild-type (WT) and α7-nAChR-/- mice. We first evaluated the expression of α7-nAChR by immunohistochemistry (IHC) in liver sections. IHC was also performed to assess intrahepatic bile-duct mass (IBDM), and Sirius Red staining was performed to quantify the amount of collagen deposition. Immunofluorescence was performed to assess co-localization of α7-nAChR with bile ducts (co-stained with CK-19) and hepatic stellate cells (HSCs) (co-stained with desmin). The mRNA expression of α7-nAChR, Ki67/PCNA (proliferation), fibrosis genes (TGF-β1, Fibronectin-1, Col1α1, and α-SMA), and inflammatory markers (IL-6, IL-1β, and TNFα) was measured by real-time PCR. Biliary TGF-β1 and hepatic CD68 (Kupffer cell marker) expression was assessed using IHC. α7-nAChR immunoreactivity was observed in both bile ducts and HSCs and increased following BDL. α7-nAChR-/- BDL mice exhibited decreased: (i) bile duct mass, liver fibrosis, and inflammation; and (ii) immunoreactivity of TGF-1 as well as expression of fibrosis genes compared to WT BDL mice. α7-nAChR activation triggers biliary proliferation and liver fibrosis and may be a therapeutic target in managing extra-hepatic biliary obstruction.

  4. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition.

    Science.gov (United States)

    Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson

    2015-01-01

    Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.

  5. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology

    Directory of Open Access Journals (Sweden)

    Luis F. Padilla-Morales

    2016-03-01

    Full Text Available The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR rich membrane solubilized with long chain (16 saturated carbons lysophospholipid with glycerol headgroup (LFG-16. The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique. Keywords: Detergents, Fluorescence recovery after photobleaching, Lipidic Cubic Phase, nAChR, Planar lipid bilayer, Two-electrode voltage clamp

  6. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII and D

    International Nuclear Information System (INIS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-01-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII and D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys . 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  7. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK.

    Directory of Open Access Journals (Sweden)

    Vuslat Yilmaz

    Full Text Available Neuromuscular transmission failure in myasthenia gravis (MG is most commonly elicited by autoantibodies (ab to the acetylcholine receptor or the muscle-specific kinase, constituting AChR-MG and MuSK-MG. It is controversial whether these MG subtypes arise through different T helper (Th 1, Th2 or Th17 polarized immune reactions and how these reactions are blunted by immunosuppression. To address these questions, plasma levels of cytokines related to various Th subtypes were determined in patients with AChR-MG, MuSK-MG and healthy controls (CON. Peripheral blood mononuclear cells (PBMC were activated in vitro by anti-CD3, and cytokines were quantified in supernatants. In purified blood CD4+ T cells, RNA of various cytokines, Th subtype specific transcription factors and the co-stimulatory molecule, CD40L, were quantified by qRT-PCR. Plasma levels of Th1, Th2 and Th17 related cytokines were overall not significantly different between MG subtypes and CON. By contrast, in vitro stimulated PBMC from MuSK-MG but not AChR-MG patients showed significantly increased secretion of the Th1, Th17 and T follicular helper cell related cytokines, IFN-γ, IL-17A and IL-21. Stimulated expression of IL-4, IL-6, IL-10 and IL-13 was not significantly different. At the RNA level, expression of CD40L by CD4+ T cells was reduced in both AChR-MG and MuSK-MG patients while expression of Th subset related cytokines and transcription factors were normal. Immunosuppression treatment had two effects: First, it reduced levels of IL12p40 in the plasma of AChR-MG and MuSK-MG patients, leaving other cytokine levels unchanged; second, it reduced spontaneous secretion of IFN-γ and increased secretion of IL-6 and IL-10 by cultured PBMC from AChR-MG, but not MuSK-MG patients. We conclude that Th1 and Th17 immune reactions play a role in MuSK-MG. Immunosuppression attenuates the Th1 response in AChR-MG and MuSK-MG, but otherwise modulates immune responses in AChR-MG and Mu

  8. [Women's approach to childhood toothache, abdominal ache and earache].

    Science.gov (United States)

    Efe, Emine; Öncel, Selma; Yilmaz, Mualla

    2012-01-01

    This study was conducted to determine women's about attitudes child's teeth, abdomen and ear ache. Those who had lived in Antalya that 6 number primary health care center between March-May 2004 were enrolled in the study. As data collecting tools. A questionnaire prepared by the authors. This study was determined that 29.2 % of the mothers carried out mixture who had prepared at home to child's abdomen and foot base; 30.3 % were to put breast milk childs' ear; 38.9 % were placed aspirin, salt and salts of lemon to childs' teeth ache. The majority of the women make a wrong practices child that teeth, abdomen and ear ache. This traditional practice effecting factors were the women's educational status and age. The results of the study that education about child care, common health problems and incorrect applications shoud be given to women by nurse.

  9. Extracellular polysaccharidases synthesized by the epiphytic lichen Evernia prunastri (L.) Ach.

    Science.gov (United States)

    Yagüe, E; Orus, M I; Estevez, M P

    1984-03-01

    Evernia prunastri Ach., an epiphytic lichen growing on Quercus rotundifolia Lam., produces a β-1,4-glucanase (EC 3.2.1.4) and a polygalacturonase (EC 3.2.1.15). The activity of these polysaccharidases increases as a response to incubation of the lichen with carboxymethylcellulose or sodium polygalacturonate, respectively. This increase in activity is thought to be the result of enzyme induction because it is inhibited by both cycloheximide and 8-azaguanine. Both polysaccharide-degrading enzymes are partially secreted into the incubation media.

  10. In search of allosteric modulators of a7-nAChR by solvent density guided virtual screening.

    Science.gov (United States)

    Dey, Raja; Chen, Lin

    2011-04-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand gated ion channels whose activity can be modulated by endogenous neurotransmitters as well as by synthetic ligands that bind the same or distinct sites from the natural ligand. The subtype of α7 nAChR has been considered as a potenial therapeutic target for Alzheimer's disease, schizophrenia and other neurological and psychiatric disorders. Here we have developed a homology model of α7 nAChR based on two high resolution crystal structures with Brookhaven Protein Data Bank (PDB) codes 2QC1 and 2WN9 for threading on one monomer and then for building a pentamer, respectively. A number of small molecule binding sites are identified using Pocket Finder (J. An, M. Tortov, and R. Abagyan, Molecular & Cellular Proteomics, 4.6, 752-761 (2005)) of Internal Coordinate Mechanics (ICM). Remarkably, these computer-identified sites match perfectly with ordered solvent densities found in the high-resolution crystal structure of α1 nAChR, suggesting that the surface cavities in the α7 nAChR model are likely binding sites of small molecules. A high throughput virtual screening by flexible ligand docking of 5008 small molecule compounds was performed at three potential allosteric modulator (AM) binding sites of α7 nAChR using Molsoft ICM software (R. Abagyan, M. Tortov and D. Kuznetsov, J Comput Chem 15, 488-506, (1994)). Some experimentally verified allosteric modulators of α7 like CCMI comp-6, LY 7082101, 5-HI, TQS, PNU-120596, genistein, and NS-1738 ranked among top 100 compounds, while the rest of the compounds in the list could guide further search for new allosteric modulators.

  11. 31 CFR 363.38 - What happens if my financial institution returns an ACH debit?

    Science.gov (United States)

    2010-07-01

    ... TreasuryDirect § 363.38 What happens if my financial institution returns an ACH debit? If your designated financial institution returns an ACH debit, we reserve the right to reinitiate the debit at our option. We.... We are not responsible for any fees your financial institution may charge relating to returned ACH...

  12. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin.

    Science.gov (United States)

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun'ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B; Matsuda, Kazuhiko

    2008-06-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-pi interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.

  13. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  14. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    International Nuclear Information System (INIS)

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer

  15. Ultramicromorphological observation of Usnea longissima Ach ...

    African Journals Online (AJOL)

    The Usnea longissima Ach. grew as an epiphyte on Abies georgei and was collected at an altitude of 3640 m above sea level from the Pudacuo National Park in the Shangri-La County of the Diqing Tibetan Autonomous Prefecture in the Yunnan Province of China. Scanning electron microscopy revealed the ...

  16. Pharmacological and immunochemical characterization of α2* nicotinic acetylcholine receptors (nAChRs) in mouse brain

    Science.gov (United States)

    Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim

    2009-01-01

    Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions. Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol̇mg-1 protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits. PMID:19498420

  17. Optogenetic release of ACh induces rhythmic bursts of perisomatic IPSCs in hippocampus.

    Directory of Open Access Journals (Sweden)

    Daniel A Nagode

    Full Text Available Acetylcholine (ACh influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2, was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs, and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs of local field potentials (LFPs were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach

  18. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds.

    Science.gov (United States)

    Horenstein, Nicole A; Quadri, Marta; Stokes, Clare; Shoaib, Mohammed; Papke, Roger L

    2017-10-03

    scaffold for developing new tobacco cessation drugs if analogs can be identified that retain the same nicotinic receptor selectivity without muscarinic activity. We report that isoarecolone is a selective partial agonist for α4* nAChR with minimal muscarinic activity and 1-(4-methylpiperazin-1-yl) ethanone has similar nAChR selectivity and no detectable muscarinic action. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Acute activation, desensitization and smoldering activation of human acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Barbara G Campling

    Full Text Available The behavioral effects of nicotine and other nicotinic agonists are mediated by AChRs in the brain. The relative contribution of acute activation versus chronic desensitization of AChRs is unknown. Sustained "smoldering activation" occurs over a range of agonist concentrations at which activated and desensitized AChRs are present in equilibrium. We used a fluorescent dye sensitive to changes in membrane potential to examine the effects of acute activation and chronic desensitization by nicotinic AChR agonists on cell lines expressing human α4β2, α3β4 and α7 AChRs. We examined the effects of acute and prolonged application of nicotine and the partial agonists varenicline, cytisine and sazetidine-A on these AChRs. The range of concentrations over which nicotine causes smoldering activation of α4β2 AChRs was centered at 0.13 µM, a level found in smokers. However, nicotine produced smoldering activation of α3β4 and α7 AChRs at concentrations well above levels found in smokers. The α4β2 expressing cell line contains a mixture of two stoichiometries, namely (α4β22β2 and (α4β22α4. The (α4β22β2 stoichiometry is more sensitive to activation by nicotine. Sazetidine-A activates and desensitizes only this stoichiometry. Varenicline, cytisine and sazetidine-A were partial agonists on this mixture of α4β2 AChRs, but full agonists on α3β4 and α7 AChRs. It has been reported that cytisine and varenicline are most efficacious on the (α4β22α4 stoichiometry. In this study, we distinguish the dual effects of activation and desensitization of AChRs by these nicotinic agonists and define the range of concentrations over which smoldering activation can be sustained.

  20. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    International Nuclear Information System (INIS)

    Ballesteros, M.L.; Durando, P.E.; Nores, M.L.; Diaz, M.P.; Bistoni, M.A.; Wunderlin, D.A.

    2009-01-01

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L -1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L -1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L -1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L -1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L -1 , while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  1. Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes)

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, M.L. [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Durando, P.E. [Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Biologia, Catedra de Fisiologia Animal, Universidad Nacional de San Juan, Complejo ' Islas Malvinas' , Av. Jose I. de la Roza y Meglioli, Rivadavia, San Juan (Argentina); Nores, M.L. [Facultad de Ciencias Medicas, Universidad Nacional de Cordoba-CONICET, Ciudad Universitaria, Cordoba (Argentina); Diaz, M.P. [Facultad de Ciencias Medicas, Catedra de Estadistica y Bioestadistica, Escuela de Nutricion, Universidad Nacional de Cordoba, Pabellon Chile, Ciudad Universitaria, 5000 Cordoba (Argentina); Bistoni, M.A., E-mail: mbistoni@com.uncor.ed [Facultad de Ciencias Exactas, Fisicas y Naturales, Catedra Diversidad Animal II, Universidad Nacional de Cordoba, Av. Velez Sarsfield 299, 5000 Cordoba (Argentina); Wunderlin, D.A. [Facultad de Ciencias Quimicas, Dto. Bioquimica Clinica-CIBICI, Universidad Nacional de Cordoba-CONICET, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-05-15

    We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 mug L{sup -1} EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 mug L{sup -1} during 24 h, and measured the AchE activity in brain and muscle. At 0.072 mug L{sup -1} EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 mug L{sup -1} EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 mug L{sup -1}, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata. - This work reports changes observed in spontaneous swimming activity and AchE activity of Jenynsia multidentata exposed to sublethal concentrations of Endosulfan.

  2. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Science.gov (United States)

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  3. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    Science.gov (United States)

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  4. Effects of acetylcholine (ACh) and norepinephrine (NE) on phosphatidylinositol 4,5-bisphosphate (PIP2) turnover in rabbit cornea

    International Nuclear Information System (INIS)

    Akhtar, R.A.; Abdel-Latif, A.A.

    1986-01-01

    Muscarinic cholinergic and α 1 -adrenergic agonists provoke hydrolysis of PIP 2 into diacylglycerol (DG) and inositol trisphosphate (IP 3 ) in a wide variety of tissue. Recently, IP 3 has been shown to mobilize Ca 2+ from ER in several permeabilized tissue preparations. Although rabbit cornea is enriched in ACh and NE, the physiological function of these neurotransmitters is unclear. The present studies were initiated to determine the effects of cholinergic and adrenergic agonists on PIP 2 turnover in the cornea. Addition of ACh or NE (50 μM each) to the 32 P-labeled corneas for 10 min decreased the radioactivity in PIP 2 by 33 and 36%, and increased the radioactivity in phosphatidic acid by 72 and 52%, respectively. When the corneas were labeled with myo-[ 3 H]inositol, ACh and NE increased the accumulation of IP 3 by 92 and 48%, respectively. The effects of ACh and NE on phospholipid labeling and IP 3 accumulation were specifically inhibited by atropine (10 μM) and prazosin (10 μM), respectively. The data suggest the presence of muscarinic cholinergic and α 1 -adrenergic receptors in the rabbit cornea. Furthermore, activation of these receptors leads to cleavage of PIP 2 into DG and IP 3 which may function as second messengers in this tissue

  5. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional α7 AChRs.

    Directory of Open Access Journals (Sweden)

    Alexander Kuryatov

    Full Text Available Functional α7 nicotinic acetylcholine receptors (AChRs do not assemble efficiently in cells transfected with α7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of α7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA and valproic acid (VPA greatly increase the amount of functional α7 AChRs produced in a cell line expressing both α7 and RIC-3. Increased α7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase α7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses α7 AChRs. VPA increases expression of endogenous α7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of α7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human α7 AChRs for drug selection and characterization and possibly to increase α7 expression in vivo.

  7. Plasma B-esterase activities in European raptors.

    Science.gov (United States)

    Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis

    2005-01-01

    B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and

  8. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    International Nuclear Information System (INIS)

    Kobayashi, Haruo; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-01-01

    Activity of acetylcholinesterase (AChE) and specific binding of [ 3 H]quinuclidinyl benzilate (QNB), [ 3 H]pirenzepine (PZP) and [ 3 H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [ 3 H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [ 3 H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected

  9. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yuki; Choi, Junho, E-mail: choi@mech.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  10. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    Science.gov (United States)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  11. Acetylcholinesterase Inhibitors (AChEI's for the treatment of visual hallucinations in schizophrenia: A review of the literature

    Directory of Open Access Journals (Sweden)

    Patel Sachin S

    2010-09-01

    Full Text Available Abstract Background Visual hallucinations occur in various neurological diseases, but are most prominent in Lewy body dementia, Parkinson's disease and schizophrenia. The lifetime prevalence of visual hallucinations in patients with schizophrenia is much more common than conventionally thought and ranges from 24% to 72%. Cortical acetylcholine (ACh depletion has been associated with visual hallucinations; the level of depletion being related directly to the severity of the symptoms. Current understanding of neurobiological visual processing and research in diseases with reduced cholinergic function, suggests that AChEI's may prove beneficial in treating visual hallucinations. This offers the potential for targeted drug therapy of clinically symptomatic visual hallucinations in patients with schizophrenia using acetylcholinesterase inhibition. Methods A systematic review was carried out investigating the evidence for the effects of AChEI's in treating visual hallucinations in Schizophrenia. Results No evidence was found relating to the specific role of AChEI's in treating visual hallucinations in this patient group. Discussion Given the use of AChEI's in targeted, symptom specific treatment in other neuropsychiatric disorders, it is surprising to find no related literature in schizophrenia patients. The use of AChEI's in schizophrenia has investigated effects on cognition primarily with non cognitive effects measured more broadly. Conclusions We would suggest that more focused research into the effects of AChEI's on positive symptoms of schizophrenia, specifically visual hallucinations, is needed.

  12. Interleukin 6 modulates acetylcholinesterase activity of brain neurons

    International Nuclear Information System (INIS)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-01-01

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author)

  13. Anticholinesterase activity and chemical profile of an active chromatographic fraction of ethanolic extract from Bellis perennis L. (Asteraceae) flowers

    International Nuclear Information System (INIS)

    Marques, Thiago Henrique Costa; Santos, Pauline Sousa dos; Freitas, Rivelilson Mendes de; Carvalho, Rusbene Bruno Fonseca de; Melo, Cassio Herbert Santos de; David, Juceni Pereira; David, Jorge Mauricio; Lima, Luciano Silva

    2013-01-01

    This work describes the isolation of an active flavonoid fraction and identification of isorhamnetin 3-O-β-D-(6’’-acetyl)- alactopyranoside from flowers of B. perennis, and also the evaluation of anticholinesterase (AChE) activity of ethanolic extract from flowers (EEF) and the active fraction. The chemical structure of the flavonoid was defined on the basis of spectroscopic 1 H NMR, IR and UV data. EEF or flavonoid reduces AChE activity in vivo, while flavonoid also reduces AChE activity in vitro, showing a value of 1.49 μM for 50% inhibitory concentration (IC 50 ), suggesting potential use as an insecticide or in the treatment of neurodegenerative diseases such as Alzheimer’s disease. (author)

  14. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    Science.gov (United States)

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  15. Neonikotinoid İnsektisitlere Bağlı Olarak Drosophila melanogaster’in AChE Aktivitesinde Meydana Gelen Değişikliklerin Bitkisel Ekstraktlar ile Giderilmesi Üzerine Araştırmalar

    Directory of Open Access Journals (Sweden)

    Sedat Ünver

    2014-12-01

    Full Text Available Bu çalışmada, Drosophila melanogaster’in ergin bireylerinde bulunan asetil kolinesteraz (AChE enzim aktivitesi üzerine İmidakloprid (İMİ ve Asetamiprid (ASE  insektisitlerinin etkileri araştırılmıştır. Ayrıca farklı bitkilere ait su ekstraktlarının (Salvia lavandulifolia, Hypericum scabrum, Capsella bursa-pastoris ve Teucrium orientale iyileştirici etkileri de in vivo olarak incelenmiştir. Bu amaçla iki deney grubu oluşturulmuştur. İlk deney grubunda ergin bireylere yalnızca farklı dozlarda insektisit (0,5; 1,0; 1,5 ve 2,0 ppm, diğer deney grubunda ise insektisit + bitki ekstraktları (1:1 v/v birlikte uygulanmıştır. Uygulamalar sonucunda insektisitler doz artışına bağlı olarak ergin bireylerde AChE aktivitesini artırmıştır (P<0,05. Ancak insektisitler bitkisel ekstraktlar ile birlikte uygulanınca enzim aktivitesi tekrar kontrol grubuna yaklaşmıştır (P<0,05.

  16. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo

    Science.gov (United States)

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman’s colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4’-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer’s disease. PMID:26330885

  17. Nickel in Soil Modifies Sensitivity to Diazinon Measured by the Activity of Acetylcholinesterase, Catalase, and Glutathione S-Transferase in Earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Agnieszka Zawisza-Raszka

    2013-01-01

    Full Text Available Nickel in typical soils is present in a very low concentration, but in the contaminated soils it occurs in locally elevated concentrations. The aim of this study was to examine the effect of nickel in the concentrations of 300 (very high, close to LOEC for reproduction and 900 (extremely high, close to LOEC for mortality mg/kg dry soil on the life history and acetylcholinesterase, catalase, and glutathione S-transferase activities in earthworm Eisenia fetida and to establish how nickel modifies the sensitivity to organophosphorous pesticide—diazinon. Cocoons production and juveniles’ number were significantly lower only in groups exposed to Ni in the concentration of 900 mg/kg dry soil for two months. Diazinon administration diminished the AChE activity in the GI tract and in the body wall. The interaction between diazinon and nickel was observed, and, in consequence, the AChE activity after the pesticide treatment was similar to controls in worms preexposed to nickel. Both pesticide administration and exposure to nickel caused an increase in the GST activity in examined organs and CAT activity in body wall. Both biometric and development data and simple enzymatic analysis, especially the AChE and GST, show a Ni pretreatment effect on the subsequent susceptibility to pesticide.

  18. The current agonists and positive allosteric modulators of α7 nAChR for CNS indications in clinical trials

    Directory of Open Access Journals (Sweden)

    Taoyi Yang

    2017-11-01

    Full Text Available The alpha-7 nicotinic acetylcholine receptor (α7 nAChR, consisting of homomeric α7 subunits, is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease (AD and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.

  19. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi.

    Science.gov (United States)

    Miyazawa, M; Tougo, H; Ishihara, M

    2001-01-01

    Inhibition of acetylcholinesterase (AChE) activity by essential oils of Citrus paradisi (grapefruit pink in USA) was studied. Inhibition of AChE was measured by the colorimetric method. Nootkatone and auraptene were isolated from C. paradisi oil and showed 17-24% inhibition of AChE activity at the concentration of 1.62 microg/mL.

  20. Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Oropesa, Ana-Lourdes; Perez-Lopez, Marcos; Hernandez, David; Soler, Francisco [Toxicology Area, Faculty of Veterinary Science (UEX), Avda. de la Universidad s/n. 10071 Caceres (Spain); Garcia, Jesus-Pablo [Toxicology Area, National Centre of Environmental Health, Instituto de Salud Carlos III, Majadahonda, Madrid (Spain); Fidalgo, Luis-Eusebio; Lopez-Beceiro, Ana [Rof Codina Clinical Hospital, Faculty of Veterinary Science (USC), Estrada de Granxa s/n. 27003 Lugo (Spain)

    2007-01-01

    In November 2002, the tanker Prestige broke in two and sank at the bottom of the ocean spilling about 70,000 t of fuel oil, which reached the coast of Galicia. It was considered the largest spill in maritime history, greatly affecting marine and related avian species. The spilled fuel oil contained high concentrations of polycyclic aromatic hydrocarbons (PAHs). Many species were affected and were found dead, although ongoing research is still being carried out on the sublethal effects. In this sense, little is known about the action of PAHs on Cholinesterase activity in seabirds. Consequently, the purpose of this study was to provide more information on the neurotoxicity of fuel oil on the seabirds most affected by the Prestige accident: common guillemot, Atlantic puffin and razorbill. On the other hand, data on normal values of acetylcholinesterase (AChE) activity were obtained to supply non-exposed values in seabirds. The oil spill produced a clear inhibitory effect on brain AChE activity in common guillemot (16%, p {<=} 0.01) and razorbill (22%, p {<=} 0.01), but not in Atlantic puffin (4%). Physiological levels of brain AChE, expressed in nmol acetylcholine hydrolysed min{sup -} {sup 1} mg{sup -} {sup 1} protein were similar in non-exposed common guillemot (388.6 {+-} 95.0) and Atlantic puffin (474.0 {+-} 60.7), however, razorbill values were higher (644.6 {+-} 66.9). (author)

  1. Cholinesterase activities and behavioral changes in Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed to glufosinate ammonium herbicide.

    Science.gov (United States)

    Peltzer, Paola M; Junges, Celina M; Attademo, Andrés M; Bassó, Agustín; Grenón, Paula; Lajmanovich, Rafael C

    2013-09-01

    In this study, amphibian tadpoles of Hypsiboas pulchellus were exposed to herbicide Liberty®, which contains glufosinate ammonium (GLA), for 48 h to the following concentrations: 0 (control), 3.55, 4.74, 6.32, 8.43, 11.25, 15, 20, 26.6, and 35.5 mg GLA L(-1). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities, as well as swimming capabilities (swimming speed and mean distance) were measured in tadpoles whose concentrations displayed survival rates > 85 %. Our results reveal that sublethal concentrations of GLA significantly inhibited both AChE and BChE activities in tadpoles with respect to the control, showing a concentration-dependent inhibitory effect. The highest inhibition percentages of AChE (50.86%) and BChE (53.02%) were registered in tadpoles exposed to 15 mg GLA L(-1). At this concentration, a significant increase of the swimming speed and mean distance were found in exposed tadpoles with respect to the control, as well as a negative and significant correlation between swimming speed and BChE activity, thus suggesting that this enzyme inhibition is related to an increase in swimming speed. Therefore, exposure of tadpoles to GLA in the wild at concentrations similar to those tested here may have adverse consequences at population level because neurotransmission and swimming performance are essential for tadpole performance and survival.

  2. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia.

    Science.gov (United States)

    Malagnoux, Laure; Capowiez, Yvan; Rault, Magali

    2015-09-01

    The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62%) and chlorpyrifos-ethyl (98%) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33%) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59%). Spinosad (20% of controls), acetamiprid (28%), and chlorpyrifos-ethyl (66%) also significantly decreased the predation behavior of adult male but not female (5 to 40%) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67% of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.

  3. Nef does not contribute to replication differences between R5 pre-AIDS and AIDS HIV-1 clones from patient ACH142

    Directory of Open Access Journals (Sweden)

    Rekosh David

    2008-05-01

    Full Text Available Abstract AIDS-associated, CCR5-tropic (R5 HIV-1 clones, isolated from a patient that never developed CXCR4-tropic HIV-1, replicate to a greater extent and cause greater cytopathic effects than R5 HIV-1 clones isolated before the onset of AIDS. Previously, we showed that HIV-1 Env substantially contributed to the enhanced replication of an AIDS clone. In order to determine if Nef makes a similar contribution, we cloned and phenotypically analyzed nef genes from a series of patient ACH142 derived R5 HIV-1 clones. The AIDS-associated Nef contains a series of residues found in Nef proteins from progressors 1. In contrast to other reports 123, this AIDS-associated Nef downmodulated MHC-I to a greater extent and CD4 less than pre-AIDS Nef proteins. Additionally, all Nef proteins enhanced infectivity similarly in a single round of replication. Combined with our previous study, these data show that evolution of the HIV-1 env gene, but not the nef gene, within patient ACH142 significantly contributed to the enhanced replication and cytopathic effects of the AIDS-associated R5 HIV-1 clone.

  4. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    Science.gov (United States)

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  5. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish

    International Nuclear Information System (INIS)

    Dutta, Hiran M.; Arends, Dane A.

    2003-01-01

    The effects of endosulfan upon brain acetylcholinesterase (AChE) activity were measured in juvenile blue gill sunfish (Lepomis macrochirus). Based on exposure durations of 0, 24, 48, 72, and 96 h and 1 week at 1.0 μg/L (just below the LC50 of 1.2 μg/L for this species), step-wise decreases in AChE activity were noted, corresponding to 0%, 3.57%, 12.65%, 14.23%, 16.31%, and 3.11% inhibition, respectively. Total brain protein concentrations were measured to test the accuracy of the Ache data with no significant anomalies. The duration of exposure was related to the reduction in the AChE activities which reflected the biotoxicity of endosulfan. The changes in the AChE activities will certainly affect the normal behavior of the juvenile blue gill which is detrimental to their very existence in the natural habitat

  6. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors

    DEFF Research Database (Denmark)

    Mellor, I R; Brier, T J; Pluteanu, F

    2003-01-01

    Voltage-dependent, non-competitive inhibition by philanthotoxin-343 (PhTX-343) analogues, with reduced charge or length, of nicotinic acetylcholine receptors (nAChR) of TE671 cells and ionotropic glutamate receptors (N-methyl-D-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4...

  7. Calcium imaging with genetically encoded sensor Case12: Facile analysis of α7/α9 nAChR mutants.

    Directory of Open Access Journals (Sweden)

    Irina Shelukhina

    Full Text Available Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method. The method is based on transient co-expression of α7/α9 nAChR mutants in neuroblastoma cells together with Ric-3 or NACHO chaperones and Case12 fluorescent calcium ion sensor followed by analysis of their pharmacology using a fluorescence microscope or a fluorometric imaging plate reader (FLIPR with a GFP filter set. The results obtained were confirmed by electrophysiology and by calcium imaging with the conventional calcium indicator Fluo-4. The affinities for acetylcholine and epibatidine were determined for human and rat α7 nAChRs, and for their mutants with homologous residues of α9 nAChR incorporated at positions 117-119, 184, 185, 187, and 189, which are anticipated to be involved in ligand binding. The strongest decrease in the affinity was observed for mutations at positions 187 and 119. The L119D mutation of α7 nAChR, showing a larger effect for epibatidine than for acetylcholine, may implicate this position in pharmacological differences between α7 and α9 nAChRs.

  8. Synthesis and DPPH scavenging assay of reserpine analogues, computational studies and in silico docking studies in AChE and BChE responsible for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Muhammad Yar

    2015-03-01

    Full Text Available Alzheimer's disease (AD is a fast growing neurodegenerative disorder of the central nervous system and anti-oxidants can be used to help suppress the oxidative stress caused by the free radicals that are responsible for AD. A series of selected synthetic indole derivatives were biologically evaluated to identify potent new antioxidants. Most of the evaluated compounds showed significant to modest antioxidant properties (IC50 value 399.07 140.0±50 µM. Density Functional Theory (DFT studies were carried out on the compounds and their corresponding free radicals. Differences in the energy of the parent compounds and their corresponding free radicals provided a good justification for the trend found in their IC50 values. In silico, docking of compounds into the proteins acetylcholinesterase (AChE and butyrylcholinesterase (BChE, which are well known for contributing in AD disease, was also performed to predict anti-AD potential.

  9. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus).

    Science.gov (United States)

    Bretaud, S; Toutant, J P; Saglio, P

    2000-10-01

    Juvenile goldfish (Carassius auratus) were exposed to three widely used pesticides; carbofuran, diuron, and nicosulfuron. Acetylcholinesterase (AChE) activity and molecular forms of AChE were first characterized in brain and skeletal muscle of unexposed fish. Skeletal muscle had higher AChE activity than brain (306 and 215 nmol/min/mg protein, respectively). In brain, four molecular forms of AChE were found: A12, G4, G2, and G1. In the muscle, three molecular forms were found A12, A8, and G2. AChE activity was then evaluated in both tissues of fish exposed to different concentration of pesticides (5, 50, and 500 microg/L) for 6, 12, 24, and 48 h. In brain, AChE activity was significantly inhibited during all the periods of exposure in response to 50 microg/L (19-28%) and 500 microg/L (85-87%) carbofuran. Such effect was observed in the muscle only at 500 microg/L (86-92%). Carbofuran had no effect on the distribution of molecular forms. Significant inhibitions (9-12%) of brain AChE activity were also observed in response to diuron and nicosulfuron at 500 microg/L during all periods of exposure and for 50 microg/L nicosulfuron after 24 and 48 h. This study pointed out short-term effects of exposure to sublethal concentrations of the three pesticides, ranging among different chemical families, on brain and muscle AChE in goldfish. Copyright 2000 Academic Press.

  10. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system

    Directory of Open Access Journals (Sweden)

    Urszula Baranowska

    2017-07-01

    Full Text Available α7-nACh is one of the major nicotinic cholinergic receptor subtypes found in the brain. It is broadly expressed in the hippocampal and cortical neurons, the regions which play a key role in memory formation. Although α7-nACh receptors may serve as postsynaptic receptors mediating classical neurotransmission, they usually function as presynaptic modulators responsible for the release of other neurotransmitters, such as glutamate, γ-aminobutyric acid, dopamine, and norepinephrine. They can, therefore, affect a wide array of neurobiological functions. In recent years, research has found that a large number of agonists and positive allosteric modulators of α7-nAChR induce beneficial effects on learning and memory. Consistently, mice deficient in chrna7 (the gene encoding α7-nAChR protein, are characterized by memory deficits. In addition, decreased expression and function of α7-nAChR is associated agoniwith many neurological diseases including schizophrenia, bipolar disorder, learning disability, attention deficit hyperactivity disorder, Alzheimer disease, autism, and epilepsy. In the recent years many animal experiments and clinical trials using α7-nAChR ligands were conducted. The results of these studies strongly indicate that agonists and positive allosteric modulators of α7-nAChR are promising therapeutic agents for diseases associated with cognitive deficits.

  11. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    Science.gov (United States)

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Going up in Smoke? A Review of nAChRs-based Treatment Strategies for Improving Cognition in Schizophrenia

    Science.gov (United States)

    Boggs, Douglas L.; Carlson, Jon; Cortes-Briones, Jose; Krystal, John H.; D’Souza, D. Cyril

    2015-01-01

    Cognitive impairment is known to be a core deficit in schizophrenia. Existing treatments for schizophrenia have limited efficacy against cognitive impairment. The ubiquitous use of nicotine in this population is thought to reflect an attempt by patients to self-medicate certain symptoms associated with the illness. Concurrently there is evidence that nicotinic receptors that have lower affinity for nicotine are more important in cognition. Therefore, a number of medications that target nicotinic acetylcholine receptors (nAChRs) have been tested or are in development. In this article we summarize the clinical evidence of nAChRs dysfunction in schizophrenia and review clinical studies testing either nicotine or nicotinic medications for the treatment of cognitive impairment in schizophrenia. Some evidence suggests beneficial effects of nAChRs based treatments for the attentional deficits associated with schizophrenia. Standardized cognitive test batteries have failed to capture consistent improvements from drugs acting at nAChRs. However, more proximal measures of brain function, such as ERPs relevant to information processing impairments in schizophrenia, have shown some benefit. Further work is necessary to conclude that nAChRs based treatments are of clinical utility in the treatment of cognitive deficits of schizophrenia. PMID:24345265

  13. Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-08-01

    Full Text Available A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE from electric eel (Electrophorus electricus L.. Experimental lipophilicity was determined, and the structure-activity relationships are discussed. The mode of binding in the active site of AChE was investigated by molecular docking. All the discussed compounds expressed significantly higher AChE inhibitory activity than rivastigmine and slightly lower than galanthamine. Disubstitution by chlorine in C'(3,4 of the aniline ring and the optimal length of hexyl-undecyl alkyl chains in the carbamate moiety provided the most active AChE inhibitors. Monochlorination in C'(4 exhibited slightly more effective AChE inhibitors than in C'(3. Generally it can be stated that compounds with higher lipophilicity showed higher inhibition, and the activity of the compounds is strongly dependent on the length of the N-alkyl chain.

  14. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  15. Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    Science.gov (United States)

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-05-01

    We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.

  16. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Abeta25-35 in PC12 cells.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young

    2009-02-01

    Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.

  17. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  18. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  19. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    International Nuclear Information System (INIS)

    Herholz, Karl

    2008-01-01

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  20. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    Science.gov (United States)

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks

    Directory of Open Access Journals (Sweden)

    Alejandra García-Hernández

    2017-11-01

    Full Text Available Human Activity Recognition (HAR is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  2. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    Science.gov (United States)

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.

    Science.gov (United States)

    Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah

    2017-03-01

    The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.

  4. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target...

  5. The activity of detoxifying enzymes in the infective juveniles of Heterorhabditis bacteriophora strains: Purification and characterization of two acetylcholinesterases.

    Science.gov (United States)

    Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E

    2016-02-01

    The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Deposition and characterisation of multilayer hard coatings. Ti/TiNδ/TiCxNy/(TiC) a-C:H/(Ti) a-C:H

    International Nuclear Information System (INIS)

    Burinprakhon, T.

    2001-02-01

    Multilayer hard coatings containing Ti, TiNδ, TiC x N y , (TiC m ) a-C:H, (TiC n ) a-C:H, and (Ti) a-C:H were deposited on commercially pure titanium substrates by using an asymmetric bipolar pulsed-dc reactive magnetron sputtering of a titanium target, with Ar, Ar+N 2 , Ar+N 2 +CH 4 , and Ar+CH 4 gas mixtures. The microstructures, elemental compositions and bonding states of the interlayers and the coating surfaces were studied by using cross-sectional transmission electron microscopy (XTEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The microstructure development of the multilayer coating was strongly influenced by target poisoning. As a result of the complete poisoning of the titanium target during the deposition of TiNδ and TiC x N y interlayers, the a-C:H interlayers containing graded titanium and nitrogen contents were found to develop successively to the TiC x N y interlayer without the formation of near-stoichiometric TiC. The (TiC m ) a-C:H interlayer consisted of nano-particles of distorted fcc crystal structure embedded in the a-C:H matrix. The (TiC n ) a-C:H and (Ti) a-C:H top layers were found to be a-C:H matrix without nano-particles. In the (Ti) a-C:H top layer there was no measurable amount of Ti observed, regardless of the variation of CH 4 concentration between 37.5 and 60 % flow rate in Ar+-CH4 gas mixture. The top layer (Ti) a-C:H was found to contain approximately 10 atomic % nitrogen, due to N 2 contamination during deposition caused by low conductance of N 2 through the nominally closed valve of the mass flow controller. The change of the CH 4 concentration during deposition of the top layer (Ti) a-C:H, however, showed a strong influence on the hydrogen content. The comparison of the fluorescence background of the Raman spectra revealed that hydrogen-less (Ti) a-C:H was deposited at a CH 4 concentration of less than 50 % flow rate in Ar. The hardness

  7. The relationship of reports of aches and joint pains to the menopausal transition: a longitudinal study.

    Science.gov (United States)

    Szoeke, C E; Cicuttini, F M; Guthrie, J R; Dennerstein, L

    2008-02-01

    OBJECTIVES Part I: To determine factors associated with reported joint symptoms across the menopausal transition. Part II: To investigate the relationship between symptom reporting and radiological arthritis in postmenopausal women. DESIGN Part I: The Melbourne Women's Mid-life Health Project, commenced in 1991, is a population-based prospective study of 438 Australian-born women, aged 45-55 years and menstruating at baseline; they were interviewed annually over 8 years. The retention rate was 88% (n = 387). Part II: After 12 years of follow-up, 257 (57%) women returned for assessment and 224 agreed to undergo X-rays of their hands and knees. METHODS Part I: Annual fasting blood collection, physical measurements, and interviews including questions about bothersome aches or stiff joints in the previous 2 weeks. A score for this symptom was calculated from the product of the severity and frequency data. These data were analyzed using random-effects time-series regression models. Part II: X-rays were scored for evidence of osteoarthritis using a validated scale, by two investigators who were blinded to questionnaire results. RESULTS Part I: 'Aches and stiff joints' were the most commonly reported symptom and reporting increased over time in the longitudinal study. Variables significantly associated with reporting bothersome aches and stiff joints were high body mass index (BMI) (p Part II: The relationship between radiological osteoarthritis and symptom reports approached statistical significance (p = 0.06). Knee osteoarthritis was significantly associated with symptom reports (p = 0.008) but not hand osteoarthritis (p = 0.2). Menopausal status, BMI, employment status and depressed mood were all associated with the experience of bothersome aches and stiff joints. Aches and stiff joints, common in postmenopausal women, are not necessarily indicative of radiological osteoarthritis.

  8. Efficient expression of functional (α6β22β3 AChRs in Xenopus oocytes from free subunits using slightly modified α6 subunits.

    Directory of Open Access Journals (Sweden)

    Carson Kai-Kwong Ley

    Full Text Available Human (α6β2(α4β2β3 nicotinic acetylcholine receptors (AChRs are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β22β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β22β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.

  9. Inhibitory effect of verbascoside isolated from Buddleja brasiliensis Jacq. ex Spreng on prolyl oligopeptidase activity.

    Science.gov (United States)

    Filho, Augusto G; Morel, Ademir F; Adolpho, Luciana; Ilha, Vinícius; Giralt, Ernest; Tarragó, Teresa; Dalcol, Ionara I

    2012-10-01

    The phenylpropanoid glycoside verbascoside [2-(3,4-dihydroxyphenylethyl)-1-O-α-L-rhamnopyranosyl-(1→3)-β-D-(4-O-caffeyl)-glucopyranoside] (1) has been isolated as the main constituent of the crude extract of Buddleja brasiliensis Jacq. ex Spreng from Southern Brazil. The crude extract, main fractions and the compound 1 were evaluated for inhibition of the enzymes acetylcholinesterase (AChE), dipeptidyl peptidase-IV (DPP-IV) and prolyl oligopeptidase (POP). Compound 1 showed weak activity against DPP-IV with an IC(50) > 150 µM and was inactive against AChE, with a pMIQ determined by bioautography of 9.6. In contrast, 1 displayed significant inhibition of POP in a dose-dependent manner with an IC(50) value of 1.3 ± 0.2 µM, similar to the positive control, baicalin, with a POP IC(50) of 12 ± 3 µM. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Herholz, Karl [University of Manchester, Wolfson Molecular Imaging Centre, Clinical Neuroscience, Manchester (United Kingdom); University of Cologne, Cologne (Germany)

    2008-03-15

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  11. Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocera).

    Science.gov (United States)

    Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François

    2016-11-01

    The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.

  12. In-vivo measurements of regional acetylcholine esterase activity in degenerative dementia: comparison with blood flow and glucose metabolism.

    Science.gov (United States)

    Herholz, K; Bauer, B; Wienhard, K; Kracht, L; Mielke, R; Lenz, M O; Strotmann, T; Heiss, W D

    2000-01-01

    Memory and attention are cognitive functions that depend heavily on the cholinergic system. Local activity of acetylcholine esterase (AChE) is an indicator of its integrity. Using a recently developed tracer for positron emission tomography (PET), C-11-labeled N-methyl-4-piperidyl-acetate (C11-MP4A), we measured regional AChE activity in 4 non-demented subjects, 4 patients with dementia of Alzheimer type (DAT) and 1 patient with senile dementia of Lewy body type (SDLT), and compared the findings with measurements of blood flow (CBF) and glucose metabolism (CMRGlc). Initial tracer extraction was closely related to CBF. AChE activity was reduced significantly in all brain regions in demented subjects, whereas reduction of CMRGlc and CBF was more limited to temporo-parietal association areas. AChE activity in SDLT was in the lower range of values in DAT. Our results indicate that, compared to non-demented controls, there is a global reduction of cortical AChE activity in dementia. Dementia, cholinergic system, acetylcholine esterase, positron emission tomography, cerebral blood flow, cerebral glucose metabolism.

  13. Study on the mechanism of the bronchodilatory effects of Cynodon dactylon (Linn.) and identification of the active ingredient.

    Science.gov (United States)

    Patel, Maulik R; Bhalodia, Yagnik S; Pathak, Nimish L; Patel, Maulik S; Suthar, Kunal; Patel, Nilesh; Golwala, Dharmesh K; Jivani, Nurudin P

    2013-12-12

    In the traditional medicine, Cynodon dactylon (Linn.) is used in asthma, but scientific studies to provide evidence for medicinal uses are sparse. Thus this study was undertaken to provide evidence for medicinal use in asthma as a bronchodilator, and to identify active ingredient(s). In vivo, acetylcholine (Ach)-induced bronchospasm was conducted in guinea pig while isolated rat tracheal strip was suspended in organ bath to measure the concentration response curve using multichannel data acquisition system. The chloroform extract of Cynodon dactylon (CECD) protected against Ach-induced bronchospasm in guinea pigs, similar to atropine. In the in vitro studies, CECD relaxed carbachol (CCh) and high K+-induced contraction of rat tracheal strip, similar to atropine and verapamil respectively, suggesting antimuscarinic and calcium channel blocking (CCB) activities, which were confirmed by right ward shifting of CCh and Ca(+2) concentration response curve (CRC). The phosphodiestrase (PDE) inhibitory activity was confirmed by potentiation of isoprenaline-induced inhibitory response, similar to papaverine. Densitometry analyses led to the identification of scopoletin as an active ingredient. Effectively, it significantly inhibited high K+, and Ca(+2) induced contractile response, similar to verapamil. The phosphodiestrase (PDE) inhibitory activity was confirmed by direct evidence of potentiation of isoprenaline-induced inhibitory response, similar to papaverine. These results suggest that the bronchodilator activity of CECD is partly due to presence of scopoletin, and mediated possibly through CCB and PDE inhibition.

  14. The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Sanchez-Garcia, Ana I.; Gandia, Luis; Escubedo, Elena; Pubill, David

    2010-01-01

    Previous work by our group demonstrated that homomeric α7 nicotinic acetylcholine receptors (nAChR) play a role in the neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA), as well as the binding affinity of this drug to these receptors. Here we studied the effect of MDMA on the activation of nAChR subtypes, the consequent calcium mobilization, and calpain/caspase 3 activation because prolonged Ca 2+ increase could contribute to cytotoxicity. As techniques, we used fluorimetry in Fluo-4-loaded PC12 cells and electrophysiology in Xenopus oocytes. MDMA produced a rapid and sustained increase in calcium without reaching the maximum effect induced by ACh. It also concentration-dependently inhibited the response induced by ACh, nicotine, and the specific α7 agonist PNU 282987 with IC 50 values in the low micromolar range. Similarly, MDMA induced inward currents in Xenopus oocytes transfected with human α7 but not with α4β2 nAChR and inhibited ACh-induced currents in both receptors in a concentration-dependent manner. The calcium response was inhibited by methyllycaconitine (MLA) and α-bungarotoxin but not by dihydro-β-erythroidine. These results therefore indicate that MDMA acts as a partial agonist on α7 nAChRs and as an antagonist on the heteromeric subtypes. Subsequently, calcium-induced Ca 2+ release from the endoplasmic reticulum and entry through voltage-operated calcium channels are also implicated as proved using specific antagonists. In addition, treatment with MDMA for 24 h significantly increased basal Ca 2+ levels and induced an increase in α-spectrin breakdown products, which indicates that calpain and caspase 3 were activated. These effects were inhibited by pretreatment with MLA. Moreover, pretreatment with MDMA induced functional upregulation of calcium responses to specific agonists of both heteromeric and α7 nAChR. Sustained calcium entry and calpain activation could favor the activation of Ca 2+ -dependent enzymes such as

  15. [-25]A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks.

    Science.gov (United States)

    García-Hernández, Alejandra; Galván-Tejada, Carlos E; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Velasco-Elizondo, Perla; Cárdenas-Vargas, Rogelio

    2017-11-21

    Human Activity Recognition (HAR) is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  16. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents.

    Science.gov (United States)

    Bonesi, Marco; Menichini, Federica; Tundis, Rosa; Loizzo, Monica R; Conforti, Filomena; Passalacqua, Nicodemo G; Statti, Giancarlo A; Menichini, Francesco

    2010-10-01

    This study aimed to investigate the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oils from Pinus nigra subsp. nigra, P. nigra var. calabrica, and P. heldreichii subsp. leucodermis. This activity is relevant to the treatment of Alzheimer's disease (AD), since cholinesterase drugs are currently the only drugs available to treat AD. P. heldreichii subsp. leucodermis exhibited the most promising activity, with IC(50) values of 51.1 and 80.6 microg/mL against AChE and BChE, respectively. An interesting activity against AChE was also observed with P. nigra subsp. nigra essential oil, with an IC(50) value of 94.4 microg/mL. Essential oils were analyzed by GC and GC-MS with the purpose of investigating their relationships with the observed activities. Among the identified constituents, terpinolene, beta-phellandrene, linalyl acetate, trans-caryophyllene, and terpinen-4-ol were tested. trans-Caryophyllene and terpinen-4-ol inhibited BChE with IC(50) values of 78.6 and 107.6 microg/mL, respectively. beta-Phellandrene was selective against AChE (IC(50) value of 120.2 microg/mL).

  17. Throat ache ans swelling of the neck: first symptoms of Lemierre's syndrome

    NARCIS (Netherlands)

    de Lange, J.; Ybema, A; Baas, E. M.

    2014-01-01

    Lemierre's syndrome, a thrombophlebitis of the internal jugular vein, is a rare disorder, usually caused by the microorganism Fusobacterium necrophorum. Throat ache and swelling of the neck are often the first symptoms. Without adequate treatment, Lemierre's syndrome may result in thrombosis of the

  18. Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ali Gorzi

    2013-10-01

    Full Text Available Background: Endurance training improves the activity of G4 type acetylcholine esterase (AchE in muscle fibres. The purpose of this study was to investigate the effects of 8 weeks of endurance training (ET on activity of A12 type of AchE in Flexor Hallucis Longus (FHL and Soleus (SOL muscles of rats. Materials and Methods: 16 male wistar rats (age: 10 weeks and weight: 172.17±10.080 gr, were randomly divided in 2 groups (control; N=8 and ET; N=8. Training group carried out 8 weeks (5 session/week of endurance training on animal treadmill with speed of 10 m/min for 30 min at the first week which was gradually increased to 30 m/min for 60 min (70-80% of VO2max at the last week. Forty eight hours after last session of training, FHL and Sol muscles of animals were moved out under sterilized situation by cutting on posterio-lateral side of hind limb. For separating AchE subunits, homogenization and electrophoresis (0.06 non-denaturaing polyacrilamide methods were used. AchE activity was measured by Elisa kit.Results: The activity of this protein significantly (p=0.017 increased in SOL muscle of ET group by 119%, but did not changed in FHL. In both groups (ET and Con, FHL muscle had significantly (ET: p=0.028 and Con p=0.01 higher basic levels of AchE activity compared to SOL muscle. This significant increase in AchE of SOL might be indicative of responsiveness of AchE of this muscle following endurance training for improving acetylcholine (Ach cycle in neuromuscular junction.Conclusion: Endurance training might increase the A12 type AchE activity to improve the Ach cycle as part of the adaptation of neuromuscular junction to increased level of physical activity.

  19. Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas

    Institute of Scientific and Technical Information of China (English)

    Jihene Ghedira; Jamel Jebali; Zied Bouraoui; Mohamed Banni; Lassaad Chouba; Hamadi Boussetta

    2009-01-01

    The acute effects of commercial formulation of chlorpyrifos-ethyl (Dursban(r)) and the secondary treated industrial/urban effluent (STIUE) exposure on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in hepatopancreas and gills of Mediterranean crab Carcinus maenas were investigated. After 2 d of exposure to chlorpyriphos-ethyl, the AChE activity was inhibited in both organs at concentrations of 3.12 and 7.82 μg/L, whereas the BuChE was inhibited only at higher concentration 7.82 μg/L of commercial preparation Dursban(r). The exposure of crabs to Dursban(r) (3.12 μg/L) showed a significant decrement of AChE activity at 24 and 48 h, whereas the BuChE was inhibited only after 24 h and no inhibition for both enzymes was observed after 72 h. Moreover, a significant repression of AChE activity was observed in both organs of C. maenas exposed to 5% of STIUE. Our experiments indicated that the measurement of AChE activity in gills and hepatopancreas of C. meanas would be useful biomarker of organophosphorous (OP) and of neurotoxic effects of STIUE in Tunisia.

  20. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  1. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  2. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  3. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    Science.gov (United States)

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. Published by Elsevier Inc.

  4. Does Your Patient's Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review.

    Science.gov (United States)

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being "diagnosis of exclusion" for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself.

  5. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase

    International Nuclear Information System (INIS)

    Yang Dongren; Howard, Angela; Bruun, Donald; Ajua-Alemanj, Mispa; Pickart, Cecile; Lein, Pamela J.

    2008-01-01

    A primary role of acetylcholinesterase (AChE) is regulation of cholinergic neurotransmission by hydrolysis of synaptic acetylcholine. In the developing nervous system, however, AChE also functions as a morphogenic factor to promote axonal growth. This raises the question of whether organophosphorus pesticides (OPs) that are known to selectively bind to and inactivate the enzymatic function of AChE also interfere with its morphogenic function to perturb axonogenesis. To test this hypothesis, we exposed primary cultures of sensory neurons derived from embryonic rat dorsal root ganglia (DRG) to chlorpyrifos (CPF) or its oxon metabolite (CPFO). Both OPs significantly decreased axonal length at concentrations that had no effect on cell viability, protein synthesis or the enzymatic activity of AChE. Comparative analyses of the effects of CPF and CPFO on axonal growth in DRG neurons cultured from AChE nullizygous (AChE -/- ) versus wild type (AChE +/+ ) mice indicated that while these OPs inhibited axonal growth in AChE +/+ DRG neurons, they had no effect on axonal growth in AChE -/- DRG neurons. However, transfection of AChE -/- DRG neurons with cDNA encoding full-length AChE restored the wild type response to the axon inhibitory effects of OPs. These data indicate that inhibition of axonal growth by OPs requires AChE, but the mechanism involves inhibition of the morphogenic rather than enzymatic activity of AChE. These findings suggest a novel mechanism for explaining not only the functional deficits observed in children and animals following developmental exposure to OPs, but also the increased vulnerability of the developing nervous system to OPs

  6. [Children's and adolescent's use of medicine for aches and psychological problems: secular trends from 1988 to 2006.

    DEFF Research Database (Denmark)

    Holstein, Bjørn; Andersen, Anette; Due, Pernille

    2009-01-01

    INTRODUCTION: Medicine use for aches and psychological problems is common among adolescents. Medicines are toxic and may have harmful side effects. It is therefore important to study change over time and patterns of medicine use. The objective of this paper is to describe self-reported medicine use...... for headaches, stomach-aches, difficulties in falling asleep, and nervousness among 11-, 13-, and 15-year-old boys and girls from 1968 to 2006. MATERIAL AND METHODS: The data material is 6 comparable and representative cross-sectional studies of 11-, 13-, and 15-year-olds from 1988, 1991, 1994, 1998, 2002......: There was a significant increase in 11-, 13-, and 15-year-old student's use of medicine for aches and psychological problems from 1988 to 2006. In the same period, there was a decrease in the prevalence of students who reported pains monthly. Udgivelsesdato: 2009-Jan-5...

  7. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Svenja [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Schulze, Marcus [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Morasch, Jan [Institute of Materials Science, Technische Universität Darmstadt, Surface Science Division, Jovanka-Bonschits-Straße 2, 64287 Darmstadt (Germany); Hesse, Sabine [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Hussein, Laith [Eduard-Zintl-Institut, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 12, 64287, Darmstadt (Germany); Krell, Lisa; Schnagl, Johann [BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Stark, Robert W. [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); and others

    2016-05-15

    Highlights: • The water CA of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C changes from hydrophillic to hydrophobic on aging. • XPS study indicates that the decrease in surface energy of plasma treated a-C:H and ta-C could be due to adsorption of organic component from air. • The COFLFM of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C decreased upon aging. • The COF of glycerol lubricated ta-C showed no sign of change upon aging. - Abstract: Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H{sub 2} plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a‐C:H and ta‐C are not stable on long-term and are

  8. Anticholinesterase activity and chemical profile of an active chromatographic fraction of ethanolic extract from Bellis perennis L. (Asteraceae) flowers; Atividade anticolinesterasica e perfil quimico de uma fracao cromatografica ativa do extrato etanolico das flores Bellis perennis L. (Asteraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Thiago Henrique Costa; Santos, Pauline Sousa dos; Freitas, Rivelilson Mendes de, E-mail: rivelilson@pq.cnpq.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Centro de Ciencias da Saude. Departamento de Bioquimica e Farmacologia; Carvalho, Rusbene Bruno Fonseca de; Melo, Cassio Herbert Santos de [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Centro de Ciencias da Natureza. Departamento de Quimica; David, Juceni Pereira [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Faculdade de Farmacia; David, Jorge Mauricio; Lima, Luciano Silva [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica

    2013-09-01

    This work describes the isolation of an active flavonoid fraction and identification of isorhamnetin 3-O-{beta}-D-(6''-acetyl)- alactopyranoside from flowers of B. perennis, and also the evaluation of anticholinesterase (AChE) activity of ethanolic extract from flowers (EEF) and the active fraction. The chemical structure of the flavonoid was defined on the basis of spectroscopic {sup 1}H NMR, IR and UV data. EEF or flavonoid reduces AChE activity in vivo, while flavonoid also reduces AChE activity in vitro, showing a value of 1.49 {mu}M for 50% inhibitory concentration (IC{sub 50}), suggesting potential use as an insecticide or in the treatment of neurodegenerative diseases such as Alzheimer's disease. (author)

  9. Effects of hyper- and hypothyroidism on acetylcholinesterase, (Na(+), K (+))- and Mg ( 2+ )-ATPase activities of adult rat hypothalamus and cerebellum.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-03-01

    Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p activities (-26%, p activities: AChE (-17%, p activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.

  10. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.

    Science.gov (United States)

    Inoue, Tsuyoshi; Abe, Chikara; Sung, Sun-Sang J; Moscalu, Stefan; Jankowski, Jakub; Huang, Liping; Ye, Hong; Rosin, Diane L; Guyenet, Patrice G; Okusa, Mark D

    2016-05-02

    The nervous and immune systems interact in complex ways to maintain homeostasis and respond to stress or injury, and rapid nerve conduction can provide instantaneous input for modulating inflammation. The inflammatory reflex referred to as the cholinergic antiinflammatory pathway regulates innate and adaptive immunity, and modulation of this reflex by vagus nerve stimulation (VNS) is effective in various inflammatory disease models, such as rheumatoid arthritis and inflammatory bowel disease. Effectiveness of VNS in these models necessitates the integration of neural signals and α7 nicotinic acetylcholine receptors (α7nAChRs) on splenic macrophages. Here, we sought to determine whether electrical stimulation of the vagus nerve attenuates kidney ischemia-reperfusion injury (IRI), which promotes the release of proinflammatory molecules. Stimulation of vagal afferents or efferents in mice 24 hours before IRI markedly attenuated acute kidney injury (AKI) and decreased plasma TNF. Furthermore, this protection was abolished in animals in which splenectomy was performed 7 days before VNS and IRI. In mice lacking α7nAChR, prior VNS did not prevent IRI. Conversely, adoptive transfer of VNS-conditioned α7nAChR splenocytes conferred protection to recipient mice subjected to IRI. Together, these results demonstrate that VNS-mediated attenuation of AKI and systemic inflammation depends on α7nAChR-positive splenocytes.

  11. Biophysical characterization of inwardly rectifying potassium currents (I(K1) I(K,ACh), I(K,Ca)) using sinus rhythm or atrial fibrillation action potential waveforms

    DEFF Research Database (Denmark)

    Tang, Chuyi; Skibsbye, Lasse; Yuan, Lei

    2015-01-01

    Although several physiological, pathophysiological and regulatory properties of classical inward rectifier K+ current I(K1), G-protein coupled inwardly-rectifying K+ current I(K,ACh) and the small-conductance Ca2+ activated K+ current I(K,Ca) have been identified, quantitative biophysical details...

  12. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    Science.gov (United States)

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  13. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: current trends and perspectives

    Science.gov (United States)

    Parikh, Vinay; Kutlu, Munir Gunes; Gould, Thomas J.

    2016-01-01

    Introduction The prevalence of tobacco use in the population with schizophrenia is enormously high. Moreover, nicotine dependence is found to be associated with symptom severity and poor outcome in patients with schizophrenia. The neurobiological mechanisms that explain schizophrenia-nicotine dependence comorbidity are not known. This study systematically reviews the evidence highlighting the contribution of nicotinic acetylcholine receptors (nAChRs) to nicotine abuse in schizophrenia. Methods Electronic data bases (Medline, Google Scholar, and Web of Science) were searched using the selected key words that match the aims set forth for this review. A total of 275 articles were used for the qualitative synthesis of this review. Results Substantial evidence from preclinical and clinical studies indicated that dysregulation of α7 and β2-subunit containing nAChRs account for the cognitive and affective symptoms of schizophrenia and nicotine use may represent a strategy to remediate these symptoms. Additionally, recent meta-analyses proposed that early tobacco use may itself increase the risk of developing schizophrenia. Genetic studies demonstrating that nAChR dysfunction that may act as a shared vulnerability factor for comorbid tobacco dependence and schizophrenia were found to support this view. The development of nAChR modulators was considered an effective therapeutic strategy to ameliorate psychiatric symptoms and to promote smoking cessation in schizophrenia patients. Conclusions The relationship between schizophrenia and smoking is complex. While the debate for the self-medication versus addiction vulnerability hypothesis continues, it is widely accepted that a dysfunction in the central nAChRs represent a common substrate for various symptoms of schizophrenia and comorbid nicotine dependence. PMID:26803692

  14. Simplified methods for in vivo measurement of acetylcholinesterase activity in rodent brain

    International Nuclear Information System (INIS)

    Kilbourn, Michael R.; Sherman, Phillip S.; Snyder, Scott E.

    1999-01-01

    Simplified methods for in vivo studies of acetylcholinesterase (AChE) activity in rodent brain were evaluated using N-[ 11 C]methylpiperidinyl propionate ([ 11 C]PMP) as an enzyme substrate. Regional mouse brain distributions were determined at 1 min (representing initial brain uptake) and 30 min (representing trapped product) after intravenous [ 11 C]PMP administration. Single time point tissue concentrations (percent injected dose/gram at 30 min), tissue concentration ratios (striatum/cerebellum and striatum/cortex ratios at 30 min), and regional tissue retention fractions (defined as percent injected dose 30 min/percent injected dose 1 min) were evaluated as measures of AChE enzymatic activity in mouse brain. Studies were carried out in control animals and after dosing with phenserine, a selective centrally active AChE inhibitor; neostigmine, a peripheral cholinesterase inhibitor; and a combination of the two drugs. In control and phenserine-treated animals, absolute tissue concentrations and regional retention fractions provide good measures of dose-dependent inhibition of brain AChE; tissue concentration ratios, however, provide erroneous conclusions. Peripheral inhibition of cholinesterases, which changes the blood pharmacokinetics of the radiotracer, diminishes the sensitivity of all measures to detect changes in central inhibition of the enzyme. We conclude that certain simple measures of AChE hydrolysis rates for [ 11 C]PMP are suitable for studies where alterations of the peripheral blood metabolism of the tracer are kept to a minimum

  15. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function.

    Science.gov (United States)

    Araud, Tanguy; Graw, Sharon; Berger, Ralph; Lee, Michael; Neveu, Estele; Bertrand, Daniel; Leonard, Sherry

    2011-10-15

    The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca(2+), that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [(125)I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Role of ERK signaling pathway in up-regulation of γ-AChR during development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats%ERK信号通路在烧伤大鼠骨骼肌对非去极化肌松药抵抗形成时γ-AChR上调中的作用

    Institute of Scientific and Technical Information of China (English)

    靳天; 王宏; 吴进; 李士通

    2016-01-01

    Objective To evaluate the role of ERK signaling pathway in up-regulation of fetal gamma-acetylcholine receptor (μ-AChR) during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.Methods Thirty adult male SPF Sprague-Dawley rats,weighing 230-250 g,aged 9-10 weeks,were randomly divided into 3 groups (n=10 each) using a random number table:control group (C group),burn group (B group) and ERK1/2 inhibitor U0126 group (U group).The surface area of bilateral hindlimbs was shaved,and the tibialis anterior muscle of the right hiudlimb was exposed to 95 ℃ copper for 12 s in anesthetized rats.At 1.5 h after burn,15 mg/kg U0126 was injected intraperitoneally in group U,and the equal volume of dimethyl sulfoxide was given in C and B groups.The tibialis anterior muscle was obtained on 7th day after establishment of the model for determination of the expression of μ-AChR and adult epsilon-AChR (ε-AChR) mRNA in skeletal muscle cells using real-time polymerase chain reaction.The concentration-effect curve of rocuronium was drawn using muscular tension experiment,and the half inhibitory concentration (IC50) and 95% confidence interval were calculated.Resuits Compared with group C,the expression of μ-AChR mRNA in skeletal muscle cells was significantly up-regulated,and the IC50 was significantly increased in group B (P<0.05).Compared with group B,the expression of γ-AChR mRNA in skeletal muscle cells was significantly down-regulated,and the IC50 was significantly decreased in group U (P<0.05).There was no significant difference in the expression of ε-AChR in skeletal muscle cells between the three groups (P>0.05).Conclusion Up-regulation of μ,-AChR is dependent on activation of ERK signaling pathway during the development of resistance to non-depolarizing muscular relaxants in skeletal muscles of burned rats.%目的 评价细胞外信号调节激酶(ERK)信号通路在烧伤大鼠骨骼肌对非去极化肌松药抵抗形成时胎儿型乙酰胆碱受体(γ-ACh

  17. Interleukin 6 modulates acetylcholinesterase activity of brain neurons; Effet de l`interleukine 6 sur l`activite de l`acetylcholinesterase des neurones centraux

    Energy Technology Data Exchange (ETDEWEB)

    Clarencon, D.; Multon, E.; Galonnier, M.; Estrade, M.; Fournier, C.; Mathieu, J.; Mestries, J.C.; Testylier, G.; Fatome, M.

    1995-12-31

    Classically, radiation injuries results in a peripheral inflammatory process, and we have previously observed an early systemic interleukin 6 (IL-6) release following whole-body irradiation. Besides, we have demonstrated an early decrease of rat or primate brain acetylcholinesterase (AChE) activity a gamma exposure. The object of the present study is to find possible IL-6 systemic effects on the brain AChE activity. We show that, though intravenous (i.v.) or intra-cerebro-ventricular (ICV) injection of IL-6 can induce a drop in rat brain AChE activity, this cytokine induces only a slight decrease of the AChE release in cultured brain cells. (author). 3 refs.

  18. Changes in Cholinesterase Activity in Blood of Adolescent with Metabolic Syndrome after Supplementation with Extract from Aronia melanocarpa

    Directory of Open Access Journals (Sweden)

    Piotr Duchnowicz

    2018-01-01

    Full Text Available Obesity and metabolic syndrome (MetS are growing problems among children and adolescents. There are no reports of changes in the activity of butyrylcholinesterase (BChE in children and adolescents with metabolic syndrome especially after supplementation with extract from Aronia melanocarpa. Materials studied included plasma and erythrocytes isolated from peripheral blood of patients with MetS and healthy subjects. We have estimated the following parameters: acetylcholinesterase (AChE and butyrylcholinesterase (BChE activity, lipid peroxidation and lipids levels in plasma, and erythrocytes membrane. In patients with MetS, a significant increase in AChE and BChE activity, higher LDL-cholesterol and triacylglycerol levels, and lower HDL-cholesterol level were observed. Supplementation with A. melanocarpa extract resulted in mild but statistically significant reduction of total cholesterol, LDL-cholesterol, and triacylglycerol levels and caused an increase in HDL-cholesterol level and a decrease in lipid peroxidation in plasma patients with MetS. Additionally, a decrease in lipid peroxidation and cholesterol level and a decrease in AChE activity in the erythrocyte membranes after supplementation with A. melanocarpa were noted. Summarizing, an increase in AChE and BChE activity and disruption of lipid metabolism in patients with MetS were observed. After supplementation of MetS patients with A. melanocarpa extract, a decrease in AChE activity and oxidative stress was noted.

  19. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients.

    Science.gov (United States)

    Tappayuthpijarn, Pimolvan; Itharat, Arunporn; Makchuchit, Sunita

    2011-12-01

    The incidence of Alzheimer disease (AD) is increasing every year in accordance with the increasing of elderly population and could pose significant health problems in the future. The use of medicinal plants as an alternative prevention or even for a possible treatment of the AD is, therefore, becoming an interesting research issue. Acetylcholinesterase (AChE) inhibitors are well-known drugs commonly used in the treatment of AD. The aim of the present study was to screen for AChE inhibitory activity of the Thai traditional nootropic recipe and its herbal ingredients. The results showed that ethanolic extracts of four out of twenty-five herbs i.e. Stephania pierrei Diels. Kaempfera parviflora Wall. ex Baker, Stephania venosa (Blume) Spreng, Piper nigrum L at 0.1 mg/mL showed % AChE inhibition of 89, 64, 59, 50; the IC50 were 6, 21, 29, 30 microg/mL respectively. The other herbs as well as combination of the whole recipe had no synergistic inhibitory effect on AChE activity. However some plants revealed antioxidant activity. More research should have be performed on this local wisdom remedy to verify the uses in scientific term.

  20. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum

    Directory of Open Access Journals (Sweden)

    Ting Zhao

    2013-01-01

    Full Text Available It was reported that the main chemical constituents in plants of genus Peganum were a serial of β-carboline and quinoline alkaloids. These alkaloids were quantitatively assessed for selective inhibitory activities on acetylcholinesterase (AChE and butyrylcholinesterase (BChE by in vitro Ellman method. The results indicated that harmane was the most potent selective AChE inhibitor with an IC50 of 7.11 ± 2.00 μM and AChE selectivity index (SI, IC50 of BChE/IC50 of AChE of 10.82. Vasicine was the most potent BChE inhibitor with feature of dual AChE/BChE inhibitory activity, with an IC50 versus AChE/BChE of 13.68 ± 1.25/2.60 ± 1.47 μM and AChE SI of 0.19. By analyzing and comparing the IC50 and SI of those chemicals, it was indicated that the β-carboline alkaloids displayed more potent AChE inhibition but less BChE inhibition than quinoline alkaloids. The substituent at the C7 position of the β-carboline alkaloids and C3 and C9 positions of quinoline alkaloids played a critical role in AChE or BChE inhibition. The potent inhibition suggested that those alkaloids may be used as candidates for treatment of Alzheimer’s disease. The analysis of the quantitative structure-activity relationship of those compounds investigated might provide guidance for the design and synthesis of AChE and BChE inhibitors.

  1. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. STRUCTURE-ACTIVITY RELATIONSHIP STUDY OF DITERPENES FOR TREATMENT OF ALZHEIMER'S DISEASE

    Directory of Open Access Journals (Sweden)

    Gabriel F. dos Santos

    Full Text Available Alzheimer's disease is an irreversible, degenerative and age-related disease which is growing more and more with the increase in life expectancy. Kaurane diterpenes are a class of natural products available in large amounts in nature and isolated from plants grown worldwide. In the present work¸ twenty-seven kaurane diterpenes of natural origin and some readily available derivatives were assayed for acetylcholinesterase inhibition and the structure-activity relationship was analyzed. The kaurenoic acid derivatives screened showed to be promising inhibitors of AChE, which could provide new leads for drugs to fight Alzheimer's disease symptoms. Among them, eleven compounds showed activities comparable or higher than the positive control galantamine. Existence of an allylic hydroxyl group showed to be an important structural feature for AChE inhibition. In addition, presence of free hydroxyl groups at C-17 and C-19, furnished a diol especially active, able to completely inhibit AChE.

  3. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract.

    Science.gov (United States)

    Tung, Bui Thanh; Thu, Dang Kim; Thu, Nguyen Thi Kim; Hai, Nguyen Thanh

    2017-05-04

    Background Zingiber officinale Roscoe has been used in traditional medicine for the treatment of neurological disorder. This study aimed to investigate the phenolic contents, antioxidant, acetylcholinesterase enzyme (AChE) inhibitory activities of different fraction of Z. officinale root grown in Vietnam. Methods The roots of Z. officinale are extracted with ethanol 96 % and fractionated with n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) solvents. These fractions evaluated the antioxidant activity by 1,1-Diphenyl -2-picrylhydrazyl (DPPH) assay and AChE inhibitory activity by Ellman's colorimetric method. Results Our data showed that the total phenolic content of EtOAc fraction was highest equivalents to 35.2±1.4 mg quercetin/g of fraction. Our data also demonstrated that EtOAc fraction had the strongest antioxidant activity with IC50 was 8.89±1.37 µg/mL and AChE inhibitory activity with an IC50 value of 22.85±2.37 μg/mL in a dose-dependent manner, followed by BuOH fraction and the n-hexane fraction is the weakest. Detailed kinetic analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 30.61±1.43 µg/mL. Conclusions Our results suggest that the EtOAc fraction of Z. officinale may be a promising source of AChE inhibitors for Alzheimer's disease.

  4. Does Your Patient’s Urine Turns Dark? Alkaptonuria and Low Back Ache: A Literature Review

    Science.gov (United States)

    Kanniyan, Kalaivanan; Pathak, Aditya C; Dhammi, Ish Kumar; Jain, Anil Kumar

    2014-01-01

    Introduction: Alkaptonuria is a very rare inborn error of amino acid metabolism due to deficient homogentisic acid (HGA) oxidase enzyme leading to accumulation of HGA in plasma, cartilage, other tissues of human body and its excretion in urine. It has both systemic and peripheral signs and symptoms. Though low back is a common symptom of alkaptonuria but, in the absence of ochronosis it is rare. Alkaptonuria itself is very rare occurrence with no specific treatment option available to reverse the effect as yet. Case Report: A 38-year-old male, embroidery worker presented with chronic low back ache with history of staining of clothes in infancy. Later on laboratory and the radiological investigation patient was diagnosed to have alkaptonuria without ochronosis. No other systemic manifestation was present. Patient was treated conservatively and responded well. Conclusion: Though alkaptonuria is a very rare disease, and the occurrence of low back-ache in absence of ochronosis is much rarer. One must be aware of this inborn error of metabolism. Early diagnosis though being “diagnosis of exclusion” for low back-ache, high index of suspicion is advantageous as symptomatic treatment of the alkaptonuria can be initiated and evaluation of other systemic organs can be done in early stages itself. PMID:27298997

  5. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  6. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    Science.gov (United States)

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  7. Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities.

    Science.gov (United States)

    Ciepluch, Karol; Weber, Monika; Katir, Nadia; Caminade, Anne-Marie; El Kadib, Abdelkrim; Klajnert, Barbara; Majoral, Jean Pierre; Bryszewska, Maria

    2013-03-01

    The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is the first step in checking whether new compounds can be considered as drugs for treating neurodegenerative diseases. The effect of viologen-phosphorus dendrimers on AChE and BChE activities was studied. The results show that the effects on the cholinesterase activities depend on dendrimer type and size. Viologen dendrimers can interact with the enzymes in two ways: they can bind either to a peripheral site of the enzyme or to amino acids located near the active site, inhibiting catalysis by both cholinesterases. All tested non-toxic viologen-phosphorus dendrimers inhibited the activities of both cholinesterases, showing their potential as new drugs for treating neurodegenerative diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Alba Garcimartín

    2017-08-01

    Full Text Available The involvement of cholinergic system and the reactive oxygen species (ROS in the pathogenesis of some degenerative diseases has been widely reported; however, the specific impact of hydrogen peroxide (H2O2 on the acetylcholinesterase (AChE activity as well as AChE isoform levels has not been clearly established. Hence, the purpose of present study is to clarify whether H2O2 alters these parameters.Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a the involvement of oxidative stress in the imbalance of AChE; and b treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress. Keywords: Acetylcholinesterase, Hydrogen peroxide, Alternative splicing, Cell culture, Cell death

  9. Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents

    Directory of Open Access Journals (Sweden)

    Inês Cruz

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is a multifactorial neurodegenerative disorder that is associated with the elderly. The current therapy that is used to treat AD is based mainly on the administration of acetylcholinesterase (AChE inhibitors. Due to their low efficacy there is a considerable need for other therapeutic strategies. Considering that the malfunctions of different, but interconnected, biochemical complex pathways play an important role in the pathogenesis of this disease, a promising therapy may consist in administration of drugs that act on more than a target on biochemical scenery of AD. In this work, the synthesis and evaluation of xanthone and flavone derivatives as antioxidants with AChE inhibitory activity were accomplished. Among the obtained compounds, Mannich bases 3 and 14 showed capacity to inhibit AChE and antioxidant property, exerting dual activity. Moreover, for the most promising AChE inhibitors, docking studies on the target have been performed aiming to predict the binding mechanism. The results presented here may help to identify new xanthone and flavone derivatives as dual anti-Alzheimer agents with AChE inhibitory and antioxidant activities.

  10. Simplified methods for in vivo measurement of acetylcholinesterase activity in rodent brain

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael R. E-mail: mkilbour@umich.edu; Sherman, Phillip S.; Snyder, Scott E

    1999-07-01

    Simplified methods for in vivo studies of acetylcholinesterase (AChE) activity in rodent brain were evaluated using N-[{sup 11}C]methylpiperidinyl propionate ([{sup 11}C]PMP) as an enzyme substrate. Regional mouse brain distributions were determined at 1 min (representing initial brain uptake) and 30 min (representing trapped product) after intravenous [{sup 11}C]PMP administration. Single time point tissue concentrations (percent injected dose/gram at 30 min), tissue concentration ratios (striatum/cerebellum and striatum/cortex ratios at 30 min), and regional tissue retention fractions (defined as percent injected dose 30 min/percent injected dose 1 min) were evaluated as measures of AChE enzymatic activity in mouse brain. Studies were carried out in control animals and after dosing with phenserine, a selective centrally active AChE inhibitor; neostigmine, a peripheral cholinesterase inhibitor; and a combination of the two drugs. In control and phenserine-treated animals, absolute tissue concentrations and regional retention fractions provide good measures of dose-dependent inhibition of brain AChE; tissue concentration ratios, however, provide erroneous conclusions. Peripheral inhibition of cholinesterases, which changes the blood pharmacokinetics of the radiotracer, diminishes the sensitivity of all measures to detect changes in central inhibition of the enzyme. We conclude that certain simple measures of AChE hydrolysis rates for [{sup 11}C]PMP are suitable for studies where alterations of the peripheral blood metabolism of the tracer are kept to a minimum.

  11. The inhibition, reactivation and mechanism of VX-, sarin-, fluoro-VX and fluoro-sarin surrogates following their interaction with HuAChE and HuBuChE.

    Science.gov (United States)

    Chao, Chih-Kai; Balasubramanian, Narayanaganesh; Gerdes, John M; Thompson, Charles M

    2018-06-16

    In this study, the mechanisms of HuAChE and HuBChE inhibition by Me-P(O) (OPNP) (OR) [PNP = p-nitrophenyl; R = CH 2 CH 3 , CH 2 CH 2 F, OCH(CH 3 ) 2 , OCH(CH 3 ) (CH 2 F)] representing surrogates and fluoro-surrogates of VX and sarin were studied by in vitro kinetics and mass spectrometry. The in vitro measures showed that the VX- and fluoro-VX surrogates were relatively strong inhibitors of HuAChE and HuBChE (k i  ∼ 10 5 -10 6  M -1 min -1 ) and underwent spontaneous and 2-PAM-mediated reactivation within 30 min. The sarin surrogates were weaker inhibitors of HuAChE and HuBChE (k i  ∼ 10 4 -10 5  M -1 min -1 ), and in general did not undergo spontaneous reactivation, although HuAChE adducts were partially reactivatable at 18 h using 2-PAM. The mechanism of HuAChE and HuBChE inhibition by the surrogates was determined by Q-TOF and MALDI-TOF mass spectral analyses. The surrogate-adducted proteins were trypsin digested and the active site-containing peptide bearing the OP-modified serine identified by Q-TOF as triply- and quadruply-charged ions representing the respective increase in mass of the attached OP moiety. Correspondingly, monoisotopic ions of the tryptic peptides representing the mass increase of the OP-adducted peptide was identified by MALDI-TOF. The mass spectrometry analyses validated the identity of the OP moiety attached to HuAChE or HuBChE as MeP(O) (OR)-O-serine peptides (loss of the PNP leaving group) via mechanisms consistent with those found with chemical warfare agents. MALDI-TOF MS analyses of the VX-modified peptides versus time showed a steady reduction in adduct versus parent peptide (reactivation), whereas the sarin-surrogate-modified peptides remained largely intact over the course of the experiment (24 h). Overall, the presence of a fluorine atom on the surrogate modestly altered the rate constants of inhibition and reactivation, however, the mechanism of inhibition (ejection of PNP group) did not change

  12. miR-434-3p and DNA hypomethylation co-regulate eIF5A1 to increase AChRs and to improve plasticity in SCT rat skeletal muscle.

    Science.gov (United States)

    Shang, Fei-Fei; Xia, Qing-Jie; Liu, Wei; Xia, Lei; Qian, Bao-Jiang; You, Ling; He, Mu; Yang, Jin-Liang; Wang, Ting-Hua

    2016-03-11

    Acetylcholine receptors (AChRs) serve as connections between motor neurons and skeletal muscle and are essential for recovery from spinal cord transection (SCT). Recently, microRNAs have emerged as important potential biotherapeutics for several diseases; however, whether miRNAs operate in the modulation of AChRs remains unknown. We found increased AChRs numbers and function scores in rats with SCT; these increases were reduced following the injection of a eukaryotic translation initiation factor 5A1 (eIF5A1) shRNA lentivirus into the hindlimb muscle. Then, high-throughput screening for microRNAs targeting eIF5A1 was performed, and miR-434-3p was found to be robustly depleted in SCT rat skeletal muscle. Furthermore, a highly conserved miR-434-3p binding site was identified within the mRNA encoding eIF5A1 through bioinformatics analysis and dual-luciferase assay. Overexpression or knockdown of miR-434-3p in vivo demonstrated it was a negative post-transcriptional regulator of eIF5A1 expression and influenced AChRs expression. The microarray-enriched Gene Ontology (GO) terms regulated by miR-434-3p were muscle development terms. Using a lentivirus, one functional gene (map2k6) was confirmed to have a similar function to that of miR-434-3p in GO terms. Finally, HRM and MeDIP-PCR analyses revealed that DNA demethylation also up-regulated eIF5A1 after SCT. Consequently, miR-434-3p/eIF5A1 in muscle is a promising potential biotherapy for SCI repair.

  13. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-01-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE 2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE 2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  14. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    Science.gov (United States)

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  15. Similarity of hydrolyzing activity of human and rat small intestinal disaccharidases

    Directory of Open Access Journals (Sweden)

    Oku T

    2011-06-01

    Full Text Available Tsuneyuki Oku¹, Kenichi Tanabe¹, Shigeharu Ogawa², Naoki Sadamori¹, Sadako Nakamura¹¹Graduate School of Human Health Science, University of Nagasaki, Siebold, Nagayo, Japan; ²Juzenkai Hospital, Kagomachi, Nagasaki, JapanBackground: The purpose of this study was to clarify whether it is possible to extrapolate results from studies of the hydrolyzing activity of disaccharidases from rats to humans.Materials and methods: We measured disaccharidase activity in humans and rats using identical preparation and assay methods, and investigated the similarity in hydrolyzing activity. Small intestinal samples without malignancy were donated by five patients who had undergone bladder tumor surgery, and homogenates were prepared to measure disaccharidase activity. Adult rat homogenates were prepared using small intestine.Results: Maltase activity was the highest among the five disaccharidases, followed by sucrase and then palatinase in humans and rats. Trehalase activity was slightly lower than that of palatinase in humans and was similar to that of sucrase in rats. Lactase activity was the lowest in humans, but was similar to that of palatinase in rats. Thus, the hydrolyzing activity of five disaccharidases was generally similar in humans and rats. The relative activity of sucrose and palatinase versus maltase was generally similar between humans and rats. The ratio of rat to human hydrolyzing activity of maltase, sucrase, and palatinase was 1.9–3.1, but this was not a significant difference. Leaf extract from Morus alba strongly inhibited the activity of maltase, sucrase, and palatinase, but not trehalase and lactase, and the degree of inhibition was similar in humans and rats. L-arabinose mildly inhibited sucrase activity, but hardly inhibited the activity of maltase, palatinase, trehalase and lactase in humans and rats. The digestibility of 1-kestose, galactosylsucrose, and panose by small intestinal enzymes was very similar between humans and

  16. The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain

    International Nuclear Information System (INIS)

    Santos, Dinamene; Milatovic, Dejan; Andrade, Vanda; Batoreu, M. Camila; Aschner, Michael; Marreilha dos Santos, A.P.

    2012-01-01

    Highlights: ► Acetylcholinesterase (AChE) is a target of Mn in the central nervous system. ► Mn inhibits AChE, representing a novel mechanistic finding for its mode of action. ► AChE inhibition may trigger or contribute to the development of oxidative stress. ► Excess Mn can trigger the release of inflammatory mediators. ► AChE activity may serve as an early biomarker of Mn neurotoxicity. -- Abstract: Background: Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress. Objectives: The present study was undertaken to test the hypothesis that a decrease in acetylcholinesterase (AChE) activity mediates Mn-induced neurotoxicity. Methods: Groups of 6 rats received 4 or 8 intraperitoneal (i.p.) injections of 25 mg MnCl 2 /kg/day, every 48 h. Twenty-four hours after the last injection, brain AChE activity and the levels of F 2 -isoprostanes (F 2 -IsoPs) and F 4 -neuroprostanes (F 4 -NPs) (biomarkers of oxidative stress), as well as prostaglandin E 2 (PGE 2 ) (biomarker of neuroinflammation) were analyzed. Results: The results showed that after either 4 or 8 Mn doses, brain AChE activity was significantly decreased (p 2 -IsoPs and PGE 2 levels, but only after 8 doses. In rats treated with 4 Mn doses, a significant increase (p 4 -NPs levels was found. To evaluate cellular responses to oxidative stress, we assessed brain nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Mn-superoxide dismutase (Mn-SOD, SOD2) protein expression levels. A significant increase in Mn-SOD protein expression (p < 0.05) and a trend towards increased Nrf2 protein expression was noted in rat brains after 4 Mn doses vs. the control group, but the expression of these proteins was decreased after 8 Mn

  17. Regeneration of Red Cell Cholinesterase Activity Following Pralidoxime (2-PAM) Infusion in First 24 h in Organophosphate Poisoned Patients.

    Science.gov (United States)

    Goel, Parul; Gupta, Nidhi; Singh, Surjit; Bhalla, Ashish; Sharma, Navneet; Gill, K D

    2012-01-01

    Oximes such as pralidoxime chloride reactivate acetylcholinesterase. However their role in management of organophosphate poisoning is controversial. The study was carried out to find effectiveness of pralidoxime chloride (2-PAM) in regenerating red cell acetyl cholinesterase in first 24 h following administration of it in dose recommended by WHO. Eight patients with OPP [chlorpyriphos (3), phorate (3), dichlorvos (1) and monocrotophos (1) who fulfilled the criteria for inclusion were investigated. In addition to decontamination and atropine, all these patients were administered 30 mg/kg body wt of 2-PAM as bolus dose followed by 7.5 mg/kg body wt/h with maximum dose being 500 mg/h as continuous infusion till first 24 h. Red cell AChE activity was estimated every 15 min for first 4 h, one hourly for next 4 h and then 2 hourly till 24 h and subsequently without 2-PAM every 12 h till 7 days or discharge or death which ever earlier. In all the patients maximum increase in activity was observed in first 4 h following which rise was very slow despite continued 2-PAM infusion and reaching a steady state in 20 h in all the cases. The increase in red cell AChE activity observed in diethyl group at 24 h of 2-PAM infusion was 154% vs. 81% in dimethyl group. At 7 days the increase in activity was 215% vs. 118% respectively. However on multiple repeated ANOVA, no statistically significant difference was observed between diethyl and dimethyl groups at admission and discharge (P > 0.05). Similarly no significant difference was observed in three groups when patients were categorized according to WHO classification of organophosphates (P > 0.05). The maximum increase in red cell AChE activity occurs in first 4 h of 2-PAM administration followed by a slow increase despite 2-PAM infusion till 24 h.

  18. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.

    Science.gov (United States)

    Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T

    2016-04-01

    Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    Science.gov (United States)

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  20. Acetylcholinesterase activity, cohabitation with floricultural workers, and blood pressure in Ecuadorian children.

    Science.gov (United States)

    Suarez-Lopez, Jose R; Jacobs, David R; Himes, John H; Alexander, Bruce H

    2013-05-01

    Acetylcholinesterase (AChE) inhibitors are commonly used pesticides that can effect hemodynamic changes through increased cholinergic stimulation. Children of agricultural workers are likely to have paraoccupational exposures to pesticides, but the potential physiological impact of such exposures is unclear. We investigated whether secondary pesticide exposures were associated with blood pressure and heart rate among children living in agricultural Ecuadorian communities. This cross-sectional study included 271 children 4-9 years of age [51% cohabited with one or more flower plantation workers (mean duration, 5.2 years)]. Erythrocyte AChE activity was measured using the EQM Test-mate system. Linear regression models were used to estimate associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate with AChE activity, living with flower workers, duration of cohabitation with a flower worker, number of flower workers in the child's home, and number of practices that might increase children's exposure to pesticides. Mean (± SD) AChE activity was 3.14 ± 0.49 U/mL. A 1-U/mL decrease in AChE activity was associated with a 2.86-mmHg decrease in SBP (95% CI: -5.20, -0.53) and a 2.89-mmHg decrease in DBP (95% CI: -5.00, -0.78), after adjustment for potential confounders. Children living with flower workers had lower SBP (-1.72 mmHg; 95% CI: -3.53, 0.08) than other children, and practices that might increase exposure also were associated with lower SBP. No significant associations were found between exposures and heart rate. Our findings suggest that subclinical secondary exposures to pesticides may affect vascular reactivity in children. Additional research is needed to confirm these findings.

  1. Modulation of the brain acetylcholinesterase activity after gamma irradiation or cytokine administration

    International Nuclear Information System (INIS)

    Clarencon, D.; Multon, E.; Galonnier, M.; Fournier, C.; Fatome, M.; Gourmelon, P.

    1997-01-01

    The central nervous system exhibits a functional radiosensitivity, with different abnormalities in the neuronal transmission. In particular we observed a decrease in AChE activity in the rat brain after a whole body gamma exposure. This could not be explained by a direct effect on the protein: the AChE is particularly radioresistant, since several hundred of grays are necessary to modify the in vitro enzymatic activity. Radiations have no effect on primary neuronal culture, and the in vivo radiogenic decrease in brain AChE activity could imply more complex mechanisms than nervous transmissions alone, involving the participation of several intercellular communication systems. The second part of our experimental results showed that both peripheral or central administration of IL-6 can reproduce the decrease in the brain AChE activity observed after an irradiation. The role of inflammatory mediators in the acute radiation syndrome is now well documented. The way these cellular mediators could activate the CNS remains unclear. An induction of messengers of IL-1 and TNF in different brain areas has been recently demonstrated. However, it could be mentioned that, by using primary neuronal cultures, neither the membranes-bound nor the release enzyme activities were modified by incubation with IL-6. On the other hand, when the primary neurons were plated with a subculture of glial cells, the release of enzyme was greatly reduced during a few hours after incubation with IL-6, but the membrane-bound enzyme, which represent more than 90% of the total activity, was not modified. Hence, the mechanisms by which cytokines act on the CNS seem to be more complex, with the participation of glial cells. We suggest that the peripheral early inflammatory response which occurs after irradiation might participate in the nervous damage. (N.C.)

  2. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Directory of Open Access Journals (Sweden)

    Maushmi Shailesh Kumar

    2014-11-01

    Full Text Available Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrella pachyspira (S. pachyspira Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods: They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM assay model was used for angiogenic/ antiangiogenic testing. Results: All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions: AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  4. Serum cholinesterase activity in infantile and juvenile spinal muscular atrophy.

    Science.gov (United States)

    Niebroj-Dobosz, I; Hausmanowa-Petrusewicz, I

    1989-09-01

    Serum acetylcholinesterase (AChE) and pseudocholinesterase (ChE) activity in infantile and juvenile spinal muscular atrophy (SMA) was determined. The total AChE activity was either normal or decreased in the childhood SMA (Type 1), the other SMA groups and disease controls (ALS, X-linked SMA). In the majority of SMA Type 1 cases (6/7 tested) an absence of the asymmetric A12 form was found. This was accompanied by changes in the other asymmetric and globular forms. The latter was, however, not specific for SMA Type 1 cases. The ChE activity was increased in the majority of SMA cases as well as disease controls. The asymmetric A12 ChE form was increased in all SMA Type 3 cases, the values of this form in SMA Type 1 was variable. A change in the ChE globular forms in SMA Type 1 and SMA Type 2 was a frequent finding. It is suggested that the absence of the asymmetric A12 AChE form in SMA Type 1 arises because of muscle cell immaturity and undeveloped muscle-nerve interactions. The reason of ChE changes is obscure.

  5. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W

    2018-02-05

    There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.

  6. Acotiamide hydrochloride (Z-338) enhances gastric motility and emptying by inhibiting acetylcholinesterase activity in rats.

    Science.gov (United States)

    Kawachi, Masanao; Matsunaga, Yugo; Tanaka, Takao; Hori, Yuko; Ito, Katsunori; Nagahama, Kenji; Ozaki, Tomoko; Inoue, Naonori; Toda, Ryoko; Yoshii, Kazuyoshi; Hirayama, Masamichi; Kawabata, Yoshihiro; Takei, Mineo

    2011-09-01

    In clinical trials, acotiamide hydrochloride (acotiamide: Z-338) has been reported to be useful in the treatment of functional dyspepsia. Here, we investigated the effects of acotiamide on gastric contraction and emptying activities in rats in comparison with itopride hydrochloride (itopride) and mosapride citrate (mosapride). We also examined in vitro the compound's inhibitory effect on acetylcholinesterase (AChE) activity derived from rat stomach. In in vivo studies, acotiamide (30 and 100mg/kg s.c.) and itopride (100mg/kg s.c.) markedly enhanced normal gastric antral motility in rats. In gastric motility dysfunction models, acotiamide (100mg/kg s.c.) and itopride (100mg/kg s.c.) improved both gastric antral hypomotility and the delayed gastric emptying induced by clonidine, an α(2)-adrenoceptor agonist. In contrast, mosapride (10mg/kg s.c.) had no effect on these models. Like the AChE inhibitors itopride (30 mg/kg s.c.) and neostigmine (10 μg/kg s.c.), acotiamide (10mg/kg s.c.) also clearly enhanced gastric body contractions induced by electrical stimulation of the vagus, which were abolished by atropine and hexamethonium, whereas mosapride (3 and 10mg/kg s.c.) did not. In in vitro studies, acotiamide concentration-dependently inhibited rat stomach-derived AChE activity (IC(50)=2.3 μmol/l). In addition, stomach tissue concentrations of acotiamide after administration at 10mg/kg s.c. were sufficient to produce inhibition of AChE activity in rat stomach. These results suggest that acotiamide stimulates gastric motility and improves gastric motility dysfunction in rats by inhibiting AChE activity, and may suggest a role for acotiamide in improving gastric motility dysfunction in patients with functional dyspepsia. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Combined in vitro and in silico studies for the anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles

    Science.gov (United States)

    Ibrar, Aliya; Khan, Ajmal; Ali, Majid; Sarwar, Rizwana; Mehsud, Saifullah; Farooq, Umar; Halimi, Syed M. A.; Khan, Imtiaz; Al-Harrasi, Ahmed

    2018-03-01

    In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogues were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in order to know their potential for the prevention of Alzheimer’s disease (AD). In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 µM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 µM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 µM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 µM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i and 6k) were found to interact with AChE in the active site with MOE score of ‒10.19, ‒9.97, ‒9.68, and ‒11.03 Kcal.mol‒1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a-h) suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a and 11b) provided MOE score of ‒9.9, ‒7.4 and ‒8.2 Kcal.mol‒1 respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction.

  8. Combined in Vitro and in Silico Studies for the Anticholinesterase Activity and Pharmacokinetics of Coumarinyl Thiazoles and Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Aliya Ibrar

    2018-03-01

    Full Text Available In a continuation of our previous work for the exploration of novel enzyme inhibitors, two new coumarin-thiazole 6(a–o and coumarin-oxadiazole 11(a–h hybrids have been designed and synthesized. All the compounds were characterized by 1H- and 13C-NMR spectroscopy and elemental analysis. New hybrid analogs were evaluated against acetylcholinesterase (AChE and butyrylcholinesterase (BuChE in order to know their potential for the prevention of Alzheimer's disease (AD. In coumarinyl thiazole series, compound 6b was found as the most active member against AChE having IC50 value of 0.87 ± 0.09 μM, while the compound 6j revealed the same efficacy against BuChE with an IC50 value of 11.01 ± 3.37 μM. In case of coumarinyl oxadiazole series, 11a was turned out to be the lead candidate against AChE with an IC50 value of 6.07 ± 0.23 μM, whereas compound 11e was found significantly active against BuChE with an IC50 value of 0.15 ± 0.09 μM. To realize the binding interaction of these compounds with AChE and BuChE, the molecular docking studies were performed. Compounds from coumarinyl thiazole series with potent AChE activity (6b, 6h, 6i, and 6k were found to interact with AChE in the active site with MOE score of −10.19, −9.97, −9.68, and −11.03 Kcal.mol−1, respectively. The major interactions include hydrogen bonding, π-π stacking with aromatic residues, and interaction through water bridging. The docking studies of coumarinyl oxadiazole derivatives 11(a–h suggested that the compounds with high anti-butyrylcholinesterase activity (11e, 11a, and 11b provided MOE score of −9.9, −7.4, and −8.2 Kcal.mol−1, respectively, with the active site of BuChE building π-π stacking with Trp82 and water bridged interaction.

  9. Guarana (Paullinia cupana) ameliorates memory impairment and modulates acetylcholinesterase activity in Poloxamer-407-induced hyperlipidemia in rat brain.

    Science.gov (United States)

    Ruchel, Jader B; Braun, Josiane B S; Adefegha, Stephen A; Guedes Manzoni, Alessandra; Abdalla, Fátima H; de Oliveira, Juliana S; Trelles, Kelly; Signor, Cristiane; Lopes, Sônia T A; da Silva, Cássia B; Castilhos, Lívia G; Rubin, Maribel A; Leal, Daniela B R

    2017-01-01

    Hyperlipidemia is a risk factor for the development of cognitive dysfunction and atherosclerosis. Natural compounds have recently received special attention in relation to the treatment of disease due to their low cost and wide margin of safety. Thus, the aim of this study was to determine the possible preventive effect of guarana powder (Paullinia cupana) on memory impairment and acetylcholinesterase (AChE) activity in the brain structures of rats with Poloxamer-407-induced hyperlipidemia. Adult male Wistar rats were pretreated with guarana (12.5, 25 and 50mg/kg/day) and caffeine (0.2mg/kg/day) by gavage for a period of 30days. Simvastatin (0.04mg/kg) was administered as a comparative standard. Acute hyperlipidemia was induced with intraperitoneal injections of 500mg/kg of Poloxamer-407. Memory tests and evaluations of anxiety were performed. The cortex, cerebellum, hippocampus, hypothalamus and striatum were separated to assess acetylcholinesterase activity. Our results revealed that guarana powder was able to reduce the levels of TC and LDL-C in a manner similar to simvastatin. Guarana powder also partially reduced the liver damage caused by hyperlipidemia. Guarana was able to prevent changes in the activity of AChE and improve memory impairment due to hyperlipidemia. Guarana powder may therefore be a source of promising phytochemicals that can be used as adjuvant therapy in the management of hyperlipidemia and cognitive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Toxicity of azodrin on the morphology and acetylcholinesterase activity of the earthworm Eisenia foetida

    International Nuclear Information System (INIS)

    Rao, J.V.; Kavitha, P.

    2004-01-01

    The acute toxicity of azodrin (monocrotophos, an organophosphorus insecticide) was determined on a soil organism, Eisenia foetida. The median lethal concentrations (LC 50 ) were derived from a 48-h paper contact test and from artificial soil tests. The LC 50 of azodrin in the paper contact test was 0.46±0.1 μg cm -2 (23±6 mg L -1 ) and those in the 7- and 14-day artificial soil tests were 171±21 and 132±20 mg kg -1 , respectively. The neurotoxic potentiality of azodrin was assessed by using a marker enzyme, acetylcholinesterase (AChE; EC 3.1.1.7) in both in vitro and in vivo experiments. The progressive signs of morphological destruction are correlated with percentage inhibition of AChE in the in vivo experiments. The kinetics of AChE activity in the presence and absence of azodrin indicated that the toxicant is competitive in nature. This study demonstrated that azodrin causes concentration-dependent changes in the morphology and AChE activity of the earthworm E. foetida

  11. Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner.

    Science.gov (United States)

    López, María Dolores; Campoy, Francisco J; Pascual-Villalobos, María Jesús; Muñoz-Delgado, Encarnación; Vidal, Cecilio J

    2015-03-05

    The profitable insecticidal action of monoterpenoids prompted us to test their efficiency against stored-grain beetle species, via inhibition of acetylcholinesterase (AChE). For this, we first studied the ability of the monoterpenoids geraniol, linalool, camphor, fenchone, carvone and γ-terpinene, besides the phenylpropanoids trans-anethole and estragole to inhibit Electrophorus AChE. The results indicated that while AChE activity increased (15-35%) with 40 μM geraniol, camphor, γ-terpinene and linalool, the activity decreased (60-40%) with 5mM carvone, γ-terpinene, and fenchone. The Km for AChE was 0.52 ± 0.02 mM in control assays, which fell to 0.28 ± 0.01 mM or 0.32 ± 0.01 mM in assays with 20 μM linalool or γ-terpinene added. In the millimolar range, the terpenoids behaved as weak inhibitors. Unexpectedly, AChE inhibition by camphor, carvone, γ-terpinene, and fenchone gave Hill numbers ranging 2.04-1.57, supporting the idea that AChE was able to lodge more than one monoterpenoid molecule. The plots of 1/v vs. 1/S at varying monoterpenoid provided straight lines, fenchone and γ-terpinene acting as competitive inhibitors and carvone and camphor as non-competitive inhibitors. Moreover, the secondary plots of the slope KM(app)/Vmax(app) vs. [I] and of 1/Vmax(app) vs. [I] gave parabolic curves, which lent support to the proposed capacity of AChE to bind more than one monoterpenoid molecule. The fitting of the curves to a second-order polynomial equation allowed us to calculate the inhibition constants for the interaction of AChE with fenchone, γ-terpinene, carvone and camphor. The previously unnoticed increase in AChE activity with monoterpenoids should be considered as a reminder when advising the use of essential oils of plants or their constituents as anti-AChE agents to attenuate pathological signs of Alzheimer's disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    Science.gov (United States)

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Mehran Fadaeinasab

    2015-11-01

    Full Text Available Background/Aims: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1 and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2, along with five known, macusine B (3, vinorine (4, undulifoline (5, isoresrpiline (6 and rescinnamine (7 were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Conclusion: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.

  14. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    Science.gov (United States)

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  15. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Hayden R. [Department of Biology, Whittier College, Whittier, CA 90608 (United States); Radić, Zoran; Taylor, Palmer [Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650 (United States); Fradinger, Erica A., E-mail: efrading@whittier.edu [Department of Biology, Whittier College, Whittier, CA 90608 (United States)

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  16. Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene

    International Nuclear Information System (INIS)

    Ye, Cui; Zhong, Xia; Chai, Yaqin; Yuan, Ruo; Wang, Min-Qiang

    2016-01-01

    A glassy carbon electrode (GCE) was modified with a nanocomposite consisting of tetraoctylammonium bromide (TOAB), C 60 fullerene, and palladium nanorods (PdNRs). The PdNRs were hydrothermally prepared and had a typical width of 20 ± 2 nm. The nanocomposite forms stable films on the GCE and exhibits a reversible redox pair for the C 60 /C 60 − system while rendering the surface to be positively charged. The modified GCE was applied to fabricate an electrochemical biosensor for detecting acetylcholinesterase (AChE) by measurement of the amount of thiocholine formed from acetylthiocholine, best at a working voltage of −0.19 V (vs. SCE). The detection scheme is based on (a) measurement of the activity of ethyl paraoxon-inhibited AChE, and (b) measurement of AChE activity after reactivation with pralidoxime (2-PAM). Compared to the conventional methods using acetylthiocholine as a substrate, the dual method presented here provides data on the AChE activity after inhibition and subsequent reactivation, thereby yielding credible data on reactivated enzyme activity. The linear analytical range for AChE activity extends from 2.5 U L −1 to 250 kU·L −1 , and the detection limit is 0.83 U L −1 . (author)

  17. Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of Rhodiola crenulata using molecular docking and isothermal titration calorimetry methods.

    Science.gov (United States)

    Li, Fa-Jie; Liu, Yuan; Yuan, Yuan; Yang, Bin; Liu, Zhen-Ming; Huang, Lu-Qi

    2017-11-01

    (-)-Epicatechin gallate ((-)-ECG), 1,2,3,4,6-O-pentagalloylglucose (PGG), rhodionin, herbacetin and rhodiosin isolated from the root of Rhodiola crenulata exhibited potent, dose-dependent inhibitory effects on acetylcholinesterase (AChE) with IC 50 ranged from 57.50±5.83 to 2.43±0.34μg/mL. With the aim of explaining the differences in activity of these active ingredients and clarifying how they inhibit AChE, the AChE-inhibitor interactions were further explored using molecular docking and isothermal titration calorimetry (ITC) methods in the present study. Molecular docking studies revealed that all compounds except PGG showed binding energy values ranging from -10.30 to -8.00kcal/mol while the binding energy of galantamine, a known AChE inhibitor, was -9.53kcal/mol; they inhibited the AChE by binding into the ligand pocket with the similar binding pattern to that of galantamine by interacting with Glu199 of AChE. Inhibition constant of these active ingredients had a positive correlation with binding energy. The interaction between AChE and PGG was further evaluated with the ITC method and the results indicated that the PGG-AChE interaction was relevant to AChE concentration. The results revealed a possible mechanism for the AChE inhibition activity of these bioactive ingredients, which may provide some help in lead compounds optimization in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Ghazavi, E. [Bosch Institute, The University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Hinton, T. [School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Waters, K.A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Hennessy, A. [School of Medicine, University of Western Sydney, NSW 2751 (Australia); Heart Research Institute, 7 Eliza St Newtown, NSW 2042 (Australia)

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  19. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    International Nuclear Information System (INIS)

    Machaalani, R.; Ghazavi, E.; Hinton, T.; Waters, K.A.; Hennessy, A.

    2014-01-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta

  20. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  1. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    International Nuclear Information System (INIS)

    De la Cal, E.; Tabares, F.L.

    1993-01-01

    The formation of C 2 and C 3 hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H 2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  2. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions.

    Science.gov (United States)

    Fang, Aijin; Chen, Hongyu; Li, Haitao; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-15

    A dual-functional platform for the sensing of acetylcholinesterase (AChE) activity and cadmium ions (Cd 2+ ) was developed based on the fluorescence resonance energy transfer (FRET) between NaYF 4 :Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via glutathione regulation. The detection mechanism is based on the fact that AuNPs can quench the fluorescence of UCNPs. AChE catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine which reacts with AuNPs by S-Au conjunction and results the aggregation of AuNPs and change in fluorescence of UCNPs. Therefore, the AChE activity can be detected through the changes of the color of solution and fluorescence recovery of UCNPs. However, the presence of glutathione (GSH) can protect AuNPs from aggregation and enlarge the inter-particle distance between AuNPs and UCNPs. When Cd 2+ is added into the stable mixture of AuNPs, GSH and AChE/ATC, Cd 2+ could interact with GSH to form a spherical shaped (GSH) 4 Cd complex, which decreases the free GSH on the surface of AuNPs to weaken the stability of AuNPs and lead to the easily aggregation of them in the system. The aggregated-AuNPs are released from the surface of UCNPs, which results in the fluorescence of UCNPs gradually recovered. Under the optimized conditions, the detection limits of AChE activity and Cd 2+ are estimated to be 0.015mU/mL and 0.2µM, respectively. The small molecules regulated dual-functional platform based on UCNPs/AuNPs is a simple, label-free method and can be applied for the turn-on fluorescence detection of AChE activity in human serum and Cd 2+ in real water samples. The present work demonstrates a general strategy for the design of small molecules regulated multifunctional platform and will be expanded for different areas in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice

    Science.gov (United States)

    Li, Shu-Ping; Wang, Yu-Wen; Qi, Sheng-Lan; Zhang, Yun-Peng; Deng, Gang; Ding, Wen-Zheng; Ma, Chao; Lin, Qi-Yan; Guan, Hui-Da; Liu, Wei; Cheng, Xue-Mei; Wang, Chang-Hong

    2018-01-01

    The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more

  4. In-vitro screening of acetylcholinesterase inhibitory activity of extracts from Palestinian indigenous flora in relation to the treatment of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mohammed Saleem Ali-Shtayeh

    2014-09-01

    Full Text Available Background: Cholinesterase inhibitory therapy serves as a strategy for the treatment of Alzheimer’s disease (AD. Several acetylcholinesterase inhibitors (AChEIs are used for the symptomatic treatment of AD. These compounds have been reported to have adverse effects, including gastrointestinal disturbances. This study was therefore partly aimed at investigating in vitro possible AChEIs in herbal medicines traditionally used in Palestine to treat cognitive disorders, and to point out the role of these plants as potential sources for development of newly potent and safe natural therapeutic agents of AD. Assay of AChE activity plays an important role in vitro characterization of drugs including potential treatments for AD. The most widely used method, is based on Ellman’s method. The reactant used in this method shows chemical reactivity with oxime antidots and thiol leading to false positive reactions. A new alternative assay could be of high interest. Methods: The effect on AChE activity of 92 extracts of 47 medicinal plants were evaluated using a new micro-well plate AChE activity (NA-FB and Ellman’s assays. In addition, antioxidant activity using DPPH was determined. Results: The main advantages of the new method (NA-FB is that the colorimetric change is better observable visually allowing spectrophotometric as well as colorimetric assay, and does not show any chemical reactivity with thiol. 67.4% and 37% of extracts inhibited AChE by >50% using the NA-FB and Ellman’s assays, respectively. Using NA-FB assay, 84 extracts interacted reversibly with the enzyme, of which Mentha spicata (94.8%, Foeniculum vulgare (89.81, and Oxalis pes-caprae (89.21 were most potent, and 8 showed irreversible inhibition of which leaves of Lupinus pilosus (92.02% were most active. Antioxidant activity was demonstrated by 73 extracts Majorana syriaca (IC50 0.21mg/ml, and Rosmarinus officinalis (0.38 were the most active. Conclusions: NA-FB assay has shown to be

  5. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    Science.gov (United States)

    Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  6. Distribution of intravenously administered acetylcholinesterase inhibitor and acetylcholinesterase activity in the adrenal gland: 11C-donepezil PET study in the normal rat.

    Directory of Open Access Journals (Sweden)

    Tadashi Watabe

    Full Text Available PURPOSE: Acetylcholinesterase (AChE inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11C-Donepezil (DNP and the AChE activity in the normal rat, with special focus on the adrenal glands. METHODS: The distribution of (11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight  = 220 ± 8.9 g. A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11C-DNP (45.0 ± 10.7 MBq. The whole-body distribution of the (11C-DNP PET was evaluated based on the Vt (total distribution volume by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. RESULTS: The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11C-DNP in the body (following the liver (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3, respectively, indicating that the distribution of (11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively, indicating high activity of AChE in the adrenal glands. CONCLUSIONS: We demonstrated the whole-body distribution of (11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.

  7. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Science.gov (United States)

    Bachmann, Svenja; Schulze, Marcus; Morasch, Jan; Hesse, Sabine; Hussein, Laith; Krell, Lisa; Schnagl, Johann; Stark, Robert W.; Narayan, Suman

    2016-05-01

    Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O2) and hydrogen (H2) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H2 plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a-C:H and ta-C are not stable on long-term and are influenced by the environmental conditions.

  8. Oxidative stress and damage to erythrocytes in patients with chronic obstructive pulmonary disease--changes in ATPase and acetylcholinesterase activity.

    Science.gov (United States)

    Bukowska, Bożena; Sicińska, Paulina; Pająk, Aneta; Koceva-Chyla, Aneta; Pietras, Tadeusz; Pszczółkowska, Anna; Górski, Paweł; Koter-Michalak, Maria

    2015-12-01

    The study indicates, for the first time, the changes in both ATPase and AChE activities in the membrane of red blood cells of patients diagnosed with COPD. Chronic obstructive pulmonary disease (COPD) is one of the most common and severe lung disorders. We examined the impact of COPD on redox balance and properties of the membrane of red blood cells. The study involved 30 patients with COPD and 18 healthy subjects. An increase in lipid peroxidation products and a decrease in the content of -SH groups in the membrane of red blood cells in patients with COPD were observed. Moreover, an increase in the activity of glutathione peroxidase and a decrease in superoxide dismutase, but not in catalase activity, were found as well. Significant changes in activities of erythrocyte membrane enzymes in COPD patients were also evident demonstrated by a considerably lowered ATPase activity and elevated AChE activity. Changes in the structure and function of red blood cells observed in COPD patients, together with changes in the activity of the key membrane enzymes (ATPases and AChE), can result from the imbalance of redox status of these cells due to extensive oxidative stress induced by COPD disease.

  9. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Poorthuis, R.B.; Bloem, B.; Schak, B.; Wester, J.; de Kock, C.P.J.; Mansvelder, H.D.

    2013-01-01

    Acetylcholine signaling through nicotinic receptors (nAChRs) in the prefrontal cortex (PFC) is crucial for attention. Nicotinic AChRs are expressed on glutamatergic inputs to layer V (LV) cells and on LV interneurons and LVI pyramidal neurons. Whether PFC layers are activated by nAChRs to a similar

  10. Acetylcholinesterase Inhibitory Activities of Flavonoids from the Leaves of Ginkgo biloba against Brown Planthopper

    Directory of Open Access Journals (Sweden)

    Xiao Ding

    2013-01-01

    Full Text Available Ginkgo biloba is a traditional Chinese medicinal plant which has potent insecticidal activity against brown planthopper. The MeOH extract was tested in the acetylcholinesterase (AChE inhibitory assay with IC50 values of 252.1 μg/mL. Two ginkgolides and thirteen flavonoids were isolated from the leaves of Ginkgo biloba. Their structures were established on the basis of spectroscopic data interpretation. It revealed that the 13 isolated flavonoids were found to inhibit AChE with IC50 values ranging from 57.8 to 133.1 μg/mL in the inhibitory assay. AChE was inhibited dose dependently by all tested flavonoids, and compound 6 displayed the highest inhibitory effect against AChE with IC50 values of 57.8 μg/mL.

  11. Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla.

    Science.gov (United States)

    Jiang, Wei-Wei; Su, Jia; Wu, Xing-De; He, Juan; Peng, Li-Yan; Cheng, Xiao; Zhao, Qin-Shi

    2015-01-01

    Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

  12. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2015-12-01

    Full Text Available The in vitro maturation (IVM efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+ oocytes with low glucose-6-phosphate dehydrogenase (G6PDH activity have shown superior quality than BCB negative (− oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9 and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  13. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species.

    Science.gov (United States)

    Xiang, Cai-Peng; Han, Jia-Xin; Li, Xing-Cong; Li, Yun-Hui; Zhang, Yi; Chen, Lin; Qu, Yan; Hao, Chao-Yun; Li, Hai-Zhou; Yang, Chong-Ren; Zhao, San-Jun; Xu, Min

    2017-05-10

    The essential oils (EOs) derived from aromatic plants such as Piper species are considered to play a role in alleviating neuronal ailments that are associated with inhibition of acetylcholinesterase (AChE). The chemical compositions of 23 EOs prepared from 16 Piper spp. were analyzed by both gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). A total of 76 compounds were identified in the EOs from the leaves and stems of 19 samples, while 30 compounds were detected in the EOs from the fruits of four samples. Sesquiterpenes and phenylpropanoids were found to be rich in these EOs, of which asaricin, caryophyllene, caryophyllene oxide, isospathulenol, (+)-spathulenol, and β-bisabolene are the major constituents. The EOs from the leaves and stems of Piper austrosinense, P. puberulum, P. flaviflorum, P. betle, and P. hispidimervium showed strong AChE inhibitory activity with IC 50 values in the range of 1.51 to 13.9 mg/mL. A thin-layer chromatography (TLC) bioautography assay was employed to identify active compound(s) in the most active EO from P. hispidimervium. The active compound was isolated and identified as asaricin, which gave an IC 50 value of 0.44 ± 0.02 mg/mL against AChE, comparable to galantamine with an IC 50 0.15 ± 0.01 mg/mL.

  14. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives.

    Science.gov (United States)

    Bacalhau, Patrícia; San Juan, Amor A; Marques, Carolina S; Peixoto, Daniela; Goth, Albertino; Guarda, Cátia; Silva, Mara; Arantes, Sílvia; Caldeira, A Teresa; Martins, Rosário; Burke, Anthony J

    2016-08-01

    A library of isoquinolinone and azepanone derivatives were screened for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity. The strategy adopted included (a) in vitro biological assays, against eel AChE (EeAChE) and equine serum BuChE (EqBuChE) in order to determine the compounds IC50 and their dose-response activity, consolidated by (b) molecular docking studies to evaluate the docking poses and interatomic interactions in the case of the hit compounds, validated by STD-NMR studies. Compound (1f) was identified as one of these hits with an IC50 of 89.5μM for EeAChE and 153.8μM for EqBuChE, (2a) was identified as a second hit with an IC50 of 108.4μM (EeAChE) and 277.8μM (EqBuChE). In order to gain insights into the binding mode and principle active site interactions of these molecules, (R)-(1f) along with 3 other analogues (also as the R-enantiomer) were docked into both RhAChE and hBuChE models. Galantamine was used as the benchmark. The docking study was validated by performing an STD-NMR study of (1f) with EeAChE using galantamine as the benchmark. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. GaAs laser therapy reestablishes the morphology of the NMJ and nAChRs after injury due to bupivacaine.

    Science.gov (United States)

    Pissulin, Cristiane Neves Alessi; de Souza Castro, Paula Aiello Tomé; Codina, Flávio; Pinto, Carina Guidi; Vechetti-Junior, Ivan Jose; Matheus, Selma Maria Michelin

    2017-02-01

    Local anesthetics are used to relieve pre- and postoperative pain, acting on both sodium channels and nicotinic acetylcholine receptors (nAChR) at the neuromuscular junction (NMJ). Bupivacaine acts as a non-competitive antagonist and has limitations, such as myotoxicity, neurotoxicity, and inflammation. Low-level laser therapy (LLLT) has anti-inflammatory, regenerative, and analgesic effects. The aim of the present study was to evaluate the effects of a gallium arsenide laser (GaAs) on the morphology of the NMJ and nAChRs after application of bupivacaine in the sternomastoid muscle. Thirty-two adult male Wistar rats received injections of bupivacaine 0.5% (Bupi: right antimere) and 0.9% sodium chloride (Cl: left antimere). Next, the animals were divided into a Control group (C) and a Laser group (LLLT). The laser group received LLLT (GaAs 904nm, 50mW, 4,8J) in both antimeres for five consecutive days. After seven days, the animals were euthanized and the surface portion of the sternomastoid muscle was removed, frozen, and subjected to morphological and morphometric analyses of the NMJs (nonspecific esterase reaction), confocal laser scanning, and an ultrastructural analysis. The nAChRs were quantified by Western blotting. In the chloride group, the morphology and morphometry of the NMJs remained stable. The maximum diameters of the NMJs were lower in the Bupi (15.048±1.985) and LLLT/Bupi subgroups (15.456±1.983) compared to the Cl (18.502±2.058) and LLLT/Cl subgroups (19.356±2.522) (pbupivacaine, with recovery in the junctional folds and active zone. There was an increase in the perimeter of the LLLT/Bupi subgroup (150.33) compared to the Bupi subgroup (74.69) (pbupivacaine, providing important data supporting the use of LLLT in therapeutic protocols for injuries triggered by local anesthetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tuning of the microstructure, mechanical and tribological properties of a-C:H films by bias voltage of high frequency unipolar pulse

    International Nuclear Information System (INIS)

    Wang, Jia; Cao, Zhongyue; Pan, Fuping; Wang, Fuguo; Liang, Aimin; Zhang, Junyan

    2015-01-01

    Highlights: • a-C:H films deposited by high frequency unipolar pulse PECVD. • The film structures can be adjusted by bias voltage. • More graphitic structures form at high bias voltage. • The mechanical and tribological properties are improved by these structures. - Abstract: Amorphous hydrogenated carbon (a-C:H) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition in CH 4 , Ar, and H 2 atmosphere with the bias voltage in the range of −800 –−1600 V. The microstructures and mechanical properties of a-C:H films were investigated via high resolution transmission electron microscope (HRTEM), Raman spectroscopy, and Nanoindenter. The results reveal that the curved and straight graphitic microstructures appear in amorphous carbon matrix, and their contents increase obviously with the bias voltage. At the same time, the corresponding hardness decreases and elastic recovery increases, however even in such a case films still possess excellent mechanical properties. According to the tribological property characterization, we believe that the bias voltage also influences their tribological performances significantly, the higher the bias voltage finally gets, the lower the friction coefficient and wear rate occur. These results indicate that the microstructures of a-C:H films can be tuned efficiently by bias voltage and the films with good mechanical and tribological properties can be obtained at a higher range.

  17. Tuning of the microstructure, mechanical and tribological properties of a-C:H films by bias voltage of high frequency unipolar pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia; Cao, Zhongyue; Pan, Fuping [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Fuguo, E-mail: fgwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liang, Aimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-11-30

    Highlights: • a-C:H films deposited by high frequency unipolar pulse PECVD. • The film structures can be adjusted by bias voltage. • More graphitic structures form at high bias voltage. • The mechanical and tribological properties are improved by these structures. - Abstract: Amorphous hydrogenated carbon (a-C:H) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition in CH{sub 4}, Ar, and H{sub 2} atmosphere with the bias voltage in the range of −800 –−1600 V. The microstructures and mechanical properties of a-C:H films were investigated via high resolution transmission electron microscope (HRTEM), Raman spectroscopy, and Nanoindenter. The results reveal that the curved and straight graphitic microstructures appear in amorphous carbon matrix, and their contents increase obviously with the bias voltage. At the same time, the corresponding hardness decreases and elastic recovery increases, however even in such a case films still possess excellent mechanical properties. According to the tribological property characterization, we believe that the bias voltage also influences their tribological performances significantly, the higher the bias voltage finally gets, the lower the friction coefficient and wear rate occur. These results indicate that the microstructures of a-C:H films can be tuned efficiently by bias voltage and the films with good mechanical and tribological properties can be obtained at a higher range.

  18. The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: the influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents.

    Science.gov (United States)

    Eibl, Christoph; Tomassoli, Isabelle; Munoz, Lenka; Stokes, Clare; Papke, Roger L; Gündisch, Daniela

    2013-12-01

    3,7-Diazabicyclo[3.3.1]nonane is a naturally occurring scaffold interacting with nicotinic acetylcholine receptors (nAChRs). When one nitrogen of the 3,7-diazabicyclo[3.3.1]nonane scaffold was implemented in a carboxamide motif displaying a hydrogen bond acceptor (HBA) functionality, compounds with higher affinities and subtype selectivity for α4β2(∗) were obtained. The nature of the HBA system (carboxamide, sulfonamide, urea) had a strong impact on nAChR interaction. High affinity ligands for α4β2(∗) possessed small alkyl chains, small un-substituted hetero-aryl groups or para-substituted phenyl ring systems along with a carboxamide group. Electrophysiological responses of selected 3,7-diazabicyclo[3.3.1]nonane derivatives to Xenopus oocytes expressing various nAChR subtypes showed diverse activation profiles. Compounds with strongest agonistic profiles were obtained with small alkyl groups whereas a shift to partial agonism/antagonism was observed for aryl substituents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon.

    Science.gov (United States)

    Jarvie, Emma M; Cellek, Selim; Sanger, Gareth J

    2008-01-01

    Acetylcholinesterase (AChE) inhibitors stimulate gastrointestinal (GI) motility and are potential treatments of conditions associated with inadequate GI motility. The ability of itopride to facilitate neuronally (predominantly cholinergic) mediated contractions of rat isolated stomach, evoked by electrical field stimulation (EFS), has been compared with other cholinesterase inhibitors and with tegaserod, a clinically effective prokinetic and non-selective 5-HT(4) receptor agonist which also facilitates GI cholinergic function. Neostigmine greatly increased EFS-evoked contractions over a narrow concentration range (0.01-1 microM; 754+/-337% facilitation at 1 microM); higher concentrations (1, 3 microM) also increased muscle tension. Donepezil increased EFS-evoked contractions gradually over the full range of concentrations (0.01-10 microM; maximum increase 516+/-20% at 10 microM). Itopride increased the contractions even more gradually, rising to 188+/-84% at 10 microM. The butyrylcholinesterase inhibitor iso-OMPA 0.01-10 microM also increased EFS-evoked contractions, to a maximum of 36+/-5.0% at 10 microM, similar to that caused by tegaserod (35+/-5.2% increase at 1 microM). The effects of tegaserod, but not itopride were inhibited by the 5-HT(4) receptor antagonist SB-204070A 0.3 microM. In rat isolated colon, neostigmine was again the most efficacious, causing a defined maximum increase in EFS-evoked contractions (343+/-82% at 10 microM), without changing muscle tension. Maximum increases caused by donepezil and itopride were, respectively, 57.6+/-20 and 43+/-15% at 10 microM. These data indicate that the abilities of different AChE inhibitors to increase GI cholinergic activity differ markedly. Understanding the reasons is essential if AChE inhibitors are to be optimally developed as GI prokinetics.

  20. Hypothyroidism Enhanced Ectonucleotidases and Acetylcholinesterase Activities in Rat Synaptosomes can be Prevented by the Naturally Occurring Polyphenol Quercetin.

    Science.gov (United States)

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Abdalla, Fátima Husein; Cardoso, Andréia Machado; Martins, Caroline Curry; Dias, Glaecir R Mundstock; Calgaroto, Nicéia Spanholi; Pelinson, Luana Paula; Reichert, Karine Paula; Loro, Vania Lucia; Morsch, Vera Maria Melchiors; Schetinger, Maria Rosa Chitolina

    2017-01-01

    Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.

  1. Assessing joint toxicity of four organophosphate and carbamate insecticides in common carp (Cyprinus carpio) using acetylcholinesterase activity as an endpoint.

    Science.gov (United States)

    Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong

    2015-07-01

    Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine

    Directory of Open Access Journals (Sweden)

    Muamer Dizdar

    2018-04-01

    Full Text Available Phenolic acids and their derivatives found in nature are well-known for their potential biological activity. In this study, two amides derived from trans-caffeic/ferulic acid and dopamine were synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR, mass spectrometry, proton and carbon-13 nuclear magnetic resonance spectroscopy. The compounds were tested for the inhibition of acetylcholinesterase (AChE from Electrophorus electricus and for antioxidant activity by scavenging 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH• and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid radical cation (ABTS•+, reducing ferric ions, and ferrous ions chelation. N-trans-Feruloyldopamine displayed the highest inhibitory effect on AChE with half-maximal inhibitory concentration (IC50 values of 8.52 μM. In addition, an in silico study was done to determine the most favorable AChE cluster with the synthesized compounds. Further, these clusters were investigated for binding positions at the lowest free binding energy. Both synthesized hydroxycinnamates were found to be better antioxidants than the parent acids in in vitro tests applied. N-trans-Caffeoyldopamine showed the best antioxidant activity in the three tested methods—against non-biological stable free radicals IC50 5.95 μM for DPPH•, 0.24 μM for the ABTS•+ method, and for reducing power (ascorbic acid equivalent (AAE 822.45 μmol/mmol—while for chelation activity against Fe2+ ions N-trans-feruloyldopamine had slightly better antioxidant activity (IC50 3.17 mM.

  3. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites

    International Nuclear Information System (INIS)

    Forman, S.A.; Miller, K.W.

    1989-01-01

    The relationship between the high-affinity procaine channel inhibition site and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid 86 Rb + quenched-flux assays at 4 degree C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with α-bungarotoxin (α-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations alone, AChR undergoes one phase of inactivation in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting ACh concentrations rapid inactivation complete in 30-75 ms is followed by fast desensitization at the same k d observed without procaine. The dependence of k r on [procaine] is consistent with a bimolecular association between procaine and its AChR site. Inhibition of AChR function by mixtures of procaine plus self-inhibiting concentrations of ACh or suberyldicholine was studied by reducing the level of α-BTX block in vesicles. The data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and k r 's dependence on [ACh] in channel-activating range closely parallels that of 86 Rb + flux response to ACh

  4. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available Plants have been found to be useful as memory enhansers as well as antiaging. Twenty two of such plants from sixteen families were investigated for their acetylcholinesterase (AChE and butyrylcholinesterase (BuChE inhibitory activities using the in vitro Ellman's spectrophotometric and in situ bioautographic methods with physostigmine as standard. At least three morphological parts were examined for each of the plants investigated and the test concentration was 42.5 µg/ mL. Some plants were active on both enzymes though with some morphological parts being more active than others. The root bark of Spondias mombin showed the highest activity to the two enzymes; 64.77% and 83.94% on AChE and BuChE respectively. Other plant parts of the selected plants exhibited some remarkable selectivity in their actions. Those selectively active against AChE were Alchornia laxiflora stem bark (41.12% and root bark, Callophyllum inophyllurn root bark (56.52%. The leaves of C. jagus (74.25%, Morinda lucida leaves (40.15%, Peltophorum pterocarpum leaves and stem bark (49.5% and 68.85%, respectively, physiostigmine gave 90.31% inhibition. Generally higher activities were found against BuChE. Bombax bromoposenze leaves, root bark and stem bark were particularly active. The inhibition was over 80%. Other selective plant parts are the leaves Antiaris africana, Cissampelos owarensis aerial parts (78.96%, Combretum molle leaves and stem bark (90.42% and 88.13%, respectively, Dioscorea dumentorum root bark and tuber (over 87%, G. kola leaves, Markhamia tomentosa root bark, Pycnanthus angolensis stem bark and Tetrapleura tetraptera leaves. Most of these plants are taken as food or are food ingredients in Nigeria and may account for the low incidence of Alzheimer's disease in the country and may play certain roles in the mediation of the disease.

  5. Effect of ions on the activity of brain acetylcholinesterase from tropical fish

    Directory of Open Access Journals (Sweden)

    Caio Rodrigo Dias Assis

    2015-07-01

    Full Text Available Objective: To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7 activities from economic important fish [pirarucu, Arapaima gigas; tambaqui, Colossoma macropomum; cobia, Rachycentron canadum (R. canadum and Nile tilapia, Oreochromis niloticus (O. niloticus] comparing with a commercial enzyme from electric eel [Electrophorus electricus (E. electricus]. Methods: The in vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L. Inhibition kinetics on R. canadum and O. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots in order to investigate the type of inhibition produced by some ions. Results: Hg 2+ , As 3+ , Cu 2+ , Zn 2+ , Cd 2+ caused inhibition in all the species under study. Ca 2+ , Mg 2+ and Mn 2+ induced slight activation in R. canadum enzyme while Pb 2+ , Ba 2+ , Fe 2+ , Li + inhibited the AChE from some of the analyzed species. The lowest IC 50 and Ki values were estimated for E. electricus AChE in presence of Hg 2+ , Pb 2+ , Zn 2+ . Under our experimental conditions, the results for R. canadum and O. niloticus, As 3+ , Cu 2+ , Cd 2+ , Pb 2+ and Zn 2+ showed a non- competitive/mixed-type inhibition, while Hg 2+ inhibited the enzyme in a mixed/competitive- like manner. Conclusions: E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  6. Altered levels of acetylcholinesterase in Alzheimer plasma.

    Directory of Open Access Journals (Sweden)

    María-Salud García-Ayllón

    Full Text Available BACKGROUND: Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE pose a major problem. PRINCIPAL FINDINGS: Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1+G(2 forms and not G(4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1+G(2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION: Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.

  7. Biological activities of Umbilicaria crustulosa (Ach.) frey acetone extract

    OpenAIRE

    Zlatanović Ivana; Stanković Miroslava; Stankov-Jovanović Vesna; Mitić Violeta; Zrnzević Ivana; Đorđević Aleksandra; Stojanović Gordana

    2017-01-01

    This paper reports for the first time the effect of an acetone extract of Umbilicaria crustulosa on the micronucleus distribution of human lymphocytes, and on the cholinesterase activity and antioxidant activity by the cupric ion reducing antioxidant capacity (CUPRAC) method. Additionally, the total phenolic compounds (TPC) and the antioxidant properties were estimated via DPPH, ABTS and TRP assays. Moreover, the antibacterial activity against two Gram-positive and three Gram-negative bacteri...

  8. Pirenzepine block of ACh-induced mucus secretion in tracheal submucosal gland cells

    International Nuclear Information System (INIS)

    Farley, J.M.; Dwyer, T.M.

    1991-01-01

    Muscarinic stimulation of mucus secretion, as measured by the release of [ 3 H]glycoprotein, was studied in explants from the tracheal epithelium of weanling swine. The mucus glycoprotein secretion was transient, ceasing within the first 10 min of a continuous exposure to 100 μM ACh. Increasing the solutions' osmotic pressure did not alter basal mucus glycoprotein secretion. Mucus glycoprotein secretion was inhibited by 2-10 μM PZP, indicting that the M 3 muscarinic receptors mediate cholinergic stimulation of mucus production

  9. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain.

    Science.gov (United States)

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Bogacz, Anna; Gryszczynska, Agnieszka; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Piasecka, Anna; Napieczynska, Hanna; Szulc, Michał; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Cichocka, Joanna; Bobkiewicz-Kozlowska, Teresa; Czerny, Boguslaw; Mrozikiewicz, Przemyslaw M

    2013-12-01

    Rosmarinus officinalis L. leaf as part of a diet and medication can be a valuable proposal for the prevention and treatment of dementia. The aim of the study was to assess the effects of subchronic (28-fold) administration of a plant extract (RE) (200 mg/kg, p.o.) on behavioral and cognitive responses of rats linked with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity and their mRNA expression level in the hippocampus and frontal cortex. The passive avoidance test results showed that RE improved long-term memory in scopolamine-induced rats. The extract inhibited the AChE activity and showed a stimulatory effect on BuChE in both parts of rat brain. Moreover, RE produced a lower mRNA BuChE expression in the cortex and simultaneously an increase in the hippocampus. The study suggests that RE led to improved long-term memory in rats, which can be partially explained by its inhibition of AChE activity in rat brain. © 2013. Published by Elsevier B.V. All rights reserved.

  10. Kinetics of Hydrocarbon formation in a-C:H Film deposition plasmas

    International Nuclear Information System (INIS)

    Cal, E. de la; Tabares, F. L.

    1993-01-01

    The formation of C2 and Cp hydrocarbons during the PACVD of a-C:H films from admixtures of methane with H2 and He has been investigated by mass spectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanisms of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene formation was found to be directly related to the formation of the film on top of the carburized metal. (Author) 12 refs

  11. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamoto

    Full Text Available The prevalence of food allergy (FA has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2 cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR agonists (nicotine and α7 nAChR agonist GTS-21 alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA.

  12. Zingiberis Siccatum Rhizoma, the active component of the Kampo formula Daikenchuto, induces anti-inflammatory actions through α7 nicotinic acetylcholine receptor activation.

    Science.gov (United States)

    Endo, M; Hori, M; Mihara, T; Ozaki, H; Oikawa, T; Odaguchi, H; Hanawa, T

    2017-12-01

    We previously reported that Daikenchuto (DKT), a gastrointestinal prokinetic Japanese herbal (Kampo) medicine used for the treatment of postoperative ileus (POI), has characteristic potent anti-inflammatory activity. This effect may be partly mediated by the activation of α7 nicotinic acetylcholine receptor (nAChR). In this study, we identified the specific herbs in DKT that induce anti-inflammatory action. The herbal components of DKT were individually administered orally to each mouse four times before and after intestinal manipulation (IM) was carried out on the distal ileum. The anti-inflammatory activity of each crude drug was subsequently evaluated using immunohistochemical analyses of relevant molecules. Treatment with Zingiberis Siccatum Rhizoma (ZSR) but not the other components inhibited the infiltration of cluster of differentiation 68 (CD68)-positive macrophages as effectively as DKT treatment. Selective α7nAChR antagonists, such as methyllycaconitine citrate, or transient receptor potential ankyrin 1 (TRPA1) antagonists, such as HC-030031, significantly inhibited the amelioration of macrophage infiltration by ZSR. The inhibition of macrophage infiltration by ZSR was abolished in both α7nAChR and 5-hydroxytryptamine 4 receptor (5-HT 4 R) knockout mice. Daikenchuto-induced anti-inflammatory activity, which was mediated by inhibiting macrophage infiltration in POI, is dependent on the effects of ZSR. Zingiberis Siccatum Rhizoma activates TRPA1 channels possibly in enterochromaffin (EC) cells to release 5-HT, which stimulates 5-HT 4 R in the myenteric plexus neurons to release ACh, which in turn activates α7nAChR on macrophages to inhibit inflammation in POI. © 2017 John Wiley & Sons Ltd.

  13. Phytochemical investigation of Rhus tripartita and its activity against ...

    African Journals Online (AJOL)

    compounds from Rhus tripartita stem cyclooxygenases (COX-1 and COX-2) and acetylcholinesterase. (AChE); also, to evaluate their ... avoid toxic effects on cellular physiological functions. ... (from electric eel), eserine hemisulfate salt, .... Total antioxidant activity. This capacity of the tested materials was measured using an.

  14. Inhibition of cholinesterase activity by extracts, fractions and compounds from Calceolaria talcana and C. integrifolia (Calceolariaceae: Scrophulariaceae).

    Science.gov (United States)

    Cespedes, Carlos L; Muñoz, Evelyn; Salazar, Juan R; Yamaguchi, Lydia; Werner, Enrique; Alarcon, Julio; Kubo, Isao

    2013-12-01

    Extracts, fractions and compounds from Calceolaria talcana and C. integrifolia exhibited strong inhibitory effects of the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes using the in vitro Ellman's method. The most active samples were from the ethyl acetate extract, which caused a mixed-type inhibition against AChE (69.8% and 79.5% at 100 and 200 μg/ml, respectively) and against BChE (98.5% and 99.8% at 100 and 200 μg/ml, respectively) and its major components verbascoside 8 (50.9% and 70.0% at 200 μg/ml, against AChE and BChE, respectively), martynoside 9, and fraction F-7 (which corresponds to a mixture of 8, 9, and other phenylethanoids and phenolics that remain unidentified) (80.2% and 85.3% at 100 and 200 μg/ml, against AChE, respectively and 99.1% and 99.7% at 100 and 200 μg/ml, against BChE, respectively) inhibited the acetylcholinesterase enzyme competitively. The most polar fraction F-5 from n-hexane extract (a mixture of naphthoquinones: 2-hydroxy-3-(1,1-dimethylallyl-1,4-naphthoquinone) 6, α-dunnione 7 and other polar compounds that remain unidentified) showed a mixed-type inhibition (71.5% and 72.1% against AChE and BChE at 200 μg/ml, respectively). Finally, the methanol-soluble residue presented a complex, mixed-type inhibition (39.9% and 67.9% against AChE and BChE at 200 μg/ml, respectively). The mixture F-3 with diterpenes was obtained from the n-hexane extract: (1,10-cyclopropyl-9-epi-ent-isopimarol) 1, 19-α-hydroxy-abietatriene 2, and F-4 a mixture of triterpenes α-lupeol 3, β-sitosterol 4, ursolic acid 5 together with a complex mixture of terpenes that did not show activity. In summary, extracts and natural compounds from C. talcana and C. integrifolia were isolated, identified and characterized as cholinesterase inhibitors.

  15. Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation.

    Science.gov (United States)

    Sun, Rao; Zhang, Wei; Bo, Jinhua; Zhang, Zuoxia; Lei, Yishan; Huo, Wenwen; Liu, Yue; Ma, Zhengliang; Gu, Xiaoping

    2017-03-06

    The high prevalence of chronic pain in posttraumatic stress disorder (PTSD) individuals has been widely reported by clinical studies, which emphasized an urgent need to uncover the underlying mechanisms and identify potential therapeutic targets. Recent studies suggested that targeting activated glia and their pro-inflammatory products may provide a novel and effective therapy for the stress-related pain. In this study, we investigated whether activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR), a novel anti-inflammatory target, could attenuate PTSD-related chronic pain. The experiments were conducted in a rat model of single prolonged stress (SPS), an established model of PTSD-pain comorbidity. We found that SPS exposure produced persistent mechanical allodynia. Immunohistochemical and enzyme-linked immuno sorbent assay analysis showed that SPS also induced elevated activation of glia cells (including microglia and astrocytes) and accumulation of pro-inflammatory cytokines in spinal cord. In another experiment, we found that intrathecal injection of PHA-543613, a selective α7 nAchR agonist, attenuated the SPS-evoked allodynia in a dose dependent manner. However, this anti-hyperalgesic effect was blocked by pretreatment with methyllycaconitine (MLA), a selective α7 nAchR antagonist. Further analyses showed that PHA-543613 suppressed SPS-induced spinal glial activation and SPS-elevated spinal pro-inflammatory cytokines, and these were abolished by MLA. Taken together, the present study showed that spinal activation of α7 nAChR by PHA-543613 attenuated mechanical allodynia induced by PTSD-like stress, and the suppression of spinal glial activation may underlie this anti-hyperalgesic effect. Our study demonstrated the therapeutic potential of targeting α7 nAChR in the treatment of PTSD-related chronic pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea.

    Science.gov (United States)

    Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant

    2017-12-01

    There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50  = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50  = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50  = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.

  17. Searching for Multi-Targeting Neurotherapeutics against Alzheimer’s: Discovery of Potent AChE-MAO B Inhibitors through the Decoration of the 2H-Chromen-2-one Structural Motif

    Directory of Open Access Journals (Sweden)

    Leonardo Pisani

    2016-03-01

    Full Text Available The need for developing real disease-modifying drugs against neurodegenerative syndromes, particularly Alzheimer’s disease (AD, shifted research towards reliable drug discovery strategies to unveil clinical candidates with higher therapeutic efficacy than single-targeting drugs. By following the multi-target approach, we designed and synthesized a novel class of dual acetylcholinesterase (AChE-monoamine oxidase B (MAO-B inhibitors through the decoration of the 2H-chromen-2-one skeleton. Compounds bearing a propargylamine moiety at position 3 displayed the highest in vitro inhibitory activities against MAO-B. Within this series, derivative 3h emerged as the most interesting hit compound, being a moderate AChE inhibitor (IC50 = 8.99 µM and a potent and selective MAO-B inhibitor (IC50 = 2.8 nM. Preliminary studies in human neuroblastoma SH-SY5Y cell lines demonstrated its low cytotoxicity and disclosed a promising neuroprotective effect at low doses (0.1 µM under oxidative stress conditions promoted by two mitochondrial toxins (oligomycin-A and rotenone. In a Madin-Darby canine kidney (MDCKII-MDR1 cell-based transport study, Compound 3h was able to permeate the BBB-mimicking monolayer and did not result in a glycoprotein-p (P-gp substrate, showing an efflux ratio = 0.96, close to that of diazepam.

  18. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    Science.gov (United States)

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  19. Blood cholinesterase activity levels of farmers in winter and hot season of Mae Taeng District, Chiang Mai Province, Thailand.

    Science.gov (United States)

    Hongsibsong, Surat; Kerdnoi, Tanyaporn; Polyiem, Watcharapon; Srinual, Niphan; Patarasiriwong, Vanvimol; Prapamontol, Tippawan

    2018-03-01

    Organophosphate and carbamate pesticides have been widely used by farmers for crop protection and pest control. Inhibition of acetylcholinesterase (AChE) in erythrocyte and butyrylcholinesterase (BChE) in plasma is the predominant toxic effect of organophosphate and carbamate pesticides. Mae Taeng District, Chiang Mai Province, is one of the large areas of growing vegetables and fruits. Due to their regular exposure to these pesticides, the farmers are affected by this toxicity. The objective of the study was to examine the AChE and the BChE activity levels in the blood of 102 farmers for comparison of exposure in two cropping seasons, winter and hot. Blood samples were collected in December 2013 (winter) and April-June 2014 (hot). A total of 102 farmers joined the study, represented by 76 males (74.5 %) and 26 females (25.5 %). The age of most of the farmers was 53.4 ± 8.7 years. Out of 102, 21 farmers used carbamate pesticides. The results showed that the AChE and the BChE activity levels of all the farmers were 3.27 ± 0.84 Unit/mL and 2.15 ± 0.58 Unit/mL, respectively. The AChE and the BChE activity levels in males were 3.31 ± 0.88 Unit/mL and 1.97 ± 0.60 U/mL, respectively, during winter and 3.27 ± 0.82 Unit/mL and 2.15 ± 0.58 U/mL, respectively, during the hot season, and AChE and the BChE activity levels in females were 3.27 ± 0.82 U/mL and 2.44 ± 0.56 U/mL, respectively, during the hot season. The cholinesterase activity levels, both AChE and BChE, in the male farmers' blood had significant difference between the two seasons, while in the case of the female farmers, there was significant difference in the BChE activity levels, at p < 0.05. The BChE activity level was found to significantly correlate with self-spray (p < 0.05), which implies that the BChE activity decreased when they sprayed by themselves. The cholinesterase activity levels of the present study were lower than those of the other

  20. Effects of metals on blood oxidative stress biomarkers and acetylcholinesterase activity in dice snakes (Natrix tessellata from Serbia

    Directory of Open Access Journals (Sweden)

    Gavrić Jelena P.

    2015-01-01

    Full Text Available The effects of waterborne metals in water on the activities of blood copper-zinc superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR, glutathione-S-transferase (GST, and acetylcholinesterase (AChE, and on the concentrations of total glutathione (GSH and lipid peroxides (TBARS in the blood of dice snakes (Natrix tessellata caught in Obedska Bara, Sebia (control area, with snakes caught in Pančevački Rit, a contaminated area in Serbia were examined. The activities of CAT, GSH-Px, GR and AChE, and the concentration of TBARS were significantly decreased, while GST activity and GSH concentration were significantly increased in snakes from the contaminated area compared to specimens from the control area. Significantly increased concentrations of Al, As, B, Ba, Ca, Cu, Fe, K, Li, Mn, Na, Ni and Zn in the water at the contaminated area as compared to control area were detected. The metals Ag, Bi, Cd, Co, Hg, In and Tl were not observed in any of the localities. Cr, Mo and Pb were not detected at the control area but were observed at the contaminated area. The concentrations of Sr were similar at both sites. The concentration of Mg was 2-fold higher at the control site than at the contaminated area. The obtained results show that most of the investigated blood biomarkers correlate with concentrations of metals present in the environment. These findings suggest that dice snakes are sensitive bioindicator species for monitoring the effects of increased metal concentrations in the environment. [Projekat Ministarstva nauke Republike Srbije, br. 173041 i br. 173043

  1. Novel structural hybrids of pyrazolobenzothiazines with benzimidazoles as cholinesterase inhibitors.

    Science.gov (United States)

    Aslam, Sana; Zaib, Sumera; Ahmad, Matloob; Gardiner, John M; Ahmad, Aqeel; Hameed, Abdul; Furtmann, Norbert; Gütschow, Michael; Bajorath, Jürgen; Iqbal, Jamshed

    2014-05-06

    Two series of novel pyrazolobenzothiazine-based hybrid compounds were efficiently synthesized starting from saccharin sodium salt. Pyrazolo[4,3-c][1,2]benzothiazine scaffolds were N-arylated by using p-fluorobenzaldehyde, followed by the incorporation of a benzimidazole or similar ring systems by treatment with arylenediamines. These phenylene-connected hybrid compounds were investigated as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Compounds 12d and 12k were the most potent AChE inhibitors with IC50 values of 11 and 13 nM, respectively, while 6j (IC50 = 17 nM) proved to be the most active inhibitor against BuChE with remarkable selectivity for BuChE over AChE. Molecular docking studies were also performed on human AChE and BuChE to suggest possible binding modes in which the inhibitor's extended structure is accommodated along the active site gorge of both enzymes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  3. Biological activities of Umbilicaria crustulosa (Ach. frey acetone extract

    Directory of Open Access Journals (Sweden)

    Zlatanović Ivana

    2017-01-01

    Full Text Available This paper reports for the first time the effect of an acetone extract of Umbilicaria crustulosa on the micronucleus distribution of human lymphocytes, and on the cholinesterase activity and antioxidant activity by the cupric ion reducing antioxidant capacity (CUPRAC method. Additionally, the total phenolic compounds (TPC and the antioxidant properties were estimated via DPPH, ABTS and TRP assays. Moreover, the antibacterial activity against two Gram-positive and three Gram-negative bacteria were determined. Acetone extract of U. crustulosa at concentration of 1 and 2 μg mL-1 decreased a frequency of micronuclei (MN by 10.8 and 16.8 %, respectively, acting more or slightly less than the synthetic protector amifostine (AMF, WR-2721, 11.4 %, at concentration of 1 μg mL-1. The tested extract did not inhibit cholinesterase activity nor did it exhibit activity toward the examined bacteria. The extract reduced the concentration of DPPH and ABTS radicals by 88.7 and 96.2 %, respectively. Values for total reducing power (TRP and cupric reducing capacity (CUPRAC were 0.6197±0.0166 μg ascorbic acid equivalents (AAE per mg of dry extract, and 19.7641±1.6546 μg trolox equivalents (TE per mg of dry extract, respectively. The total phenol content was 350.4188 ±14.587 μg gallic acid equivalents (GAE per mg of dry extract. The results of the present study showed that U. crustulosa acetone extract is a promising candidate for in vivo experiments considering its antioxidant activity and protective effect on human lymphocytes. [Projekat Ministarstva nauke Republike Srbije, br. 172047

  4. Quantitative structure-activity analysis of acetylcholinesterase inhibition by oxono and thiono analogues of organophosphorus compounds. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.M.; Brecht, K.M.

    1992-02-01

    A comparison of the bimolecular rate constants (ki) for inhibition of electric eel acetylcholinesterase (AChE) by the oxono (i.e., P=O) and thiono (i.e., P=S) analogues of parathion, methylparathion, leptophos, fonofos, sarin, and soman revealed that the oxono/thiono ratios of ki values varied from 14 for soman to 1240 for parathion. Analysis of the relative importance of the dissociation equilibrium constant and the phosphorylation rate constant in producing this variation in ki values indicated that the oxono analogues had phosphorylation rate constant values that varied in a narrow range from 8- to 14-fold greater than their thiono counterparts, while the oxono/thiono ratios for dissociation constants varied widely from 1 for soman to 82 for fonofos. The lower affinities of thiono analogues for AChE probably resulted from differences in the hydrophobic binding of oxono and thiono analogues to the active site of AChE, inasmuch as the hydrophobicities (i.e., octanol/water partition coefficients) of thiono organophosphorus compounds were much greater than the hydrophobicities of their oxono analogues. Quantitative structure-activity analysis indicated that the hydrophobic effects of oxono and thiono moieties correlated with log ki for AChE inhibition to a greater extent (r2 = 0.79) than their electronic effects (r2 equal to or less than 0.48). These observations suggest that the differences in hydrophobicity of oxono and thiono analogues of organophosphorus compounds may be as important as their electronic differences in determining their effectiveness as AChE inhibitors. Acetylcholinesterase, soman (GD), structure-activity analysis inhibition, oxono analogues, thiono analogues.

  5. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.

    Science.gov (United States)

    Clark, Julie; Meisner, Shannon; Torkkeli, Päivi H

    2005-04-01

    Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.

  6. Acetylcholinesterase activity in the terrestrial snail Xeropicta derbentina transplanted in apple orchards with different pesticide management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mazzia, Christophe, E-mail: christophe.mazzia@univ-avignon.f [Universite d' Avignon et des Pays de Vaucluse, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, ' Abeilles et Environnement' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France); Capowiez, Yvan [INRA, UR 1115 ' Plante et Systemes Horticoles' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France); Sanchez-Hernandez, Juan C. [Laboratory of Ecotoxicology, Faculty of Environmental Science, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo (Spain); Koehler, Heinz-R. [Animal Physiological Ecology, Institute for Evolution and Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen (Germany); Triebskorn, Rita [Animal Physiological Ecology, Institute for Evolution and Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen (Germany); Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg (Germany); Rault, Magali [Universite d' Avignon et des Pays de Vaucluse, Laboratoire de Toxicologie Environnementale, UMR 406 UAPV/INRA, ' Abeilles et Environnement' , Domaine St Paul, Site Agroparc, 84914 Avignon Cedex 9 France (France)

    2011-01-15

    Apple orchards are highly manipulated crops in which large amounts of pesticides are used. Some of these pesticides lack target specificity and can cause adverse effects in non-target organisms. In order to evaluate the environmental risk of these products, the use of transplanted sentinel organisms avoids side-effects from past events and facilitate comparison of multiple sites in a short time. We released specimens of the terrestrial snail Xeropicta derbentina in each 5 of two kinds of apple orchards with either conventional or organic management strategies plus in a single abandoned orchard. After one month, individuals were retrieved in order to measure acetylcholinesterase (AChE) activity. Mean values of AChE activity were significantly reduced in all conventional apple orchards compared to the others. Results show that the measurement of biomarkers such as AChE inhibition in transplated X. derbentina could be useful in the environmental risk assessment of post-authorized pesticides. - Snails as sentinel species to evaluate insecticide impacts in apple orchards.

  7. Acetylcholinesterase activity in the terrestrial snail Xeropicta derbentina transplanted in apple orchards with different pesticide management strategies

    International Nuclear Information System (INIS)

    Mazzia, Christophe; Capowiez, Yvan; Sanchez-Hernandez, Juan C.; Koehler, Heinz-R.; Triebskorn, Rita; Rault, Magali

    2011-01-01

    Apple orchards are highly manipulated crops in which large amounts of pesticides are used. Some of these pesticides lack target specificity and can cause adverse effects in non-target organisms. In order to evaluate the environmental risk of these products, the use of transplanted sentinel organisms avoids side-effects from past events and facilitate comparison of multiple sites in a short time. We released specimens of the terrestrial snail Xeropicta derbentina in each 5 of two kinds of apple orchards with either conventional or organic management strategies plus in a single abandoned orchard. After one month, individuals were retrieved in order to measure acetylcholinesterase (AChE) activity. Mean values of AChE activity were significantly reduced in all conventional apple orchards compared to the others. Results show that the measurement of biomarkers such as AChE inhibition in transplated X. derbentina could be useful in the environmental risk assessment of post-authorized pesticides. - Snails as sentinel species to evaluate insecticide impacts in apple orchards.

  8. Comparison of Chlorpyrifos-Oxon and Paraoxon Acetylcholinesterase Inhibition Dynamics: Potential role of a peripheral binding site

    Energy Technology Data Exchange (ETDEWEB)

    Kousba, Ahmed A.; Sultatos, L G.; Poet, Torka S.; Timchalk, Chuck

    2004-08-02

    The primary mechanism of action for organophosphorus (OP) insecticides involves the inhibition of acetylcholinesterase (AChE) by oxygenated metabolites (oxons). This inhibition has been attributed to the phosphorylation of the serine hydroxyl group located in the active site of the AChE molecule. The rate of phosphorylation is described by the bimolecular inhibitory rate constant (ki), which has been utilized for quantification of OP inhibitory capacity. It has been previously proposed that a peripheral binding site exists on the AChE molecule, which when occupied, reduces the capacity of additional oxon molecules to phosphorylate the active site. The objective of the current study was to evaluate the interaction of chlorpyrifos oxon (CPO) and paraoxon (PO) with rat brain AChE using a modified Ellman assay in conjunction with a pharmacodynamic model to further assess the dynamics of AChE inhibition and the potential role of a peripheral binding site. The ki for AChE inhibition determined at oxon concentrations of 5 x 10{sup -4} 100 nM were 0.212 and 0.0216 nM-1h-1 for CPO and PO, respectively. The spontaneous reactivation rates of the inhibited AChE for CPO and PO were 0.087 and 0.078 h-1, respectively. In contrast, the ki estimated at a low oxon concentration (1 pM) were {approx} 1,000 and 10,000 -fold higher than those determined at high CPO and PO concentrations, respectively. At these low concentrations, the ki estimates were approximately similar for both CPO and PO (180 and 250 nM-1h-1, respectively). This implies that at low exposure concentrations, both oxons exhibited similar inhibitory potency in contrast to the marked difference exhibited at higher concentrations, which is consistent with the presence of a peripheral binding site on the AChE enzyme. These results support the potential importance of a secondary binding site associated with AChE kinetics, particularly at low environmentally relevant concentrations.

  9. Investigating the Antioxidant and Acetylcholinesterase Inhibition Activities of Gossypium herbaceam

    Directory of Open Access Journals (Sweden)

    Haji Akber Aisa

    2013-01-01

    Full Text Available Our previous research showed that standardized extract from the flowers of the Gossypium herbaceam labeled GHE had been used in clinical trials for its beneficial effects on brain functions, particularly in connection with age-related dementia and Alzheimer’s disease (AD. The aim of this work was to determine the components of this herb and the individual constituents of GHE. In order to better understand this herb for AD treatment, we investigated the acetylcholinesterase (AChE inhibition and antioxidant activity of GHE as well as the protective effects to PC12 cells against cytotoxicity induced by tertiary butyl hydroperoxide (tBHP using in vitro assays. The antioxidant activities were assessed by measuring their capabilities for scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH and 2-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS free radical as well as in inhibiting lipid peroxidation. Our data showed that GHE exhibited certain activities against AChE and also is an efficient free radical scavenger, which may be helpful in preventing or alleviating patients suffering from AD.

  10. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    Science.gov (United States)

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India.

    Science.gov (United States)

    Shukla, Vertika; Upreti, Dalip K

    2007-12-01

    The present study was designed with an aim to observe the effect of increasing urbanization and traffic activity on the physiology of a foliose lichen, Phaeophyscia hispidula (Ach.) Essl., collected from 13 different localities, growing in their natural habitat, in Pauri and Srinagar, two cities in the Himalayas. Six parameters i.e., Chl. a, Chl. b, total pigment, chlorophyll degradation, carotenoid and total protein content, proved the most useful to assess air pollution, were measured. Chlorophyll content and protein content are an efficient parameter to measure the air quality of a region. The study indicates that P. hispidula is pollution tolerant (adaptation) and able to withstand local emissions from vehicle exhausts.

  12. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    Science.gov (United States)

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  13. Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique.

    Science.gov (United States)

    Okonogi, S; Chaiyana, W

    2012-10-01

    The aim of the present study was to enhance the cholinesterase inhibitory activity of Zingiber cassumunar (ZC) oil using a microemulsion (ME) technique. Pseudoternary phase diagrams of the oil, water, and surfactant/co-surfactant mixture were constructed using a water titration method. Effects of co-surfactant, surfactant/co-surfactant ratio, ionic strength, and pH were examined by means of the microemulsion region which existed in the phase diagrams. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were tested by Ellman's colorimetric assay. It was found that ZC oil possesses inhibitory activity against not only AChE but also BChE. Formulation of ZC oil as ME revealed that alkyl chain length and number of hydroxyl groups of co-surfactant exhibited a remarkable effect on the pseudoternary phase diagram. Longer alkyl chains and more hydroxyl groups gave smaller regions of MEs. Ionic strength also affected the ME region. However, the phase behavior was hardly influenced by pH. The suitable ZC oil ME was composed of Triton X-114 in combination with propylene glycol. The anti-cholinesterase activity of this ME was much higher than that of native ZC oil. It exhibited twenty times and twenty five times higher inhibitory activity against AChE and BChE, respectively. ZC oil loaded ME is an attractive formulation for further characterization and an in vivo study in an animal model with Alzheimer's disease.

  14. Synthesis and nicotinic receptor activity of a hydroxylated tropane

    DEFF Research Database (Denmark)

    Bremner, John B; Godfrey, Colette A; Jensen, Anders A.

    2004-01-01

    (+/-)-3alpha-hydroxy homoepibatidine 4 has been synthesized from the alkaloid scopolamine 5 and its properties as a nicotinic agonist assessed. While still binding strongly, the compound showed reduced agonist potency for the alpha(4)beta(2) nAChR compared with the parent compound epibatidine 1....... Compound 4 also displayed generally similar binding and selectivity profiles at alpha(4)beta(2), alpha(2)beta(4), alpha(3)beta(4), and alpha(4)beta(4) nAChR subtypes to those for nicotine....

  15. Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish.

    Science.gov (United States)

    de Assis, Caio Rodrigo Dias; Linhares, Amanda Guedes; Oliveira, Vagne Melo; França, Renata Cristina Penha; Santos, Juliana Ferreira; Marcuschi, Marina; Carvalho, Elba Verônica Matoso Maciel; Bezerra, Ranilson Souza; Carvalho, Luiz Bezerra

    2014-12-01

    Brain cholinesterases from four fish (Arapaima gigas, Colossoma macropomum, Rachycentron canadum and Oreochromis niloticus) were characterized using specific substrates and selective inhibitors. Parameters of catalytic efficiency such as activation energy (AE), k(cat) and k(cat)/k(m) as well as rate enhancements produced by these enzymes were estimated by a method using crude extracts described here. Despite the BChE-like activity, specific substrate kinetic analysis pointed to the existence of only acetylcholinesterase (AChE) in brain of the species studied. Selective inhibition suggests that C. macropomum brain AChE presents atypical activity regarding its behavior in the presence of selective inhibitors. AE data showed that the enzymes increased the rate of reactions up to 10(12) in relation to the uncatalyzed reactions. Zymograms showed the presence of AChE isoforms with molecular weights ranging from 202 to 299 kDa. Values of k(cat) and k(cat)/k(m) were similar to those found in the literature.

  16. Effect of high fat diets on the NTPDase, 5'-nucleotidase and acetylcholinesterase activities in the central nervous system.

    Science.gov (United States)

    Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2018-02-01

    High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Theoretical Study of Phosphoethanolamine: A Synthetic Anticancer Agent with Broad Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Vitor Prates Lorenzo

    2016-01-01

    Full Text Available Cancer is a major public health problem with limited success of available treatments, pointing to the need for new strategies to be developed. Phosphoethanolamine exhibits broad antitumor activity in a variety of tumor cells and potent inhibitor effects on tumor progress in vivo. Once-used organophosphates inhibit acetylcholinesterase (AChE, resulting in toxic effects to the user. As this group is present in phosphoethanolamine, we perform prediction of the in silico metabolism of phosphoethanolamine and submit this series to a docking study on AChE. A total of 10 metabolites were indicated by the prediction, including ammonia and hydroxylamine, which were not included in the study. Using a group of 8 organophosphorus whose pIC50 values ranged from 5.92 to 9.47 as template, we observed that no compound present in the phosphoethanolamine series had a binding energy lower than that of organophosphorus, suggesting that the series has low inhibitory power on AChE. In light of this, we conclude that phosphoethanolamine and its predicted metabolites do not significantly inhibit AChE to cause a cholinergic crisis. This finding highlights the importance of investigating this compound as lead for potential anticancer agents.

  18. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation.

    Science.gov (United States)

    Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K

    2018-04-01

    Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.

  19. Intraperitoneal Exposure to Nano/Microparticles of Fullerene (C60) Increases Acetylcholinesterase Activity and Lipid Peroxidation in Adult Zebrafish (Danio rerio) Brain

    Science.gov (United States)

    Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis

    2013-01-01

    Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059

  20. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer's disease: a review of recent clinical studies.

    Science.gov (United States)

    Darreh-Shori, T; Soininen, H

    2010-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline associated with a deficit in cholinergic function. Inhibitors of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE), such as donepezil, galantamine or rivastigmine, are widely prescribed as symptomatic treatments for AD. These agents exhibit a wide variation in their pharmacological properties. Here we review clinical data from 1998 to 2009 investigating the effect of different cholinesterase inhibitor treatments on the levels and activities of cholinesterases in the cerebrospinal fluid (CSF) of AD patients. These studies suggest that treatment with rapidly-reversible cholinesterase inhibitors (e.g. donepezil, galantamine, tacrine) are associated with marked and significant upregulation of AChE activities and protein levels in the CSF of AD patients. In contrast, pseudo-irreversible cholinesterase inhibition (e.g. rivastigmine) is associated with a significant decrease in both CSF AChE and BuChE activities, with no upregulation of CSF protein levels. Additionally, donepezil is associated with a decrease in the level of the AChE-R isoform relative to the synaptic AChE-S isoform, whereas rivastigmine seems to increase this ratio. These findings suggest that these agents exert different effects on CSF cholinesterases. The clinical effects of these pharmacological differences are yet to be fully established.

  1. Application of acteylcholineesterase activity in marine organisms as a biomarker of coastal pollution

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Holkar, P.K.R.; Patil, S.S.

    , Cerethedia cingulata from different sites along the Goa coast as a useful biomarker technique for evaluation of the ecotoxicological impact of neurotoxic compounds. The AChE activity was measured by the standard method using acetylcholine bromide...

  2. Comparison of the oxime-induced reactivation of rhesus monkey, swine and guinea pig erythrocyte acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity.

    Science.gov (United States)

    Herkert, Nadja M; Lallement, Guy; Clarençon, Didier; Thiermann, Horst; Worek, Franz

    2009-04-28

    Recently, a dynamically working in vitro model with real-time determination of membrane-bound human acetylcholinesterase (AChE) activity was shown to be a versatile model to investigate oxime-induced reactivation kinetics of organophosphate- (OP) inhibited enzyme. In this assay, AChE was immobilized on particle filters which were perfused with acetylthiocholine, Ellman's reagent and phosphate buffer. Subsequently, AChE activity was continuously analyzed in a flow-through detector. Now, it was an intriguing question whether this model could be used with erythrocyte AChE from other species in order to investigate kinetic interactions in the absence of annoying side reactions. Rhesus monkey, swine and guinea pig erythrocytes were a stable and highly reproducible enzyme source. Then, the model was applied to the reactivation of sarin- and paraoxon-inhibited AChE by obidoxime or HI 6 and it could be shown that the derived reactivation rate constants were in good agreement to previous results obtained from experiments with a static model. Hence, this dynamic model offers the possibility to investigate highly reproducible interactions between AChE, OP and oximes with human and animal AChE.

  3. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Ellison, Corie A.; Crane, Alice L.; Bonner, Matthew R.; Knaak, James B.; Browne, Richard W.; Lein, Pamela J.; Olson, James R.

    2012-01-01

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  4. PON1 status does not influence cholinesterase activity in Egyptian agricultural workers exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Corie A., E-mail: cellison@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Crane, Alice L., E-mail: alcrane@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Bonner, Matthew R., E-mail: mrbonner@buffalo.edu [Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Knaak, James B., E-mail: jbknaak@aol.com [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Browne, Richard W., E-mail: rwbrowne@buffalo.edu [Department of Biotechnical and Clinical Laboratory Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, University of California School of Veterinary Medicine, Davis, CA 95618 (United States); Olson, James R., E-mail: jolson@buffalo.edu [Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214 (United States); Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, NY 14214 (United States)

    2012-12-15

    Animal studies have shown that paraoxonase 1 (PON1) genotype can influence susceptibility to the organophosphorus pesticide chlorpyrifos (CPF). However, Monte Carlo analysis suggests that PON1 genotype may not affect CPF-related toxicity at low exposure conditions in humans. The current study sought to determine the influence of PON1 genotype on the activity of blood cholinesterase as well as the effect of CPF exposure on serum PON1 in workers occupationally exposed to CPF. Saliva, blood and urine were collected from agricultural workers (n = 120) from Egypt's Menoufia Governorate to determine PON1 genotype, blood cholinesterase activity, serum PON1 activity towards chlorpyrifos-oxon (CPOase) and paraoxon (POase), and urinary levels of the CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy). The PON1 55 (P ≤ 0.05) but not the PON1 192 genotype had a significant effect on CPOase activity. However, both the PON1 55 (P ≤ 0.05) and PON1 192 (P ≤ 0.001) genotypes had a significant effect on POase activity. Workers had significantly inhibited AChE and BuChE after CPF application; however, neither CPOase activity nor POase activity was associated with ChE depression when adjusted for CPF exposure (as determined by urinary TCPy levels) and stratified by PON1 genotype. CPOase and POase activity were also generally unaffected by CPF exposure although there were alterations in activity within specific genotype groups. Together, these results suggest that workers retained the capacity to detoxify chlorpyrifos-oxon under the exposure conditions experienced by this study population regardless of PON1 genotype and activity and that effects of CPF exposure on PON1 activity are minimal. -- Highlights: ► CPF exposure resulted in an increase in TCPy and decreases in BuChE and AChE. ► CPOase activity decreased in subjects with the PON1 55LM and PON1 55 MM genotypes. ► Neither PON1 genotype nor CPOase activity had an effect on BuChE or AChE inhibition.

  5. Rosemary tea consumption results to anxiolytic- and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies.

    Science.gov (United States)

    Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula

    2015-07-25

    Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Differential effects of developmental hypo- and hyperthyroidism on acetylcholinesterase and butyrylcholinesterase activity in the spinal cord of developing postnatal rat pups.

    Science.gov (United States)

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The plasticity and vulnerability of the rat spinal cord (SC) during postnatal development has been less investigated compared to other CNS structures. In this study, we determined the effects of thyroid hormonal (TH) deficiency and excess on postnatal growth and neurochemical development of the rat SC. The growth as well as the specific and total activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes of the SC were determined in hypo- and hyperthyroid rat pups at postnatal (P) days P1, P5, P10 and P21 (weaning), and were compared to age-matched untreated normal controls. AChE is a cholinergic synaptic enzyme while BuChE is a metabolic enzyme mainly found in glial cells and neurovascular cells. The SC is rich in somatic motor, autonomic cholinergic neurons and associated interneurons. Daily subcutaneous injection of pups with thyroxine (T4) and administration of antithyroid goitrogen propylthiouracil (PTU) in the litter's drinking water were used to induce hyper- and hypothyroidism, respectively. Enzyme assays were carried out spectrophotometrically at the above-mentioned ages, using SC homogenates with acetylthiocholine-chloride as the substrate, together with specific cholinesterase inhibitors, which specifically target AChE and BuChE. SC weights were significantly lower at P10 and P21 in hypothyroid pups but unchanged in the hyperthyroid ones. Hypothyroidism significantly reduced both specific and total AChE activity in SC of P10 and P21 rat pups, while having no effects on the BuChE activity, although total BuChE activity was decreased due to reduced total tissue weight. In contrast both specific and total AChE activities were markedly and significantly increased (>100%) in the P10 and P21 hyperthyroid pups. However, BuChE specific activity was unaffected by this treatment. The results indicate that hypothyroid condition significantly reduces, while hyperthyroidism increases, the postnatal development of cholinergic synapses, thereby

  7. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  8. Effect of thermal stress and water deprivation on the acetylcholinesterase activity of the pig brain and hypophyses

    Science.gov (United States)

    Adejumo, D. O.; Egbunike, G. N.

    1988-06-01

    The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( Pmedulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.

  9. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    Science.gov (United States)

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  10. Desorption of 137Cs from Cetraria islandica (L. Ach. using solutions of acids and their salts mixtures

    Directory of Open Access Journals (Sweden)

    ANA A. ČUČULOVIĆ

    2009-06-01

    Full Text Available The desorption of 137Cs from Cetraria islandica (L. Ach. lichen was investigated using the solutions: A H2SO4–HNO3–K2SO4, B H2SO4–HNO3–Na2SO4 and C H2SO4–HNO3– (NH42SO4–(NH4NO3 at pH 2.00, 2.58, 2.87, 3.28 and 3.75, similar to acid rain. After five consecutive desorptions using solutions A, B and C, from 44.0 % (solution B, pH 3.75 to 68.8 % (solution C, pH 3.28 of 137Cs had been desorbed from the lichen. In all cases, the most successful 137Cs desorption was the first one. In the presence of K+ (solution A the total amount of desorbed 137Cs did not depend on the pH of the solution and this was confirmed by the analogous reactions of Cs+ and K+, due to their similar ionic radii. The dependencies of the non-desorbed content of 137Cs on the number of desorptions gave curves indicating that at least two types of sorption occur. One of them can be dominant if suitable desorbants are used. The results indicate lichens as secondary sources of environment pollution with 137Cs.

  11. Calcium-activated butyrylcholinesterase in human skin protects acetylcholinesterase against suicide inhibition by neurotoxic organophosphates

    International Nuclear Information System (INIS)

    Schallreuter, Karin U.; University of Bradford; Elwary, Souna M.; Parkin, Susan M.; Wood, John M.

    2007-01-01

    The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5 x 10 -3 M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. 45 Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H 2 O 2 -mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8 m 2 surface area with its calcium gradient in the 10 -3 M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue

  12. The interactions of azure B, a metabolite of methylene blue, with acetylcholinesterase and butyrylcholinesterase

    International Nuclear Information System (INIS)

    Petzer, Anél; Harvey, Brian H.; Petzer, Jacobus P.

    2014-01-01

    Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of neurodegenerative disorders such as Alzheimer's disease. Among the pharmacological actions of MB, is the significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These activities may, at least in part, underlie MB's beneficial effects in Alzheimer's disease. MB is metabolized to yield N-demethylated products of which azure B, the monodemethyl metabolite, is the predominant species. Azure B has been shown to be pharmacologically active and also possesses a variety of biological actions. Azure B therefore may contribute to the pharmacological profile of MB. Based on these considerations, the present study investigates the possibility that azure B may, similar to MB, act as an inhibitor of human AChE and BuChE. The results document that azure B inhibits AChE and BuChE with IC 50 values of 0.486 μM and 1.99 μM, respectively. The results further show that azure B inhibits AChE and BuChE reversibly, and that the modes of inhibition are most likely competitive. Although the AChE and BuChE inhibitory activities of azure B are twofold and fivefold, respectively, less potent than those recorded for MB [IC 50 (AChE) = 0.214 μM; IC 50 (BuChE) = 0.389 μM] under identical conditions, azure B may be a contributor to MB's in vivo activation of the cholinergic system and beneficial effects in Alzheimer's disease. - Highlights: • Methylene blue (MB) is a known inhibitor of AChE and BuChE. • Azure B, the major metabolite of MB, also is an inhibitor of AChE and BuChE. • Azure B may be a contributor to MB's in vivo activation of the cholinergic system. • Azure B may contribute to MB's potential in Alzheimer's disease therapy

  13. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Acetylcholinesterase (AChE inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM, in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB and 2,4-dinitrophenol (DNP. A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  14. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii

    Science.gov (United States)

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Background: Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. Objective: A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro. Materials and Methods: β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. Results: The factors investigated include the enzyme concentration (0.5%–2.5%), ultrasound time (10 min−3 0 min), and extraction temperature (30°C–50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. Conclusions: The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. SUMMARY The new method of adding enzyme directly to the

  15. Novel Method of Preparation and Activity Research on Arctigenin from Fructus Arctii.

    Science.gov (United States)

    Cai, Enbo; Han, Jiahong; Yang, Limin; Zhang, Weiyuan; Zhao, Yan; Chen, Qiulian; Guo, Meng; He, Xinhong

    2018-01-01

    Arctigenin has many pharmacological activities with clinical significance and is derived from Arctium lappa L. However, the present extraction method is inefficient and does not have meaningful industrial production. A new method to directly prepare arctigenin was established by combining enzyme-assisted extraction and central composite design. Arctigenin's further pharmacological activity was also surveyed in vitro . β-D-Glucosidase, a food-grade enzyme, was added directly to the fruits of A. lappa L. to hydrolyze the arctiin to arctigenin, and the obtained samples were subsequently subjected to ethanol (30%, v/v) extraction. The pharmacological activity of the extraction and arctigenin was determined by inhibiting acetylcholinesterase (AChE) and scavenging nitrite. The factors investigated include the enzyme concentration (0.5%-2.5%), ultrasound time (10 min -3 0 min), and extraction temperature (30°C-50°C). From the analysis of the results by Design-Expert (V8.0.6), the optimal extraction conditions were obtained: enzyme concentration (1.4%), ultrasound time (25 min), and extraction temperature (45°C). The highest yield of arctigenin, obtained under the optimal conditions was 6.39%, representing an increase of 28.15% compared to the reference extraction without enzyme processing. The IC 50 values of the extraction and arctigenin, respectively, for inhibiting AChE were 0.572 mg/ml and 0.462 mg/ml, and those for nitrite-scavenging were 34.571 mg/ml and 17.49 mg/ml. The results demonstrate that using an enzyme directly in the production is an effective means for extracting arctigenin from Fructus arctii. The extraction has the activities of inhibiting AChE and scavenging nitrite, probably because there has arctigenin in it. It is implied that the extraction and arctigenin could contribute to human health in clinical applications. The new method of adding enzyme directly to the preparation of arctigenin was carried out instead of preparing arctigenin by two

  16. Heritability and Fitness Correlates of Personality in the Ache, a Natural-Fertility Population in Paraguay

    Science.gov (United States)

    Bailey, Drew H.; Walker, Robert S.; Blomquist, Gregory E.; Hill, Kim R.; Hurtado, A. Magdalena; Geary, David C.

    2013-01-01

    The current study assessed the heritability of personality in a traditional natural-fertility population, the Ache of eastern Paraguay. Self-reports (n = 110) and other-reports (n = 66) on the commonly used Big Five Personality Inventory (i.e., extraversion, agreeableness, conscientiousness, neuroticism, openness) were collected. Self-reports did not support the Five Factor Model developed with Western samples, and did not correlate with other-reports for three of the five measured personality factors. Heritability was assessed using factors that were consistent across self- and other-reports and factors assessed using other-reports that showed reliabilities similar to those found in Western samples. Analyses of these items in combination with a multi-generation pedigree (n = 2,132) revealed heritability estimates similar to those found in most Western samples, although we were not able to separately estimate the influence of the common environment on these traits. We also assessed relations between personality and reproductive success (RS), allowing for a test of several mechanisms that might be maintaining heritable variation in personality. Phenotypic analyses, based largely on other-reports, revealed that extraverted men had higher RS than other men, but no other dimensions of personality predicted RS in either sex. Mothers with more agreeable children had more children, and parents mated assortatively on personality. Of the evolutionary processes proposed to maintain variation in personality, assortative mating, selective neutrality, and temporal variation in selection pressures received the most support. However, the current study does not rule out other processes affecting the evolution and maintenance of individual differences in human personality. PMID:23527163

  17. Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India

    International Nuclear Information System (INIS)

    Shukla, Vertika; Upreti, Dalip K.

    2007-01-01

    The present study was designed with an aim to observe the effect of increasing urbanization and traffic activity on the physiology of a foliose lichen, Phaeophyscia hispidula (Ach.) Essl., collected from 13 different localities, growing in their natural habitat, in Pauri and Srinagar, two cities in the Himalayas. Six parameters i.e., Chl. a, Chl. b, total pigment, chlorophyll degradation, carotenoid and total protein content, proved the most useful to assess air pollution, were measured. Chlorophyll content and protein content are an efficient parameter to measure the air quality of a region. The study indicates that P. hispidula is pollution tolerant (adaptation) and able to withstand local emissions from vehicle exhausts. - Lichen response due to ambient environmental changes

  18. Pro-2-PAM therapy for central and peripheral cholinesterases.

    Science.gov (United States)

    Demar, James C; Clarkson, Edward D; Ratcliffe, Ruthie H; Campbell, Amy J; Thangavelu, Sonia G; Herdman, Christine A; Leader, Haim; Schulz, Susan M; Marek, Elizabeth; Medynets, Marie A; Ku, Therese C; Evans, Sarah A; Khan, Farhat A; Owens, Roberta R; Nambiar, Madhusoodana P; Gordon, Richard K

    2010-09-06

    Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980-1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using (a) surgically implanted radiotelemetry probes for electroencephalogram (EEG), (b) neurohistopathology of brain, (c) cholinesterase activities in the PNS and CNS, and (d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropylfluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro-2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for

  19. The effect of curcumin in the ectonucleotidases and acetylcholinesterase activities in synaptosomes from the cerebral cortex of cigarette smoke-exposed rats.

    Science.gov (United States)

    Jaques, Jeandre Augusto Dos Santos; Rezer, João Felipe Peres; Gonçalves, Jamile Fabbrin; Spanevello, Rosélia Maria; Gutierres, Jessié Martins; Pimentel, Victor Câmera; Thomé, Gustavo Roberto; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa

    2011-12-01

    With the evidence that curcumin may be a potent neuroprotective agent and that cigarette smoke is associated with a decline in the cognitive performance as our bases, we investigated the activities of Ecto-Nucleoside Triphosphate Diphosphohydrolase (NTPDase), 5'-nucleotidase and acetylcholinesterase (AChE) in cerebral cortex synaptosomes from cigarette smoke-exposed rats treated with curcumin (Cur). The experimental procedures entailed two sets of experiments. In the first set, the groups were vehicle, Cur 12·5, 25 and 50 mg·kg(-1) ; those in the second set were vehicle, smoke, smoke and Cur 12·5, 25 and 50 mg·kg(-1) . Curcumin prevented the increased NTPDase, 5'-nucleotidase and AChE activities caused by smoke exposure. We suggest that treatment with Cur was protective because the decrease of ATP and acetylcholine (ACh) concentrations is responsible for cognitive impairment, and both ATP and ACh have key roles in neurotransmission. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available BACKGROUND: Over the last 60 years, synthetic chemical pesticides have served as a main tactic in the field of crop protection, but their availability is now declining as a result of the development of insect resistance. Therefore, alternative pest management agents are needed. However, the demonstration of RNAi gene silencing in insects and its successful usage in disrupting the expression of vital genes opened a door to the development of a variety of novel, environmentally sound approaches for insect pest management. METHODOLOGY/PRINCIPAL FINDINGS: Six small interfering RNAs (siRNAs were chemically synthesized and modified according to the cDNA sequence of P. xylostella acetylcholine esterase genes AChE1 and AChE2. All of them were formulated and used in insecticide activity screening against P. xylostella. Bioassay data suggested that Si-ace1_003 and Si-ace2_001 at a concentration of 3 µg cm(-2 displayed the best insecticidal activity with 73.7% and 89.0%, mortality, respectively. Additional bioassays were used to obtain the acute lethal concentrations of LC50 and LC90 for Si-ace2_001, which were 53.66 µg/ml and 759.71 µg/ml, respectively. Quantitative Real-time PCR was used to confirm silencing and detected that the transcript levels of P. xylostella AChE2 (PxAChE2 were reduced by 5.7-fold compared to the control group. Consequently, AChE activity was also reduced by 1.7-fold. Finally, effects of the siRNAs on treated plants of Brassica oleracea and Brassica alboglabra were investigated with different siRNA doses. Our results showed that Si-ace2_001 had no negative effects on plant morphology, color and growth of vein under our experimental conditions. CONCLUSIONS: The most important finding of this study is the discovery that chemically synthesized and modified siRNA corresponding to P. xylostella AChE genes cause significant mortality of the insect both under laboratory and field conditions, which provides a novel strategy to control P

  1. Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain.

    Science.gov (United States)

    Rai, D K; Sharma, R K; Rai, P K; Watal, G; Sharma, B

    2011-02-12

    The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.

  2. Chemical composition, antioxidant properties and anti-cholinesterase activity of Cordia gilletii (Boraginaceae) leaves essential oil.

    Science.gov (United States)

    Bonesi, Marco; Okusa, Philippe N; Tundis, Rosa; Loizzo, Monica R; Menichini, Federica; Stévigny, Caroline; Duez, Pierre; Menichini, Francesco

    2011-02-01

    This study aimed to investigate for the first time the chemical composition, the antioxidant properties and the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity of the essential oil from the leaves of Cordia gilletii De Wild (Boraginaceae). The essential oil, characterized by 23 constituents (90.1% of the total oil), was constituted by terpene derivatives (25.6%) and non-terpene derivatives (64.5%), among which aldehydes, fatty acids and alkanes were present with the percentage of 16.5%, 18.8% and 23.1%, respectively. The antioxidant activity of C. gilletii essential oil was screened by two in vitro tests: DPPH and beta-carotene bleaching test. The essential oil revealed antioxidant activity with an IC50 value of 75.0 and 129.9 microg/mL on DPPH radical and beta-carotene decoloration tests, respectively. Moreover, C. gilletii inhibited AChE enzyme with an IC50 value of 105.6 microg/mL.

  3. Evaluation of Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer’s Disease Agents Using Pharmacophore, 3D-QSAR, and Molecular Docking Approaches

    Directory of Open Access Journals (Sweden)

    Xiaocong Pang

    2017-07-01

    Full Text Available DL0410, containing biphenyl and piperidine skeletons, was identified as an acetylcholinesterase (AChE and butyrylcholinesterase (BuChE inhibitor through high-throughput screening assays, and further studies affirmed its efficacy and safety for Alzheimer’s disease treatment. In our study, a series of novel DL0410 derivatives were evaluated for inhibitory activities towards AChE and BuChE. Among these derivatives, compounds 6-1 and 7-6 showed stronger AChE and BuChE inhibitory activities than DL0410. Then, pharmacophore modeling and three-dimensional quantitative structure activity relationship (3D-QSAR models were performed. The R2 of AChE and BuChE 3D-QSAR models for training set were found to be 0.925 and 0.883, while that of the test set were 0.850 and 0.881, respectively. Next, molecular docking methods were utilized to explore the putative binding modes. Compounds 6-1 and 7-6 could interact with the amino acid residues in the catalytic anionic site (CAS and peripheral anionic site (PAS of AChE/BuChE, which was similar with DL0410. Kinetics studies also suggested that the three compounds were all mixed-types of inhibitors. In addition, compound 6-1 showed better absorption and blood brain barrier permeability. These studies provide better insight into the inhibitory behaviors of DL0410 derivatives, which is beneficial for rational design of AChE and BuChE inhibitors in the future.

  4. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cholinesterase activity in blood and pesticide presence in sweat as biomarkers of children`s environmental exposure to crop protection chemicals

    Directory of Open Access Journals (Sweden)

    Lucyna Kapka-Skrzypczak

    2015-09-01

    Full Text Available Introduction. On the contrary to the adult population exposed to pesticides, mostly on occupational basis, rural children are mostly exposed to pesticides deposited in the environment. However, even this constant, distributed in time exposure to low concentrations of pesticides may led to permanent health disorders and limit children’s harmonious development. Objective. The main objective of the study was to evaluate the usefulness of aacetylcholinesterase (AChE and butyrylcholinesterase (BuChE activity determination as a marker of children’s environmental exposure to pesticides. An additional aim was to evaluate the usefulness of sweat patches as a novel, non-invasive method of detection of pesticides in sweat as a measure of pesticide exposure. Materials and method. A total of 108 children living in areas of intense pesticide use, and as a control group, 92 children living in an agro-tourist area were enrolled in the study. The AChE and BuChE activity was assayed colorimetricaly in diluted whole blood or plasma, respectively. In addition, selected pesticides were measured by GC/MS analysis in samples of the subject’s sweat absorbed onto a sorbent. Results. The study demonstrated significantly lower AChE and BuChE activity, respectively, in the diluted whole blood and plasma of children exposed to pesticides, compared to the control group (p<0.001 and p=0.003, respectively. The measured mean level of AChE activity was 241.63 ± 26.76 and 348.0±46.95 mU/µmolHb in the exposed and the control group, respectively, whereas the mean activity of BuChE was 424.1±81.1 and 458.6 ± 86.5 mmol/L/min. In addition, pesticide metabolites were detected in 19 (17.6% sweat samples collected from exposed children. Conclusions. Altogether, the study indicated that cholinesterase activity is a sensitive marker of the children’s environmental exposure to pesticides, whereas sweat patches are useful devices for collecting samples to be analysed for the

  6. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic

  7. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease

    DEFF Research Database (Denmark)

    Darreh-Shori, Taher; Vijayaraghavan, Swetha; Aeinehband, Shahin

    2013-01-01

    Butyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimer's disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic...... findings, such as high cerebral glucose utilization, low β-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BuChE status in the astroglial responses to TNF-α and ACh. Histochemical analysis in a rat model of nerve...

  8. In vitro antioxidant assessment and a rapid HPTLC bioautographic method for the detection of anticholinesterase inhibitory activity of Geophila repens

    Institute of Scientific and Technical Information of China (English)

    Umesh Chandra Dash; Atish Kumar Sahoo

    2017-01-01

    OBJECTIVE:Geophila repens (L.) I.M.Johnst.(Rubiaceae),a small,creeping,perennial herb,is claimed to have memory-enhancing property.The goal of this study was to assess its antioxidant and anticholinesterase activity and conduct a rapid bioautographic enzyme assay for screening acetylcholinesterase (ACHE) and butyrylcholinesterase (BChE) inhibition of G.repens extracts.METHODS:Antioxidant activity of G.repens extracts was assessed by performing 1,1-diphenyl-2-picrylhydrazyl (DPPH),nitric oxide (NO),superoxide (SOD),hydroxyl (OH) and total antioxidant capacity (TAC) assays.Anticholinesterase activity was investigated by quantifying the AChE and BChE inhibitory activities of chloroform (CGR),ethyl acetate (EGR) and methanol (MGR) extract fractions from G.repens leaves.A rapid high-performance thin-layer chromatography (HPTLC) bioautographic method for the detection of AChE and BChE inhibition was performed.RESULTS:Among all extract fractions,EGR exhibited the highest half maximal inhibitory concentration (IC50) in DPPH,SOD,NO,OH and TAC assays,with IC50 of (38.33 ± 3.21),(45.14 ± 1.78),(59.81 ± 1.32),(39.45 ± 0.79) and (43.76 ± 0.81) μg/mL respectively.EGR displayed competitive,reversible inhibition of AChE and BChE activities with IC50 of (68.63 ± 0.45) and (59.45 ± 0.45) μg/mL,respectively.Total phenolic and flavonoids contents of EGR were found to be 360.42 mg gallic acid equivalents and 257.31 mg quercetin equivalents per gram of extract.Phytoconstituents of the EGR extract that were inhibitors of cholinesterase produced white spots on the yellow background of HPTLC plates in the bioautographic test.CONCLUSION:The results of this study revealed that phenols and flavonoids could be responsible for the antioxidant,anticholinesterase activities of G.repens.

  9. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders.

    Directory of Open Access Journals (Sweden)

    Maya Mathew

    Full Text Available Inhibition of Acetylcholinesterase (AChE is still considered as the main therapeutic strategy against Alzheimer's disease (AD. Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease.

  10. In Vitro Screening for Anti-Cholinesterase and Antioxidant Activity of Methanolic Extracts of Ayurvedic Medicinal Plants Used for Cognitive Disorders

    Science.gov (United States)

    Mathew, Maya; Subramanian, Sarada

    2014-01-01

    Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer’s disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman’s microplate colorimetric method. Out of 20 extracts, Emblica officinalis, Nardostachys jatamansi, Nelumbo nucifera, Punica granatum and Raulfia Serpentina showed IC50 values <100 µg/ml for acetylcholinesterase inhibitory activity. Antioxidant activities of these plants were assessed by DPPH scavenging assay. Among the extracts used, antioxidant activity was highest for Terminalia chebula and Emblica officinalis with IC50 values <10 µg/ml. Considering the complex multifactorial etiology of AD, these plant extracts will be safer and better candidates for the future disease modifying therapies against this devastating disease. PMID:24466247

  11. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    Science.gov (United States)

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  12. Effects of L-arginine and Nω-nitro-L-arginine methylester on learning and memory and α7 nAChR expression in the prefrontal cortex and hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming Wei; Wei Yang; Li-Xia Liu; Wen-Xiu Qi

    2013-01-01

    Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity,learning and memory.In the present study,we assessed the effects of L-arginine and Nω-nitro-L-arginine methylester (L-NAME,a nitric oxide synthase inhibitor) on learning and memory.Rats were assigned to three groups receiving intracerebroventricular injections of L-Arg (the NO precursor),L-NAME,or 0.9% NaCI (control),once daily for seven consecutive days.Twelve hours after the last injection,they underwent an electric shock-paired Y maze test.Twenty-four hours later,the rats' memory of the safe illuminated arm was tested.After that,the levels of NO and α7 nicotinic acetylcholine receptor (α7 nAChR) in the prefrontal cortex and hippocampus were assessed using an NO assay kit,and immunohistochemistry and Western blots,respectively.We found that,compared to controls,L-Arg-treated rats received fewer foot shocks and made fewer errors to reach the learning criterion,and made fewer errors during the memory-testing session.In contrast,L-NAME-treated rats received more foot shocks and made more errors than controls to reach the learning criterion,and made more errors during the memory-testing session.In parallel,NO content in the prefrontal cortex and hippocampus was higher in L-Arg-treated rats and lower in L-NAME rats,compared to controls.Similarly,α7 nAChR immunoreactivity and protein expression in the prefrontal cortex and hippocampus were higher in L-Arg-treated rats and lower in L-NAME rats,compared to controls.These results suggest that the modulation of NO content in the brain correlates with α7 nAChR distribution and expression in the prefrontal cortex and hippocampus,as well as with learning and memory performance in the Y-maze.

  13. The α7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat

    DEFF Research Database (Denmark)

    Munro, G; Hansen, Rikke Rie; Erichsen, Hk

    2012-01-01

    BACKGROUND AND PURPOSE: Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators. Increasin......BACKGROUND AND PURPOSE: Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators...

  14. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases.

    Science.gov (United States)

    Luo, Chunyuan; Tong, Min; Maxwell, Donald M; Saxena, Ashima

    2008-09-25

    Non-human primates are valuable animal models that are used for the evaluation of nerve agent toxicity as well as antidotes and results from animal experiments are extrapolated to humans. It has been demonstrated that the efficacy of an oxime primarily depends on its ability to reactivate nerve agent-inhibited acetylcholinesterase (AChE). If the in vitro oxime reactivation of nerve agent-inhibited animal AChE is similar to that of human AChE, it is likely that the results of an in vivo animal study will reliably extrapolate to humans. Therefore, the goal of this study was to compare the aging and reactivation of human and different monkey (Rhesus, Cynomolgus, and African Green) AChEs inhibited by GF, GD, and VR. The oximes examined include the traditional oxime 2-PAM, two H-oximes HI-6 and HLo-7, and the new candidate oxime MMB4. Results indicate that oxime reactivation of all three monkey AChEs was very similar to human AChE. The maximum difference in the second-order reactivation rate constant between human and three monkey AChEs or between AChEs from different monkey species was 5-fold. Aging rate constants of GF-, GD-, and VR-inhibited monkey AChEs were very similar to human AChE except for GF-inhibited monkey AChEs, which aged 2-3 times faster than the human enzyme. The results of this study suggest that all three monkey species are suitable animal models for nerve agent antidote evaluation since monkey AChEs possess similar biochemical/pharmacological properties to human AChE.

  15. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Capiotti, Katiucia Marques; De Moraes, Daiani Almeida; Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2014-11-01

    Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Peroxisome proliferation activation receptor alpha modulation of Ca2+-regulated exocytosis via arachidonic acid in guinea-pig antral mucous cells.

    Science.gov (United States)

    Sawabe, Yukinori; Shimamoto, Chikao; Sakai, Akiko; Kuwabara, Hiroko; Saad, Adel H; Nakano, Takashi; Takitani, Kimitaka; Tamai, Hiroshi; Mori, Hiroshi; Marunaka, Yoshinori; Nakahari, Takashi

    2010-08-01

    Indomethacin (IDM, 10 microm), not aspirin (ASA; 10 microm), enhanced the Ca(2+)-regulated exocytosis stimulated by 1 microm acetylcholine (ACh) in guinea-pig antral mucous cells. Indomethacin inhibits prostaglandin G/H (PGG/H) and 15R-hydroperoxy-eicosatetraenoic acid (15R-HPETE) production from arachidonic acid (AA), while ASA inhibits PGG/H production but accelerates 15R-HPETE production. This suggests that IDM accumulates AA. Arachidonic acid (2 microm) enhanced Ca(2+)-regulated exocytosis in antral mucous cells to a similar extent to IDM. Moreover, a stable analogue of AA, arachidonyltrifluoromethyl ketone (AACOCF(3)), also enhanced Ca(2+)-regulated exocytosis, indicating that AA, not products from AA, enhances Ca(2+)-regulated exocytosis. We hypothesized that AA activates peroxisome proliferation activation receptor alpha (PPARalpha), because AA is a natural ligand for PPARalpha. A PPARalpha agonist (WY14643; 1 microm) enhanced Ca(2+)-regulated exocytosis, and a PPARalpha blocker (MK886; 50 microm) abolished the enhancement of Ca(2+)-regulated exocytosis induced by AA, IDM, AACOCF(3) and WY14643. Western blotting and immunohistochemical examinations demonstrated that PPARalpha exists in antral mucous cells. Moreover, MK886 decreased the frequency of Ca(2+)-regulated exocytosis activated by 1 microm ACh or 2 microm thapsigargin alone by 25-30%. Thus, ACh stimulates AA accumulation via an [Ca(2+)](i) increase, which activates PPARalpha, leading to enhancement of Ca(2+)-regulated exocytosis in antral mucous cells. A novel autocrine mechanism mediated via PPARalpha enhances Ca(2+)-regulated exocytosis in guinea-pig antral mucous cells.

  17. Effects of Lead+Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758

    Directory of Open Access Journals (Sweden)

    Gülsemin Şen

    2017-06-01

    Full Text Available The potential accumulation of lead in different tissues of Oreochromis niloticus and the effects of selenium in AChE inhibition caused by lead in brain were investigated. Juvenile O. niloticus samples were exposed to combination of 1 mg L-1 and 2 mg L-1 lead and 1mg L-1 lead+2mg L-1 selenium and 2mg L-1 lead+4mg L-1 selenium for 1, 7 and 15 days respectively. The accumulation of lead in gill, brain, liver and muscle tissues was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS as well as brain acetylcholinesterase (AChE, E.C.3.1.1.7 enzyme activity was also analyzed by spectrophotometric method. No mortality was observed during lead exposure in relation to time period and exposed concentrations. Lead accumulation was occurred in all tissues in relation to time. Maximum lead accumulation occurred in brain tissue, followed by the liver, gills and muscle tissues in relation to time period. Selenium caused decrease accumulation of lead in tissues (all selenium mixtures in muscle tissue on the first day, 1mg L-1 Pb+2mg L-1 selenium in gill tissue on the seventh day, in liver tissue on the seventh day except 2mg L-1 Pb+4mg L-1 selenium mixtures at the end of each of all three test periods. Inhibition of AChE activity was caused by the highest concentration and by the short-term effect of lead. Such effect of lead was eliminated by selenium mixture. Lead and selenium mixture were resulted an increase in activity on 15th day at the highest concentration. Selenium led to decrease in the accumulation of lead in the tissues and caused to improvement in the loss of AChE activity.

  18. Comparative study of acetylcholinesterase and glutathione S-transferase activities of closely related cave and surface Asellus aquaticus (Isopoda: Crustacea.

    Directory of Open Access Journals (Sweden)

    Anita Jemec

    Full Text Available The freshwater isopod crustacean Asellus aquaticus has recently been developed as an emerging invertebrate cave model for studying evolutionary and developmental biology. Mostly morphological and genetic differences between cave and surface A. aquaticus populations have been described up to now, while scarce data are available on other aspects, including physiology. The purpose of this study was to advance our understanding of the physiological differences between cave A. aquaticus and its surface-dwelling counterparts. We sampled two surface populations from the surface section of the sinking Pivka River (central Slovenia, Europe, i.e. locality Pivka Polje, and locality Planina Polje, and one cave population from the subterranean section of the sinking Pivka River, i.e. locality Planina Cave. Animals were sampled in spring, summer and autumn. We measured the activities of acetylcholinesterase (AChE and glutathione S-transferase (GST in individuals snap-frozen in the field immediately after collection. Acetylcholinesterase is likely related to animals' locomotor activity, while GST activity is related to the metabolic activity of an organism. Our study shows significantly lower AChE and GST activities in the cave population in comparison to both surface A. aquaticus populations. This confirms the assumption that cave A. aquaticus have lower locomotor and metabolic activity than surface A. aquaticus in their respective natural environments. In surface A. aquaticus populations, seasonal fluctuations in GST activity were observed, while these were less pronounced in individuals from the more stable cave environment. On the other hand, AChE activity was generally season-independent in all populations. To our knowledge, this is the first study of its kind conducted in A. aquaticus. Our results show that among closely related cave and surface A. aquaticus populations also physiological differences are present besides the morphological and genetic

  19. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  20. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    Science.gov (United States)

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  1. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    Science.gov (United States)

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors. Copyright © 2011 Wiley-Liss, Inc.

  2. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Ekaterina E Verdiyan

    Full Text Available In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC acetylcholine receptors (AChRs and the axon excitation (different intervals between action potentials (APs. Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the "axon-SC" interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+-influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization.

  3. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  4. Serotonin depletion results in a decrease of the neuronal activation caused by rivastigmine in the rat hippocampus

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Weikop, Pia; Moller, Arne

    2006-01-01

    nicotinic receptors located at nerve terminals. The aim of the present study was to determine in which areas and to what extent 5-HT mediates the neuronal response to ACh release. For this purpose, neuronal activity was measured in rats with rivastigmine-induced elevated ACh levels after a 95% 5-HT...... depletion obtained by dosing p-chlorophenylalanine followed by D,L-fenfluramine. Neuronal activation was quantified by stereological measurements of c-Fos immunoreactivity. The brain areas examined were medial prefrontal cortex, septum, dorsal hippocampus, and dorsal raphe nucleus. Rivastigmine...... brain areas examined. It is concluded that 5-HT mediates part of the ACh-induced hippocampal neuronal activation, possibly mediated via locally released 5-HT....

  5. Hydrogen behaviour study in plasma facing a-C:H and a-SiC:H hydrogenated amorphous materials for fusion reactors

    International Nuclear Information System (INIS)

    Barbier, Gauzelin

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. Firstly, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce this interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a-SiC:H substrate can be benefit in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a -SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a-C:H and a-SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modeling of hydrogen diffusion under irradiation has been also proposed. (author)

  6. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L.

    Science.gov (United States)

    Dalai, Manoj K; Bhadra, Santanu; Chaudhary, Sushil K; Bandyopadhyay, Arun; Mukherjee, Pulok K

    2014-04-01

    Clove (Syzygium aromaticum) is a well-known culinary spice with strong aroma; contains a high amount of oil known as clove oil. The major phyto-constituent of the clove oil is eugenol. Clove and its oil possess various medicinal uses in indigenous medicine as an antiseptic, anti-oxidant, analgesic and neuroprotective properties. Thus, it draws much attention among researchers from pharmaceutical, food and cosmetic industries. The aim of the present study was to determine the anti-cholinesterase activity of the methanol extract of clove, its oil and eugenol. In vitro anti-cholinesterase activity of S. aromaticum was performed by a thin layer chromatography bio autography, 96 well micro titer plate and kinetic methods. Reverse phase high performance liquid chromatography (RP-HPLC) analysis was carried out to identify the biomarker compound eugenol in clove oil. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition study revealed that eugenol possess better inhibition of the enzymes than extract and oil. Clove extract, its oil and eugenol showed better inhibition of AChE than BChE. Polyphenolic compound eugenol was detected through RP-HPLC analysis. The content of eugenol in essential oil was found to be 0.5 μg/ml. Kinetic analysis of the cholinesterase inhibition study of the extract; clove oil and eugenol have shown that they possess mixed type of inhibition for AChE and non-competitive type of inhibition for BChE. These results might be useful in explaining the effect of clove as anti-cholinesterase agent for the management of cognitive ailments like Alzheimer's disease.

  7. New-generation radiotracers for nAChR and NET

    Energy Technology Data Exchange (ETDEWEB)

    Ding Yushin [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)]. E-mail: ding@bnl.gov; Fowler, Joanna [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-10-01

    Advances in radiotracer chemistry and instrumentation have merged to make positron emission tomography (PET) a powerful tool in the biomedical sciences. Positron emission tomography has found increased application in the study of drugs affecting the brain and whole body, including the measurement of drug pharmacokinetics (using a positron-emitter-labeled drug) and drug pharmacodynamics (using a labeled tracer). Thus, radiotracers are major scientific tools enabling investigations of molecular phenomena, which are at the heart of understanding human disease and developing effective treatments; however, there is evidently a bottleneck in translating basic research to clinical practice. In the meantime, the poor ability to predict the in vivo behavior of chemical compounds based on their log P's and affinities emphasizes the need for more knowledge in this area. In this article, we focus on the development and translation of radiotracers for PET studies of the nicotinic acetylcholine receptor (nAChR) and the norepinephrine transporter (NET), two molecular systems that urgently need such an important tool to better understand their functional significance in the living human brain.

  8. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  9. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  10. Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer's disease.

    Science.gov (United States)

    Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio

    2003-09-01

    A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.

  11. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Science.gov (United States)

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  12. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    Science.gov (United States)

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    Science.gov (United States)

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  14. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  15. Age-related similarities and differences in brain activity underlying reversal learning

    Directory of Open Access Journals (Sweden)

    Kaoru eNashiro

    2013-05-01

    Full Text Available The ability to update associative memory is an important aspect of episodic memory and a critical skill for social adaptation. Previous research with younger adults suggests that emotional arousal alters brain mechanisms underlying memory updating; however, it is unclear whether this applies to older adults. Given that the ability to update associative information declines with age, it is important to understand how emotion modulates the brain processes underlying memory updating in older adults. The current study investigated this question using reversal learning tasks, where younger and older participants (age ranges 19-35 and 61-78 respectively learn a stimulus–outcome association and then update their response when contingencies change. We found that younger and older adults showed similar patterns of activation in the frontopolar OFC and the amygdala during emotional reversal learning. In contrast, when reversal learning did not involve emotion, older adults showed greater parietal cortex activity than did younger adults. Thus, younger and older adults show more similarities in brain activity during memory updating involving emotional stimuli than during memory updating not involving emotional stimuli.

  16. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  18. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy.

    Science.gov (United States)

    Benamar, Houari; Tomassini, Lamberto; Venditti, Alessandro; Marouf, Abderrazak; Bennaceur, Malika; Serafini, Mauro; Nicoletti, Marcello

    2017-06-01

    Four pyrrolizidine alkaloids, namely 7-O-angeloyllycopsamine N-oxide 1, echimidine N-oxide 2, echimidine 3 and 7-O-angeloylretronecine 4, were isolated for the first time from the whole plant ethanolic extract of Echium confusum Coincy, through bioassay-guided approach. Their structures were determined by spectroscopic means. All the isolates compounds showed moderate activities in inhibiting AChE, with IC50 0.276-0.769.

  19. [Enzyme kinetic analysis of Oncomelania hupensis exposed to active ingredient of Buddleja lindleyana (AIBL)].

    Science.gov (United States)

    Bang-Xing, Han; Jun, Chen

    2016-07-01

    To analyze the enzyme kinetics of active ingredient of Buddleja lindleyana (AIBL) against Oncomelania hupensis , the intermediate host of Schistosoma japonicum . O . hupensis snails were placed in 1 000 ml of 3.55 mg/L AIBL solution for 24, 48 h and 72 h, respectively, and the enzyme kinetics of alanine aminotransferase (GPT) was determined by Reitman-Frankel assay, lactate dehydrogenase (LDH) by the chemical inhibition lactic acid substrate method, alkaline phosphatase (AKP) by the disodium phenyl phosphate colorimetric method, acetylcholine esterase (AChE) and malate dehydrogenas (MDH) by ELISA, and succinate dehydrogenase (SDH) by the phenazine methyl sulfate reaction method (PMS) in the soft tissues of O. hupensis before and after AIBL treatment. Following exposure to 3.55 mg/L AIBL solution for 24 h, the GPT, LDH, and AKP activities significantly improved in the soft tissues of O. hupensis , while the SDH and MDH activities were significantly lowered in the head-foot and liver. However, AIBL treatment did not cause significant effect on AChE activity in O. hupensis . AIBL causes significant damages to O. hupensis liver and can efficiently act on anaerobic and aerobic respiration loci, which will hinder energy metabolism, and cause inadequate energy supply in cells used for normal secretion, eventually leading to O. hupensis death.

  20. Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways

    Directory of Open Access Journals (Sweden)

    Paschalis-Adam Molyvdas

    2007-03-01

    Full Text Available The alteration of resting tension (RT from 0.5 g to 2.5 g increased significantly airway smooth muscle contractions induced by acetylcholine (ACh in rabbit trachea. The decrease in extracellular calcium concentration [Ca2+]o from 2 mM to 0.2 mM reduced ACh-induced contractions only at 2.5 g RT with no effect at 0.5 g RT. The nonselective inhibitor of nitric oxide synthase (NOS, NG-nitro-L-arginine methyl ester (L-NAME increased ACh-induced contractions at 2.5 g RT. The inhibitor of inducible NOS, S-methylsothiourea or neuronal NOS, 7-nitroindazole had no effect. At 2.5 g RT, the reduction of [Ca2+]o from 2 mM to 0.2 mM abolished the effect of L-NAME on ACh-induced contractions. The NO precursor L-arginine or the tyrosine kinase inhibitors erbstatin A and genistein had no effect on ACh-induced contractions obtained at 2.5 g RT. Our results suggest that in airways, RT affects ACh-induced contractions by modulating the activity of epithelial NOS in a calcium-dependent, tyrosine-phosphorylation-independent way.

  1. Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)

    International Nuclear Information System (INIS)

    Yuan, Lilai; Li, Jiasu; Zha, Jinmiao; Wang, Zijian

    2016-01-01

    Organophosphate flame retardants (OPFRs) have been detected at high concentrations in various environmental and biotic samples, but little is known about their toxicity. In this study, the potential neurotoxicity of three OPFRs (TCEP, TDCPP, and TPP) and Chlorpyrifos (CPF, an organophosphate pesticide) were compared in Chinese rare minnow using an acute toxicity test and a 21-day fish assay. The acute test demonstrated significant inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by CPF. Although significant AChE inhibition at high concentration of TPP was also observed, none of the OPFRs had effects similar to CPF on these enzymes, indicating that their acute toxicities to Chinese rare minnow may be unrelated to cholinesterase inhibition. In addition, the 21-day fish assay with TDCPP demonstrated no significant effects on cholinesterase activities or neurotransmitter levels. Nonetheless, this OPFR exhibited widespread effects on the neurotrophic factors and their receptors (e.g., ntf3, ntrk1, ntrk2, ngfr, and fgf2, fgf11, fgf22, fgfr4), indicating that TDCPP or other OPFRs may elicit neurological effects by targeting neurotrophic factors and their receptors in Chinese rare minnow. - Highlights: • Significant inhibition of AChE and BChE activities by CPF was observed. • None of the OPFRs had similar effects on the cholinesterase like the CPF. • TDCPP showed significant effects on the neurotrophic factor genes in rare minnow. - Although none of the tested OPFRs showed any significant effects on cholinesterase activities and neurotransmitter levels, TDCPP did elicit widespread effects on neurotrophic factor genes.

  2. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    International Nuclear Information System (INIS)

    Mobarak, H.M.; Masjuki, H.H.; Mohamad, E. Niza; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-01-01

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC

  3. Tribological properties of amorphous hydrogenated (a-C:H) and hydrogen-free tetrahedral (ta-C) diamond-like carbon coatings under jatropha biodegradable lubricating oil at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mobarak, H.M., E-mail: mobarak.ho31@yahoo.com; Masjuki, H.H.; Mohamad, E. Niza, E-mail: edzrol@um.edu.my; Kalam, M.A.; Rashedul, H.K.; Rashed, M.M.; Habibullah, M.

    2014-10-30

    Highlights: • We tested a-C:H and ta-C DLC coatings as a function of temperature. • Jatropha oil contains large amounts of polar components that enhanced the lubricity of coatings. • CoF decreases with increasing temperature for both contacts. • Wear rate increases with increasing temperature in a-C:H and decreases in ta-C DLC. • At high temperature, ta-C coatings confer more protection than a-C:H coatings. - Abstract: The application of diamond-like carbon (DLC) coatings on automotive components is emerging as a favorable strategy to address the recent challenges in the industry. DLC coatings can effectively lower the coefficient of friction (CoF) and wear rate of engine components, thereby improving their fuel efficiency and durability. The lubrication of ferrous materials can be enhanced by a large amount of unsaturated and polar components of oils. Therefore, the interaction between nonferrous coatings (e.g., DLC) and vegetable oil should be investigated. A ball-on-plate tribotester was used to run the experiments. Stainless steel plates coated with amorphous hydrogenated (a-C:H) DLC and hydrogen-free tetrahedral (ta-C) DLC that slide against 440C stainless steel ball were used to create a ball-on-plate tribotester. The wear track was investigated through scanning electron microscopy. Energy dispersive and X-ray photoelectron spectroscopies were used to analyze the tribofilm inside the wear track. Raman analysis was performed to investigate the structural changes in the coatings. At high temperatures, the CoF in both coatings decreased. The wear rate, however, increased in the a-C:H but decreased in the ta-C DLC-coated plates. The CoF and the wear rate (coated layer and counter surface) were primarily influenced by the graphitization of the coating. Tribochemical films, such as polyphosphate glass, were formed in ta-C and acted as protective layers. Therefore, the wear rate of the ta-C DLC was lower than that of the-C:H DLC.

  4. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos

    2005-06-01

    It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p activities were found to be increased (approx. 23-30%, p activity and PC were shown to be inhibited (approx. 23-30%, p activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.

  5. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    Directory of Open Access Journals (Sweden)

    Fereshteh Golfakhrabadi

    2015-10-01

    Full Text Available Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum.Methods: Acetyl cholinesterase (AChE inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively.Results: The major components of essential oil were (z-β-ocimene (43.3%, α-pinene (18.23% and bornyl acetate (3.98%. Among 43 identified components, monoterpenes were the most compounds (84.63%. The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml-1 and it was effective against Anophelesstephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml-1. The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml-1.Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models.

  6. On-line anti-acetylcholine esterase activity of extracts of oxystelma esculentum, aerva javanica and zanthoxylum armatum

    International Nuclear Information System (INIS)

    Murtaza, S.; Ullah, R. S.; Abbas, A.; Riaz, T.; Ghous, T.; Altaf, Y.; Khan, M.; Ahmed, S.

    2013-01-01

    Alzheimer's disease (AD), a disease of brain, resulting in memory impairment and the loss of thinking. The main reason of Alzheimer's disease is firmly associated with some impairment in cholinergic transmission. This impairment may be improved by diminishing the breakdown of acetylcholine at the synaptic site in the brain by inhibiting acetylcholinesterase (AChE). In this work, extracts of three different plants Oxystelma esculentum (OEM), Aerva javanica (AJM) and Zanthoxylum armatum (ZAA) have been screened for their anti-AchE activity. Results of the study demonstrate that of the studied extracts, ZAA (IC/sub 50/ 55.5 micro g/ml) acquired stronger anti-AChE activity. While OEM with IC/sub 50/ 107.2 micro g/ml showed moderate and ZAE and AJM showed weaker action (IC/sub 50/ 182.5 and 275.2 micro g/ml). Galanthamine was used as a positive control (IC/sub 50/ 1.47 micro g/ml). (author)

  7. Diazinon mediated biochemical changes in the African toad (Bufo regularis

    Directory of Open Access Journals (Sweden)

    Isioma Tongo

    2012-07-01

    Full Text Available The sublethal toxicity of diazinon to the adult African toad, Bufo regularis was assessed using an integration of biomarkers. Changes in acetylcholinesterase (AChE, corticosterone and total protein levels were assessed in the serum, brain, liver, lungs and gastrointestinal tract (GIT and the results supported by bioaccumulation data. The biomarkers were chosen as indicators of key physiological functions: AChE for neurotoxicity, corticosterone and total protein levels as indicators of oxidative stress. Toads were exposed to 0.01, 0.02, 0.03 and 0.04 g/L for 28 days. Brain AChE activity reduced by 96% in the highest concentration (0.04 g/L compared to the control brain. Similarly, AChE activities in serum, liver, lungs and GIT tissues (88%, 88%, 87, 87% umg-1 protein respectively were also inhibited in the toads. Corticosterone and total protein levels in the tissues decreased compared to the control. The accumulation results obtained showed accumulation in the tissues (liver>serum>brain> lung>GIT, with a direct relationship between tissue concentration and changes in the biochemical indices. The alterations in all the indices were significantly concentration dependent. The biomarkers described in this study could be useful complementary indices in the risk assessment of diazinon pesticide.

  8. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity.

    Science.gov (United States)

    Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami

    2018-02-01

    A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.

  9. Influence of acid rain components on radiocesium-137 desorption from Cetraria islandica (L. Ach. lichen

    Directory of Open Access Journals (Sweden)

    Miljanić Šćepan S.

    2012-01-01

    Full Text Available Desorption of 137Cs from Cetraria islandica (L. Ach. lichen was performed by five consecutive desorptions with five identical solution volumes. Solutions of H2SO4, HNO3 and their mixtures, with pH 4.61, 5.15 and 5.75 were used for desorption. The desorbed amount of 137Cs (average value, all solutions used from lichen, for a given pH value was 49.2% for pH 4.61; 47.0% for pH 5.15 and 47.6% for pH 5.75. The obtained values of the desorbed amount of 137Cs from lichen are in accordance with the data obtained in earlier work, when 46.2 % 137Cs was desorbed from lichen for pH 3.75, and 47.2% was desorbed for pH 2.87. A higher percentage of 59.8%, obtained for pH 2.00 indicates increased activity of H+ ions. The amount of desorbed 137Cs from lichen using solutions corresponding to acid rain cannot be lower than the stated values as they contain other substances besides the acid solutions used in this work.

  10. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  11. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2017-05-01

    Full Text Available During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR, adenosine autoreceptors (AR and trophic factor receptors (TFR, for neurotrophins and trophic cytokines during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  12. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  13. Aqueous extracts of avocado pear (Persea americana Mill.) leaves and seeds exhibit anti-cholinesterases and antioxidant activities in vitro.

    Science.gov (United States)

    Oboh, Ganiyu; Odubanjo, Veronica O; Bello, Fatai; Ademosun, Ayokunle O; Oyeleye, Sunday I; Nwanna, Emem E; Ademiluyi, Adedayo O

    2016-03-01

    Avocado pear (Persea americana Mill.) leaves and seeds are used in traditional medicine for the treatment/management of Alzheimer disease (AD); however, information on the mechanism of actions is limited. This study sought to investigate the effect of P. americana leaf and seed aqueous extracts on some enzymes linked with AD (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE] activities) and their antioxidant potentials in vitro. The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of Fe2+- and sodium nitroprusside-induced thiobarbiturate reactive species [TBARS] production in rat brain homogenates, radicals [1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and nitric oxide] scavenging and iron [Fe] chelation abilities) were investigated. Phenolic content and phytochemical screening were carried out. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID. The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.

  14. DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark

    DEFF Research Database (Denmark)

    Rank, Jette; Lehtonen, Kari K.; Strand, Jakob

    2007-01-01

    Biomarkers of genotoxicity (DNA damage, measured as tail moment in the Comet assay), neurotoxicity (acetylcholinesterase inhibition, AChE) and general stress (lysosomal membrane stability, LMS) were studied in native and transplanted blue mussels (Mytilus edulis) in coastal areas of western Denmark...... of chemical pollution complex, as seen especially in the variability in results on DNA damage, and also in regard to AChE activity. These investigations further stress the importance of understanding the effects of natural factors (salinity, temperature, water levels, rain and storm events) in correct...

  15. Chronic Treatment with Squid Phosphatidylserine Activates Glucose Uptake and Ameliorates TMT-Induced Cognitive Deficit in Rats via Activation of Cholinergic Systems

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Park

    2012-01-01

    Full Text Available The present study examined the effects of squid phosphatidylserine (Squid-PS on the learning and memory function and the neural activity in rats with TMT-induced memory deficits. The rats were administered saline or squid derived Squid-PS (Squid-PS 50 mg kg−1, p.o. daily for 21 days. The cognitive improving efficacy of Squid-PS on the amnesic rats, which was induced by TMT, was investigated by assessing the passive avoidance task and by performing choline acetyltransferase (ChAT and acetylcholinesterase (AchE immunohistochemistry. 18F-Fluorodeoxyglucose and performed a positron emission tomography (PET scan was also performed. In the passive avoidance test, the control group which were injected with TMT showed a markedly lower latency time than the non-treated normal group (P<0.05. However, treatment of Squid-PS significantly recovered the impairment of memory compared to the control group (P<0.05. Consistent with the behavioral data, Squid-PS significantly alleviated the loss of ChAT immunoreactive neurons in the hippocampal CA3 compared to that of the control group (P<0.01. Also, Squid-PS significantly increased the AchE positive neurons in the hippocampal CA1 and CA3. In the PET analysis, Squid-PS treatment increased the glucose uptake more than twofold in the frontal lobe and the hippocampus (P<0.05, resp.. These results suggest that Squid-PS may be useful for improving the cognitive function via regulation of cholinergic enzyme activity and neural activity.

  16. Nonlinear drift-diffusion model of gating in K and nACh ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, S.R. [Department of Physics, University of Adelaide, Adelaide, South Australia 5005 (Australia)], E-mail: svaccaro@physics.adelaide.edu.au

    2007-09-03

    The configuration of a sensor regulates the transition between the closed and open states of both voltage and ligand gated channels. The closed state dwell-time distribution f{sub c}(t) derived from a Fokker-Planck equation with a nonlinear diffusion coefficient is in good agreement with experimental data and can account for the power law approximation to f{sub c}(t) for a delayed rectifier K channel and a nicotinic acetylcholine (nACh) ion channel. The solution of a master equation which approximates the Fokker-Planck equation provides a better description of the small time behaviour of the dwell-time distribution and can account for the empirical rate-amplitude correlation for these ion channels.

  17. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    Directory of Open Access Journals (Sweden)

    Hedia Fgaier

    2015-01-01

    Full Text Available The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT which is responsible for synthesizing acetylcholine (ACh in human brain is investigated through the two-enzyme/two-compartment (2E2C model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD.

  18. The radioprotective role of Gamma-Tocopherol on cholinergic and electrical activities in the brain of Gamma irradiated rats

    International Nuclear Information System (INIS)

    M, A.M.; Saada, H.N.

    1997-01-01

    Data of the present study revealed that whole body gamma exposure of adult male albino rats at 8 Gy causes a significant increase in the acetylcholine (ACh)content of the two cerebral hemispheres concomittant with a marked inhibition in the activity of acetylcholinesterase (AChE) enzyme 1,3,7,and 10 days after irradiation. The electroencephalogram (EEG) activity of frontal cortical area showed a significant increase in the faster frequencies (Bita-rhythm) and a decrease in the slower rhythm (delta - frequencies). Pretreatment of rats with α-tocopherol, 2 hr, prior irradiation provides the rats with a partial protection from the radiation induced changes in the acetent and cholinesterase activity of cerebral hemispheres. Injection of α-tocopherol has also provided the rats with some protection against the changes recorded for EEG activity of the cortical frontal area

  19. Acetylcholinesterase inhibition and antibacterial activity of Mondia whitei adventitious roots and ex vitro-grown somatic embryogenic-biomass

    Directory of Open Access Journals (Sweden)

    Ponnusamy Baskaran

    2016-10-01

    Full Text Available Mondia whitei (Hook.f. Skeels is an important endangered medicinal and commercial plant in South Africa. In vitro propagation systems are required for biomass production and bioactivity analysis to supplement wild resources/stocks. Adventitious roots from somatic embryogenic explants using suspension culture and ex vitro-grown plants produced via somatic embryogenesis were established using different plant growth regulator treatments. The adventitious root biomass and different parts of ex vitro-grown and mother plants were used to investigate the potential for acetylcholinesterase (AChE and antibacterial activities. Adventitious roots derived from 2.5 µM indole-3-acetic acid (IAA treatments and ex vitro-grown plants derived from meta-topolin riboside (mTR and IAA treatments gave the best AChE and antibacterial activities. The in vitro-established M. whitei and ex vitro biomass have comparable ability to function as inhibitors of acetylcholinesterase and antibacterial agents, and can be used as potent bioresources in traditional medicine

  20. Bipolar I disorder and major depressive disorder show similar brain activation during depression.

    Science.gov (United States)

    Cerullo, Michael A; Eliassen, James C; Smith, Christopher T; Fleck, David E; Nelson, Erik B; Strawn, Jeffrey R; Lamy, Martine; DelBello, Melissa P; Adler, Caleb M; Strakowski, Stephen M

    2014-11-01

    Despite different treatments and courses of illness, depressive symptoms appear similar in major depressive disorder (MDD) and bipolar I disorder (BP-I). This similarity of depressive symptoms suggests significant overlap in brain pathways underlying neurovegetative, mood, and cognitive symptoms of depression. These shared brain regions might be expected to exhibit similar activation in individuals with MDD and BP-I during functional magnetic resonance imaging (fMRI). fMRI was used to compare regional brain activation in participants with BP-I (n = 25) and MDD (n = 25) during a depressive episode as well as 25 healthy comparison (HC) participants. During the scans, participants performed an attentional task that incorporated emotional pictures. During the viewing of emotional images, subjects with BP-I showed decreased activation in the middle occipital gyrus, lingual gyrus, and middle temporal gyrus compared to both subjects with MDD and HC participants. During attentional processing, participants with MDD had increased activation in the parahippocampus, parietal lobe, and postcentral gyrus. However, among these regions, only the postcentral gyrus also showed differences between MDD and HC participants. No differences in cortico-limbic regions were found between participants with BP-I and MDD during depression. Instead, the major differences occurred in primary and secondary visual processing regions, with decreased activation in these regions in BP-I compared to major depression. These differences were driven by abnormal decreases in activation seen in the participants with BP-I. Posterior activation changes are a common finding in studies across mood states in participants with BP-I. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    Science.gov (United States)

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  2. 31 CFR 363.143 - What happens if an ACH payment used to purchase a certificate of indebtedness is later reversed?

    Science.gov (United States)

    2010-07-01

    ... processed security transactions, including securities that were purchased as gifts and securities that have... to purchase a certificate of indebtedness is later reversed? 363.143 Section 363.143 Money and... Indebtedness § 363.143 What happens if an ACH payment used to purchase a certificate of indebtedness is later...

  3. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Directory of Open Access Journals (Sweden)

    Arshia Hematpoor

    Full Text Available Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480, the peripheral sites (PAS: E72, W271 and anionic binding site (W83. The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  4. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  5. Biochemical characterization of a heterotrimeric G(i)-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor.

    Science.gov (United States)

    Terawaki, Shin-ichi; Matsubayashi, Rina; Hara, Kanako; Onozuka, Tatsuki; Kohno, Toshiyuki; Wakamatsu, Kaori

    Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors (GPCRs) that are activated by acetylcholine released from parasympathetic nerves. The mAChR family comprises 5 subtypes, m1-m5, each of which has a different coupling selectivity for heterotrimeric GTP-binding proteins (G-proteins). m4 mAChR specifically activates the Gi/o family by enhancing the guanine nucleotide exchange factor (GEF) reaction with the Gα subunit through an interaction that occurs via intracellular segments. Here, we report that the m4 mAChR mimetic peptide m4i3c(14)Gly, comprising 14 residues in the junction between the intracellular third loop (i3c) and transmembrane helix VI (TM-VI) extended with a C-terminal glycine residue, presents GEF activity toward the Gi1 α subunit (Gαi1). The m4i3c(14)Gly forms a stable complex with guanine nucleotide-free Gαi1 via three residues in the VTI(L/F) motif, which is conserved within the m2/4 mAChRs. These results suggest that this m4 mAChR mimetic peptide, which comprises the amino acid of the mAChR intracellular segments, is a useful tool for understanding the interaction between GPCRs and G-proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  7. Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Alterations in muscarinic receptor expression and acetylcholinesterase (AchE activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS. Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS: Cardiac muscarinic M(2 and M(3 receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2 receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2 receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2 receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits. This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2 receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE: The results suggest that

  8. Action of hypo- and hyperthyroidism on the postmortal decay of acetylcholine in the rat spinal cord.

    Science.gov (United States)

    Molinengo, L; Cassone, M C; Oggero, L

    1986-01-01

    The postmortal decay of acetylcholine (Ach) was studied in the cervical spinal cords of rats in conditions of hyper- and hypothyroidism. The modifications of thyroid function were achieved either by chronic (20-25 days) administration of l-thyroxine or of methimazole. The basal metabolic rate and plasma T4 concentration were measured to estimate the degree of modification of thyroid activity. The levels of Ach at the start of postmortal decay were evaluated by extrapolation to time 0 of the curves of the postmortal decay of Ach and the levels of Ach at stabilization were estimated from the means of all the measures made at lapses of time over 100-200 s from death. In low and high hypothyroidism a reduction (53 and 72%, respectively) of the levels of Ach was found. A similar effect was found in hyperthyroidism: a 73 and 63% reduction of Ach levels in high and low hyperthyroidism, respectively. The level of Ach at stabilization of the postmortal decay increased only in hyperthyroid rats. The process by which Ach is destroyed is not modified in hyper- or hypothyroidism.

  9. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  10. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  11. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  12. Lipoic acid increases glutathione peroxidase, Na+, K+-ATPase and acetylcholinesterase activities in rat hippocampus after pilocarpine-induced seizures? O ácido lipóico aumenta as atividades da glutationa peroxidase, da Na+, K+-ATPase e da acetilcolinesterase no hipocampo de ratos após convulsões induzidas por pilocarpina?

    Directory of Open Access Journals (Sweden)

    Geane Felix de Souza

    2010-08-01

    Full Text Available In the present study we investigated the effects of lipoic acid (LA on acetylcholinesterase (AChE, glutathione peroxidase (GPx and Na+, K+-ATPase activities in rat hippocampus during seizures. Wistar rats were treated with 0.9% saline (i.p., control group, lipoic acid (20 mg/kg, i.p., LA group, pilocarpine (400 mg/kg, i.p., P400 group, and the association of pilocarpine (400 mg/kg, i.p. plus LA (20 mg/kg, i.p., 30 min before of administration of P400 (LA plus P400 group. After the treatments all groups were observed for 1 h. In P400 group, there was a significant increase in GPx activity as well as a decrease in AChE and Na+, K+-ATPase activities after seizures. In turn, LA plus P400 abolished the appearance of seizures and reversed the decreased in AChE and Na+, K+-ATPase activities produced by seizures, when compared to the P400 seizing group. The results from the present study demonstrate that preadministration of LA abolished seizure episodes induced by pilocarpine in rat, probably by increasing AChE and Na+, K+-ATPase activities in rat hippocampus.No presente estudo nós investigamos os efeitos do ácido lipóico (AL sobre as atividades da acetilcolinesterase (AChE, da glutationa peroxidase (GPx e da Na+, K+-ATPase no hipocampo de ratos durante crises convulsivas. Ratos Wistar foram tratados com solução salina a 0,9% (i.p., grupo controle, ácido lipóico (20 mg/kg, i.p., grupo AL, pilocarpina (400 mg/kg, i.p., grupo P400, e a associação de AL (20 mg/kg, i.p. com a pilocarpina (400 mg/kg, i.p., 30 min antes da administração de pilocarpina (grupo AL + P400. Após os tratamentos todos os grupos foram observados durante 1 h. No grupo P400, houve um aumento significativo na atividade da GPx, assim como uma diminuição das atividades da AChE e Na+, K+-ATPase. Por sua vez, o pré-tratamento com AL aboliu o aparecimento de convulsões e reverteu a diminuição das atividades da AChE e da Na+, K+-ATPase causadas pelas convulsões, quando

  13. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation

    Directory of Open Access Journals (Sweden)

    Liu Q

    2018-06-01

    Full Text Available Qing Liu,1 Chaoyang Liu,1 Li Jiang,1 Maolin Li,1 Ting Long,1 Wei He,1 Guangcheng Qin,2 Lixue Chen,2 Jiying Zhou1 1Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; 2Laboratory Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China Background: Evidence suggests that the activation of α7 nicotinic acetylcholine receptor (α7nAChR can greatly decrease the neuroinflammation response. Neuroinflammation plays a pivotal role in the pathogenesis of chronic migraine (CM. Clinical observations also show that nicotine gum induces analgesic effects in migraine patients. However, whether α7nAChR is involved in CM is unclear.Objective: To investigate the role of α7nAChR in CM and provide a new therapeutic target for CM.Materials and methods: Thirty-six male Sprague–Dawley rats were distributed randomly into control, CM, PNU-282987, and α-bungarotoxin groups (n=9 rats in each group. The CM model was established by the recurrent daily administration of inflammatory soup on the dura over the course of 1 week. The hind paw threshold and facial allodynia were assessed by the von Frey test. The expression levels of α7nAChR, tumor necrosis factor-alpha, and interleukin-1 beta were analyzed by Western blot and real-time fluorescence quantitative polymerase chain reaction. The location of α7nAChR in the hippocampus was quantified by immunofluorescence, as well as the microglial and astrocyte alterations. Changes in the calcitonin gene-related peptide and the phosphorylated JNK protein among different groups were measured by Western blot.Results: We found that the expression of α7nAChR was reduced after repeated inflammatory soup administration. The increased expression of tumor necrosis factor-alpha, interleukin-1 beta, and calcitonin gene-related peptide in CM group were significantly decreased by PNU-282987 and aggravated by α-bungarotoxin. Moreover, PNU-282987

  14. Impaired terrestrial and arboreal locomotor performance in the western fence lizard (Sceloporus occidentalis) after exposure to an AChE-inhibiting pesticide

    International Nuclear Information System (INIS)

    DuRant, Sarah E.; Hopkins, William A.; Talent, Larry G.

    2007-01-01

    We examined the effects of a commonly used AChE-inhibiting pesticide on terrestrial and arboreal sprint performance, important traits for predator avoidance and prey capture, in the western fence lizard (Sceloporus occidentalis). Lizards were exposed to carbaryl (2.5, 25, and 250 μg/g) and were raced before and 4, 24, and 96 h after dosing. In the terrestrial setting, exposure to low concentrations of carbaryl had stimulatory effects on performance, but exposure to the highest concentration was inhibitory. No stimulatory effects of carbaryl were noted in the arboreal environment and performance in lizards was reduced after exposure to both the medium and highest dose of carbaryl. Our findings suggest that acute exposure to high concentrations of carbaryl can have important sublethal consequences on fitness-related traits in reptiles and that arboreal locomotor performance is a more sensitive indicator of AChE-inhibiting pesticide poisoning than terrestrial locomotor performance. - Exposure to an acetylcholinesterase-inhibiting pesticide alters locomotor performance in western fence lizards

  15. Impaired terrestrial and arboreal locomotor performance in the western fence lizard (Sceloporus occidentalis) after exposure to an AChE-inhibiting pesticide

    Energy Technology Data Exchange (ETDEWEB)

    DuRant, Sarah E. [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 444 Latham Hall, Blacksburg, VA 24061 (United States); University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802 (United States); Hopkins, William A. [Wildlife Ecotoxicology and Physiological Ecology Program, Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 444 Latham Hall, Blacksburg, VA 24061 (United States) and University of Georgia, Savannah River Ecology Laboratory, PO Drawer E, Aiken, SC 29802 (United States)]. E-mail: hopkinsw@vt.edu; Talent, Larry G. [Department of Zoology, Oklahoma State University, Stillwater, OK 74078 (United States)

    2007-09-15

    We examined the effects of a commonly used AChE-inhibiting pesticide on terrestrial and arboreal sprint performance, important traits for predator avoidance and prey capture, in the western fence lizard (Sceloporus occidentalis). Lizards were exposed to carbaryl (2.5, 25, and 250 {mu}g/g) and were raced before and 4, 24, and 96 h after dosing. In the terrestrial setting, exposure to low concentrations of carbaryl had stimulatory effects on performance, but exposure to the highest concentration was inhibitory. No stimulatory effects of carbaryl were noted in the arboreal environment and performance in lizards was reduced after exposure to both the medium and highest dose of carbaryl. Our findings suggest that acute exposure to high concentrations of carbaryl can have important sublethal consequences on fitness-related traits in reptiles and that arboreal locomotor performance is a more sensitive indicator of AChE-inhibiting pesticide poisoning than terrestrial locomotor performance. - Exposure to an acetylcholinesterase-inhibiting pesticide alters locomotor performance in western fence lizards.

  16. Activation analysis. A basis for chemical similarity and classification

    Energy Technology Data Exchange (ETDEWEB)

    Beeck, J OP de [Ghent Rijksuniversiteit (Belgium). Instituut voor Kernwetenschappen

    1977-01-01

    It is shown that activation analysis is especially suited to serve as a basis for determining the chemical similarity between samples defined by their trace-element concentration patterns. The general problem of classification and identification is discussed. The nature of possible classification structures and their appropriate clustering strategies is considered. A practical computer method is suggested and its application as well as the graphical representation of classification results are given. The possibility for classification using information theory is mentioned. Classification of chemical elements is discussed and practically realized after Hadamard transformation of the concentration variation patterns in a series of samples.

  17. Evaluation of enzymes inhibition activities of medicinal plant from Burkina Faso.

    Science.gov (United States)

    Bangou, Mindiédiba Jean; Kiendrebeogo, Martin; Meda, Nâg-Tiero Roland; Coulibaly, Ahmed Yacouba; Compaoré, Moussa; Zeba, Boukaré; Millogo-Rasolodimby, Jeanne; Nacoulma, Odile Germaine

    2011-01-15

    The aim of the present study was to evaluate some enzymes inhibitory effects of 11 plant species belonging to 9 families from Burkina Faso. Methanolic extracts were used for their Glutathione-s-transferase (GST), Acetylcholinesterase (AChE), Carboxylesterase (CES) and Xanthine Oxidase (XO) inhibitory activities at final concentration of 100 microg mL(-1). The total phenolics, flavonoids and tannins were also determined spectrophotometrically using Folin-Ciocalteu, AlCl3 and ammonium citrate iron reagents, respectively. Among the 11 species tested, the best inhibitory percentages were found with Euphorbia hirta, Sclerocarya birrea and Scoparia dulcis (inhibition > 40%) followed by Annona senegalensis, Annona squamosa, Polygala arenaria and Ceratotheca sesamoides (inhibition > 25%). The best total phenolic and tannin contents were found with S. birrea with 56.10 mg GAE/100 mg extract and 47.75 mg TAE/100 mg extract, respectively. E hirta presented the higher total flavonoids (9.96 mg QE/100 mg extract). It's was found that Sclerocarya birrea has inhibited all enzymes at more than 30% and this activity is correlated to total tannins contents. Contrary to S. birrea, the enzymatic activities of E. hirta and S. dulcis are correlated to total flavonoids contents. Present findings suggest that the methanolic extracts of those plant species are potential inhibitors of GST, AChE, CES and XO and confirm their traditional uses in the treatment of mental disorders, gout, painful inflammations and cardiovascular diseases.

  18. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  19. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release.

    Science.gov (United States)

    Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep

    2015-02-10

    Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.

  20. Influence of nitrogen on the tribological properties of a-C:H layers on the polycarbonate substrates

    Directory of Open Access Journals (Sweden)

    Rafal M. Nowak

    2008-12-01

    Full Text Available Polycarbonate (PC possesses many commercial applications. However, PC is still limited to non-abrasive and chemical-free environments due to its low hardness, low scratching resistance and high susceptibility to chemical attacks. To overcome this limitation, PC can be coated by hydrogenated amorphous carbon layers. The a-C:H layers have very attractive properties such as high hardness, infrared transparency, chemical inertness, low friction coefficients, and biocompatibility. Addition of nitrogen in the structure allows lowering internal stress and improve tribological properties of a-C:H layers. In this work, a-C:N:H layers were deposited from mixture CH4/N2 gases by RF PECVD method. Effects of the nitrogen incorporation on structure and tribological properties of deposited layers were investigated. The structure of layers were characterized by Fourier Transform Infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The friction coefficient, wear resistance of a-C:H:N layers were estimated by tribometer in ball-on-disc configuration. The IR spectra of the obtained layers have demonstrated a presence of nitrogen bonded both to carbon and to hydrogen. A formation of the following bonds has been confirmed: -C≡N, -NH2, -C−NH2, >C=NH. They are all typical for a-C:N:H layers. The tribological tests have shown that the layers reduce the friction coefficient of the polycarbonate (up to 50 % and considerably improve wear resistance.

  1. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  2. Molecular similarity measures.

    Science.gov (United States)

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  3. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles.

    Science.gov (United States)

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B; Fernandez, Eloy C; Milella, Luigi

    2015-07-31

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer's disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙-) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.

  4. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles

    Science.gov (United States)

    Russo, Daniela; Valentão, Patrícia; Andrade, Paula B.; Fernandez, Eloy C.; Milella, Luigi

    2015-01-01

    The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon) landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP), 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide (˙NO) and superoxide (O2˙−) scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD) system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI). ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities. PMID:26263984

  5. Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles

    Directory of Open Access Journals (Sweden)

    Daniela Russo

    2015-07-01

    Full Text Available The present study aimed to investigate the phytochemical profile of leaf methanol extracts of fourteen Smallanthus sonchifolius (yacon landraces and their antioxidant, anticholinesterase and antidiabetic activities that could lead to the finding of more effective agents for the treatment and management of Alzheimer’s disease and diabetes. For this purpose, antioxidant activity was assessed using different tests: ferric reducing ability power (FRAP, 2,2-diphenyl-1-picryl hydrazyl (DPPH, nitric oxide (˙NO and superoxide (O2˙− scavenging and lipid peroxidation inhibition assays. Anticholinesterase activity was investigated by quantifying the acetylcholinesterase (AChE and butyrylcholinesterase (BChE inhibitory activities, whereas antidiabetic activity was investigated by α-amylase and α-glucosidase inhibition tests. To understand the contribution of metabolites, phytochemical screening was also performed by high performance liquid chromatography-diode array detector (HPLC-DAD system. Among all, methanol extract of PER09, PER04 and ECU44 landraces exhibited the highest relative antioxidant capacity index (RACI. ECU44 was found to be rich in 4,5-di-O-caffeoylquinic acid (CQA and 3,5-di-O-CQA and displayed a good α-amylase and α-glucosidase inhibition, showing the lowest IC50 values. Flavonoids, instead, seem to be involved in the AChE and BChE inhibition. The results of this study revealed that the bioactive compound content differences could be determinant for the medicinal properties of this plant especially for antioxidant and antidiabetic activities.

  6. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities.

    Science.gov (United States)

    Oztürk, Mehmet; Tümen, İbrahim; Uğur, Aysel; Aydoğmuş-Öztürk, Fatma; Topçu, Gülaçtı

    2011-03-30

    Juniperus L. (Cupressaceae) species are mostly spread out in the Northern Hemisphere of the world, and some of them are used as folkloric medicines. The fruits of some species are eaten. Since oxidative stress is one of the reasons for neurodegeneration and is associated with the Alzheimer's disease (AD), the extracts prepared from the fruits of six Juniperus species were screened for their antioxidant activity. Therefore, the extracts were also evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are chief enzymes in the pathogenesis of AD. In addition, antimicrobial activity was also evaluated. In the β-carotene-linoleic acid assay, acetone extracts of J. oxycedrus subsp. oxycedrus, J. sabina and J. excelsa, and methanol extracts of J. phoenicea and J. sabina, effectively inhibited oxidation of linoleic acid. The hexane extracts of J. oxycedrus subsp. oxycedrus, J. foetidissima and J. phoenicea showed remarkable inhibitory effect against AChE and BChE. Because of their high antioxidant activity, J. excelsa, J. oxycedrus subsp. oxycedrus, J. sabina and J. phoenicia might be used in the food industry as preservative agents or extension of the shelf-life of raw and processed foods. Since the hexane extracts of J. oxycedrus subsp. oxycedrus and J. foetidissima demonstrated significant anticholinesterase activity they should be considered as a potential source for anticholinesterase agents. Copyright © 2010 Society of Chemical Industry.

  7. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel.

    Science.gov (United States)

    Bourne, Yves; Renault, Ludovic; Marchot, Pascale

    2015-01-16

    The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Efeito do extrato da casca de Syzygium cumini sobre a atividade da acetilcolinesterase em ratos normais e diabéticos Syzygium cumini bark extract effect on acetylcholinesterase activity in normal and diabetic rats

    Directory of Open Access Journals (Sweden)

    Cinthia Melazzo Mazzanti

    2004-06-01

    Full Text Available Este estudo verificou a eficiência do extrato etanólico da casca de Syzygium cumini sobre o sistema colinérgico de ratos normais e diabéticos induzidos com aloxano. Os animais foram divididos em grupo controle (C, tratado com Syzygium cumini (TS, diabético (D e diabético tratado com Syzygium cumini (DS. A atividade da acetilcolinesterase (AChE foi analisada nas seguintes estruturas cerebrais: cerebelo, córtex, estriado e hipocampo. O extrato etanólico da casca de Syzygium cumini na dose de 1g.kg-1 foi administrado diariamente por um período de trinta dias. Foi verificado após este período que o extrato inibiu a atividade da AChE no cerebelo e córtex cerebral dos ratos do grupo DS (PThe present study verified the efficiency of the bark ethanol extract of Syzygium cumini on the cholinergic system of normal and alloxan induced diabetic rats. Thirty-nine female rats were divided in control (C, treated with Syzygium cumini (TS, diabetic (D and diabetic treated with Syzygium cumini (DS. The activity of acetylcholinesterase (AChE was analyzed in the following cerebral structures: cerebellum, cortex, striatum and hippocampus. The extract of the bark of Syzygium cumini in the dose of 1g.kg-1 was administered orally daily for a period of thirty days. After this period the extract inhibited the activity of the AChE in the cerebellum and cerebral cortex of the rats in the DS group (P<0.05 as, compared to TS. In the striatum there was a significant increase in the activity of the AChE in rats of the TS group (P<0.01 when compared to the C group, and in the hippocampus there was no significant variation. These results indicate that the bark extract of "Jambolão"has an inhibitory effect on AChE in the cerebellum and cerebral cortex and an stimulatory effect on striatum, indicating a possible alteration in the functionality of the cholinergic system in such cerebral structures.

  9. Structural elements regulating amyloidogenesis: a cholinesterase model system.

    Directory of Open Access Journals (Sweden)

    Létitia Jean

    2008-03-01

    Full Text Available Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE, AChE(586-599, through the effect of single point mutations on beta-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE(586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE(586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high beta-strand propensity, for the conformational transition to beta-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to beta-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE(586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE(586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-pi, SH-aromatic, metal chelation and polar-polar would maintain the beta-sheets together. We also propose that the stacking between the strands in the beta-sheets along the fiber axis could

  10. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  11. Acetylcholinesterase potentiates [3H]fluorowillardiine and [3H]AMPA binding to rat cortical membranes

    International Nuclear Information System (INIS)

    Olivera, S.; Rodriguez-Ithurralde, D.; Henley, J.M.

    1999-01-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[ 3 H]5-fluorowillardiine ([ 3 H]FW) and [ 3 H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to ∼60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [ 3 H]kainate binding. [ 3 H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC 50 values of 4x10 -5 and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [ 3 H]FW binding is Ca 2+ - and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [ 3 H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B max of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. The effect of diminazene aceturate on cholinesterase activity in dogs with canine babesiosis

    Directory of Open Access Journals (Sweden)

    R.J. Milner

    1997-07-01

    Full Text Available A clinical trial was designed to evaluate the effects of diminazene aceturate and its stabiliser antipyrine on serum pseudocholinesterase (PChE and red blood cell acetylcholinesterase (RBC AChE in dogs with babesiosis. The trial was conducted on naturally occurring, uncomplicated cases of babesiosis (n = 20 that were randomly allocated to groups receiving a standard therapeutic dose of diminazene aceturate with antipyrine stabiliser (n = 10 or antipyrine alone (n = 10. Blood was drawn immediately before and every 15 minutes for 1 hour after treatment. Plasma PChE showed a 4 % decrease between 0 and 60 min within the treatment group (p < 0.05. No statistically significant differences were found between the treatment and control groups at any of the time intervals for PChE. There was an increase in RBC AChE activity at 15 min in the treatment group (p < 0.05. No significant differences were found between the treatment and control groups at any time interval for RBC AChE. In view of the difference in PChE, samples from additional, new cases (n = 10 of canine babesiosis were collected to identify the affect of the drug over 12 hours. No significant depression was identified over this time interval. The results suggests that the underlying mechanism in producing side-effects, when they do occur, is unlikely to be through cholinesterase depression.

  13. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  14. Fetal-muscle type nicotinic acetylcholine receptor activation in TE-671 cells, and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine

    Science.gov (United States)

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be due to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR which re...

  15. Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model - recommendations for methods and experimental designs

    Science.gov (United States)

    Kusner, Linda L.; Losen, Mario; Vincent, Angela; Lindstrom, Jon; Tzartos, Socrates; Lazaridis, Konstantinos; Martinez-Martinez, Pilar

    2015-01-01

    Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies. PMID:25743217

  16. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  17. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  18. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae

    International Nuclear Information System (INIS)

    Formagio, A.S.N.; Vieira, M.C.; Volobuff, C.R.F.; Silva, M.S.; Matos, A.I.; Cardoso, C.A.L.; Foglio, M.A.; Carvalho, J.E.

    2015-01-01

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI 50 ) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI 50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs

  19. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae

    Energy Technology Data Exchange (ETDEWEB)

    Formagio, A.S.N.; Vieira, M.C. [Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Volobuff, C.R.F.; Silva, M.S. [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Matos, A.I. [Faculdade de Ciências, Universidade de Lisboa, Lisboa (Portugal); Cardoso, C.A.L. [Curso de Química, Universidade Estadual do Mato Grosso do Sul, Dourados, MS (Brazil); Foglio, M.A.; Carvalho, J.E. [Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2015-02-13

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI{sub 50}) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI{sub 50} values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.

  20. Identification of two acetylcholinesterases in Pardosa pseudoannulata and the sensitivity to insecticides.

    Science.gov (United States)

    Zhang, Yixi; Shao, Ying; Jiang, Feng; Li, Jian; Liu, Zewen

    2014-03-01

    Pardosa pseudoannulata is an important predatory enemy against insect pests, such as rice planthoppers and leafhoppers. In order to understand the insecticide selectivity between P. pseudoannulata and insect pests, two acetylcholinesterase genes, Pp-ace1 and Pp-ace2, were cloned from this natural enemy. The putative proteins encoded by Pp-ace1 and Pp-ace2 showed high similarities to insect AChE1 (63% to Liposcelis entomophila AChE1) and AChE2 (36% to Culex quinquefasciatus AChE2) with specific functional motifs, which indicated that two genes might encode AChE1 and AChE2 proteins respectively. The recombinant proteins by expressing Pp-ace1 and Pp-ace2 genes in insect sf9 cells showed high AChE activities. The kinetic parameters, Vmax and Km, of two recombinant AChE proteins were significantly different. The sensitivities to six insecticides were determined in two recombinant AChEs. Pp-AChE1 was more sensitive to all tested insecticides than Pp-AChE2, such as fenobucarb (54 times in Ki ratios), isoprocarb (31 times), carbaryl (13 times) and omethoate (6 times). These results indicated that Pp-AChE1 might be the major synaptic enzyme in the spider. By sequence comparison of P. pseudoannulata and insect AChEs, the key amino acid differences at or close to the functional sites were found. The locations of some key amino acid differences were consistent with the point mutation sites in insect AChEs that were associated with insecticide resistance, such as Phe331 in Pp-AChE2 corresponding to Ser331Phe mutation in Myzus persicae and Aphis gossypii AChE2, which might play important roles in insecticide selectivity between P. pseudoannulata and insect pests. Of course, the direct evidences are needed through further studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cholinesterase Enzymes Inhibitors from the Leaves of Rauvolfia Reflexa and Their Molecular Docking Study

    Directory of Open Access Journals (Sweden)

    Vikneswaran Murugaiyah

    2013-03-01

    Full Text Available Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE and butyrylcholinesterase (BChE inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E-3-(3,4,5-trimethoxyphenylacrylic acid (1, (E-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl acrylate (2, 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3 and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4. The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM and BChE (IC50 = 61.72 µM, respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.

  2. Cholinesterase enzymes inhibitors from the leaves of Rauvolfia reflexa and their molecular docking study.

    Science.gov (United States)

    Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran

    2013-03-25

    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.

  3. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  4. Morphometry and acetylcholinesterase activity of the myenteric plexus of the wild mouse Calomys callosus

    Directory of Open Access Journals (Sweden)

    L.B.M. Maifrino

    1997-05-01

    Full Text Available The myenteric plexus of the digestive tract of the wild mouse Calomys callosus was examined using a histochemical method that selectively stains nerve cells, and the acetylcholinesterase (AChE histochemical technique in whole-mount preparations. Neuronal density was 1,500 ± 116 neurons/cm2 (mean ± SEM in the esophagus, 8,900 ± 1,518 in the stomach, 9,000 ± 711 in the jejunum and 13,100 ± 2,089 in the colon. The difference in neuronal density between the esophagus and other regions was statistically significant. The neuron profile area ranged from 45 to 1,100 µm2. The difference in nerve cell size between the jejunum and other regions was statistically significant. AChE-positive nerve fibers were distributed within the myenteric plexus which is formed by a primary meshwork of large nerve bundles and a secondary meshwork of finer nerve bundles. Most of the nerve cells displayed AChE activity in the cytoplasm of different reaction intensities. These results are important in order to understand the changes occurring in the myenteric plexus in experimental Chagas' disease

  5. A melting pot it's not. ACHE study finds healthcare management still dominated by whites, men despite efforts to promote greater diversity.

    Science.gov (United States)

    Burda, David

    2003-08-11

    A study by the American College of Healthcare Executives reveals that efforts to promote racial and gender diversity among the industry's top ranks haven't been as successful as hoped. ACHE President and Chief Executive Officer Thomas Dolan, left, said the results should prompt healthcare executives to analyze what's happening within their own four walls.

  6. 阿仑膦酸钠对绝经后骨质疏松性骨痛的疗效分析%Effect analysis of alendronate on postmenopausal osteoporosis with bone ache

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Background: Osteoporosis is a metabolic bone disease characterized by low bone component and regeneration of the microstructure of bone tissues, osteoporosis occurs in postmenopausal women for decreased estrogen level. Those women with osteoporosis often suffer from bone ache, such as pain at low back, back, knees and heels. In severe cases, there may be crookback or non- violent fracture. Objective: To discuss treatment effect of the Alendronate on 56 postmenopausal women with bone ache caused by osteoporosis. Unit: 210 Hospital of PLA.

  7. State-wide hospital clinical laboratory plan for measuring cholinesterase activity for individuals suspected of exposure to nerve agent chemical weapons.

    Science.gov (United States)

    Wu, Alan H B; Smith, Andrew; McComb, Robert; Bowers, George N; Makowski, Gregory S; McKay, Charles A; Vena, Jason; McDonagh, John; Hopfer, Sidney; Sena, Salvatore F; Malkus, Herbert; Forte, Elaine; Kelly, Katherine

    2008-02-01

    Hospital laboratories currently lack the capacity to provide emergency determination of cholinesterase activity. We have developed a hospital-based 3-tiered system to test plasma for butyrylcholinesterase (BChE) activity and whole blood for red cell acetylcholinesterase (AChE) activity using available technology and personnel. Interagency communications, toxidrome definition, and patient triage will be coordinated by the Connecticut Department of Public Health and the Poison Control Center. Initial BChE data documents good precision between institutions (coefficient of variation chemical terrorism or large scale HazMat events.

  8. Protective effect of a phenolic extract containing indoline amides from Portulaca oleracea against cognitive impairment in senescent mice induced by large dose of D-galactose /NaNO2.

    Science.gov (United States)

    Wang, Peipei; Sun, Hongxiang; Liu, Dianyu; Jiao, Zezhao; Yue, Su; He, Xiuquan; Xia, Wen; Ji, Jianbo; Xiang, Lan

    2017-05-05

    Portulaca oleracea L. is a potherb and also a widely used traditional Chinese medicine. In accordance with its nickname "longevity vegetable", pharmacological study demonstrated that this plant possessed antioxidant, anti-aging, and cognition-improvement function. Active principles pertaining to these functions of P. oleracea need to be elucidated. The present study evaluated the effect of a phenolic extract (PAAs) from P. oleracea which contained specific antioxidant indoline amides on cognitive impairment in senescent mice. PAAs was prepared through AB-8 macroporous resin column chromatography. Total phenol content was determined using colorimetric method, and contents of indoline amides were determined using HPLC-UV method. Senescent Kunming mice with cognitive dysfunction were established by intraperitoneal injection of D-galactose (D-gal, 1250mg/kg/day) and NaNO 2 (90mg/kg/day) for 8 weeks, L-PAAs (360mg/kg/day), H-PAAs (720mg/kg/day), and nootropic drug piracetam (PA, 400mg/kg/day) as the positive control were orally administered. Spatial learning and memory abilities were evaluated by Morris water maze experiment. Activities of AChE, SOD, CAT, and levels of GSH and MDA in the brain or plasma were measured. Hippocampal morphology was observed by HE staining. Chronic treatment of large dose of D-gal/NaNO 2 significantly reduced lifespan, elevated AChE activity, decreased CAT activity, compensatorily up-regulated SOD activity and GSH level, increased MDA level, induced neuronal damage in hippocampal CA1, CA3 and CA4 regions, and impaired cognitive function. Similar to PA, PAAs prolonged the lifespan and improved spatial memory ability. Moreover, PAAs improved learning ability. H-PAAs significantly reversed compensatory increase in SOD activity to the normal level, elevated serum CAT activity, and reduced MDA levels in brain and plasma, more potent than L-PAAs. Besides these, PAAs evidently inhibited hippocampal neuronal damage. However, it had no effect on

  9. Enhancement of acetylcholine-induced desensitization of guinea-pig ileal longitudinal muscle in Ca2+-free conditions.

    Science.gov (United States)

    Horio, S; Nagare, T; Moritoki, H

    1999-10-01

    1. To determine the role of cellular Ca2+ in desensitization, acetylcholine(ACh)-induced desensitization was studied under Ca2+-free condition in guinea-pig ileal longitudinal muscle. 2. Pretreatment of the tissue with 10(-4) M ACh (desensitizing treatment) in normal Tyrode solution caused desensitization of the responses both to ACh and histamine. The desensitizing treatment performed in Ca2+-free solution enhanced desensitization of the responses to ACh and histamine significantly. 3. The desensitizing treatment with ACh caused suppression of the responses to high K+ (tonic component) and Bay K 8644. The desensitizing treatment performed in Ca2+-free solution potentiated the suppression of the responses to high K+ and Bay K 8644 significantly. 4. ACh-induced desensitization was enhanced significantly in the presence of a protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine(H-7, 10(-4) M) to a similar extent as desensitization obtained under Ca2+-free condition, but not in the presence of a non-specific and less potent kinase inhibitor, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA1004, 10(-4) M). 5. These results suggested that voltage-gated Ca2+ channels were involved in ACh-induced desensitization and that intracellular Ca2+, which was increased during the stimulation with ACh, inhibited desensitization through the activation of protein kinase C. This kinase could have activated or protected Ca2+ channels during the desensitization process to reduce desensitization.

  10. Phytochemical Quantification and the In Vitro Acetylcholinesterase Inhibitory Activity of Phellodendron chinense and Its Components.

    Science.gov (United States)

    Kim, Yu Jin; Lim, Hye-Sun; Kim, Yoonju; Lee, Jun; Kim, Bu-Yeo; Jeong, Soo-Jin

    2017-06-02

    The dried bark of Phellodendron chinense has been used as a traditional herbal medicine to remove damp heat, relieve consumptive fever, and cure dysentery and diarrhea. In the present study, we performed quantitative analyses of the two components of P. chinense , phellodendrine and berberine, using high-performance liquid chromatography. A 70% ethanol extract of P. chinense was prepared and the two components were separated on a C-18 analytical column using a gradient solvent system of acetonitrile and 0.1% ( v / v ) aqueous trifluoroacetic acid. The ultraviolet wavelength used for detection was 200 nm for phellodendrine and 226 nm for berberine. The analytical method established here showed high linearity (correlation coefficient, ≥0.9991). The amount of phellodendrine and berberine used was 22.255 ± 0.123 mg/g and 269.651 ± 1.257 mg/g, respectively. Moreover, we performed an in vitro acetylcholinesterase (AChE) activity assay and an amyloid-β aggregation test to examine the biological properties of phellodendrine and berberine as therapeutic drugs for Alzheimer's disease. Phellodendrine and berberine inhibited AChE activity in a dose-dependent manner (IC 50 = 36.51 and 0.44 μM, respectively). In contrast, neither phellodendrine nor berberine had an effect on amyloid-β aggregation. The P. chinense extract and phellodendrine, but not berberine, exhibited antioxidant activity by increasing radical scavenging activity. Moreover, P. chinense demonstrated a neuroprotective effect in hydrogen peroxide-treated HT22 hippocampal cells. Overall, our findings suggest that P. chinense has potential as an anti-Alzheimer's agent via the suppression of the enzymatic activity of acetylcholinesterase and the stimulation of antioxidant activity.

  11. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract.

    Science.gov (United States)

    Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min

    2017-02-01

    The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acetylcholinesterase potentiates [{sup 3}H]fluorowillardiine and [{sup 3}H]AMPA binding to rat cortical membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olivera, S.; Rodriguez-Ithurralde, D. [Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD (United Kingdom); Henley, J.M. [Molecular Neuroscience Unit, Division Neuromyology, Instituto de Investigaciones Biologicas Clemente Estable, 11600 Montevideo (Uruguay)

    1999-04-01

    In addition to its action at cholinergic synapses acetylcholinesterase (AChE) has been proposed to modulate neuronal activity by mechanisms unrelated to the hydrolysis of acetylcholine. We have investigated the effects of AChE on the binding of the specific AMPA receptor agonists (S)-[{sup 3}H]5-fluorowillardiine ([{sup 3}H]FW) and [{sup 3}H]AMPA to rat cortical membranes. Pretreatment of membranes with AChE causes a dose-dependent increase in the binding of both radiolabelled agonists with a maximal increase to {approx}60% above control. This increase is completely blocked by the specific AChE inhibitors propidium, physostigmine, DFP and BW 284C51. AChE pretreatment had no effect on [{sup 3}H]kainate binding. [{sup 3}H]FW binding to membranes from young (15-day-old) rats is four orders of magnitude more sensitive to AChE modulation than membranes from adult rats (EC{sub 50} values of 4x10{sup -5} and 0.1 unit/ml, respectively) although the total percentage increase in binding is similar. Furthermore, the AChE-induced potentiation of [{sup 3}H]FW binding is Ca{sup 2+}- and temperature-dependent suggesting an enzymatic action for AChE in this system. Saturation binding experiments with [{sup 3}H]FW to adult membranes reveal high and low affinity binding sites and demonstrate that the main action of AChE is to increase the B{sub max} of both sites. These findings suggest that modulation of AMPA receptors could provide a molecular mechanism of action for the previously reported effects of AChE in synapse formation, synaptic plasticity and neurodegeneration. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  14. PPARα autocrine regulation of Ca²⁺-regulated exocytosis in guinea pig antral mucous cells: NO and cGMP accumulation.

    Science.gov (United States)

    Tanaka, Saori; Sugiyama, Nanae; Takahashi, Yuko; Mantoku, Daiki; Sawabe, Yukinori; Kuwabara, Hiroko; Nakano, Takashi; Shimamoto, Chikao; Matsumura, Hitoshi; Marunaka, Yoshinori; Nakahari, Takashi

    2014-12-15

    In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells. Copyright © 2014 the American Physiological Society.

  15. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  16. N-substituted-piperidines as Novel Anti-alzheimer Agents: Synthesis, antioxidant activity, and molecular docking study

    Directory of Open Access Journals (Sweden)

    Khairia M. Youssef

    2018-06-01

    Full Text Available Design, synthesis and evaluation of new acetylcholinesterase inhibitors by combining carbamoylpiperidine analogs containing nipecotic acid scaffold were described. Then, a series of hybrids have been developed by introducing Free radical scavengers. Molecular modeling was performed and structure activity relationships are discussed. Among the series, most potent compounds showed effective AchE inhibitions, high selectivity over butyrylcholinesterase and high radical scavenging activities. On the basis of this work, the ability of analogs containing nipecotic acid scaffold to serve in the design of N-benzyl-piperidine linked multipotent molecules for the treatment of Alzheimer Disease. Keywords: Synthesis, N-substituted-piperidines, Antioxidant activity, ATP chemiluminescence, Molecular modeling study

  17. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation.

    Science.gov (United States)

    Voigt, Niels; Heijman, Jordi; Trausch, Anne; Mintert-Jancke, Elisa; Pott, Lutz; Ravens, Ursula; Dobrev, Dobromir

    2013-08-01

    Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes". Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    Science.gov (United States)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  19. Association between blood cholinesterase activity, organophosphate pesticide residues on hands, and health effects among chili farmers in Ubon Ratchathani Province, northeastern Thailand

    Science.gov (United States)

    Nganchamung, Thitirat; Robson, Mark G; Siriwong, Wattasit

    Use of pesticides has been documented to lead to several adverse health effects. Farmers are likely to be exposed to pesticides through dermal exposure as a result of mixing, loading, and spraying. Organophosphate pesticides (OPs) are widely used in most of the agricultural areas throughout Thailand. OPs are cholinesterase inhibitors and blood cholinesterase activity is used as a biomarker of OP effects. This study aims to determine the association between blood cholinesterase activity and organophosphate pesticide residues on chili farmer’s hands and their adverse health effects. Ninety chili farmers directly involved with pesticide applications (e.g. mixing, loading, spraying) were recruited and were interviewed face to face. Both enzymes, erythrocyte acetylcholinesterase (AChE) and plasma cholinesterase (PChE), were tested with the EQM Test-mate Cholinesterase Test System (Model 400). Hand wipe samples were used for collecting residues on both hands and OP residues for chlorpyrifos and profenofos were quantified using gas chromatography equipped with a flame photometric detector (GC-FPD). The average activity (±SD) of AChE and PChE was 2.73 (±0.88) and 1.58 (±0.56) U/mL, respectively. About 80.0% of the participants had detectable OP residues on hands. The median residues of chlorpyrifos and profenofos were found to be 0.02 and 0.03 mg/kg/two hands, respectively. Half of participants reported having some acute health symptoms within 48 hours after applying pesticides. When adjusted for gender, number of years working in chili farming, and frequency of pesticide use, AChE activity (Adjusted OR = 0.03, 95%CI: 0.01-0.13) and detected OP residues on hands (Adjusted OR = 0.15, 95%CI: 0.02-0.95) were significantly associated with having health effects, but no significant association was found in PChE activity (Adjusted OR = 2.09, 95%CI: 0.63-6.99). This study suggests that regular monitoring for blood cholinesterase and effective interventions to reduce pesticide

  20. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  1. Design, synthesis and biological activity of novel donepezil derivatives bearing N-benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors.

    Science.gov (United States)

    Lan, Jin-Shuai; Zhang, Tong; Liu, Yun; Yang, Jing; Xie, Sai-Sai; Liu, Jing; Miao, Ze-Yang; Ding, Yue

    2017-06-16

    A series of new donepezil derivatives were designed synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer's disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase and self-induced β-amyloid (Aβ) aggregation, and moderate antioxidant activity. Especially, compound 5b presented the greatest ability to inhibit cholinesterase (IC 50 , 1.9 nM for eeAChE and 0.8 nM for hAChE), good inhibition of Aβ aggregation (53.7% at 20 μM) and good antioxidant activity (0.54 trolox equivalents). Kinetic and molecular modeling studies indicated that compound 5b was a mixed-type inhibitor, binding simultaneously to the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, compound 5b could reduce PC12 cells death induced by oxidative stress and Aβ (1-42). Moreover, in vivo experiments showed that compound 5b was nontoxic and tolerated at doses up to 2000 mg/kg. These results suggested that compound 5b might be an excellent multifunctional agent for AD treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    International Nuclear Information System (INIS)

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.; Murrin, L. Charles; Lockridge, Oksana

    2006-01-01

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months in plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates

  3. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  4. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B

    2008-01-01

    to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile...... regions critically involved in working memory and attention. Furthermore, this effect is more pronounced in juvenile than adult rats, indicating that the juvenile forebrain is more responsive to alpha7 nAChR stimulation. This observation may be relevant in the treatment of juvenile-onset schizophrenia....

  5. Mini Review: Anticholinergic Activity as a Behavioral Pathology of Lewy Body Disease and Proposal of the Concept of “Anticholinergic Spectrum Disorders”

    Directory of Open Access Journals (Sweden)

    Koji Hori

    2016-01-01

    Full Text Available Given the relationship between anticholinergic activity (AA and Alzheimer’s disease (AD, we rereview our hypothesis of the endogenous appearance of AA in AD. Briefly, because acetylcholine (ACh regulates not only cognitive function but also the inflammatory system, when ACh downregulation reaches a critical level, inflammation increases, triggering the appearance of cytokines with AA. Moreover, based on a case report of a patient with mild AD and slightly deteriorated ACh, we also speculate that AA can appear endogenously in Lewy body disease due to the dual action of the downregulation of ACh and hyperactivity of the hypothalamic-pituitary-adrenal axis. Based on these hypotheses, we consider AA to be a behavioral pathology of Lewy body disease. We also propose the concept of “anticholinergic spectrum disorders,” which encompass a variety of conditions, including AD, Lewy body disease, and delirium. Finally, we suggest the prescription of cholinesterase inhibitors to patients in this spectrum of disorders to abolish AA by upregulating ACh.

  6. Chemical composition and acetylcholinesterase inhibitory activity of Artemisia maderaspatana essential oil.

    Science.gov (United States)

    Jyotshna; Srivastava, Nidhi; Singh, Bhuwanendra; Chanda, Debabrata; Shanker, Karuna

    2015-01-01

    To date, there are no reports to validate the Indian traditional and folklore claims of Artemisia maderaspatana L. (syn. Grangea maderaspatana L.) (Asteraceae) for the treatment of Alzheimer's disease. The present study characterizes the volatile components (non-polar compounds) of A. maderaspatana and evaluates its acetylcholinesterase inhibition potential. The essential oils (yield 0.06% v/w) were obtained from fresh aerial part of A. maderaspatana. The characterization of volatile components (non-polar compounds) was performed by GC-MS data and with those of reference compounds compiled in the spectral library of in-house database. The in vitro acetylcholinesterase (AChE) inhibition of the volatile organic constituents (VOC's) of A. maderaspatana aerial part was evaluated in varying concentration ranges (0.70-44.75 µg/mL) with Ellman's method. The major components were α-humulene (46.3%), β-caryophyllene (9.3%), α-copaene (8.2%), β-myrcene (4.3%), Z(E)-α-farnesene (3.7%), and calarene (3.5%). Chemical variability among other Artemisia spp. from different climatic regions of India and countries namely Iran and France was observed. The experimental results showed that diverse volatile organic constituents of A. maderaspatana have significant acetylcholinesterase inhibitory activity (an IC50 value of 31.33 ± 1.03 µg/mL). This is the first report on the inhibition of acetylcholinesterase properties of essential oil of A. maderaspatana obtained from fresh aerial part. The present results indicate that essential oil of A. maderaspatana isolated from the northern region of India could inhibit AChE moderately. Therefore, the possibility of novel AChE inhibitors might exist in VOCs of this plant.

  7. Similarly shaped letters evoke similar colors in grapheme-color synesthesia.

    Science.gov (United States)

    Brang, David; Rouw, Romke; Ramachandran, V S; Coulson, Seana

    2011-04-01

    Grapheme-color synesthesia is a neurological condition in which viewing numbers or letters (graphemes) results in the concurrent sensation of color. While the anatomical substrates underlying this experience are well understood, little research to date has investigated factors influencing the particular colors associated with particular graphemes or how synesthesia occurs developmentally. A recent suggestion of such an interaction has been proposed in the cascaded cross-tuning (CCT) model of synesthesia, which posits that in synesthetes connections between grapheme regions and color area V4 participate in a competitive activation process, with synesthetic colors arising during the component-stage of grapheme processing. This model more directly suggests that graphemes sharing similar component features (lines, curves, etc.) should accordingly activate more similar synesthetic colors. To test this proposal, we created and regressed synesthetic color-similarity matrices for each of 52 synesthetes against a letter-confusability matrix, an unbiased measure of visual similarity among graphemes. Results of synesthetes' grapheme-color correspondences indeed revealed that more similarly shaped graphemes corresponded with more similar synesthetic colors, with stronger effects observed in individuals with more intense synesthetic experiences (projector synesthetes). These results support the CCT model of synesthesia, implicate early perceptual mechanisms as driving factors in the elicitation of synesthetic hues, and further highlight the relationship between conceptual and perceptual factors in this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Cholinesterase inhibitor use is associated with increased plasma levels of anti-Aβ 1-42 antibodies in Alzheimer's disease patients.

    Science.gov (United States)

    Conti, Elisa; Galimberti, Gloria; Tremolizzo, Lucio; Masetto, Alessandro; Cereda, Diletta; Zanchi, Clara; Piazza, Fabrizio; Casati, Marco; Isella, Valeria; Appollonio, Ildebrando; Ferrarese, Carlo

    2010-12-17

    Acetyl-cholinesterase inhibitors (AChEI) are drugs frequently prescribed for the treatment of Alzheimer's disease (AD), exerting an effect on cognition, as well as on behavioural and psychological symptoms of dementia and activities of daily living. The efficacy of AChEI may be ascribed not only to the activation of cholinergic transmission, but also to other mechanisms, among which a putative regulation of the immune response has already been hypothesized. In the present study, we evaluated, in a cross-sectional sample of 66AD patients and 48 healthy controls, the putative influence of AChEI on anti-Abeta 1-42 antibody plasma levels by ELISA assay. AD patients receiving AChEI therapy showed increased plasma levels of anti-Abeta 1-42 antibodies respect to untreated AD patients and antibodies levels similar to those of healthy controls, both before and after normalization by total IgG values. Our results support a potential role of AChEI in the modulation of the immune response against Abeta. We suggest that a strategy aimed at increasing the endogenous response against this peptide might represent an interesting therapeutic target to be further investigated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of single and binary combinations of plant-derived molluscicides on different enzyme activities in the nervous tissue of Achatina fulica.

    Science.gov (United States)

    Rao, I G; Singh, Amrita; Singh, V K; Singh, D K

    2003-01-01

    Effect of single and binary treatments of plant-derived molluscicides on different enzymes--acetylcholinesterase (AChE), lactic dehydrogenase (LDH) and acid/alkaline phosphatase (ACP/ALP)--in the nervous tissue of the harmful terrestrial snail Achatina fulica were studied. Sublethal in vivo 24-h exposure to 40% and 80% LC(50) of Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, Nerium indicum bark powder and binary combinations of A. sativum (AS) + C. deodara (CD) and CD + A. indica (AI) oils significantly altered the activity of these enzymes in the nervous tissue of Achatina fulica. The binary treatment of AS + CD was more effective against AChE, LDH, and ALP than the single ones. However, binary treatment of AI + CD was more effective against ALP. Copyright 2003 John Wiley & Sons, Ltd.

  10. Engaging narratives evoke similar neural activity and lead to similar time perception.

    Science.gov (United States)

    Cohen, Samantha S; Henin, Simon; Parra, Lucas C

    2017-07-04

    It is said that we lose track of time - that "time flies" - when we are engrossed in a story. How does engagement with the story cause this distorted perception of time, and what are its neural correlates? People commit both time and attentional resources to an engaging stimulus. For narrative videos, attentional engagement can be represented as the level of similarity between the electroencephalographic responses of different viewers. Here we show that this measure of neural engagement predicted the duration of time that viewers were willing to commit to narrative videos. Contrary to popular wisdom, engagement did not distort the average perception of time duration. Rather, more similar brain responses resulted in a more uniform perception of time across viewers. These findings suggest that by capturing the attention of an audience, narrative videos bring both neural processing and the subjective perception of time into synchrony.

  11. Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients

    Science.gov (United States)

    Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger

    2014-01-01

    Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870

  12. Evaluation of a clinic-based cholinesterase test kit for the Washington State Cholinesterase Monitoring Program.

    Science.gov (United States)

    Hofmann, Jonathan N; Carden, Angela; Fenske, Richard A; Ruark, Harold E; Keifer, Matthew C

    2008-07-01

    The Washington State Cholinesterase Monitoring Program for pesticide handlers requires blood draws at local clinics, with samples tested at a central laboratory. At present, workers with inhibited cholinesterase activity may be re-exposed before they can be removed from work. In this study we explored the option of on-site testing at local clinics using the EQM Test-mate Kittrade mark, a portable cholinesterase test kit. Test kit cholinesterase activity measurements were performed on 50 blood samples by our research staff, and compared to measurements on the same samples by the Washington State Public Health Laboratory. Another set of samples was also analyzed with the test kit by medical staff at an eastern Washington clinic. Triplicate measurements with the test kit had a 3.3% average coefficient of variation (CV) for plasma cholinesterase (PChE), and a 3.5% average CV for erythrocyte cholinesterase (AChE) measurements. The kit's PChE measurements were similar to PHL measurements (average ratio of 0.98) when performed in the laboratory, but had a tendency to underestimate activity when used in the clinic setting (average ratio of 0.87). The kit systematically overestimated AChE activity by 42-48% relative to the PHL measurements, regardless of where the samples were analyzed. This easy-to-use test kit appeared to be a viable method for clinic-based PChE measurements, but was less consistent for AChE measurements performed in the clinic. Absolute measurements with the kit need to be evaluated carefully relative to standardized methods. (c) 2008 Wiley-Liss, Inc.

  13. Effect of doxorubicin and daunorubicin on the activity of acetylcholinesterase in acute lymphoblastic leukamia

    International Nuclear Information System (INIS)

    Din, I.U.; Ali, A.

    2011-01-01

    Background: Our study was based on the alteration in the Michaelis Mentin parameters Apparent Michaelis Constant (aKm) and Apparent Maximum Velocity (aVm), which reflects activity of actyl cholinesterase (AChE). This activity decreases in Acute Lymphoblastic Leukaemia (ALL). This decrease in aKm and aVm values shows bad prognosis. Similarly the anticancer drugs like Daunorubicin and Doxorubicin further decreases the aKm and aVm values which worsen the prognosis. The objective of this study was to determine and compare the extent of inhibition of Acetylcholine Esterase by Daunorubicin and Doxorubicin in ALL. Methods: Study of 100 patients including both male and female children who's age ranged from 4 to 8 years and were advised doxorubicin and daunorubicin separately were tested by Ellman's method using acetylcholine iodide as substrate and 5,5-dithiobis 2-nitrobenzine as a colour reagent regardless of dose regimen i.e. (once in 3 week, small dose per week or a continuous infusion for 72 to 96 hours. Results: In this study the Michaelis Mentin parameters Apparent Michaelis Constant (aKm) and Apparent Maximum Velocity (aVm) of the enzyme were estimated both in normal individuals and in the patients and also during treatment with daunorubicin and doxorubicin. The value of Michaelis Mentin parameters, aKm, aVm and percentage activity of the enzyme in normal individual are 23, 70, and 100 respectively. The values of aKm, aVm and percentage activity of the enzyme were also estimated in the patients before and after treatment. The values of aKm and aVm in patients of acute lymphoblastic leukaemia and percentage activity of enzyme is decreased. After the treatment with daunorubicin and doxorubicin the values and activity is further decreased. Conclusion: We conclude that the drugs under study both decrease the enzyme activity but daunorubicin inhibits the enzyme more than doxorubicin. (author)

  14. Sublethal Effects of Insecticide Exposure on Megacopta cribraria (Fabricius) Nymphs: Key Biological Traits and Acetylcholinesterase Activity.

    Science.gov (United States)

    Miao, Jin; Reisig, Dominic D; Li, Guoping; Wu, Yuqing

    2016-01-01

    Megacopta cribraria F. (Hemiptera: Plataspidae), the kudzu bug, is an invasive insect pest of U.S. soybean. At present, insecticide application is the primary and most effective control option for M. cribraria In this study, the potential effects of sublethal and low-lethal concentrations (LC10 and LC40) of three common insecticides on key biological traits and acetylcholinesterase (AChE) activity of the treated nymphal stage of insect were assessed. The results show that the sublethal concentration of imidacloprid significantly reduced adult emergence rate of M. cribraria A low-lethal concentration of imidacloprid significantly increased nymphal development time, but significantly decreased adult emergence rate and adult longevity. Both sublethal and low-lethal concentrations of acephate caused an increase in nymphal development time and a reduction in adult emergence rate and adult longevity. Fecundity of females was significantly reduced only by exposure to low-lethal concentrations of acephate. Sublethal and low-lethal concentrations of bifenthrin increased nymphal development time, but significantly decreased adult emergence rate. In addition, we found that the AChE activity of M. cribraria was significantly increased only by LC40 imidacloprid, but strongly inhibited by acephate. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  15. Decay accelerating factor (DAF) is anchored to membranes by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Medof, M.E.; Haas, R.; Walter, E.I.; Rosenberry, T.L.

    1986-01-01

    Purified 70 kDa membrane (m) DAF incorporates into cells when added in vitro. A 2 kDa smaller DAF form which functions extrinsically like C4bp but is unable to incorporate can be isolated from urine (u). Because of common deficits of mDAF and acetylcholinesterase (AChE) in erythrocytes (E) of patients with paroxysmal nocturnal hemoglobinuria (PNH), mDAF was analyzed for a O-terminal glycolipid membrane anchor similar to that in E AChE. Incubation of E with phosphatidylinositol-specific phospholipase C, an enzyme which cleaves a similar glycolipid anchor in trypanosome variant surface glycoproteins (mfVSGs), released 20% of the DAF antigen. The released DAF species resembled uDAF in size, extrinsic model of C4b2a decay, and lack of hydrophobicity. Reductive radiomethylation of mDAF with [ 14 C]HCHO and NaCNBH 3 revealed ethanolamine and glucosamine in proportions similar to those in the E AChE glycolipid anchor. Papain cleavage of radiomethylated mDAF released the labeled ethanolamine and glucosamine in small O-terminal fragments from the residual DAF that retained N-terminal Asp. Following labeling of the anchors of mDAF and E AChE with the lipophilic photoreagent 3-trifluoromethyl-3-(m-[ 125 I]iodophenyl)diazirine, cleavage at the glucosamine residue by deamination quantitatively released the label from both proteins. Biosynthetic labeling of Hela cells with [ 3 H]ethanolamine resulted in rapid 3 H incorporation into both 48 kDa proDAF and 70 kDa mDAF. These data indicate that mDAF is anchored by a glycolipid similar to that in E AChE, mfVSGs and Thy-1 antigen and raise the possibility that a defect in the assembly or attachment of this structure could account for the deficits of mDAF and E AChE in PNH

  16. Diethyl 2-(Phenylcarbamoylphenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition

    Directory of Open Access Journals (Sweden)

    Jarmila Vinšová

    2014-05-01

    Full Text Available A new series of 27 diethyl 2-(phenylcarbamoylphenyl phosphorothioates (thiophosphates was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenylcarbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM. The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethylphenyl]carbamoyl}-phenyl O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition and comparable (for BChE inhibition activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.

  17. In vivo pharmacological characterization of (+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol hydrochloride (SIB-1553A), a novel cholinergic ligand: microdialysis studies.

    Science.gov (United States)

    Rao, Tadimeti S; Reid, Richard T; Correa, Lucia D; Santori, Emily M; Gardner, Michael F; Sacaan, Aida I; Lorrain, Daniel; Vernier, Jean-Michel

    2003-10-03

    SIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thiophenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which is active in rodent and primate models of cognition. In functional assays, SIB-1553A exhibits marked subtype selectivity for nAChRs as compared to nicotine. In addition SIB-1553A also exhibits affinities to histaminergic (H3) and serotonergic (5-HT1 and 5HT2) receptors and sigma binding sites. In the present investigation, we characterized SIB-1553A-induced neurotransmitter release in vivo. Following subcutaneous injection (s.c., 10 mg/kg), SIB-1553A rapidly entered the brain achieving concentration of approximately 20 microM 15 min post-injection and was eliminated from plasma with a terminal half-life of approximately 32 min. In freely moving rats, SIB-1553A (1-40 mg/kg, s.c.), markedly increased ACh release in the hippocampus and prefrontal cortex. In both regions, the magnitude of SIB-1553A-induced ACh release was greater than that seen with the prototypical nAChR agonist, nicotine (0.4 mg/kg, s.c.). Both isomers of SIB-1553A induced similar levels of increase in hippocampal ACh release. Increased hippocampal ACh release was also observed following oral administration of SIB-1553A (40 mg/kg) or after local perfusion into the hippocampus (1 mM). SIB-1553A-induced hippocampal ACh release was significantly attenuated by two nAChR antagonists, mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), and by the dopamine (DA) (D1) antagonist, SCH-23390, arguing that ACh release, in part, involves activation of nAChRs and a permissive DA synapse. In contrast to its robust effects on ACh release, SIB-1553A (40 mg/kg, s.c.) modestly increased striatal DA release (approximately 180% of baseline). Due to the proposed role of cholinergic pathways in learning and memory, the neurochemical profile of SIB-1553A suggests a potential for it to treat cognitive dysfunction.

  18. [Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica].

    Science.gov (United States)

    Zaĭtseva, O V; Kuznetsova, T V

    2008-01-01

    With the use of the histochemical procedure for the demonstration of acetylcholinesterase (AchE) activity, the distribution cholinergic regulatory elements was studied in the esophagus, the pharynx, the stomach, the liver (the digestive gland) and the intestine in sea and terrestrial gastropod molluscs that differed in their general organization level, lifestyle, habitat and feeding type. In both molluscs, all the parts of the digestive tract contained the significant amount of intraepithelial AchE-positive cells of the open type, single subepithelial neurons and the nervous fibers localized among the muscle cells of the wall of the organs. The basal processes of the AchE-positive intraepithelial cells were shown to form the intraepithelial nerve plexus and to pass under the epithelium. The peculiarities and common principles in the distribution of the nervous elements detected, their possible function and the regulatory role in the digestion in gastropod molluscs and other animals are discussed.

  19. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  20. Anti-stress and nootropic activity of drugs affecting the renin-angiotensin system in rats based on indirect biochemical evidence.

    Science.gov (United States)

    Anil Kumar, K V; Nagwar, Shrasti; Thyloor, Rama; Satyanarayana, Sreemantula

    2015-12-01

    Various stress hormones are responsible for bringing out stress-related changes and are implicated in learning and memory processes. The extensive clinical experience of angiotensin receptor blockers (ARBs) and direct renin inhibitor as antihypertensive agents provides anecdotal evidence of improvements in cognition. The neurochemical basis underlying the anti-stress and nootropic effects are unclear. This study was aimed to determine the effects of aliskiren, valsartan and their combination on the neuromediators of the central nervous system (CNS) and periphery as well as on cognitive function. Groups of rats were subjected to a forced swim stress for one hour after daily treatment with aliskiren, valsartan and their combination. The 24 h urinary excretion of vanillylmandellic acid (VMA), 5-hydroxyindoleacetic acid (5-HIAA), 6-β-hydroxycortisol (6-β-OH) cortisol and homovanillic acid (HVA) was determined in all groups under normal and stressed conditions. Nootropic activity was studied using cook's pole climbing apparatus and acetylcholinesterase (AChE) inhibitory activity by Ellman's method. Administration of aliskiren (10 mg/kg), valsartan (20 mg/kg) and their combination at a dose of 5 and 10 mg/kg respectively reduced the urinary metabolite levels. Further, all drugs showed significant improvement in scopolamine-impaired performance and produced inhibition of the AChE enzyme. The present study provides scientific support for the anti-stress and nootropic activities of aliskiren, valsartan and their combination. © The Author(s) 2014.

  1. When the World Changes in Your Hands: Similarity Ratings of Objects Morphing during Active Exploration

    Directory of Open Access Journals (Sweden)

    Haemy Lee

    2012-10-01

    Full Text Available View-based theories of object recognition posit that coherent object representations are formed by linking together successive views of an actively explored object. This linking process relies on the assumption that the object does not change during exploration. Here, we test how object representations might be influenced when the shape of the object changes slowly during exploration. In our experiment, participants rated the similarity of two novel, 3D objects, whose shape was parametrically defined. Seventeen participants explored each object for 10 sec on an iPad which afforded natural and efficient interaction. The experiment contained a baseline condition, in which two objects of varying parameter-differences were presented, and a morphing condition, in which the first of the two objects slowly morphed during active exploration, making the objects more similar. Interestingly, no participant was aware of this morphing manipulation. Comparing baseline and morph trials, however, we found significantly higher similarity ratings during morphing [F(1,16 = 84.79, p < .001]. Furthermore, correlations between similarity ratings and differences in object parameters were high for the baseline condition (r = −.64, with smaller parameter differences being perceived as more similar. Interestingly, in the morphing condition correlations were lower for parameter differences after the morph (r = −.22, but remained high for differences before (r = −.47 and during morphing (r = −.50. In conclusion, similarity ratings in the baseline condition captured the complex parameter space well. Although participants did not notice the changing shape, morphing did systematically bias the ratings. Interestingly, similarity judgments correlated better in the initial exploration phase, suggesting a capacity limit for view integration of complex shapes.

  2. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Soderman, A.; Spang-Thomsen, Mogens; Hansen, H.

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alp...

  3. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  4. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  5. Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer's disease.

    Science.gov (United States)

    Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio

    2002-10-03

    Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text

  6. Antidepressant Use is Associated with Increased Energy Intake and Similar Levels of Physical Activity

    Directory of Open Access Journals (Sweden)

    Elsbeth Jensen-Otsu

    2015-11-01

    Full Text Available Antidepressants have been associated with weight gain, but the causes are unclear. The aims of this study were to assess the association of antidepressant use with energy intake, macronutrient diet composition, and physical activity. We used data on medication use, energy intake, diet composition, and physical activity for 3073 eligible adults from the 2005–2006 National Health and Nutrition Examination Survey (NHANES. Potential confounding variables, including depression symptoms, were included in the models assessing energy intake, physical activity, and sedentary behavior. Antidepressant users reported consuming an additional (mean ± S.E. 215 ± 73 kcal/day compared to non-users (p = 0.01. There were no differences in percent calories from sugar, fat, or alcohol between the two groups. Antidepressant users had similar frequencies of walking or biking, engaging in muscle-strengthening activities, and engaging in moderate or vigorous physical activity. Antidepressant users were more likely to use a computer for ≥2 h/day (OR 1.77; 95% CI: 1.09–2.90, but TV watching was similar between the two groups. These results suggest increased energy intake and sedentary behavior may contribute to weight gain associated with antidepressant use. Focusing on limiting food intake and sedentary behaviors may be important in mitigating the weight gain associated with antidepressant use.

  7. Toxicological effect of herbicides (diuron and bentazon) on snake venom and electric eel acetylcholinesterase.

    Science.gov (United States)

    Ahmed, Mushtaq; Latif, Nadia; Khan, Rehmat Ali; Ahmad, Akhlaq

    2012-08-01

    The toxicological effects of the active ingredients of the herbicides diuron and bentazon on the activity of acetylcholinesterase (AChE) of krait (Bungarus sindanus) venom and electric eel (Electrophorus electricus) were studied. The diuron and entazon caused non-competitive inhibition of AChE from both species. For the venom AChE, the calculated IC50 for diuron and bentazon were found to be 3.25 and 0.14 μM, while for eel AChE, the respective IC50 values were 3.6 and 0.135 μM. In comparison, bentazon was a more potent inhibitor than diuron of AChE from both species. The insecticide lindane did not have any inhibitory effect on AChE activity in either species, even when tested at high concentrations (200-800 μM).

  8. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design

    Science.gov (United States)

    Howard, Brittany L.; Thompson, Philip E.; Manallack, David T.

    2011-08-01

    The similarity between Plasmodium falciparum phosphodiesterase enzymes ( PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.

  9. DMPD: Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18353649 Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activa...e IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? PubmedID... 18353649 Title Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Authors Chau

  10. Alteration of paraoxonase, arylesterase and lactonase activities in people around fluoride endemic area of Tamil Nadu, India.

    Science.gov (United States)

    Arulkumar, Mani; Vijayan, Raji; Penislusshiyan, Sakayanathan; Sathishkumar, Palanivel; Angayarkanni, Jayaraman; Palvannan, Thayumanavan

    2017-08-01

    Toxicity due to excess fluoride concentration in drinking water is of great concern in people who rely only on the ground water as their water source in many region of the world. We collected samples and examined the toxicity of fluoride in a population residing at Salem, Dharmapuri and Krishnagiri districts of Tamil Nadu, India and measured HDL bound enzyme (PON1), erythrocyte membrane bound enzymes (acetylcholinesterase, AChE) and adenosine 5' triphosphatase (ATPases), plasma enzyme (butyrylcholinesterase, BChE) and rate limiting enzyme in heme biosynthesis (delta aminolevulinic acid dehydratase, δ-ALAD) activities. In fluorosis patients, formation of lipid peroxidation product was more in erythrocytes than in plasma. The observation further revealed that there was 50% reduction in the activity of HDL bound anti atherogenic enzyme-paraoxonase (PON1). The activities of membrane bound and signaling enzymes (acetylcholinesterase - AChE and adenosine 5' triphosphatase - ATPase) of erythrocyte were also diminished. These results suggested that there was defectiveness in the signaling and energy metabolism in fluorosis patients. Altered isoenzyme pattern of lactate dehydrogenase (LDH) in fluorosis samples was observed. Furthermore, the result suggested that both the heart (LDH 1) and liver (LDH 5) were most affected by fluoride toxicity. The study also provided reference values for tests which are used to predict the severity of fluoride toxicity. The toxic effect of fluoride was due to the collective effects on vital protective system rather than single factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antioxidant and Acetylcholinesterase Inhibiting Activity of Several Aqueous Tea Infusions in vitro

    Directory of Open Access Journals (Sweden)

    Višnja Katalinić

    2008-01-01

    Full Text Available A study of antioxidant activity and acetylcholineste ase (AChE inhibitory activity of aqueous tea infusions prepared from walnut (Juglans regia L., peppermint (Mentha×piperita L., strawberry (Fragaria×ananassa L., lemon balm (Melissa officinalis L., sage (Salvia officinalis L., and immortelle (Helichrysum arenarium (L. Moench. is presented here. Chemical composition of selected aqueous tea infusions was determined by high-performance liquid chromatography with photodiode-array method (HPLC-PDA, and the following phenolic compounds were identified as dominant: rosmarinic acid, gallic acid (not identified in walnut and sage, caffeic acid (in sage and peppermint, neochlorogenic acid, 3-p-coumaroylquinic acid and quercetin 3-galactoside (in walnut and luteolin 7-O-glucoside (in sage. Antioxidant activity of the selected aqueous tea infusions was measured using low-density lipoprotein (LDL oxidation method, 2,2'-diphenyl-1-picrylhydrazyl (DPPH radical scavenging test, β-carotene bleaching method, and Rancimat method (induction period of lard oxidation. Strawberry and lemon balm aqueous infusions completely inhibited LDL oxidation at the concentration of 0.005 g/L in the reacting system. Very long prolongation of the lag phase was achieved with peppermint and sage aqueous infusions. All tested infusions in the concentration range of 0.05–2.85 g/L showed very pronounced effect of DPPH scavenging activity (90–100 % as well as the inhibition of β-carotene bleaching (89–100 %. In pure lipid medium, used in Rancimat method, sage and immortelle at the concentration of 0.16 % (by mass had the highest ability to inhibit lipid peroxidation process. Screening of the AChE inhibitory activity by Ellman´s method showed that the strongest inhibition was obtained with walnut and strawberry aqueous infusions at the concentration of 1.36 g/L in the reacting system. The presented results suggest that natural antioxidants could be useful and merit further

  12. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    Science.gov (United States)

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  13. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2016-01-01

    Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ.

  14. Activity changes of antioxidant and detoxifying enzymes in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae infected by the entomopathogenic nematode Heterorhabditis beicherriana (Rhabditida: Heterorhabditidae).

    Science.gov (United States)

    Li, Xingyue; Liu, Qizhi; Lewis, Edwin E; Tarasco, Eustachio

    2016-12-01

    Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis are lethal parasites of many insect species. To investigate defensive mechanisms towards EPNs in relation to antioxidative and detoxifying enzymes, we chose Tenebrio molitor (Coleoptera: Tenebrionidae) as experimental insect. We studied the activity changes of superoxide dismutases (SODs), peroxidases (PODs), and catalases (CATs), as well as tyrosinase (TYR), acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S-transferase (GSTs) for 40 h in T. molitor larvae infected with Heterorhabditis beicherriana infective juveniles (IJs) at 5 rates (0, 20, 40, 80, and 160 IJs/larva). We found that when T. molitor larvae infected with H. beicherriana at higher rates (80 and 160 IJs/larva), SOD activity quickly increased to more than 70 % higher than that control levels. The activities of POD and CAT increased after 24 h. TYR activity increased slowly at lower rates of infection for 16 h, followed by a slight decrease, and then increasing from 32 to 40 h. The other detoxifying enzymes (GST, CarE, and AChE) were enhanced at lower infection rates, but were inhibited at higher rates. Our results suggested that host antioxidative response and detoxification reactions played a central role in the defensive reaction to EPNs, and that this stress which was reflected by the higher level enzymes activity contributed to the death of hosts. Further study should explore the exact function of these enzymes using different species of EPNs and investigate the links between enzyme activity and host susceptibility to EPNs.

  15. Cholinesterase inhibitory activity and structure elucidation of a new phytol derivative and a new cinnamic acid ester from Pycnanthus angolensis

    Directory of Open Access Journals (Sweden)

    Taiwo O. Elufioye

    Full Text Available ABSTRACT The leaves of Pycnanthus angolensis (Welw. Warb., Myristicaceae, are used as memory enhancer and anti-ageing in Nigerian ethnomedicine. This study aimed at evaluating the cholinesterase inhibitory property as well as isolates the bioactive compounds from the plant. The acetylcholinesterase and butyrylcholinesterase inhibitory potentials of extracts, fractions, and isolated compounds were evaluated by colorimetric and TLC bioautographic assay techniques. The extract inhibited both enzymes with activity increasing with purification, ethyl acetate fraction being most active fraction at 65.66 ± 1.06% and 49.38 ± 1.66% against acetylcholinesterase and butyrylcholinesterase, respectively while the supernatant had 77.44 ± 1.18 inhibition against acetylcholinesterase. Two new bioactive compounds, (2E, 18E-3,7,11,15,18-pentamethylhenicosa-2,18-dien-1-ol (named eluptol and [12-(4-hydroxy-3-methyl-oxo-cyclopenta-1,3-dien-1yl-11-methyl-dodecyl](E-3-(3,4-dimethylphenylprop-2-enoate (named omifoate A were isolated from the plant with IC50 of 22.26 µg/ml (AChE, 34.61 µg/ml (BuChE and 6.51 µg/ml (AChE, 9.07 µg/ml (BuChE respectively. The results showed that the plant has cholinesterase inhibitory activity which might be responsible for its memory enhancing action, thus justifying its inclusion in traditional memory enhancing preparations

  16. Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model.

    Science.gov (United States)

    Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You

    2011-04-01

    Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain.

  17. Wnt3a induces the expression of acetylcholinesterase during osteoblast differentiation via the Runx2 transcription factor.

    Science.gov (United States)

    Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K

    2017-07-28

    Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide

    Directory of Open Access Journals (Sweden)

    Seda Onder

    2017-10-01

    Full Text Available Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE in human plasma and acetylcholinesterase (AChE solubilized from red blood cells (RBC. Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA with full activity and 10–15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  19. Chemical Composition, Antioxidant Capacity, Acetyl- and Butyrylcholinesterase Inhibitory Activities of the Essential Oil of Thymus haussknechtii Velen.

    Directory of Open Access Journals (Sweden)

    Handan G. Sevindik

    2016-01-01

    Full Text Available The chemical composition of the essential oil from the aerial parts of Thymus haussknechtii Velen. was analyzed by using gas chromatography (GC-FID and gas chromatography-mass spectrometry (GC-MS. The major component of the essential oil was thymol (52.2%. Total phenolic content of the essential oil was determined as 132.9 µg gallic acid equivalent. The antioxidant capacity was evaluated by DPPH free radical, superoxide anion radical and hydrogen peroxide scavenging activities along with ferrous ion-chelating power test, ABTS radical cation decolorization assay and ferric thiocyanate methods. In addition to antioxidant activity, anticholinesterase activity of the essential oil was also evaluated. It exhibited inhibitory activities on AChE and BuChE which play an important role in Alzheimer’s disease, along with significant antioxidant activity.

  20. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    Science.gov (United States)

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  1. Molecular modeling and anticholinesterasic activity of novel 2-arylaminocyclohexyl N,N-dimethylcarbamates

    Energy Technology Data Exchange (ETDEWEB)

    Bagatin, Mariane C.; Candido, Augusto A.; Basso, Ernani A.; Gauze, Gisele F., E-mail: gfgbandoch@uem.br [Universidade Estadual de Maringa (UEM), PR (Brazil). Departamento de Quimica; Pinheiro, Glaucia M. S.; Hoeehr, Nelci F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Ciencias Medicas. Departamento de Patologia Clinica; Machinski Junior, Miguel; Mossini, Simone A.G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Departamento de Ciencias Basicas da Saude

    2013-11-15

    This work reports a detailed theoretical and experimental study of the novel isomer series cis- and trans-2-arylaminocyclohexyl N,N-dimethylcarbamates as potential inhibitors of cholinesterases. In vitro inhibition assay by Ellman's method with human blood samples showed that the new carbamates are selective to the inhibition of enzyme butyrylcholinesterase (BuChE) with maximum inhibition of 90% and IC{sub 50} of 6 and 8 mmol L{sup -1} for the more actives compounds of the series. Molecular modeling studies point to significant differences for the conformations of the compounds in the active sites of enzymes BuChE and acetylcholinesterase (AChE). The results show that the compounds interact more effectively with the active site of enzyme BuChE since the carbamate group is close to the key residues of the catalytic triad. (author)

  2. Molecular modeling and anticholinesterasic activity of novel 2-arylaminocyclohexyl N,N-dimethylcarbamates

    International Nuclear Information System (INIS)

    Bagatin, Mariane C.; Candido, Augusto A.; Basso, Ernani A.; Gauze, Gisele F.; Pinheiro, Glaucia M. S.; Hoeehr, Nelci F.; Machinski Junior, Miguel; Mossini, Simone A.G.

    2013-01-01

    This work reports a detailed theoretical and experimental study of the novel isomer series cis- and trans-2-arylaminocyclohexyl N,N-dimethylcarbamates as potential inhibitors of cholinesterases. In vitro inhibition assay by Ellman's method with human blood samples showed that the new carbamates are selective to the inhibition of enzyme butyrylcholinesterase (BuChE) with maximum inhibition of 90% and IC 50 of 6 and 8 mmol L -1 for the more actives compounds of the series. Molecular modeling studies point to significant differences for the conformations of the compounds in the active sites of enzymes BuChE and acetylcholinesterase (AChE). The results show that the compounds interact more effectively with the active site of enzyme BuChE since the carbamate group is close to the key residues of the catalytic triad. (author)

  3. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds.

    Science.gov (United States)

    Pendota, S C; Aderogba, M A; Ndhlala, A R; Van Staden, J

    2013-07-09

    Buddleja salviifolia leaves are used for the treatment of eye infections and neurodegenerative conditions by various tribes in South Africa. This study was designed to isolate the phenolic constituents from the leaf extracts of Buddleja salviifolia and evaluate their antimicrobial and acetylcholinesterase (AChE) activities. Three phenolic compounds were isolated from the ethyl acetate fraction of a 20% aqueous methanol leaf extract of Buddleja salviifolia using Sephadex LH-20 and silica gel columns. Structure elucidation of the isolated compounds was carried out using spectroscopic techniques: mass spectrometry (ESI-TOF-MS) and NMR (1D and 2D). The extracts and isolated compounds were evaluated for antimicrobial and acetylcholinesterase activities using the microdilution technique. The bacteria used for the antimicrobial assays were Gram-positive Bacillus subtilis and Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The isolated compounds were characterized as: 4'-hydroxyphenyl ethyl vanillate (1) a new natural product, acteoside (2) and quercetin (3). The crude extract, fractions and the isolated compounds from the leaves of the plant exhibited a broad spectrum of antibacterial activity. The EtOAc fraction exhibited good activity against Bacillus subtilis and Staphylococcus aureus with MIC values ranging from 780.0 to 390.0 µg/mL. Isolated compound 2 exhibited good activity against Staphylococcus aureus with an MIC value of 62.5 µg/mL. The hexane and DCM fractions of leaves showed the best activity against Candida albicans with MIC and MFC values of 390.0 µg/mL. In the AChE inhibitory test, among the tested extracts, the hexane fraction was the most potent with an IC50 value of 107.4 µg/mL, whereas for the isolated compounds, it was compound (3) (quercetin) with an IC50 value of 66.8 µg/mL. Activities demonstrated by the extracts and isolated compounds support the ethnopharmacological use of Buddleja salviifolia against eye

  4. Methanol extract of grain dust shows complement fixing activity and other characteristics similar to tannic acid.

    Science.gov (United States)

    Skea, D; Broder, I

    1986-01-01

    We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479

  5. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  6. Activation of muscarinic M-1 cholinoceptors by curcumin to increase contractility in urinary bladder isolated from Wistar rats.

    Science.gov (United States)

    Cheng, Tse-Chou; Lu, Chih-Cheng; Chung, Hsien-Hui; Hsu, Chih-Chieh; Kakizawa, Nozomi; Yamada, Shizuo; Cheng, Juei-Tang

    2010-04-05

    Curcumin is an active principle contained in rhizome of Curcuma longa, and it has been recently mentioned to show affinity to muscarinic M-1 cholinoceptors (M(1)-mAChR). In the present study, we found that curcumin caused a concentration-dependent increase of muscle tone in urinary bladder isolated from Wistar rats. This action was inhibited by pirenzepine at concentration enough to block M(1)-mAChR. In radioligand-binding assay, specific binding of [(3)H]-oxotremorine (OXO-M) in the rat bladder homogenates was also displaced by curcumin in a concentration-dependent manner. In the presence of inhibitors for PLC-PKC pathway, either U73122 (phospholipase C inhibitor) or chelerythrine (protein kinase C inhibitor), curcumin-stimulated contraction in urinary bladder was markedly reduced. In conclusion, the obtained results suggest that curcumin can activate M(1)-mAChR at concentrations lower than to scavenge free radicals to increase of muscle tone in urinary bladder through PLC-PKC pathway.

  7. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    Full Text Available Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the

  8. Repetitive obidoxime treatment induced increase of red blood cell acetylcholinesterase activity even in a late phase of a severe methamidophos poisoning: A case report.

    Science.gov (United States)

    Steinritz, Dirk; Eyer, Florian; Worek, Franz; Thiermann, Horst; John, Harald

    2016-02-26

    Accidental self-poisoning or deliberate use in suicidal intent of organophosphorus pesticides (OPP), which are widely used in agriculture, represent a health problem worldwide. Symptoms of poisoning are characterized by acute cholinergic crisis caused by inhibition of acetylcholinesterase. A 75-year-old male patient ingested 20ml of an OPP solution containing 10% methamidophos in suicidal intent. In the course of poisoning typical clinical symptoms of cholinergic crisis (miosis, bradycardia, hypotension, hypersalivation and impairment of neurologic status) were evident. Butyryl (plasma) cholinesterase (BChE) and red blood cell acetylcholinesterase (RBC-AChE) revealed decreased activities, thus specific treatment with the enzyme reactivator obidoxime was started. Inhibitory activity of the patient's plasma indicated significant amounts of persisting methamidophos in the circulation and was still found on day 4 after ingestion. Due to missing spontaneous breathing on day 6, obidoxime was administered again. Afterwards a significant increase of RBC-AChE activity was found. The patient was extubated on day 10 and a restitution ad integrum was achieved. In conclusion, obidoxime is a potent reactivator of OPP-inhibited AChE. A repetitive and prolonged administration of obidoxime should be considered in cases of severe methamidophos poisoning and should be tailored with an advanced analytical biomonitoring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture

    Science.gov (United States)

    Wu, Jin; Jin, Tian; Wang, Hong; Li, Shi-Tong

    2016-01-01

    Background: The antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP). Methods: A total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction. Results: Four of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChET mRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET). Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the

  10. Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies.

    Science.gov (United States)

    AlRyalat, Saif Aldeen

    2017-01-01

    Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

  11. Neurotrophin-4 couples to locally modulated ACh release at the end of neuromuscular synapse maturation.

    Science.gov (United States)

    Garcia, N; Santafe, M M; Tomas, M; Lanuza, M A; Besalduch, N; Tomas, J

    2010-01-01

    We use immunocytochemistry to show that neurotrophin-4 (NT-4) and its receptor proteins (p75(NTR) and tropomyosin-related tyrosine kinase B) are present in neonatal neuromuscular junctions (NMJ) colocalized with several synaptic markers. NT-4 incubation (1h, in the range 2-12 nM) does not change the size of the endplate potential between P6 and P45. However, extended exposure (3h) to a relatively low dose of NT-4 (2 nM) potentiates ACh release (approx. 70%) in adult but not in neonatal muscles. The present results suggest that the developmental mechanism of axonal competition and neonatal elimination of redundant synapses cannot be modulated by added NT-4. However, this neurotrophin was able to modulate synaptic transmission locally in the adult NMJ.

  12. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: implications for monitoring and biomarker responses.

    Science.gov (United States)

    Abdel-Halim, K Y; Salama, A K; El-Khateeb, E N; Bakry, N M

    2006-06-01

    The study was carried out from spring 1999 to spring 2001 to monitor the residue levels of organophosphorus pollutants (OPP) in aquatic environment of the drainage canal surrounding a pesticide factory at Damietta Governorate. Water, sediment, and fish samples were collected at six different seasonal periods. OPPs were analyzed by GLC and confirmed using GC-MS. Chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon, pirimiphos-methyl and profenofos were detected in most samples. Chlorpyrifos was dominant in all water and sediment samples. It was ranged from 24.5 to 303.8 and 0.9 to 303.8 ppb in water and sediment samples, respectively. Diazinon level was slightly similar to chlorpyrifos in fish samples. Data based on the grand total concentration of OPP showed that the most polluted samples were collected either at spring 1999 or autumn 2000. They were 675.5 and 303.8 ppb in water samples and 43.0 and 52.2 ppb in fish collected at spring 1999 and autumn 2000, respectively. The obtained results are in parallel to that found in case of cholinesterase activity where the activity of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was declined at these seasonal period. The activity levels of AChE and BuChE were found to be 77.18% and 59.67% of control at spring 1999 and 78.62% and 85.80% of control, at autumn 2000, respectively. Thus, AChE and BuChE could be used as biomarkers for tracing and biomonitoring OPP pollution.

  13. Adult Congenital Heart Disease Patients Experience Similar Symptoms of Disease Activity.

    Science.gov (United States)

    Cedars, Ari M; Stefanescu Schmidt, Ada; Broberg, Craig; Zaidi, Ali; Opotowsky, Alexander; Grewal, Jasmine; Kay, Joseph; Bhatt, Ami B; Novak, Eric; Spertus, John

    2016-03-01

    There is a lack of objective data on the symptoms characterizing disease activity among adults with congenital heart disease (ACHD). The purpose of this study was to elicit the most important symptoms from patients across the spectrum of ACHD and to examine whether reported symptoms were similar across the spectrum of ACHD as a foundation for creating a patient-reported outcome measure(s). We constructed a 39-item survey using input from physicians specializing in ACHD to assess the symptoms patients associate with disease activity. Patients (n=124) prospectively completed this survey, and the results were analyzed based on underlying anatomy and disease complexity. A confirmatory cohort of patients (n=40) was then recruited prospectively to confirm the validity of the initial data. When grouped based on underlying anatomy, significant differences in disease-related symptom rankings were found for only 6 of 39 symptoms. Six symptoms were identified which were of particular significance to patients, regardless of underlying anatomy. Patients with anatomy of great complexity experienced greater overall symptom severity than those with anatomy of low or moderate complexity, attributable exclusively to higher ranking of 5 symptoms. The second patient cohort had symptom experiences similar to those of the initial cohort, differing in only 5 of 39 symptoms. This study identified 6 symptoms relevant to patients across the spectrum of ACHD and remarkable homogeneity of patient experience, suggesting that a single disease-specific patient-reported outcome can be created for quality and outcome assessments. © 2016 American Heart Association, Inc.

  14. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    Science.gov (United States)

    Phillips, Martin B.; Leonard, Jeremy A.; Grulke, Christopher M.; Chang, Daniel T.; Edwards, Stephen W.; Brooks, Raina; Goldsmith, Michael-Rock; El-Masri, Hisham; Tan, Yu-Mei

    2015-01-01

    Background Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. Objectives We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. Methods Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. Results Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. Conclusions The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 “low-priority” chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible “false negatives.” Citation Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ

  15. Activated Α7nachr Improves Postoperative Cognitive Dysfunction and Intestinal Injury Induced by Cardiopulmonary Bypass in Rats: Inhibition of the Proinflammatory Response Through the Th17 Immune Response

    Directory of Open Access Journals (Sweden)

    Keyan Chen

    2018-04-01

    Full Text Available Backgrund/Aims: To investigate the effects of activated α7 nicotinic acetylcholine receptor (α7nAChR on postoperative cognitive dysfunction (POCD and intestinal injury induced by cardiopulmonary bypass (CPB and its relationship with the Th17 response in order to provide a theoretical basis for organ protection and targeted drug therapy during the perioperative period. Methods: Sprague-Dawley rat models of CPB were established. Rat intestinal and brain injuries were observed after CPB using hematoxylin and eosin staining. Cell apoptosis was determined using terminal deoxynucleotidyl transferase dUTP nick end labeling. Inflammatory factors and markers of brain injury in rat serum were measured using enzyme-linked immunosorbent assay. The expression levels of Bcl-2, Bax, caspase-3, ZO-1, occludin, AQP4, RORγT, and α7nAchR were examined using western blotting. Transcription factor RORγT expression was determined using real-time fluorescent quantitative polymerase chain reaction. Th17 cells in the peripheral blood and spleen were determined using flow cytometry. α7nAchR knockout rats were established. The Th17 response in the peripheral blood and spleen of α7nAchR knockout rats was further verified using flow cytometry. Results: CPB can induce POCD and intestinal injury in rats. α7nAchR activation markedly reduced intestinal injury, POCD, neuronal apoptosis, proinflammatory factor expression, and number of CD4+IL-17+ cells. α7nAchR knockout significantly increased serum D-lactic acid, FABP2, S-100β, NSE, TNF-α, IL-6, and IL-17 secretion. The number of CD4+IL-17+ cells was also significantly increased. Conclusion: α7nAchR activation markedly ameliorates the intestinal injury and POCD induced by CPB. Inhibition of the Th17 immune response can reduce the proinflammatory response, which could provide a new method for clinical perioperative organ protection and targeted drug therapy.

  16. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS.

    Science.gov (United States)

    Krieg, Thomas; Qin, Qining; Philipp, Sebastian; Alexeyev, Mikhail F; Cohen, Michael V; Downey, James M

    2004-12-01

    In the rabbit heart, bradykinin and ACh trigger preconditioning by a mechanism involving ATP-sensitive potassium channel-dependent production of reactive oxygen species (ROS). Recent evidence indicates that the pathway by which bradykinin causes ROS generation includes nitric oxide synthase (NOS) and protein kinase G (PKG). On the other hand, Akt was shown to be essential for ACh to generate ROS. This study determines whether these two G-coupled receptor agonists indeed have similar signaling targets, i.e., whether Akt is involved in bradykinin's pathway and whether NOS is involved in ACh's pathway. Isolated adult rabbit cardiomyocytes were incubated for 15 min in reduced MitoTracker red, which becomes fluorescent only after exposure to ROS. Bradykinin (400 nM) and ACh (250 microM) caused a 51.4 +/- 14.8% and 39.8 +/- 11.7% increase, respectively, in ROS production (P hydrochloride (L-NIO, 5 microM). L-NIO also blocked the anti-infarct effect of ACh (550 microM) in isolated rabbit hearts exposed to 30 min of regional ischemia. We conclude that both bradykinin and ACh trigger ROS generation by sequentially activating Akt and NOS.

  17. DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark

    DEFF Research Database (Denmark)

    Rank, J.; Lehtonen, K. K.; Strand, J.

    2007-01-01

    of chemical pollution complex, as seen especially in the variability in results on DNA damage, and also in regard to AChE activity. These investigations further stress the importance of understanding the effects of natural factors (salinity, temperature, water levels, rain and storm events) in correct......Biomarkers of genotoxicity (DNA damage, measured as tail moment in the Comet assay), neurotoxicity (acetylcholinesterase inhibition, AChE) and general stress (lysosomal membrane stability, LMS) were studied in native and transplanted blue mussels (Mytilus edulis) in coastal areas of western Denmark...... potentially affected by anthropogenic pollution originating from chemical dumping sites. The results indicate responses to pollution in all the biomarkers applied at the suspected areas, but the results were not consistent. Seasonal fluctuations in exposure situations at the study sites make interpretation...

  18. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (Pcurcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna

    DEFF Research Database (Denmark)

    Trác, Ngoc Lâm; Andersen, Ole; Palmqvist, Annemette

    2016-01-01

    ; enzyme activities of acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione S-transferase (GST); and AChE gene expression. The results showed no difference in survival among equivalent integrated doses. Adverse sublethal effects were driven by exposure concentration rather than pulse...... duration. Specifically, short pulse exposure to a high concentration of malathion resulted in more immobilized daphnids, lower AChE and CbE activities, and a higher transcript level ofAChE gene compared with long pulse exposure to low concentration. The expression of the AChE gene was up...

  20. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target.

    Science.gov (United States)

    Kaufmann, Dorothea; Dogra, Anudeep Kaur; Wink, Michael

    2011-10-01

    Inhibition of acetylcholinesterase (AChE) is a common treatment for early stages of the most general form of dementia, Alzheimer's disease. In this study selected components of essential oils, which carry a variety of important functional groups, were tested for their in-vitro anti-acetylcholinesterase activity. In-vitro anti-acetylcholinesterase activity was measured by an adapted version of Ellman's colorimetric assay. 1,8-cineole, carvacrol, myrtenal and verbenone apparently inhibited AChE; the highest inhibitory activity was observed for myrtenal (IC50 = 0.17 mm). This is the first study showing the AChE inhibitory activity of myrtenal. Our investigations provided evidence for the efficacy of monoterpenes as inhibitors of AChE. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  1. Development of an in vitro potency assay for human skeletal muscle derived cells.

    Science.gov (United States)

    Thurner, Marco; Asim, Faheem; Garczarczyk-Asim, Dorota; Janke, Katrin; Deutsch, Martin; Margreiter, Eva; Troppmair, Jakob; Marksteiner, Rainer

    2018-01-01

    Potency is a quantitative measure of the desired biological function of an advanced therapy medicinal product (ATMP) and is a prerequisite for market approval application (MAA). To assess the potency of human skeletal muscle-derived cells (SMDCs), which are currently investigated in clinical trials for the regeneration of skeletal muscle defects, we evaluated acetylcholinesterase (AChE), which is expressed in skeletal muscle and nervous tissue of all mammals. CD56+ SMDCs were separated from CD56- SMDCs by magnetic activated cell sorting (MACS) and both differentiated in skeletal muscle differentiation medium. AChE activity of in vitro differentiated SMDCs was correlated with CD56 expression, fusion index, cell number, cell doubling numbers, differentiation markers and compared to the clinical efficacy in patients treated with SMDCs against fecal incontinence. CD56- SMDCs did not form multinucleated myotubes and remained low in AChE activity during differentiation. CD56+ SMDCs generated myotubes and increased in AChE activity during differentiation. AChE activity was found to accurately reflect the number of CD56+ SMDCs in culture, their fusion competence, and cell doubling number. In patients with fecal incontinence responding to SMDCs treatment, the improvement of clinical symptoms was positively linked with the AChE activity of the SMDCs injected. AChE activity was found to truly reflect the in vitro differentiation status of SMDCs and to be superior to the mere use of surface markers as it reflects not only the number of myogenic SMDCs in culture but also their fusion competence and population doubling number, thus combining cell quality and quantification of the expected mode of action (MoA) of SMDCs. Moreover, the successful in vitro validation of the assay proves its suitability for routine use. Most convincingly, our results demonstrate a link between clinical efficacy and the AChE activity of the SMDCs preparations used for the treatment of fecal

  2. Process control by optical emission spectroscopy during growth of a-C:H from a CH4 plasma by plasma-enhanced chemical vapour deposition

    DEFF Research Database (Denmark)

    Barholm-Hansen, C; Bentzon, MD; Vigild, Martin Etchells

    1994-01-01

    During the growth of a-C:H thin films for tribological applications, the characteristic optical emission from a CH4 plasma was used to estimate growth conditions such as the degree of dissociation of the feed gas, the deposition rate and the presence of impurities. Films were fabricated with vari...

  3. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease.

    Science.gov (United States)

    Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi

    2003-10-01

    Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).

  4. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Kumar, Amit; Pintus, Francesca; Di Petrillo, Amalia; Medda, Rosaria; Caria, Paola; Matos, Maria João; Viña, Dolores; Pieroni, Enrico; Delogu, Francesco; Era, Benedetta; Delogu, Giovanna L; Fais, Antonella

    2018-03-13

    Alzheimer's disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC 50 values of 6.23 μM and 3.57 μM, and a good antioxidant activity with EC 50 values 14.9 μM and 16.7 μM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.

  5. New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Maja Katalinić

    2017-07-01

    Full Text Available For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP-inhibited acetylcholinesterase (AChE and butyrylcholinesterase (BChE. In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3, derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease. Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.

  6. Synthesis and discovery of highly functionalized mono- and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors.

    Science.gov (United States)

    Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran

    2014-04-01

    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer's disease.

    Science.gov (United States)

    Zheng, Hailin; Fridkin, Mati; Youdim, Moussa B H

    2010-12-01

    chelators can modulate β-amyloid accumulation, protect against tau hyperphosphorylation, and block metal-related oxidative stress, and thereby hold considerable promise as effective anti-AD drugs. At present, a growing interest is focusing on increasing the efficacy and targeting of chelators through drug design. To this end, we have developed a new class of multifunctional prochelators from three FDA- approved drugs rasagiline, rivastigmine, and donepezil or tacrine. HLA20 A was designed by merging the important pharmacophores of rasagiline, rivastigmine, and donepezil into our newly developed multifunctional chelator HLA20. M30D was constructed using the key pharmacophoric moieties from rasagiline, rivastigmine, and tacrine. Experiments showed that both compounds possess potent anti-acetylcholinesterase (AChE) activity in vitro with weak inhibition of butyrylcholinesterase (BuChE), and without significant metal-binding activity. M30D was found also to be a highly potent MAO A inhibitor with moderate inhibition of MAO B in vitro. Both HLA20 and M30D can be activated by inhibition of AChE to release active chelators HLA20 and M30, respectively. HLA20 and M30 have been shown to be able to modulate amyloid precursor protein regulation and beta-amyloid reduction, suppress oxidative stress, and passivate excess metal ions (Fe, Cu, and Zn). Compared with the activated chelator HLA20 or M30, both HLA20A and M30D exhibited lower cytotoxicity in SH-SY5Y neuroblastoma cells, substantiating the prochelator strategy for minimizing toxicity associated with poor targeted chelators.

  8. Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: ghodselahi@ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vesaghi, M.A. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Gelali, A.; Zahrabi, H.; Solaymani, S. [Young Researchers Club, Islamic Azad University, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)

    2011-11-01

    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs - a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs - a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile indicates that Cu NPs and Ni NPs with fcc crystalline structure are formed in these films. Localized Surface Plasmon Resonance (LSPR) peak of Cu NPs is observed around 600 nm in visible spectra, which is widen and shifted to lower wavelengths as the thickness of Ni over layer increases. The variation of LSPR peak width correlates with conductivity variation of these bilayers. We assign both effects to surface electron delocalization of Cu NPs.

  9. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Pavlov, Valentin A.; Parrish, William R.; Rosas-Ballina, Mauricio; Ochani, Mahendar; Puerta, Margot; Ochani, Kanta; Chavan, Sangeeta; Al-Abed, Yousef; Tracey, Kevin J.

    2015-01-01

    The excessive release of cytokines by the immune system contributes importantly to the pathogenesis of inflammatory diseases. Recent advances in understanding the biology of cytokine toxicity led to the discovery of the “cholinergic anti-inflammatory pathway,” defined as neural signals transmitted via the vagus nerve that inhibit cytokine release through a mechanism that requires the alpha7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Vagus nerve regulation of peripheral functions is controlled by brain nuclei and neural networks, but despite considerable importance, little is known about the molecular basis for central regulation of the vagus nerve-based cholinergic anti-inflammatory pathway. Here we report that brain acetylcholinesterase activity controls systemic and organ specific TNF production during endotoxemia. Peripheral administration of the acetylcholinesterase inhibitor galantamine significantly reduced serum TNF levels through vagus nerve signaling, and protected against lethality during murine endotoxemia. Administration of a centrally-acting muscarinic receptor antagonist abolished the suppression of TNF by galantamine, indicating that suppressing acetylcholinesterase activity, coupled with central muscarinic receptors, controls peripheral cytokine responses. Administration of galantamine to α7nAChR knockout mice failed to suppress TNF levels, indicating that the α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of galantamine. These findings show that inhibition of brain acetylcholinesterase suppresses systemic inflammation through a central muscarinic receptor-mediated and vagal- and α7nAChR-dependent mechanism. Our data also indicate that a clinically used centrally-acting acetylcholinesterase inhibitor can be utilized to suppress abnormal inflammation to therapeutic advantage. PMID:18639629

  10. Antioxidant activity and cholinesterase inhibition studies of four flavouring herbs from Alentejo.

    Science.gov (United States)

    Arantes, Sílvia; Piçarra, Andreia; Candeias, Fátima; Caldeira, A Teresa; Martins, M Rosário; Teixeira, Dora

    2017-09-01

    Essential oils (EOs) and aqueous extracts of aerial parts of four aromatic species, Calamintha nepeta, Foeniculum vulgare, Mentha spicata and Thymus mastichina, from southwest of Portugal were characterised chemically and analysed in order to evaluate their antioxidant potential and cholinesterase inhibitory activities. The main components of EOs were oxygenated monoterpenes, and aqueous extracts were rich in phenol and flavonoid compounds. EOs and aqueous extracts presented a high antioxidant potential, with ability to protect the lipid substrate, free radical scavenging and iron reducing power. Furthermore, EOs and extracts showed AChE and BChE inhibitory activities higher than rivastigmine, the standard drug. Results suggested the potential use of EOs and aqueous extracts of these flavouring herbs as nutraceutical or pharmaceutical preparations to minimise the oxidative stress and the progression of degenerative diseases.

  11. Chemical Composition and Cholinesterase Inhibitory Activity of Different Parts of Daucus aristidis Coss. Essential Oils from Two Locations in Algeria

    OpenAIRE

    Mebarka Lamamra; Hocine Laouer; Smain Amira; Ilkay Erdogan Orhan; Fatma Sezer Senol; Betul Demirci; Salah Akkal

    2017-01-01

    The chemical composition of the essential oils obtained by hydrodistillation from the different parts of Daucus aristidis Coss. (syn. Ammiopsis aristidis Batt.) (Apiaceae) from two locations (Ghoufi and Bousaada) in East of Algeria, was investigated for the first time by GC and GC-MS and evaluated for their in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, the enzymes linked to Alzheimer’s disease, by a spectrophotometric method of Ellman using ELISA m...

  12. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  13. Plasma concentration of acetylcholine in young women

    International Nuclear Information System (INIS)

    Kawashima, K.; Oohata, H.; Fujimoto, K.; Suzuki, T.

    1987-01-01

    A sensitive and specific radioimmunoassay was applied to the determination of acetylcholine (ACh) in plasma. The concentration of ACh in plasma sampled from 32 young women was 456.1+-53.1 (mean +-S.E.M.) pg/ml. No significant correlations were observed between plasma concentrations of ACh and acetylcholinesterase (AChE) activity, or gonadal hormones. These data demonstrate that an amount of ACh measurable by radioimmunoassay is present in plasma and plasma ACh is not regulated by AChE activity and the menstrual cycle in young women. The origin and physiological as well as pathophysiological significance of ACh in plasma remain to be clarified. 13 refs. (Author)

  14. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    Science.gov (United States)

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  15. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts

    Directory of Open Access Journals (Sweden)

    Levi P. Machado

    Full Text Available Abstract Alzheimer's disease affects nearly 36.5 million people worldwide, and acetylcholinesterase inhibition is currently considered the main therapeutic strategy against it. Seaweed biodiversity in Brazil represents one of the most important sources of biologically active compounds for applications in phytotherapy. Accordingly, this study aimed to carry out a quantitative and qualitative assessment of Hypnea musciformis (Wulfen J.V. Lamouroux, Ochtodes secundiramea (Montagne M.A. Howe, and Pterocladiella capillacea (S.G. Gmelin Santelices & Hommersand (Rhodophyta in order to determine the AChE effects from their extracts. As a matter of fact, the O. secundiramea extract showed 48% acetylcholinesterase inhibition at 400 μg/ml. The chemical composition of the bioactive fraction was determined by gas chromatography–mass spectrometry (GC–MS; this fraction is solely composed of halogenated monoterpenes, therefore allowing assignment of acetylcholinesterase inhibition activity to them.

  17. Differential Expression of P450 Genes and nAChR Subunits Associated With Imidacloprid Resistance in Laodelphax striatellus (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhang, Yueliang; Liu, Baosheng; Zhang, Zhichun; Wang, Lihua; Guo, Huifang; Li, Zhong; He, Peng; Liu, Zewen; Fang, Jichao

    2018-05-28

    Imidacloprid is a key insecticide used for controlling sucking insect pests, including the small brown planthopper (Laodelphax striatellus, Fallén) (Hemiptera: Delphacidae), an important agricultural pest of rice. A strain of L. striatellus (YN-ILR) developed 21-fold resistance when selected with imidacloprid on a susceptible YN strain. An in vitro study on piperonyl butoxide synergism indicated that enhanced detoxification mediated by cytochrome P450s contributed to imidacloprid resistance to some extent, and multiple P450 genes showed altered expression in the imidacloprid-resistant YN-ILR strain compared with the susceptible YN strain (CYP425B1-CYP6BD10 had 1.51- to 11.45-fold higher expression, CYP4CE2-CYP4DD1V2 had 0.12- to 0.57-fold lower expression). While there were no mutations in target nicotinic acetylcholine receptor (nAChR) genes, subunits of Lsα1, Lsβ1, and Lsβ3 in the YN-ILR strain showed 3.86-, 4.39-, and 2.59-fold higher expression and Lsa8 displayed 0.38-fold lower expression than the YN strain. Moreover, 21-fold moderate imidacloprid resistance in individuals of L. striatellus did not produce a fitness cost. The findings suggest that L. striatellus has the capacity to develop resistance to imidacloprid through P450 detoxification and potential target nAChR expression changes, and moderate imidacloprid resistance was not associated with a fitness cost.

  18. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Lin, Yuehe

    2012-02-08

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

  19. Huperzine A Activates Wnt/β-Catenin Signaling and Enhances the Nonamyloidogenic Pathway in an Alzheimer Transgenic Mouse Model

    OpenAIRE

    Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You

    2011-01-01

    Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1...

  20. Changes in parasympathetic system in medulla oblongata in male pigs in the course of tachycardia-induced cardiomyopathy.

    Science.gov (United States)

    Tomaszek, Alicja; Kiczak, Liliana; Bania, Jacek; Krupa, Paweł; Pasławska, Urszula; Zacharski, Maciej; Janiszewski, Adrian; Stefaniak, Tadeusz; Zyśko, Dorota; Ardehali, Hossein; Jankowska, Ewa A; Ponikowski, Piotr

    2013-10-01

    Autonomic imbalance constituting a fundamental feature of heart failure (HF) has been assessed mainly at the periphery. Changes in the functioning of autonomic centers in the brain remain unclear. We investigated the molecular elements of parasympathetic system, i.e. α7 nicotinic acetylcholine receptor (α7nAChR) and enzymes metabolizing acetylcholine (acetylcholinesterase, AChE, choline acetyltransferase, ChAT) in medulla oblongata (MO) of male pigs with chronic tachycardia-induced cardiomyopathy. The mRNA levels of AChE, ChAT, α7nAChR and X-box binding protein 1 (spliced form, XBP1s) in MO were analyzed using qPCR, AChE and ChAT activities using spectrophotometry, proteasome activity using fluorometry, and the protein level of α7nAChR using Western blotting. The development of systolic HF was accompanied by an increase in circulating catecholamines, a decrease in the AChE and α7nAChR mRNA in MO, an increase in AChE activity (all pmedulla oblongata during the progression of systolic non-ischemic heart failure in male pigs, indicating a functional link between MO and heart in HF. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    Science.gov (United States)

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  2. Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Angela Marina Montalbano

    2016-01-01

    Full Text Available IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation, Bay11-7082 (inhibitor of IkBα phosphorylation, Hemicholinium-3 (HCh-3 (choline uptake blocker, and Tiotropium bromide (Spiriva® (anticholinergic drug was tested in our in vitro model. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.

  3. Blockade of muscarinic receptors impairs the retrieval of well-trained memory

    Directory of Open Access Journals (Sweden)

    Shogo eSoma

    2014-04-01

    Full Text Available Acetylcholine (ACh is known to play an important role in memory functions, and its deficit has been proposed to cause the cognitive decline associated with advanced age and Alzheimer’s disease (the cholinergic hypothesis. Although many studies have tested the cholinergic hypothesis for recently acquired memory, only a few have investigated the role of ACh in the retrieval process of well-trained cognitive memory, which describes the memory established from repetition and daily routine. To examine this point, we trained rats to perform a two-alternative forced-choice visual detection task. Each trial was started by having the rats pull upward a central-lever, which triggered the presentation of a visual stimulus to the right or left side of the display monitor, and then pulling upward a stimulus-relevant choice-lever located on both sides. Rats learned the task within 10 days, and the task training was continued for a month. Task performance was measured with or without systemic administration of a muscarinic ACh receptor (mAChR antagonist, scopolamine (SCOP, prior to the test. After 30 min of SCOP administration, rats stopped manipulating any lever even though they explored the lever and surrounding environment, suggesting a loss of the task-related associative memory. Three hours later, rats were recovered to complete the trial, but the rats selected the levers irrespective of the visual stimulus, suggesting they remembered a series of lever-manipulations in association with a reward, but not association between the reward and visual stimulation. Furthermore, an m1-AChR, but not nicotinic AChR antagonist caused a similar deficit in the task execution. SCOP neither interfered with locomotor activity nor drinking behavior, while it influenced anxiety. These results suggest that the activation of mAChRs at basal ACh levels is essential for the recall of well-trained cognitive memory.

  4. Polypyridylruthenium(II complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases.

    Directory of Open Access Journals (Sweden)

    Madhu K Sundaraneedi

    2017-12-01

    Full Text Available Schistosomiasis affects over 200 million people and there are concerns whether the current chemotherapeutic control strategy (periodic mass drug administration with praziquantel (PZQ-the only licenced anti-schistosome compound is sustainable, necessitating the development of new drugs.We investigated the anti-schistosome efficacy of polypyridylruthenium(II complexes and showed they were active against all intra-mammalian stages of S. mansoni. Two compounds, Rubb12-tri and Rubb7-tnl, which were among the most potent in their ability to kill schistosomula and adult worms and inhibit egg hatching in vitro, were assessed for their efficacy in a mouse model of schistosomiasis using 5 consecutive daily i.v. doses of 2 mg/kg (Rubb12-tri and 10 mg/kg (Rubb7-tnl. Mice treated with Rubb12-tri showed an average 42% reduction (P = 0.009, over two independent trials, in adult worm burden. Liver egg burdens were not significantly decreased in either drug-treated group but ova from both of these groups showed significant decreases in hatching ability (Rubb12-tri-68%, Rubb7-tnl-56% and were significantly morphologically altered (Rubb12-tri-62% abnormal, Rubb7-tnl-35% abnormal. We hypothesize that the drugs exerted their activity, at least partially, through inhibition of both neuronal and tegumental acetylcholinesterases (AChEs, as worms treated in vitro showed significant decreases in activity of these enzymes. Further, treated parasites exhibited a significantly decreased ability to uptake glucose, significantly depleted glycogen stores and withered tubercules (a site of glycogen storage, implying drug-mediated interference in this nutrient acquisition pathway.Our data provide compelling evidence that ruthenium complexes are effective against all intra-mammalian stages of schistosomes, including schistosomula (refractory to PZQ and eggs (agents of disease transmissibility. Further, the results of this study suggest that schistosome AChE is a target of

  5. Acetylcholinesterase triggers the aggregation of PrP 106-126

    International Nuclear Information System (INIS)

    Pera, M.; Roman, S.; Ratia, M.; Camps, P.; Munoz-Torrero, D.; Colombo, L.; Manzoni, C.; Salmona, M.; Badia, A.; Clos, M.V.

    2006-01-01

    Acetylcholinesterase (AChE), a senile plaque component, promotes amyloid-β-protein (Aβ) fibril formation in vitro. The presence of prion protein (PrP) in Alzheimer's disease (AD) senile plaques prompted us to assess if AChE could trigger the PrP peptides aggregation as well. Consequently, the efficacy of AChE on the PrP peptide spanning-residues 106-126 aggregation containing a coumarin fluorescence probe (coumarin-PrP 106-126) was studied. Kinetics of coumarin-PrP 106-126 aggregation showed a significant increase of maximum size of aggregates (MSA), which was dependent on AChE concentration. AChE-PrP 106-126 aggregates showed the tinctorial and optical amyloid properties as determined by polarized light and electronic microscopy analysis. A remarkable inhibition of MSA was obtained with propidium iodide, suggesting that AChE triggers PrP 106-126 and Aβ aggregation through a similar mechanism. Huprines (AChE inhibitors) also significantly decreased MSA induced by AChE as well, unveiling the potential interest for some AChE inhibitors as a novel class of potential anti-prion drugs

  6. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats.

    Science.gov (United States)

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-07-01

    To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation by ACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Intra-CA3 microinjection of ACh (2 μg/1 μl) or pilocarpine (2 μg/1 μl) decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID) of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl) produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  7. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  8. Endothelium-dependent hyperpolarization-related relaxations diminish with age in murine saphenous arteries of both sexes

    DEFF Research Database (Denmark)

    Chennupati, R.; Lamers, W. H.; Koehler, S. E.

    2013-01-01

    nitroprusside and to ACh in the absence of pharmacological inhibitors (indomethacin and L-NAME), were similar in all age groups and sexes, but those mediated by endothelium-derived NO were slightly but significantly increased in 64-week-old male mice. In the presence of inhibitors, 12-week-old animals showed...... pronounced ACh-induced relaxation, which was significantly reduced in 34- and 64-week-old mice of both sexes. The EDH-related component of ACh-induced relaxations was abolished by TRAM-34 (K(Ca)3.1 blocker) or UCL 1684 (K(Ca)2.3 blocker). Although the maximal relaxation induced by NS309 (K-Ca activator......) was not affected by aging, the sensitivity for NS309 significantly decreased with aging. The presence of SKA-31 (K-Ca modulator) potentiated relaxations induced by ACh in arteries of 12-week-old but not older mice. CONCLUSION AND IMPLICATIONS In a small muscular artery of mice of either sex, total endothelium...

  9. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying its Anti-amnesic Activity in Rodents

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-02-01

    Full Text Available Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. This investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities. Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice.  The effect of JB on acetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.  Results: JB was found to produce a signi.cant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a signi.cant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property.  In addition, it increased the defense armory of the brain tissues, as it signi.cantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and hippocampus

  10. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus).

    Science.gov (United States)

    Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu

    2015-04-01

    Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.

  11. Synthesis and Biological Evaluation of Novel Jatrorrhizine Derivatives with Amino Groups Linked at the 3-Position as Inhibitors of Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-01-01

    Full Text Available Jatrorrhizine was considered as one of the active constituents of Coptis chinensis Franch. Herein, jatrorrhizine derivatives with substituted amino groups linked at the 3-position were designed, synthesized, and biologically evaluated as inhibitors of acetylcholinesterase. Jatrorrhizine derivatives inhibited the activity of acetylcholinesterase (AChE to a greater extent than the lead compound jatrorrhizine. All these jatrorrhizine derivatives were proved to be potent inhibitors of acetylcholinesterase (AChE with submicromolar IC50 values, but less sensitive to butyrylcholinesterase (BuChE, which suggests that these jatrorrhizine derivatives are selective for AChE/BuChE. Compound 3g gave the most potent inhibitor activity for AChE (IC50 = 0.301 μM, which is greater than the lead compound jatrorrhizine. All these results demonstrated that these jatrorrhizine derivatives are potential inhibitors for AChE.

  12. Synthesis of some new 3-coumaranone and coumarin derivatives as dual inhibitors of acetyl- and butyrylcholinesterase.

    Science.gov (United States)

    Alipour, Masoumeh; Khoobi, Mehdi; Nadri, Hamid; Sakhteman, Amirhossein; Moradi, Alireza; Ghandi, Mehdi; Foroumadi, Alireza; Shafiee, Abbas

    2013-08-01

    A novel series of coumarin and 3-coumaranone derivatives encompassing the phenacyl pyridinium moiety were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity using Ellman's method. All compounds presented inhibitory activity against both AChE and BuChE in the micromolar range. The molecular docking simulations revealed that all compounds were dual binding site inhibitors of AChE. A kinetic study was performed and the mechanism of enzyme inhibition was proved to be of mixed type. All compounds were tested for their antioxidant activity and no significant activity was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Green-synthesized CdS nano-pesticides: Toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata.

    Science.gov (United States)

    Sujitha, Vasu; Murugan, Kadarkarai; Dinesh, Devakumar; Pandiyan, Amuthvalli; Aruliah, Rajasekar; Hwang, Jiang-Shiou; Kalimuthu, Kandasamy; Panneerselvam, Chellasamy; Higuchi, Akon; Aziz, Al Thabiani; Kumar, Suresh; Alarfaj, Abdullah A; Vaseeharan, Baskaralingam; Canale, Angelo; Benelli, Giovanni

    2017-07-01

    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC 50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC 50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC 50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of Cd

  14. Rapid Screening and Characterization of Acetylcholinesterase Inhibitors from Yinhuang Oral Liquid Using Ultrafiltration-liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry.

    Science.gov (United States)

    Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming

    2018-01-01

    At present, approximately 17-25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro . The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF-LC-ESI-MS/MS): ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry; (ACh

  15. Rapid Screening and Characterization of Acetylcholinesterase Inhibitors from Yinhuang Oral Liquid Using Ultrafiltration-liquid Chromatography-electrospray Ionization Tandem Mass Spectrometry

    Science.gov (United States)

    Zhang, Haomin; Guo, Yinan; Meng, Lingwen; Sun, Hui; Yang, Yinping; Gao, Ying; Sun, Jiaming

    2018-01-01

    Background: At present, approximately 17–25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. Objective: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration–liquid chromatography–electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). Materials and Methods: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. Results: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. Conclusion: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF

  16. Mercuric chloride-induced alterations of levels of noradrenaline, dopamine, serotonin and acetylcholine esterase activity in different regions of rat brain during postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmana, M.K. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India)); Desiraju, T. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India)); Raju, T.R. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India))

    1993-07-01

    Wistar rats were fed mercuric chloride, 4 mg/kg body weight per day chronically from postnatal day 2 to 60 by gastric intubation. Mercury consumption was then discontinued until 170 days to allow time for recovery. Since mercury caused reduction in body weight, an underweight group was also included besides the normal saline group. Levels of noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT) and the activity of acetylcholine esterase (AChE) were assayed in various brain regions in different age groups. By 60 days of age, the mercury group showed elevations of NA levels in olfactory bulb (OB), visual cortex (VC) and brain stem (BS) but not in striatumaccumbens (SA) and hippocampus (HI). DA levels were also increased in OB, HI, VC and BS but not in SA. AChE activity was decreased in the mercury group only in HI and VC at 20 days of age. The Mercury group showed no behavioural abnormality outwardly; however, operant conditioning relevated a dificiency in performance. Nevertheless, all these changes disappeared after discontinuation of mercury intake. Thus the changes occurring in the brain at this level of oral mercuric chloride intake seem to reflect adaptive neural mechanisms rather than pathological damage. (orig.)

  17. Japanese Encephalitis Virus Infection Results in Transient Dysfunction of Memory Learning and Cholinesterase Inhibition.

    Science.gov (United States)

    Chauhan, Prashant Singh; Khanna, Vinay Kumar; Kalita, Jayantee; Misra, Usha Kant

    2017-08-01

    Cholinergic system has an important role in memory and learning. Abnormal cognitive and behavioral changes have been reported in Japanese encephalitis (JE), but their basis has not been comprehensively evaluated. In this study, we report memory and learning and its association with acetylcholinesterase (AChE) activity, JE virus titer, and with histopathological observations in a rat model of JE. Wistar rats were intracerebrally inoculated on 12th day with 3 × 10 6  pfu/ml of JE virus. Memory and learning were assessed by the active and passive avoidance tests on 10, 33, and 48 days post inoculation (dpi). After 10, 33, and 48 dpi AChE activity, Japanese encephalitis virus (JEV) titer and histopathological changes were studied in the frontal cortex, thalamus, midbrain, cerebellum, and hippocampus. There was significant impairment in memory and learning on 10 dpi which started improving from 33 dpi to 48 dpi by active avoidance test. Passive avoidance test showed decrease in transfer latency time of retention trial compared to acquisition on first, second, and third retention day trial compared to controls. AChE inhibition was more marked in the hippocampus, frontal cortex, and cerebellum on 10 dpi. However, AChE activity started improving from 33 dpi to 48 dpi. AChE activity in the thalamus and midbrain correlated with active avoidance test on 10 dpi and 33 dpi. Histopathological studies also revealed improvement on 33 and 48 compared to 10 dpi. The present study demonstrates transient memory and learning impairment which was associated with reduction in AChE, JEV titer, and damage in different brain regions of JEV infected rats.

  18. High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor.

    Science.gov (United States)

    Coetzee, Dirk D; López, Víctor; Smith, Carine

    2016-01-11

    Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Fetal muscle-type nicotinic acetylcholine receptor activation in TE-671 cells and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E

    2013-01-01

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be attributable to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR, which results in the complete inhibition of fetal movement. However, pharmacological evidence of coniine actions at fetal muscle-type nAChR is lacking. The present study compared (-)-coniine, (+)-coniine, and nicotine for the ability to inhibit fetal movement in a day 40 pregnant goat model and in TE-671 cells that express fetal muscle-type nAChR. Furthermore, α-conotoxins (CTx) EI and GI were used to antagonize the actions of (+)- and (-)-coniine in TE-671 cells. (-)-Coniine was more effective at eliciting electrical changes in TE-671 cells and inhibiting fetal movement than was (+)-coniine, suggesting stereoselectivity by the receptor. The pyridine alkaloid nicotine did not inhibit fetal movement in a day 40 pregnant goat model, suggesting agonist specificity for the inhibition of fetal movement. Low concentrations of both CTxs potentiated the TE-671 cell response and higher concentrations of CTx EI, and GI antagonized the actions of both coniine enantiomers demonstrating concentration-dependent coagonism and selective antagonism. These results provide pharmacological evidence that the piperidine alkaloid coniine is acting at fetal muscle-type nAChR in a concentration-dependent manner.

  20. Antiinflammatory and neurological activity of pyrithione and related sulfur-containing pyridine N-oxides from Persian shallot (Allium stipitatum)

    DEFF Research Database (Denmark)

    Krejčová, Petra; Kučerová, Petra; Stafford, Gary Ivan

    2014-01-01

    ETHNOPHARMACOLOGICAL RELEVANCE: Persian shallot (Allium stipitatum) is a bulbous plant native to Turkey, Iran and Central Asia. It is frequently used in folk medicine for the treatment of a variety of disorders, including inflammation and stress. Antiinflammatory and neurological activities...... of pyrithione and four related sulfur-containing pyridine N-oxides which are prominent constituents of Allium stipitatum were tested. METHODS: The antiinflammatory activity was tested by the ability of the compounds to inhibit cyclooxygenase (COX-1 and COX-2), whereas the neurological activities were evaluated...... by assessing the compounds ability to inhibit monoamine oxidase-A (MAO-A) and acetylcholinesterase (AChE). The compounds׳ affinity for the serotonin transport protein (SERT) and the GABAA-benzodiazepine receptor were also investigated. RESULTS: 2-[(Methylthio)methyldithio]pyridine N-oxide showed very high...