WorldWideScience

Sample records for silver-containing wound dressings

  1. Comparison of DNA Damage and Apoptosis Induced By Silver Nanoparticle-containing Dressing Materials During Wound Healing.

    Science.gov (United States)

    Choi, Young Suk; Gwak, Heui-Chul; Park, Jae Keun; Lim, Ji Yun; Yeo, Eui Dong; Park, Eunseok; Kim, Junyong; Lee, Young Koo

    2018-04-13

    Silver nanoparticle (AgNP)-containing dressings are used worldwide for the treatment of wounds; however, many studies have indicated that AgNPs are toxic to humans and cause cell death, primarily via apoptosis. In this study, the investigators compare the apoptotic effects of various AgNP dressing materials, with the hypothesis that nanosilver would be less toxic than ionic silver. For the in vivo experiments, Sprague-Dawley (SD) and streptozotocin (STZ)-induced diabetic rats were treated with 5 dressing materials: Aquacel Ag (product A, silver ion; ConvaTec, Berkshire, UK), Acticoat (product B, AgNP; Smith & Nephew, Fort Worth, TX), Medifoam Silver (product C, silver ion; Genewel Science Co Ltd, Seongnam, South Korea), PolyMem Silver (product D, AgNP; Ferris Mfg Corp, Fort Worth, TX), and Vaseline-impregnated dressing gauze (control; Unilever, London, UK). All treatments were applied 3 times per week. After 14 days of treatment, the SD and STZ rats were euthanized, and wound samples were examined for apoptosis. The analysis included immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Western blotting, and reverse transcription polymerase chain reaction for a semiquantitative evaluation of apoptosis. The AgNP-containing dressing materials were more cytotoxic than the silver dressings. Compared with the AgNP dressing materials, no significant levels of apoptotic factors were observed in the silver dressing-treated wounds. The TUNEL staining showed that product C-dressed wounds contained the most apoptotic cells, while some apoptotic cells were observed in product B-dressed wounds. Moreover, apoptotic gene expression was altered, including a decline in B-cell lymphoma-2 and activation of caspase-3. This was most evident in wounds treated with product C. Interestingly, apoptotic gene expression was not induced in product A-treated wounds. Finally, product D had a relatively lower silver concentration and was less toxic

  2. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds.

    Science.gov (United States)

    Dharmshaktu, Ganesh Singh; Singhal, Aanshu; Pangtey, Tanuja

    2016-01-01

    A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  3. Colloidal silver-based nanogel as nonocclusive dressing for multiple superficial pellet wounds

    Directory of Open Access Journals (Sweden)

    Ganesh Singh Dharmshaktu

    2016-01-01

    Full Text Available A good dressing is mandatory to an uncomplicated wound healing, especially when foreign particles contaminate the wound. Various forms of dressing preparations are available for use and differ in chemical composition and efficacy. Silver has been a known agent with good antimicrobial and healing properties and recent times has seen an upsurge in various silver-based dressing supplements. We describe our report of use and efficacy of a silver nanoparticle- based gel dressing in the healing of multiple superficial firearm pellet wounds.

  4. Topical silver for preventing wound infection

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Vos, Cornelis G.; Ubbink, Dirk T.; Vermeulen, Hester

    2010-01-01

    BACKGROUND: Silver-containing treatments are popular and used in wound treatments to combat a broad spectrum of pathogens, but evidence of their effectiveness in preventing wound infection or promoting healing is lacking. OBJECTIVES: To establish the effects of silver-containing wound dressings and

  5. Fabrication of Antibacterial Wound Dressings from Silk Fibroin and Silver Nano particles

    International Nuclear Information System (INIS)

    Uttayarat, P.; Jetawattana, S.; Suwanmala, P.; Eamsiri, J.; Pongpat, S.

    2011-06-01

    Full text: Patients with burn wounds that cover large body surface area are susceptible to infection which can lead to fatality. Wound dressings or skin grafts are needed to cover the wound during the regeneration of new skin tissue. The aim of this research is to fabricate antibacterial wound dressings from silk fibroin derived from the natural silk cocoon and silver nanoparticles (AgNPs) prepared by gamma irradiation. Fibroin mats composed of nonwoven fibers with diameter of 670± 11.5 nm were fabricated by electro spinning. Using gamma irradiation, the starting silver nitrate solution was reduced to colloidal AgNPs. The fibroin mats were coated with AgNPs at various AgNP concentration and then evaluated for their antibacterial property by disc diffusion test. The concentration of colloidal AgNP solution ≤ 1 mM was found to be as sufficient in inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus as commercial wound dressings embedded with silver ions. These results demonstrate that electro spun fibroin mats coated with AgNPs exhibite antibacterial property and can be further developed for the treatment of burn wounds

  6. Comparison of two silver dressings for wound management in pediatric burns.

    Science.gov (United States)

    Jester, Ingo; Bohn, Ingo; Hannmann, Thorsten; Waag, Karl-Ludwig; Loff, Steffan

    2008-11-01

    Purpose. Silver wound dressings are widely used in the treatment of burns. Dressings differ in material characteristics, various antimicrobial activities, and ease of use. The purpose of this study was to evaluate both dressing performance and amount of pain during the dressing changes of 2 silver dressings Urgotul SSD® (Laboratoires Urgo, Chenove, France), and Contreet Ag® (Coloplast, Minneapolis, MN) in children. A retrospective cohort study was performed with 2 groups of 20 burns treated with Urgotul SSD and Contreet Ag until the wounds were healed or grafted. Seventy dressing changes in the Contreet Ag group and 67 dressing changes in the Urgotul group were evaluated. Every dressing change was assessed regarding the dressing performance (exudate, adherence, bleeding, and dressing application/removal), and pain. Pain was "absent or slight" in 61 (92%) dressing changes with Urgotul SSD, and in 60 (85%) of the dressing changes with Contreet Ag. Dressing application in the Urgotul group was more often "very easy" (n = 33; 49%) or "easy" (n = 32; 48%) than in the Contreet Ag group, "very easy" (n = 25; 35%), and "easy" (n = 42; 60%). Contreet Ag had a greater ability to absorb exudate ("very good" n = 60; 85%, and "good" n = 11; 15%) than Urgotul SSD ("very good" n = 34; 51%, and "good" n = 13; 19%). Urgotul SSD and Contreet Ag are comparable regarding pain during dressing change. The dressings differ in their ability to absorb exudate and ease of application. Both dressings provided nearly painless wound management, and therefore were highly accepted by the nurses and especially the children being treated.

  7. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax.

    Science.gov (United States)

    Cencetti, C; Bellini, D; Pavesio, A; Senigaglia, D; Passariello, C; Virga, A; Matricardi, P

    2012-10-15

    Silver-loaded dressings are designed to provide the same antimicrobial activity of topical silver, with the advantages of a sustained silver release and a reduced number of dressing changes. Moreover, such type of dressing must provide a moist environment, avoiding fiber shedding, dehydration and adherence to the wound site. Here we describe the preparation of a novel silver-loaded dressing based on a Gellan/Hyaff(®) (Ge-H) non woven, treated with a polyvinyl alcohol (PVA)/borax system capable to enhance the entrapment of silver in the dressing and to modulate its release. The new hydrophilic non woven dressings show enhanced water uptake capability and slow dehydration rates. A sustained silver release is also achieved. The antibacterial activity was confirmed on Staphylococcus aureus and Pseudomonas aeruginosa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Use of a new silver barrier dressing, ALLEVYN Ag in exuding chronic wounds.

    LENUS (Irish Health Repository)

    Kotz, Paula

    2009-06-01

    Recognising and managing wounds at risk of infection is vital in wound management. ALLEVYN Ag dressings have been designed to manage exudate in chronic wounds that are at risk of infection; are displaying signs of local infection; or where a suspected increase in bacterial colonisation is delaying healing. They combine an absorbent silver sulfadiazine containing hydrocellular foam layer, with a perforated wound contact layer and highly breathable top film. The results presented are from a multi-centre clinical evaluation of 126 patients conducted to assess the performance of ALLEVYN Ag (Adhesive, Non Adhesive and Sacrum dressings) in a range of indications. Clinicians rated the dressings as acceptable for use in various wound types in 88% of patients. The majority of clinical signs of infection reduced between the initial and the final assessment. The condition of wound tissue and surrounding skin was observed to improve, and there was significant evidence of a reduction in the level of exudate from initial to final assessment (p < 0.001). Clinicians rated ALLEVYN Ag as satisfying or exceeding expectations in over 90% of patients. The evaluation showed the dressings to offer real benefits to patients and clinicians across multiple indications when used in conjunction with local protocols.

  9. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    Directory of Open Access Journals (Sweden)

    Hu G

    2012-05-01

    Full Text Available Gangfeng Hu,1 Luwei Xiao,2 Peijian Tong,2 Dawei Bi,1 Hui Wang,1 Haitao Ma,1 Gang Zhu,1 Hui Liu21The First People’s Hospital of Xiaoshan, Hangzhou, China; 2Zhejiang Traditional Chinese Medical University, Hangzhou, ChinaAbstract: Nanoporous bioglass containing silver (n-BGS was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT and activated partial thromboplastin time (APTT, indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage.Keywords: antibacterial, bioglass, cytotoxicity, dressing, hemostasis, nanopore, silver

  10. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Wen

    2015-06-01

    Full Text Available Silver sulfadiazine (SSD particles in homogeneous dispersion state were prepared by an ultrasonic method and then nano- and microparticles were separated using centrifugation. SSD particles with narrow size distribution were impregnated with bacterial cellulose (BC to produce BC–SSD composite membrane used as burn wound dressing. A scanning electron microscope (SEM was used to examine the surface morphology of BC–SSD membranes. The incorporation of SSD in BC–SSD was confirmed by X-ray diffraction (XRD. Antimicrobial tests in vitro indicated that BC–SSD showed excellent antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The effects of BC–SSD on burn wound healing were assessed by rat models. The comparative study confirmed that the wound treated with BC–SSD showed high healing rate. The bacteria count in BC–SSD group was far less than control group. Histological analysis showed that epithelialization progressed better in wound treated with BC–SSD. These values demonstrated that the BC–SSD composite membrane could be a promising wound dressing for burn.

  11. Silver-Collagen Dressing and High-voltage, Pulsed-current Therapy for the Treatment of Chronic Full-thickness Wounds: A Case Series.

    Science.gov (United States)

    Zhou, Kehua; Krug, Kenneth; Stachura, John; Niewczyk, Paulette; Ross, Michael; Tutuska, Justine; Ford, Gregory

    2016-03-01

    Research suggests high-voltage, pulsed-current electric therapy (HVPC) is safe and effective for treating chronic wounds, and some data suggest silver- and collagen-based dressings may facilitate healing. A combination therapy utilizing both HVPC and silver-collagen dressing may present clinical advantages. To explore the effect of the combined therapy for chronic full-thickness wounds, a prospective, consecutive case series study was conducted. All participants were adults with wounds of at least 6 weeks' duration. After obtaining informed consent, patient and wound characteristics were obtained, wounds were assessed and measured, and patients received 2 to 3 HVPC treatments per week followed by application of the silver- and collagen-based dressing for a period of 2 weeks. Data were analyzed descriptively, and changes in wound size and volume from baseline were analyzed using Wilcoxon Signed Rank Test. The dressings were saturated with normal saline, used simultaneously during the 45-minute HVPC treatment, and left on top of the wound after treatment. The HVPC electro pads (stainless steel electrodes with a sponge interface) also were moistened with normal saline and the cathode placed on top of the wound. If the patient had more than 1 wound on the same leg, the anode was placed on the additional wound (otherwise over the intact skin nearby). Secondary dressings (eg, foam and/ or gauze) were used as clinically appropriate, and a 4-layer compression wrap was used, if indicated, for patients with venous ulcers. Ten (10) patients (3 women, 7 men, 57.30 ± 9.70 years old with 14 wounds of 273.10 ± 292.03 days' duration before study) completed the study and were included in the final analyses. Average wound surface area decreased from 13.78 ± 21.35 cm(2) to 9.07 ± 16.81 cm(2) (42.52% ± 34.16% decrease, P = 0.002) and wound volume decreased from 3.39 ± 4.31 cm(3) to 1.28 ± 2.25 cm(3) (66.84% ± 25.07% decrease, P = 0.001). One (1) patient was discharged with

  12. Preparation of silver-chitosan nanocomposites and coating on bandage for antibacterial wound dressing application

    Energy Technology Data Exchange (ETDEWEB)

    Susilowati, Endang, E-mail: endwati@yahoo.co.id; Ashadi [Chemistry Education Department, Faculty of Teacher Training and Education, Universitas Sebelas Maret Surakarta (Indonesia); Maryani [Medical Doctor Program, Faculty of Medicine, Universitas Sebelas Maret Surakarta, Indonesia Jl. Ir Sutami 36 A Surakarta Indonesia 53126 (Indonesia)

    2016-02-08

    Bandage is a medical device that is essential for wound dressing. To improve the performance of the bandage, it has been coated by silver-chitosan nanocomposites (Ag/Chit) with pad-dry-cure method. The nanocomposites were performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO{sub 3}) as metal precursor and chitosan as stabilizing agent. Localized surface plasmon resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The bandage coated Ag/Chit nanocomposites (B-Ag/Chit) were characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, antibacterial activity of the bandage toward Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) were also studied. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 412.2 – 423.2 nm. Coating of nanocomposite cause increasing rigidity of bandage and decreasing on crystallinity. The bandages of B-Ag/Chit demonstrated good activity against both Gram positive (S. aureus) and Gram negative (E.Coli). Thus the bandages have a potential to be used for antibacterial wound dressing application.

  13. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing

    International Nuclear Information System (INIS)

    Luan, Jiabin; Wu, Jian; Zheng, Yudong; Wang, Guojie; Guo, Jia; Ding, Xun; Song, Wenhui

    2012-01-01

    Silver sulfadiazine (SSD) is a useful antimicrobial agent for wound treatment. However, recent findings indicate that conventional SSD cream has several drawbacks for use in treatments. Bacterial cellulose (BC) is a promising material for wound dressing due to its outstanding properties of holding water, strength and degradability. Unfortunately, BC itself exhibits no antimicrobial activity. A combination of SSD and BC is envisaged to form a new class of wound dressing with both antimicrobial activity and biocompatibility, which has not been reported to date. To achieve antimicrobial activity, SSD particles were impregnated into BC by immersing BC into SSD suspension after ultrasonication, namely SSD–BC. Parameters influencing SSD–BC impregnation were systematically studied. Optimized conditions of sonication time for no less than 90 min and the proper pH value between 6.6 and 9.0 were suggested. The absorption of SSD onto the BC nanofibrous network was revealed by XRD and SEM analyses. The SSD–BC membranes exhibited significant antimicrobial activities against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus evaluated by the disc diffusion method. In addition, the favorable biocompatibility of SSD–BC was verified by MTT colorimetry, epidermal cell counting method and optical microscopy. The results demonstrate the potential of SSD–BC membranes as a new class of antimicrobial and biocompatible wound dressing. (paper)

  14. Effectiveness of Aloe Vera gel compared with 1% silver sulphadiazine cream as burn wound dressing in second degree burns.

    Science.gov (United States)

    Shahzad, Muhammad Naveed; Ahmed, Naheed

    2013-02-01

    To assess the efficacy of Aloe Vera gel compared with 1% silver sulfadiazine cream as a burn dressing for the treatment of superficial and partial thickness burns. This Interventional Comparative study was carried out at the Burn unit and Plastic surgery department, Nishtar Hospital Multan, Pakistan from July 2008 to December 2010. A total of 50 patients with superficial and partial thickness burns were divided into two equal groups randomly by consecutive sampling method, one group was dressed with Aloe Vera gel while the other was treated with 1% silversulphadiazine cream, and the results regarding duration of wound epithelialization, pain relief and cost of treatment were compared. In patients treated with Aloe Vera gel, healing of burn wounds were remarkably early than those patients treated with 1% silver sulfadiazine. All the patients of Aloe Vera group were relieved of pain earlier than those patients who were treated with SSD. Thermal burns patients dressed with Aloe Vera gel showed advantage compared to those dressed with SSD regarding early wound epithelialization, earlier pain relief and cost-effectiveness.

  15. A comparative study to evaluate the effect of honey dressing and silver sulfadiazene dressing on wound healing in burn patients

    Directory of Open Access Journals (Sweden)

    Baghel P

    2009-01-01

    Full Text Available To compare the effect of honey dressing and silver-sulfadiazene (SSD dressing on wound healing in burn patients. Patients (n=78 of both sexes, with age group between 10 and 50 years and with first and second degree of burn of less than 50% of TBSA (Total body surface area were included in the study, over a period of 2 years (2006-08. After stabilization, patients were randomly attributed into two groups: ′honey group′ and ′SSD group′. Time elapsed since burn was recorded. After washing with normal saline, undiluted pure honey was applied over the wounds of patients in the honey group (n=37 and SSD cream over the wounds of patients in SSD group (n=41, everyday. Wound was dressed with sterile gauze, cotton pads and bandaged. Status of the wound was assessed every third and seventh day and on the day of completion of study. Patients were followed up every fortnight till epithelialization. The bacteriological examination of the wound was done every seventh day. The mean age for case (honey group and control (SSD group was 34.5 years and 28.5 years, respectively. Wound swab culture was positive in 29 out of 36 patients who came within 8 hours of burn and in all patients who came after 24 hours. The average duration of healing in patients treated with honey and SSD dressing at any time of admission was 18.16 and 32.68 days, respectively. Wound of all those patients (100% who reported within 1 hour became sterile with honey dressing in less than 7 days while none with SSD. All of the wounds became sterile in less than 21 days with honey, while tthis was so in only 36.5% with SSD treated wounds. The honey group included 33 patients reported within 24 hour of injury, and 26 out of them had complete outcome at 2 months of follow-up, while numbers for the SSD group were 32 and 12. Complete outcome for any admission point of time after 2 months was noted in 81% and 37% of patients in the honey group and the SSD group. Honey dressing improves wound

  16. A comparative study to evaluate the effect of honey dressing and silver sulfadiazene dressing on wound healing in burn patients

    OpenAIRE

    Baghel, P. S.; Shukla, S.; Mathur, R. K.; Randa, R.

    2009-01-01

    To compare the effect of honey dressing and silver-sulfadiazene (SSD) dressing on wound healing in burn patients. Patients (n=78) of both sexes, with age group between 10 and 50 years and with first and second degree of burn of less than 50% of TBSA (Total body surface area) were included in the study, over a period of 2 years (2006-08). After stabilization, patients were randomly attributed into two groups: ?honey group? and ?SSD group?. Time elapsed since burn was recorded. After washing wi...

  17. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    International Nuclear Information System (INIS)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-01-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  18. Chitosan–aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound

    Energy Technology Data Exchange (ETDEWEB)

    Phaechamud, Thawatchai, E-mail: thawatchaienator@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Yodkhum, Kotchamon, E-mail: marskotchamon@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Charoenteeraboon, Juree, E-mail: juree@su.ac.th [Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000 (Thailand); Tabata, Yasuhiko, E-mail: yasuhiko@frontier.kyoto-u.ac.jp [Department of Biomaterials, Field of tissue engineering, Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507 (Japan)

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan–aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days

  19. [ALEA study. Treatment of chronic wounds infected by the application of silver dressings nanocrystalline combined with dressings hydrocellular].

    Science.gov (United States)

    Verdú Soriano, José; Nolasco Bonmati, Andreu

    2010-10-01

    This study was conducted with the objective to assess, in real clinical conditions in primary care and geriatric centers, application and utility of nanocrystalline silver dressings dressings combined with hydrocellular in relation to the development during 20 shifts dressing or complete healing of the characteristics of the lesions included in the study Prospective observational multicenter open, repeated measures. It could include injuries of different etiologies (pressure ulcers stage 11-111, lower limb and traumatic wounds or surgical origin), with clinical signs of local infection (at least three of the following: redness, purulent discharge, heat, edema and pain). Only one wound was included per patient. An analysis of effectiveness by intention to treat all lesions included. We recruited 103 patients who met the inclusion criteria but were collected in which 77 patients were used for nanocrystalline silver dressings in some phase of the study, They had a median of 80 years of age and 58.4% were women. By type of injury: 53.2% pressure ulcers, 31.2% lower extremity ulcers and 14.3% traumatic or surgical wounds. Over 50% of the lesions was older than eight months and a larger area of 22.75 cm2. At first, 70.1% had redness, purulent discharge 64.9%, 37.7% heat edema 42.9% and 65.8% pain. Remained in the study a median of 42.5 days at a rate of change of dressing every 2.5. During this time in 96.1% of the lesions were removed for clinical signs of local infection in a statistically significant (p < or = 0.001). 27.3% healed from injuries and those not healed, 92.9% experienced improvement, and its healing curves were statistically significant (p < 0.05). 92.2% of clinicians assessed treatment with these products as good or excellent. The use of the products used in this study consistent with the concept and PLH TIME, has proved useful in this type of injury reducing the clinical signs of infection, promoting granulation tissue and necrotic removing the burden

  20. Qualitative bacteriology in malignant wounds- a prospective, randomized, clinical study to compare the effect of honey and silver dressings

    DEFF Research Database (Denmark)

    Lund-Nielsen, Betina; Adamsen, Lis; Gottrup, Finn

    2011-01-01

    ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ Between 5% and 10% of cancer patients develop malignant wounds. In vitro and some clinical studies suggest that silver- or honey-coated dressings may have an antibacterial effect in nonmalignant wounds, but their possible antibacterial effect in malignant wounds remains unknown. ...

  1. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    International Nuclear Information System (INIS)

    Velázquez-Velázquez, Jorge Luis; Santos-Flores, Andrés; Araujo-Meléndez, Javier; Sánchez-Sánchez, Roberto; Velasquillo, Cristina; González, Carmen; Martínez-Castañon, Gabriel; Martinez-Gutierrez, Fidel

    2015-01-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment

  2. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Velázquez-Velázquez, Jorge Luis [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico); Santos-Flores, Andrés; Araujo-Meléndez, Javier [Servicio de Epidemiología del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosí (Mexico); Sánchez-Sánchez, Roberto; Velasquillo, Cristina [Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación (Mexico); González, Carmen [Laboratorio de Fisiología Celular, Facultad de Ciencias Químicas, UASLP (Mexico); Martínez-Castañon, Gabriel [Maestría en Ciencias Odontológicas Facultad de Estomatología, UASLP (Mexico); Martinez-Gutierrez, Fidel, E-mail: fidel@uaslp.mx [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico)

    2015-04-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment.

  3. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.

    Science.gov (United States)

    Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin

    2014-02-15

    Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Combined use of an ibuprofen-releasing foam dressing and silver dressing on infected leg ulcers

    DEFF Research Database (Denmark)

    Jorgensen, B.; Gottrup, F.; Karlsmark, T.

    2008-01-01

    OBJECTIVE: To investigate the effect and safety of an ibuprofen-releasing foam (Biatain-Ibu, Coloplast A/S) combined with an ionised silver-releasing wound contact layer (Physiotulle Ag, Coloplast A/S) on painful, infected venous leg ulcers. METHOD: This open non-comparative study involved 24...... patients with painful, exuding, locally infected, and stalled venous leg ulcers. Persistent pain and pain at dressing change were monitored using a 11-point numerical box scale (NBS). The composition of the wound bed, the dressing combination's ability to absorb exudate and minimise leakage, ibuprofen...... dressing application, the mean concentration of ibuprofen in the wound exudate reached a constant level of 35 +/- 21 microg/ml.After 31 days, the relative wound area had reduced by 42%, with an associated decrease in fibrin and an increase in granulation tissue.The number of patients with wound malodour...

  5. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    International Nuclear Information System (INIS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-01-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39–132 kg mol −1 . Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm −3 , that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby–Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain. - Highlights: • Radiation synthesis of bioactive hydrogel wound dressing based on PVP. • Sol-gel analysis, radiation yield of crosslinking and degradation, gel fraction.

  6. Chitosan-aluminum monostearate composite sponge dressing containing asiaticoside for wound healing and angiogenesis promotion in chronic wound.

    Science.gov (United States)

    Phaechamud, Thawatchai; Yodkhum, Kotchamon; Charoenteeraboon, Juree; Tabata, Yasuhiko

    2015-05-01

    There are many factors that delay healing in chronic wounds including lowering level of growth factors and increasing exudate level comprising high amount of tissue destructive enzymes. Asiaticoside possesses interesting wound healing and angiogenic activities that are employed to stimulate tissue regeneration in wound healing application. This study attempted to develop chitosan-aluminum monostearate (Alst) composite sponge containing asiaticoside for use as an absorbent medical dressing in chronic wound. N-methyl-2-pyrrolidone (NMP) was used to enhance homogeneity of asiaticoside in the polymer composite matrix. The sponge dressings were prepared by lyophilization and dehydrothermal treatment (DHT). Functional group interaction, crystallinity, and morphology of the prepared sponges were investigated using FT-IR, PXRD, and SEM, respectively. Physicochemical properties, porosity, hydrophilic/hydrophobic properties and mechanical property, were evaluated. Wound dressing properties, water vapor transmission rate (WVTR), fluid absorbency, oxygen permeation (OP), and bio-adhesive property, were investigated. In vitro asiaticoside release study was conducted using immersion method. Cytotoxicity was studied in normal human dermal fibroblast (NHDF) and normal human epidermal keratinocyte (NHEK). Angiogenic activity of asiaticoside was evaluated using chick-chorioallantoic membrane (CAM) assay. FT-IR and PXRD results revealed the amidation after DHT to enhance the crystallinity of the prepared sponges. The prepared sponges had high porosity comprising high Alst-loaded amount that exhibited more compact structure. Alst enhanced hydrophobicity therefore it reduced the fluid absorption and WVTR together with bio-adhesion of the prepared sponge dressings. Porosity of all sponges was more than 85% therefore resulting in their high OP. Enhancing hydrophobicity of the material by Alst and more homogeneity caused by NMP eventually retarded the asiaticoside release for 7 days. The

  7. An open, parallel, randomized, comparative, multicenter study to evaluate the cost-effectiveness, performance, tolerance, and safety of a silver-containing soft silicone foam dressing (intervention) vs silver sulfadiazine cream.

    Science.gov (United States)

    Silverstein, Paul; Heimbach, David; Meites, Herbert; Latenser, Barbara; Mozingo, David; Mullins, Fred; Garner, Warren; Turkowski, Joseph; Shupp, Jeffrey; Glat, Paul; Purdue, Gary

    2011-01-01

    An open, parallel, randomized, comparative, multicenter study was implemented to evaluate the cost-effectiveness, performance, tolerance, and safety of a silver-containing soft silicone foam dressing (Mepilex Ag) vs silver sulfadiazine cream (control) in the treatment of partial-thickness thermal burns. Individuals aged 5 years and older with partial-thickness thermal burns (2.5-20% BSA) were randomized into two groups and treated with the trial products for 21 days or until healed, whichever occurred first. Data were obtained and analyzed on cost (direct and indirect), healing rates, pain, comfort, ease of product use, and adverse events. A total of 101 subjects were recruited. There were no significant differences in burn area profiles within the groups. The cost of dressing-related analgesia was lower in the intervention group (P = .03) as was the cost of background analgesia (P = .07). The mean total cost of treatment was $309 vs $513 in the control (P < .001). The average cost-effectiveness per treatment regime was $381 lower in the intervention product, producing an incremental cost-effectiveness ratio of $1688 in favor of the soft silicone foam dressing. Mean healing rates were 71.7 vs 60.8% at final visit, and the number of dressing changes were 2.2 vs 12.4 in the treatment and control groups, respectively. Subjects reported significantly less pain at application (P = .02) and during wear (P = .048) of the Mepilex Ag dressing in the acute stages of wound healing. Clinicians reported the intervention dressing was significantly easier to use (P = .03) and flexible (P = .04). Both treatments were well tolerated; however, the total incidence of adverse events was higher in the control group. The silver-containing soft silicone foam dressing was as effective in the treatment of patients as the standard care (silver sulfadiazine). In addition, the group of patients treated with the soft silicone foam dressing demonstrated decreased pain and lower costs associated

  8. In Vitro Evaluation of the Antimicrobial Effectiveness and Moisture Binding Properties of Wound Dressings

    Directory of Open Access Journals (Sweden)

    Teerapol Srichana

    2010-08-01

    Full Text Available A variety of silver-coated dressings and some impregnated with other chemicals are now available in the market; however, there have been few studies analyzing their comparative efficacies as antimicrobial agents. Moreover, their properties for retaining an appropriate level of moisture that is critical for effective wound healing have never been reported. Five commercially available silver-containing and chlorhexidine dressings, Urgotul SSD®, Bactigras®, Acticoat®, Askina Calgitrol Ag® and Aquacel Ag®, were tested to determine their comparative antimicrobial effectiveness in vitro against five common wound pathogens, namely methicillin-sensitive and -resistant Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa. Mepitel®, a flexible polyamide net coated with soft silicone, was used as a control. The zones of inhibition and both the rapidity and the extent of killing of these pathogens were evaluated. All five antimicrobial dressings investigated exerted some bactericidal activity, particularly against E. coli. The spectrum and rapidity of action ranged widely for the different dressings. Acticoat® had a broad spectrum of action against both Gram-positive and -negative bacteria. Other dressings demonstrated a narrower range of bactericidal activities. Regarding the absorption and release of moisture, Askina Calgitrol Ag® absorbed and released the most moisture from the environment. Aquacel Ag® also exhibited good moisture absorption and moisture release, but to a lower degree. The other tested dressings absorbed or released very little moisture. Askina Calgitrol Ag® and Aquacel Ag® are good alternative dressings for treating wounds with high exudates and pus. An understanding of the characteristics of these dressings will be useful for utilizing them for specific requirements under specified conditions.

  9. Nanosilver-Silica Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings.

    Science.gov (United States)

    Mosselhy, Dina A; Granbohm, Henrika; Hynönen, Ulla; Ge, Yanling; Palva, Airi; Nordström, Katrina; Hannula, Simo-Pekka

    2017-09-06

    Infected superficial wounds were traditionally controlled by topical antibiotics until the emergence of antibiotic-resistant bacteria. Silver (Ag) is a kernel for alternative antibacterial agents to fight this resistance quandary. The present study demonstrates a method for immobilizing small-sized (~5 nm) silver nanoparticles on silica matrix to form a nanosilver-silica (Ag-SiO₂) composite and shows the prolonged antibacterial effects of the composite in vitro. The composite exhibited a rapid initial Ag release after 24 h and a slower leaching after 48 and 72 h and was effective against both methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli ( E . coli ). Ultraviolet (UV)-irradiation was superior to filter-sterilization in retaining the antibacterial effects of the composite, through the higher remaining Ag concentration. A gauze, impregnated with the Ag-SiO₂ composite, showed higher antibacterial effects against MRSA and E . coli than a commercial Ag-containing dressing, indicating a potential for the management and infection control of superficial wounds. Transmission and scanning transmission electron microscope analyses of the composite-treated MRSA revealed an interaction of the released silver ions with the bacterial cytoplasmic constituents, causing ultimately the loss of bacterial membranes. The present results indicate that the Ag-SiO₂ composite, with prolonged antibacterial effects, is a promising candidate for wound dressing applications.

  10. Cost-Effectiveness Analysis in Comparing Alginate Silver Dressing with Silver Zinc Sulfadiazine Cream in the Treatment of Pressure Ulcers

    Directory of Open Access Journals (Sweden)

    Apirag Chuangsuwanich

    2013-09-01

    Full Text Available BackgroundThe treatment of pressure ulcers is complicated, given the various wound dressing products available. The cost of different treatments varies and the cost-effectiveness of each product has not been thoroughly evaluated. We compare two wound dressing protocols-alginate silver dressing (AlSD and silver zinc sulfadiazine cream (AgZnSD with regard to wound healing and cost-effectiveness.MethodsPatients with grade III or IV sacral or trochanteric pressure ulcers were eligible for this prospective, randomized controlled trial. The patients were randomized to receive one of the two dressings for an eight-week period. The criteria of efficacy were based on the Pressure Ulcer Scale for Healing (PUSH scoring tool. The cost of treatment was also assessed.ResultsTwenty patients (12 women and 8 men were randomly assigned to receive either AlSD (n=10 or AgZnSD cream (n=10. The demographic data and wound characteristics were comparable in the two groups. The two groups showed no significant difference in the reduction of PUSH score, wound size, or volume of exudate. The tissue type score was significantly lower in the AlSD group (3.15±0.68-1.85±0.68 vs. 2.73±0.79-2.2±0.41; P=0.015. The cost of treatment was significantly lower in the AlSD group (377.17 vs. 467.74 USD, respectively; P<0.0001.ConclusionsAlginate silver dressing could be effectively used in the treatment of grade III and IV pressure ulcers. It can improve wound tissue characteristics and is cost-effective.

  11. Healing wounds - radiation processing technology for hydrogel dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2009-01-01

    Uses of hydrogels are known and have several applications in medical field. Drug delivery devices, contact lenses, wound dressing, artificial cartilage's or membranes, vascular prosthesis, gel coated catheters etc., are some of the examples. Due to direct relevance to human health, scientists have been continuously exploring these systems. Generally, hydro (water) gels contain 30-90% of water entrapped in a three dimensional network structure of a hydrophilic polymer. The large water content makes them highly bio-compatible and therefore preferred for use as biomaterials. Some of the hydrophilic polymers used in these applications include poly (vinyl pyrrolidone), poly (ethylene oxide), poly (vinyl alcohol) and poly (acrylic acid ). Depending upon the nature of application, the size of these hydrogel can vary from nanometers (nanogels, injectable hydrogels) to centimeters to meters (wound dressing, fire blankets, drug delivery devices and implants). BARC hydrogel dressings have been so far used for treating burns, leprosy ulcers, animal bites, diabetic foot ulcers, herpes, fresh scars, bullet injuries, boils, pimples, sun burns, abrasion, surgical wounds of breast cancer, as bolus for radiation therapy in cancer etc. The use of gels have shown excellent result in diabetic ulcers which definitely provides an alternate to expensive biotech products and relief to expanding population of diabetics in India. Its application and some of the examples are shown in the paper. Other hydrogel based products which are under development in the authors laboratory are radiation processed silver nano-particle hydrogels to treat infected wounds and fire blankets for whole body coverage for protection from fire for defense personnel and fire service people

  12. Early use of negative pressure therapy in combination with silver dressings in a difficult breast abscess.

    Science.gov (United States)

    Richards, Alastair J; Hagelstein, Sue M; Patel, Girish K; Ivins, Nicola M; Sweetland, Helen M; Harding, Keith G

    2011-12-01

    Combining silver-based dressings with negative pressure therapy after radical excision of chronically infected breast disease is a novel application of two technologies. One patient with complex, chronic, infected breast disease underwent radical excision of the affected area and was treated early with a combination of silver-based dressings and topical negative pressure therapy. The wound was then assessed sequentially using clinical measurements of wound area and depth, pain severity scores and level of exudation. It is possible to combine accepted techniques with modern dressing technologies that result in a positive outcome. In this case, the combination of a silver-based dressing with negative pressure therapy following radical excision proved safe and was well tolerated by the patient. Full epithelisation of the wound was achieved and there was no recurrence of the infection for the duration of the treatment. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  13. Preparation and characterization of novel wound dressing based on silver nanoparticle-impregnated bacterial cellulose and bacterial cellulose-aloe vera

    International Nuclear Information System (INIS)

    Ventigan, Sarla V.; Santiago, Karen S.; Balitaan, Jolleen Natalie I.

    2015-01-01

    Ideal wound dressings stimulate wound healing, control unpleasant odors, and provide antimicrobial action in wounds. However, most traditional wound dressings such as gauze and biological dressings exhibit exudate leaking which increases the risk of infection and delayed wound healing of tissues. This study aims to develop and characterize a bio-composite of bacterial cellulose and aloe vera having the ideal features of a wound dressing from Acetobacter xylinum-activated culture medium supplemented with various aloe vera concentrations from )-50% (v/v) and the film which exhibits the most uniform results is used for the incorporation of silver nanoparticle as an antibacterial agent. The biopolymer composites of bacterial cellulose and aloe vera were developed by adding 0-50% aloe vera (v/v) in the A. xylinum-activated coconut water medium during biosynthesis in static cultivation for 10 days. The films obtained after drying the membranes were named as bacterial cellulose-aloe vera (BC-A) films. The moisture content of films reached 99% which indicates that the films may be suitable for providing a moist environment to facilitate wound healing fast. With the addition of aloe vera up to 30% (v/v) during BC synthesis, it resulted in a significant improvement in the water absorption capacity of the films showing a WAC ration of 36.46 (r.s.d.= 12.17%, n=3) compared to the unmodified film having a ratio of 9.03 (r.s.d.= 13.95%, n=3). However, the addition of aloe vera at a concentration greater than 30% (v/v) resulted in a decrease in pellicle formation which can be observed from the very weak properties of the films. The BC-A (30%) displayed significantly improved in comparison to the unmodified BC film. Also, it is capable of absorbing high amount of water than its weight and can act as a potential wound dressing which reduces irritation and inflammation. (author)

  14. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrogel wound dressing and burn dressing. 878.4022 Section 878.4022 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Hydrogel wound dressing and burn dressing. (a) Identification. A hydrogel wound dressing is a sterile or...

  15. The accelerating effect of chitosan-silica hybrid dressing materials on the early phase of wound healing.

    Science.gov (United States)

    Park, Ji-Ung; Jung, Hyun-Do; Song, Eun-Ho; Choi, Tae-Hyun; Kim, Hyoun-Ee; Song, Juha; Kim, Sukwha

    2017-10-01

    Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1828-1839, 2017. © 2016 Wiley Periodicals, Inc.

  16. The Use of Vacuum-Assisted Closure and GranuFoam Silver® Dressing in the Management of Diabetic Foot Ulcer.

    Science.gov (United States)

    Günal, Özgür; Tuncel, Umut; Turan, Aydin; Barut, Sener; Kostakoglu, Naci

    2015-10-01

    The aim of this retrospective study was to evaluate the efficacy of vacuum-assisted closure (VAC) and GranuFoam Silver® dressing (KCI, San Antonio, TX) compared with conventional GranuFoam® dressing in the management of diabetic foot ulcers. Twenty-one consecutive patients treated with conventional or silver-coated foam dressing were reviewed retrospectively. The wound duration was 6 mo. Group 1 (n=10) received conventional foam dressing (GranuFoam) and group 2 (n=11) received silver-coated foam dressing (GranuFoam Silver). The wound surface area, duration of treatment, bacteriology, and recurrence were compared between the groups. The mean age of the patients was 61.70±10.52 y in group 1 and 67.27±11.28 y in group 2. In group 1, the average surface area of the wounds was 45.30±46.96 cm2 and 18.40±23.48 cm2 in the pre-treatment and post-treatment periods, respectively. There was a statistically significant difference between two measurements (p=0.005). Average duration of the treatment was 25.50±27.13 d in this group. In group 2, average surface area of the wounds in the pre-treatment and post-treatment periods were 41.55±36.03 cm2 and 7.64±3.91 cm2, respectively. There was a statistically significant difference between two measurements (p=0.003). Average duration of the treatment was 10.09±3.51 d in this group. The patients treated with silver-impregnated polyurethane foam dressing had reduced recurrence (2 vs. 7 wounds, p=0.030) and increased number of the culture-negative cases at the end of the treatment. With the results of the study, it was concluded that VAC GranuFoam silver dressing can be superior to conventional GranuFoam dressing in reducing the recurrence rate of infected diabetic foot ulcers.

  17. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo

    International Nuclear Information System (INIS)

    Wu, Jian; Zheng, Yudong; Wen, Xiaoxiao; Lin, Qinghua; Chen, Xiaohua; Wu, Zhigu

    2014-01-01

    Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing. (paper)

  18. Antimicrobial wound dressing films containing essential oils and oleoresins of pepper encapsulated in sodium alginate films

    Directory of Open Access Journals (Sweden)

    Jessica Miranda Rosa

    2018-03-01

    Full Text Available ABSTRACT: Medicated wound dressings are important barriers to avoid contamination and, when they contain antimicrobial additives, can be used as treatment for infected wounds. There are several types of polysaccharide materials that serve as matrices for medicated wound dressings, among them, sodium alginate. For the preparation of the films studied in this paper, sodium alginate was employed in combination with essential oils/oleoresins (EO/OL of six peppers that are commonly used in cooking. The EO/OL were incorporated at three different concentrations (low, intermediate and high. Most of the films prepared had better dispersion of the EO/OL at the intermediate concentration. All films studied in this research were dissolved in water at different rates. The antibacterial activity of the prepared films showed significant results against Escherichia coli, Staphylococcus aureus and Bacillus cereus, and demonstrated that the films studied may be a new alternative for medicated wound dressings.

  19. Aquacel(®) Ag dressing versus Acticoat™ dressing in partial thickness burns: a prospective, randomized, controlled study in 100 patients. Part 1: burn wound healing.

    Science.gov (United States)

    Verbelen, Jozef; Hoeksema, Henk; Heyneman, Alexander; Pirayesh, Ali; Monstrey, Stan

    2014-05-01

    Studies comparing contemporary silver dressings in burns are scarce. In a prospective, randomized, controlled study, counting 50 patients/research group, we compared two frequently used silver dressings, Acticoat™ and Aquacel(®) Ag, in the management of partial thickness burns with a predicted healing time between 7 and 21 days as assessed by laser Doppler imaging between 48 and 72h after burn. Variables investigated were related to baseline research group characteristics, wound healing, bacteriology, economics, nurse, and patient experience. Both research groups were comparably composed taking into account gender, age and burn characteristics. Similar results were obtained as to healing time and bacterial control with both silver dressings. A statistically significant difference in favor of the Aquacel(®) Ag dressing was found for average ease of use (p<0.001), average ease of application (p=0.001), patient pain (p<0.001), patient comfort with the dressing (p=0.017), silver staining (p<0.001), and cost effectiveness (p<0.001). Both silver dressings resulted in comparable healing times and bacterial control but the Aquacel(®) Ag dressing significantly increased comfort for patients as well as nurses and was significantly more cost-effective than the Acticoat™ dressing for the given indication. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  20. Cost-Effectiveness Analysis in Comparing Alginate Silver Dressing with Silver Zinc Sulfadiazine Cream in the Treatment of Pressure Ulcers

    Directory of Open Access Journals (Sweden)

    Apirag Chuangsuwanich

    2013-09-01

    Full Text Available Background The treatment of pressure ulcers is complicated, given the various wound dressingproducts available. The cost of different treatments varies and the cost-effectiveness of eachproduct has not been thoroughly evaluated. We compare two wound dressing protocolsalginatesilver dressing (AlSD and silver zinc sulfadiazine cream (AgZnSD with regard towound healing and cost-effectivenessMethods Patients with grade III or IV sacral or trochanteric pressure ulcers were eligible forthis prospective, randomized controlled trial. The patients were randomized to receive oneof the two dressings for an eight-week period. The criteria of efficacy were based on thePressure Ulcer Scale for Healing (PUSH scoring tool. The cost of treatment was also assessed.Results Twenty patients (12 women and 8 men were randomly assigned to receive eitherAlSD (n=10 or AgZnSD cream (n=10. The demographic data and wound characteristics werecomparable in the two groups. The two groups showed no significant difference in the reductionof PUSH score, wound size, or volume of exudate. The tissue type score was significantlylower in the AlSD group (3.15±0.68-1.85±0.68 vs. 2.73±0.79-2.2±0.41; P=0.015. The costof treatment was significantly lower in the AlSD group (377.17 vs. 467.74 USD, respectively;P<0.0001.Conclusions Alginate silver dressing could be effectively used in the treatment of grade IIIand IV pressure ulcers. It can improve wound tissue characteristics and is cost-effective.

  1. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings.

    Science.gov (United States)

    Oliveira, R N; Rouzé, R; Quilty, B; Alves, G G; Soares, G D A; Thiré, R M S M; McGuinness, G B

    2014-02-06

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions.

  2. Prospective cohort study on surgical wounds comparing a polyhexanide-containing biocellulose dressing with a dialkyl-carbamoyl-chloride-containing hydrophobic dressing

    DEFF Research Database (Denmark)

    Nielsen, Anna Marie; Andriessen, Anneke

    2012-01-01

    Postsurgery dressing changes in diabetic foot amputation wounds and surgical wounds healing by secondary intention are often conducted in the operating room under general anesthesia. A prospective comparative cohort study was performed in 60 patients (n = 60: n = 30/n = 30) with secondary...

  3. Physicochemical properties of radiation-sterilized honey alginate wound dressing for exudating wounds

    International Nuclear Information System (INIS)

    Asa, Anie Day DC.; De Guzman, Zenaida M.; Baldos, Davison T.; Asaad, Celia O.

    2013-01-01

    Honey is a well-known natural cure in promoting healing of wounds. Alginate, on the other hand, is a polysaccharide with pharmaceutical applications such as wound dressing and control release drugs. Calcium-alginate wound dressings have a gel-forming capability. in that, upon ion exchange between calcium ions in the dressing, and sodium ions in wound fluid, the dressing transforms into a gel. Cross-linked alginate gels can absorb would fluid, and also maintain a moist environment to the wound area. Combined with anti-microbial properties of honey and absorption and gelling properties of alginate, a honey alginate wound dressing is developed and irradiated for sterility. Its physicochemical properties are then analyzed. The honey-alginate wound dressing has lower pH (4.40±0.02) than alginate alone dressings (5.40±0.04) which is more favorable for wound healing. The dressing also has low moisture content (10.25±1.11%). Analysis of moisture vapour transmission rate shows a general increase with time for 48 hours. The wound dressing also has an absorbency of 19.00±1.80 g/100 cm 2 with a gel fraction of 18.44±0.63%. The rate of absorption analysis, meanwhile, shows a very rapid absorption rate upon exposure to wound fluid. After some time, a decrease in rate is observed which is accounted to the release of honey to the wound environment. For tensile strength, irradiation causes an effect in tensile strength in machine direction but is insignificant for cross machine direction. Physicochemical properties of the radiation-sterilized honey alginate wound dressing e.g. acidic pH, absorbency, moisture vapor permeability and absorption rate ascertain its characteristic as a good wound dressing for exudating wounds. Its low moisture content, meanwhile, allows for longer shelf-life of the developed product. (author)

  4. Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with β-cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical and biological evaluation.

    Science.gov (United States)

    Souza, Sarah Oliveira Lamas; Cotrim, Monique Alvarenga Pinto; Oréfice, Rodrigo Lambert; Carvalho, Suzana Gonçalves; Dutra, Jessyca Aparecida Paes; de Paula Careta, Francisco; Resende, Juliana Alves; Villanova, Janaina Cecília Oliveira

    2018-05-10

    Cooperation between researchers in the areas of medical, pharmaceutical and materials science has facilitated the development of pharmaceutical dosage forms that elicit therapeutic effects and protective action with a single product. In addition to optimizing pharmacologic action, such dosage forms provide greater patient comfort and increase success and treatment compliance. In the present work, we prepared semipermeable bioactive electrospun fibers for use as wound dressings containing silver sulfadiazine complexed with β-cyclodextrin in a poly(Ɛ-caprolactone) nanofiber matrix aiming to reduce the direct contact between silver and skin and to modulate the drug release. Wound dressings were prepared by electrospinning, and were subjected to ATR-FT-IR and TG/DTG assays to evaluate drug stability. The hydrophilicity of the fibrous nanostructure in water and PBS buffer was studied by goniometry. Electrospun fibers permeability and swelling capacity were assessed, and a dissolution test was performed. In vitro biological tests were realized to investigate the biological compatibility and antimicrobial activity. We obtained flexible matrices that were each approximately 1.0 g in weight. The electrospun fibers were shown to be semipermeable, with water vapor transmission and swelling indexes compatible with the proposed objective. The hydrophilicity was moderate. Matrices containing pure drug modulated drug release adequately during 24 h but presented a high hemolytic index. Complexation promoted a decrease in the hemolytic index and in the drug release but did not negatively impact antimicrobial activity. The drug was released predominantly by diffusion. These results indicate that electrospun PCL matrices containing β-cyclodextrin/silver sulfadiazine inclusion complexes are a promising pharmaceutical dosage form for wound healing.

  5. Topical petrolatum gel alone versus topical silver sulfadiazine with standard gauze dressings for the treatment of superficial partial thickness burns in adults: a randomized controlled trial.

    Science.gov (United States)

    Genuino, Glenn Angelo S; Baluyut-Angeles, Kathrina Victoria; Espiritu, Andre Paolo T; Lapitan, Marie Carmela M; Buckley, Brian S

    2014-11-01

    Non-extensive superficial partial thickness burns constitute a major proportion of burns. Conventional treatment involves regular changing of absorptive dressings including the application of a topical antimicrobial, commonly silver sulfadiazine. A systematic review has found insufficient evidence to support or refute such antimicrobial prophylaxis. Another review compared silver sulfadiazine dressings with other occlusive and non-antimicrobial dressings and found insufficient evidence to guide practice. Other research has suggested that dressings with petrolatum gel are as effective as silver sulfadiazine. Single-center, randomized, controlled parallel group trial comparing conventional silver sulfadiazine dressings with treatment with petrolatum gel alone. Consenting adults 18-45 years old with superficial partial thickness burns≤10% total body surface area seen within 24h of the injury were randomized to daily dressing either with petrolatum gel without top dressings or conventional silver sulfadiazine treatment with gauze dressings. Primary outcomes were blinded assessment of time to complete re-epithelialization, wound infection or allergic contact dermatitis. Secondary outcomes included assessment of ease, time and pain of dressing changes. 26 patients were randomized to petrolatum and 24 to silver sulfadiazine dressings. Follow up data available for 19 in each group. Mean time to re-epithelialization was 6.2 days (SD 2.8) in the petrolatum group and 7.8 days (SD 2.1) in the silver sulfadiazine group (p=0.050). No wound infection or dermatitis was observed in either group. Scores for adherence to wound, ease of dressing removal and time required to change dressings were significantly better in the petrolatum treatment arm (ptreatment of minor superficial partial thickness burns in adults. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  6. Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds.

    Science.gov (United States)

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Dellera, Eleonora; Invernizzi, Alessandro; Boselli, Cinzia; Cornaglia, Antonia Icaro; Del Fante, Claudia; Perotti, Cesare; Vigani, Barbara; Riva, Federica; Caramella, Carla; Ferrari, Franca

    2018-02-09

    Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.

  7. Association of Alpha Tocopherol and Ag Sulfadiazine Chitosan Oleate Nanocarriers in Bioactive Dressings Supporting Platelet Lysate Application to Skin Wounds

    Directory of Open Access Journals (Sweden)

    Maria Cristina Bonferoni

    2018-02-01

    Full Text Available Chitosan oleate was previously proposed to encapsulate in nanocarriers some poorly soluble molecules aimed to wound therapy, such as the anti-infective silver sulfadiazine, and the antioxidant α tocopherol. Because nanocarriers need a suitable formulation to be administered to wounds, in the present paper, these previously developed nanocarriers were loaded into freeze dried dressings based on chitosan glutamate. These were proposed as bioactive dressings aimed to support the application to wounds of platelet lysate, a hemoderivative rich in growth factors. The dressings were characterized for hydration capacity, morphological aspect, and rheological and mechanical behavior. Although chitosan oleate nanocarriers clearly decreased the mechanical properties of dressings, these remained compatible with handling and application to wounds. Preliminary studies in vitro on fibroblast cell cultures demonstrated good compatibility of platelet lysate with nanocarriers and bioactive dressings. An in vivo study on a murine wound model showed an accelerating wound healing effect for the bioactive dressing and its suitability as support of the platelet lysate application to wounds.

  8. Modern and Convensional Wound Dressing to Interleukin 1 and Interleukin 6 in Diabetic wound

    Directory of Open Access Journals (Sweden)

    Werna Nontji

    2015-04-01

    Full Text Available Introduction:Holistic wound care is one of the ways to prevent gangrene and amputation, modern wound dressing is more effective than convensional with increasing transforming growth factor and cytokine, especially interleukin. This study aims to identify the effectiveness of Modern and Convensional Wound Dressing to Interleukin 1 (IL-1 and Interleukin 6 (IL-6 in Diabetic wound. Method:A Quasi eksperimental pre-post with control group design was used. The intervention given was modern wound dressing and Control group by convensional wound dressing, This study was conducted in Makassar with 32 samples (16 in intervention group and 16 in control group. Result: The result of Pooled T- test showed that p = 0.00 (p < 0.05, it means that there was signifi cant correlation between modern wound dressing to IL-6 and IL-1 than Convensional wound dressing. Discussion: Process of wound healing was produced growth factor and cytokine (IL-1 and IL-6, it will stimulated by wound dressing, modern wound dressing (Calcium alginat can absorb wound drainage, non oklusive, non adhesif, and autolytic debridement. Keywords: Modern wound dressing, Interleukin 1 (IL-1, Interleukin 6 (IL-6

  9. A prospective randomized evaluation of negative-pressure wound dressings for diabetic foot wounds.

    Science.gov (United States)

    Eginton, Mark T; Brown, Kellie R; Seabrook, Gary R; Towne, Jonathan B; Cambria, Robert A

    2003-11-01

    Optimal treatment for large diabetic foot wounds is ill defined. The purpose of this study was to compare the rate of wound healing with the Vacuum Assisted Closure device trade mark (VAC) to conventional moist dressings in the treatment of large diabetic foot wounds. Diabetics with significant soft tissue defects of the foot were considered for enrollment. Patients were randomized to receive either moist gauze dressings or VAC treatments for 2 weeks, after which they were treated with the alternative dressing for an additional 2 weeks. Wounds were photographed weekly and wound dimensions calculated in a blinded fashion with spatial analysis software. Percent change in wound dimensions were calculated and compared for each weekly assessment and over 2 weeks of therapy with each dressing type. Ten patients were enrolled in the trial, but two were lost to follow-up and two were withdrawn. Complete data were available for analysis on seven wounds in six patients. Average length, width, and depth of the wounds at initiation of the trial was 7.7, 3.5, and 3.1 cm, respectively. Only the wound depth was significantly decreased over the weeks of the trial to 1.2 cm ( p VAC dressings decreased the wound volume and depth significantly more than moist gauze dressings (59% vs. 0% and 49% vs. 8%, respectively). VAC dressings were associated with a decrease in all wound dimensions while wound length and width increased with moist dressings. In summary, over the first several weeks of therapy, VAC dressings decreased wound depth and volume more effectively than moist gauze dressings. Negative-pressure wound treatment may accelerate closure of large foot wounds in the diabetic patient.

  10. Antibacterial potency of V.A.C. GranuFoam Silver(®) Dressing.

    Science.gov (United States)

    Sachsenmaier, Saskia; Peschel, Andreas; Ipach, Ingmar; Kluba, Torsten

    2013-10-01

    V.A.C.(®) GranuFoam™ therapy is regularly used in the surgical therapy of infected wounds and soft tissue injuries. Silver nanoparticles can destroy bacterial cell walls and inhibit enzymes for cell replication. Silver dressings are therefore successfully used for many indications in wound therapy. In this study, we investigated the antimicrobial potency of ionic silver released from the silver-coated V.A.C.(®) GranuFoam™ during vacuum therapy. Silver dressing was exposed to agar plates populated with bacteria to measure silver release. A total of 15 agar plates colonised with either Staphylococcus aureus populations or with Staphylococcus epidermidis, were loaded with V.A.C. GranuFoam Silver(®) Dressing polyurethane foam (KCI, San Antonio, Texas). Each of 13 pieces of silver-coated foam was applied to an agar plate. Two plates were loaded with conventional black foam without any coating. After connecting to a vacuum pump, the vacuum therapy of the 15 plates lasted 5 days. The zone of inhibition of bacterial growth around the foam was measured daily. Silver release was also determined as a function of time. At each time point, there was evidence of silver in the agar independent of bacterial colonisation. The S. aureus agar showed a consecutive increase in silver concentration from baseline upon 48 h after exposure to the negative pressure of V.A.C. therapy. An increasing mean silver level after 48, 72 and 96 h was measured under V.A.C. therapy with a peak value after 120 h. In contrast, the results from the S. epidermidis plates did not follow a linear pattern. At the beginning of vacuum therapy, we documented a rise in silver concentration. After 48-96h, the silver levels fluctuated. A maximum zone of inhibition in both bacterial colonised plates (S. aureus and S. epidermidis) was found 39 h after the start of the V.A.C. GranuFoam Silver(®) therapy. From our results, we confirmed the antimicrobial effect of the silver ions against S. aureus and S

  11. Isolation and identification of burn wound superbugs by molecular technique and their susceptibility to silver nanoparticles

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby

    2018-02-01

    Burn wound is a global problem affecting millions of people. It is the major cause of mortality and morbidity. This study was aimed to isolate and identify the wound isolates by 16S rRNA and to assess their susceptibility to antibiotics and silver nanoparticles. Silver nanoparticles were synthesized using aqueous extract of A.indica. The silver nanoparticles were characterized by FESEM, XRD, FTIR and DSC. Antibacterial susceptibility of the isolates was assessed by well diffusion method. The wound isolates were identified as S.aureus and E.coli. Both isolates were resistant to β lactum antibiotics, aminoglycoside, quinolones and macrolides. The inhibition zone exhibited by all antibiotics against both organisms was less than 5 mm. The size of silver nanoparticles were recorded as 55 nm. XRD confirmed the crystalline nature of the nanoparticles. TGA and DSC of silver nanoparticles showed the loss of weight and the melting point of silver nanoparticles was recorded at 871.3°C. Silver nano particles inhibited S.aureus and E.coli with an inhibition zone of 27 mm and 32 mm respectively. Therefore the study demonstrated that only silver containing dressings can be used in burn wounds infected by multi drug resistant super bugs.

  12. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity.

    Science.gov (United States)

    Dhand, Chetna; Venkatesh, Mayandi; Barathi, Veluchami Amutha; Harini, Sriram; Bairagi, Samiran; Goh Tze Leng, Eunice; Muruganandham, Nandhakumar; Low, Kenny Zhi Wei; Fazil, Mobashar Hussain Urf Turabe; Loh, Xian Jun; Srinivasan, Dinesh Kumar; Liu, Shou Ping; Beuerman, Roger W; Verma, Navin Kumar; Ramakrishna, Seeram; Lakshminarayanan, Rajamani

    2017-09-01

    There is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics. Interestingly, incorporation of antibiotics containing more number of alcoholic OH groups (N OH  ≥ 5) delayed the release kinetics with complete retention of antimicrobial activity for an extended period of time (20 days). The antimicrobials-loaded mats displayed superior mechanical and thermal properties than gelatin or pDA-crosslinked gelatin mats. Mats containing polyhydroxy antifungals showed enhanced aqueous stability and retained nanofibrous morphology under aqueous environment for more than 4 weeks. This approach can be expanded to produce mats with broad spectrum antimicrobial properties by incorporating the combination of antibacterial and antifungal drugs. Direct electrospinning of vancomycin-loaded electrospun nanofibers onto a bandage gauze and subsequent crosslinking produced non-adherent durable advanced wound dressings that could be easily applied to the injured sites and readily detached after treatment. In a partial thickness burn injury model in piglets, the drug-loaded mats displayed comparable wound closure to commercially available silver-based dressings. This prototype wound dressing designed for easy handling and with long-lasting antimicrobial properties represents an effective option for treating life-threatening microbial infections due to thermal injuries. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Protein matrices for wound dressings =

    Science.gov (United States)

    Vasconcelos, Andreia Joana Costa

    Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was

  14. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications.

    Science.gov (United States)

    Garcia-Orue, Itxaso; Gainza, Garazi; Gutierrez, Franciso Borja; Aguirre, Jose Javier; Evora, Carmen; Pedraz, Jose Luis; Hernandez, Rosa Maria; Delgado, Araceli; Igartua, Manoli

    2017-05-25

    Nanofibrous membranes produced by electrospinning possess a large surface area-to-volume ratio, which mimics the three-dimensional structure of the extracellular matrix. Thus, nanofibrous dressings are a promising alternative for chronic wound healing, since they can replace the natural ECM until it is repaired. Therefore, in this study we have developed a PLGA nanofibrous membrane that contains recombinant human Epidermal Growth Factor (rhEGF) and Aloe vera (AV) extract. Both of them promote wound healing, as EGF is a wound healing mediator and AV stimulates the proliferation and activity of fibroblast. The obtained membranes were composed of uniform and randomly oriented fibers with an average diameter of 356.03±112.05nm, they presented a porosity of 87.92±11.96% and the amount of rhEGF was 9.76±1.75μg/mg. The in vitro viability assay demonstrated that the membranes containing rhEGF and AV improved fibroblast proliferation, revealing the beneficial effect of the combination. Furthermore, these membranes accelerated significantly wound closure and reepithelisation in an in vivo full thickness wound healing assay carried out in db/db mice. Overall, these findings demonstrated the potential of PLGA nanofibers containing rhEGF and AV for the treatment of chronic wounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Clinical performance of a new silver dressing, Contreet Foam, for chronic exuding venous leg ulcers

    DEFF Research Database (Denmark)

    Karlsmark, T; Agerslev, R H; Bendz, S H

    2003-01-01

    OBJECTIVE: This study aimed to evaluate the safety and performance of a new sustained silver-releasing dressing, Contreet Foam (Coloplast A/S), in the treatment of moderately to highly exuding chronic venous leg ulcers in which healing is delayed due to the presence of bacteria. METHOD: The clini......OBJECTIVE: This study aimed to evaluate the safety and performance of a new sustained silver-releasing dressing, Contreet Foam (Coloplast A/S), in the treatment of moderately to highly exuding chronic venous leg ulcers in which healing is delayed due to the presence of bacteria. METHOD......'s effect on the peri-ulcer area. Blood samples were analysed for silver content. RESULTS: Twenty-three out of 25 patients completed the study. One ulcer healed and no wound infections occurred during the study period. A mean 56% reduction in ulcer area (from 15.6 to 6.9 cm2) was recorded during the four...... weeks, and there was a mean 25% reduction in granulation tissue from dull to healthy after one week. Wound odour reduced significantly after one week. Mean dressing wear time was 3.1 days, and there were only minimal incidences of leakage. Serum silver levels did not exceed reference values. CONCLUSION...

  16. Cost-effective use of silver dressings for the treatment of hard-to-heal chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Jemec, Gregor B E; Kerihuel, Jean Charles; Ousey, Karen

    2014-01-01

    AIM: To estimate the cost-effectiveness of silver dressings using a health economic model based on time-to-wound-healing in hard-to-heal chronic venous leg ulcers (VLUs). BACKGROUND: Chronic venous ulceration affects 1-3% of the adult population and typically has a protracted course of healing....... METHODS: A decision tree was constructed to evaluate the cost-effectiveness of treatment with silver compared with non-silver dressings for four weeks in a primary care setting. The outcomes: 'Healed ulcer', 'Healing ulcer' or 'No improvement' were developed, reflecting the relative reduction in ulcer...

  17. Clinical evaluation of a dressing with poly absorbent fibres and a silver matrix for managing chronic wounds at risk of infection: a non comparative trial.

    Science.gov (United States)

    Dalac, S; Sigal, L; Addala, A; Chahim, M; Faivre-Carrere, C; Lemdjadi, Z; Bohbot, S

    2016-09-01

    To assess the efficacy, safety and acceptability of a new silver poly absorbent dressing (UrgoCleanAg) in the local management of exudative chronic wounds at risk of infection, with inflammatory signs suggesting heavy bacterial load. This prospective, multicentre, non-comparative clinical trial was conducted in French hospital wards (dermatology and vascular medicine) or specialised private-practice physicians. Patients were considered at high-risk of infection when presenting with at least three of five selected inflammatory clinical signs, suggesting a heavy bacterial load (pain between two dressing changes, erythema, oedema, malodorous wound and presence of a heavy exudate). They were treated for a maximum period of four weeks, and followed by the physician on a weekly basis, including a clinical examination, area tracings and photographs. The primary efficacy criterion of the trial was the relative wound surface area reduction at the end of the four weeks of treatment. Acceptability was documented by the nursing staff at each dressing change between the weekly evaluations. We recruited 37 patients with chronic wounds. Wound surface area, mostly covered by sloughy tissue, was reduced by 32.5% at the end of the treatment (median value), while the clinical score (maximum value of 5, based on inflammatory clinical signs) decreased from 4.0 to 2.0. Effective debridement properties were documented (62.5% relative reduction of sloughy tissue at week 4; 58.8% of debrided wounds at week 4) and improvement of the periwound skin status was noted (healthy for 28.6% of the patients at week 4 versus 2.7% at baseline). In addition, the tested wound dressing presented a good safety profile associated to a high level of acceptability, noted by both patients and nursing staff. These clinical data support that the tested dressing is a credible therapeutic alternative for the management of chronic wounds at risk of infection with inflammatory signs suggesting heavy bacterial load.

  18. In vitro cytotoxity of silver: implication for clinical wound care.

    Science.gov (United States)

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  19. A prospective, randomised study of a novel transforming methacrylate dressing compared with a silver-containing sodium carboxymethylcellulose dressing on partial-thickness skin graft donor sites in burn patients.

    Science.gov (United States)

    Assadian, Ojan; Arnoldo, Brett; Purdue, Gary; Burris, Agnes; Skrinjar, Edda; Duschek, Nikolaus; Leaper, David J

    2015-06-01

    This prospective, randomised study compares a new transforming methacrylate dressing (TMD) with a silver-containing carboxymethylcellulose dressing (CMC-Ag) after application to split-thickness skin graft (STSG) donor sites. This was an unblinded, non-inferiority, between-patient, comparison study that involved patients admitted to a single-centre burn unit who required two skin graft donor sites. Each patient's donor sites were covered immediately after surgery: one donor site with TMD and the other with CMC-Ag. The donor sites were evaluated until healing or until 24 days post-application, whichever came first. Study endpoints were time to healing, daily pain scores, number of dressing changes, patient comfort and physicians' and patients' willingness to use the dressings in the future. Nineteen patients had both the dressings applied. No statistically significant difference was noted in time to healing between the two dressings (14·2 days using TMD compared with 13·2 days using CMC-Ag). When pain scores were compared, TMD resulted in statistically significantly less pain at three different time periods (2-5 days, 6-10 days and 11-15 days; P < 0·001 at all time periods). Patients also reported greater comfort with TMD (P < 0·001). Users rated TMD as being less easy to use because of the time and technique required for application. Reductions in pain and increased patient comfort with the use of the TMD dressing, compared with CMC-Ag, were seen as clinical benefits as these are the major issues in donor site management. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Development of honey hydrogel dressing for enhanced wound healing

    International Nuclear Information System (INIS)

    Yusof, Norimah; Ainul Hafiza, A.H.; Zohdi, Rozaini M.; Bakar, Md Zuki A.

    2007-01-01

    Radiation at 25 and 50 kGy showed no effect on the acidic pH of the local honey, Gelam, and its antimicrobial property against Staphylococcus aureus but significantly reduced the viscosity. Honey stored up to 2 years at room temperature retained all the properties studied. Radiation sterilized Gelam honey significantly stimulated the rate of burn wound healing in Sprague-Dawley rats as demonstrated by the increased rate of wound contraction and gross appearance. Gelam honey attenuates wound inflammation; and re-epithelialization was well advanced compared to the treatment using silver sulphadiazine (SSD) cream. To enhance further the use of honey in wound treatment and for easy handling, Gelam honey was incorporated into our hydrogel dressing formulation, which was then cross-linked and sterilized using electron beam at 25 kGy. Hydrogel with 6% of honey was selected based on the physical appearance

  1. Modern collagen wound dressings: function and purpose.

    Science.gov (United States)

    Fleck, Cynthia Ann; Simman, Richard

    2010-09-01

    Collagen, which is produced by fibroblasts, is the most abundant protein in the human body. A natural structural protein, collagen is involved in all 3 phases of the wound-healing cascade. It stimulates cellular migration and contributes to new tissue development. Because of their chemotactic properties on wound fibroblasts, collagen dressings encourage the deposition and organization of newly formed collagen, creating an environment that fosters healing. Collagen-based biomaterials stimulate and recruit specific cells, such as macrophages and fibroblasts, along the healing cascade to enhance and influence wound healing. These biomaterials can provide moisture or absorption, depending on the delivery system. Collagen dressings are easy to apply and remove and are conformable. Collagen dressings are usually formulated with bovine, avian, or porcine collagen. Oxidized regenerated cellulose, a plant-based material, has been combined with collagen to produce a dressing capable of binding to and protecting growth factors by binding and inactivating matrix metalloproteinases in the wound environment. The increased understanding of the biochemical processes involved in chronic wound healing allows the design of wound care products aimed at correcting imbalances in the wound microenvironment. Traditional advanced wound care products tend to address the wound's macroenvironment, including moist wound environment control, fluid management, and controlled transpiration of wound fluids. The newer class of biomaterials and wound-healing agents, such as collagen and growth factors, targets specific defects in the chronic wound environment. In vitro laboratory data point to the possibility that these agents benefit the wound healing process at a biochemical level. Considerable evidence has indicated that collagen-based dressings may be capable of stimulating healing by manipulating wound biochemistry.

  2. Antibiofilm Efficacy of DispersinB Wound Spray Used in Combination with a Silver Wound Dressing

    Directory of Open Access Journals (Sweden)

    Purushottam V. Gawande

    2014-01-01

    Full Text Available Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. As the traditional methods of treatment have proven ineffective against chronic wounds involving biofilms, there is an unmet clinical need for developing products with an antibiofilm component that inhibits and/or disrupts biofilms and thus make the biofilm-embedded bacteria more susceptible to antimicrobial therapy. We developed a DispersinB® antibiofilm enzyme-based wound spray for treating chronic wounds in conjunction with an antimicrobial. Under in vitro conditions, the DispersinB® and Acticoat™ combination performed significantly better ( P < 0.05 than Acticoat™ alone, indicating the synergy between the two compounds because of DispersinB® enhancing the antimicrobial activity of Acticoat™. Furthermore, DispersinB® wound spray enhanced the antimicrobial activity of Acticoat™ in a chronic wound mouse model of methicillin-resistant Staphylococcus aureus (MRSA infection. Thus, this novel combination of DispersinB® and Acticoat™, an antimicrobial dressing, prompts clinical evaluation for potential applications in biofilm-based chronic wound management.

  3. Formulation of Novel Layered Sodium Carboxymethylcellulose Film Wound Dressings with Ibuprofen for Alleviating Wound Pain

    Directory of Open Access Journals (Sweden)

    Lenka Vinklárková

    2015-01-01

    Full Text Available Effective assessment and management of wound pain can facilitate both improvements in healing rates and overall quality of life. From a pharmacological perspective, topical application of nonsteroidal anti-inflammatory drugs in the form of film wound dressings may be a good choice. Thus, the aim of this work was to develop novel layered film wound dressings containing ibuprofen based on partially substituted fibrous sodium carboxymethylcellulose (nonwoven textile Hcel NaT. To this end, an innovative solvent casting method using a sequential coating technique has been applied. The concentration of ibuprofen which was incorporated as an acetone solution or as a suspension in a sodium carboxymethylcellulose dispersion was 0.5 mg/cm2 and 1.0 mg/cm2 of film. Results showed that developed films had adequate mechanical and swelling properties and an advantageous acidic surface pH for wound application. An in vitro drug release study implied that layered films retained the drug for a longer period of time and thus could minimize the frequency of changing the dressing. Films with suspended ibuprofen demonstrated higher drug content uniformity and superior in vitro drug release characteristics in comparison with ibuprofen incorporation as an acetone solution. Prepared films could be potential wound dressings for the effective treatment of wound pain in low exuding wounds.

  4. Formulation of Novel Layered Sodium Carboxymethylcellulose Film Wound Dressings with Ibuprofen for Alleviating Wound Pain

    Science.gov (United States)

    Vinklárková, Lenka; Vetchý, David; Bernatonienė, Jurga

    2015-01-01

    Effective assessment and management of wound pain can facilitate both improvements in healing rates and overall quality of life. From a pharmacological perspective, topical application of nonsteroidal anti-inflammatory drugs in the form of film wound dressings may be a good choice. Thus, the aim of this work was to develop novel layered film wound dressings containing ibuprofen based on partially substituted fibrous sodium carboxymethylcellulose (nonwoven textile Hcel NaT). To this end, an innovative solvent casting method using a sequential coating technique has been applied. The concentration of ibuprofen which was incorporated as an acetone solution or as a suspension in a sodium carboxymethylcellulose dispersion was 0.5 mg/cm2 and 1.0 mg/cm2 of film. Results showed that developed films had adequate mechanical and swelling properties and an advantageous acidic surface pH for wound application. An in vitro drug release study implied that layered films retained the drug for a longer period of time and thus could minimize the frequency of changing the dressing. Films with suspended ibuprofen demonstrated higher drug content uniformity and superior in vitro drug release characteristics in comparison with ibuprofen incorporation as an acetone solution. Prepared films could be potential wound dressings for the effective treatment of wound pain in low exuding wounds. PMID:26090454

  5. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  6. Application of VitaVallis dressing for infected wounds

    International Nuclear Information System (INIS)

    Kirilova, N. V.; Fomenko, A. N.; Korovin, M. S.

    2015-01-01

    Today there is a growing demand for safe and efficient antimicrobial dressings for infected wound treatment. The antimicrobial sorption material for VitaVallis dressings was produced by one-stage oxidation of aluminum nanopowder in water in the presence of fibrous acetylcellulose matrix. Scanning electron microscopy revealed that the material is made up of fibers of diameter 1.5–3.0 µm with adhered agglomerated alumina nanosheets. An antimicrobial study revealed a high inhibitory effect of VitaVallis against the growth of gram-negative (E.coli, P. aeruginosa) and gram-positive (S. aureus) strains. The antimicrobial activity of the dressing against microbial pathogens on the wound surface was demonstrated in in vivo experiments on male rats. The dressing was also tested on volunteer patients. The testing showed reduction of the wound healing period, accelerated cleaning of the infected wound and enhanced tissue regeneration in the wound. The results demonstrate that the VitaVallis dressing can be used for the treatment of deep infected wounds

  7. Application of VitaVallis dressing for infected wounds

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, N. V., E-mail: n.kirilova@vitavallis.com; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademicheskii pr., Tomsk, 634055 (Russian Federation)

    2015-11-17

    Today there is a growing demand for safe and efficient antimicrobial dressings for infected wound treatment. The antimicrobial sorption material for VitaVallis dressings was produced by one-stage oxidation of aluminum nanopowder in water in the presence of fibrous acetylcellulose matrix. Scanning electron microscopy revealed that the material is made up of fibers of diameter 1.5–3.0 µm with adhered agglomerated alumina nanosheets. An antimicrobial study revealed a high inhibitory effect of VitaVallis against the growth of gram-negative (E.coli, P. aeruginosa) and gram-positive (S. aureus) strains. The antimicrobial activity of the dressing against microbial pathogens on the wound surface was demonstrated in in vivo experiments on male rats. The dressing was also tested on volunteer patients. The testing showed reduction of the wound healing period, accelerated cleaning of the infected wound and enhanced tissue regeneration in the wound. The results demonstrate that the VitaVallis dressing can be used for the treatment of deep infected wounds.

  8. Assessment of wound dressing practices among nurses at the emergency hospitals in Erbil city

    Directory of Open Access Journals (Sweden)

    Hindreen Younis Najm

    2018-04-01

    Full Text Available Background and objective: Wound dressing is one of the major nursing responsibilities. Aseptic technique is mandatory to minimize complications. Effective wound dressing promotes wound healing and leads to early discharge and saving costs. This study aimed to assess wound dressing practices among nurses in Erbil emergency hospitals and determine the relationship between the practices and the sociodemographic characteristics. Methods: A descriptive study was conducted at three Emergency Hospitals in Erbil city. This study was carried out from November 17th, 2014 to November 17th, 2015 on a non-probability purposive sample of 64 nurses who worked at emergency reception department of three emergency hospitals. The questionnaire was constructed for data collection which consisted of two parts; part I of the questionnaire included demographical characteristics of nurses and part II contained an observational checklist that consists of 24 items of nurses' wound dressing practice. Data were collected through the direct observant approach and analyzed through the application of descriptive analysis measures (frequencies and percentages and inferential statistical analysis (chi-square and Fisher's exact test. Results: Majority (65.6% of nurses’ wound dressing practices were at the medium level of practice and minority (34.4% were at high level. The highest steps practiced was with irrigation and dressing items (1.61, and lowest with the discard wound dressing supplies items (0.79. There was no significant association between the wound dressing practice and nurses’ chararacteristics of age, gender, educational level, years of experience and training participation (P = 0.51, 0.609, 0.54, 0.21 and 0.78, respectively. Conclusion: The overall nurses’ wound dressing practice was suboptimal and not impressive and the worse practice with items related to wound dressing infection control practice. Keywords: Assessment; Wound dressing; Emergency Hospital.

  9. Characterization and antibacterial properties of porous fibers containing silver ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123 (China); Nantong Textile Institute of Soochow University, 58 Chong-chuan Road, Nantong 226018 (China)

    2016-11-30

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag{sup +} porous fibers were investigated. • The antibacterial effects of PLA/Ag{sup +} porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  10. Characterization and antibacterial properties of porous fibers containing silver ions

    International Nuclear Information System (INIS)

    Sun, Zhaoyang; Fan, Chenxu; Tang, Xiaopeng; Zhao, Jianghui; Song, Yanhua; Shao, Zhongbiao; Xu, Lan

    2016-01-01

    Highlights: • Antibacterial electrospun PLA porous fibers containing silver ions were prepared. • Porous structure and porosity of PLA/Ag + porous fibers were investigated. • The antibacterial effects of PLA/Ag + porous fibers were studied. • The released mechanism of silver ions in the porous fibers was illustrated. • The porous structure could improve the antibacterial properties. - Abstract: Materials prepared on the base of bioactive silver compounds have become more and more popular. In the present work, the surface morphology, structure and properties, of electrospun Polylactide Polylactic acid (PLA) porous fibers containing various ratios of silver ions were investigated by a combination of X-ray photoelectron spectroscopy (XPS), universal testing machine, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and et al. The biological activities of the proposed porous fibers were discussed in view of the released silver ions concentration. Antibacterial properties of these porous fibers were studied using two bacterial strains: Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). Results of the antibacterial testing suggested that PLA porous fibers containing silver ions could be used as potent antibacterial wound dressing materials in the biomedical field.

  11. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model

    OpenAIRE

    Hüging, Martina; Biedermann, Thomas; Sobrio, Monia; Meyer, Sarah; Böttcher-Haberzeth, Sophie; Manuel, Edith; Horst, Maya; Hynes, Sally; Reichmann, Ernst; Schiestl, Clemens; Hartmann-Fritsch, Fabienne

    2017-01-01

    Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation. The purpose of our study is to evaluate the effect of various wound dressings on the healing of a human hydro...

  12. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyu; Niu, Yuqing [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China); Chen, Kevin C. [Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063 (China); Chen, Shiguo, E-mail: csg@szu.edu.cn [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Nanshan District Key lab for Biopolymers and Safety Evaluation, Shenzhen 518060 (China); Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen 518060 (China); Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060 (China)

    2017-02-01

    A novel rapid hemostatic and mild polyurethane-urea foam (PUUF) wound dressing was prepared by the particle leaching method and vacuum freeze-drying method using 4, 4-Methylenebis(cyclohexyl isocyanate), 4,4-diaminodicyclohexylmethane and poly (ethylene glycol) as raw materials. And X-ray diffraction (XRD), tensile test, differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to its crystallinity, stress and strain behavior, and thermal properties, respectively. Platelet adhesion, fibrinogen adhesion and blood clotting were performed to evaluate its hemostatic effect. And H&E staining and Masson Trichrome staining were used to its wound healing efficacy. The results revealed the pore size of PUUF is 50–130 μm, and its porosity is 71.01%. Porous PUUF exhibited good water uptake that was benefit to adsorb abundant wound exudates to build a regional moist environment beneficial for wound healing. The PUUF wound dressing exhibit better blood coagulation effect than commercial polyurethane dressing (CaduMedi). Though both PUUF and CaduMedi facilitated wound healing generating full re-epithelialization within 13 days, PUUF was milder and lead to more slight inflammatory response than CaduMedi. In addition, PUUF wound dressing exhibited lower cytotoxicity than CaduMedi against NIH3T3 cells. Overall, porous PUUF represents a novel mild wound dressing with excellent water uptake, hemostatic effect and low toxicity, and it can promote wound healing and enhance re-epithelialization. - Highlights: • Rapid hemostatic and mild PUUF wound dressing was fabricated. • Low-toxic PUUF exhibited good water uptake that could build a regional moist environment beneficial for wound healing. • PUUF could promote wound healing and enhance re-epithelialization.

  13. Clinical utility of foam dressings in wound management: a review

    Directory of Open Access Journals (Sweden)

    Nielsen J

    2015-02-01

    Full Text Available Jakob Nielsen, Karsten Fogh Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark Background: The management of chronic wounds is a significant medical burden associated with large health care expenditures. Since the establishment of moist wound healing in the 1960s, several types of wound dressings have been developed. However, the evidence for effectiveness when comparing various types of wound dressings is limited. Objectives: The purpose of this review is 1 to provide a general description of the role of foam in wound therapy and 2 to evaluate the evidence for effectiveness of foam dressings compared to other frequently used products. Summary and conclusion: Foam has a significant role in the clinical management of chronic wounds and in moist wound healing. There are only a few randomized controlled trials, which in general, show no significant difference in the healing effect of different dressing types. The choice of wound dressing should therefore be based on clinical evaluation of the wound and the periwound skin. Keywords: foam dressing, chronic wounds, comparative effectiveness, healing, periwound skin, ulcers 

  14. Periodontal Dressing-containing Green Tea Epigallocathechin gallate Increases Fibroblasts Number in Gingival Artifical Wound Model

    Directory of Open Access Journals (Sweden)

    Ardisa U. Pradita

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Green tea leaf (Camellia sinensis is one of herbal plants that is used for traditional medicine. Epigallocatechin gallate (EGCG in green tea is the most potential polyphenol component and has the strongest biological activity. It is known that EGCG has potential effect on wound healing. Objective: This study aimed to determine the effect of adding green tea EGCG into periodontal dressing on the number of fibroblasts after gingival artificial wound in animal model. Methods: Gingival artifical wound model was performed using 2mm punch biopsy on 24 rabbits (Oryctolagus cuniculus. The animals were divided into two groups. Periodontal dressing with EGCG and without EGCG was applied to the experimental and control group, respectively. Decapitation period was scheduled at day 3, 5, and 7 after treatment. Histological analysis to count the number of fibroblasts was performed. Results: Number of fibroblasts was significantly increased in time over the experimental group treated with EGCG periodontal dressing compared to control (p<0.05. Conclusion: EGCG periodontal dressing could increase the number of fibroblast, therefore having role in wound healing after periodontal surgery in animal model.DOI: 10.14693/jdi.v20i3.197

  15. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    Science.gov (United States)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  16. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit [ISOMED, Radiation Technology Development Section, Radio-Chemistry and Isotope Group, B.A.R.C, Mumbai 400 085 (India)]. E-mail: lalitv@barc.gov.in

    2007-02-15

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm{sup 2} to 411 g/cm{sup 2}, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  17. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2007-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2 , elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  18. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

    Science.gov (United States)

    Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Abbas, Khawar; Youssif, Bahaa Gm; Bashir, Sajid; Yuk, Soon Hong; Bukhari, Syed Nasir Abbas

    2017-01-01

    Polysaccharides are being extensively employed for the synthesis of silver nanoparticles (Ag NPs) having diverse morphology and applications. Herein, we present a novel and green synthesis of Ag NPs without using any physical reaction conditions. Linseed hydrogel (LSH) was used as a template to reduce Ag + to Ag 0 . AgNO 3 (10, 20, and 30 mmol) solutions were mixed with LSH suspension in deionized water and exposed to diffused sunlight. Reaction was monitored by noting the change in the color of reaction mixture up to 10 h. Ag NPs showed characteristic ultraviolet-visible (UV/Vis) absorptions from 410 to 437 nm in the case of sunlight and 397-410 nm in the case of temperature study. Transmission electron microscopy images revealed the formation of spherical Ag NPs in the range of 10-35 nm. Face-centered cubic array of Ag NPs was confirmed by characteristic diffraction peaks in powder X-ray diffraction spectrum. Ag NPs were stored in LSH thin films, and UV/Vis spectra recorded after 6 months indicated that Ag NPs retained their texture over the storage period. Significant antimicrobial activity was observed when microbial cultures (bacteria and fungi) were exposed to the synthesized Ag NPs. Wound-healing studies revealed that Ag NP-impregnated LSH thin films could have potential applications as an antimicrobial dressing in wound management procedures.

  19. FORMULATION OF AEROSOL CONCENTRATES CONTAINING HARUAN (Channa striatus FOR WOUND DRESSING

    Directory of Open Access Journals (Sweden)

    FEBRIYENTI

    2008-01-01

    Full Text Available The objective of this research was to formulate an aerosol concentrate containing haruan (Channa striatus water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC, carboxymethylcellulose sodium (CMC Sodium, acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160, all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate

  20. In vivo performance of chitosan/soy-based membranes as wound-dressing devices for acute skin wounds.

    Science.gov (United States)

    Santos, Tírcia C; Höring, Bernhard; Reise, Kathrin; Marques, Alexandra P; Silva, Simone S; Oliveira, Joaquim M; Mano, João F; Castro, António G; Reis, Rui L; van Griensven, Martijn

    2013-04-01

    Wound management represents a major clinical challenge on what concerns healing enhancement and pain control. The selection of an appropriate dressing plays an important role in both recovery and esthetic appearance of the regenerated tissue. Despite the wide range of available dressings, the progress in the wound care market relies on the increasing interest in using natural-based biomedical products. Herein, a rat wound-dressing model of partial-thickness skin wounds was used to study newly developed chitosan/soy (cht/soy)-based membranes as wound-dressing materials. Healing and repair of nondressed, cht/soy membrane-dressed, and Epigard(®)-dressed wounds were followed macroscopically and histologically for 1 and 2 weeks. cht/soy membranes performed better than the controls, promoting a faster wound repair. Re-epithelialization, observed 1 week after wounding, was followed by cornification of the outermost epidermal layer at the second week of dressing, indicating repair of the wounded tissue. The use of this rodent model, although in impaired healing conditions, may enclose some drawbacks regarding the inevitable wound contraction. Moreover, being the main purpose the evaluation of cht/soy-based membranes' performance in the absence of growth factors, the choice of a clinically relevant positive control was limited to a polymeric mesh, without any growth factor influencing skin healing/repair, Epigard. These new cht/soy membranes possess the desired features regarding healing/repair stimulation, ease of handling, and final esthetic appearance-thus, valuable properties for wound dressings.

  1. Dressings and topical agents for surgical wounds healing by secondary intention

    NARCIS (Netherlands)

    Vermeulen, H.; Ubbink, D.; Goossens, A.; de Vos, R.; Legemate, D.

    2004-01-01

    BACKGROUND: Many different wound dressings and topical applications are used to cover surgical wounds healing by secondary intention. It is not known whether these dressings heal wounds at different rates. OBJECTIVES: To assess the effectiveness of dressings and topical agents on surgical wounds

  2. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Directory of Open Access Journals (Sweden)

    Hassiba AJ

    2017-03-01

    Full Text Available Alaa J Hassiba,1 Mohamed E El Zowalaty,2 Thomas J Webster,3–5 Aboubakr M Abdullah,6 Gheyath K Nasrallah,7 Khalil Abdelrazek Khalil,8 Adriaan S Luyt,6 Ahmed A Elzatahry1 1Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar; 2School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 3Department of Chemical Engineering, 4Department of Bioengineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 6Center for Advanced Materials, 7Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar; 8Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates Abstract: Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol and chitosan loaded with silver nanoparticles (AgNPs and a lower layer of polyethylene oxide (PEO or polyvinylpyrrolidone (PVP nanofibers loaded with chlorhexidine (as an antiseptic. The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber

  3. Investigation on Curcumin nanocomposite for wound dressing.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Anusuya, T

    2017-05-01

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nanofibrillar cellulose wound dressing in skin graft donor site treatment.

    Science.gov (United States)

    Hakkarainen, T; Koivuniemi, R; Kosonen, M; Escobedo-Lucea, C; Sanz-Garcia, A; Vuola, J; Valtonen, J; Tammela, P; Mäkitie, A; Luukko, K; Yliperttula, M; Kavola, H

    2016-12-28

    Although new therapeutic approaches for burn treatment have made progress, there is still need for better methods to enhance wound healing and recovery especially in severely burned patients. Nanofibrillar cellulose (NFC) has gained attention due to its renewable nature, good biocompatibility and excellent physical properties that are of importance for a range of applications in pharmaceutical and biomedical fields. In the present study, we investigated the potential of a wood based NFC wound dressing in a clinical trial on burn patients. Previously, we have investigated NFC as a topical functionalized wound dressing that contributes to improve wound healing in mice. Wood based NFC wound dressing was tested in split-thickness skin graft donor site treatment for nine burn patients in clinical trials at Helsinki Burn Centre. NFC dressing was applied to split thickness skin graft donor sites. The dressing gradually dehydrated and attached to donor site during the first days. During the clinical trials, physical and mechanical properties of NFC wound dressing were optimized by changing its composition. From patient 5 forward, NFC dressing was compared to commercial lactocapromer dressing, Suprathel® (PMI Polymedics, Germany). Epithelialization of the NFC dressing-covered donor site was faster in comparison to Suprathel®. Healthy epithelialized skin was revealed under the detached NFC dressing. NFC dressing self-detached after 11-21days for patients 1-9, while Suprathel® self-detached after 16-28days for patients 5-9. In comparison studies with patients 5-9, NFC dressing self-detached on average 4days earlier compared with Suprathel®. Lower NFC content in the material was evaluated to influence the enhanced pliability of the dressing and attachment to the wound bed. No allergic reaction or inflammatory response to NFC was observed. NFC dressing did not cause more pain for patients than the traditional methods to treat the skin graft donor sites. Based on the

  5. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  6. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care

    Science.gov (United States)

    Dong, Rui-Hua; Jia, Yue-Xiao; Qin, Chong-Chong; Zhan, Lu; Yan, Xu; Cui, Lin; Zhou, Yu; Jiang, Xingyu; Long, Yun-Ze

    2016-02-01

    Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e-spun nanofibrous membranes allowed the continuous release of Ag ions and showed broad-spectrum antimicrobial activity against two common types of pathogens, Staphylococcus aureus and Escherichia coli. In addition, the in vivo studies revealed that these antibacterial nanofibrous membranes could reduce the inflammatory response and accelerate wound healing in Wistar rats. The above results strongly demonstrate that such patient-specific dressings could be broadly applied in emergency medical transport, hospitals, clinics and at the patients' home in the near future.Current strategies for wound care provide limited relief to millions of patients who suffer from burns, chronic skin ulcers or surgical-related wounds. The goal of this work is to develop an in situ deposition of a personalized nanofibrous dressing via a handy electrospinning (e-spinning) device and evaluate its properties related to skin wound care. MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs) were prepared by a facile and environmentally friendly approach, which possessed long-term antibacterial activity and low cytotoxicity. Poly-ε-caprolactone (PCL) incorporated with Ag-MSNs was successfully electrospun (e-spun) into nanofibrous membranes. These in situ e

  7. MODERN ASSORTMENT, PROPERTIES AND PERSPECTIVES OF MEDICAL DRESSINGS IMPROVEMENT OF WOUND TREATMENT

    Directory of Open Access Journals (Sweden)

    A. V. Mayorova

    2018-01-01

    Full Text Available The effectiveness of reparation is now characterized not only in terms of wound healing. The aesthetic result is also of great significance. Besides, it is important to ensure the comfort of medication, in order to combine the optimal therapy and the quality of life of the patient. The aim of the study was the literature review on the effective wound treatment with the help of modern dressings, including their assortment and prospects for improvement. Materials and methods. The materials of the study were reliable literary sources containing information about wounds, pathogenesis, the stages of the wound process and its possible violations; the assortment of modern wound coverings and the composition of biologically active substances that have a pharmacological effect; the results of preclinical and clinical trials and their prospects of use in aesthetic medicine. The research was carried out using the information retrieval and library databases (eLIBRARY, Cyberleninka, technical information. The research methods used in the work are: informational, analytical, descriptive. Results and discussion. As a result of generalization and analysis of modern publications devoted to the effective wound treatment, modern views on the wound process, wound coverings, their assortment and compositions are described. The results of pharmacological tests as well as the properties of biologically active substances and carrier polymers used are also presented. It is noted that the prospective compounds for including with the wound coverings and external drugs affecting the repair process at different stages of the wound process are tizol, bischofite, peptides (1-β-interleukin, ectoin. Conclusion. Thus, it has been established that modern wound dressings and dressings containing the substances of different pharmacological groups are offered for effective therapy: antiseptics, anesthetics, repair stimulators, antioxidants that affect different stages and elements

  8. Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems.

    Science.gov (United States)

    Bhowmick, Sirsendu; Mohanty, Sujata; Koul, Veena

    2016-11-01

    Grafting of quaternary nitrogen atoms into the backbone of polymer is an efficient way of developing new generation antimicrobial polymeric wound dressing. In this study, an elastic, non-adhesive and antimicrobial transparent hydrogel based dressing has been designed, which might be helpful for routine observation of wound area without removing the dressing material along with maintaining a sterile environment for a longer period of time. Green synthesized silver nanoparticles have been loaded into the quaternized PVA hydrogel matrix to improve its antimicrobial property. Silver nanoparticles loaded quaternized PVA hydrogel showed enhanced mechanical and swelling properties compared to native quaternized PVA hydrogel. Release kinetics evaluated by atomic absorption spectroscopy revealed that the release mechanism of silver nanoparticles from the hydrogel follows Fickian diffusion. Antimicrobial efficacy of the hydrogels was evaluated by disk diffusion test on Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. After 96 h of release in phosphate buffer, the growth inhibition zone created by silver nanoparticless loaded quaternized PVA hydrogel is comparable to that created by ampicillin. These observations assert that the silver nanoparticles loaded quaternized PVA hydrogel acts as a reservoir of silver nanoparticles, which helps in maintaining a sterile environment for longer time duration by releasing Ag nanocrystallite in sustained manner.

  9. Bi-Layer Wound Dressing System for Combat Casualty Care

    National Research Council Canada - National Science Library

    Martineau, Lucie; Shek, Pang N

    2004-01-01

    ... dressing to address key requirements for treating external war wounds. In the present report, we assess our dressing's bactericidal efficacy, wound healing properties, and skin-cooling characteristics using various pre-clinical models...

  10. Microwave-Assisted Synthesis of Chitosan/Polyvinyl Alcohol Silver Nanoparticles Gel for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Hiep

    2016-01-01

    Full Text Available The purpose of this study was to fabricate chitosan/poly(vinyl alcohol/Ag nanoparticles (CPA gels with microwave-assistance for skin applications. Microwave irradiation was employed to reduce silver ions to silver nanoparticles and to crosslink chitosan (CS with polyvinyl alcohol (PVA. The presence of silver nanoparticles in CPA gels matrix was examined using UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction. The interaction of CS and PVA was analysed by Fourier transform infrared spectroscopy. The release of silver ions was determined by atomic absorption spectrometry. The antimicrobial properties of CPA gels against P. aeruginosa and S. aureus were investigated using agar diffusion method. Finally, the biocompatibility and wound-healing ability of the gels were studied using fibroblast cells (in vitro and mice models (in vivo. In conclusion, the results showed that CPA gels were successfully fabricated using microwave irradiation method. These gels can be applied to heal an open wound thanks to their antibacterial activity and biocompatibility.

  11. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review.

    Science.gov (United States)

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.

  13. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    Donald C. Aduba

    2017-01-01

    Full Text Available Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.

  14. The application of the modified surgical wound dressing in wound care after tracheotomy

    Directory of Open Access Journals (Sweden)

    Feng Mei

    2017-01-01

    Discussion: The design of the herein-described modified surgical wound dressing is based on a butterfly shaped adhesive and mirrors the advantages of a modern surgical wound dressing. Its shape is suitable for the physiological structure of the neck, making it more comfortable to use. Aseptic packaging and a high degree of adhesiveness guarantee continuous fixation and pulling. At the same time, the design of the dressing decreases the chance of infection.

  15. Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-11-01

    Full Text Available BackgroundThe combination of polycaprolactone and hyaluronic acid creates an ideal environment for wound healing. Hyaluronic acid maintains a moist wound environment and accelerates the in-growth of granulation tissue. Polycaprolactone has excellent mechanical strength, limits inflammation and is biocompatible. This study evaluates the safety and efficacy of bio-conjugated polycaprolactone membranes (BPM as a wound dressing.Methods16 New Zealand white rabbits were sedated and local anaesthesia was administered. Two 3.0×3.0 cm full-thickness wounds were created on the dorsum of each rabbit, between the lowest rib and the pelvic bone. The wounds were dressed with either BPM (n=12 or Mepitel (n=12 (control, a polyamide-silicon wound dressing. These were evaluated macroscopically on the 7th, 14th, 21st, and 28th postoperative days for granulation, re-epithelialization, infection, and wound size, and histologically for epidermal and dermal regeneration.ResultsBoth groups showed a comparable extent of granulation and re-epithelialization. No signs of infection were observed. There was no significant difference (P>0.05 in wound size between the two groups. BPM (n=6: 8.33 cm2, 4.90 cm2, 3.12 cm2, 1.84 cm2; Mepitel (n=6: 10.29 cm2, 5.53 cm2, 3.63 cm2, 2.02 cm2; at the 7th, 14th, 21st, and 28th postoperative days. The extents of epidermal and dermal regeneration were comparable between the two groups.ConclusionsBPM is comparable to Mepitel as a safe and efficacious wound dressing.

  16. Studies on Radiation Synthesis of Poly(vinyl alcohol)- Natural Polysaccharides Hydrogel Wound Dressing

    International Nuclear Information System (INIS)

    Varshney, L.

    2006-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible and mechanically strong, biocompatible, effective and economical hydrogel dressings(HD). The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing Poly-vinylalcohol, (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5 -2 % resulted in increase of tensile strength from 45 g/cm 2 to 400 g/cm 2 , elongation from 30 % to 410 % and water uptake from 25 % to 120% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. The polysaccharides show different pre-gel viscosities behaviour indicating different individual contribution to the PVA network. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The polysaccharides also provide desirable plasticizer and humectant effect into the dressing. Formulations containing 7-9% PVA, 0.5- 1.5 % carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning Electron Micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non healing ulcers of Diabetes, Leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  17. Comprehensive In Situ Killing of Six Common Wound Pathogens With Manuka Honey Dressings Using a Modified AATCC-TM100.

    Science.gov (United States)

    Watson, Denis; Bergquist, Stephen; Nicholson, Julie; Norrie, David H

    2017-06-28

    While Manuka honey in vitro is strongly antimicrobial, there have been, to the best of the authors' knowledge, no studies showing that dressings impregnated with Manuka honey can kill organisms in the dressing itself. The investigators used the American Association of Textile Chemists and Colorists' 100 test methodology to compare honey-impregnated dressings with control dressings (without honey) on the ability to kill common wound pathogens. Organisms were chosen after a review of the causal organisms found in actual wound infections over a 12-month period in a busy outpatient wound clinic. Even when the dressings were challenged daily with further inoculated organisms, > 5-log reductions were routinely noted across a range of pathogens, including multiple drug-resistant species using dressings containing Manuka honey relative to the control. The results presented herein show that when well-characterized medical-grade Manuka honey is used in dressings (ie, a minimum of 400 mg methylglyoxal/kg) these dressings can comprehensively kill common wound pathogens associated with infected wounds.

  18. R and D on utilization of indigenous materials for hydrogel wound dressing

    International Nuclear Information System (INIS)

    Haque, Md. Embadul; Dafader, Nirmal Chandra; Khan, Ruhul Amin

    2008-01-01

    Utilization of indigenous materials for the preparation of hydrogel wound dressing is highlighted in this report. Hydrogels were prepared by two different formulations using PVP and PVA separately. Considering the price of the main two raw materials PVA was chosen for the next course of development. To reduce the cost of raw materials further flour was added to the PVA formulation. Ingredients concentrations for preparing good quality hydrogel were optimized. PVA containing both carrageenan and flour produces hydrogel with good properties. PVA containing 0.75% of both carrageenan and flour produces hydrogel of desirable properties. Seminar and demonstration about the usefulness of hydrogel for wound dressing were arranged at a city hospital. (author)

  19. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review

    OpenAIRE

    Yu, Chao; Hu, Zong-Qian; Peng, Rui-Yun

    2014-01-01

    The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an...

  20. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing

    Science.gov (United States)

    Mohd Zohdi, Rozaini; Abu Bakar Zakaria, Zuki; Yusof, Norimah; Mohamed Mustapha, Noordin; Abdullah, Muhammad Nazrul Hakim

    2012-01-01

    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing. PMID:21941590

  1. Thermo-responsive wound dressings by grafting chitosan and poly(N-isopropylacrylamide) to plasma-induced graft polymerization modified non-woven fabrics

    International Nuclear Information System (INIS)

    Chen, Jyh-Ping; Kuo, Chang-Yi; Lee, Wen-Li

    2012-01-01

    Highlights: ► Poly(N-isopropylacrylamide) and chitosan were grafted to polypropylene non-wovens. ► An easily stripped off thermo-responsive wound dressing was developed. ► The wound dressing is biocompatible, has antibacterial and wound healing abilities. ► The bigraft non-woven will be a potential wound dressing for biomedical use. - Abstract: To obtain a chitosan wound dressings with temperature-responsive characteristics, polypropylene (PP) non-woven fabric (NWF) was modified by direct current pulsed oxygen plasma-induced grafting polymerization of acrylic acid (AAc) to improve hydrophilicity and to introduce carboxylic acid groups. Conjugation of chitosan and poly(N-isopropylacrylamide) (PNIPAAm) followed by using water-soluble carbodiimide as a coupling agent to form a novel bigraft PP-g-chitosan-g-PNIPAAm wound dressing. The amount of chitosan and PNIPAAm grafted to PP-g-chitosan-g-PNIPAAm were 83.0 ± 4.6 μg/cm 2 and 189.5 ± 8.2 μg/cm 2 , respectively. The surface chemical composition and microstructure of the NWF were studied by electron spectroscopy for chemical analysis (ESCA) and scanning electron microscopy (SEM). The linkages between AAc, chitosan, and PNIPAAm were confirmed with the formation of amide bonds. Physical properties of the NWF were characterized and potentials of these NWFs as wound dressings were evaluated using SD rat as the animal model. NWFs contained PNIPAAm were better than those contained only chitosan in wound healing rates and the wound areas covered by PP-g-chitosan-g-PNIPAAm wound dressings healed completely in 17 days.

  2. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats.

    Science.gov (United States)

    Corsetti, Giovanni; D'Antona, Giuseppe; Dioguardi, Francesco Saverio; Rezzani, Rita

    2010-09-01

    The principal goal in treating surgical and non-surgical wounds, in particular for aged skin, is the need for rapid closure of the lesion. Cutaneous wound healing processes involve four phases including an inflammatory response with the induction of pro-inflammatory cytokines. If inflammation develops in response to bacterial infection, it can create a problem for wound closure. Reduced inflammation accelerates wound closure with subsequent increased fibroblast function and collagen synthesis. On the contrary, prolonged chronic inflammation results in very limited wound healing. Using histological and immunohistochemical techniques, we investigated the effects of a new wound dressing called Vulnamin that contains four essential amino acids for collagen and elastin synthesis plus sodium ialuronate (Na-Ial), compared with Na-Ial alone, in closure of experimental cutaneous wounds of aged rats. Our results showed that the application of Vulnamin dressings modulated the inflammatory response with a reduction in the number of inflammatory cells and inducible nitric oxide synthase (iNOS) immunolocalisation, while increasing endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta1 (TGF-beta1) immunolocalisation. Furthermore, the dressing increased the distribution density of fibroblasts and aided the synthesis of thin collagen fibers resulting in a reduction in healing time. The nutritive approach using this new wound dressing can provide an efficacious and safe strategy to accelerate wound healing in elderly subjects, simplifying therapeutic procedures and leading to an improved quality of life. 2009 Elsevier GmbH. All rights reserved.

  3. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings.

    Science.gov (United States)

    Pilehvar-Soltanahmadi, Younes; Dadashpour, Mehdi; Mohajeri, Abbas; Fattahi, Amir; Sheervalilou, Roghayeh; Zarghami, Nosratollah

    2018-02-14

    Conventional dressings are cost-effective and highly absorbent, but not effectual enough to promote hemostasis, adherence and in holding a moist wound bed. Thanks to the developments in the field of nanotechnology and bioengineering, one of the promising current trends is to move progress of innovative wound dressings, merging the application of traditional healing agents and modern products/ practices, such as hydrocolloids, hydrogels, films and nanofibers. This review surveys on potentials of electrospun nanofibrous mats for wound dressing applications. Furthermore, loading of bioactive molecules and therapeutic agents into the nanofibrous mats especially natural compounds with the aim of fabrication novel bioactive electrospun nanofibrous mats for skin substitutes and wound dressings are discussed. Systematic literature search was conducted to review all recent progress toward the potential of natural substances incorporated with electrospun nanofibrous scaffolds for wound dressing applications. The electrospun nanofibers webs can provide the essential parameters require for wound dressing to heal wounds including absorptivity, oxygen permeability, and non-adherence to the healing tissue, barrier to bacteria, bioactivity and occlusivity. The modern wound dressings materials made of electrospun nanofibers contain various traditional healing agents such as plant derived compounds could be beneficial to the healing of wounds. Natural substances have been used in skin wound care for many years because of their therapeutic properties, including antimicrobial, antioxidant, anti-inflammatory and mitogenic activities. A screening of natural substances with plant or animal sources having high wound healer activities and cooperating with electrospun nanofiber are an important step toward producing innovative bioactive wound dressings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  5. WOUND CARE DRESSING IN DEVELOPING COUNTRIES: THE ...

    African Journals Online (AJOL)

    Dr. Ismail Adigun

    commonly available to wound care provider are traditional agents such as ... the use of the commonly available products based on the needs of a different .... The cost of care of these patients' wound dressing per ... and haemostatic activity .

  6. Copper-Containing Anti-Biofilm Nanofiber Scaffolds as a Wound Dressing Material.

    Directory of Open Access Journals (Sweden)

    Jayesh J Ahire

    Full Text Available Copper particles were incorporated into nanofibers during the electrospinning of poly-D,L-lactide (PDLLA and poly(ethylene oxide (PEO. The ability of the nanofibers to prevent Pseudomonas aeruginosa PA01 and Staphylococcus aureus (strain Xen 30 to form biofilms was tested. Nanofibers containing copper particles (Cu-F were thinner (326 ± 149 nm in diameter, compared to nanofibers without copper (CF; 445 ± 93 nm in diameter. The crystalline structure of the copper particles in Cu-F was confirmed by X-ray diffraction (XRD. Copper crystals were encapsulated, but also attached to the surface of Cu-F, as shown scanning transmission electron microscopy (STEM and transmission electron microscopy (TEM, respectively. The copper particles had no effect on the thermal degradation and thermal behaviour of Cu-F, as shown by thermogravimetric analysis (TGA and differential scanning calorimeter (DSC. After 48 h in the presence of Cu-F, biofilm formation by P. aeruginosa PA01 and S. aureus Xen 30 was reduced by 41% and 50%, respectively. Reduction in biofilm formation was ascribed to copper released from the nanofibers. Copper-containing nanofibers may be incorporated into wound dressings.

  7. Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions.

    Science.gov (United States)

    Sun, Fengzhen; Nordli, Henriette R; Pukstad, Brita; Kristofer Gamstedt, E; Chinga-Carrasco, Gary

    2017-05-01

    Wood nanocellulose has been proposed for wound dressing applications partly based on its capability to form translucent films with good liquid absorption capabilities. Such properties are adequate for non-healing and chronic wounds where adequate management of exudates is a requirement. In addition, the translucency will allow to follow the wound development without the necessity to remove the dressing from the wound. Understanding the mechanical properties of nanocellulose films and dressings are also most important for tailoring optimizing wound dressing structures with adequate strength, conformability, porosity and exudate management. Mechanical properties are usually assessed in standard conditions (50% relative humidity, RH), which is not relevant in a wound management situation. In this study we have assessed the mechanical properties of three nanocellulose grades varying in the degree of nanofibrillation. The effect of nanofibrillation and of polyethylene glycol (PEG) addition, on the tensile strength, elongation and elastic modulus were assessed after 24h in water and in phosphate-buffered saline (PBS). The results reveal the behavior of the nanocellulose dressings after wetting and shed light into the development of mechanical properties in environments, which are relevant from a wound management point of view. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of Chitosan/Bacterial Cellulose Composite Films Containing Nanodiamonds as a Potential Flexible Platform for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Fatemeh Ostadhossein

    2015-09-01

    Full Text Available Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are transparent but turn to gray-like and semitransparent at high ND concentrations. Additionally, a decrease in highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO gap is also seen, which results in a red shift and higher absorption intensity towards the visible region. Mitochondrial activity assay using L929 fibroblast cells shows that the nanocomposite films are biocompatible (>90% after 24 h incubation. Multiple lamellapodia and cell-cell interaction are shown. The results suggest that the developed films can potentially be used as a flexible platform for wound dressing.

  9. Preclinical Evaluation of Tegaderm™ Supported Nanofibrous Wound Matrix Dressing on Porcine Wound Healing Model.

    Science.gov (United States)

    Ong, Chee Tian; Zhang, Yanzhong; Lim, Raymond; Samsonraj, Rebekah; Masilamani, Jeyakumar; Phan, Tran Hong Ha; Ramakrishna, Seeram; Lim, Ivor; Kee, Irene; Fahamy, Mohammad; Templonuevo, Vilma; Lim, Chwee Teck; Phan, Toan Thang

    2015-02-01

    Objective: Nanofibers for tissue scaffolding and wound dressings hold great potential in realizing enhanced healing of wounds in comparison with conventional counterparts. Previously, we demonstrated good fibroblast adherence and growth on a newly developed scaffold, Tegaderm™-Nanofiber (TG-NF), made from poly ɛ-caprolactone (PCL)/gelatin nanofibers electrospun onto Tegaderm (TG). The purpose of this study is to evaluate the performance and safety of TG-NF dressings in partial-thickness wound in a pig healing model. Approach: To evaluate the rate of reepithelialization, control TG, human dermal fibroblast-seeded TG-NF(+) and -unseeded TG-NF(-) were randomly dressed onto 80 partial-thickness burns created on four female and four male pigs. Wound inspections and dressings were done after burns on day 7, 14, 21, and 28. On day 28, full-thickness biopsies were taken for histopathological evaluation by Masson-Trichrome staining for collagen and hematoxylin-eosin staining for cell counting. Results: No infection and severe inflammation were recorded. Wounds treated with TG-NF(+) reepithelialized significantly faster than TG-NF(-) and control. Wound site inflammatory responses to study groups were similar as total cell counts on granulation tissues show no significant differences. Most of the wounds completely reepithelialized by day 28, except for two wounds in control and TG-NF(-). A higher collagen coverage was also recorded in the granulation tissues treated with TG-NF(+). Innovation and Conclusion: With better reepithelialization achieved by TG-NF(+) and similar rates of wound closure by TG-NF(-) and control, and the absence of elevated inflammatory responses to TG-NF constructs, TG-NF constructs are safe and demonstrated good healing potentials that are comparable to Tegaderm.

  10. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin.

    Science.gov (United States)

    Anjum, Sadiya; Gupta, Amlan; Sharma, Deepika; Gautam, Deepti; Bhan, Surya; Sharma, Anupama; Kapil, Arti; Gupta, Bhuvanesh

    2016-07-01

    This study is aimed at the development of a composite material for wound dressing containing nanosilver nanohydrogels (nSnH) along with Aloe vera and curcumin that promote antimicrobial nature, wound healing and infection control. Nanosliver nanohydrogels were synthesized by nanoemulsion polymerization of methacrylic acid (MAA) followed by subsequent crosslinking and silver reduction under irradiation. Both the polymerization and irradiation time had significant influence on the nanoparticle shape, size and its formation. Polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix was used as gel system to blend with nSnH, A. vera, curcumin and coat it on the hydrolysed PET fabric to develop antimicrobial dressings. The cumulative release of silver from the dressing was found to be ~42% of the total loading after 48h. The antimicrobial activity of the dressings was studied against both Staphylococcus aureus and Escherichia coli. In vivo wound healing studies were carried out over a period of 16d on full-thickness skin wounds created on Swiss albino mice. Fast healing was observed in Gel/nSnH/Aloe treated wounds with minimum scarring, as compared to other groups. The histological studies showed A. vera based dressings to be the most optimum one. These results suggest that nSnH along with A. vera based dressing material could be promising candidates for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing.

    Science.gov (United States)

    Takei, Takayuki; Danjo, So; Sakoguchi, Shogo; Tanaka, Sadao; Yoshinaga, Takuma; Nishimata, Hiroto; Yoshida, Masahiro

    2018-04-01

    Moist wounds were known to heal more rapidly than dry wounds. Hydrogel wound dressings were suitable for the moist wound healing because of their hyperhydrous structure. Chitosan was a strong candidate as a base material for hydrogel wound dressings because the polymer had excellent biological properties that promoted wound healing. We previously developed physically-crosslinked chitosan cryogels, which were prepared solely by freeze-thawing of a chitosan-gluconic acid conjugate (CG) aqueous solution, for wound treatment. The CG cryogels were disinfected by immersing in 70% ethanol before applying to wounds in our previous study. In the present study, we examined the influence of autoclave sterilization (121°C, 20 min) on the characteristics of CG cryogel because complete sterilization was one of the fundamental requirements for medical devices. We found that optimum value of gluconic acid content of CG, defined as the number of the incorporated gluconic acid units per 100 glucosamine units of chitosan, was 11 for autoclaving. An increased crosslinking level of CG cryogel on autoclaving enhanced resistance of the gels to enzymatic degradation. Furthermore, the autoclaved CG cryogels retained favorable biological properties of the pre-autoclaved CG cryogels in that they showed the same hemostatic activity and efficacy in repairing full-thickness skin wounds as the pre-autoclaved CG cryogels. These results showed the great potential of autoclavable CG cryogels as a practical wound dressing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan Me

    2017-09-01

    Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.

  13. Preparation of SMART wound dressings based on colloidal microgels and textile fibres

    Science.gov (United States)

    Cornelius, Victoria J.; Majcen, Natasa; Snowden, Martin J.; Mitchell, John C.; Voncina, Bojana

    2007-01-01

    Wound dressings and other types of wound healing technologies are experiencing fast-paced development and rapid growth. As the population ages, demand will continue to rise for advanced dressings used to treat chronic wounds, such as pressure ulcers, venous stasis ulcers, and diabetic ulcers. Moist wound dressings, which facilitate natural wound healing in a cost-effective manner, will be increasingly important. In commercially available hydrogel / gauze wound dressings the gel swells to adsorb wound excreta and provide an efficient non adhesive particle barrier. An alternative to hydrogels are microgels. Essentially discrete colloidal gel particles, as a result of their very high surface area to volume ratio compared to bulk gels, they have a much faster response to external stimuli such as temperature or pH. In response to either an increase or decrease in solvent quality these porous networks shrink and swell reversibly. When swollen the interstitial regions within the polymer matrix are available for further chemistry; such as the incorporation of small molecules. The reversible shrinking and swelling as a function of external stimuli provides a novel drug release system. As the environmental conditions of a wound change over its lifetime, tending to increase in pH if there is an infection combining these discrete polymeric particles with a substrate such as cotton, results in a smart wound dressing.

  14. Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound

    Directory of Open Access Journals (Sweden)

    Jinjian Huang

    2017-01-01

    Full Text Available Xanthan gum is a high molecular weight polysaccharide biocompatible to biological systems, so its products promise high potential in medicine. In this study, we crosslinked xanthan gum with citric acid to develop a transparent film for protecting the wound. Silver nanoparticles (AgNPs are incorporated into the film to enhance the antimicrobial property of our biomaterial. This paper discussed the characteristics and manufacturing of this nanocomposite dressing. The safety of the dressing was studied using fibroblasts (L929 by the method of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and staining of ethidium homodimer (PI and calcein AM. The bacterial inhibition test and application of the dressing to nonhealing wounds infected with methicillin-resistant S. aureus (MRSA were performed to evaluate the antibacterial effects in vitro and in vivo, respectively. The results indicated that the dressing could restrict the formation of biofilms, reduce inflammatory reactions, and promote the angiogenesis of granulation tissues in infectious wounds. Therefore, this dressing has a great advantage over traditional clinical products especially when administered under the condition of infections or for the purpose of infection prevention.

  15. Suprathel-acetic acid matrix versus acticoat and aquacel as an antiseptic dressing: an in vitro study.

    Science.gov (United States)

    Ryssel, Henning; Germann, Günter; Riedel, Katrin; Reichenberger, Matthias; Hellmich, Susanne; Kloeters, Oliver

    2010-10-01

    The treatment of burn wounds is still a challenge regarding the management of antiseptic wound conditioning. Especially, in the United States, silver-containing dressings, such as Acticoat and Aquacel are frequently used. Because silver-containing dressings have well-known drawbacks such as an antimicrobial lack against Pseudomonas aeruginosa, we sought to develop an alternative dressing method. In previous studies, we could demonstrate the excellent antiseptic properties of acetic acid against common burn unit germs, and in another study, the feasibility and suitability of a Suprathel-acetic acid matrix as an antiseptic dressing. This study was designed to test the in vitro antimicrobial effect of a Suprathel-acetic acid matrix versus Acticoat and Aquacel. To cover the typical bacterial spectrum of a burn unit, the following Gram-negative and Gram-positive bacteria strains were tested: Escherichia coli, extended-spectrum beta-lactamase-positive Klebsiella pneumoniae, P. aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, and methicillin-resistant Staphylococcus aureus. The tests showed an excellent bactericidal effect of the Suprathel-acetic acid matrix particularly with problematic Gram-negative bacteria such as Proteus vulgaris, P. aeruginosa, and Acinetobacter baumannii. The efficiency was superior to that of Acicoat and Aquacel. Our results support the notion, that the Suprathel-acetic acid matrix has an excellent bactericidal effect and therefore seems to be suitable as a local antiseptic agent in the treatment of burn wounds.

  16. Qualitative bacteriology in malignant wounds--a prospective, randomized, clinical study to compare the effect of honey and silver dressings

    DEFF Research Database (Denmark)

    Lund-Nielsen, Betina; Adamsen, Lis; Gottrup, Finn

    2011-01-01

    . A prospective, randomized, single-blind controlled clinical study was conducted to evaluate the bacteriology of malignant wounds and compare the effect of a honey-coated (Group A) to a silver-coated (Group B) dressing on the qualitative bacteriology of malignant wounds. All wound interventions were performed...... years, range 47-92) consented to participate and completed the 4-week study. The majority were women (88%) with breast cancer (79%). No statistically significant differences were found between the type and number of different wound pathogens in the wounds during the course of the study or between Group...... were identified. Sixty-one percent (61%) of wounds decreased in size following treatment, but no significant differences were observed between the type and variety of wound pathogens and whether wound size decreased. Although quantitative bacteriological changes may have occurred, the possible...

  17. Comparison of three different dressings for partial thickness burns in children: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Gee Kee, Emma; Kimble, Roy M; Cuttle, Leila; Stockton, Kellie

    2013-11-25

    In the paediatric population, pain and distress associated with burn injuries during wound care procedures remain a constant challenge. Although silver dressings are the gold standard for burn care in Australasia, very few high-level trials have been conducted that compare silver dressings to determine which will provide the best level of care clinically. Therefore, for paediatric patients in particular, identifying silver dressings that are associated with lower levels of pain and rapid wound re-epithelialisation is imperative. This study will determine whether there is a difference in time to re-epithelialisation and pain and distress experienced during wound care procedures among Acticoat™, Acticoat™ combined with Mepitel™ and Mepilex Ag™ dressings for acute, paediatric partial thickness burns. Children aged 0 to 15 years with an acute partial thickness (superficial partial to deep partial thickness inclusive) burn injury and a burn total body surface area of ≤ 10% will be eligible for the trial. Patients will be randomised to one of the three dressing groups: (1) Acticoat™ or (2) Acticoat™ combined with Mepitel™ or (3) Mepilex Ag™. A minimum of 28 participants will be recruited for each treatment group. Primary measures of pain, distress and healing will be repeated at each dressing change until complete wound re-epithelialisation occurs or skin grafting is required. Additional data collected will include infection status at each dressing change, physical function, scar outcome and scar management requirements, cost effectiveness of each dressing and staff perspectives of the dressings. The results of this study will determine the effects of three commonly used silver and silicone burn dressing combinations on the rate of wound re-epithelialisation and pain experienced during dressing procedures in acute, paediatric partial thickness burn injuries. Australian New Zealand Clinical Trials Registry ACTRN12613000105741.

  18. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Sadiya [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Gupta, Amlan; Sharma, Deepika [Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102 (India); Gautam, Deepti [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India); Bhan, Surya; Sharma, Anupama [Department of Biochemistry, North Eastern Hill University, Shillong 793022, Meghalaya (India); Kapil, Arti [Department of Microbiology, All India Institute of Medical Sciences, New Delhi 110029 (India); Gupta, Bhuvanesh, E-mail: bgupta@textile.iitd.ernet.in [Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016 (India)

    2016-07-01

    This study is aimed at the development of a composite material for wound dressing containing nanosilver nanohydrogels (nSnH) along with Aloe vera and curcumin that promote antimicrobial nature, wound healing and infection control. Nanosliver nanohydrogels were synthesized by nanoemulsion polymerization of methacrylic acid (MAA) followed by subsequent crosslinking and silver reduction under irradiation. Both the polymerization and irradiation time had significant influence on the nanoparticle shape, size and its formation. Polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix was used as gel system to blend with nSnH, A. vera, curcumin and coat it on the hydrolysed PET fabric to develop antimicrobial dressings. The cumulative release of silver from the dressing was found to be ~ 42% of the total loading after 48 h. The antimicrobial activity of the dressings was studied against both Staphylococcus aureus and Escherichia coli. In vivo wound healing studies were carried out over a period of 16 d on full-thickness skin wounds created on Swiss albino mice. Fast healing was observed in Gel/nSnH/Aloe treated wounds with minimum scarring, as compared to other groups. The histological studies showed A. vera based dressings to be the most optimum one. These results suggest that nSnH along with A. vera based dressing material could be promising candidates for wound dressings. - Highlights: • PMAA based nanosilver nanogels offer excellent antimicrobial property. • nSnH may be coated on a fabric surface to develop wound care dressings. • Dressings show good wound recovery on animal models. • Aloe vera shows better healing behaviour as compared to the curcumin based systems.

  19. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin

    International Nuclear Information System (INIS)

    Anjum, Sadiya; Gupta, Amlan; Sharma, Deepika; Gautam, Deepti; Bhan, Surya; Sharma, Anupama; Kapil, Arti; Gupta, Bhuvanesh

    2016-01-01

    This study is aimed at the development of a composite material for wound dressing containing nanosilver nanohydrogels (nSnH) along with Aloe vera and curcumin that promote antimicrobial nature, wound healing and infection control. Nanosliver nanohydrogels were synthesized by nanoemulsion polymerization of methacrylic acid (MAA) followed by subsequent crosslinking and silver reduction under irradiation. Both the polymerization and irradiation time had significant influence on the nanoparticle shape, size and its formation. Polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix was used as gel system to blend with nSnH, A. vera, curcumin and coat it on the hydrolysed PET fabric to develop antimicrobial dressings. The cumulative release of silver from the dressing was found to be ~ 42% of the total loading after 48 h. The antimicrobial activity of the dressings was studied against both Staphylococcus aureus and Escherichia coli. In vivo wound healing studies were carried out over a period of 16 d on full-thickness skin wounds created on Swiss albino mice. Fast healing was observed in Gel/nSnH/Aloe treated wounds with minimum scarring, as compared to other groups. The histological studies showed A. vera based dressings to be the most optimum one. These results suggest that nSnH along with A. vera based dressing material could be promising candidates for wound dressings. - Highlights: • PMAA based nanosilver nanogels offer excellent antimicrobial property. • nSnH may be coated on a fabric surface to develop wound care dressings. • Dressings show good wound recovery on animal models. • Aloe vera shows better healing behaviour as compared to the curcumin based systems.

  20. The assessment and treatment of wound pain at dressing change.

    LENUS (Irish Health Repository)

    Bell, Cassandra

    2010-01-01

    Pain is a common reason for patients with acute or chronic wounds seeking hospital admission, but it appears to be under-treated by health professionals. A quantitative descriptive study was conducted to investigate nurses\\' knowledge with regard to dressing change and wound pain. Data were collected from registered nurses (n=94). Analysis indicated a low level of knowledge with regard to pain assessment and strategies to overcome pain at dressing change, but a good knowledge of factors that contribute to pain at dressing change.

  1. Nanomaterials from bacterial cellulose for antimicrobial wound dressing

    Science.gov (United States)

    Liyaskina, E.; Revin, V.; Paramonova, E.; Nazarkina, M.; Pestov, N.; Revina, N.; Kolesnikova, S.

    2017-01-01

    Bacterial nanocellulose (BNC) is widely used in biomedical applications. BNC has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity. To get over this problem in the present study the BNC was saturated with antibiotic fusidic acid (FA). The subject of the experiment was BNC, produced by bacteria Gluconacetobacter sucrofermentans B-11267. The resulting biocomposites have high antibiotic activity against Staphylococcus aureus and can be used in medicine as a wound dressing. The structure of BNC was analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).

  2. Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: a systematic review

    Directory of Open Access Journals (Sweden)

    Holmes C

    2013-01-01

    Full Text Available Crystal Holmes,1 James S Wrobel,1 Mark P MacEachern,2 Blaise R Boles31Department of Internal Medicine, University of Michigan Medical School, 2A Alfred Taubman Health Sciences Library, University of Michigan, 3Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USABackground: Diabetic foot ulcers are a major source of morbidity, limb loss, and mortality. A prolonged inflammatory response, extracellular matrix degradation irregularities, and increased bacteria presence have all been hypothesized as major contributing factors in the delayed healing of diabetic wounds. Collagen components such as fibroblast and keratinocytes are fundamental to the process of wound healing and skin formation. Wound dressings that contain collagen products create a biological scaffold matrix that supports the regulation of extracellular components and promotes wound healing.Methods: A systematic review of studies reporting collagen wound dressings used in the treatment of Diabetic foot ulcers was conducted. Comprehensive searches were run in Ovid MEDLINE, PubMed, EMBASE, and ISI Web of Science to capture citations pertaining to the use of collagen wound dressings in the treatment of diabetic foot ulcers. The searches were limited to human studies reported in English.Results: Using our search strategy, 26 papers were discussed, and included 13 randomized designs, twelve prospective cohorts, and one retrospective cohort, representing 2386 patients with diabetic foot ulcers. Our design was not a formal meta-analysis. In those studies where complete epithelialization, 58% of collagen-treated wounds completely healed (weighted mean 67%. Only 23% of studies reported control group healing with 29% healing (weighted mean 11% described for controls.Conclusion: Collagen- based wound dressings can be an effective tool in the healing of diabetic foot wounds. The current studies show an overall increase in healing rates despite

  3. Human Amniotic Membrane Dressing: an Excellent Method for Outpatient Management of Burn Wounds

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2009-03-01

    Full Text Available Background: Burns are among the most common traumas indeveloping countries, which consume large amounts of medicalresources. It is important to find an appropriate materialfor dressing of burn wounds that improves healing and is readilyavailable, easily applicable, and economical.Methods: In a single-blind randomized controlled clinicaltrial from March to October 2006, 211 patients with less than20% burn were enrolled into two groups. The first group contained104 patients with average burn of 11.90± 3.80% of totalbody surface area (TBSA for whom amnion dressing wasused. The second group composed of 107 patients with averageburn of 12.30± 4.14% of TBSA treated with routine silversulfadiazine dressing.Results: Amniotic membrane usage was accompanied by accelerationin wound healing, less need for skin graft, and lesspain. The mean healing time in superficial parts of burnwounds in the amnion group was significantly shorter than thecontrol group (9.50±2.13 v 14.30±2.60 days; P value < 0.01.The extent of the wound with granulation tissue which neededskin graft was less in the amnion group (2.10 ± 2.21% v 4.20±1.44%; P value < 0.01.Conclusion: Widespread use of amniotic membrane dressingis recommended for limited burn wound management.

  4. Biodegradable soy wound dressings with controlled release of antibiotics: Results from a guinea pig burn model.

    Science.gov (United States)

    Egozi, Dana; Baranes-Zeevi, Maya; Ullmann, Yehuda; Gilhar, Amos; Keren, Aviad; Matanes, Elias; Berdicevsky, Israela; Krivoy, Norberto; Zilberman, Meital

    2015-11-01

    There is growing interest in the development of biodegradable materials from renewable biopolymers, such as soy protein, for biomedical applications. Soy protein is a major fraction of natural soybean and has the advantages of being economically competitive, biodegradable and biocompatible. It presents good water resistance as well as storage stability. In the current study, homogenous antibiotic-loaded soy protein films were cast from aqueous solutions. The antibiotic drug gentamicin was incorporated into the films in order to inhibit bacterial growth, and thus prevent or combat infection, upon its controlled release to the surrounding tissue. The current in vivo study of the dressing material in contaminated deep second-degree burn wounds in guinea pigs (n=20) demonstrated its ability to accelerate epithelialization with 71% epithelial coverage compared to an unloaded format of the soy material (62%) and a significant improved epithelial coverage as compared to the conventional dressing material (55%). Our new platform of antibiotic-eluting wound dressings is advantageous over currently used popular dressing materials that provide controlled release of silver ions, due to its gentamicin release profile, which is safer. Another advantage of our novel concept is that it is based on a biodegradable natural polymer and therefore does not require bandage changes and offers a potentially valuable and economic approach for treating burn-related infections. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  5. Nanomaterials from bacterial cellulose for antimicrobial wound dressing

    International Nuclear Information System (INIS)

    Liyaskina, E; Revin, V; Paramonova, E; Nazarkina, M; Pestov, N; Revina, N; Kolesnikova, S

    2017-01-01

    Bacterial nanocellulose (BNC) is widely used in biomedical applications. BNC has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity. To get over this problem in the present study the BNC was saturated with antibiotic fusidic acid (FA). The subject of the experiment was BNC, produced by bacteria Gluconacetobacter sucrofermentans B-11267. The resulting biocomposites have high antibiotic activity against Staphylococcus aureus and can be used in medicine as a wound dressing. The structure of BNC was analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). (paper)

  6. Honey, an unexplored topical wound dressing agent in Nigerian ...

    African Journals Online (AJOL)

    This paper presents an overview of honey as a wound dressing agent, its mechanism of action, selected cases of wounds managed with honey and a survey of veterinarians' perception and usage of honey for wound management in Nigeria. Structured questionnaires were administered to veterinary practitioners ...

  7. Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Sahraro, Maryam; Yeganeh, Hamid, E-mail: h.yeganeh@ippi.ac.ir; Sorayya, Marziyeh

    2016-02-01

    Preparation and assessments of novel absorptive wound dressing materials with efficient antimicrobial activity as well as very good cytocompatibility were described in this work. An amine terminated poly(hexamethylene guanidine hydrochloride) was prepared and used as curing agent of different epoxy-terminated polyurethane prepolymers. The structures of prepared materials were elucidated by evaluation of their {sup 1}H NMR and FTIR spectra. The recorded tensile strength of membranes confirmed the excellent dimensional stability of the film type dressings even at fully hydrated conditions. Therefore, these dressings could protect the wound bed from external forces during the healing period. The structurally optimized dressing membranes could preserve the desired moist environment over the wounded area, as a result of their balanced equilibrium, water absorption and water vapor transmission rate. Therefore, a very good condition for stimulation of self-healing of wound bed was attained. Also, owing to the presence of guanidine hydrochloride moieties embedded into the structure of dressings, efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans were detected. In vitro cytotoxicity assay of the prepared dressings revealed cytocompatibility of these materials against fibroblast cells. Therefore, they could support cell growth and proliferation at the wounded area. - Highlights: • New polyurethane wound dressings with guanidine hydrochloride based antimicrobials • Maintaining moist and warm wound environment for accelerating healing • Proper tensile strength of dressings even at fully hydrated state • Excellent biocompatibility index due to proper selection of starting materials.

  8. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    International Nuclear Information System (INIS)

    Singh, Durgeshwer; Singh, Rita

    2012-01-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin–papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p 2 /24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25–35 kGy. The irradiated chitin–papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin–papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity. - Highlight: ► Use of gamma radiation for sterilization of papain wound dressing was studied. ► Fluid handling and antimicrobial properties of irradiated dressings was evaluated. ► Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings.

  9. Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Science.gov (United States)

    Felgueiras, H. P.; Amorim, M. T. P.

    2017-10-01

    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.

  10. Fabrication and characterization of an asymmetric polyurethane membrane for use as a wound dressing

    NARCIS (Netherlands)

    Hinrichs, W.L.J.; Hinrichs, W.L.J.; Lommen, E.J.C.M.P.; Wildevuur, C.R.H.; Feijen, Jan

    1993-01-01

    To prevent wound dehydration and bacterial penetration, a wound dressing should be occlusive, but on the other hand it should also be permeable for wound exudate to prevent bullae formation. To meet these requirements a new type of polyurethane wound dressing which consists of a microporous top

  11. FABRICATION AND CHARACTERIZATION OF AN ASYMMETRIC POLYURETHANE MEMBRANE FOR USE AS A WOUND DRESSING

    NARCIS (Netherlands)

    HINRICHS, WLJ; LOMMEN, EJCMP; WILDEVUUR, CRH; FEIJEN, J

    1992-01-01

    To prevent wound dehydration and bacterial penetration, a wound dressing should be occlusive, but on the other hand it should also be permeable for wound exudate to prevent bullae formation. To meet these requirements a new type of polyurethane wound dressing which consists of a microporous top

  12. Designing and Developing Automatic Trolley for Washing and Dressing the Wounds

    Directory of Open Access Journals (Sweden)

    Golvardi Yazdi M. S.

    2017-12-01

    Full Text Available Introduction:Many items are needed for dressing including sterile dressing set, antiseptic and washing solutions, leucoplast tape, waste bin for infectious garbage, waste bin for noninfectious garbage, safe disposal trash for sharp cutting instruments, bedpan and sometimes drugs. All the items are laid out on a simple wheeled trolley. The multiplicity of items together with problems in placing tools on trolley, forgetting some items, disturbing sterile condition, falling and damaging equipment and the need for at least two people for each procedure, all are the reasons to design and develop Automatic Trolley for Washing and Dressing the Wounds. Material and Method: To develop a mobile unit which meets our needs for dressing, the trolley patents registered in America and different companies were evaluated as well as the materials and methods used while dressing were considered. Results: Automatic Trolley for Washing and Dressing the Wounds was designed and developed. It comprises the followings: drawer, waste bin for infectious garbage, waste bin for noninfectious garbage, shelves for serum and betadine solution, serum stand, peristaltic pump, flexible tube for connecting serum, a place for bedpan, foot pedal for serum flow, two eye-sensor chambers for solution betadine and scrub, an auxiliary work surface. Conclusion: Due to the usual requirements for dressing, we have designed an equipped mobile unit which covers all the objectives of dressing and increases the speed of procedure. Moreover, due to the contrived equipment on the trolley, procedures are done quickly and second person is not required to assist. Automatic Trolley for Washing and Dressing the Wounds is made up of stainless steel which could be mass housing and commercializing which would play a deserving role in improving the fundamentals of health care and wound treatment.

  13. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    Science.gov (United States)

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Lazǎr, Veronica; Chifiriuc, Mariana Carmen

    2012-12-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  14. A prospective, multi-centre, randomised, open label, parallel, comparative study to evaluate effects of AQUACEL(®) Ag and Urgotul(®) Silver dressing on healing of chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Harding, Keith; Gottrup, Finn; Jawień, Arkadiusz

    2011-01-01

    This study compared wound healing efficacy of two silver dressings, AQUACEL(®) Ag and Urgotul(®) Silver, against venous ulcers at risk of infection, over 8 weeks of treatment. The primary objective was to show non inferiority of AQUACEL(®) Ag to Urgotul(®) Silver. Patients (281) were randomised......, safety events and ulcer healing were compared. After 8 weeks of treatment, the AQUACEL(®) Ag group had a relative wound size reduction (49·65% ± 52·53%) compared with the Urgotul(®) Silver group (42·81% ± 60·0%). The non inferiority of the AQUACEL(®) Ag group to the Urgotul(®) Silver group...... was established based on the difference between them (6·84% ± 56·3%, 95% confidence interval -6·56 to 20·2) and the pre-defined non inferiority margin (-15%). Composite wound healing analysis showed that the AQUACEL(®) Ag group had statistically higher percentage of subjects with better wound progression (66...

  15. Dressing for alveolopalatal wounds after alveolar bone grafting.

    Science.gov (United States)

    Kondoh, Shoji; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Kikuchi, Nirou; Ban, Ryokuya

    2003-09-01

    Cotton gauze with alpha cyanoacrylate was used for alveolopalatal wound dressing after alveolar bone grafting to treat 93 alveolar clefts in 74 cleft patients to reduce mechanical injuries, tension for wound dehiscence, and adhesion of food remnants. T-shaped cotton gauze was put on the gingivoperiosteal flaps and was impregnated with cyanoacrylate. The procedure required no preoperative preparation and its intraoperative execution took less than 5 minutes. The gauze with cyanoacrylate was removed approximately 1 week after surgery. No infection was observed at any of the operational sites, but tiny fistulas developed at four of them. The mean bone graft score was 1.4 point. No complications such as thermal injury resulted from the use of cyanoacrylate. Gauze impregnated with cyanoacrylate proved to be a convenient and dependable dressing for alveolopalatal wounds resulting from gingivoperiosteoplasty for alveolar bone grafting.

  16. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhirong, E-mail: xinzhirong2012@126.com [School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China); Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao [School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005 (China); Yan, Shunjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Luan, Shifang, E-mail: sfluan@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-03-01

    Graphical abstract: - Highlights: • PNVP and PHMG components were covalently immobilized on PP{sub NWF} surface. • PP{sub NWF}-g-PNVP-PHMG possessed bacterial adhesion-resistant and bactericidal capabilities. • PP{sub NWF}-g-PNVP-PHMG obviously suppressed platelet and red blood cell adhesion. - Abstract: A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PP{sub NWF}) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PP{sub NWF} samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  17. Synthesis and characterization of biosheet impregnated with Macrotyloma uniflorum extract for burn/wound dressings.

    Science.gov (United States)

    Muthukumar, Thangavelu; Senthil, Rethinam; Sastry, Thotapalli Parvathaleswara

    2013-02-01

    Developing biomaterials having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. Keeping this objective in view we have developed a wound dressing material, in sheet form, containing fish scale collagen (FSC) and physiologically clotted fibrin (PCF), both are by products of aqua food and meat industries respectively. To impart antimicrobial properties to the composite sheet, it was incorporated with Macrotyloma uniflorum plant extract (MPE). SEM pictures have shown that FSC:PCF:MPE composite has fibrous and porous surface which helps in transportation of oxygen as well as absorbing wound fluids and their evaporation. The biomaterials have shown 100% biocompatibility and the percentage cell viability was found to be above 89%. The FSC:PCF:MPE biocomposite film with required mechanical strength, biocompatibility and antimicrobial properties can be tried as a burn/wound dressing material. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Clinical studies on using lyophilised radiation sterilised amnion membranes as dressing for leprosy wound

    International Nuclear Information System (INIS)

    Tarusarraya, P.; Basril, A.; Hilmy, N.

    1999-01-01

    Leprosy is a chronic disease caused by a bacillus Mycobacterium leprae and characterised by the formation of nodules or of macules that enlarge and spread accompanied by loss of sensation with eventual paralysis and production of deformities and mutilation. The wound of the disease can be treated by using conventional method such as Zinc Oxide (ZnO) Ointment with sterile gauze. Human amnion membranes have been used as a biological burn dressing with good results for several decades. A comparison study on using that conventional dressings and radiation sterilised lyophilised amnion membranes has been done at Sitanala Leprosarium to observe the effectiveness of using amnion membranes as leprosy wound dressing. Number of patients observed were 85, age from 12 to 60 years old. The locations of the wounds observed were at the leg and arm, with two types of wound i.e. reaction and simple ulcer. Parameter observed was the length of the healing time of the wounds. Results show that the average length of the healing time of the wound can be reduced from 64 days to 30 days when using amnion membranes compared to using the conventional wound dressing. The length of the healing time of the simple ulcer is longer that those of reaction wound using both of the dressings

  19. Production of hydrogel wound dressing by radiation

    International Nuclear Information System (INIS)

    Isobe, Kazuki

    2008-01-01

    It has been thought that making a dry scab helps to cure a wound faster. However, recently a treatment of a wound according to moist healing theory which cure a wound without making a scab is becoming popular. Accordingly, we prepared a highly stable sheet type hydrogel in a short period by radiating electron beam to an aqueous solution of a polymer. The hydrogel is not soluble in water and keeps suitable moist environment for wound healing. Therefore, a hydrogel a wound dressing, Viewgel R in which represents a registered trademark and is referred to Viewgel hereinafter, is developed and released from July of 2004. In this paper we report the process of the development of Viewgel. (author)

  20. A comparative study of the efficacy of topical negative pressure moist dressings and conventional moist dressings in chronic wounds

    Directory of Open Access Journals (Sweden)

    Tauro Leo

    2007-01-01

    Full Text Available Aim: To assess the efficacy of topical negative pressure moist wound dressing as compared to conventional moist wound dressings in improving the healing process in chronic wounds and to prove that negative pressure dressings can be used as a much better treatment option in the management of chronic wounds. Materials and Methods: This is a prospective comparative study of data from 112 patients with chronic wounds, of which 56 patients underwent topical negative pressure dressings (17 diabetic, 10 pressure sores, nine ischemic, two varicose, 10 post-infective raw areas and eight traumatic - six had bone exposed, two orthopaedic prosthesis exposed. The remaining 56 patients underwent conventional moist dressings (20 diabetic, two ischemic, 15 pressure sores, three varicose, eight post-infective raw areas and eight traumatic - five had bone exposed, three orthopaedic prosthesis exposed. The results were compared after 10 days. The variables compared were, rate of granulation tissue formation as a percentage of ulcer area covered, skin graft take up as the percentage of ulcer surface area and duration of hospital stay. The variables were compared using Unpaired Student′s t test. A " P" value < 0.05 was considered significant. Results: Out of 56 patients who underwent topical negative pressure dressings, six (10.71% were failures, due to failure in maintaining topical negative pressure due to defective sealing technique; these were included into the study group. After 10 days, the mean rate of granulation tissue formation was 71.43% of ulcer surface area. All these 56 cases underwent split-thickness skin grafting. The mean graft take-up was 79.29%. The mean hospital stay was 32.64 days. In the remaining 56 patients, the mean rate of granulation tissue formation was 52.85% of ulcer surface area. The mean graft take-up was only 60.45% of the total ulcer surface area. The mean hospital stay was 60.45 days. Conclusion: To conclude, topical negative

  1. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing.

    Science.gov (United States)

    Xie, Haixia; Chen, Xiuli; Shen, Xianrong; He, Ying; Chen, Wei; Luo, Qun; Ge, Weihong; Yuan, Weihong; Tang, Xue; Hou, Dengyong; Jiang, Dingwen; Wang, Qingrong; Liu, Yuming; Liu, Qiong; Li, Kexian

    2018-02-01

    The present study aimed to prepare a composite dressing composed of collagen, chitosan, and alginate, which may promote wound healing and prevent from seawater immersion. Chitosan-collagen-alginate (CCA) cushion was prepared by paintcoat and freeze-drying, and it was attached to a polyurethane to compose CCA composite dressing. The swelling, porosity, degradation, and mechanical properties of CCA cushion were evaluated. The effects on wound healing and seawater prevention of CCA composite dressing were tested by rat wound model. Preliminary biosecurity was tested by cytotoxicity and hemocompatibility. The results revealed that CCA cushion had good water absorption and mechanical properties. A higher wound healing ratio was observed in CCA composite dressing treated rats than in gauze or chitosan treated ones. On the fifth day, the healing rates of CCA composite dressing, gauze, and chitosan were 48.49%±1.07%, 28.02%±6.4%, and 38.97%±8.53%, respectively. More fibroblast and intact re-epithelialization were observed in histological images of CCA composite dressing treated rats, and the expressions of EGF, bFGF, TGF-β, and CD31 increased significantly. CCA composite dressing showed no significant cytotoxicity, and favorable hemocompatibility. These results suggested that CCA composite dressing could prevent against seawater immersion and promote wound healing while having a good biosecurity. Copyright © 2017. Published by Elsevier B.V.

  2. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates.

    Science.gov (United States)

    Madaghiele, Marta; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2014-01-01

    Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair), which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  3. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates

    Directory of Open Access Journals (Sweden)

    Marta Madaghiele

    2014-10-01

    Full Text Available Wound closure represents a primary goal in the treatment of very deep and/or large wounds, for which the mortality rate is particularly high. However, the spontaneous healing of adult skin eventually results in the formation of epithelialized scar and scar contracture (repair, which might distort the tissues and cause lifelong deformities and disabilities. This clinical evidence suggests that wound closure attained by means of skin regeneration, instead of repair, should be the true goal of burn wound management. The traditional concept of temporary wound dressings, able to stimulate skin healing by repair, is thus being increasingly replaced by the idea of temporary scaffolds, or regenerative templates, able to promote healing by regeneration. As wound dressings, polymeric hydrogels provide an ideal moisture environment for healing while protecting the wound, with the additional advantage of being comfortable to the patient, due to their cooling effect and non-adhesiveness to the wound tissue. More importantly, recent advances in regenerative medicine demonstrate that bioactive hydrogels can be properly designed to induce at least partial skin regeneration in vivo. The aim of this review is to provide a concise insight on the key properties of hydrogels for skin healing and regeneration, particularly highlighting the emerging role of hydrogels as next generation skin substitutes for the treatment of full-thickness burns.

  4. Early versus delayed dressing removal after primary closure of clean and clean-contaminated surgical wounds.

    Science.gov (United States)

    Toon, Clare D; Lusuku, Charnelle; Ramamoorthy, Rajarajan; Davidson, Brian R; Gurusamy, Kurinchi Selvan

    2015-09-03

    Most surgical procedures involve a cut in the skin that allows the surgeon to gain access to the deeper tissues or organs. Most surgical wounds are closed fully at the end of the procedure (primary closure). The surgeon covers the closed surgical wound with either a dressing or adhesive tape. The dressing can act as a physical barrier to protect the wound until the continuity of the skin is restored (within about 48 hours) and to absorb exudate from the wound, keeping it dry and clean, and preventing bacterial contamination from the external environment. Some studies have found that the moist environment created by some dressings accelerates wound healing, although others believe that the moist environment can be a disadvantage, as excessive exudate can cause maceration (softening and deterioration) of the wound and the surrounding healthy tissue. The utility of dressing surgical wounds beyond 48 hours of surgery is, therefore, controversial. To evaluate the benefits and risks of removing a dressing covering a closed surgical incision site within 48 hours permanently (early dressing removal) or beyond 48 hours of surgery permanently with interim dressing changes allowed (delayed dressing removal), on surgical site infection. In March 2015 we searched the following electronic databases: The Cochrane Wounds Group Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Database of Abstracts of Reviews of Effects (DARE) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; and EBSCO CINAHL. We also searched the references of included trials to identify further potentially-relevant trials. Two review authors independently identified studies for inclusion. We included all randomised clinical trials (RCTs) conducted with people of any age and sex, undergoing a surgical procedure, who had their wound closed and a dressing applied. We included only trials that compared

  5. Which dressing do donor site wounds need?: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ubbink Dirk T

    2011-10-01

    Full Text Available Abstract Background Donor site wounds after split-skin grafting are rather 'standard' wounds. At present, lots of dressings and topical agents for donor site wounds are commercially available. This causes large variation in the local care of these wounds, while the optimum 'standard' dressing for local wound care is unclear. This protocol describes a trial in which we investigate the effectiveness of various treatment options for these donor site wounds. Methods A 14-center, six-armed randomized clinical trial is being carried out in the Netherlands. An a-priori power analysis and an anticipated dropout rate of 15% indicates that 50 patients per group are necessary, totaling 300 patients, to be able to detect a 25% quicker mean time to complete wound healing. Randomization has been computerized to ensure allocation concealment. Adult patients who need a split-skin grafting operation for any reason, leaving a donor site wound of at least 10 cm2 are included and receive one of the following dressings: hydrocolloid, alginate, film, hydrofiber, silicone dressing, or paraffin gauze. No combinations of products from other intervention groups in this trial are allowed. Optimum application and changes of these dressings are pursued according to the protocol as supplied by the dressing manufacturers. Primary outcomes are days to complete wound healing and pain (using a Visual Analogue Scale. Secondary outcomes are adverse effects, scarring, patient satisfaction, and costs. Outcome assessors unaware of the treatment allocation will assess whether or not an outcome has occurred. Results will be analyzed according to the intention to treat principle. The first patient was randomized October 1, 2009. Discussion This study will provide comprehensive data on the effectiveness of different treatment options for donor site wounds. The dressing(s that will prevail in effectiveness, satisfaction and costs will be promoted among clinicians dealing with such

  6. Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds

    Science.gov (United States)

    Yahyaei, Behrooz; Manafi, Sahebali; Fahimi, Bijan; Arabzadeh, Sepideh; Pourali, Parastoo

    2018-03-01

    Fungating wounds usually develop in patients with advanced cancer, which responds poorly to treatments. Such wounds can be treated using suitable dressings. For this purpose, a recent research produced a new type of wound dressing with antibacterial and anticancer properties. The culture supernatant of Fusarium oxysporum was challenged with silver nitrate and heated for 5 min. Production of silver nanoparticles (SNPs) was confirmed using spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis. A solution of 10% (w/w) poly vinyl alcohol (PVA) and different volumes of SNP solutions were provided, where each solution was separately used for electrospinning. The obtained PVA/SNPs film evaluated under morphological characterization using field emission scanning electron microscope (FE-SEM) and its antibacterial and anticancer activities were measured. Results confirmed the presence of SNPs in the reaction mixture with sizes less than 50 nm, spherical and oval in shapes. FE-SEM results confirmed that SNPs were seen inside and entrapped between PVA in the PVA/SNPs membrane, composed of 50% of each material. This film had acceptable antibacterial properties against four different bacterial strains and a good anticancer activity against the human melanoma cell line (COLO 792) in contrast to the control one. A recent research introduced a new and fast biological method for the synthesis of SNPs, having acceptable antibacterial and anticancer activities. Further studies are needed to support the obtained results.

  7. EFFICACY OF VACUUM ASSISTED CLOSURE DRESSINGS WHEN COMPARED TO MOIST WOUND DRESSINGS IN THE MANAGEMENT OF DIABETIC FOOT ULCERS : A PROSPECTIVE COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Ballapalli Hari

    2015-10-01

    Full Text Available INTRODUCTION: F oot ulceration is mainly responsible for the morbidity of diabetes mellitus. They deprive the patient of quality working days and add to his financial burden. Several novel methods of wound healing came to vogue among which vacuum assisted dressing is becoming quite popular. Present study aim s to evaluate its efficacy when compared to regular moist wound dressings. OBJECTIVES: To study the effectiveness of vacuum assisted dressings in terms of Rate of wound healing. MATERIALS AND METHODS: we carried out a prospective study at Narayana medical college hospital on two groups (group A and group B of diabetic foot ulcer patients, whom we selected randomly after considering inclusion and exclusion criteria . Vacuum assisted dressings were done in group A patients and normal moist wound dressings in group B. At the start of the treatment and every week thereafter, size and depth of ulcers were recorded and results were compared at complete wound healing or at the end of 12 weeks of treatment whichever is earlier. S trict glycaemic control was maintaine d throughout the treatment period. RESULTS : significant healing was noticed in group A patients (vacuum assisted dressings group both in terms of ulcer size and depth. Wounds appeared more - healthy i.e. with less slough and more red granulation tissue in g roup A patients. CONCLUSION: vacuum assisted dressing is an efficacious method in the treatment of diabetic foot ulcers with significantly reduced hospital stay

  8. Physico-mechanical, morphological and biomedical properties of a novel natural wound dressing material.

    Science.gov (United States)

    Tavakoli, Javad

    2017-01-01

    Wound healing as a complex biological process greatly affects the quality of patients׳ lives. The high initial cost of wound treatment using advanced wound dressing is a major concern that warrants more attention. Because of the similarities between body macromolecules and polysaccharides and proteoglycans, gelatin and starch were used extensively as wound dressings; however their solubility in aqueous environment is known as a major drawback. Crosslinking, as a common method for enhancing mechanical properties, has its own limitation as some chemical cross-likers reduce biocompatibility. In this research, a simple and economical method for the fabrication of a novel wound dressing foam based on natural polymers of starch and gelatin with borax as the crosslinking agent is introduced. To evaluate the utility of the foams for wound dressing application, morphology, swelling behaviour and kinetics of swelling, vapour permeability, dimension stability, their mechanical properties and cytotoxicity as well as their ability to control release properties were examined as a function of crosslinking density. It was found that however, all borax-induced-samples show acceptable biocompatibility, incorporation of 30% borax solution optimises their mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components

    International Nuclear Information System (INIS)

    Xin, Zhirong; Du, Shanshan; Zhao, Chunyu; Chen, Hao; Sun, Miao; Yan, Shunjie; Luan, Shifang; Yin, Jinghua

    2016-01-01

    Graphical abstract: - Highlights: • PNVP and PHMG components were covalently immobilized on PP_N_W_F surface. • PP_N_W_F-g-PNVP-PHMG possessed bacterial adhesion-resistant and bactericidal capabilities. • PP_N_W_F-g-PNVP-PHMG obviously suppressed platelet and red blood cell adhesion. - Abstract: A growing number of wound dressing-related nosocomial infections necessitate the development of novel antibacterial strategies. Herein, polypropylene non-woven fabric (PP_N_W_F) was facilely modified with passive and active antibacterial components, namely photografting polymerization both N-Vinyl-2-pyrrolidone (NVP) and glycidyl methacrylate (GMA) monomers, and the introduction of guanidine polymer through the reaction between active amino groups and epoxy groups. The modified samples were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), respectively. Water contact angle measurement, antibacterial test, platelet and red blood cell adhesion were used to evaluate the hydrophilicity, antibacterial properties and hemocompatibility of the samples. It was found that the antibacterial properties were obviously enhanced, meanwhile significantly suppressing platelet and red blood cell adhesion after the above modification. This PP_N_W_F samples that possess antifouling and antimicrobial properties, have great potential in wound dressing applications.

  10. Cost-effectiveness of silver dressings for paediatric partial thickness burns: An economic evaluation from a randomized controlled trial.

    Science.gov (United States)

    Gee Kee, E; Stockton, K; Kimble, R M; Cuttle, L; McPhail, S M

    2017-06-01

    Partial thickness burns of up to 10% total body surface area (TBSA) in children are common injuries primarily treated in the outpatient setting using expensive silver-containing dressings. However, economic evaluations in the paediatric burns population are lacking to assist healthcare providers when choosing which dressing to use. The aim of this study was to conduct a cost-effectiveness analysis of three silver dressings for partial thickness burns ≤10% TBSA in children aged 0-15 years using days to full wound re-epithelialization as the health outcome. This study was a trial based economic evaluation (incremental cost effectiveness) conducted from a healthcare provider perspective. Ninety-six children participated in the trial investigating Acticoat™, Acticoat™ with Mepitel™ or Mepilex Ag™. Costs directly related to the management of partial thickness burns ≤10% TBSA were collected during the trial from March 2013 to July 2014 and for a one year after re-epithelialization time horizon. Incremental cost effectiveness ratios were estimated and dominance probabilities calculated from bootstrap resampling trial data. Sensitivity analyses were conducted to examine the potential effect of accounting for infrequent, but high cost, skin grafting surgical procedures. Costs (dressing, labour, analgesics, scar management) were considerably lower in the Mepilex Ag™ group (median AUD$94.45) compared to the Acticoat™ (median $244.90) and Acticoat™ with Mepitel™ (median $196.66) interventions. There was a 99% and 97% probability that Mepilex Ag™ dominated (cheaper and more effective than) Acticoat™ and Acticoat™ with Mepitel™, respectively. This pattern of dominance was consistent across raw cost and effects, after a priori adjustments, and sensitivity analyses. There was an 82% probability that Acticoat™ with Mepitel dominated Acticoat™ in the primary analysis, although this probability was sensitive to the effect of skin graft procedures. This

  11. Thermoresponsive polyurethane/siloxane membrane for wound dressing and cell sheet transplantation: In-vitro and in-vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Rezapour-Lactoee, Alireza [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Yeganeh, Hamid, E-mail: h.yeganeh@ippi.ac.ir [Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran (Iran, Islamic Republic of); Ostad, Seyed Nasser, E-mail: ostadnas@sina.tums.ac.ir [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, 16 Azar St, Enqelab Sq, Tehran 1417614411 (Iran, Islamic Republic of); Gharibi, Reza [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of); Mazaheri, Zohreh [Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar [Department of Tissue Engineering, School of Advanced Medical Technologies, Tehran University of Medical Sciences, 14177-55469 Tehran (Iran, Islamic Republic of)

    2016-12-01

    Polyurethane/siloxane based wound dressing for transferring fibroblast cell sheet to wounded skin and ability to provide an optimum condition for cellular activity at damaged tissue was prepared in this research. The dressing was made thermoresponsive, via the introduction of a poly(N-isopropyl acrylamide) copolymer into the backbone of dressing. The ability of membrane for adhesion, growth, and proliferation of fibroblast cells was improved via surface modification with gelatin. The optimized dressing exhibited appropriate tensile strength (4.5 MPa) and elongation at break (80%) to protect wound against physical forces. Due to controlled equilibrium water absorption of about 89% and water vapor transmission rate of 2040 g/m{sup 2} day, the dressing could maintain the favorable moist environment over moderate to high exuding wounds. The grown cell sheet on dressing membrane could easily roll up from the surface just with lowering the temperature. The in vivo study of the wound dressed with cell loaded membrane confirmed the accelerated healing and production of tissue with complete re-epithelization, enhanced vascularization, and increased collagen deposition on the damaged area. - Highlights: • Versatile polymerization procedure to prepare wound dressing membranes • Improved cytocompatibility to support growth and proliferation of seeded fibroblasts • Utilizing thermoresponsive characteristic to transfer cell sheet to damaged tissue • Excellent physicomechanical properties of dressings to protect wound bed • Excellent fluid handling to provide moist environment over wounded tissue.

  12. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity.

    Science.gov (United States)

    Sarhan, Wessam A; Azzazy, Hassan M E; El-Sherbiny, Ibrahim M

    2016-03-01

    Two natural extracts were loaded within fabricated honey, poly(vinyl alcohol), chitosan nanofibers (HPCS) to develop biocompatible antimicrobial nanofibrous wound dressing. The dried aqueous extract of Cleome droserifolia (CE) and Allium sativum aqueous extract (AE) and their combination were loaded within the HPCS nanofibers in the HPCS-CE, HPCS-AE, and HPCS-AE/CE nanofiber mats, respectively. It was observed that the addition of AE resulted in the least fiber diameter (145 nm), whereas the addition of the AE and CE combination resulted in the least swelling ability and the highest weight loss. In vitro antibacterial testing against Staphylococcus aureus, Escherichia coli, Methicillin-resistant S. aureus (MRSA), and multidrug-resistant Pseudomonas aeruginosa was performed in comparison with the commercial dressing AquacelAg and revealed that the HPCS-AE and HPCS-AE/CE nanofiber mats allowed complete inhibition of S. aureus and the HPCS-AE/CE exhibited mild antibacterial activity against MRSA. A preliminary in vivo study revealed that the developed nanofiber mats enhanced the wound healing process as compared to the untreated control as proved by the enhanced wound closure rates in mice and by the histological examination of the wounds. Moreover, comparison with the commercial dressing Aquacel Ag, the HPCS, and HPCS-AE/CE demonstrated similar effects on the wound healing process, whereas the HPCS/AE allowed an enhanced wound closure rate. Cell culture studies proved the biocompatibility of the developed nanofiber mats in comparison with the commercial Aquacel Ag, which exhibited noticeable cytotoxicity. The developed natural nanofiber mats hold potential as promising biocompatible antibacterial wound dressing.

  13. Antimicrobial-impregnated dressing combined with negative-pressure wound therapy increases split-thickness skin graft engraftment: a simple effective technique.

    Science.gov (United States)

    Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren

    2015-01-01

    Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.

  14. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Suesca, Edward; Casadiegos, Sergio; Leal, Ermelindo C; Fontanilla, Marta R; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-01-01

    Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (phealing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (pdiabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone. © 2013.

  15. A novel wound rinsing solution based on nano colloidal silver

    Directory of Open Access Journals (Sweden)

    Soheila Kordestani

    2014-10-01

    Full Text Available Objective(s: The present study aimed to investigate the antiseptic properties of a colloidal nano silver wound rinsing solution to inhibit a wide range of pathogens including bacteria, viruses and fungus present in chronic and acute wounds. Materials and Methods:The wound rinsing solution named SilvoSept® was prepared using colloidal nano silver suspension. Physicochemical properties, effectiveness against microorganism including  Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739 ,Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA , Mycobacterium spp. , HSV-1 and H1N1, and biocompatibility tests were carried out according to relevant standards . Results: X-ray diffraction (XRD scan was performed on the sample and verify single phase of silver particles in the compound. The size of the silver particles in the solution, measured by dynamic light scattering (DLS techniqu, ranged 80-90 nm. Transmission electron microscopy (TEM revealed spherical shape with smooth surface of the silver nanoparticles. SilvoSept® reduced 5 log from the initial count of 107 CFU/mL of Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA, Mycobacterium spp. Further assessments of SilvoSept solution exhibited a significant inhibition on the replication of HSV-1 and H1N1. The biocompatibility studies showed that the solution was non-allergic, non-irritant and noncytotoxic. Conclusion: Findings of the present study showed that SilvoSept® wound rinsing solution containing nano silver particles is an effective antiseptic solution against a wide spectrum of microorganism. This compound can be a suitable candidate for wound irrigation.   

  16. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After

  17. An mHealth App for Decision-Making Support in Wound Dressing Selection (WounDS): Protocol for a User-Centered Feasibility Study.

    Science.gov (United States)

    Jordan, Scott; McSwiggan, Jane; Parker, Joanne; Halas, Gayle A; Friesen, Marcia

    2018-04-24

    Primary care health professionals, especially family physicians, see a variety of wounds, and yet-despite the frequency of providing wound care-many family physicians do not feel confident in wound care management. This is partly due to a lack of formal wound education in Family Medicine programs. While there are numerous electronic wound care resources available in the UK and North America, none were identified that address the specific need in supporting clinical decision-making in wound dressing selection. At the same time, healthcare providers are increasingly using technology in personal and professional contexts, and a logical extension is to use technology for knowledge translation strategies. This work developed a prototype mobile health software application named WounDS, designed to support clinical decision-making in selecting wound dressings. This article presents the development and evaluation plan for the WounDS app. WounDS has been developed on the iOS platform. The primary specification included ease of use, in that one of the primary influences in user adoption would be the ability to receive a wound dressing recommendation in under 30 seconds and under 5 taps on the screen. The WounDS app guides users through a series of binary decisions for assessing the wound and provides a wound dressing recommendation. The selection algorithm is based in best practices using the Wound Bed Preparation Paradigm. Current work is underway to examine the implementation needs for WounDS to be most effectively utilized and to pilot test its feasibility and use in clinical care. Data will be collected through user trials, focus groups, and user metadata will be collected within the app. Optimizing these preconditions will enable a subsequent phase of study to determine effects on clinical decision-making and clinical outcomes. WounDS is designed for knowledge translation, use of technology in clinical decision-making, and continuity of care. The benefits of WounDS

  18. The wound dressing supply chain within England's National Health Service: unravelling the context for users.

    Science.gov (United States)

    Browne, Natasha; Grocott, Patricia; Cowley, Sarah

    2004-01-01

    To explore the representation of user needs (nurses and patients, both individuals and groups) at the industrial (wound dressing manufacture) and National Health Service interface. The wound dressing supply chain is outlined, tracking organizational changes. The methods that are used to transfer user information between industries that produce dressings and those using the products are reviewed in terms of their ability to communicate what users need from dressings. Organizational policies and systems are outlined, with the focus on their role in facilitating the communication of user needs. Methods for generating user information that can directly inform dressing design are needed together with interactive communication routes within the supply chain, specifically between users, manufacturers, purchasers and suppliers. This will facilitate dual benefits for nursing management through improvements in purchasing decisions and nurses' management of wound care.

  19. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    OpenAIRE

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Laz?r, Veronica; Chifiriuc, Mariana Carmen

    2012-01-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to st...

  20. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications

    Science.gov (United States)

    Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng

    2018-01-01

    Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065

  1. Release of antibiotics from collagen dressing.

    Science.gov (United States)

    Grzybowski, J; Antos-Bielska, M; Ołdak, E; Trafny, E A

    1997-01-01

    Our new collagen dressing has been developed recently. Three types (A, B, and C) of the dressing were prepared in this study. Each type contained bacitracin, neomycin or colistin. The antibiotic was input into: i. collagen sponge (CS)--type A, ii. layer of limited hydrophobicity (LLH)--type B, and iii. into both CS and LLH layers--type C. The final concentration of the antibiotic that resulted from the loading level was 2 mg/cm2 for the dressings of type A and B and 4 mg/cm2 for the dressing of type C. The antibiotics were then extracted from the pieces of dressings for two days through dialysis membrane. Susceptibility of 54 bacterial strains (S. aureus, P. aeruginosa, and Acinetobacter) isolated from burn wounds were tested to the three antibiotics used for preparation of the dressings. The results of the study evidenced that efficiency of released of antibiotics into the extracts depended on the kind of antibiotic and on the type of dressing. The concentration of the antibiotics proved to be much higher than MIC90 values of the bacterial isolates tested in respect to their susceptibility. The dressing containing mixture of the three antibiotics in two layers--CS and LLH is now considered as potentially effective for care of infected wounds. It may be useful for the treatment of infected wounds or for profilaxis of contaminated wounds, ensuring: i. sufficient antimicrobial activity in wound, and ii. optimal wound environment for the presence of collagenic biomaterial on the damaged tissue.

  2. Enhancing pressure ulcer prevention using wound dressings: what are the modes of action?

    Science.gov (United States)

    Call, Evan; Pedersen, Justin; Bill, Brian; Black, Joyce; Alves, Paulo; Brindle, C Tod; Dealey, Carol; Santamaria, Nick; Clark, Michael

    2015-08-01

    Recent clinical research has generated interest in the use of sacral wound dressings as preventive devices for patients at risk of ulceration. This study was conducted to identify the modes of action through which dressings can add to pressure ulcer prevention, for example, shear and friction force redistribution and pressure distribution. Bench testing was performed using nine commercially available dressings. The use of dressings can reduce the amplitude of shear stress and friction reaching the skin of patients at risk. They can also effectively redirect these forces to wider areas which minimises the mechanical loads upon skeletal prominences. Dressings can redistribute pressure based upon their effective Poisson ratio and larger deflection areas, providing greater load redistribution. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  3. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  4. Fabrication and characterization of ovalbumin films for wound dressing applications

    International Nuclear Information System (INIS)

    Shojaee, Mozhgan; Navaee, Fatemeh; Jalili–Firoozinezhad, Sasan; Faturechi, Rahim; Majidi, Mohammad; Bonakdar, Shahin

    2015-01-01

    A great number of people suffer from burning injuries all around the world each year. Applying an appropriate wound dressing can promote new tissue formation, prevent losing water and inhibit invasion of infectious organisms. In this study, egg white with a long standing history, as a homemade remedy, was fabricated as a wound dressing for burn injuries. For this reason, ovalbumin films were cross-linked by 1-ethyl-3-3-dimethyl aminopropyl carbodiimide hydrochloride (EDC) with different concentrations (1, 5 and 10 mM) using three concentrations of ethanol. Physical–chemical characterizations including Fourier transform infrared spectroscopy (FTIR), gas transmission rate (GTR), tensile mechanical tests, water uptake and degradation rate were performed on the samples. The sample with 5 mM crosslinking agent at 70% ethanol was considered as the optimized one with 417 kPa of ultimate tensile strength, 64% elongation at break and 230% water uptake. In addition, biological evaluations conducted by MTT and live/dead assay indicated no sign of cyto-toxicity for all the samples. Moreover, scanning electron microscopy (SEM) showed that the fibroblast cells were well spread on the sample with the formation of filopodia. In conclusion, modified ovalbumin can be applied as the base material for fabrication of wound dressing and skin care products. - Highlights: • Ovalbumin films were cross-linked by EDC with different concentrations. • Physical–chemical characterizations were performed on the samples. • Biological evaluations indicated no sign of cyto-toxicity for all the samples. • The optimized sample was considered with 5 mM crosslinking agent at 70% ethanol. • Modified ovalbumin can be applied as wound dressings and skin care products

  5. Fabrication and characterization of ovalbumin films for wound dressing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, Mozhgan; Navaee, Fatemeh [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Jalili–Firoozinezhad, Sasan [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Departments of Biomedicine and Surgery, University Hospital Basel, University of Basel, 4031 Basel (Switzerland); Faturechi, Rahim [Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Majidi, Mohammad [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Bonakdar, Shahin, E-mail: sh_bonakdar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of)

    2015-03-01

    A great number of people suffer from burning injuries all around the world each year. Applying an appropriate wound dressing can promote new tissue formation, prevent losing water and inhibit invasion of infectious organisms. In this study, egg white with a long standing history, as a homemade remedy, was fabricated as a wound dressing for burn injuries. For this reason, ovalbumin films were cross-linked by 1-ethyl-3-3-dimethyl aminopropyl carbodiimide hydrochloride (EDC) with different concentrations (1, 5 and 10 mM) using three concentrations of ethanol. Physical–chemical characterizations including Fourier transform infrared spectroscopy (FTIR), gas transmission rate (GTR), tensile mechanical tests, water uptake and degradation rate were performed on the samples. The sample with 5 mM crosslinking agent at 70% ethanol was considered as the optimized one with 417 kPa of ultimate tensile strength, 64% elongation at break and 230% water uptake. In addition, biological evaluations conducted by MTT and live/dead assay indicated no sign of cyto-toxicity for all the samples. Moreover, scanning electron microscopy (SEM) showed that the fibroblast cells were well spread on the sample with the formation of filopodia. In conclusion, modified ovalbumin can be applied as the base material for fabrication of wound dressing and skin care products. - Highlights: • Ovalbumin films were cross-linked by EDC with different concentrations. • Physical–chemical characterizations were performed on the samples. • Biological evaluations indicated no sign of cyto-toxicity for all the samples. • The optimized sample was considered with 5 mM crosslinking agent at 70% ethanol. • Modified ovalbumin can be applied as wound dressings and skin care products.

  6. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  7. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    International Nuclear Information System (INIS)

    Çalamak, Semih; Erdoğdu, Ceren; Özalp, Meral; Ulubayram, Kezban

    2014-01-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line

  8. Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material.

    Science.gov (United States)

    Güneş, Seda; Tıhmınlıoğlu, Funda

    2017-09-01

    Recent studies in wound dressing applications offer new therapies and promote wound healing process. The aim of this study was to develop Hypericum perforatum (St John's Wort) oil incorporated chitosan films for wound dressing applications. H. perforatum oil as a potential therapeutic agent was encapsulated in chitosan film to achieve a better wound dressing material. Oil incorporated chitosan films were successfully prepared by solvent casting method in different oil concentrations (0.25-1.5%v/v). Water vapor permeability (WVP), mechanical test, swelling behavior and surface hydrophobicity were performed in order to characterize the prepared films. Antimicrobial test was performed by disc diffusion method and the growth inhibition effects of the films including different amount of H. perforatum oil were investigated on Escherichia coli and Staphylococcus aureus. WVP increased with oil incorporation and the highest value was obtained for 0.25% oil concentration.The highest strain value was obtained in 0.25% oil content films although tensile stress decreased with increasing oil content. H. perforatum oil incorporated films had antimicrobial effect on both microorganisms. Chitosan based films had no cytotoxic effects on NIH3T3fibroblast cells and provided a good surface for cell attachment and proliferation. The results showed that the H. perforatum incorporated chitosan films seems to be a potential and novel biomaterial for wound healing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Unravelling nocebo effect: the mediating effect of anxiety between anticipation and pain at wound dressing change.

    Science.gov (United States)

    Woo, Kevin Y

    2015-07-01

    The purpose of this study was to examine the mediating effect of anxiety in the relationship between anticipation and pain in people with chronic wounds. Pain is common in people with chronic wounds. Anticipation or negative expectation of discomfort has been shown to have an augmenting effect on pain; also known as nocebo hyperalgesia. This was a cross-sectional study with repeated measures. Prior to dressing change, anticipatory pain level was evaluated by a 11-point numerical rating scale and anxiety by the Six-items State-Trait Anxiety Inventory (STAI-6). During wound dressing changes, pain was measured before dressing removal, at dressing removal, at cleansing and dressing application using the numerical scale. Analysis was completed based on the data from a convenience sample of 96 patients. Participants reported more pain at cleansing and dressing removal than baseline. High levels of anticipation, anxiety and pain at dressing change for wounds were related to heavy exudate and wound that were covered with necrotic tissue. Finally, the relationship between anticipation and pain perception was mediated by anxiety. Anticipation of pain triggers anxiety that can lead to increased pain. There is a need to incorporate evaluation of anxiety and personal expectations as part of comprehensive pain assessment. Clinicians should be aware of the impact of emotions and anticipation on overall pain experience. © 2015 John Wiley & Sons Ltd.

  10. Wound Dressing Procedure and Prevention of Contamination and ...

    African Journals Online (AJOL)

    Malawi Medical Journal. Wound Dressing Procedure and Prevention of Contamination and. Cross Infection. By: Chimwaza AF, MRN, MRN, Bsc (Hons) MSN Lecturer. Kachingwe-Sisya M., MRN, MRM. Bsc Nsg Edu. & Adm. MSN. Lecturer. Medical Surgical Nursing Department. Kamuzu College of Nursing. Blantyre. Malawi.

  11. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif; Farooqui, Muhammad Fahad

    2016-01-01

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a

  12. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  13. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents.

    Science.gov (United States)

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-01-01

    Aloe vera and curcumin loaded oxidized pectin-gelatin (OP-Gel) matrices were used as antimicrobial finishes on nonwoven cotton fabrics to produce composite wound care devices. The drug release characteristics of the biocomposite dressings indicated that curcumin is released through a biphasic mechanism - erosion of the polymeric matrix, followed by diffusion, while aloe vera is released upon leaching of the polymeric matrix. A 50/50 composition of aloe vera/curcumin was used to fabricate OP-Gel-Aloe Curcumin dressings. However, contrary to our expectations, OP-Gel-Aloe Curcumin dressings exhibited lesser antimicrobial activity compared to OP-Gel-Aloe and OP-Gel-Curcumin dressings. The cytocompatibility of the fabricated dressings was evaluated using NIH3T3 mouse fibroblast cells. OP-Gel-Aloe treated fibroblasts had the highest viability, with the matrices providing a substrate for good cell attachment and proliferation. On the other hand, OP-Gel-Curcumin and OP-Gel-Aloe Curcumin seemed to have induced apoptosis in NIH3T3 cells. In vivo wound healing analysis was carried out using an excisional splint wound model on C57BL/6J mice. OP-Gel-Aloe treated wounds exhibited very rapid healing with 80% of the wound healing in just 8 days. Furthermore, aloe vera exerted a strong anti-inflammatory effect and prominent scar prevention. Histological examination revealed that an ordered collagen formation and neovascularization could be observed along with migration of nuclei. Therefore, OP-Gel-Aloe biocomposite dressings are proposed as viable materials for effective wound management. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. [Healing of a deep skin wound using a collagen sponge as dressing in the animal experiment].

    Science.gov (United States)

    Sedlarik, K M; Schoots, C; Oosterbaan, J A; Klopper, J P

    1992-10-01

    The high number of available wound dressing materials as well as the scientific reports about the topic indicates that the problem of an ideal wound dressing is not jet solved. In the last thirty years lot of scientific reports about collagen as wound covering has been published. The positive effect of collagen by his application on a wound ist well known. We investigated the effect of a collagen sponge on healing of full thickness skin wound in guinea pig. The animals were divided in two control groups and two experimental groups. In the control group there were air exposed wounds and another wounds covered with paraffin gauze. In the experimental groups were such wounds covered with natural reconstituted collagen sponge as well as wounds covered with chemically prepared collagen sponge with hexamethyldiisocyanat. The results were compared. The air exposed wounds healed in 50 days, the wounds covered with paraffin gauze healed in 48 days. By covering the wounds with collagen sponge the healing was shortened in 24 or 27 days respectively. Not only the healing time was shortened but also the quality of the wound repair by dressing the wounds with collagen sponge was enhanced.

  15. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  16. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  17. Effects of a just-in-time educational intervention placed on wound dressing packages: a multicenter randomized controlled trial.

    Science.gov (United States)

    Kent, Dea J

    2010-01-01

    I compared the effects of a just-in-time educational intervention (educational materials for dressing application attached to the manufacturer's dressing package) to traditional wound care education on reported confidence and dressing application in a simulated model. Nurses from a variety of backgrounds were recruited for this study. The nurses possessed all levels of education ranging from licensed practical nurse to master of science in nursing. Both novice and seasoned nurses were included, with no stipulations regarding years of nursing experience. Exclusion criteria included nurses who spent less than 50% of their time in direct patient care and nurses with advanced wound care training and/or certification (CWOCN, CWON). Study settings included community-based acute care facilities, critical access hospitals, long-term care facilities, long-term acute care facilities, and home care agencies. No level 1 trauma centers were included in the study for geographical reasons. Participants were randomly allocated to control or intervention groups. Each participant completed the Kent Dressing Confidence Assessment tool. Subjects were then asked to apply the dressing to a wound model under the observation of either the principal investigator or a trained observer, who scored the accuracy of dressing application according to established criteria. None of the 139 nurses who received traditional dressing packaging were able to apply the dressing to a wound model correctly. In contrast, 88% of the nurses who received the package with the educational guide attached to it were able to apply the dressing to a wound model correctly (χ2 = 107.22, df = 1, P = .0001). Nurses who received the dressing package with the attached educational guide agreed that this feature gave them confidence to correctly apply the dressing (88%), while no nurse agreed that the traditional package gave him or her the confidence to apply the dressing correctly (χ2 = 147.47, df = 4, P just

  18. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies.

    Science.gov (United States)

    Napavichayanun, Supamas; Yamdech, Rungnapha; Aramwit, Pornanong

    2016-03-01

    In our previous work, we have attempted to develop a novel bacterial nanocellulose wound dressing which composed of both polyhexamethylene biguanide (PHMB) as an antimicrobial agent and sericin as an accelerative wound healing component. The loading sequence and concentration of PHMB and sericin were optimized to provide the wound dressing with the most effective antimicrobial activity and enhanced collagen production. In this study, further in vitro, in vivo, and clinical studies of this novel wound dressing were performed to evaluate its safety, efficacy, and applicability. For the in vitro cytotoxic test with L929 mouse fibroblast cells, our novel dressing was not toxic to the cells and also promoted cell migration as good as the commercially available dressing, possibly due to the component of sericin released. When implanted subcutaneously in rats, the lower inflammation response was observed for the novel dressing implanted, comparing to the commercially available dressing. This might be that the antimicrobial PHMB component of the novel dressing played a role to reduce infection and inflammation reaction. The clinical trial patch test was performed on the normal skin of healthy volunteers to evaluate the irritation effect of the dressing. Our novel dressing did not irritate the skin of any volunteers, as characterized by the normal levels of erythema and melanin and the absence of edema, papule, vesicle, and bullae. Then, the novel dressing was applied for the treatment of full-thickness wounds in rats. The wounds treated with our novel dressing showed significantly lower percentage of wound size and higher extent of collagen formation mainly due to the activity of sericin. We concluded that our novel bacterial nanocellulose incorporating PHMB and sericin was a safe and efficient wound dressing material for further investigation in the wound healing efficacy in clinic.

  19. Enhancing in situ hydrogen peroxide generation of greige cotton nonwoven wound dressings via ascorbate stabilized copper micro- and nano-particles

    Science.gov (United States)

    Understanding how wound dressings may be designed to address critical unsolved issues in wound repair and treatment influences the development of dressings and new concepts of promoting healing. The vast majority of commercial dressing materials focus on the physical aspects of wounds, e.g., acting ...

  20. Comparison of fasciotomy wound closures using traditional dressing changes and the vacuum-assisted closure device.

    Science.gov (United States)

    Zannis, John; Angobaldo, Jeff; Marks, Malcolm; DeFranzo, Anthony; David, Lisa; Molnar, Joseph; Argenta, Louis

    2009-04-01

    Fasciotomy wounds can be a major contributor to length of stay for patients as well as a difficult reconstructive challenge. Once the compartment pressure has been relieved and stabilized, the wound should be closed as quickly and early as possible to avoid later complications. Skin grafting can lead to morbidity and scarring at both the donor and fasciotomy site. Primary closure results in a more functional and esthetic outcome with less morbidity for the patient, but can often be difficult to achieve secondary to edema, skin retraction, and skin edge necrosis. Our objective was to examine fasciotomy wound outcomes, including time to definitive closure, comparing traditional wet-to-dry dressings, and the vacuum-assisted closure (VAC) device. This retrospective chart review included a consecutive series of patients over a 10-year period. This series included 458 patients who underwent 804 fasciotomies. Of these fasciotomy wounds, 438 received exclusively VAC. dressings, 270 received only normal saline wet-to-dry dressings, and 96 were treated with a combination of both. Of the sample, 408 patients were treated with exclusively VAC therapy or wet-to-dry dressings and 50 patients were treated with a combination of both. In comparing all wounds, there was a statistically significant higher rate of primary closure using the VAC versus traditional wet-to-dry dressings (P lower extremities and P extremities). The time to primary closure of wounds was shorter in the VAC. group in comparison with the non-VAC group. This study has shown that the use of the VAC for fasciotomy wound closure results in a higher rate of primary closure versus traditional wet-to-dry dressings. In addition, the time to primary closure of wounds or time to skin grafting is shorter when the VAC was employed. The VAC used in the described settings decreases hospitalization time, allows for earlier rehabilitation, and ultimately leads to increased patient satisfaction.

  1. Silica Nanofibers with Immobilized Tetracycline for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Irena Lovětinská-Šlamborová

    2016-01-01

    Full Text Available Local antibiotic treatment has its justification for superficial infections. The advantage of this treatment is that the antibiotic has effects on bacterial agent directly at the application site. Skin infections which are intended for the local antibiotic treatment are superficial pyoderma, some festering wounds, burns of second and third degree, infected leg ulcers, or decubitus of second and third degree. Tetracyclines are available topical antibiotics with a broad bacterial spectrum. At present, ointments containing tetracycline are also used for the treatment, which rarely can lead to skin sensitization. In this paper, a development of novel nanofibrous material with immobilized tetracycline is presented. Two different methods of immobilized tetracycline quantification onto silica nanofibers are employed. It was proven that the prevailing part of tetracycline was bound weakly by physisorption forces, while the minor part was covalently bound by NH2 groups formed by the preceding functionalization. The silica nanofibers with immobilized tetracycline are promising material for wound dressing applications due to its antibacterial activity; it was proved by tests.

  2. A pre-clinical evaluation of silver, iodine and Manuka honey based dressings in a model of traumatic extremity wounds contaminated with Staphylococcus aureus.

    Science.gov (United States)

    Guthrie, Hugo C; Martin, Kevin R; Taylor, Christopher; Spear, Abigail M; Whiting, Rachel; Macildowie, Sara; Clasper, Jonathan C; Watts, Sarah A

    2014-08-01

    Prevention of extremity war wound infection remains a clinical challenge. Staphylococcus aureus is the most common pathogen in delayed infection. We hypothesised that choice of wound dressings may affect bacterial burden over 7 days reflecting the current practice of delayed primary closure of wounds within this timeframe. A randomised controlled trial of 3 commercially available dressings (Inadine(®) (Johnson & Johnson, NJ, USA), Acticoat(®) (Smith & Nephew, Hull, UK), Activon Tulle (Advancis Medical, Nottingham, UK)) was conducted in a rabbit model of contaminated forelimb muscle injury. A positive control group treated with antibiotics was included. Groups were compared to a saline soaked gauze control. The primary outcome was a statistically significant reduction (p injury. Secondary outcome measurements included bacteraemias, observational data, whole blood determination, ELISA for plasma biomarkers, PCR array analysis of wound healing gene expression and muscle/lymph node histopathology. Antibiotic, Inadine and Acticoat groups had statistically significant lower bacterial counts (mean 7.13 [95% CI 0.00-96.31]×10(2); 1.66 [0.94-2.58]×10(5); 8.86 [0.00-53.35]×10(4)cfu/g, respectively) and Activon Tulle group had significantly higher counts (2.82 [0.98-5.61]×10(6)cfu/g) than saline soaked gauze control (7.58 [1.65-17.83]×10(5)cfu/g). There were no bacteraemias or significant differences in observational data or whole blood determination. There were no significant differences in muscle/loss or pathology and lymph node cross-sectional area or morphology. There were some significant differences between treatment groups in the plasma cytokines IL-4, TNFα and MCP-1 in comparison to the control. PCR array data demonstrated more general changes in gene expression in the muscle tissue from the Activon Tulle group than the Inadine or Acticoat dressings with a limited number of genes showing significantly altered expression compared to control. This study has

  3. Efficacy of vacuum assisted closure in management of open wounds as compared to moist wound dressing-experience at CMH rawalpindi

    International Nuclear Information System (INIS)

    Iqbal, M.N.; Sajid, M.T.; Ahmed, Z.; Iqbal, M.H.

    2016-01-01

    Objective: To compare the efficacy of vacuum assisted closure (VAC) therapy against regular moist wound dressings in reducing the surface area of open chronic wounds by at least 5 mm/sup 2/ in terms of early closure of wound. Study Design: Randomized controlled trail. Place and Duration of Study: This study was conducted at general surgery department CMH/MH Rawalpindi from Jun 2011 to Dec 2011 over a period of 06 months. Material and Methods: A total of 278 patients (139 in each group) were included in this study. Group A received VAC therapy while moist wound dressings applied in group B. Results: Mean age was 54.9 +-7.2 and 53.4 +- 8.9 years in group A and B, respectively (statistically insignificant (p=0.12). In group A, 96 patients (69.0 percent) and in group B 92 patients (66.2 percent) were male while 43 patients (31.0 percent) in group A and 47 patients (33.8 percent) in group B were female the difference being statistically insignificant (p=0.608). In group A, 63 (45.3 percent) patients showed significant reduction in the size of the wound while only 41 (29.5 percent) patients in group B had adequate wound healing at the end of 04 weeks, the difference being statistically significant (p=0.0064). Conclusion: VAC therapy decreases wound size more effectively than moist wound dressing technique. It definitely reduces hospital stay and ensures early return to work. (author)

  4. Evaluating the superiority of honey over silver sulphadiazine dressing in shortening healing duration of burn injury: an evidence-based case report

    Directory of Open Access Journals (Sweden)

    Sandy S. Sopandi

    2013-12-01

    Full Text Available Background: Burn injury is a global health problem associated with major morbidity and mortality. Honey has long been used in wound management due to its ability to accelerate healing rates and prevent infection. This study is conducted to evaluate the efficacy of honey dressing in shortening healing duration of burn injury compared to silver sulphadiazine (SSD.Methods: A PubMed and Proquest database search was conducted to identify relevant studies. The studies were then appraised and ranked based on their validity, importance, and level of evidence.Results: The two studies appraised in this paper supported the supremacy of honey against SSD in shortening healing duration. However, the individual quality of studies involved was low.Conclusion: Honey is an alternative treatment in shortening burn wound healing duration. Further studies are needed to support clinical application of this conclusion. (Med J Indones. 2013;22:243-7. doi: 10.13181/mji.v22i4.608 Keywords: Burn injury, healing duration, honey, silver sulfadiazine

  5. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    Science.gov (United States)

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  6. Hydrogen dressings HDR

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1990-01-01

    Within the past several years new developments in biomaterials have enabled a significant progress in the healing of different kinds of wounds. One of such biomaterials is synthetic hydrogels. They can be formed by means of radiation technology which gives some advantages over chemical methods. Hydrogel dressings HDR have the shape of transparent foil, 3-4 mm thick, which contain over 90% water. They can be used for healing exuding wounds and especially burns, ulcers, bedsores and skin grafts. HDR dressings are sterile, transparent and mechanically resistant

  7. Results of a retrospective comparative study: material cost for managing a series of large wounds in subjects with serious morbidity with a hydrokinetic fiber dressing or negative pressure wound therapy.

    Science.gov (United States)

    Hermans, Michel H E; Kwon Lee, S; Ragan, Mitzie R; Laudi, Pam

    2015-03-01

    This retrospective observational study analyzed lesions with regard to healing trends and cost of materials. The observed lesions were mostly postsurgical or stage IV pressure ulcers in patients with serious morbidity. The wounds were treated with a hydrokinetic fiber dressing (sorbion Sachet S, sorbion Gmbh & Co, a BSN medical company, Senden, Germany) (n = 26) or negative pressure wound therapy (NPWT) (n = 16). Primary healing trends (ie, reduction of wound size, change from necrosis to granulation tissue, and change from granulation tissue to epithelium) and secondary healing trends (ie, periwound conditions) were similar for wounds treated with the hydrokinetic dressing when compared to wounds treated with NPWT. Cost of materials was substantially lower for wounds treated with the hydrokinetic fiber dressing compared to the NPWT, with cost reductions of $1,640 (348%) to $2,242 (1794%) per wound, depending on the criteria used for the analysis. In this set of wounds, the hydrokinetic fiber dressing was shown to lead to similar healing results while providing substantial reductions of the cost of materials. For the types of wounds presented in this observational study, the hydrokinetic fiber dressing seems to be an effective substitution for negative pressure wound therapy.

  8. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application.

    Science.gov (United States)

    Fu, Ruoqiu; Li, Chenwen; Yu, Caiping; Xie, Hong; Shi, Sanjun; Li, Zhuoheng; Wang, Qing; Lu, Laichun

    2016-01-01

    This study reports on the performance of sodium alginate (SA)/poly(vinyl alcohol) (PVA)/moxifloxacin hydrochloride (MH) nanofibrous membranes (NFM) capable of providing antibacterial agent delivery for wound-dressing applications. The aim of this work was to prepare antibacterial NFM with good permeability properties by employing PVA and SA as carriers. A group of 12% PVA/2% SA solutions blended in various ratios (8:2, 7:3, 6:4, 5:5 and 4:6, v/v) and containing 0.5, 1, 2 or 4 wt% MH were studied for electrospinning into nanoscale fibermats. The optimum ratio found to form smooth fibers with uniform fibrous features was 6:4. The drug release behavior of the electrospun, the antibacterial effects on Pseudomonas aeruginosa and Staphylococcus aureus and the animal wound dressing capabilities were also investigated. As much as 80% of the MH was released from the electrospun after 10 h of incubation at 37 °C. In addition, the NFM with 0.5 MH exhibited less activity, whereas those with higher concentrations of MH exhibited greater antibacterial effect. Furthermore, the MH-loaded electrospun accelerated the rate of wound dressing compared to other groups. The results of the in vitro and in vivo experiments suggest that MH/PVA/SA nanofibers might be an interesting bioactive wound dressing for clinical applications.

  9. Comparative study of Silver Sulfadiazine with other materials for healing and infection prevention in burns: A systematic review and meta-analysis.

    Science.gov (United States)

    Nímia, Heloisa Helena; Carvalho, Viviane Fernandes; Isaac, Cesar; Souza, Francisley Ávila; Gemperli, Rolf; Paggiaro, André Oliveira

    2018-06-11

    The aim of this systematic review with meta-analysis was to compare the effect of Silver Sulfadiazine (SSD) with other new dressings, with or without silver, on healing and infection prevention in burns. The electronic search was carried out in the electronic databases of Pubmed, ScienceDirect, Lilacs and BVS. The articles included were randomized clinical trials about burn treatment with SSD, which evaluated the healing and infection of burn wounds in humans. The exclusion criteria included articles, editorials and letters published in the form of abstracts, unpublished reports and case series, cross-sectional, observational experimental studies, and the use of sulfadiazine for other types of wounds. The search identified 873 references, and 24 studies were included in accordance with the eligibility criteria. The results showed a statistically favorable difference related to the time of healing for silver dressings (p0.05). The rate of infection was significantly higher in the SSD group compared with the group treated with dressings without silver (p<0.005; MD 25.29% and MD 12.97%). Considering the clinical trials conducted up to the present time, the authors concluded that new dressings with and without silver show better results than SSD for wound healing, and burns treated with dressings without silver are less likely to become infected than burns with SSD. No differences between SSD and new silver materials were observed in relation to infection prevention. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  10. Papain incorporated chitin dressings for wound debridement sterilized by gamma radiation

    Science.gov (United States)

    Singh, Durgeshwer; Singh, Rita

    2012-11-01

    Wound debridement is essential for the removal of necrotic or nonviable tissue from the wound surface to create an environment conducive to healing. Nonsurgical enzymatic debridement is an attractive method due to its effectiveness and ease of use. Papain is a proteolytic enzyme derived from the fruit of Carica papaya and is capable of breaking down a variety of necrotic tissue substrates. The present study was focused on the use of gamma radiation for sterilization of papain dressing with wound debriding activity. Membranes with papain were prepared using 0.5% chitin in lithium chloride/dimethylacetamide solvent and sterilized by gamma radiation. Fluid absorption capacity of chitin-papain membranes without glycerol was 14.30±6.57% in 6 h. Incorporation of glycerol resulted in significant (p<0.001) increase in the absorption capacity. Moisture vapour transmission rate of the membranes was 4285.77±455.61 g/m2/24 h at 24 h. Gamma irradiation at 25 kGy was found suitable for sterilization of the dressings. Infrared (IR) spectral scanning has shown that papain was stable on gamma irradiation at 25-35 kGy. The irradiated chitin-papain membranes were impermeable to different bacterial strains and also exhibited strong bactericidal action against both Gram-positive and Gram-negative bacteria. The fluid handling characteristics and the antimicrobial properties of chitin-papain membranes sterilized by gamma radiation were found suitable for use as wound dressing with debriding activity.

  11. Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Meirong Yang

    2018-04-01

    Full Text Available Sericin is a biomaterial resource for its significant biodegradability, biocompatibility, hydrophilicity, and reactivity. Designing a material with superabsorbent, antiseptic, and non-cytotoxic wound dressing properties is advantageous to reduce wound infection and promote wound healing. Herein, we propose an environment-friendly strategy to obtain an interpenetrating polymer network gel through blending sericin and agarose and freeze-drying. The physicochemical characterizations of the sericin/agarose gel including morphology, porosity, swelling behavior, crystallinity, secondary structure, and thermal property were well characterized. Subsequently, the lysozyme loaded sericin/agarose composite gel was successfully prepared by the solution impregnation method. To evaluate the potential of the lysozyme loaded sericin/agarose gel in wound dressing application, we analyzed the lysozyme loading and release, antimicrobial activity, and cytocompatibility of the resulting gel. The results showed the lysozyme loaded composite gel had high porosity, excellent water absorption property, and good antimicrobial activities against Escherichia coli and Staphylococcus aureus. Also, the lysozyme loaded gel showed excellent cytocompatibility on NIH3T3 and HEK293 cells. So, the lysozyme loaded sericin/agarose gel is a potential alternative biomaterial for wound dressing.

  12. Effect of Andrographis paniculata leaf extract on wound healing in rats.

    Science.gov (United States)

    Al-Bayaty, Fouad Hussain; Abdulla, Mahmood Ameen; Abu Hassan, Mohamed Ibrahim; Ali, Hapipah Mohd

    2012-01-01

    This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.

  13. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing.

    Science.gov (United States)

    Shen, Xian-Rong; Chen, Xiu-Li; Xie, Hai-Xia; He, Ying; Chen, Wei; Luo, Qun; Yuan, Wei-Hong; Tang, Xue; Hou, Deng-Yong; Jiang, Ding-Wen; Wang, Qing-Rong

    2017-10-27

    Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing. Shark skin collagen (SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for pH. A shark skin collagen sponge (SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane (PU) film (SSCS + PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS + PU on the healing of seawater-immersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawater-immersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3rd day group, 5th day group, 7th day group and 12th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS + PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze (GZ) + PU group, chitosan (CS) + PU group and SSCS + PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods. The results of Ultraviolet-visible (UV-vis) spectrum, Fourier-transform infrared (FTIR) spectrum, circular dichroism (CD) spectra

  14. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lina [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Ping [Institute of Organ Transplant of Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Zhang, Shengmin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); National Engineering Research Center for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-07-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing.

  15. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation

    International Nuclear Information System (INIS)

    Fu, Lina; Zhou, Ping; Zhang, Shengmin; Yang, Guang

    2013-01-01

    Bacterial nanocellulose (BNC) was biosynthesized by Gluconacetobacter xylinus. The surface area, physicochemical structure and morphology of the materials were characterized. Here provides a method for an efficient production of uniform BNC, which is beneficial for the fast characterization and evaluation of BNC. In vitro cytotoxicity of the materials was evaluated by the proliferation, the adhesion, the viability and the morphology of NIH/3T3 cells. Low cytotoxicity of the BNC was observed, and micrographs demonstrate a good proliferation and adhesion of NIH/3T3 cells on BNC. Large area full-thickness skin defects were made on the back of C57BL/6 mice in animal surgery. The wounds were transplanted with BNC films and the results compared to those in a control group. The rehabilitation of the wound surfaces and the pathological sections of mice were investigated and are discussed. Histological examinations demonstrated faster and better healing effect and lower inflammatory response in the BNC group than those in the control group. Preliminary results on wound dressings from BNC show a curative effect promoting the healing of epithelial tissue. BNC is a promising natural polymer with medical applications in wound dressings. - Highlights: • BNC is expected to be a promising material in wound healing and skin transplantation. • We studied surface area, physicochemical structures and morphology of uniform BNC. • Cyto-evaluation results of BNC-based wound dressing show a good biocompatibility. • Large area skin transplantation experiments suggest a good performance of healing

  16. Evaluating the superiority of honey over silver sulphadiazine dressing in shortening healing duration of burn injury: an evidence-based case report

    OpenAIRE

    Sandy S. Sopandi

    2013-01-01

    Background: Burn injury is a global health problem associated with major morbidity and mortality. Honey has long been used in wound management due to its ability to accelerate healing rates and prevent infection. This study is conducted to evaluate the efficacy of honey dressing in shortening healing duration of burn injury compared to silver sulphadiazine (SSD).Methods: A PubMed and Proquest database search was conducted to identify relevant studies. The studies were then appraised and ranke...

  17. Techniques for applying subatmospheric pressure dressing to wounds in difficult regions of anatomy.

    Science.gov (United States)

    Greer, S E; Duthie, E; Cartolano, B; Koehler, K M; Maydick-Youngberg, D; Longaker, M T

    1999-09-01

    Subatmospheric pressure dressing (SPD) has been commercially available in the United States since 1995 as the vacuum-assisted closure (VAC) device. SPD increases local blood flow, decreases edema and bacterial count, and promotes the formation of granulation tissue. Despite recent clinical successes with the use of SPD in a variety of wound types, problems may occur with application of VAC system in certain areas of the body. The main limitation occurs when attempting to maintain an airtight seal over irregular surfaces surrounding a wound. For example, application of the adhesive drape and creation of a seal are particularly difficulty in the hip and perineum. In addition, wounds of the lower extremity can occur in multiple sites, posing the problem of providing a vacuum dressing to more than one wound from one suction pump machine. To address these challenging clinical wounds, we have developed techniques to allow the successful application of SPD to sacral pressure ulcers near the anus, and to multiple large lower extremity ulcers.

  18. The Effect of Virtual Reality Distraction on Pain Relief During Dressing Changes in Children with Chronic Wounds on Lower Limbs.

    Science.gov (United States)

    Hua, Yun; Qiu, Rong; Yao, Wen-Yan; Zhang, Qin; Chen, Xiao-Li

    2015-10-01

    It has been demonstrated that patients with chronic wounds experience the most pain during dressing changes. Currently, researchers focus mostly on analgesics and appropriate dressing materials to relieve pain during dressing changes of chronic wounds. However, the effect of nonpharmacologic interventions, such as virtual reality distraction, on pain management during dressing changes of pediatric chronic wounds remains poorly understood. To investigate the effect of virtual reality distraction on alleviating pain during dressing changes in children with chronic wounds on their lower limbs. A prospective randomized study. A pediatric center in a tertiary hospital. Sixty-five children, aged from 4 to 16 years, with chronic wounds on their lower limbs. Pain and anxiety scores during dressing changes were recorded by using the Wong-Baker Faces picture scale, visual analogue scale, and pain behavior scale, as well as physiological measurements including pulse rate and oxygen saturation. Time length of dressing change was recorded. Virtual reality distraction significantly relieved pain and anxiety scores during dressing changes and reduced the time length for dressing changes as compared to standard distraction methods. The use of virtual reality as a distraction tool in a pediatric ward offered superior pain reduction to children as compared to standard distractions. This device can potentially improve clinical efficiency by reducing length time for dressing changes. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  19. The Application of Bactericidal Silver Nanoparticles in Wound Treatment

    Directory of Open Access Journals (Sweden)

    Geewoo Nam

    2015-07-01

    Full Text Available Even with the prevalence of wounds, the medical technol‐ ogy for efficiently managing skin damage is still primitive. The disruption of any of the numerous healing processes can lead to problems in the time-sensitive healing actions of the dermal and epidermal layers. Bacterial infection is one of the major obstacles to proper wound healing as it poses a danger of causing long-term negative effects. Keeping the wound free of bacteria is imperative to the proper and hasty repair of dermal wounds. Silver has been widely used to treat wounds for its bactericidal properties. Although the mechanism of silver’s antibacterial action is not fully understood, it exhibits a significant antimicrobial efficacy against a wide spectrum of bacterial species. A number of different approaches to the mechanism are reported and presented in this review. Silver nanoparticles (AgNPs have been reported to exhibit enhanced antibac‐ terial activity due to their increased surface-area-to-volume ratio. AgNPs are capable of various modifications, signifi‐ cantly broadening the therapeutic properties of the mate‐ rial as a result. This review explores the different aspects of silver and silver nanoparticles, and their antibacterial properties, which can be applied in the field of wound treatments.

  20. Intranasal ketamine for the management of incidental pain during wound dressing in cancer patients: A pilot study

    Directory of Open Access Journals (Sweden)

    Nivedita Page

    2018-01-01

    Full Text Available Introduction: Cancer wounds need regular dressing; else they develop infection, foul odor, and in extreme cases, maggots. Patients resist dressing due to the severe incidental pain during dressing. Intranasal ketamine was tried as an analgesic to reduce this incidental pain. Materials and Methods: Twenty patients with wounds requiring regular dressing were selected; these patients had a basal pain score of 4/10 and incidental pain score of 7/10 during four consecutive dressings. Ketamine 0.5 mg/kg was administered transmucosally 10 min before dressing, and pain scores, hemodynamic parameters, and sedation were recorded for up to 2 h in six consecutive dressings. Results: Ketamine produced a significant reduction in incidental pain without any hemodynamic changes or sedation. Conclusion: Ketamine appears to be a safe and effective analgesic when used intranasally for incidental pain.

  1. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    Science.gov (United States)

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  2. Clinical and histological evaluation of two dressing materials in the healing of palatal wounds

    Directory of Open Access Journals (Sweden)

    Shanmugam M

    2010-01-01

    Full Text Available Background : Free gingival grafts have been used extensively for gingival augmentation procedures, but are associated with postoperative morbidity because of the open palatal wound. This study compares the clinical efficiency of two dressing materials, a non-eugenol-based dressing (Coe-Pak™ and a collagen dressing (Colla Cote® on palatal wound healing. Materials and Methods : Thirty-two patients in the age group of 25−50 years, who required gingival augmentation, were selected. Free gingival graft was harvested from the palatal mucosa and the wound was then protected using Coe-pak; in control group and Colla Cote; in test group. The subjective parameters pain and burning sensation were recorded on the 2 nd and 7 th day and the objective parameters colour and consistency were recorded on the 7 th and 42 nd day, using a visual analog scale. Thickness of the mucosa was measured using K file at baseline and 42 nd day. Histological examination was done on 42 nd day. Results : The subjective and objective parameters showed significant improvement in the test group when compared to control group. Histologically, there was a greater evidence of collagen formation and turn over in the test group than control group. Conclusions : Collagen-based dressing may thus offer significantly greater advantages over the traditional non-eugenol dressings.

  3. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing.

    Science.gov (United States)

    Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia

    2017-12-01

    Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Poly (vinyl alcohol-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available PVA-sodium alginate (SA hydrogel membranes containing sodium ampicillin as a topical antibiotic were developed using the freeze–thawing method for wound dressing application. Aqueous solution of sodium alginate has been blended in a certain ratio with PVA, followed by the crosslinking method has been conducted by freeze–thawing method as physical crosslinking instead of the use of traditional chemical crosslinking to avoid riskiness of chemical reagents and crosslinkers. The physicochemical properties of PVA-SA membranes e.g. gel fraction and water uptake % have been performed. Increased SA content with PVA decreased gel fraction, elasticity, and elongation to break of PVA-SA membranes. However, it resulted in an increase in swelling degree, protein adsorption, and roughness of membrane surface. High SA content in PVA membranes had apparently an impact on surface morphology structure of hydrogel membranes. Pore size and pore area distribution have been observed with addition of high SA concentration. However, high SA content had an insignificant effect on the release of ampicillin. The hydrolytic degradation of PVA-SA membranes has prominently increased with increasing SA content. Furthermore, hemolysis (% and in vitro inhibition (% for both Gram positive and negative bacteria have been sharply affected by addition of SA into PVA, indicating the improved blood hemocompatibility. Thus, PVA-SA hydrogel membrane based wound dressing system containing ampicillin could be a good polymeric membrane candidate in wound care.

  5. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    Science.gov (United States)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  6. Biomechanical Skin Property Evaluation for Wounds Treated With Synthetic and Biosynthetic Wound Dressings and a Newly Developed Collagen Matrix During Healing of Superficial Skin Defects in a Rat Models.

    Science.gov (United States)

    Held, Manuel; Engelke, Anne-Sophie; Tolzmann, Dascha Sophie; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Rothenberger, Jens

    2016-09-01

    There is a high prevalence of superficial wounds such as partial-thickness burns. Treatment of these wounds frequently includes temporary application of wound dressings. The aim of this study was to compare a newly developed collagen matrix with commonly used temporary skin dressings for treatment of partial-thickness skin defects. Through a skin dermatome, 42 standardized superficial skin defects were generated on the back of 28 adult male Lewis rats. The wounds were treated with a synthetic wound dressing (Suprathel, Polymedics Innovations Inc, Woodstock, GA) (n = 14), a biosynthetic skin dressing (Biobrane, Smith & Nephew, Hull, UK) (n = 14), or a newly developed bovine collagen matrix, Collagen Cell Carrier (Viscofan BioEngineering, Weinheim, Germany) (n = 14). Biomechanical properties of the skin were determined and compared every 10 days over a 3-month period of using the Cutometer MPA 580 (Courage + Khazaka Electronic GmbH, Cologne, Germany). As opposed to healthy skin, statistically significant differences were detected between days 10 and 30, and between days 60 and 80, for calculated elasticity (Ue), firmness of skin (R0), and overall elasticity (R8). After 3 months, no statistically significant differences in skin elasticity were detected between the different wound dressings. The presented results give an opportunity to compare the wound dressings used for treatment with respect to skin elasticity and reveal the potential of the bovine collagen matrix in the treatment of superficial skin defects; therefore the results facilitate further evaluation of collagen matrix in surgical applications and regenerative medicine.

  7. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation.

    Science.gov (United States)

    Poonguzhali, R; Khaleel Basha, S; Sugantha Kumari, V

    2018-06-01

    The present study was to develop a novel chitosan based symmetric and asymmetric bionanocomposite for potential wound dressing application. Chitosan (C)/Poly (vinyl pyrrolidone) (P)/nanocellulose (NC) membrane were fabricated by salt leaching method with the addition of 3% and 5% wt of nanocellulose. To obtain asymmetric material one side of the membrane was coated by stearic acid (S) which could form hydrophobic surface and another side acts as a hydrophilic surface. Nanocellulose of size 2-10nm was synthesized and characterized by TEM analysis. SEM showed the hydrophilic surface of asymmetric bionanocomposite consists of porous structure and hydrophobic surface is smooth and homogeneous. The results revealed that the Chitosan/PVP/Nanocellulose 3%-Stearic acid (CPNC3%-S) had a moderate swelling ratio, porosity, barrier and mechanical properties. Incorporation of nanocellulose into chitosan/PVP matrix could enhance the antibacterial activity. The hydrophobic surface of the CPNC3%-S bionanocomposite shows water repellent and antiadhesion properties towards E. coli bacteria and also the hydrophilic surface exhibit excellent antibacterial property and cytotoxicity towards bacterial pathogens. In vivo wound healing test shows better re-epithelialization and wound contraction compared with control and Chitosan/PVP-stearic acid (CP-S) bionanocomposite. Asymmetric bionanocomposite Chitosan/PVP/Nanocellulose coated with 3%-Stearic acid (CPNC3%-S) exhibited very good invitro cytocompatibility and enabled a faster wound healing than symmetric dressing, hence showing great potential to be applied as wound dressings. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing.

    Science.gov (United States)

    Boateng, Joshua S; Pawar, Harshavardhan V; Tetteh, John

    2013-01-30

    Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa.

    Science.gov (United States)

    Jack, Alison A; Nordli, Henriette R; Powell, Lydia C; Powell, Kate A; Kishnani, Himanshu; Johnsen, Per Olav; Pukstad, Brita; Thomas, David W; Chinga-Carrasco, Gary; Hill, Katja E

    2017-02-10

    Chronic wounds pose an increasingly significant worldwide economic burden (over £1 billion per annum in the UK alone). With the escalation in global obesity and diabetes, chronic wounds will increasingly be a significant cause of morbidity and mortality. Cellulose nanofibrils (CNF) are highly versatile and can be tailored with specific physical properties to produce an assortment of three-dimensional structures (hydrogels, aerogels or films), for subsequent utilization as wound dressing materials. Growth curves using CNF (diameter nanocellulose aerogels (20g/m 2 ) revealed significantly less biofilm biomass with decreasing aerogel porosity and surface roughness. Importantly, virulence factor production by P. aeruginosa in the presence of nanocellulose materials, quantified for the first time, was unaffected (p>0.05) over 24h. These data demonstrate the potential of nanocellulose materials in the development of novel dressings that may afford significant clinical potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Terbinafine-loaded wound dressing for chronic superficial fungal infections.

    Science.gov (United States)

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24h and 14days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Acetic acid dressings: Finding the Holy Grail for infected wound management

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2017-01-01

    Full Text Available Background: Wounds have since long, contributed majorly to the health-care burden. Infected long-standing non-healing wounds place many demands on the treating surgeon and are devastating for the patients physically, nutritionally, vocationally, financially, psychologically and socially. Acetic acid has long been included among agents used in the treatment of infected wounds. In this study, we have evaluated the use of acetic acid for topical application in the treatment of infected wounds. Materials and Methods: A total of 100 patients with infected wounds were treated with topical application of 1% acetic acid as dressing material after appropriate cleaning. A specimen of wound swab was collected before first application and further on days 3, 7, 10 and 14. Daily dressings of wounds were done similarly. Minimum inhibitory concentration (MIC of acetic acid against various organisms isolated was determined. Results: The patients treated ranged between 9 and 60 years, with the mean age 33 years. Nearly 70% of patients were male. Aetiologies of wounds: infective 35, diabetic 25, trauma 20, burns 10, venous ulcers 5 and infected graft donor site 5. Various microorganisms isolated include Pseudomonas aeruginosa (40%, Staphylococcus aureus (2%, Acinetobacter (12%, Escherichia Coli (5%, Proteus mirabilis (3%, Klebsiella (18%, methicillin-resistant S. aureus (10%, Streptococcus (2% and Enterococcus (1%, Citrobacter (1%. Few wounds (6% also isolated fungi. About 28%, 64% and 8% of patients isolated no growth on culture after 7, 14 and 21 days, respectively. MIC of all isolated organisms was ≤0.5%. Conclusion: pH of the wound environment plays a pivotal role in wound healing. Acetic acid with concentration of 1% has shown to be efficacious against wide range of bacteria as well as fungi, simultaneously accelerating wound healing. Acetic acid is non-toxic, inexpensive, easily available and efficient topical agent for effective elimination of wound

  12. The effects of honey compared to silver sulfadiazine for the treatment of burns: A systematic review of randomized controlled trials.

    Science.gov (United States)

    Aziz, Zoriah; Abdul Rasool Hassan, Bassam

    2017-02-01

    Evidence from animal studies and trials suggests that honey may accelerate wound healing. The objective of this review was to assess the effects of honey compared with silver dressings on the healing of burn wounds. Relevant databases for randomized controlled trials (RCTs) of honey compared with silver sulfadiazine (SSD) were searched. The quality of the selected trials was assessed using the Cochrane Risk of Bias Assessment Tool. The primary endpoints considered were wound healing time and the number of infected wounds rendered sterile. Nine RCTs met the inclusion criteria. Based on moderate quality evidence there was a statistically significant difference between the two groups, favoring honey in healing time (MD -5.76days, 95% CI -8.14 to -3.39) and the proportions of infected wounds rendered sterile (RR 2.59; 95% CI 1.58-2.88). The available evidence suggests that honey dressings promote better wound healing than silver sulfadiazine for burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  13. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    International Nuclear Information System (INIS)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-01-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m 2 /day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m 2 /day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing

  14. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  15. A multicentre, clinical evaluation of a hydro-responsive wound dressing: the Glasgow experience.

    Science.gov (United States)

    Hodgson, H; Davidson, D; Duncan, A; Guthrie, J; Henderson, E; MacDiarmid, M; McGown, K; Pollard, V; Potter, R; Rodgers, A; Wilson, A; Horner, J; Doran, M; Simm, S; Taylor, R; Rogers, A; Rippon, M G; Colgrave, M

    2017-11-02

    Our aim was to assess the effectiveness of hydro-responsive wound dressing (HRWD) in debridement and wound bed preparation of a variety of acute and chronic wounds that presented with devitalised tissue needing removal so that healing may proceed. This was a non-comparative evaluation of acute and chronic wounds that required debridement as part of their normal treatment regimen. Clinicians recorded wound changes including a subjective assessment level of devitalised tissue and wound bed preparation, presence of pain, wound status (e.g., wound size) and periwound skin condition. Data was also collected from clinicians and patients to provide information on clinical performance of the dressing. We recruited 100 patients with a variety of wound types into the study. Over 90% of the clinicians reported removal of devitalised tissue to enable a healing response in both chronic and acute wounds. Specifically, over the course of the evaluation period, levels of devitalised tissue (necrosis and slough) reduced from 85.5% to 26.3%, and this was accompanied by an increase in wound bed granulation from 12.0% to 33.7%. Correspondingly, there was a 40% reduction in wound area, hence a clinically relevant healing response was seen upon treatment with HRWD. It is also noteworthy that this patient population included a significant proportion of chronic wounds (51.4%) that showed no signs of wound progression within debridement process (£8.05), larval therapy (£306.39) and mechanical pad debridement (£11.46). HRWD was well tolerated and was demonstrated to be an efficient debridement tool providing rapid, effective and pain free debridement in a variety of wound types.

  16. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    Science.gov (United States)

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (Pdiabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation.

    Science.gov (United States)

    El Fawal, Gomaa F; Abu-Serie, Marwa M; Hassan, Mohamed A; Elnouby, Mohamed S

    2018-05-01

    In this study, new hydrogel membranes were developed based on hydroxyethyl cellulose (HEC) supplemented with tungsten oxide for further implementing in wound treatment. HEC hydrogel membranes were fabricated and crosslinked using citric acid (CA). Various tests were carried out including FTIR, XRD, porosity measurements, swelling, mechanical properties, gel fraction, and thermal gravimetric analysis to evaluate the efficiency of the prepared membranes as wound dressing material. In addition, wound healing activity of the examined membranes for human dermal fibroblast cell line was investigated employing in vitro scratching model. Furthermore, the potency of the prepared membranes to suppress wound complications was studied via determination of their anti-inflammatory and antibacterial activities exploiting MTT, ELISA, and disk agar diffusion methods. The results demonstrated that the HEC hydrogel membranes revealed an anti-inflammatory and antibacterial efficacy. Moreover, HEC improved the safety of tungsten oxide toward normal human cells (white blood cells and dermal fibroblast). Furthermore, HEC membranes loaded with WO 3 revealed the highest activities against Salmonella sp. pursued by P. aeruginosa in compared with the negative HEC hydrogel membrane. The current approach corroborated that HEC amended by tungsten oxide could be applied as a promising safe candidate for wound dressing material. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Children's experiences of procedural pain management in conjunction with trauma wound dressings.

    Science.gov (United States)

    Nilsson, Stefan; Hallqvist, Carina; Sidenvall, Birgitta; Enskär, Karin

    2011-07-01

    This paper is a report of the experiences of children (5-10 years) of procedural pain when they underwent a trauma wound care session. Procedural pain in conjunction with trauma wound care often induces anxiety and distress in children. Children need to alleviate pain and avoid the development of fear in conjunction with examinations and treatments. The nurse could help children to reach this goal by using the comfort theory, which describes holistic nursing in four contexts: physical, psychospiritual, environmental and sociocultural. Few studies have focused on children's experiences of comforting activities in conjunction with trauma wound dressings. This study was conducted between May 2008 and January 2010. Thirty-nine participants aged 5-10 were consecutively included in this study. The wound care session was standardized for all the participants, and semi-structured qualitative interviews with open-ended questions were conducted with all the children in conjunction with the procedure. All the interviews were transcribed verbatim and analysed with qualitative content analysis. Four themes were identified: clinical competence, distraction, participation and security. The children were helped to reach comforting activities to enhance pain management. Children require more than just analgesics in wound care. They also need to experience security and participation in this context. When children feel clinical competence in wound care, they trust the nurse to carry out the wound dressing and instead can focus on the distraction that increases their positive outcomes. © 2011 Blackwell Publishing Ltd.

  19. A Post-marketing Surveillance Study of Chronic Wounds Treated With a Native Collagen Calcium Alginate Dressing.

    Science.gov (United States)

    Sabo, Matthew; Le, Lam; Yaakov, Raphael A; Carter, Marissa; Serena, Thomas E

    2018-04-01

    Chronic wounds (ie, wounds that fail to progress through a normal, orderly, timely sequence of repair) continue to pose significant clinical and economic burdens. A prospective, descriptive, 3-week post-marketing surveillance study was conducted across 3 wound care centers in the United States to evaluate the effectiveness of a collagen calcium alginate dressing on chronic wounds in conjunction with standard care (SC) practices (eg, offloading, debridement, compression) to support healing. Eligible participants had to be >18 years of age, have at least 1 chronic wound, and no known sensitivity to collagen. Demographic characteristics were recorded at the screening visit on case report forms. At each visit, wound-related pain was assessed using the Visual Analog Scale along with wound characteristics including size (using digital planimetry), wound exudate (minimal, moderate, heavy), and odor (none, mild). Participants were monitored for adverse events as well as infection based on signs and symptoms in and around the local wound bed, the deeper structures, and the surrounding skin. An intention-to-treat approach was used for all analyses. If an observation was missing, the last observation carried forward principle was used. For wounds that healed, pain and exudate were set to 0 (no pain/exudate) at visit 4. Descriptive, paired t tests and the Wilcoxon signed rank test were used to analyze the data. Of the 31 participants (15 men, 16 women, mean age 66.6 years), most (13, 42%) had a diabetic foot ulcer or venous leg ulcer (10, 32%); median duration of all wounds was 148 days. Thirty (30) patients completed the study. The mean number of comorbidities was 10.6 ± 6.3, and patients used a mean of 9.3 ± 5.64 prescription or over-the-counter medications. For all wounds combined, mean wound area was 4.8 ± 8.38 cm2 at baseline. At week 3, a decrease in wound area of 38.1% was noted (median: 45% ± 42.54; P = .006); 3 wounds healed completely. The change in wound exudate

  20. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material.

    Science.gov (United States)

    Baghaie, Shaghayegh; Khorasani, Mohammad T; Zarrabi, Ali; Moshtaghian, Jamal

    2017-12-01

    In this work, hydrogel membranes were developed based on poly vinyl alcohol (PVA), starch (St), and chitosan (Cs) hydrogels with nano Zinc oxide (nZnO). PVA/St/Cs/nZnO hydrogel membranes were prepared by freezing-thawing cycles, and the aqueous PVA/St solutions were prepared by dissolving PVA in distilled water. After the dissolution of PVA, starch was mixed, and the mixture was stirred. Then, chitosan powder was added into acetic acid, and the mixture was stirred to form a chitosan solution. Subsequently, Cs, St and PVA solutions were blended together to form a homogeneous PVA/St/Cs ternary blend solution. Measurement of Equilibrium Swelling Ratio (ESR), Water Vapor Transmission Test (WVTR), mechanical properties, scanning electron microscopy (SEM), MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay, antibacterial studies, in vivo wound healing effect and histopathology of the hydrogel membranes were then performed. The examination revealed that the hydrogel membranes were more effective as a wound dressing in the early stages of wound healing and that the gel could be used in topic applications requiring a large spectrum of antibacterial activity; namely, as a bandage for wound dressing.

  1. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  2. Comparision of vacuum-asisted closure and moist wound dressing in the treatment of diabetic foot ulcers.

    Science.gov (United States)

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers.

  3. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    Full Text Available Carlotta Bianco,1 Sanja Kezic,2 Matteo Crosera,1 Vesna Svetličić,3 Suzana Šegota,3 Giovanni Maina,4 Canzio Romano,5 Francesca Larese,6,7 Gianpiero Adami11Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 2Academic Medical Center, Coronel Institute, University of Amsterdam, Amsterdam, the Netherlands; 3Laboratory for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Ruder Boškovic Institute, Zagreb, Croatia; 4Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; 5Department of Public and Pediatric Health Sciences, University of Turin, Turin, Italy; 6Unit of Occupational Medicine, University of Trieste, Trieste, Italy; 7Department of Medical Sciences, University of Trieste, Trieste, ItalyAbstract: The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS and by inductively coupled plasma mass spectrometer (ICP-MS. The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX. Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM. On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration ranged from 0.7 to 4.7 µg/mL (0.6–4.0 µg/cm2, fitting the bactericidal range. Silver and silver

  4. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    International Nuclear Information System (INIS)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-01-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug ‘gentamicin’ and analgesic drug ‘lidocaine’ loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13 C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O 2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management. - Highlights: • It is radiation formation of sterile Semi-IPN hydrogel wound dressings. • Release of lidocaine and gentamicin can take for care of wound infection and wound pain simultaneously. • Hydrogels were blood compatible and permeable to H 2 O vapor and O 2. • Release of drugs occurred through non-Fickian diffusion mechanism. • Hydrogels were mucoadhesive and antioxidant nature.

  5. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    Science.gov (United States)

    Hasatsri, Sukhontha; Angspatt, Apichai

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170

  6. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    Directory of Open Access Journals (Sweden)

    Vanesa Andreu

    2015-08-01

    Full Text Available A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies. The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about

  7. Preparation and characterization of novel antibacterial castor oil-based polyurethane membranes for wound dressing application.

    Science.gov (United States)

    Yari, Abbas; Yeganeh, Hamid; Bakhshi, Hadi; Gharibi, Reza

    2014-01-01

    Preparation of novel antibacterial and cytocompatible polyurethane membranes as occlusive dressing, which can provide moist and sterile environment over mild exudative wounds is considered in this work. In this regard, an epoxy-terminated polyurethane (EPU) prepolymer based on castor oil and glycidyltriethylammonium chloride (GTEAC) as a reactive bactericidal agent were synthesized. Polyurethane membranes were prepared through cocuring of EPU and different content of GTEAC with 1,4-butane diamine. The physical and mechanical properties, as well as cytocompatibility and antibacterial performance of prepared membranes were studied. Depending on their chemical formulations, the equilibrium water absorption and water vapor transmission rate values of the membranes were in ranges of 3-85% and 53-154g m(-2) day(-1), respectively. Therefore, these transparent membranes can maintain for a long period the moist environment over the wounds with low exudates. Detailed cytotoxicity analysis of samples against mouse L929 fibroblast and MCA-3D keratinocyte cells showed good level of cytocompatibility of membranes after purification via extraction of residual unreacted GTEAC moieties. The antibacterial activity of the membranes against Escherichia coli and Staphylococcus aureus bacteria was also studied. The membrane containing 50% GTEAC exhibited an effective antibacterial activity, while showed acceptable cytocompatibility and therefore, can be applied as an antibacterial occlusive wound dressing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  8. An Advanced Multifunctional Hydrogel-Based Dressing for Wound Monitoring and Drug Delivery.

    Science.gov (United States)

    Mirani, Bahram; Pagan, Erik; Currie, Barbara; Siddiqui, Mohammad Ali; Hosseinzadeh, Reihaneh; Mostafalu, Pooria; Zhang, Yu Shrike; Ghahary, Aziz; Akbari, Mohsen

    2017-10-01

    Wound management is a major global challenge and poses a significant financial burden to the healthcare system due to the rapid growth of chronic diseases such as diabetes, obesity, and aging population. The ability to detect pathogenic infections and release drug at the wound site is of the utmost importance to expedient patient care. Herein, this study presents an advanced multifunctional dressing (GelDerm) capable of colorimetric measurement of pH, an indicator of bacterial infection, and release of antibiotic agents at the wound site. This study demonstrates the ability of GelDerm to detect bacterial infections using in vitro and ex vivo tests with accuracies comparable to the commercially available systems. Wireless interfaces to digital image capture hardware such as smartphones serve as a means for quantitation and enable the patient to record the wound condition at home and relay the information to the healthcare personnel for following treatment strategies. Additionally, the dressing is integrated within commercially available patches and can be placed on the wound without chemical or physical irritation. This study demonstrates the ability of GelDerm to eradicate bacteria by the sustained release of antibiotics. The proposed technology holds great promise in managing chronic and acute injuries caused by trauma, surgery, or diabetes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties.

    Science.gov (United States)

    Singh, Baljit; Pal, Lok

    2012-05-01

    The present study deals with the synthesis and characterization of sterculia crosslinked PVA and PVA-AAm hydrogel wound dressings. The hydrogels have been characterized by SEMs, FTIR, TGA and swelling studies. This article also discusses comparison of swelling, drug release and biomedical properties such as blood compatibility, antimicrobial activity, mucoadhesion, tensile strength, burst strength, water vapour permeability, oxygen diffusion and microbial penetration of both hydrogel wound dressings. These polymeric films have absorbed 4.80 ± 0.15 and 6.32 ± 0.15 gram/g of gel of simulated wound fluid respectively and swelling occurred through Case II diffusion mechanism. The release of antibiotic drugs occurred through non-Fickian and Case II diffusion mechanisms, respectively. These polymeric films have been observed to be permeable for oxygen and water vapour but have shown impermeability to the micro-organism. Sterculia-PVA hydrogel wound dressing has shown more blood compatibility as compared to the other film. All these results indicate that these hydrogel films may be used as wound dressings for the slow release of antibiotic drug to the wound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Terbinafine-loaded wound dressing for chronic superficial fungal infections

    International Nuclear Information System (INIS)

    Paskiabi, Farnoush Asghari; Bonakdar, Shahin; Shokrgozar, Mohammad Ali; Imani, Mohammad; Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2017-01-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144 h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24 h and 14 days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. - Highlights: • Terbinafine (TFH)-loaded PCL/gelatin electrospun fibers were successfully fabricated. • TFH-loaded PCL/gelatin electrospun fibers showed a slow drug release

  11. Terbinafine-loaded wound dressing for chronic superficial fungal infections

    Energy Technology Data Exchange (ETDEWEB)

    Paskiabi, Farnoush Asghari [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Microbiology Research Center, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Bonakdar, Shahin; Shokrgozar, Mohammad Ali [National Cell Bank Department, Pasteur Institute of Iran, Tehran 13164 (Iran, Islamic Republic of); Imani, Mohammad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jahanshiri, Zahra [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Shams-Ghahfarokhi, Masoomeh [Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Razzaghi-Abyaneh, Mehdi, E-mail: mrab442@yahoo.com [Department of Mycology, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of); Microbiology Research Center, Pasteur Institute of Iran, Tehran 13164. Iran (Iran, Islamic Republic of)

    2017-04-01

    In spite of developing new drugs and modern formulations, the treatments of chronic fungal infections are still challenging. Fibrous wound dressings are new suggestions for the treatment of chronic superficial infections. In the present study, we formulated an antifungal agent, terbinafine hydrochloride (TFH), which is a hydrophobic drug, in wound dressings prepared by electrospun polycaprolactone, polycaprolactone/gelatin (50:50 w/w) and gelatin. To obtain more water-stable meshes, the preparations were treated by glutaraldehyde and their properties were determined before and after treatment. The morphology of fibrous meshes was observed by scanning electron microscopy. Drug loading efficiency and release rate were measured by high performance liquid chromatography (HPLC) and the release rate was monitored for 144 h. Antifungal tests were performed on Trichophyton mentagrophytes, Aspergillus fumigatus and Candida albicans cultured on Muller-Hinton agar. The toxicity of the meshes was measured after 24 h and 14 days by MTT assay. Terbinafine loading of polycaprolactone/gelatin (50:50) was 100% and it released the highest amount of TFH too. In antifungal tests, all samples were able to hinderT. mentagrophytes and A. fumigatus but not C. albicans growth among them, polycaprolactone fibers made the largest inhibition zone. In MTT assay, none of prepared samples showed toxicity against L929 cells. Teken together, the prepared TFH-loaded PCL/gelatin electrospun meshes were able to release TFH slowly and in a steady state in time. With respect to no obvious cytotoxicity in MTT assay and stong antifungal activity toward T. mentagrophytesin vitro, these TFH-based meshes could be considered as potential candidates in clinical application as wound dressing for treatment of chronic dermatophytosis. - Highlights: • Terbinafine (TFH)-loaded PCL/gelatin electrospun fibers were successfully fabricated. • TFH-loaded PCL/gelatin electrospun fibers showed a slow drug release

  12. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Science.gov (United States)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  13. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Pardo, M.E. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico)], E-mail: memp@nuclear.inin.mx; Ley-Chavez, E. [ISSEMYM Toluca, Mexico DF (Mexico); Reyes-Frias, M.L. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico); Rodriguez-Ferreyra, P. [Hospital ' Dr. Nicolas San Juan' , Toluca, Mexico DF (Mexico); Vazquez-Maya, L.; Salazar, M.A. [Hospital General de Mexico, Mexico DF (Mexico)

    2007-11-15

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  14. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    International Nuclear Information System (INIS)

    Martinez-Pardo, M.E.; Ley-Chavez, E.; Reyes-Frias, M.L.; Rodriguez-Ferreyra, P.; Vazquez-Maya, L.; Salazar, M.A.

    2007-01-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders

  15. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing.

    Science.gov (United States)

    Pawar, Harshavardhan V; Boateng, Joshua S; Ayensu, Isaac; Tetteh, John

    2014-06-01

    Wafers combining weight ratios of Polyox with carrageenan (75/25) or sodium alginate (50/50) containing streptomycin and diclofenac were prepared to improve chronic wound healing. Gels were freeze-dried using a lyophilisation cycle incorporating an annealing step. Wafers were characterised for morphology, mechanical and in vitro functional (swelling, adhesion, drug release in the presence of simulated wound fluid) characteristics. Both blank (BLK) and drug-loaded (DL) wafers were soft, flexible, elegant in appearance and non-brittle in nature. Annealing helped to improve porous nature of wafers but was affected by the addition of drugs. Mechanical characterisation demonstrated that the wafers were strong enough to withstand normal stresses but also flexible to prevent damage to newly formed skin tissue. Differences in swelling, adhesion and drug release characteristics could be attributed to differences in pore size and sodium sulphate formed because of the salt forms of the two drugs. BLK wafers showed relatively higher swelling and adhesion than DL wafers with the latter showing controlled release of streptomycin and diclofenac. The optimised dressing has the potential to reduce bacterial infection and can also help to reduce swelling and pain associated with injury due to the anti-inflammatory action of diclofenac and help to achieve more rapid wound healing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing

    CSIR Research Space (South Africa)

    Naseria, N

    2014-08-01

    Full Text Available The aim of this study was to develop electrospun chitosan/polyethylene oxide-based randomly oriented fiber mats reinforced with chitin nanocrystals (ChNC) for wound dressing. Microscopy studies showedporous mats of smooth and beadless fibers...

  17. Comparing negative pressure wound treatment with honey dressing in healing of foot ulcers in diabetics

    International Nuclear Information System (INIS)

    Bashir, U.; Maqsood, R.; Shabbir, H.

    2018-01-01

    To evaluate and compare the effectiveness of vacuum assisted treatment with that of honey dressing in duration of healing of foot ulcers in diabetics. Study Design: Randomized control study. Place and Duration of Study: Combined Military Hospital Multan and Nishtar Hospital Multan, from Aug 2016 till Feb 2017. Patients and Methods: A total of 95 patients with ages between 30-60 years of both sexes, who presented with diabetic ulcers of foot involving subcutaneous tissue and skin. Patients were divided randomly into two groups; Group V and H. Group V was subjected to Vacuum Pack closure (negative pressure wound treatment) and group H was treated with honey dressing, follow up was done till the appearance of healthy tissue after initial debridement, suitable for STSG (Split Thickness Skin Graft) or primary closure. Results: Healthy tissue appeared much faster in Vacuum assisted treatment, then with honey dressing with mean of 18.2 days for V.A.C and 28.8 days for honey dressing. Conclusion: Vacuum assisted closure was more effective in the treatment of foot ulcers in diabetics. It promotes healthy granulation tissue in the wound bed at a faster rate in comparison to honey dressing. (author)

  18. Comparision of Vacuum-Asisted Closure and Moist Wound Dressing in the Treatment of Diabetic Foot Ulcers

    Science.gov (United States)

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Background: Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Results: Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. Conclusion: VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers. PMID:23723599

  19. Comparision of vacuum-asisted closure and moist wound dressing in the treatment of diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Hassan Ravari

    2013-01-01

    Full Text Available Background: Vacuum-assisted closure (VAC is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days during the study period. Patient satisfaction and formation of granulation tissue were also assessed. Results: Improvement of the wound in the form of reducing the diameter and depth and increasing proliferation of granulation tissue was significant in most of the patients of the VAC group after two weeks. Satisfaction of patients in the VAC group was evaluated as excellent as no amputation was done in this group. Wagner score was reduced in both the study groups, although this decrement was not significant in the moist dressing group. Conclusion: VAC appears to be as safe as and more efficacious than moist dressing for the treatment of diabetic foot ulcers.

  20. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: implications of material selection for dressing and protease sensor design

    Science.gov (United States)

    An intelligent dressing is a self-adjusting material with multifunctional properties and/or a biosensor-interface designed to treat specific pathological issues of wounds at a molecular or cellular level. The ability to detect and treat excessive protease levels in wounds, one indicator of chronic w...

  1. Effect of Periodontal Dressing on Wound Healing and Patient Satisfaction Following Periodontal Flap Surgery.

    Directory of Open Access Journals (Sweden)

    Sara Soheilifar

    2015-04-01

    Full Text Available It has been claimed that periodontal dressing reduces the risk of wound infection, bleeding and granulation tissue formation and improves tissue healing. This study sought to assess the effect of periodontal dressing on wound healing and patient satisfaction following periodontal flap surgery.This clinical trial was conducted on 33 patients presenting to Hamadan University, School of Dentistry in 2012 whose treatment plan included two periodontal surgical procedures on both quadrants of the maxilla or mandible. The variables evaluated were severity of pain, bleeding, facial swelling and ease of nutrition experienced by patient during the first 3 days after surgery and inflammation, granulation tissue formation and gingival color at 7 and 14 days. Obtained data were analyzed using SPSS version 16.0 and R software and chi-square and t-tests.The mean (±SD pain score was 1.73±1.153 and 2.79±1.933 in surgical sites with and without periodontal dressing, respectively and this difference was statistically significant (P=0.005. No significant difference was noted between sites with and without periodontal dressing in terms of swelling, bleeding, gingival consistency, granulation tissue formation, gingival color and ease of nutrition (P>0.05.According to the results of the present study, patients did not experience more bleeding, facial swelling or nutritional problems without periodontal dressing; however, the level of pain experienced was lower after surgeries with the use of periodontal dressing.

  2. Evaluation of an Oxygen-Diffusion Dressing for Accelerated Healing of Donor-Site Wounds

    Science.gov (United States)

    2014-06-01

    wounds in humans,8 but requires visits to facilities with trained personnel and is limited by oxygen toxicity issues. Compared with hyperbaric oxygen...open-label study to compare the effectiveness of OxyBand and Xeroform dress- ings used as dressings for autogenous skin donor sites in burn patients...donor sites. Epinephrine in lactated Ringer’s solu- tion at a concentration of 1:106 was injected subcu- taneously to prepare both donor sites for

  3. A cost and clinical effectiveness analysis among moist wound healing dressings versus traditional methods in home care patients with pressure ulcers.

    Science.gov (United States)

    Souliotis, Kyriakos; Kalemikerakis, Ioannis; Saridi, Maria; Papageorgiou, Manto; Kalokerinou, Athena

    2016-05-01

    The aim of the study was a cost and clinical effectiveness analysis between moist wound healing dressings and gauze in a homecare set up for the treatment of stage III and IV pressure ulcers up to complete healing. In addition, we assessed the overall economic burden on the Healthcare System. Treatment method for each patient was chosen randomly by using sealed opaque envelopes. The authors monitored the healing progress and recorded treatment costs without interfering with the treatment process. The healing progress was estimated by using surface measurement transparent films. To estimate treatment costs, the authors took into account labor costs, cost of dressings, as well the cost of other materials such as cleansing gauzes, normal saline, syringes, examination gloves, antiseptics and adhesive tape. The patient group under treatment with moist wound healing dressings consisted of 27 men and 20 women aged 75.1 ± 8,6 and had an average ulcer surface of 43.5 ± 30.70 cm(2) ; the patient group under treatment with gauze comprised 25 men and 23 women aged 77.02 ± 8.02 and had an average ulcer surface 41.52 ± 29.41 cm(2) (p = 0.25, 95% CI, Student's t test). The average healing time for the moist wound healing dressings group' was 85.56 ± 52.09 days, while 121.4 ± 52.21 days for the "gauze group" (p = 0.0001, 95% CI, Student's t test). The dressing change frequency per patient was reduced in the "moist wound healing dressings group," 49.5 ± 29.61, compared with a dressing change frequency per patient of 222.6 ± 101.86 for the "gauze group" (p = 0.0001, 95% CI, Student's t test). The use of moist wound healing dressings had a lower total treatment cost of 1,351 € per patient compared with, the use of gauzes (3,888 €). © 2016 by the Wound Healing Society.

  4. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshaei, Rasul [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Namazi, Hassan, E-mail: namazi@tabrizu.ac.ir [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz (Iran, Islamic Republic of)

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV–vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. - Highlights: • CMC nanocomposite hydrogel incorporated with TC loaded ZnO-MCM-41 nanoparticles have been prepared as active wound dressing. • Citric acid was used as cross linker to avoid conventional toxic crosslinkers. • CMC/ZnO-MCM-41

  5. Radiation processed hydrogels (wound dressings) for medical applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2004-01-01

    Thermal analysis plays an important role in study and development of hydrogel materials for medical applications. Thermal stability of the ingredients which is important from the point of manufacturing, rate of evaporation for shelf life evaluation, determination of gelation and temperature responsive temperatures, cooling behaviour, gel elasticity, radiation effects etc. can be studied using thermal analysis equipment like Differential scanning calorimetry (DSC), Thermo-gravimetric analysis (TGA) and thermo-mechanical analysis (TMA). In this use of these techniques in development, evaluation and quality control of hydrogel wound dressing is discussed

  6. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Immediate and Delayed Post-Debridement Effects on Tissue Bacterial Wound Counts of Hypochlorous Acid Versus Saline Irrigation in Chronic Wounds.

    Science.gov (United States)

    Hiebert, John M; Robson, Martin C

    2016-01-01

    Introduction: Wound debridement is considered essential in chronic wound management. Hypochlorous acid has been shown to be an effective agent in reducing wound bacterial counts in open wounds. Ultrasound-enabled wound debridement is an effective and efficient method of debridement. This study compared ultrasound irrigation with hypochlorous acid versus saline irrigation for wound debridement on pre- and postoperative wounds and determined regrowth of bacteria over 1 week period of time. Finally, the outcome of definitive wound closure of the clinically clean-appearing wounds was recorded. Methods: Seventeen consenting adult patients with chronic open wounds were randomly selected for study. The patients were randomly divided into the hypochlorous acid irrigation or saline irrigation group. All patients provided pre- and postoperative tissue samples for qualitative and quantitative bacteriology. For the time (7 days) between the debridement procedure and the definitive closure procedure, the wounds were dressed with a silver-impregnated dressing and a hydroconductive dressing. Results : Both types of irrigation in the ultrasonic system initially lowered the bacterial counts by 4 to 6 logs. However, by the time of definitive closure, the saline-irrigated wounds had bacterial counts back up to 10 5 whereas the hypochlorous acid-irrigated wounds remained at 10 2 or fewer. More than 80% of patients in the saline group had postoperative closure failure compared with 25% of patients in the hypochlorous acid group. Conclusions: Hypochlorous acid irrigation with ultrasound debridement reduced bacterial growth in chronic open wounds more efficiently than saline alone. Postoperative wound closure outcomes suggest a remarkable reduction in wound complications after wound debridement using hypochlorous acid irrigation with ultrasound versus saline alone.

  8. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair.

    Science.gov (United States)

    Jin, Sung Giu; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Seo, Youn Gee; Go, Toe Gyung; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-01-30

    To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material.

    Science.gov (United States)

    Karahaliloglu, Zeynep; Kilicay, Ebru; Denkbas, Emir Baki

    2017-09-01

    Antimicrobial mixed dressings have traditionally been used to minimize bacterial infection of burns and other wounds. This study presents the advancement of biocompatible chitosan/silk sericin (CHT/SS) scaffolds combined with lauric acid (LA) and zinc oxide nanoparticles (nZnO) for the successful wound dressing applications. Antibacterial assay results showed that the diameters of the inhibition zone increased from 2 ± 0.4 to 7 ± 0.1 mm for Escherichia coli, as well as from 2.5 ± 0.2 to 6 ± 0.4 mm for Staphylococcus aureus while CHTS/SS/100nZnO compared to CHT/SS/0.01LA. The results not only showed excellent inhibition against Gram-positive and Gram-negative bacterial growth but also revealed improved proliferation and extended viability for HaCaT cells.

  10. Electrospun bioactive mats enriched with Ca-polyphosphate/retinol nanospheres as potential wound dressing

    OpenAIRE

    Müller, Werner E.G.; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Diehl-Seifert, Bärbel; Wang, Xiaohong

    2015-01-01

    Background While electrospun materials have been frequently used in tissue engineering no wound dressings exist that significantly improved wound healing effectively. Methods We succeeded to fabricate three-dimensional (3D) electrospun poly(D,l-lactide) (PLA) fiber mats into which nanospheres, formed from amorphous calcium polyphosphate (polyP) nanoparticles (NP) and encapsulated retinol (“retinol/aCa-polyP-NS” nanospheres [NS]), had been incorporated. Results Experiments with MC3T3-E1 cells ...

  11. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation Induced Crosslinking with Potential Application as Wound Dressing

    International Nuclear Information System (INIS)

    Abd EI-Mohdy, H.L.; Hegazy, E.A.

    2009-01-01

    Polyvinyl pyrrolidone l polyethylene glycol hydrogels (PVP/ PEG) and PVP/ PEG/ Starch were prepared by irradiating the mixtures of aqueous solutions of PVP, PEG and starch with electron beam at different doses. Its properties were evaluated to identify their usability in wound dressing applications. Hydrogel dressing can protect injured skin and keep it appropriately moist to speed the healing process. The physical properties of the prepared hydrogels, such as gel content, swelling, water content and degree of water evaporation with varying composition and irradiation dose were examined to evaluate the usefulness of the hydrogels for wound dressing. The gel content increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. Mechanical experiments were conducted for both of PVP/PEG and PVP/PEG/ Starch. The adding of PEG and starch to PVP significantly improve elongation and tensile strength of prepared hydrogels. The crystallinity of prepared hydrogels was investigated with varying their components. XRD studies indicated that the crystallinity in the gel was mainly due to PVP and decreased with enhanced starch content. The prepared hydrogels had sufficient strength to be used as wound dressing and could be considered as a good barrier against microbes

  12. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2017-06-01

    Keeping in view the inherent wound healing ability of tragacanth gum (TG), mucoadhesive and gel forming nature of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), in the present work, an attempt has been made to prepare the antibiotic drug 'gentamicin' and analgesic drug 'lidocaine' loaded sterile TG-PVA-PVP hydrogel dressings for care of wound infection and wound pain together. These polymers were characterized by cryo-SEM, AFM, FTIR, XRD, 13C NMR, TGA, DSC and swelling studies. Drug release mechanism and kinetic models, network parameters and other properties like haemolysis, mucoadhesion, water vapor permeability, microbial penetration, antioxidant activities and oxygen permeability were also determined. The results showed wound fluid absorption and slow drug release ability of hydrogel films. These polymer films were found to be blood compatible, permeable to water vapor and O2, and impermeable to microorganism. Further, the synergic effects of mucoadhesive, antimicrobial and antioxidant nature of hydrogel dressings will make them suitable candidate for wound management.

  13. Comparison of homecare costs of local wound care in surgical patients randomized between occlusive and gauze dressings

    NARCIS (Netherlands)

    Ubbink, Dirk Th; Vermeulen, Hester; van Hattem, Jarne

    2008-01-01

    AIMS AND OBJECTIVES: To study the material and nursing costs and outcome of wound care at home comparing two dressing groups (occlusive vs. gauze-based) in surgical patients after hospital dismissal. BACKGROUND: The large variety in dressing materials and lack of convincing evidence make the choice

  14. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  15. Effects of limited access dressing in chronic wounds: A biochemical and histological study

    Directory of Open Access Journals (Sweden)

    Thittamaranahalli Muguregowda Honnegowda

    2015-01-01

    Full Text Available Background: Negative pressure wound therapy has emerged as an attractive treatment modality for the management and healing of chronic ulcers. Though numerous clinical studies are available, there is a lack of biochemical and histological studies evaluating the healing of chronic wounds. Materials and Methods: In the present study, a total 60 patients were divided into two groups: Limited access dressing (LAD group (n = 30 and conventional dressing group (n = 30. Various biochemical parameters such as hydroxyproline, total protein and antioxidants such as reduced glutathione (GSH, glutathione peroxidase (GPx, catalase (CAT and oxidative biomarker malondialdhyde (MDA are measured in the granulation tissue. Histologically amount of inflammatory infiltrate, angiogenesis, and collagen deposition are studied to assess wound healing. Results: Patients treated with LAD have shown significant increase in the mean (±standard deviation hydroxyproline (77.3 ± 30.1 vs. 32.3 ± 16.18; P = 0.026, total protein (13.89 ± 9.0 vs. 8.9 ± 4.59; P = 0.004, GSH (7.4 ± 1.91 vs. 5.1 ± 1.28; P = 0.039, GPx (122.3 ± 59.3 vs. 88.7 ± 34.11; P = 0.030, CAT (1.80 ± 1.14 vs. 0.9 ± 0.71; P = 0.002 and decrease in MDA (13.4 ± 5.5 vs. 8.6 ± 3.8; P = 0.004. Histological study showed comparatively fewer inflammatory cells, increased and well organised collagen bundles, and more angiogenesis in the LAD group when compared with that with conventional dressing after 10 days of treatment. Conclusion: In the present study, we have found beneficial effect of newer intermittent negative pressure therapy in combination with moist environment (LAD on chronic wound healing by increasing collagen deposition and angiogenesis; and reducing oxidative stress and inflammatory infiltrate.

  16. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  17. Polyurethane Foam Wound Dressing Technique for Areola Skin Graft Stabilization and Nipple Protection After Nipple-Areola Reconstruction.

    Science.gov (United States)

    Satake, Toshihiko; Muto, Mayu; Nagashima, Yu; Haga, Shoko; Homma, Yuki; Nakasone, Reiko; Kadokura, Marina; Kou, Seiko; Fujimoto, Hiroshi; Maegawa, Jiro

    2018-04-01

    We describe a new wound management technique using a soft dressing material to stabilize the areola skin graft and protect the nipple after nipple-areola reconstruction at the final stage of breast reconstruction. We introduced a center-fenestrated multilayered hydrocellular polyurethane foam dressing material that provides adequate pressure and retains a moist environment for a smooth skin graft "take." Moreover, the reconstructed nipple can be monitored at any time through the fenestrated window for adequate blood circulation. Altogether, this simple and inexpensive wound dressing technique improves the clinical outcome. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. A Tie-Over Dressing Using a Silicone Tube to Graft Deep Wounds

    Directory of Open Access Journals (Sweden)

    Cem Inan Bektas

    2013-11-01

    Full Text Available BackgroundThe most common cause of skin graft failure is the collection of blood or serous fluid underneath the graft. In our study, we describe the use of silicone tube for tie-over dressing to secure the skin graft margins with the aim of decreasing loss of the skin graft, particularly in grafting of deep wounds.MethodsBetween March 2008 and July 2011, we used this technique in 17 patients with skin defects with depths ranging from 3.5 to 8 mm (mean, 5.5 mm. First, the skin graft was sutured with 3/0 silk suture material from its corners. Then, a silicone round drain tube was sutured with 3/0 absorbable polyglactin 910 over the margins of the graft. Finally, long silk threads were tied over the bolus dressing, and the tie-over dressing was completed in the usual fashion.ResultsThe mean follow-up was 7 months (range, 2-10 months in the outpatient clinic. Graft loss on the graft margins due to hematoma or seroma was not developed. The results of adhesion between the graft and wound bed peripherally was excellent.ConclusionsIn our study, we suggest that use of a silicone tube for additional pressure on the edges of skin grafts in case of reconstruction of deep skin defects.

  19. A modern method of treatment: The role of silver dressings in promoting healing and preventing pathological scarring in patients with burn wounds

    Science.gov (United States)

    Munteanu, A; Florescu, IP; Nitescu, C

    2016-01-01

    Burn wounds are a global public health problem, which affects all countries, no matter the development stage and occurs in all age groups, from toddlers to elderly. In spite of burns being the cause of numerous household and work accidents, there are still no clear stated unanimous rules for their treatment. Every day new products appear on the market, each of them trying to prove more effective. Since ancient times, silver has been known for its antimicrobial properties, so it has been used for a long time in the treatment of burns and other types of wounds. One of the relatively modern methods of treatment is applying silver sheets on the scald lesions. In this paper, which was part of a larger study (research for a PhD thesis), concerning prevention and treatment of the post-burn pathological scars, the cases of some patients with burns, who were treated by using the above mentioned method were presented and analyzed. The results obtained by applying silver sheets were then commented and interpreted, pointing out the advantages and disadvantages compared to silver sulfadiazine creams and ointments, which have already been used at a large scale. The prevention and treatment of post-burn pathological (hypertrophic and keloid) scars is a field in which still little is known and in which there are also no clearly set therapy plans. We hope that through this research and the following ones we will manage to establish some major guidelines concerning the prevention of pathological scars, which are not only disabling, but also a major aesthetic issue for any patient, in order to obtain better outcomes. PMID:27974941

  20. Evaluation of pain intensity measurement during the removal of wound dressing material using 'the PainVision™ system' for quantitative analysis of perception and pain sensation in healthy subjects.

    Science.gov (United States)

    Matsumura, Hajime; Imai, Ryutaro; Gondo, Masahide; Watanabe, Katsueki

    2012-08-01

    Reducing pain caused by the removal of adhesive wound dressing materials is very important in clinical practice and is also one of the factors to consider when choosing dressing materials. A visual analogue scale is the most popular method for assessing pain, but it is subjective and is difficult to evaluate quantitatively or statistically. Recently, a new method for the quantitative measurement of pain intensity using a painless electrical stimulation system, PainVision™, has been developed. In this study, we evaluated pain intensity during the removal of wound dressing materials in healthy volunteers by comparing pain during the removal of wound dressing materials, which use acrylic pressure-sensitive adhesive and pain during the removal of materials, which use soft silicone adhesive, as evaluated using the PainVision™ system. Pain intensity was significantly lower with the dressing materials, which use soft silicone adhesive when measured with the PainVision™ system. The PainVision™ system promises to be useful for the quantitative assessment of pain caused by the removal of adhesive wound dressing materials. Further studies are needed to determine whether the PainVision™ system is also effective in measuring pain caused by the removal of wound dressing materials in actual wounds. © 2012 The Authors. © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  1. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study.

    Science.gov (United States)

    Wu, De-Qun; Zhu, Jie; Han, Hua; Zhang, Jun-Zhi; Wu, Fei-Fei; Qin, Xiao-Hong; Yu, Jian-Yong

    2018-01-01

    A multi-functional hybrid hydrogel P(M-Arg/NIPAAm) with temperature response, anti-protein adsorption and antibacterial properties was prepared and applied as wound dressing. The hydrogel was carried out by free radical copolymerization of methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm) monomers using N,N'-methylene bisacrylamide as a crosslinker, and ammonium persulfate/N,N,N', N'-tetramethylethylenediamine as the redox initiator. To endow the antimicrobial property, chlorhexidine diacetate (CHX) was preloaded into the hydrogel and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively. The antimicrobial property of two series of hydrogels was evaluated and compared. The successful synthesis of M-Arg, PHMG and hydrogels was proved by 13 C NMR, 1 H NMR and FTIR spectroscopy. The hydrogel morphology characterized by scanning electron microscopy confirmed that the homogeneous porous and interconnected structures of the hydrogels. The swelling, protein adsorption property, in vitro release of CHX, antimicrobial assessment, cell viability as well as in vivo wound healing in a mouse model were studied. The results showed the nontoxicity and antimicrobial P(M-Arg/NIPAAm) hydrogel accelerated the full-thickness wound healing process and had the potential application in wound dressing. Despite the zwitterionic characteristic and biocompatible property of arginine based hydrogels, the brittle behavior and non-transparency still remain as a significant problem for wound dressing. Furthermore promoting the antibacterial property of the zwitterionic hydrogel is also necessary to prevent the bacterial colonization and subsequent wound infection. Therefore, we created a hybrid hydrogel combined methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm). NIPAAm improves transparency and mechanical property as well as acts as a temperature-response drug release system. Additionally, chlorhexidine (CHX) was preloaded

  2. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications.

    Science.gov (United States)

    Rădulescu, Marius; Andronescu, Ecaterina; Cirja, Andreea; Holban, Alina Maria; Mogoantă, LaurenŢiu; Bălşeanu, Tudor Adrian; Cătălin, Bogdan; Neagu, Tiberiu Paul; Lascăr, Ioan; Florea, Denisa Alexandra; Grumezescu, Alexandru Mihai; Ciubuca, Bianca; Lazăr, Veronica; Chifiriuc, Mariana Carmen; Bolocan, Alexandra

    2016-01-01

    This work presents a novel nano-modified coating for wound dressings and other medical devices with anti-infective properties, based on functionalized zinc oxide nanostructures and orange oil (ZnO@OO). The obtained nanosurfaces were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected area electron diffraction (SAED), differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The obtained nanocomposite coatings exhibited an antimicrobial activity superior to bare ZnO nanoparticles (NPs) and to the control antibiotic against Staphylococcus aureus and Escherichia coli, as revealed by the lower minimal inhibitory concentration values. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based, viable cell count method was used. The coated wound dressings proved to be more resistant to S. aureus microbial colonization and biofilm formation compared to the uncoated controls. These results, correlated with the good in vivo biodistribution open new directions for the design of nanostructured bioactive coating and surfaces, which can find applications in the medical field, for obtaining improved bioactive wound dressings and prosthetic devices, but also in food packaging and cosmetic industry.

  3. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    Science.gov (United States)

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.

  4. Comparative effectiveness of different wound dressings for patients with partial-thickness burns: study protocol of a systematic review and a Bayesian framework network meta-analysis.

    Science.gov (United States)

    Jiang, Qiong; Chen, Zhao-Hong; Wang, Shun-Bin; Chen, Xiao-Dong

    2017-03-22

    Selecting a suitable wound dressing for patients with partial-thickness burns (PTBs) is important in wound care. However, the comparative effectiveness of different dressings has not been studied. We report the protocol of a network meta-analysis designed to combine direct and indirect evidence of wound dressings in the management of PTB. We will search for randomised controlled trials (RCTs) evaluating the wound-healing effect of a wound dressing in the management of PTB. Searches will be conducted in MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, the Cochrane Wounds Group Specialised Register and CINAHL. A comprehensive search strategy is developed to retrieve articles reporting potentially eligible RCTs. Besides, we will contact the experts in the field and review the conference proceedings to locate non-published studies. The reference lists of articles will be reviewed for any candidate studies. Two independent reviewers will screen titles and abstracts of the candidate articles. All eligible RCTs will be obtained in full text to perform a review. Disagreement on eligibility of an RCT will be solved by group discussion. The information of participants, interventions, comparisons and outcomes from included RCTs will be recorded and summarised. The primary outcome is time to complete wound healing. Secondary outcomes include the proportion of burns completely healed at the end of treatment, change in wound surface area at the end of treatment, incidence of adverse events, etc. The result of this review will provide evidence for the comparative effectiveness of different wound dressings in the management of PTB. It will also facilitate decision-making in choosing a suitable wound dressing. We will disseminate the review through a peer-review journal and conference abstracts or posters. PROSPERO CRD42016041574; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  5. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Selvaraj Karthick Raja Namasivayam

    2015-04-01

    Full Text Available Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  6. Antibacterial and anticancerous biocompatible silver nanoparticles synthesised from the cold-tolerant strain of Spirulina platensis

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Jayakumar; Ramesh Kumar; Rajan SowriArvind Bharani

    2015-01-01

    Objective: To synthesize silver nanoparticles from the biomass of cold tolerant strain of Spirulina platensis and evalute the synthesized nanoparticles against antibacterial and anticancer activity. Methods: Silver nanoparticles were synthesized by the algal culture and characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and X ray diffraction studies. Antibacterial activity has been studied with free nanoparticles adopting agar diffusion assay, biofilm inhibition assay and nanoparticles fabricated wound dressing against representative Gram-negative organism Pseudomonas aeruginosa and Gram-positive organism Staphylococcus aureus respectively. The in vitro anticancer activity of silver nanoparticles were screened against human Hep2 cell lines by means of MTT assay. Results: Reduction of silver ions by the algal culture was observed during 72 h of incubation and the synthesized nanoparticles were further characterized. Antibacterial study reveals both the strains were susceptible to free nanoparticles and fabricated wound dressing treatment. The in vitro anticancer activity of silver nanoparticles were screened against human Hep 2 cell lines by means of MTT assay which reveals that cell viability has been reduced as dose dependent manner. Conclusions: The observed results imply that silver nanoparticles synthesized from Spirulina platensis cold tolerant strain can be used as potential antibacterial and anticancerous agent.

  7. L. inermis-loaded nanofibrous scaffolds for wound dressing applications.

    Science.gov (United States)

    Vakilian, Saeid; Norouzi, Mohammad; Soufi-Zomorrod, Mahsa; Shabani, Iman; Hosseinzadeh, Simzar; Soleimani, Masoud

    2018-04-01

    Since ancient times, some herbal medicines have been extensively used for burn and wound treatments, showing preference to the common synthetic medications by virtue of having less side effects and faster healing rate. In this study, hybrid nanofibrous scaffolds of poly-l-lactic-acid (PLLA) and gelatin incorporated L. inermis were fabricated via electrospinning technique. Morphology and characteristics of the scaffolds were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR), respectively. The release profile of the L. inermis from the nanofibers was also assessed in vitro. Moreover, the structural stability of the released L. inermis from the nanofibers was evaluated using high-performance liquid chromatography (HPLC). The nanofibers showed a gradual release of L. inermis up to two days while the intact structure was preserved. Furthermore, antibacterial assay demonstrated that L. inermis-loaded nanofibrous scaffolds could effectively kill E. coli and S. aureus within 2 h. Finally, biocompatibility of the nanofibers was proven on 3T3 fibroblasts. Therefore, the L. inermis loaded PLLA-Gelatin nanofibers showed a potential application as a wound dressing in order to control wound infections. Copyright © 2018. Published by Elsevier Ltd.

  8. An economic evaluation of VAC therapy compared with wound dressings in the treatment of diabetic foot ulcers.

    Science.gov (United States)

    Flack, S; Apelqvist, J; Keith, M; Trueman, P; Williams, D

    2008-02-01

    To determine the cost-effectiveness ofVacuum Assisted Closure (VAC) therapy (KCI Medical), based on a comparison with both traditional and advanced wound dressings, for the treatment of diabetic foot ulcers in the US. A Markov model was designed to estimate the cost per amputation avoided and the cost per quality-adjusted life year (QALY) of VAC therapy, compared with both traditional and advanced dressings. Over a one-year period the Markov model simulated 1000 patients using transition probabilities obtained from the literature. The health states used in the model were: uninfected ulcer; infected ulcer; infected ulcer post-amputation; healed; healed post-amputation; amputation; and death. Patients initially treated with VAC switched to the advanced dressing after three months of treatment if their wound remained unhealed. Patients treated with traditional or advanced dressings were assumed to continue with their treatment for the full 12 months if they remained unhealed. The model results demonstrate improved healing rates (61% versus 59%), more QALYs (0.54 versus 0.53) and an overall lower cost of care ($52,830 versus $61,757 per person) for patients treated with VAC therapy compared with advanced dressings. Vacuum Assisted Closure was also shown to be a dominant intervention when compared with traditional dressings. The model results indicate thatVAC therapy is less costly and more effective than both traditional and advanced dressings. The results are robust to changes in key parameters, including the transition probabilities, the cost ofVAC therapy and the utility weights applied to health states.

  9. Modelling the cost implications of using carboxymethylcellulose dressing compared with gauze in the management of surgical wounds healing by secondary intention in the US and UK.

    Science.gov (United States)

    Guest, Julian F; Ruiz, Francis J

    2005-02-01

    To estimate the costs of using carboxymethyl cellulose dressing (CMCD; Aquacel* Hydrofiber) compared to gauze in managing surgical wounds healing by secondary intention in the US and UK. This was a modelling study performed from the perspective of payers (i.e. the hospital and community sector in the US and the National Health Service (NHS) in the UK). Clinical outcomes attributable to managing surgical wounds healing by secondary intention with gauze were obtained from the published literature in the English language. There were no published studies on wounds healing by secondary intention with CMCD. Hence, the analysis conservatively assumed that wound healing rates associated with gauze would be the same for CMCD. These data were combined with resource utilisation estimates derived from a panel of clinicians enabling us to perform decision modelling. The models were used to determine the expected direct healthcare costs eight weeks after the surgical wounds were dressed by CMCD or gauze and left to heal by secondary intention in the US and UK. All wounds are expected to heal within eight weeks, irrespective of dressing. Managing abscesses and other surgical wounds with CMCD instead of gauze in the US is expected to reduce costs by 4% in both wound types (i.e. $247 and $507 respectively) per patient over eight weeks. In the UK, managing abscesses and other surgical wounds with CMCD instead of gauze is expected to reduce costs by 30% (574 pounds) and 12% (581 pounds) respectively per patient over eight weeks. The lower cost of managing CMCD-treated patients is due to decreased nursing costs associated with a lower frequency of CMCD changes compared to gauze dressing changes. Dressing surgical wounds healing by secondary intention with CMCD instead of gauze is expected to lead to a reduction in healthcare costs in both the US and UK. Hence, the purchase price of a dressing is not indicative of the cost effectiveness of a given method of surgical wound care.

  10. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

    Science.gov (United States)

    Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan

    2017-11-01

    pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.

  11. The combined effects of Aloe vera gel and silver nanoparticles on wound healing in rats

    Directory of Open Access Journals (Sweden)

    Y. Yousefpoor

    2016-01-01

    Full Text Available Objective(s: This study was aimed at investigating the synergy effects of Aloe vera gel and silver nanoparticles on the healing rate of the cutting wounds. Materials and Methods: In order to determine the concentration of silver nanoparticles in Aloe vera gel, the MBC methods were applied on the most common bacteria infecting wounds, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa. The cutting wounds with Full-thickness skin were dorsally created on rats; then the rats were divided into 4 groups. The treatments groups included: mixture of Aloe vera gel and silver nanoparticles, Aloe vera gel alone and silver nanoparticles alone in addition to control groups. The treatment was carried out for 2 weeks and the size of the wound closures were measured by an image software analysis. Results:There was no significant difference (p

  12. Comparision of Vacuum-Asisted Closure and Moist Wound Dressing in the Treatment of Diabetic Foot Ulcers

    OpenAIRE

    Ravari, Hassan; Modaghegh, Mohammad-Hadi Saeed; Kazemzadeh, Gholam Hosein; Johari, Hamed Ghoddusi; Vatanchi, Attieh Mohammadzadeh; Sangaki, Abolghasem; Shahrodi, Mohammad Vahedian

    2013-01-01

    Background: Vacuum-assisted closure (VAC) is a new method in wound care which speeds wound healing by causing vacuum, improving tissue perfusion and suctioning the exudates. This study aims to evaluate its efficacy in the treatment of diabetic foot ulcers. Materials and Methods: Thirteen patients with diabetic foot ulcers were enrolled in the moist dressing group, and 10 patients in the VAC group. The site, size and depth of the wound were inspected and recorded before and every three days du...

  13. Silver content determination in mining and ore dressing using radionuclide-excited X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Koerner, B.; George, R.; Ratnikow, W.

    1989-01-01

    A laborsaving method based on radionuclide-excited X-ray fluorescence is described for the determination of silver in mining and ore dressing. Detection limits reached under operation conditions and measuring errors are discussed and compared with results from chemical analyses

  14. Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation.

    Science.gov (United States)

    Dutra, J A P; Carvalho, S G; Zampirolli, A C D; Daltoé, R D; Teixeira, R M; Careta, F P; Cotrim, M A P; Oréfice, R L; Villanova, J C O

    2017-04-01

    Transparent, soft, flexible, mechanically resistant films, which are ideal for use as wound dressings were prepared in the presence of 2% papain, a proteolytic enzyme that can play a role in the chemical debridement of the skin and can accelerate the healing process. The films, based on poly(vinyl alcohol):calcium alginate blends with increasing concentrations of polysaccharide (10, 20, and 30% v/v), were obtained by casting method. FTIR and DSC analyses were performed to assess the composition and miscibility of blends. Mechanical properties such as tensile strength, elasticity modulus, and elongation at breakpoint were evaluated. The influence of different concentrations of calcium alginate on physical attributes of films like wettability, swelling capacity and mechanical properties was determined. The stability of papain in the films was assessed indirectly by hemolytic activity assay employing direct contact method and confirmed by technique based on blood agar diffusion. Preliminary cytotoxicity was evaluated with the XTT method. The results showed that at the polymer concentrations tested, the blends were miscible. The increase in the content of the calcium alginate increased the wettability and swelling capacity of the films, which is desirable in wound dressings. On the other hand, mechanical resistance decreased without causing breakage of the films during the swelling tests. The hemolytic activity of the films was maintained during the studied period, suggesting the stability of papain in the proposed formulations. Cellular viability indicated that the films were non-toxic. The analysis of the results showed that it is possible to prepare interactive and bioactive wound dressing containing papain from blends of PVA and calcium alginate polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of lamellar gel phase emulsion containing marigold oil (Calendula officinalis) as a potential modern wound dressing.

    Science.gov (United States)

    Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A

    2015-04-25

    Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects.

    Science.gov (United States)

    Ovais, Muhammad; Ahmad, Irshad; Khalil, Ali Talha; Mukherjee, Sudip; Javed, Rabia; Ayaz, Muhammad; Raza, Abida; Shinwari, Zabta Khan

    2018-05-01

    Nanotechnology has emerged as a prominent scientific discipline in the technological revolution of this millennium. The scientific community has focused on the green synthesis of metal nanoparticles as compared to physical and chemical methods due to its eco-friendly nature and high efficacy. Medicinal plants have been proven as the paramount source of various phytochemicals that can be used for the biogenic synthesis of colloidal silver and gold nanoparticles as compared to other living organisms, e.g., microbes and fungi. According to various scientific reports, the biogenic nanoparticles have shown promising potential as wound healing agents. However, not a single broad review article was present that demonstrates the wound healing application of biogenic silver and gold nanoparticles. Foreseeing the overall literature published, we for the first time intended to discuss the current trends in wound healing via biogenic silver and gold nanoparticles. Furthermore, light has been shed on the mechanistic aspects of wound healing along with futuristic discussion on the faith of biogenic silver and gold nanoparticles as potential wound healing agents.

  17. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    Science.gov (United States)

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies.

    Science.gov (United States)

    Tavakoli, Javad; Tang, Youhong

    2017-08-01

    Hydrogel/honey hybrids manifest an attractive design with an exclusive therapeutic property that promotes wound healing process. The greater the concentration of honey within the formulation, the better the biomedical properties that will be achieved. However, an increase in the percentage of honey can negatively affect the physico-chemical and mechanical properties of hybrid hydrogels. The need exists, therefore, to prepare wound dressings that contain high honey density with optimal biomedical, mechanical and physicochemical properties. In this study, a simple method for the preparation of a highly concentrated honey/PVA hybrid hydrogel with borax as the crosslinking agent is reported. Comprehensive evaluations of the morphology, swelling kinetics, permeability, bio-adhesion, mechanical characteristics, cytotoxicity, antibacterial property, cell proliferation ability and their controlling release properties were conducted as a function of crosslinking density. All the borax-induced hydrogels showed acceptable biocompatibility, and the incorporation of 1% borax in the hydrogel formulation produced optimal behaviours for wound addressing applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A single-center, prospective, randomized, open-label, clinical trial of ceramide 2-containing hydrocolloid dressings versus polyurethane film dressings for pressure ulcer prevention in high-risk surgical patients

    Directory of Open Access Journals (Sweden)

    Kohta M

    2015-11-01

    differences in the types of skin damage reported. Conclusion: Application of ceramide 2-containing hydrocolloid dressing reduced the risk of pressure ulcer development in patients who were at a high risk during surgery compared with film dressings. Keywords: operating room, wound dressing, friction, skin protection, shear

  20. [Treatment of the infected wound with exposed silver-ring vascular graft and delayed Thiersch method of skin transplant covering ].

    Science.gov (United States)

    Nenezić, Dragoslav; Pandaitan, Simon; Ilijevski, Nenad; Matić, Predrag; Gajin, Predag; Radak, Dorde

    2005-01-01

    Although the incidence of prosthetic infection is low (1%-6%), the consequences (limb loss or death) are dramatic for a patient, with high mortality rate (25%-75%) and limb loss in 40%-75% of cases. In case of Szilagyi's grade III infection, standard procedure consists of the excision of prosthesis and wound debridement. Alternative method is medical treatment. This is a case report of a patient with prosthetic infection of Silver-ring graft, used for femoropopliteal reconstruction, in whom an extreme skin necrosis developed in early postoperative period. This complication was successfully treated medically. After repeated debridement and wound-packing, the wound was covered using Thiersch skin graft.

  1. Utilisation of sago starch for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman Mohd Dahlan; Kamarudin Bahari

    2000-01-01

    Sago starch is utilized in Malaysia mainly for the purpose of food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel wound dressing. The sago starch is blending with water-soluble polymer such as polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene oxide and irradiated with electron beam accelerator to form hydrogel. The parameters such gel strength, elasticity, swelling, gel fraction and tackiness have to be consider for this type of application. We also study the effect of adding additive such as carboxymethyl cellulose and polypropylene glycol into the system to enhance the property of sago starch hydrogel. Works on the use of chitosan in the blend have been performed, in order to prevent microbiological growth such as bacteria and fungi on the hydrogel. (author)

  2. Molecular Wiring in Smart Dressings: Opening a New Route to Monitoring Wound pH

    Directory of Open Access Journals (Sweden)

    Anna McLister

    2015-06-01

    Full Text Available It has been proposed that fluctuations in wound pH can give valuable insights into the healing processes in chronic wounds, but acquiring such data can be a technological challenge especially where there is little sample available. Developments in voltammetric pH sensing have opened up new avenues for the design of probes that can function in ultra-small volumes and can be inherently disposable but, as yet few can meet the demands of wound monitoring. A preliminary investigation of the pH response of a new redox wire prepared from a peptide homopolymer of tryptophan is presented and its potential applicability as a sensing material for use in smart dressings is critically discussed.

  3. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    Science.gov (United States)

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  4. Development of sago starch hydrogel for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin Hashim; Khairul Zaman HJ. Mohd Dahlan; Kamarudin Bahari [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  5. Development of sago starch hydrogel for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman HJ Mohd Dahlan; Kamarudin Bahari; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  6. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    Directory of Open Access Journals (Sweden)

    Tippawan Siritientong

    2013-01-01

    Full Text Available The genipin-cross-linked silk sericin/poly(vinyl alcohol (PVA films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  7. Comparison of Sterile and Clean Dressing Techniques in Post ...

    African Journals Online (AJOL)

    Comparison of Sterile and Clean Dressing Techniques in Post-operative Surgical Wound Infection in a Chinese Healthcare Facility. ... of sterile and clean dressing techniques on wound management in a Chinese hospital, and to compare their impact on wound healing and the cost of the dressing materials with respect to ...

  8. Toxicity of silver nanoparticles in monocytes and keratinocytes

    DEFF Research Database (Denmark)

    Orłowski, Piotr; Krzyzowska, Malgorzata; Winnicka, Anna

    2012-01-01

    Silver nanoparticles are of interest to be used as antimicrobial agents in wound dressings and coatings in medical devices, but potential adverse effects have been reported in the literature. The possible local inflammatory response to silver nanoparticles and the role of cell death in determining...... these effects are largely unknown. Effects of the mixture of silver nanoparticles of different sizes were compared in in vitro assays for cytotoxicity, caspase-1 and caspase-9 activity and bax expression. In all tested concentrations, silver nanoparticles were more toxic for RAW 264.7 monocytes than for 291.03C...... keratinocytes and induced significant caspase-1 activity and necrotic cell death. In keratinocytes, more significantly than in macrophages, silver nanoparticles led to increase of caspase-9 activity and apoptosis. These results indicate that effects of silver nanoparticles depend on the type of exposed cells...

  9. Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity.

    Science.gov (United States)

    Cerchiara, Teresa; Abruzzo, Angela; Ñahui Palomino, Rogers Alberto; Vitali, Beatrice; De Rose, Renata; Chidichimo, Giuseppe; Ceseracciu, Luca; Athanassiou, Athanassia; Saladini, Bruno; Dalena, Francesco; Bigucci, Federica; Luppi, Barbara

    2017-03-01

    In this work, we propose as new wound dressing, the Spanish Broom fibers impregnated with vancomycin (VM) loaded chitosan nanoparticles. Spanish Broom fibers were extracted by patented method DiCoDe and the morphological, physical and mechanical properties were investigated. Chitosan nanoparticles were prepared by ionic gelation using different weight ratios between chitosan (CH) and tripolyphosphate (TPP). Nanoparticles were characterized in terms of size, zeta potential, yield, encapsulation efficiency, stability and drug release. Finally, the antibacterial activity against Staphylococcus aureus as well as in vitro cytotoxicity on HaCaT cells were evaluated. The best formulation CH/TPP 4:1 was selected based on the encapsulation efficiency and yield. Spanish Broom fibers impregnated with loaded nanoparticles showed an increased antibacterial activity against S. aureus compared to the same fibers containing VM without nanoparticles. Moreover, these fibers were not toxic to HaCaT keratinocytes cells. In conclusion, Spanish Broom fibers impregnated with VM loaded CH/TPP nanoparticles would appear to be a promising candidate for wound dressing application. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Investigation of Electrospun Poly Vinyl Alcohol Fibers Towards the Development of Manufacturable Wound Dressings

    Science.gov (United States)

    Vora, Asad

    Polymers such as polyvinyl alcohol, chitosan, and starch have excellent bio-compatible and bio-degradable properties. Their applications in drug delivery, wound dressings, artificial cartilage materials have increased dramatically due to their much sought-after renewable and biological properties. Hence, polyvinyl alcohol has been chosen for this study to test the feasibility of polyvinyl alcohol nanofibers towards the manufacturable wound dressings. Polyvinyl alcohol nanofibers are prepared via electrospinning technique, where different wt% polyvinyl alcohol solutions are prepared. The fibers were optimized by varying important electrospninning parameters which include voltage applied, the collector-needle distance and flow rate. Morphology and structure of the electrospun fibers are analysed using scanning electron microscopy and fourier transform infrared respectively. The diameter of fibers obtained was found to be in the range of 100 nm-160 nm. Thermal stability was examined using DSC and TGA characterization technique and fibers are found to be stable up to 220oC. Finally, each weight sample of PVA fibers are analysed by goniometer for wettability and is found to be hydrophilic.

  11. Polyurethane film dressings and ceramide 2-containing hydrocolloid dressing reduce the risk of pressure ulcer development in high-risk patients undergoing surgery: a matched case-control study

    Directory of Open Access Journals (Sweden)

    Kohta M

    2015-02-01

    .001. Prone position (OR 8.791; 95% CI 1.630–47.400; P=0.01, prolonged operation time (OR 1.684; 95% CI 1.189–2.385, P=0.003, and reduced body mass index (OR 0.774; 95% CI 0.584–0.948; P=0.02 were also significant predictive risk factors for development of a pressure ulcer.Conclusion: Application of film dressing and ceramide 2-containing hydrocolloid dressing reduced the risk of pressure ulcer development in high-risk patients undergoing surgery.Keywords: pressure ulcer prevention, operating room, wound dressing, friction

  12. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns

    Science.gov (United States)

    Hosny, A. M. S.; Kashef, M. T.; Rasmy, S. A.; Aboul-Magd, D. S.; El-Bazza, Z. E.

    2017-12-01

    Silver nanoparticles (AgNPs) are promising antimicrobial agents for treatment of wounds and burns. We synthesized AgNPs using honey at different pH values or with different gamma irradiation doses. The resulting nanoparticles were characterized by UV-vis spectroscopy, TEM, DLS and FTIR. Their antimicrobial activity, against standard bacterial strains and silver-resistant clinical isolates from infected wounds and burns, was evaluated in vitro through determination of their minimum inhibitory concentration (MIC). AgNPs prepared using 30 g of honey exposed to 5 kGy gamma radiation had the best physical characters regarding stability and uniformity of particle size and shape. They recorded the lowest MIC values against both the standard and silver-resistant isolates. In conclusion, honey and gamma radiation can be used in synthesis of highly stable pure AgNPs, without affecting the physico-chemical and antimicrobial activity of honey. This offered an advantage in terms of inhibition of silver-resistant bacteria isolates.

  13. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings.

    Science.gov (United States)

    Luo, Xiaogang; Zhang, Hao; Cao, Zhenni; Cai, Ning; Xue, Yanan; Yu, Faquan

    2016-06-05

    The objective of this study is to develop transparent porous nanodiamonds/cellulose nanocomposite membranes with controlled release of doxorubicin for potential applications as wound dressings, which were fabricated by tape casting method from dispersing carboxylated nanodiamonds and dissolving cellulose homogeneously in 7 wt% NaOH/12 wt% urea aqueous solution. By adjusting the carboxylated nanodiamonds content, various nanocomposite membranes were obtained. The structure and properties of these membranes have been investigated by light transmittance measurements, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), tensile tests, water loss analyses, etc. The drug loading and release was investigated using doxorubicin hydrochloride as a model drug. In vitro cytotoxicity assay of the membranes was also studied. This work presented a proof-of-concept utility of these membranes for loading and release of bioactive compounds to be employed as a candidate for wound dressing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hydrogel Based on Crosslinked Methylcellulose Prepared by Electron Beam Irradiation for Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Ambyah Suliwarno

    2014-10-01

    Full Text Available The aim of this research is to explore the possibility of methylcellulose polymer to be used as wound dressing material prepared using electron beam technique. The methylcellulose paste solution with various of molecular weight (SM-4, SM-100, SM-400, SM-4000 and SM-8000 at different concentration (15-30% w/v were irradiated by using electron beam on the dose range of 10 kGy up to 40 kGy. Gel fraction and swelling ratio of hydrogels were determined gravimetrically. Tensile strength and elasticity of hydrogels were measured using a universal testing machine. It was found that with the increasing of irradiation dose from 10 up to 40 kGy, gel fraction and tensile strength were increased for all of hydrogels with various of molecular weight. On contrary, the swelling ratio of hydrogels decreased with increasing of irradiation dose. The optimum hydrogels elasticity were obtained from methylcellulose solution with the concentration range of 15-20% with irradiation dose of 20 kGy and showed excellent performance. The hydrogels based on methylcellulose prepared by electron beam irradiation can be considered for wound dressing material.

  15. Use of Ovine-based Collagen Extracellular Matrix and Gentian Violet/Methylene Blue Antibacterial Foam Dressings to Help Improve Clinical Outcomes in Lower Extremity Wounds: A Retrospective Cohort Study.

    Science.gov (United States)

    Lullove, Eric J

    2017-04-01

    Dressings that provide broad spectrum metalloprotease reduction along with inherent aspects of an extracellular matrix may contribute to improved wound healing outcomes and shorter treatment times. The author performed a retrospective case series analysis to determine the clinical outcomes of regular debridement with the use of ovine-based collagen extracellular matrix dressings and gentian violet/methylene blue polyurethane antibacterial foam dressings in treating 53 patients with 53 chronic lower extremity wounds (diabetic foot ulcers [DFUs], venous leg ulcers, and heel pressure ulcers). Patients were treated twice weekly in an outpatient clinic for the first 4 weeks and weekly thereafter until closure. Average body mass index (BMI) for the study population was 28.3, and the average patient age was 75.9 years. Mean percent wound surface area reduction at 4, 8, and 12 weeks was 38.5%, 73.3%, and 91.3%, respectively. Average time to closure for all wounds was 10.6 weeks (range, 5-24 weeks). All wounds were 100% reepithelialized by week 20 except 1 DFU that reepithelialized at week 24. The average cost of care for a single wound episode (from presentation to closure) was $2749.49. Results of this analysis showed that the healing of chronic wounds in this series could be achieved at a reasonable cost with regular debridement and a collagen matrix dressing regimen, even in patients of advanced age and above average BMI as well as in wounds that did not achieve > 40% wound surface area reduction at 4 weeks.

  16. A COMPARATIVE STUDY BETWEEN HYDROFIBER DRESSING & POVIDONE DRESSING IN DIABETIC FOOT ULCERS

    Directory of Open Access Journals (Sweden)

    Rithin

    2016-03-01

    Full Text Available BACKGROUND Diabetic Foot Ulcer (DFU is the most common complication of Diabetes Mellitus (DM. It occurs in 15% of all patients with DM. Major increase in mortality among diabetic patients, observed over the past 20 years is considered to be due to the development of macro and micro vascular complications, including failure of the wound healing process. Non-healing chronic diabetic ulcers are often treated with extracellular matrix replacement therapy.so far, it is a common trend in diabetic foot care domain to use advanced moist wound therapy. At present, there are various categories of moist dressings available such as povidone dressings, adhesive backing film, silicone coated foam, hydrogels, hydrocolloids etc. AIMS & OBJECTIVES 1 To study efficacy of hydrofiber dressings and wound healing in diabetic foot ulcers. 2 To compare the safety, final outcome and patient compliance in hydrofiber and povidone dressing. MATERIALS & METHODS This prospective, observational study is carried in our department from September 2014 to September 2015. All the patients with age of 30 years and above were admitted in AJIMS satisfying the inclusion and exclusion criteria were taken into the study. The patients were followed until the ulcer is treated. STATISTICAL ANALYSIS Data are presented as Mean and Standard Deviation (SD. Fischer’s exact test and Chi-Square Test were used as appropriate. GraphPad Prism Version 6.0h was used to analyze data and to prepare graphs. A ‘P’ value below the level of 0.05 was taken as statistically significant. RESULTS Among the patients who were studied, hydrofiber dressings helped in the better & faster healing of DFU. CONCLUSION In comparison with povidone gauze dressings to hydrofiber dressings in diabetic foot ulcers, the latter is more efficacious in controlling the infection, minimal usage of antibiotics, faster healing rate and patient compliance during dressings.

  17. IMPACT OF HONEY DRESSING IN CHRONIC ULCER

    Directory of Open Access Journals (Sweden)

    Santhosh Kumar S. S

    2018-01-01

    Full Text Available BACKGROUND This was an open label study. Although, honey has been used for centuries in wound care, now only it is being integrated into modern medical practice. The resurgence of interest in honey as a medicine for modern wound dressing offers opportunities for both patients and clinicians. The aim of this study is to show the advantage of honey dressing over conventional saline dressing in the management of chronic non-healing ulcer. This property of honey is mentioned in papyruses traced to 3500 years ago among ancient Egyptians and the Hebrews 3000 years ago. Honey naturally contains small amounts of enzymes. The predominant enzymes in honey are diastase (amylase, invertase (alpha-glucosidase and glucose oxidase. Honey has been proven to have significant antibacterial properties and is a useful constituent in wound and burn care. The stimulation of cell growth seen with honey is probably also responsible for ‘kick-starting’ the healing process in chronic wounds that have remained non-healing for long periods. Honey has a broad spectrum of activity against bacteria and fungi. Many randomised and non-randomised study has shown the efficacy of honey as a healing agent and excellent dressing material. MATERIALS AND METHODS Study was conducted in medical college, Trivandrum, which is a tertiary care centre. Patients are selected from orthopaedic and general surgical wards. The study period was one year extending from July 2014 to June 2015. Saline dressing was given for the patients admitted in the first 6 months of study. Honey dressing was given for the next 6 months of study. Outcome was assessed on duration of hospital stay, difference of outcome in different distribution of grades of ulcer, difference of outcome in patients with vascular compromise, which is found out by Doppler ultrasound and difference of outcome in patients with diabetes mellitus. RESULTS Most significant observations made were in regard to duration of hospital stay

  18. Perspectives on nanofiber dressings for the localized delivery of botanical remedies in wound healing

    Directory of Open Access Journals (Sweden)

    Sukhwinder K. Bhullar

    2017-02-01

    Full Text Available Based on their antiseptic and anti-inflammatory properties, plant-derived remedies and herbal products have been used since ancient times for wound and burn cure as well as for treating chronic skin diseases like dermatitis and eczema. Biocompatible and biodegradable polymer nanofiber devices are currently fabricated using sophisticated engineering techniques. Such nanofiber structures have proven efficacious for the localized delivery of therapeutic agents for the treatment of wounds due to their unique physical-chemical properties such as large surface-area-to-volume ratio, high porosity, improved cell adherence, cellular proliferation and migration, as well as controlled in vivo biodegradation rates. The remit of this communication is to highlight the methodology used for the fabrication of nanofiber mats and dressings for the localised delivery of herbal products and plant-derived ingredients for wound healing.

  19. Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

    Directory of Open Access Journals (Sweden)

    Denys J. Loeffelbein

    2014-01-01

    Full Text Available Human amniotic membrane (HAM has been used as a biomaterial in various surgical procedures and exceeds some qualities of common materials. We evaluated HAM as wound dressing for split-thickness skin-graft (STSG donor sites in a swine model (Part A and a clinical trial (Part B. Part A: STSG donor sites in 4 piglets were treated with HAM or a clinically used conventional polyurethane (PU foil (n=8 each. Biopsies were taken on days 5, 7, 10, 20, 40, and 60 and investigated immunohistochemically for alpha-smooth muscle actin (αSMA: wound contraction marker, von Willebrand factor (vWF: angiogenesis, Ki-67 (cell proliferation, and laminin (basement membrane integrity. Part B: STSG donor sites in 45 adult patients (16 female/29 male were treated with HAM covered by PU foam, solely by PU foam, or PU foil/paraffin gauze (n=15 each. Part A revealed no difference in the rate of wound closure between groups. HAM showed improved esthetic results and inhibitory effects on cicatrization. Angioneogenesis was reduced, and basement membrane formation was accelerated in HAM group. Part B: no difference in re-epithelialization/infection rate was found. HAM caused less ichor exudation and less pruritus. HAM has no relevant advantage over conventional dressings but might be a cost-effective alternative.

  20. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.

    Science.gov (United States)

    Wang, Xiaoju; Cheng, Fang; Liu, Jun; Smått, Jan-Henrik; Gepperth, David; Lastusaari, Mika; Xu, Chunlin; Hupa, Leena

    2016-12-01

    Biocomposites of copper-containing mesoporous bioactive glass (Cu-MBG) and nanofibrillated cellulose (NFC) were designated as potential dressing material for chronic wound healing. The phase composition and mesoporous micro-structure of the synthesized Cu-MBGs were elaborately characterized by combining several techniques, including TEM, SEM, XRD, SXAS and N 2 physisorption. High bioactivity of the Cu-MBG was confirmed in stimulated body fluids in vitro. A controlled dissolution of Cu from the glass suggests Cu-MBG a suitable source for Cu release in wound healing dressings. Depending on the content of Cu-MBG in the composite formulation, the composites were fabricated as membranes and aerogels. In biocompatibility assessment of the composites, a dose-dependent cytotoxicity of Cu 2+ on 3T3 fibroblasts was found. Importantly, a critical biological level of Cu 2+ below 10mg/L was suggested for the survival and growth of 3T3 fibroblasts. The Cu 2+ released from the composite aerogel of NFC and Cu-MBG showed a profound angiogenic effect in the 3D spheroid culture system of human umbilical vein endothelial cells. Moreover, the angiogenic gene expression of 3T3 fibroblast was upregulated in the real-time quantitative PCR analysis, which also confirms that the incorporation of Cu-MBG into NFC matrix enhances the proangiogenic potential of the biocomposites. In addition, composites of NFC and Cu-MBG also showed an inhibiting effect on the growth of E. coli. To address an urgent need in clinics on developing a new generation of therapeutic dressings with advanced functionalities, this study has exploited the utilization of Cu-containing mesoporous bioactive glass in the nanocellulose matrix to release Cu 2+ as therapeutic ions for its angiogenic effect on promoting wound healing. This manuscript reports research work on biomaterial design, fabrication development, material characterizations and bioassessments in 2D cellular studies. To utilize nanocellulose derived from the

  1. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Talita C.; Pinheiro, Christiano J.G., E-mail: talitacolombi@yahoo.com, E-mail: christrieste@yahoo.it [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Programa de Pós-Graduação em Engenharia Química; Paula, Heberth D., E-mail: hdpaula@gmail.com [Universidade Federal do Espirito Santo, Alegre (UFES), ES (Brazil). Departamento de Farmácia; Morais, Pedro A.B., E-mail: pedmora2005@gmail.com [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Química

    2017-07-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  2. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    International Nuclear Information System (INIS)

    Rezende, Talita C.; Pinheiro, Christiano J.G.; Paula, Heberth D.; Morais, Pedro A.B.

    2017-01-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  3. A multi-centre clinical evaluation of reactive oxygen topical wound gel in 114 wounds.

    Science.gov (United States)

    Dryden, M; Dickinson, A; Brooks, J; Hudgell, L; Saeed, K; Cutting, K F

    2016-03-01

    This article reports the outcomes of the use of Surgihoney RO (SHRO), topical wound dressing in a multi-centre, international setting. The aims were to explore the clinical effects of SHRO, including a reduction in bacterial load and biofilm and improvement in healing in a variety of challenging non-healing and clinically infected wounds. This was a non-comparative evaluation, where both acute and chronic wounds with established delayed healing were treated with the dressing. Clinicians prospectively recorded wound improvement or deterioration, level of wound exudate, presence of pain, and presence of slough and necrosis. Analysis of this data provided information on clinical performance of the dressing. Semi-quantitative culture to assess bacterial bioburden was performed where possible. We recruited 104 patients, mean age 61 years old, with 114 wounds. The mean duration of wounds before treatment was 3.7 months and the mean duration of treatment was 25.7 days. During treatment 24 wounds (21%) healed and the remaining 90 (79%) wounds improved following application of the dressing. No deterioration in any wound was observed. A reduction in patient pain, level of wound exudate and in devitalised tissue were consistently reported. These positive improvements in wound progress were reflected in the wound cultures that showed a reduction in bacterial load in 39 out of the 40 swabs taken. There were two adverse events recorded: a stinging sensation following application of the dressing was experienced by 2 patients, and 2 elderly patients died of causes unrelated to the dressing or to the chronic wound. These patients' wounds and their response to SHRO have been included in the analysis. SHRO was well tolerated and shows great promise as an effective potent topical antimicrobial in the healing of challenging wounds. Matthew Dryden has become a shareholder in Matoke Holdings, the manufacturer of Surgihoney RO, since the completion of this study. Keith Cutting is a

  4. Dressing-related trauma: clinical sequelae and resource utilization in a UK setting

    Directory of Open Access Journals (Sweden)

    Charlesworth B

    2014-04-01

    Full Text Available Bruce Charlesworth,1 Claire Pilling,1 Paul Chadwick,2 Martyn Butcher31Adelphi Values, Macclesfield, 2Salford Royal Foundation Trust, Salford, 3Northern Devon Healthcare Trust, Devon, UKBackground: Dressings are the mainstay of wound care management; however, adherence of the dressing to the wound or periwound skin is common and can lead to dressing-related pain and trauma. Dressing-related trauma is recognized as a clinical and economic burden to patients and health care providers. This study was conducted to garner expert opinion on clinical sequelae and resource use associated with dressing-related trauma in a UK setting.Methods: This was an exploratory study with two phases: qualitative pilot interviews with six wound care specialists to explore dressing-related trauma concepts, sequelae, and resource utilization; and online quantitative research with 30 wound care specialists to validate and quantify the concepts, sequelae, and resource utilization explored in the first phase of the study. Data were collected on mean health care professional time, material costs, pharmaceutical costs, and inpatient management per sequela occurrence until resolution. Data were analyzed to give total costs per sequela and concept occurrence.Results: The results demonstrate that dressing-related trauma is a clinically relevant concept. The main types of dressing-related trauma concepts included skin reactions, adherence to the wound, skin stripping, maceration, drying, and plugging of the wound. These were the foundation for a number of clinical sequelae, including wound enlargement, increased exudate, bleeding, infection, pain, itching/excoriation, edema, dermatitis, inflammation, and anxiety. Mean total costs range from £56 to £175 for the complete onward management of each occurrence of the six main concepts.Conclusion: These results provide insight into the hidden costs of dressing-related trauma in a UK setting. This research successfully conceptualized

  5. Design and characterization of copaiba oil/alginate films for wound dressings application: Effect of copaiba oil concentration on the film properties

    International Nuclear Information System (INIS)

    Martins, Aryane Christine Neves; Silva, Classius Ferreira da

    2016-01-01

    Full text: Polymeric films have been used as wound dressings for burns and wounds. The healing, anti-inflammatory and antibiotic properties of these films can be induced or potentiated by the incorporation of bioactive like herbal medicines. In this work, alginate films were produced incorporating copaiba oil (Copaifera L.) which has the properties as mentioned above. The casting technique was used to prepare the copaiba oil/alginate films. The copaiba oil was previously emulsified in an alginate solution, and the emulsion was cast in a Petri dish before slow drying. The copaiba oil concentration was evaluated. The films were characterized according to the permeability to water vapor, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and mechanical properties. The emulsified films showed appropriate properties for use as wound dressings. The main effect on the properties occurred in the highest concentration of copaiba oil. (author)

  6. Design and characterization of copaiba oil/alginate films for wound dressings application: Effect of copaiba oil concentration on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Aryane Christine Neves; Silva, Classius Ferreira da, E-mail: aryanemartins_@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil)

    2016-07-01

    Full text: Polymeric films have been used as wound dressings for burns and wounds. The healing, anti-inflammatory and antibiotic properties of these films can be induced or potentiated by the incorporation of bioactive like herbal medicines. In this work, alginate films were produced incorporating copaiba oil (Copaifera L.) which has the properties as mentioned above. The casting technique was used to prepare the copaiba oil/alginate films. The copaiba oil was previously emulsified in an alginate solution, and the emulsion was cast in a Petri dish before slow drying. The copaiba oil concentration was evaluated. The films were characterized according to the permeability to water vapor, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction, and mechanical properties. The emulsified films showed appropriate properties for use as wound dressings. The main effect on the properties occurred in the highest concentration of copaiba oil. (author)

  7. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    Science.gov (United States)

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  8. Recent advances in topical wound care

    Directory of Open Access Journals (Sweden)

    Sujata Sarabahi

    2012-01-01

    Full Text Available There are a wide variety of dressing techniques and materials available for management of both acute wounds and chronic non-healing wounds. The primary objective in both the cases is to achieve a healed closed wound. However, in a chronic wound the dressing may be required for preparing the wound bed for further operative procedures such as skin grafting. An ideal dressing material should not only accelerate wound healing but also reduce loss of protein, electrolytes and fluid from the wound, and help to minimize pain and infection. The present dictum is to promote the concept of moist wound healing. This is in sharp contrast to the earlier practice of exposure method of wound management wherein the wound was allowed to dry. It can be quite a challenge for any physician to choose an appropriate dressing material when faced with a wound. Since wound care is undergoing a constant change and new products are being introduced into the market frequently, one needs to keep abreast of their effect on wound healing. This article emphasizes on the importance of assessment of the wound bed, the amount of drainage, depth of damage, presence of infection and location of wound. These characteristics will help any clinician decide on which product to use and where,in order to get optimal wound healing. However, there are no ′magical dressings′. Dressings are one important aspect that promotes wound healing apart from treating the underlying cause and other supportive measures like nutrition and systemic antibiotics need to be given equal attention.

  9. Hemostatic, Resorbable Dressing of Natural Polymers-Hemoguard

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Wrona Maria

    2016-03-01

    Full Text Available Investigations are presented for the preparation of a model hemostatic dressing that would exhibit an adequate hemostatic capacity in injuries and surgical wounds, an antibacterial activity to prevent primary and secondary infections, and offer safety in use. The Hemoguard dressing has been designed as a powder prepared from the complex chitosan/alginate Na/Ca in the form of micro- and nano-fibrids. Useful antibacterial and hemostatic properties of Hemoguard, which would qualify the material as first aid dressing and a temporary protection of injury wounds in field conditions, were assessed. Biocompatibility of the dressing was confirmed by biological in vitro examinations.

  10. Silver nanoparticles delivery system based on natural rubber latex membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, Eder Jose, E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo/FFCLRP-DF (Brazil); Kinoshita, Angela [Universidade do Sagrado Coracao (Brazil); Ramos, Ana Paula [Universidade de Sao Paulo/FFCLRP-DQ (Brazil); Baffa, Oswaldo [Universidade de Sao Paulo/FFCLRP-DF (Brazil)

    2013-04-15

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV-Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane ({approx}0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are

  11. Silver nanoparticles delivery system based on natural rubber latex membranes

    International Nuclear Information System (INIS)

    Guidelli, Éder José; Kinoshita, Angela; Ramos, Ana Paula; Baffa, Oswaldo

    2013-01-01

    The search for new materials for biomedical applications is extremely important. Here, we present results on the performance of a silver nanoparticles delivery system using natural rubber latex (NRL) as the polymeric matrix. Our aim was to obtain an optimized wound dressing by combining materials with potential healing action. The synthesis of silver nanoparticles and their characterization by UV–Vis spectroscopy, transmission electron microscopy, zeta potential, dynamic light scattering, and Fourier transform infrared spectroscopy (FTIR) are depicted. The NRL membranes are good matrix for silver nanoparticles and allow for their gradual release. The release of 30 nm silver nanoparticles by the NRL membranes depends on their mass percentage in NRL membranes. The total concentration of AgNP released by the NRL membranes was calculated. The AgNP attached to the cis-isoprene molecules in the NRL matrix remain attached to the membrane (∼0.1 % w/w). So, only the AgNP bound to the non-rubber molecules are released. FTIR spectra suggest that non-rubber molecules, like aminoacids and proteins, associated with the serum fraction of the NRL may be attached to the surfaces of the released nanoparticles, thereby increasing the release of such molecules. The released silver nanoparticles are sterically stabilized, more stable and well dispersed. Because the serum fraction of the NRL is responsible for the angiogenic properties of the matrix, the silver nanoparticles could increment the angiogenic properties of NRL. This biomaterial has desirable properties for the fabrication of a wound dressing with potential healing action, since it combines the angiogenic and antibacterial properties of the silver nanoparticles with the increased angiogenic properties of the NRL.Graphical AbstractThe AgNP attached to the cis-isoprene molecules remain in the NRL matrix and only the AgNP bound to the non-rubber molecules (NRL serum fraction) are released. The released AgNP are sterically

  12. Hydrocolloid dressing in pediatric burns may decrease operative intervention rates.

    LENUS (Irish Health Repository)

    Martin, Fiachra T

    2010-03-01

    Partial-thickness scalds are the most common pediatric burn injury, and primary management consists of wound dressings to optimize the environment for reepithelialization. Operative intervention is reserved for burns that fail to heal using conservative methods. Worldwide, paraffin-based gauze (Jelonet) is the most common burn dressing; but literature suggests that it adheres to wounds and requires more frequent dressing change that may traumatize newly epithelialized surfaces. Hydrocolloid dressings (DuoDERM) provide an occlusive moist environment to optimize healing and are associated with less frequent dressing changes.

  13. Bioactive 3D-Shaped Wound Dressings Synthesized from Bacterial Cellulose: Effect on Cell Adhesion of Polyvinyl Alcohol Integrated In Situ

    Directory of Open Access Journals (Sweden)

    Marlon Osorio

    2017-01-01

    Full Text Available We investigated wound dressing composites comprising fibrils of bacterial cellulose (BC grown by fermentation in the presence of polyvinyl alcohol (PVA followed by physical crosslinking. The reference biointerface, neat BC, favoured adhesion of fibroblasts owing to size exclusion effects. Furthermore, it resisted migration across the biomaterial. Such effects were minimized in the case of PVA/BC membranes. Therefore, the latter are suggested in cases where cell adhesion is to be avoided, for instance, in the design of interactive wound dressings with facile exudate control. The bioactivity and other properties of the membranes were related to their morphology and structure and considered those of collagen fibres. Bioactive materials were produced by simple 3D templating of BC during growth and proposed for burn and skin ulcer treatment.

  14. Electrospun Gelatin/poly(Glycerol Sebacate Membrane with Controlled Release of Antibiotics for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Parisa Shirazaki

    2017-01-01

    Full Text Available Background: The most important risk that threatens the skin wounds is infections. Therefore, fabrication of a membrane as a wound dressing with the ability of antibiotic delivery in a proper delivery rate is especially important. Materials and Methods: Poly(glycerol sebacate (PGS was prepared from sebacic acid and glycerol with 1:1 ratio; then, it was added to gelatin in the 1:3 ratio and was dissolved in 80% (v/v acetic acid, and finally, ciprofloxacin was added in 10% (w/v of polymer solution. The gelatin/PGS membrane was fabricated using an electrospinning method. The membrane was cross-linked using ethyl-3-(3-dimethylaminopropyl carbodiimide ethyl-3-(3-dimethylaminopropylcarbodiim (EDC and N-hydroxysuccinimide (NHS in different time periods to achieve a proper drug release rate. Fourier-transform infrared (FTIR spectroscopy was being used to manifest the peaks of polymers and drug in the membrane. Scanning electron microscopy (SEM was used to evaluate the morphology, fibers diameter, pore size, and porosity before and after crosslinking process. Ultraviolet (UV-visible spectrophotometry was used to show the ciprofloxacin release from the cross-linked membrane. Results: FTIR analysis showed the characteristic peaks of gelatin, PGS, and ciprofloxacin without any added peaks after the crosslinking process. SEM images revealed that nanofibers' size increased during the crosslinking process and porosity was higher than 80% before and after crosslinking process. UV-visible spectrophotometry showed the proper rate of ciprofloxacin release occurred from cross-linked membrane that remaining in EDC/NHS ethanol solution for 120 min. Conclusion: The obtained results suggest that this recently developed gelatin/PGS membrane with controlled release of ciprofloxacin could be a promising biodegradable membrane for wound dressing.

  15. Systematic review of the use of honey as a wound dressing

    Science.gov (United States)

    Moore, Owen A; Smith, Lesley A; Campbell, Fiona; Seers, Kate; McQuay, Henry J; Moore, R Andrew

    2001-01-01

    Objective To investigate topical honey in superficial burns and wounds though a systematic review of randomised controlled trials. Data sources Cochrane Library, MEDLINE, EMBASE, PubMed, reference lists and databases were used to seek randomised controlled trials. Seven randomised trials involved superficial burns, partial thickness burns, moderate to severe burns that included full thickness injury, and infected postoperative wounds. Review methods Studies were randomised trials using honey, published papers, with a comparator. Main outcomes were relative benefit and number-needed-to-treat to prevent an outcome relating to wound healing time or infection rate. Results One study in infected postoperative wounds compared honey with antiseptics plus systemic antibiotics. The number needed to treat with honey for good wound healing compared with antiseptic was 2.9 (95% confidence interval 1.7 to 9.7). Five studies in patients with partial thickness or superficial burns involved less than 40% of the body surface. Comparators were polyurethane film, amniotic membrane, potato peel and silver sulphadiazine. The number needed to treat for seven days with honey to produce one patient with a healed burn was 2.6 (2.1 to 3.4) compared with any other treatment and 2.7 (2.0 to 4.1) compared with potato and amniotic membrane. For some or all outcomes honey was superior to all these treatments. Time for healing was significantly shorter for honey than all these treatments. The quality of studies was low. Conclusion Confidence in a conclusion that honey is a useful treatment for superficial wounds or burns is low. There is biological plausibility. PMID:11405898

  16. Systematic review of the use of honey as a wound dressing

    Directory of Open Access Journals (Sweden)

    McQuay Henry J

    2001-06-01

    Full Text Available Abstract Objective To investigate topical honey in superficial burns and wounds though a systematic review of randomised controlled trials. Data sources Cochrane Library, MEDLINE, EMBASE, PubMed, reference lists and databases were used to seek randomised controlled trials. Seven randomised trials involved superficial burns, partial thickness burns, moderate to severe burns that included full thickness injury, and infected postoperative wounds. Review methods Studies were randomised trials using honey, published papers, with a comparator. Main outcomes were relative benefit and number-needed-to-treat to prevent an outcome relating to wound healing time or infection rate. Results One study in infected postoperative wounds compared honey with antiseptics plus systemic antibiotics. The number needed to treat with honey for good wound healing compared with antiseptic was 2.9 (95% confidence interval 1.7 to 9.7. Five studies in patients with partial thickness or superficial burns involved less than 40% of the body surface. Comparators were polyurethane film, amniotic membrane, potato peel and silver sulphadiazine. The number needed to treat for seven days with honey to produce one patient with a healed burn was 2.6 (2.1 to 3.4 compared with any other treatment and 2.7 (2.0 to 4.1 compared with potato and amniotic membrane. For some or all outcomes honey was superior to all these treatments. Time for healing was significantly shorter for honey than all these treatments. The quality of studies was low. Conclusion Confidence in a conclusion that honey is a useful treatment for superficial wounds or burns is low. There is biological plausibility.

  17. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.

    Science.gov (United States)

    Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura

    2015-04-01

    Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical

  18. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent.

    Science.gov (United States)

    El-Fawal, Gomaa F; Yassin, Abdelrahman M; El-Deeb, Nehal M

    2017-07-01

    Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\\KC\\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.

  19. Current management of wound healing

    DEFF Research Database (Denmark)

    Gottrup, F; Karlsmark, T

    2009-01-01

    in the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or dressing......While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information...... containing active substances will be accentuated. Further developments in the management structure and education will also continue and consensus of treatment guidelines, recommendations and organization models will hopefully be achieved....

  20. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  1. Care of the burn wound: As I do it

    Directory of Open Access Journals (Sweden)

    Arvind Madhusudan Vartak

    2016-01-01

    Full Text Available Skin covers the entire body. It is the most important protective organ. Since the burn injury is most painful of all injuries, dressings play an important part of the management. Dressing of the burn wound is very essential to provide pain relief, to promote early healing, to prevent contractures, and to help early mobilization. Many workers from time immemorial have used different types of dressings so as to provide desired results. I use sterile polyethylene drape as a dressing material after covering it with the first layer of gauze soaked in silver sulfadiazine cream. The results are encouraging as there is near total absence of pain experienced by patients and removal is totally pain-free without any bleeding. There is no need for escharotomies, and there is early removal of the slough with no contracture. The polyethylene drapes are easily available in the market, easy to store, available sterile, and totally cost-effective. They help reduce the hospital stay of the patient. The need of anesthesia for surgeries such as escharotomies and debridement is significantly reduced.

  2. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.

    Science.gov (United States)

    Rees, Adam; Powell, Lydia C; Chinga-Carrasco, Gary; Gethin, David T; Syverud, Kristin; Hill, Katja E; Thomas, David W

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  3. The Healing Effect of Sesame Oil, Camphor and Honey on Second Degree Burn Wounds in Rat.

    Science.gov (United States)

    Vaghardoost, Reza; Mousavi Majd, Seyed GholamReza; Tebyanian, Hamid; Babavalian, Hamid; Malaei, Leila; Niazi, Mitra; Javdani, Ali

    2018-01-01

    Many studies were carried out to improve sophisticated dressings to accelerate healing processes and reduce the microbial burden in burn wounds. This study evaluated the healing effect of herbal ointment containing extract of sesame oil, camphor and honey on second degree burn wounds in rats in comparison with daily dressing oil vaseline. Forty rats were randomly assigned to two equal groups. A deep second degree burn was formed on the back of each rat with using a standard burning technique. The burns were dressed daily with herbal ointment containing extract of sesame oil, camphor and honey in group 1, dressing oil vaseline in group 2. The response to treatment was evaluated by digital photography during the treatment on 0, 7, 14, 21, 28 days. Histological scoring was undertaken for scar tissue samples on 0, 7, 14, 21, 28 days. Considerable epithelization in the herbal ointment group vs. the control group over the study period was noted. Neovascularization was significantly higher in herbal ointment treated rats as well. In terms of difference of wound surface area, maximal healing was noticed in herbal ointment extract of sesame oil, camphor and honey group and the minimal repair in the control group. The greatest rate of healing was in the herbal ointment group containing sesame oil, camphor and honey, so the herbal ointment as a suitable substitute for dressing and healing of burn wound injuries is recommended.

  4. Hydroxypropyltrimethyl Ammonium Chloride Chitosan Functionalized-PLGA Electrospun Fibrous Membranes as Antibacterial Wound Dressing: In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Shengbing Yang

    2017-12-01

    Full Text Available A novel poly(lactic-co-glycolic acid (PLGA-hydroxypropyltrimethyl ammonium chloride chitosan (HACC composite nanofiber wound dressing was prepared through electrospinning and the entrapment-graft technique as an antibacterial dressing for cutaneous wound healing. HACC with 30% degrees of substitution (DS was immobilized onto the surface of PLGA membranes via the reaction between carboxyl groups in PLGA after alkali treatment and the reactive groups (–NH2 in HACC molecules. The naked PLGA and chitosan graft PLGA (PLGA-CS membranes served as controls. The surface immobilization was characterized by scanning electron microscopy (SEM, atomic force microscopy (AFM, Fourier transform infrared (FTIR, thermogravimetric analysis (TGA and energy dispersive X-ray spectrometry (EDX. The morphology studies showed that the membranes remain uniform after the immobilization process. The effects of the surface modification by HACC and CS on the biological properties of the membranes were also investigated. Compared with PLGA and PLGA-CS, PLGA-HACC exhibited more effective antibacterial activity towards both Gram-positive (S. aureus and Gram-negative (P. aeruginosa bacteria. The newly developed fibrous membranes were evaluated in vitro for their cytotoxicity using human dermal fibroblasts (HDFs and human keratinocytes (HaCaTs and in vivo using a wound healing mice model. It was revealed that PLGA-HACC fibrous membranes exhibited favorable cytocompatibility and significantly stimulated adhesion, spreading and proliferation of HDFs and HaCaTs. PLGA-HACC exhibited excellent wound healing efficacy, which was confirmed using a full thickness excision wound model in S. aureus-infected mice. The experimental results in this work suggest that PLGA-HACC is a strong candidate for use as a therapeutic biomaterial in the treatment of infected wounds.

  5. Effect of green tea on the second degree burn wounds in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2014-01-01

    Full Text Available Background: Various studies indicate that the green tea has anti-inflammatory and anti-oxidative properties. Moreover, a few studies have been carried out that demonstrate beneficial effects of green tea on burned patients. Materials and Methods: In this study, green tea, Vaseline, and silver sulfadiazine dressings were used as first-aid treatment to deep dermal contact burns in rats, compared with a control of nothing. After creating second-degree burn on the dorsum of rats, the treatments were applied for 15 min in four groups. Wound dressing changes were daily. Macroscopic study was performed on days 1, 3, 7, and 14 by using a digital camera and software processing of photos. Microscopic examination was done by pathologic evaluation of skin specimens on day 14. Results: We observed that green tea usage significantly decreased burn size in comparison to the control group (P = 0.004. Conclusion: Green tea is effective on healing process of second degree burn wounds.

  6. Clinical evaluation comparing the efficacy of aquacel Ag with vaseline gauze versus 1% silver sulfadiazine cream in toxic epidermal necrolysis.

    Science.gov (United States)

    Huang, Shu-Hung; Lin, Cen-Hung; Chang, Kao-Ping; Wu, Sheng-Hua; Lin, Sin-Daw; Lai, Chung-Sheng; Ou, Su-Fei; Lee, Su-Shin

    2014-05-01

    The purpose of this study was to determine whether using Aquacel Ag (ConvaTec, Skillman, New Jersey) with Vaseline (Unilever, London, England) gauze instead of silver sulfadiazine cream (SSD) as the wound care protocol to treat toxic epidermal necrolysis (TEN) can improve wound healing, pain control, and reduction of labor costs. A retrospective chart review. A burn center with 2 plastic surgeons and 11 nursing staff. A pathologist diagnosed TEN in 35 patients admitted to the burn center from 1995 to 2009. Parameters included the patient's profile, dressing choice, severity-of-illness score for TEN, time to 95% re-epithelialization, visual analog scale pain scores before second dressing change, and labor cost. The exclusion criterion was wound care with neither Aquacel Ag with Vaseline nor SSD exclusively. Twenty patients were enrolled in this study. In the group using Aquacel Ag with Vaseline gauze, the visual analog scale score was significantly less than that of the SSD group (P = .02). Labor costs were significantly lower in the Aquacel Ag with Vaseline gauze group (P < .01). Commencement of specific dressing to 95% re-epithelialization (P = .09) and time spent in the second dressing change (P = .05) had no statistical significance between the 2 groups. This study showed that Aquacel Ag with Vaseline gauze decreased pain and labor costs but did not shorten wound healing time. Thus, Aquacel Ag with Vaseline gauze can be an efficient method for treating TEN wounds.

  7. Fabrication and evaluation of auto-stripped tri-layer wound dressing for extensive burn injury

    International Nuclear Information System (INIS)

    Lin, F.-H.; Tsai, J.-C.; Chen, T.-M.; Chen, K.-S.; Yang, J.-M.; Kang, P.-L.; Wu, T-H.

    2007-01-01

    In the study, we are going to develop a tri-layer membrane as the artificial skin for extensive burn injury. The first layer is a three-dimensional tri-copolymer sponge of gelatin/hyaluronan/chodroitin-6-sulfate with 70% in porosity and 20-100 μm in pore size. The layer is constructed as a dermis analogous layer to stimulate capillaries penetration, to promote dermal fibroblast migration and to induce the secretion of extra-cellular matrix, which provides a better physiological environment for burn patient recovery. The second layer is as so called auto-stripped layer composed by poly-N-isopropyacrylamide (PNIPAAm). The layer will be automatically peeled off from the tri-copolymer layer once the wound site closed and recovered. The third layer is composed by polypropylene (PP) non-woven fabric, which provides an open structure for exudates drainage out that will reduce the risk of second infection. The tri-layer wound dressing has been successfully prepared by subsequently high-energy plasma treatment, γ-ray irradiation, UV light exposure, and lyophilized process. From the results of MTT, IL-8, IL-1α, IL-6, and TNF-α measurement, the developed material will not induce tissue inflammatory or immune response. The dermal fibroblasts showed initial contact with the material surface through the radial extension of filopodia followed by cytoplasmic webbing that could be examined by SEM. Dermal fibroblasts subsequently flattened for further proliferation and extra-cellular matrix secretion. Dermal analog layer provides a three-dimensional architecture for normal dermis regeneration. The layer can be completely biodegraded within 4 weeks post-operation. After served as a scaffold for the ingrowth of self-fibroblasts, a normal dermis like layer will be regenerated. The dressing will fall off automatically without any damage once the wound site healed completely

  8. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mei; Lin, Han [Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Yilong [College of Quartermaster Technology, Jilin University, Changchun, 130062 (China); Yang, Guang [Norman Bethune First Hospital, Jilin University, Changchun 130021 (China); Zhao, He [Alan G. MacDiarmid Laboratory, College of Chemistry, Jilin University, Changchun 130012 (China); Sun, Dahui, E-mail: sundahui1971@sina.com [Norman Bethune First Hospital, Jilin University, Changchun 130021 (China)

    2017-08-31

    Highlights: • Ranachensinensis skin collagen (RCSC) was used with molecular weight 105∼250KDa. • Wet electrospinning was successfully improved and was used to produce 3D porous structure materials with about 90% porosity. • AgNPs was loaded in AgNPs dispersion liquid. - Abstract: Electrospunnanofibers are used as three-dimensional (3D) scaffold materials that can alter cell attachment and cell proliferation, change the antibacterial properties of materials, and can be used as wound dressings. But the fabrication of porous 3D scaffold structure and the antibacterial properties enhancing are challenges remained to improve. With the states here, a Ranachensinensis skin collagen (RCSC)/poly(ε-caprolactone) (PCL)AgNP-loaded3D nanofiber scaffold is fabricated as a wound dressing material by using an improved wet electrospinning method (blending). The nanoscale of the AgNPs is proved. The 3D porous morphologies of the materials with different AgNP loadings, are determined with field emission scanning electron microscopy (FESEM) and the presence and uniformity distribution of AgNPs is confirmed by Energy dispersive X-ray (EDX) spectroscopy. The silver-ion release rates, antibacterial properties, and cytotoxicities of dressing materials with different AgNP contents are evaluated using ICP-AES, the zone inhibition method, and MTT testing. These results showed that the improved wet electrospun is an effective way to fabricate AgNP loaded 3D scaffold materials with porous structure and nearly 90% porosity and the presence of AgNPs in dressing materials strengthen the antibacterial properties. The RCSC/PCL 3D scaffold materials containing 2.0%AgNP would be promising for dressing materials application nearly without cytotoxicities.

  9. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.

    Science.gov (United States)

    Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh

    2017-07-01

    This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation

    International Nuclear Information System (INIS)

    Rapado Raneque, Manuel; Rodriguez Rodriguez, Alejandro; Peniche Covas, Carlos

    2013-01-01

    The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was D g = 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.

  11. The clinical and cost effectiveness of bee honey dressing in the treatment of diabetic foot ulcers.

    Science.gov (United States)

    Moghazy, A M; Shams, M E; Adly, O A; Abbas, A H; El-Badawy, M A; Elsakka, D M; Hassan, S A; Abdelmohsen, W S; Ali, O S; Mohamed, B A

    2010-09-01

    Honey is known, since antiquity, as an effective wound dressing. Emergence of resistant strains and the financial burden of modern dressings, have revived honey as cost-effective dressing particularly in developing countries. Its suitability for all stages of wound healing suggests its clinical effectiveness in diabetic foot wound infections. Thirty infected diabetic foot wounds were randomly selected from patients presenting to Surgery Department, Suez Canal University Hospital, Ismailia, Egypt. Honey dressing was applied to wounds for 3 months till healing, grafting or failure of treatment. Changes in grade and stage of wounds, using University of Texas Diabetic Wound Classification, as well as surface area were recorded weekly. Bacterial load was determined before and after honey dressing. Complete healing was significantly achieved in 43.3% of ulcers. Decrease in size and healthy granulation was significantly observed in another 43.3% of patients. Bacterial load of all ulcers was significantly reduced after the first week of honey dressing. Failure of treatment was observed in 6.7% of ulcers. This study proves that commercial clover honey is a clinical and cost-effective dressing for diabetic wound in developing countries. It is omnipresence and concordance with cultural beliefs makes it a typical environmentally based method for treating these conditions. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Foam dressings for treating pressure ulcers.

    Science.gov (United States)

    Walker, Rachel M; Gillespie, Brigid M; Thalib, Lukman; Higgins, Niall S; Whitty, Jennifer A

    2017-10-12

    Pressure ulcers, also known as pressure injuries and bed sores, are localised areas of injury to the skin or underlying tissues, or both. Dressings made from a variety of materials, including foam, are used to treat pressure ulcers. An evidence-based overview of dressings for pressure ulcers is needed to enable informed decision-making on dressing use. This review is part of a suite of Cochrane Reviews investigating the use of dressings in the treatment of pressure ulcers. Each review will focus on a particular dressing type. To assess the clinical and cost effectiveness of foam wound dressings for healing pressure ulcers in people with an existing pressure ulcer in any care setting. In February 2017 we searched: the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations); Ovid Embase; EBSCO CINAHL Plus and the NHS Economic Evaluation Database (NHS EED). We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta-analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. Published or unpublished randomised controlled trials (RCTs) and cluster-RCTs, that compared the clinical and cost effectiveness of foam wound dressings for healing pressure ulcers (Category/Stage II or above). Two review authors independently performed study selection, risk of bias and data extraction. A third reviewer resolved discrepancies between the review authors. We included nine trials with a total of 483 participants, all of whom were adults (59 years or older) with an existing pressure ulcer Category/Stage II or above. All trials had two arms, which compared foam dressings with other dressings for treating pressure ulcers.The certainty of evidence ranged from low to very low due

  13. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications.

    Science.gov (United States)

    Singh, Baljit; Varshney, Lalit; Francis, Sanju; Rajneesh

    2016-07-01

    Present article discusses synthesis and characterization of the sterile and pure hydrogel wound dressings which were prepared through radiation method by using polyvinyl alcohol (PVA), tragacanth gum (TG) and sodium alginate (SA). The polymer films were characterized by SEM, Cryo-SEM, FTIR, solid state C(13) NMR and XRD, TGA, and DSC. Some important biological properties such as O2 permeability, water vapor transmission rate, microbial permeability, haemolysis, thrombogenic behavior, antioxidant activity, bio-adhesion and mechanical properties were also studied. The hydrogel film showed thrombogenicity (82.43±1.54%), haemolysis (0.83±0.09%), oxygen permeability (6.433±0.058mg/L) and water vapor permeability (197.39±25.34g/m(2)/day). Hydrogel films were found biocompatible and impermeable to microbes. The release of antibiotic drug moxifloxacin occurred through non-Fickian mechanism and release profile was best fitted in Hixson-Crowell model for drug release. Overall, these results indicate the suitability of these hydrogels in wound dressing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio).

    Science.gov (United States)

    Seo, Seung Beom; Dananjaya, S H S; Nikapitiya, Chamilani; Park, Bae Keun; Gooneratne, Ravi; Kim, Tae-Yoon; Lee, Jehee; Kim, Cheol-Hee; De Zoysa, Mahanama

    2017-09-01

    Silver nanoparticles (AgNPs) were successfully synthesized by a chemical reduction method, physico-chemically characterized and their effect on wound-healing activity in zebrafish was investigated. The prepared AgNPs were circular-shaped, water soluble with average diameter and zeta potential of 72.66 nm and -0.45 mv, respectively. Following the creation of a laser skin wound on zebrafish, the effect of AgNPs on wound-healing activity was tested by two methods, direct skin application (2 μg/wound) and immersion in a solution of AgNPs and water (50 μg/L). The zebrafish were followed for 20 days post-wounding (dpw) by visual observation of wound size, calculating wound healing percentage (WHP), and histological examination. Visually, both direct skin application and immersion AgNPs treatments displayed clear and faster wound closure at 5, 10 and 20 dpw compared to the controls, which was confirmed by 5 dpw histology data. At 5 dpw, WHP was highest in the AgNPs immersion group (36.6%) > AgNPs direct application group (23.7%) > controls (18.2%), showing that WHP was most effective in fish immersed in AgNPs solution. In general, exposure to AgNPs induced gene expression of selected wound-healing-related genes, namely, transforming growth factor (TGF-β), matrix metalloproteinase (MMP) -9 and -13, pro-inflammatory cytokines (IL-1β and TNF-α) and antioxidant enzymes (superoxide dismutase and catalase), which observed differentiation at 12 and 24 h against the control; but the results were not consistently significant, and many either reached basal levels or were down regulated at 5 dpw in the wounded muscle. These results suggest that AgNPs are effective in acceleration of wound healing and altered the expression of some wound-healing-related genes. However, the detailed mechanism of enhanced wound healing remains to be investigated in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. News in wound healing and management

    DEFF Research Database (Denmark)

    Gottrup, Finn; Jørgensen, Bo; Karlsmark, Tonny

    2009-01-01

    -TNFalpha) and Lactobacillus plantarum cultures have also been successfully used in hard to heal, atypical wounds. Knowledge on influencing factors as smoking and biofilm on the healing process has also been improved. Smoking results in delayed healing and increased risk of postoperative infection, whereas the role of biofilm...... is still at an exploratory level. Organizing models for optimal wound management are constantly being developed and refined. SUMMARY: Recent knowledge on the importance of new dressing materials containing active substances, new treatments for atypical wounds, influencing factors on the healing process...

  16. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing

    International Nuclear Information System (INIS)

    Vigneswari, S.; Murugaiyah, V.; Kaur, G.; Abdul Khalil, H.P.S.; Amirul, A.A.

    2016-01-01

    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20 mol% 4HB [53.2°], P(3HB-co-35 mol%4HB)[48.9°], P(3HB-co-50 mol%4HB)[44.5°] and P(3HB-co-82 mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique. - Highlights: • Nano-fiber construct to enhance surface wettability and cell growth, harbouring desired properties as biodegradable wound dressing. • Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen construct using dual syringe system. • Nanofibrous construct accelerated wound healing with efficient cellular organization.

  17. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Vigneswari, S. [Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, MOSTI, 11700 Penang (Malaysia); Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu (Malaysia); Murugaiyah, V. [School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11700 Penang (Malaysia); Kaur, G. [Institute of Research in Molecular Medicine, Universiti Sains Malaysia, 11700 Penang (Malaysia); Abdul Khalil, H.P.S. [School of Industrial Technology, Universiti Sains Malaysia, 11700 Penang (Malaysia); Amirul, A.A., E-mail: amirul@usm.my [Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, MOSTI, 11700 Penang (Malaysia); School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Penang (Malaysia)

    2016-09-01

    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20 mol% 4HB [53.2°], P(3HB-co-35 mol%4HB)[48.9°], P(3HB-co-50 mol%4HB)[44.5°] and P(3HB-co-82 mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique. - Highlights: • Nano-fiber construct to enhance surface wettability and cell growth, harbouring desired properties as biodegradable wound dressing. • Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen construct using dual syringe system. • Nanofibrous construct accelerated wound healing with efficient cellular organization.

  18. A randomized, controlled clinical trial of honey-impregnated dressing for treating diabetic foot ulcer

    International Nuclear Information System (INIS)

    Imran, M.

    2015-01-01

    To investigate the effect of Beri-honey-impregnated dressing on diabetic foot ulcer and compare it with normal saline dressing. Study Design: A randomized, controlled trial. Place and Duration of Study: Sughra Shafi Medical Complex, Narowal, Pakistan and Bhatti International Trust (BIT) Hospital, Affiliated with Central Park Medical College, Lahore, from February 2006 to February 2010. Methodology: Patients with Wagner's grade 1 and 2 ulcers were enrolled. Those patients were divided in two groups; group A (n=179) treated with honey dressing and group B (n=169) treated with normal saline dressing. Outcome measures were calculated in terms of proportion of wounds completely healed (primary outcome), wound healing time, and deterioration of wounds. Patients were followed-up for a maximum of 120 days. Results: One hundred and thirty six wounds (75.97%) out of 179 were completely healed with honey dressing and 97 (57.39%) out of 169 wtih saline dressing (p=0.001). The median wound healing time was 18.00 (6 - 120) days (Median with IQR) in group A and 29.00 (7 - 120) days (Median with IQR) in group B (p < 0.001). Conclusion: The present results showed that honey is an effective dressing agent instead of conventional dressings, in treating patients of diabetic foot ulcer. (author)

  19. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds

    Directory of Open Access Journals (Sweden)

    Peng Y

    2017-01-01

    Full Text Available Yinbo Peng,1 Chenlu Song,1 Chuanfeng Yang,1 Qige Guo,1 Min Yao1,2 1Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Dermatology, Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA Abstract: Silver nanoparticles (AgNPs are being widely applied as topical wound materials; however, accumulated deposition of silver in the liver, spleen, and other main organs may lead to organ damage and dysfunction. We report here that low molecular weight chitosan-coated silver nanoparticles (LMWC-AgNPs are effective against methicillin-resistant Staphylococcus aureus (MRSA, have better biocompatibility, and have lower body absorption characteristics when compared with polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs and silver nanoparticles without surface stabilizer (uncoated-AgNPs in a dorsal MRSA wound infection mouse model. LMWC-AgNPs were synthesized by reducing silver nitrate with low molecular weight chitosan as a stabilizer and reducing agent, while PVP-AgNPs were synthesized using polyvinylpyrrolidone as a stabilizer and ethanol as a reducing agent. AgNPs with different surface stabilizers were identified by UV-visible absorption spectrometry, and particle size was determined by transmission electron microscopy. UV-visible absorption spectra of LMWC-AgNPs, PVP-AgNPs and uncoated-AgNPs were similar and their sizes were in the range of 10–30 nm. In vitro experiments showed that the three types of AgNPs had similar MRSA-killing effects, with obvious effect at 4 µg/mL and 100% effect at 8 µg/mL. Bacteriostatic annulus experiments also showed that all the three types of AgNPs had similar antibacterial inhibitory effect at 10 µg/mL. Cell counting kit-8 assay and Hoechst/propidium iodide (PI staining showed that LMWC-AgNPs were

  20. Antibacterial properties of tualang honey and its effect in burn wound management: a comparative study

    Directory of Open Access Journals (Sweden)

    Nasir Nur-Azida

    2010-06-01

    Full Text Available Abstract Background The use of honey as a natural product of Apis spp. for burn treatment has been widely applied for centuries. Tualang honey has been reported to have antibacterial properties against various microorganisms, including those from burn-related diagnoses, and is cheaper and easier to be absorbed by Aquacel dressing. The aim of this study is to evaluate the potential antibacterial properties of tualang honey dressing and to determine its effectiveness as a partial thickness burn wound dressing. Methods In order to quantitate the bioburden of the swabs, pour plates were performed to obtain the colony count (CFU/ml. Swabs obtained from burn wounds were streaked on blood agar and MacConkey agar for bacterial isolation and identification. Later, antibacterial activity of Aquacel-tualang honey, Aquacel-Manuka honey, Aquacel-Ag and Aquacel- plain dressings against bacteria isolated from patients were tested (in-vitro to see the effectiveness of those dressings by zone of inhibition assays. Results Seven organisms were isolated. Four types of Gram-negative bacteria, namely Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas spp. and Acinetobacter spp., and three Gram-positive bacteria, namely Staphylococcus aureus, coagulase-negative Staphylococcus aureus (CONS and Streptococcus spp., were isolated. Total bacterial count decreased on day 6 and onwards. In the in-vitro antibacterial study, Aquacel-Ag and Aquacel-Manuka honey dressings gave better zone of inhibition for Gram positive bacteria compared to Aquacel-Tualang honey dressing. However, comparable results were obtained against Gram negative bacteria tested with Aquacel-Manuka honey and Aquacel-Tualang honey dressing. Conclusions Tualang honey has a bactericidal as well as bacteriostatic effect. It is useful as a dressing, as it is easier to apply and is less sticky compared to Manuka honey. However, for Gram positive bacteria, tualang honey is not as effective as usual care

  1. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings

    International Nuclear Information System (INIS)

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-01-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu 2+ ) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu 2+ sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu 2+ sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu 2+ ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu 2+ ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings. (paper)

  2. Moist wound healing compared with standard care of treatment of primary closed vascular surgical wounds: a prospective randomized controlled study

    DEFF Research Database (Denmark)

    Vogt, Katja C; Uhlyarik, M; Schroeder, Torben V

    2007-01-01

    This study was a randomized-controlled trial comparing the standard type of dry dressing, Mepore, with moist wound healing, using a hydrofiber dressing, Aquacel, in primary closed wounds after vascular surgery. The endpoints were patient comfort, cost-effectiveness, infections, wound complications......, and length of hospital stay. One hundred and sixty patients were randomized to receive either Mepore or Aquacel dressing. There was no significant difference in patient comfort between the two groups, but a higher cost in the Aquacel group despite significantly fewer changes of dressings in these patients...

  3. Impact of a Novel, Anti-microbial Dressing on In Vivo, Pseudomonas aeruginosa Wound Biofilm: Quantitative Comparative Analysis using a Rabbit Ear Model

    Science.gov (United States)

    2014-12-01

    therapies such as debridement , lavage, and antimicrobials, but with little evidence that they improve chronic wound healing in a quantitative and... TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Impact of a novel, anti-microbial dressing on in vivo, Pseudomonas aeruginosa wound biofilm...study. Bacterial strains and culture Wild- type strains of P. aeruginosa (obtained from the labora- tory of Dr. Barbara H. Iglewski, University of

  4. A prospective randomised study comparing the jubilee dressing method to a standard adhesive dressing for total hip and knee replacements.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2012-08-01

    It is important to reduce potential wound complications in total hip and total knee arthroplasty procedures. The purpose of this study was to compare the jubilee dressing method to a standard adhesive dressing.

  5. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane

    International Nuclear Information System (INIS)

    Rottmar, Markus; Richter, Michael; Mäder, Xenia; Grieder, Kathrin; Bruinink, Arie; Nuss, Katja; Karol, Agnieszka; Rechenberg, Brigitte von; Zimmermann, Erika; Buser, Stephan; Dobmann, Andreas; Blume, Jessica

    2015-01-01

    Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro. The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration. (focus issue paper)

  6. In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane.

    Science.gov (United States)

    Rottmar, Markus; Richter, Michael; Mäder, Xenia; Grieder, Kathrin; Nuss, Katja; Karol, Agnieszka; von Rechenberg, Brigitte; Zimmermann, Erika; Buser, Stephan; Dobmann, Andreas; Blume, Jessica; Bruinink, Arie

    2015-06-01

    Non-healing and partially healing wounds are an important problem not only for the patient but also for the public health care system. Current treatment solutions are far from optimal regarding the chosen material properties as well as price and source. Biodegradable polyurethane (PUR) scaffolds have shown great promise for in vivo tissue engineering approaches, but accomplishment of the goal of scaffold degradation and new tissue formation developing in parallel has not been observed so far in skin wound repair. In this study, the mechanical properties and degradation behavior as well as the biocompatibility of a low-cost synthetic, pathogen-free, biocompatible and biodegradable extracellular matrix mimicking a PUR scaffold was evaluated in vitro . The novel PUR scaffolds were found to meet all the requirements for optimal scaffolds and wound dressings. These three-dimensional scaffolds are soft, highly porous, and form-stable and can be easily cut into any shape desired. All the material formulations investigated were found to be nontoxic. One formulation was able to be defined that supported both good fibroblast cell attachment and cell proliferation to colonize the scaffold. Tunable biodegradation velocity of the materials could be observed, and the results additionally indicated that calcium plays a crucial role in PUR degradation. Our results suggest that the PUR materials evaluated in this study are promising candidates for next-generation wound treatment systems and support the concept of using foam scaffolds for improved in vivo tissue engineering and regeneration.

  7. Inactivation of the antibacterial and cytotoxic properties of silver ions by biologically relevant compounds.

    Directory of Open Access Journals (Sweden)

    Geraldine Mulley

    Full Text Available There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells. Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec and Acticoat (Smith & Nephew to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants. We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

  8. Exploratory Development of an Ultra fast-Curing Wound Dressing

    Science.gov (United States)

    1990-11-30

    sterilization of medical devices. The principle advantage of using ionization techniques is that the dressings can be sterilized in hermetically...containing these combinations were no more advantageous than any of the other combinations; and (2) the existing chromatographic methods were not...Chromatography was performed on an AllTech OctaDecyl Silane I (ODS) column (4.6 mm x 250 mm - 5 u) using 1% acetic acid-methanol (60:40) as the mobile phase

  9. Efficacy of a collagen-based dressing in an animal model of delayed wound healing.

    Science.gov (United States)

    Guillemin, Y; Le Broc, D; Ségalen, C; Kurkdjian, E; Gouze, J N

    2016-07-02

    The aim of this study was to evaluate in vitro and in vivo the efficacy of GBT013, a collagen-based dressing, for the treatment of chronic wounds, in a db/db mouse model of diabetes. Macroscopic and histologic analyses of db/db mice wound healing with GBT013 or saline gauze were assessed. The mRNA expression and the proliferation of dermal fibroblast were investigated. Matrix metalloproteinases (MMP)-2 and MMP-9 activities were quantified. In db/db mice, GBT013 improves wound epithelialisation when compared with saline gauze. Histological analysis of scar tissue also shows an enhancement of remodelling associated with no sign of acute inflammation. In addition, GBT013 significantly decreases interleukin (IL)-6 and IL-8, significantly increases tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2 fibroblast mRNA expression and significantly reduces in vitro MMP-2 and MMP-9 enzymatic activities. Moreover, GBT013 allows cell growth inside the matrix and stimulates proliferation of human dermal fibroblast. By contributing to restore MMPs/TIMPs balance, GBT013 may function in all key stages of wound healing, such as inflammation, proliferation and tissue remodelling, and ultimately may provide a favourable environment for skin repair. This work was supported by Genbiotech, the R&D subsidiary of Laboratoires Genévrier, a pharmaceutical company.

  10. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  11. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles.

    Science.gov (United States)

    Gómez Chabala, Luisa Fernanda; Cuartas, Claudia Elena Echeverri; López, Martha Elena Londoño

    2017-10-24

    Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa . Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries.

  12. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    Science.gov (United States)

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  13. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Adam Rees

    2015-01-01

    Full Text Available Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  14. Enzymatic wound debridement; role of papaya in the management of post cesarean gaped wounds

    International Nuclear Information System (INIS)

    Nisa, M.U.

    2012-01-01

    Background: Enzymatic wound debridement is an emerging concept in facilitating the wound healing process. Papaya has de-sloughing, antibacterial and wound healing properties. It has been used in African countries since centuries for different medicinal pur-poses. Apart from anecdotal reports and few studies on chronic ulcers and burns, no planned studies are available to support its action in postoperative wound infection.Objectives: To compare efficacy and safety of papaya dressing with conventional wound dressing with povidone iodine in post cesarean section gaped wounds. Setting: Gynecology Unit 3, Sir Ganga Ram Hospital Lahore - Pakistan, over a period of six months(June 2012 to Nov 2012). Study Design: Randomized, quasi experimental stu-dy. Materials and Methods: The study sample included 60 patients with post cesarean section gaped wounds. The sample was divided into two groups; thirty patients as Group A or the study group received Papaya dressing and rest of thirty patients as Group B or the control group received Povidone iodine dressing. Wounds were thoroughly washed with saline and then mashed unripe papaya was spread over the whole area of wound in the study group and povidone iodine in the control group. Wounds were covered with sterile bandage for at least 48 hours in study group and 24 hours in the control group. The process was repeated till a clean base of wound with healthy granulation tis-sue was achieved suitable for secondary suture. The efficacy parameters studied were the duration of time needed to develop healthy granulation tissue and total duration of hospital stay which were compared bet-ween the two groups. Safety factors studied were the adverse effects of medications used in the study. Results: Out of 1200 cesarean sections done during study period, sixty (5%) were gaped in the post-operative period. Out of 60, 55 (90%) were emergency and only 5 (10%) were elective cesarean sections. All the sixty patients with postoperative gaped

  15. Custom-fit polymeric membrane dressing masks in the treatment of second degree facial burns.

    Science.gov (United States)

    Weissman, Oren; Hundeshagen, Gabriel; Harats, Moti; Farber, Nimrod; Millet, Eran; Winkler, Eyal; Zilinsky, Isaac; Haik, Josef

    2013-09-01

    Second degree facial burns usually impart high wound site pain levels and patient discomfort due to the abundance of facial sensory innervation, as well as the development of edema and inflammation that accompany wound healing. Frequent changing of adherent dressings causes additional procedural pain and may prolong healing due to recurring damage to the wound bed. We applied face masks, made on-site from a drug free polymeric membrane dressing, to 8 patients with superficial and deep 2nd degree facial burns. Time to full re-epithlialization was recorded during treatment. Pain, overall comfort, and result satisfaction were evaluated using a questionnaire (10-point Likert scales. From 1=minimum to 10=maximum) on follow-up (mean follow up 14.4 months, range 9-18). These results were compared to a historical cohort of patients with facial burns that were treated with an antibiotic ointment. Results showed mean re-epithelialization time of 6.5 days (as compared to 8.5 days in the cohort group), low pain ratings (mean: 2.6; range: 4.7 in the control group), mixed comfort levels (mean: 4.7/10; 4 in the control group) and high result satisfaction (mean: 7.8; 6.2 in the control group). Nursing staff described pain-free dressing changes and positively noted non-adherence and high absorbance capacity of the polymer, necessitating less dressing changes. Inflammation was contained to the actual site of injury. No complications in terms of infection or allergic reaction were observed. Overall, the polymeric membrane facial dressing seems to be a promising means of reducing pain and ensuring uninterrupted wound healing in 2nd degree facial burns. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  16. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    Science.gov (United States)

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  17. Understanding long-term silver release from surface modified porous titanium implants.

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2017-08-01

    Prevention of orthopedic device related infection (ODRI) using antibiotics has met with limited amount of success and is still a big concern during post-surgery. As an alternative, use of silver as an antibiotic treatment to prevent surgical infections is being used due to the well-established antimicrobial properties of silver. However, in most cases silver is used in particulate form with wound dressings or with short-term devices such as catheters but not with load-bearing implants. We hypothesize that strongly adherent silver to load-bearing implants can offer longer term solution to infection in vivo. Keeping that in mind, the focus of this study was to understand the long term release study of silver ions for a period of minimum 6months from silver coated surface modified porous titanium implants. Implants were fabricated using a LENS™ system, a powder based additive manufacturing technique, with at least 25% volume porosity, with and without TiO 2 nanotubes in phosphate buffer saline (pH 7.4) to see if the total release of silver ions is within the toxic limit for human cells. Considering the fact that infection sites may reduce the local pH, silver release was also studied in acetate buffer (pH 5.0) for a period of 4weeks. Along with that, the osseointegrative properties as well as cytotoxicity of porous titanium implants were assessed in vivo for a period of 12weeks using a rat distal femur model. In vivo results indicate that porous titanium implants with silver coating show comparable, if not better, biocompatibility and bonding at the bone-implant interface negating any concerns related to toxicity related to silver to normal cells. The current research is based on our recently patented technology, however focused on understanding longer-term silver release to mitigate infection related problems in load-bearing implants that can even arise several months after the surgery. Prevention of orthopedic device related infection using antibiotics has met

  18. Wound bed preparation: A novel approach using HydroTherapy.

    Science.gov (United States)

    Atkin, Leanne; Ousey, Karen

    2016-12-01

    Wounds that fail to heal quickly are often encountered by community nursing staff. An important step in assisting these chronic or stalled wounds progress through healing is debridement to remove devitalised tissue, including slough and eschar, that can prevent the wound from healing. A unique wound treatment called HydroTherapy aims to provide an optimal healing environment. The first step of HydroTherapy involves HydroClean plus™, this dressing enables removal of devitalised tissue through autolytic debridement and absorption of wound fluid. Irrigation and cleansing provided by Ringer's solution from the dressing further removes any necrotic tissue or eschar. Once effective wound bed preparation has been achieved a second dressing, HydroTac™, provides an ongoing hydrated wound environment that enables re-epithelialisation to occur in an unrestricted fashion. This paper presents 3 case studies of slow healing wounds treated with HydroClean plus™ which demonstrates effective wound debridement.

  19. Effectiveness of bridge V.A.C. dressings in the treatment of diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Aziz Nather

    2011-03-01

    Full Text Available Objectives: This is a prospective study of the clinical efficacy of the V.A.C. Granufoam Bridge Dressing for the treatment of diabetic foot ulcers. Materials and methods: Five consecutive patients with diabetic foot ulcers were treated with V.A.C. Granufoam Bridge Dressings and studied over a period of 22–48 days. The indications for treatment included diabetic patients with open ray amputation wounds and wounds post-drainage for abscess with exposed deep structures. Clinical outcome was measured in terms of reduction in wound dimensions, presence of wound granulation, microbial clearance, and development of wound complications. Results: Our results showed that with V.A.C. therapy, wound healing occurred in all patients. The number of dressings required ranged from 8 to 10. The baseline average wound size was 23.1 cm2. Wound areas shrunk by 18.4–41.7%. All subjects achieved 100% wound bed granulation with an average length of treatment of 33 days. Microbial clearance was achieved in all cases. All wounds healed by secondary intention in one case and four cases required split-thickness skin grafting. Conclusion: The V.A.C. Granufoam Bridge Dressing is effective in the treatment of diabetic foot ulcers. It promotes reduction of wound area, wound bed granulation, and microbial clearance. By allowing placement of the suction pad outside the foot, it allowed patients to wear protective shoes and to walk non-weight bearing with crutches during V.A.C. therapy.

  20. Aloe vera for treating acute and chronic wounds.

    Science.gov (United States)

    Dat, Anthony D; Poon, Flora; Pham, Kim B T; Doust, Jenny

    2012-02-15

    Aloe vera is a cactus-like perennial succulent belonging to the Liliaceae Family that is commonly grown in tropical climates. Animal studies have suggested that Aloe vera may help accelerate the wound healing process. To determine the effects of Aloe vera-derived products (for example dressings and topical gels) on the healing of acute wounds (for example lacerations, surgical incisions and burns) and chronic wounds (for example infected wounds, arterial and venous ulcers). We searched the Cochrane Wounds Group Specialised Register (9 September 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3), Ovid MEDLINE (2005 to August Week 5 2011), Ovid MEDLINE (In-Process & Other Non-Indexed Citations 8 September 2011), Ovid EMBASE (2007 to 2010 Week 35), Ovid AMED (1985 to September 2011) and EBSCO CINAHL (1982 to 9 September 2011). We did not apply date or language restrictions. We included all randomised controlled trials that evaluated the effectiveness of Aloe vera, aloe-derived products and a combination of Aloe vera and other dressings as a treatment for acute or chronic wounds. There was no restriction in terms of source, date of publication or language. An objective measure of wound healing (either proportion of completely healed wounds or time to complete healing) was the primary endpoint. Two review authors independently carried out trial selection, data extraction and risk of bias assessment, checked by a third review author. Seven trials were eligible for inclusion, comprising a total of 347 participants. Five trials in people with acute wounds evaluated the effects of Aloe vera on burns, haemorrhoidectomy patients and skin biopsies. Aloe vera mucilage did not increase burn healing compared with silver sulfadiazine (risk ratio (RR) 1.41, 95% confidence interval (CI) 0.70 to 2.85). A reduction in healing time with Aloe vera was noted after haemorrhoidectomy (RR 16.33 days, 95% CI 3.46 to 77.15) and there was

  1. Managing burn wounds with SMARTPORE Technology polyurethane foam: two case reports.

    Science.gov (United States)

    Imran, Farrah-Hani; Karim, Rahamah; Maat, Noor Hidayah

    2016-05-12

    Successful wound healing depends on various factors, including exudate control, prevention of microbial contaminants, and moisture balance. We report two cases of managing burn wounds with SMARTPORE Technology polyurethane foam dressing. In Case 1, a 2-year-old Asian girl presented with a delayed (11 days) wound on her right leg. She sustained a thermal injury from a hot iron that was left idle on the floor. Clinical inspection revealed an infected wound with overlying eschar that traversed her knee joint. As her parents refused surgical debridement under general anesthesia, hydrotherapy and wound dressing using SMARTPORE Technology Polyurethane foam were used. Despite the delay in presentation of this linear thermal pediatric burn injury that crossed the knee joint, the patient's response to treatment and its outcome were highly encouraging. She was cooperative and tolerated each dressing change without the need of supplemental analgesia. Her wound was healed by 24 days post-admission. In Case 2, a 25-year-old Asian man presented with a mixed thickness thermal flame burn on his left leg. On examination, the injury was a mix of deep and superficial partial thickness burn, comprising approximately 3% of his total body surface area. SMARTPORE Technology polyurethane foam was used on his wound; his response to the treatment was very encouraging as the dressing facilitated physiotherapy and mobility. The patient rated the pain during dressing change as 2 on a scale of 10 and his pain score remained the same in every subsequent change. His wound showed evidence of epithelialization by day 7 post-burn. There were no adverse events reported. Managing burn wounds with SMARTPORE Technology polyurethane foam resulted in reduced pain during dressing changes and the successful healing of partial and mixed thickness wounds. The use of SMARTPORE Technology polyurethane foam dressings showed encouraging results and requires further research as a desirable management option in

  2. 21 CFR 310.548 - Drug products containing colloidal silver ingredients or silver salts offered over-the-counter...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing colloidal silver... Drug products containing colloidal silver ingredients or silver salts offered over-the-counter (OTC) for the treatment and/or prevention of disease. (a) Colloidal silver ingredients and silver salts have...

  3. Silver-Coated Nylon Dressing Plus Active DC Microcurrent for Healing of Autogenous Skin Donor Sites

    Science.gov (United States)

    2013-08-01

    harvested; (c) bloodstream infection, burn-wound infection, hemodynamic instability requiring the use of pressors, or critical illness such as one...or nursing ; (h) sensitivity to silver or nylon; and (i) patient unable to provide written informed consent. Study Device The active microstimulator...the microcurrent stimulator. A research nurse monitored patient compli- ance by recording the amount of time the microcurrent stimulator was

  4. Aloe vera gel and cesarean wound healing; a randomized controlled clinical trial.

    Science.gov (United States)

    Molazem, Zahra; Mohseni, Fatemeh; Younesi, Masoumeh; Keshavarzi, Sareh

    2014-08-31

    Failure in complete healing of the wound is one of the probable complications of cesarean. The present study aimed to determine the effectiveness of dressing with aloe vera gel in healing of cesarean wound. This prospective randomized double-blind clinical trial was conducted on 90 women who had undergone cesarean operation in Amir-al-Momenin hospital (Gerash, Iran). The participants were randomly divided into two groups each containing 45 patients. In one group, the wound was dressed with aloe vera gel, while simple dressing was used in the control group. Wound healing was assessed 24 hours and 8 days after the cesarean operation using REEDA scale. The data were analyzed through Chi-square and t-test. The participants' mean age was 27.56±4.20 in the aloe vera group and 26.62±4.88 in the control group, but the difference was not statistically significant. However, a significant difference was found between the two groups concerning body mass index, heart rate, and systolic blood pressure (Paloe vera group and 35 ones in the control group had obtained a zero score 24 hours after the operation. These measures were respectively obtained as 42 and 41eight days after the operation. According to the findings of this study, the women are recommended to be informed regarding the positive effects of dressing with aloe vera gel.

  5. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing.

    Science.gov (United States)

    Zhang, Yubei; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Cha, Dongsu; Liang, Shengnan; Li, Xiaoli; Fan, Bing

    2017-09-01

    This study aims to develop new antibacterial hydrogel wound dressings composed of poly(aminoethyl) modified chitosan (PAEMCS). FTIR, 1 H NMR, and elemental analysis demonstrated that PAEMCS was successfully synthesized via grafting poly(aminoethyl) groups onto hydroxyl groups on chitin first, and removing acetyl groups from the grafted polymer afterward. XRD and TGA implied its well-defined crystallinity and thermostability. Furthermore, a series of hydrogels were fabricated under the participation of dipotassium hydrogen phosphate (DHP). The gelation tests suggested that the higher concentration of PAEMCS or DHP was beneficial to the formation of hydrogels. The pH values of hydrogels at 37°C were all in the range of 7.12-7.50. The rheological tests indicated that PAEMCS-based hydrogels were of lower DHP addition and higher elasticity than CS-based hydrogels to achieve the same gelation temperature under the same polymer's concentration. Additionally, the swelling, anti-bacteria, and cytotoxicity experiments showed that PAEMCS-based hydrogels possessed excellent hygroscopicity, high antibacterial activity against E. coli, S. aureus, or S. epidermidis, and good cytocompatibility toward L929 cells or HUVECs, respectively. All the results implied that PAEMCS-based hydrogels not only maintained inherent multiple properties of chitosan but also possessed excellent antibacterial activity, and might be promising antibacterial hydrogel dressings used in wound therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing

    International Nuclear Information System (INIS)

    Gallo, Anna Lucia; Paladini, Federica; Romano, Alessandro; Verri, Tiziano; Quattrini, Angelo; Sannino, Alessandro; Pollini, Mauro

    2016-01-01

    The resistance demonstrated by many microorganisms towards conventional antibiotics has stimulated the interest in alternative antimicrobial agents and in novel approaches for prevention of infections. Silver, a natural braod-spectrum antimicrobial agent known since antiquity, has been widely employed in biomedical field due to its recognized antibacterial, antifungal and antiviral properties. In this work, antibacterial silver coatings were deposited on absorbable surgical sutures through the in situ photo-chemical deposition of silver clusters. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) were performed in order to investigate the presence and distribution of the silver clusters on the substrate. The amounts of silver deposited and released by the silver treated sutures were calculated through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), and the results were related to the biodegradation of the material. The microbiological properties and the potential cytotoxicity of the silver-treated sutures were investigated in relation with hydrolysis experiments, in order to determine the effect of the degradation on antibacterial properties and biocompatibility. - Highlights: • The in situ photo-deposition of silver nano-coatings was used to develop silver treated PGLA sutures. • The silver particles deposited had good distribution and strong adhesion to the substrate. • The silver treated sutures demonstrated good biocompatibility and antibacterial capability. • The presence of silver promoted cell migration and proliferation in the wound area.

  7. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Anna Lucia [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Paladini, Federica, E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy); Romano, Alessandro [Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan (Italy); Verri, Tiziano [Di.S.Te.B.A., University of Salento, Via per Monteroni, 73100 Lecce (Italy); Quattrini, Angelo [Neuropathology Unit, Institute of Experimental Neurology and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan (Italy); Sannino, Alessandro; Pollini, Mauro [Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce (Italy)

    2016-12-01

    The resistance demonstrated by many microorganisms towards conventional antibiotics has stimulated the interest in alternative antimicrobial agents and in novel approaches for prevention of infections. Silver, a natural braod-spectrum antimicrobial agent known since antiquity, has been widely employed in biomedical field due to its recognized antibacterial, antifungal and antiviral properties. In this work, antibacterial silver coatings were deposited on absorbable surgical sutures through the in situ photo-chemical deposition of silver clusters. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) were performed in order to investigate the presence and distribution of the silver clusters on the substrate. The amounts of silver deposited and released by the silver treated sutures were calculated through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), and the results were related to the biodegradation of the material. The microbiological properties and the potential cytotoxicity of the silver-treated sutures were investigated in relation with hydrolysis experiments, in order to determine the effect of the degradation on antibacterial properties and biocompatibility. - Highlights: • The in situ photo-deposition of silver nano-coatings was used to develop silver treated PGLA sutures. • The silver particles deposited had good distribution and strong adhesion to the substrate. • The silver treated sutures demonstrated good biocompatibility and antibacterial capability. • The presence of silver promoted cell migration and proliferation in the wound area.

  8. Vacuum assisted closure therapy for treatment of complex wounds in replanted extremities.

    Science.gov (United States)

    Zhou, Min; Qi, Baiwen; Yu, Aixi; Pan, Zhenyu; Zhu, Shaobo; Deng, Kai; Tao, Shengxiang

    2013-11-01

    The object of this study was to compare the outcomes of the vacuum assisted closure (VAC) therapy and conventional wound care with dressing change for treatment of complex wounds in patients with replantation of amputated upper and lower extremities. Data of 43 patients with replantation of amputated extremities from May 2004 to December 2011 were reviewed. There were 18 wounds of 18 patients with replantation, which were treated by dressing change and 26 wounds of 25 patients by VAC therapy. The outcomes were evaluated by the survival rate of replanted extremities, growth of granulation tissue, interval between wound treatment and secondary procedure and eventual secondary wound coverage methods. Vascular thromboses were found in 3 patients with wound treatment by dressing change and 5 by VAC. All replants of two groups of patients survived after salvage procedures. The wound score was 3.6 ± 0.7 in the conventional dressing change group and 5.8 ± 0.7 in the VAC group at the sixth day after treatment, respectively. The intervals between wound treatment and secondary wound coverage procedure were 12.0 ± 1.7 days in the dressing change group and 6.1 ± 0.7 days in the VAC group. Flaps were applied for wound coverage in 9 out of 18 (50.0%) wounds in the dressing change group and 5 out of 26 (19.2%) in the VAC group (P VAC could promote the growth of granulation tissue of wound, decrease the need of flap for wound coverage, and did not change the survival of replantation. Copyright © 2013 Wiley Periodicals, Inc.

  9. Studies on the water vapor permeability and the effect on bacterial growth of pva/sf blend hydrogels prepared by gamma irradiation for wound dressing

    International Nuclear Information System (INIS)

    Pongpat, Suchada; Kewsuwan, Prartana; Jetawattana, Suwimol; Piadang, Nattayana

    2004-10-01

    The preparation of hydrogels by gamma irradiation from poly(vinyl alcohol) (PVA) and from blend solution of PVA/silk fibroin(SF) from silk waste and some properties as wound dressing were studied. The thickness of the hydrogel was controlled to be 3 mm. Some properties of hydrogel such as water vapor permeability antibacterial activity, and protection of wound from bacteria were tested. Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were used as testing cultures. The results revealed that the solution of 7% and 10% PVA and the blend solution containing 10% SF in 7% and 10% PVA (w/w) were crosslinked by γ-irradiation at the dose of 30-60 kGy. The transparent gels with good appearance were obtained. The water vapor permeability coefficients of the films were in the range of 1161.12-1527.36 g m -2 day -1 . It was found that the gels showed only an effective wound protection from the test cultures but did not show their antibacterial properties. However, remarkable reduction of bacterial growth, of about 1-2 log cycles, was also observed on the agar medium covered with the gels.p

  10. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    International Nuclear Information System (INIS)

    Barbosa, Gustavo P.; Debone, Henrique S.; Severino, Patrícia; Souto, Eliana B.; Silva, Classius F. da

    2016-01-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  11. Design and characterization of chitosan/zeolite composite films — Effect of zeolite type and zeolite dose on the film properties

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Gustavo P.; Debone, Henrique S. [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil); Severino, Patrícia [Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Aracaju (Brazil); Souto, Eliana B. [Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra (Portugal); Silva, Classius F. da, E-mail: cfsilva@unifesp.br [Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema (Brazil)

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. - Highlights: • Zeolite/chitosan composite films were prepared by casting technique. • Micrographs showed slight difference according to the content and A-type zeolite. • The barrier properties of the films were suitable to the dressing application. • Film characterization suggested that zeolites interacted with the chitosan chain.

  12. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  13. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

    Science.gov (United States)

    Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick

    2017-08-01

    Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

  14. In-vitro- and in-vivo-studies on the application of an innovative wound healing system for burn patients on the basis of a spray-transplantation of primary isolated skin cells and an active wound dressing made of hollow fiber capillaries

    OpenAIRE

    Plettig, Jörn

    2016-01-01

    The treatment of acute burns, especially for patients with 2b degree wounds, is not resolved satisfactorily. The thesis evaluates an innovative therapeutic concept based on a primary skin cell isolation from fetal or adult tissue, an autologous spray-transplantation and a temporary wound supply via an active wound dressing based on hollow fiber capillaries. The aim is to increase the yield of regenerative basal keratinocyte precursor cells through a gentle isolation technique and to distribut...

  15. Hemostatic, antibacterial biopolymers from Acacia arabica (Lam.) Willd. and Moringa oleifera (Lam.) as potential wound dressing materials.

    Science.gov (United States)

    Bhatnagar, Monica; Parwani, Laxmi; Sharma, Vinay; Ganguli, Jhuma; Bhatnagar, Ashish

    2013-10-01

    Acacia arabica and Moringa oleifera are credited with a number of medicinal properties. Traditionally gum of Acacia plant is used in the treatment of skin disorders to soothe skin rashes, soreness, inflammation and burns while Moringa seed extracts are known to have antibacterial activity. In the present study the potential of the polymeric component of aqueous extracts of gum acacia (GA) and the seeds of M. oleifera (MSP) in wound management was evaluated. The results revealed that both biopolymers were hemostatic and hasten blood coagulation. They showed shortening of activated partial thromboplastin time and prothrombin time and were non-cytotoxic in nature. Both showed antibacterial activity against organisms known to be involved in wound infections with MIC ranging from 500-600 microg mL(-1) for GA and 300-700 microg mL(-1) for MSP. They were biodegradable and exhibited water absorption capacity in the range of 415 to 935%. The hemostatic character coupled to these properties envisions their potential in preparation of dressings for bleeding and profusely exuding wounds. The biopolymers have been further analysed for their composition by Gas chromatography.

  16. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  17. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    Science.gov (United States)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  18. THE UTILIZATION OF ACHATINA FULICA MUCUS IN ALGINATE MEMBRANE AS WOUND HEALING ACCELERATOR AND ANTI- INFECTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fatkhunisa Rahmawati

    2014-01-01

    Full Text Available Wound should be covered with bandage that is called wound dressing. Most people use synthetic materials such as gauze dressing. Gauze has high absorption of NaCl, which is often used to cleanse the wound. However, discomfort and pain arise since the gauze becomes sticky on the wound. Therefore, we need other alternatives instead of gauze to cover wound. One such alternative is the alginate membrane. This study used alginate membrane with mixture of mucous of the snail Achatina fulica, which contain proteins such as proline, serine asparagine, glycosaminoglycan, hydroxylysine, trionin and so forth, to activate the growth factor. Alginate powder and carboxymethl cellulose (CMC was dissolved in distilled water mixed with mucus of the snail Achatina fulica in four variations (4:0; 4:1, 4:2, 4:3 through a magnetic stirrer, and casted on a baking sheet covered with sterile gauze. High Performance Liquid Chromatography (HPLC test showed that the glycosaminoglycan content was found on the mucous of Achatina fulica. This was indicated by the appearance of peak at 325–350 second. The most optimum alginate and mucus composition was in ratio of 4:2. This ratio resulted in a wound dressing that was still able to absorb the exudate and optimally accelerated wound healing.

  19. Low concentrations of silver nanoparticles have a beneficial effect on wound healing in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ambrožová, Nikola [Palacký University, Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry (Czech Republic); Zálešák, Bohumil [University Hospital Olomouc, Department of Plastic and Aesthetic Surgery (Czech Republic); Ulrichová, Jitka [Palacký University, Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry (Czech Republic); Čížková, Kateřina [Palacký University, Department of Histology and Embryology, Faculty of Medicine and Dentistry (Czech Republic); Galandáková, Adéla, E-mail: galandakova.a@seznam.cz [Palacký University, Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry (Czech Republic)

    2017-03-15

    Silver has been used in medical application for its antibacterial, antifungal, and anti-inflammatory effects. Silver nanoparticles (AgNPs) are currently in the spotlight. It was shown that their application can be useful in the management of wounds. Our study was conducted to determine whether AgNPs (average size 10.43 ± 4.74 nm) and ionic silver (Ag-I) could affect the wound healing in the in vitro model of normal human dermal fibroblasts (NHDF). We evaluated their effect on reactive oxygen species (ROS) generation and the expression of key transcription factors that coordinate the cellular response to oxidative stress [nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] and inflammation [nuclear factor-κB (NF-κB)], expression of heme oxygenase-1 (HO-1), and interleukin-6 (IL-6) level. Isolated primary NHDF were scratched, heated (1 h; 42 °C), and cultured with AgNPs (0.25, 2.5, and 25 μg/ml) and Ag-I (0.025, 0.1, and 0.25 μg/ml) for 8 or 24 h. The ROS generation, Nrf2, NF-κB, and HO-1 protein expression and IL-6 protein level were then evaluated by standard methods. Non-cytotoxic concentrations of AgNPs (0.25 and 2.5 μg/ml) did not affect the ROS generation but activated the Nrf2/HO-1 pathway and decreased the NF-κB expression and IL-6 level in the in vitro wound healing model. AgNPs at concentrations of 0.25 and 2.5 μg/ml seem to be suitable for the intended application as a topical agent for wound healing, although the gene silencing technique, chemical inhibitors, and detailed time- and concentration-dependent experiments are needed for a comprehensive study of signaling pathway regulation. Further investigation is also necessary to exclude any possible adverse effects.

  20. Low concentrations of silver nanoparticles have a beneficial effect on wound healing in vitro

    International Nuclear Information System (INIS)

    Ambrožová, Nikola; Zálešák, Bohumil; Ulrichová, Jitka; Čížková, Kateřina; Galandáková, Adéla

    2017-01-01

    Silver has been used in medical application for its antibacterial, antifungal, and anti-inflammatory effects. Silver nanoparticles (AgNPs) are currently in the spotlight. It was shown that their application can be useful in the management of wounds. Our study was conducted to determine whether AgNPs (average size 10.43 ± 4.74 nm) and ionic silver (Ag-I) could affect the wound healing in the in vitro model of normal human dermal fibroblasts (NHDF). We evaluated their effect on reactive oxygen species (ROS) generation and the expression of key transcription factors that coordinate the cellular response to oxidative stress [nuclear factor (erythroid-derived 2)-like 2 (Nrf2)] and inflammation [nuclear factor-κB (NF-κB)], expression of heme oxygenase-1 (HO-1), and interleukin-6 (IL-6) level. Isolated primary NHDF were scratched, heated (1 h; 42 °C), and cultured with AgNPs (0.25, 2.5, and 25 μg/ml) and Ag-I (0.025, 0.1, and 0.25 μg/ml) for 8 or 24 h. The ROS generation, Nrf2, NF-κB, and HO-1 protein expression and IL-6 protein level were then evaluated by standard methods. Non-cytotoxic concentrations of AgNPs (0.25 and 2.5 μg/ml) did not affect the ROS generation but activated the Nrf2/HO-1 pathway and decreased the NF-κB expression and IL-6 level in the in vitro wound healing model. AgNPs at concentrations of 0.25 and 2.5 μg/ml seem to be suitable for the intended application as a topical agent for wound healing, although the gene silencing technique, chemical inhibitors, and detailed time- and concentration-dependent experiments are needed for a comprehensive study of signaling pathway regulation. Further investigation is also necessary to exclude any possible adverse effects.

  1. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings.

    Science.gov (United States)

    Powell, Lydia C; Khan, Saira; Chinga-Carrasco, Gary; Wright, Chris J; Hill, Katja E; Thomas, David W

    2016-02-10

    Nanocellulose from wood is a novel biomaterial, which is highly fibrillated at the nanoscale. This affords the material a number of advantages, including self-assembly, biodegradability and the ability to absorb and retain moisture, which highlights its potential usefulness in clinical wound-dressing applications. In these in vitro studies, the wound pathogen Pseudomonas aeruginosa PAO1 was used to assess the ability of two nanocellulose materials to impair bacterial growth (nanocelluloses had a relatively small fraction of residual fibres (nanocellulose films and increased cell death when compared to a commercial control wound dressing, Aquacel(®). Nanocellulose suspensions inhibited bacterial growth, whilst UV-vis spectrophotometry and laser profilometry also revealed the ability of nanocellulose to form smooth, translucent films. Atomic force microscopy studies of the surface properties of nanocellulose demonstrated that PAO1 exhibited markedly contrasting morphology when grown on the nanocellulose film surfaces compared to an Aquacel(®) control dressing (p<0.05). This study highlights the potential utility of these biodegradable materials, from a renewable source, for wound dressing applications in the prevention and treatment of biofilm development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  3. Physical, chemical and biological studies of gelatin/chitosan based transdermal fims with embedded silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Sneha Paul

    2015-12-01

    Full Text Available Objective: To study the physical, chemical and biological properties of composite chitosangelatin transdermal film along with silver nanoparticles as binding agent and determine the compatibility of the prepared amalgamation towards wound management. Methods: Transdermal film preparations were done by solvent casting method containing different concentrations of biological synthesized silver nanoparticles. The films were characterized by using scanning electron microscope for their morphology and the determination of silver metal was done by using inductively coupled plasma atomic emission spectroscopy. Then a quantity of silver nanoparticles was further proceeded by physiochemical parameters (weight, thickness, temperature, solubility, absorption, tensile strength, in vitro drug release and skin permeation and biological parameters studies (anti-microbial, cytotoxicity and reactive oxygen species. Results: The film prepared by utilizing 2 g of gelatin and 0.5 g of chitosan exhibited better results. The physiochemical parameters studies revealed higher concentration of silver nanoparticles would give better results. In vitro drug release studies through dialysis and skin permeation showed the release of drug versus time (h. These films had shown excellent inhibition against Streptococcus and Escherichia coli species. Cytotoxicity study by MTT indicated the mild toxicity existed as the concentration of silver nanoparticles increased. Reactive oxygen species generation studies of transdermal film by using 2'7'-dichlorofluorescein diacetate assay demonstrated that the fluorescent cells were found in the higher concentration, which indicated cell damage (reactive oxygen species generated. Conclusions: Based on these observations, in vitro performances against various characteristics of transdermal film, would be utilized as a distinct dressing material and patches accessible in market.

  4. Management of High-Voltage Burns of the Hand and Wrist with Negative Pressure Dressing

    Directory of Open Access Journals (Sweden)

    Nazım Gümüş

    2017-12-01

    Full Text Available Objective: Negative pressure dressing stimulates wound healing by promoting cellular proliferation and regeneration. It also removes interstitial edema and increases local blood flow, resulting in rapid growth of the granulation tissue. We used the dressing method in deep hand and wrist burns caused by high-voltage electrical current, which leads to progressive tissue necrosis, elevated compartment pressure, and deep tissue edema, to reveal if subatmospheric pressure could limit the zone of injury or ongoing tissue necrosis after electrical burn. Material and Methods: Six hands of five patients, who came in contact with high-voltage electrical wire carrying more than 1000 volts, are presented in this study. Hands and wrists were seriously injured and contracted. After the initial treatment involving fluid resuscitation, fasciotomy, carpal tunnel release, and debridement, a negative pressure dressing was applied to the wounds of hand, wrist, and forearm with 125 mm Hg continuous pressure, and maintained for 20 days. Results: When negative pressure dressing was stopped on the 20th day, significant granulation tissue developed over the hand and forearm wounds. However, wrist wounds needed more debridement and repeated dressings because of the presence of necrosis. Edema of the hands subsided significantly during the use of negative pressure dressing. Time to closure for hand and forearm wounds decreased considerably. Moreover, in one wrist, spontaneous closure was achieved at about one month. All hands except one treated with negative pressure dressing could be saved from amputation; however, significant tissue loss developed, needing complex reconstruction procedures. One hand was amputated because of the permanent loss of blood perfusion. Conclusion: The management of high-voltage burns of hand and wrist with subatmospheric pressure appears to be capable of reducing hand edema and accelerating closure of the wounds. It seems that negative

  5. Chronic wounds and diabetes mellitus: modern concept and prospects for conservative treatment

    Directory of Open Access Journals (Sweden)

    Alla Yur'evna Tokmakova

    2010-12-01

    Full Text Available Current trends in conservative therapy of chronic wounds associated with diabetes mellitus are discussed along with results of original studies aimedto assess efficacy of different methods for unloading the affected leg in patients with the neuropathic form of diabetic foot syndrome and diabeticnephropathy. Effects of collagen-containing dressings on the wound-related factors (matrix metalloproteinases 2 and 9, collagenolytic activity andwound epithelization rate are described.

  6. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections

    Directory of Open Access Journals (Sweden)

    Dhas SP

    2015-10-01

    Full Text Available Sindhu Priya Dhas, Suruthi Anbarasan, Amitava Mukherjee, Natarajan Chandrasekaran Center for Nanobiotechnology, VIT University, Vellore, India Abstract: Bombyx mori silk fibers are an important biomaterial and are used in surgical sutures due to their remarkable biocompatibility. The major drawback to the application of biomaterials is the risk of bacterial invasion, leading to clinical complications. We have developed an easy and cost-effective method for fabrication of antibacterial silk fibers loaded with silver nanoparticles (AgNPs by an in situ and ex situ process using an aqueous extract of Rhizophora apiculata leaf. Scanning electron microscopy revealed that well dispersed nanoparticles impregnated the silk fibers both in situ and ex situ. The crystalline nature of the AgNPs in the silk fibers was demonstrated by X-ray diffraction. The thermal and mechanical properties of the silk fibers were enhanced after they were impregnated with AgNPs. The silver-coated silk fibers fabricated by the in situ and ex situ method exhibited more than 90% inhibition against Pseudomonas aeruginosa and Staphylococcus aureus. Silk fibers doped with AgNPs were found to be biocompatible with 3T3 fibroblasts. The results obtained represent an important advance towards the clinical application of biocompatible AgNP-loaded silk fibers for prevention of surgical wound infections. Keywords: silk fibers, silver nanoparticles, antibacterial activity, wound infections, cytotoxicity, 3T3 fibroblast cells

  7. Comparison of topical sucralfate and silver sulfadiazine cream in second degree burns in rats.

    Science.gov (United States)

    Beheshti, Akram; Shafigh, Younes; Zangivand, Amir-Abdollah; Samiee-Rad, Fatemeh; Hassanzadeh, Gholamreza; Shafigh, Navid

    2013-01-01

    The most prevalent topical treatment for partial thickness burns is silver sulfadiazine 1% (SSD). Recent studies have shown that the healing of partial thickness burns is delayed with the use of SSD. One of the potential burn dressings is sucralfate. With this study the authors have aimed to analyze comparatively the effects of sucralfate and SSD on second degree burn wounds in rats. Forty-eight male rats were divided into three equal groups. A burn model was constituted on the back of all rats. The burned areas in the first, second and third groups were covered daily with sucralfate, SSD and cold cream (control), respectively. At the end of the 7th, 14th, 21st and 28th day, the rats were anesthetized and the burned skin tissue samples were collected for histopathological examination. At the end of the study, the epidermis and horny layer was completely formed in the SSD and sucralfate group; however the appendix of skin was just formed in the sucralfate group. Also the percentage of wound healing was calculated at 76%, 91% and 100% respectively in the control, silver sulfadiazine and sucralfate groups. Sucralfate is known to have multiple beneficial effects on wound healing. Using topical sucralfate accelerates the burn wound healing process in comparison with both the control and SSD groups and can be used as an adjunctive or alternative agent in the future.

  8. TOPICAL ESTROGEN IN WOUND HEALING: A DOUBLE BLIND RANDOMIZED CLINICAL TRIAL ON YOUNG HEALTHY PEOPLE

    Directory of Open Access Journals (Sweden)

    A ASILIAN

    2001-03-01

    Full Text Available Introduction: Acceleration of wounf healing is intrested because of decreasing the risk of wound complication and infections as well as reducing the cost of treatment. In animal models, it has been proved that estrogen can accelerate wound healing. It has been also suggested that topical estrogen can eliminate effect of aging on wound healing and can increase the speed of wound healing in old people. Methods: We selected 16 young healthy people who developed symmetrical and ulcers (regarding size and depths after dermabrasion, shave and electrocoagulouzon and CO2 laser. Primary lesions of patients were benign and noninfective. Identical and symmetrical lesions of each patient were randomly divided into two groups (A and B. Topical estrogen with concentration of 0.625 mg/g in the base of silver sulfadiazine cream was applied to A ulcers and silver sulfadiazine cream alone was applied on B ulcers. Ulcers were dressed by Telfa gauzes. The A ulcers of each patients were compared to counterpart B ulcers in regard of redness, size, depth, general appearance of ulcers and wound healing duration at three days intervals by a physician. Results: Average time of healing was 10.8 days and 8.5 days for B (n=29 and A (n=29 ulcers, respectively (P < 0.001. In 78 percent of cases, the A ulcers were judged better than B ulcers by physician (P < 0.01. Discussion: It seems that estrogen not only accelerate healing of acute ulcers but also it is efficient in young healthy people who don"t have any hormonal or wound healing problems.

  9. 78 FR 49528 - Consolidation of Wound Care Products Containing Live Cells

    Science.gov (United States)

    2013-08-14

    ...] Consolidation of Wound Care Products Containing Live Cells AGENCY: Food and Drug Administration, HHS. ACTION... certain wound care products containing live cells from the Center for Devices and Radiological Health... CDRH and CBER. FDA believes that as more wound care products containing live cells are developed such...

  10. High-performance electrically conductive silver paste prepared by silver-containing precursor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianguo; Cao, Yu; Li, Xiangyou; Wang, Xiaoye; Zeng, Xiaoyan [Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, College of Optoelectronics Science and Engineering, Wuhan (China)

    2010-09-15

    A high-performance electrically conductive silver paste with no solid particles before drying and/or sintering is developed, in which silver-containing precursor is employed as conductive functional phase. Thermogravimetry analysis, volume electrical resistivity tests and sintering experiments show that the paste with about 14 wt.% silver pristine content is able to achieve the volume electrical resistivity of (2-3) x 10{sup -5} {omega} cm after it is sintered at 220 C. A micro-pen direct-writing process indicates that it is very suitable for the fabrication of high-resolution (25 {mu}m) and high-integration devices and apparatus. (orig.)

  11. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  12. e of the Surgical Glove in Modified Vacuum-Assisted Wound Healing

    Directory of Open Access Journals (Sweden)

    Shankar Ram Hemmanur

    2013-09-01

    Full Text Available Vacuum-assisted wound healing has been proven to be more efficacious than conventionaldressings. Vacuum dressing has been frequently modified given the restrictions in resourcesavailable. Here we present a modified method of vacuum dressing by using surgical orgynaecological gloves for lower and upper limb wounds. Vacuum dressing was applied withparts of a surgical or gynaecological glove and Opsite with T-tailing of the suction outlet.Vacuum-assisted wound healing using the surgical gloves showed relatively good woundhealing in the amputation stump, finger, arm, and leg in the cases studied.

  13. The enhanced total body wrap--the new frontier in dressing care for burns.

    Science.gov (United States)

    Low, O-Wern; Chong, Si Jack; Tan, Bien-Keem

    2013-11-01

    The management of extensive burns with their associated high fluid exudate following burn excision and skin grafting has always posed a challenge in burn wound care. The ideal dressing should protect the wound from physical damage and micro-organisms; be comfortable and durable; allow high humidity at the wound; and be able to allow maximal activity for wound healing without retarding or inhibiting any stage of the process. The dressing technique described in this paper fulfils all the criteria above and at the same time provides an efficient channel to effectively clear the excessive exudate produced while keeping the wounds moist. Advantages conferred include accurate charting of wound exudate; reduced frequency of dressing changes; lower infection rates through prevention of strike-through; and securing and improving the viability of skin grafts. An enhancement to a technique previously described by us through the use of long thin strips of VAC sponges to transmit negative pressure, the enhanced Total Body Wrap aims to provide ideal conditions to promote healing in burns. Using negative pressure wound therapy (NPWT), this technique is simple and straightforward enough to be applied in majority of tertiary centres around the world. Copyright © 2013. Published by Elsevier Ltd.

  14. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats.

    Science.gov (United States)

    Naraginti, Saraschandra; Kumari, P Lakshmi; Das, Raunak Kumar; Sivakumar, A; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas

    2016-05-01

    Wound healing, a complex biological process, has attained a lot of attention as dermatologists are primarily interested in stimulated wound closure without formation of scar or a faint scar. The recent upsurgence of nanotechnology has provided novel therapeutic materials in the form of silver and gold nanoparticles which accelerate the wound healing process. The effect of formulated nanoparticles using Coleus forskohlii root extract (green synthesized) has been tried out for ameliorating full thickness excision wounds in albino Wistar male rats. The evaluation of in vivo activity of nanoparticles in wound healing was carried out on open wounds made by excision on the dorsal sides of albino Wistar rats under anesthesia, and the healing of the wounds was assessed. Histological aspects of the healing process were studied by a HE (Hematoxylin and Eosin) staining method to assess various degrees of re-epithelialization and the linear alignment of the granulation tissue whereas Van Gieson's histochemical staining was performed to observe collagen fibers. The healing action shown by the formulated nanoparticles was remarkable during the early stages of wound healing, which resulted in the substantial reduction of the whole healing period. Topical application of formulated gold nanoparticles was found to be more effective in suppressing inflammation and stimulating re-epithelialization compared to silver nanoparticles during the healing process. The results throw light on the amelioration of excision wounds using nanoparticles which could be a novel therapeutic way of improving wound healing in clinical practice. The mechanism of advanced healing action of both types of nanoparticles could be due to their antimicrobial, antioxidant and anti-inflammatory properties. Copyright © 2016. Published by Elsevier B.V.

  15. Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains.

    Science.gov (United States)

    Ashfaq, Mohammad; Verma, Nishith; Khan, Suphiya

    2017-08-01

    Pseudomonas aeruginosa (P. aeruginosa) is the most prevalent bacteria in the infections caused by burn, surgery, and traumatic injuries. Emergence of the P. aeruginosa bacterial resistance against various clinical drugs for wound treatment is the major concern nowadays. The present study describes the synthesis of the polyvinyl alcohol (PVA) and cellulose acetate phthalate (CAP) polymeric composite film (~0.2mm thickness) reinforced with the Cu/Zn bimetal-dispersed activated carbon micro/nanofiber (ACF/CNF), as a wound dressing material. The focus is on determining the efficacy of the prepared biomaterial against the multi and extensively drug-resistant P. aeruginosa strains isolated from the burning, surgical, and traumatic injury-wounds. The primary synthesis steps for the biomaterial include the mixing of a blend of CAP powder and the asymmetrically distributed Cu/Zn bimetals in ACF/CNF, into the polymerization reaction mixture of PVA. Biochemical tests showed that the prepared composite material significantly enhanced the in-vitro blood clotting rate, platelet aggregation, and macrophage cell proliferation, indicating the suitability of the material as a fast wound healer. The antibacterial tests performed against the P. aeruginosa strains showed that the material effectively suppressed the bacterial growth, with the bimetal nanoparticles dispersed in the material serving as an antibacterial agent. The PVA/CAP polymer composite served as an encapsulating agent providing a slow release of the nanoparticles, besides increasing the hemostatic properties of the biomaterial. The ACF/CNF served as a support to the dispersed bimetal nanoparticles, which also provided a mechanical and thermal stability to the material. Experimentally demonstrated to be biocompatible, the prepared metal-carbon-polymer nanocomposite in this study is an effective dressing material for the P. aeruginosa-infected wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities.

    Science.gov (United States)

    Al-Shmgani, Hanady S A; Mohammed, Wasnaa H; Sulaiman, Ghassan M; Saadoon, Ali H

    2017-09-01

    Biosynthesis of silver nanoparticles (AgNPs) from Catharanthus roseus leaf extract was carried out, and their characterization, as well as antioxidant, antimicrobial, and wound-healing activities were evaluated. Color change, UV-vis spectrum, XRD, FTIR, and AFM assessments supported the biosynthesis and characterization of AgNPs. The synthesized AgNPs showed strong in vitro antioxidant and antimicrobial activities against various pathogens. The in vivo assessment of wound healing in AgNPs-treated mice revealed their effectiveness in closuring and reducing size of wounds. Such potent bioactivity may justify their biomedical use as antioxidant and antimicrobial agents for controlling various health-related diseases, particularly in wound healing.

  17. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings

    Directory of Open Access Journals (Sweden)

    Peng eZhang

    2016-03-01

    Full Text Available Bacterial nano-cellulose (BNC is considered to possess incredible potential in biomedical applications due to its innate unrivalled nano-fibrillar structure and versatile properties. However its use is largely restricted by inefficient production and by insufficient strength when it is in a highly swollen state. In this study, a fabric skeleton reinforced chitosan (CS/BNC hydrogel with high mechanical reliability and antibacterial activity was fabricated by using an efficient dynamic culture that could reserve the nano-fibrillar structure. By adding CS in culture media to 0.25-0.75% (w/v during bacterial cultivation, the CS/BNC composite hydrogel was biosynthesized in situ on a rotating drum composed of fabrics. With the proposed method, BNC biosynthesis became less sensitive to the adverse antibacterial effects of CS and the production time of the composite hydrogel with desirable thickness could be halved from 10 days to 5 days as compared to the conventional static cultures. Although its concentration was low in the medium, CS accounted for more than 38% of the CS/BNC dry weight. FE-SEM observation confirmed conservation of the nano-fibrillar networks and covering of CS on BNC. ATR-FTIR showed a decrease in the degree of intra-molecular hydrogen bonding and water absorption capacity was improved after compositing with CS. The fabric-reinforced CS/BNC composite exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus and significantly improved mechanical properties as compared to the BNC sheets from static culture. In summary, the fabric-reinforced CS/BNC composite constitutes a desired candidate for advanced wound dressings. From another perspective, coating of BNC or CS/BNC could upgrade the conventional wound dressings made of cotton gauze to reduce pain during wound healing, especially for burn patients.

  18. Effect of fibrin-binding synthetic oligopeptide on the healing of full-thickness skin wounds in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Chung, Jae-Eun; Kim, Yun-Jeong; Park, Yoon-Jeong; Koo, Ki-Tae; Seol, Yang-Jo; Lee, Yong-Moo; Rhyu, In-Chul; Ku, Young

    2013-01-01

    The aim of this study was to investigate whether topical application of fibrin-binding oligopeptides derived from FN promotes wound healing in streptozotocin (STZ)-induced diabetic rats. Oligopeptides including fibrin-binding sequences (FF3: CFDKYTGNTYRV, FF5 : CTSRNRCNDQ) of FN repeats were synthesized. Each peptide was loaded in 15 x 15 mm fibrous alginate dressings, and the release kinetics of the peptides was evaluated using trinitrobenzene sulfonic acid for 336 hours. Two full-thickness cutaneous wounds were prepared on the dorsal skin of each 75 diabetes induced rats. Each wound was divided into FF3-loaded alginate dressing group, FF5-loaded alginate dressing group, alginate dressing group and negative control group. Animals were sacrificed at day 0,3,7 and 14. The wound closure rate, inflammation degree, expression of TGF-β1 and hydroxyproline contents were evaluated. Both FF3 and FF5 peptides were released rapidly within the first 24 hours. FF3-loaded dressing treated wounds closed significantly faster than other wounds at day 3. And at day 14, FF3- & FF5- loaded dressing treated wounds demonstrated less inflammatory cells infiltration than alginate dressing treated and negative group wounds. TGF-β1 positive cells were more abundant in FF3-, FF5-treated alginate dressing treated wound at day 3 and 14. At last, the hyrdroxyproline contents in the FF3, FF5 group were higher at day 7 and day 14. Topical application of fibrin-binding domain synthetic oligopeptides from FN resulted in acceleration of full-thickness cutaneous wound healing in diabetic rats.

  19. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu, E-mail: cylsy@163.com [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yong [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Wang, Fengju [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Meng, Weiwei; Yang, Xinlin [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Li, Peng [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianxin [State Key Laboratory of Trauma Burns and Combined Injury, The Third Military Medical University, Chongqing 400042 (China); Tan, Huimin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng, Yongfa [Guangdong Fuyang Biotechnology Co., Ltd., Heyuan, Guangdong 517000 (China)

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. - Highlights: • The novel solvent precipitation method was developed to prepare the porous superabsorbent polymer. • The swelling rate was promoted and the harmful residual monomer was leached after modification. • The modified polymer showed good biological safety. • It showed good hemostasis to arterial hemorrhage model of the animal. • The hemostatic mechanism of the modified superabsorbent polymer was discussed.

  20. Evaluation of Amniotic Membrane Effectiveness in Skin Graft Donor Site Dressing in Burn Patients.

    Science.gov (United States)

    Salehi, Seyed Hamid; As'adi, Kamran; Mousavi, Seyed Jaber; Shoar, Saeed

    2015-12-01

    Although the recipient site in burn wounds is dressed with universally accepted materials, the ideal management of split-thickness skin donor sites remains controversial. The aim of our study is to compare two methods of wound dressing in donor sites of split-thickness skin graft in patients undergoing burn wound reconstructive surgery. Forty-two consecutive patients with second- and third-degree burns with a total body surface area between 20 and 40 % were enrolled in this randomized clinical trial conducted in Motahari Burn Hospital in Tehran, Iran. In each patient, two anatomic areas with similar features were randomly selected as intervention and control donor sites. The intervention site was dressed with amniotic membrane, whereas the control site was treated with Vaseline-impregnated gauze. Wounds were examined daily by expert surgeons to measure the clinical outcomes including duration of healing, severity of pain, and infection rate. The mean ± SD age of patients was 31.17 ± 13.72 years; furthermore, burn percentage had a mean ± SD of 31.19 ± 10.56. The mean ± SD of patients' cooperation score was 1.6 ± 0.79 in the intervention group compared with 2.93 ± 0.71 in the control group, revealing a statistically significant difference (P  0.05). Amniotic membrane as an alternative for dressing of skin graft donor sites provides significant benefits by increasing patients' comfort via diminishing the number of dressing changes and facilitating the process of wound healing.

  1. A study to evaluate primary dressings for the application of cultured keratinocytes.

    Science.gov (United States)

    Price, R D; Das-Gupta, V; Frame, J D; Navsaria, H A

    2001-12-01

    Despite the recent improvements in cell culture and dermal regeneration methods, tissue engineering of skin has yet to receive widespread acceptance in the management of burn injuries. The reasons for this are complex and include not only the inherent costs of (particularly) setting up and running such a system but also the continuing difficulties in achieving successful engraftment of the neoepidermis. The latter has previously been addressed in a number of ways, including improving the recipient bed and using pre-confluent delivery systems to allow earlier application of cells to that wound bed. One area that has received little attention is that of the optimal wound dressing to use with this technology; the cells are very poorly attached at early time points, and, in this context, the traditional dressing of paraffin gauze has never been formally assessed in comparison with newer materials. Using a porcine acute wound chamber model, we performed a prospective randomised trial to assess four different wound dressings with reference to the amount of epidermal cover gained and the histological quality of the regenerated skin after 3 weeks. Out of the four materials tested, polyurethane foam (Allevyn) was superior histologically (although equal in take rate with paraffin gauze), whilst polythene sheet (Opsite) and silicone sheet were substantially inferior. We conclude that the traditional dressing used with this technology should be compared with polyurethane foam in a clinical trial. In the future, novel dressings should be formally tested against traditional methods before being adopted. Copyright 2001 The British Association of Plastic Surgeons.

  2. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing.

    Science.gov (United States)

    Mofazzal Jahromi, Mirza Ali; Sahandi Zangabad, Parham; Moosavi Basri, Seyed Masoud; Sahandi Zangabad, Keyvan; Ghamarypour, Ameneh; Aref, Amir R; Karimi, Mahdi; Hamblin, Michael R

    2018-01-01

    According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue

  3. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang; Wang Huaping

    2009-01-01

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  4. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C.; Verelst, Marc; Dexpert-Ghys, Jeannette; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2008-01-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  5. ANALYSIS OF TREATMENT OF WOUNDS IN PATIENTS WITH GRADE IIIB COMPOUND FRACTURE WITH VACUUM-ASSISTED WOUND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Ashish R. Agarwal

    2017-08-01

    Full Text Available BACKGROUND Delayed wound healing is a significant health problem, particularly in patients with compound fractures. It still remains a challenging task in orthopaedic surgery, which in addition to the pain and suffering, failure of the wound to heal, also imposes social and financial burdens. The aim of the study is to evaluate the results of vacuum-assisted wound therapy in patients with open musculoskeletal injuries. MATERIALS AND METHODS 30 patients of open musculoskeletal injuries underwent randomised trial of vacuum-assisted closure therapy versus standard wound therapy around the upper limb and lower limb. Mean patient age was 39 ± 18 years necrotic tissues were debrided before applying VAC therapy. Dressings were changed every 3 or 4 days. For standard wound therapy, debridement followed by daily dressings was done. Data Management and Statistical Analysis- The results obtained were subjected to statistical analysis. RESULTS Granulation tissue status and skin healing is better in patients undergoing VAC therapy. Hospital stay of patients undergoing VAC therapy was also less. CONCLUSION Vacuum-assisted wound therapy was better method of wound management.

  6. A Cross-sectional, Descriptive, Quality Improvement Project to Assess Undergraduate Nursing Students' Clinical Exposure to Patients With Wounds in an Introductory Nursing Course.

    Science.gov (United States)

    Pieper, Barbara; Keves-Foster, Mary Kathryn; Ashare, JoAnn; Zugcic, Mary; Albdour, Maha; Albdour, Dalia

    2016-04-01

    Because nurses frequently participate in decisions related to wound care, learning about wounds and their care during undergraduate education is critical. A cross-sectional, descriptive, quality improvement project was conducted in an introductory baccalaureate nursing course to identify: 1) the types of patients with wounds assigned to beginning students, 2) patient wound care procedures and dressings, and 3) student level of participation in wound care. Data were collected from the weekly notes recorded about students' (N = 49) patient care experiences in 3 acute care hospitals for 9 clinical days during 1 semester. Data were recorded on a paper-and-pencil form by instructors at the end of the clinical day and included type of wound, wound irrigation, dressing, technique of care, and student's participation. Descriptive statistics were used to examine the frequency and distribution of the wound characteristics and care assessed. Of the 284 patients assigned to students, 75 (26.4%) had a wound. The most common wound was a surgical incision (49, 65%) and was closed (36, 73.5%). Twenty-six (26) patients had a pressure ulcer, most commonly Stage II. The most common dressing was dry gauze (29). Damp gauze was used on 18 wounds. Wound irrigation was recorded for 24 wound protocols and performed with a bulb syringe or by pouring the solution from a container. Generally, nonsterile wound care was performed. Twenty-five (25) students performed wound care with the instructor, 16 watched the care performed by another clinician, and 10 participated with another nurse in the wound care. For 22 patients, the wound care was neither observed nor performed because either it was not time for the dressing to be changed or it was only to be changed by a medical team. From these data, it was concluded beginning nursing students had some, but limited, clinical experience with patients with wounds. Students' wound care experiences need further examination, especially across multiple

  7. Dressings as an adjunct to pressure ulcer prevention: consensus panel recommendations.

    Science.gov (United States)

    Black, Joyce; Clark, Michael; Dealey, Carol; Brindle, Christopher T; Alves, Paulo; Santamaria, Nick; Call, Evan

    2015-08-01

    The formulation of recommendations on the use of wound dressings in pressure ulcer prevention was undertaken by a group of experts in pressure ulcer prevention and treatment from Australia, Portugal, UK and USA. After review of literature, they concluded that there is adequate evidence to recommend the use of five-layer silicone bordered dressings (Mepilex Border Sacrum(®) and 3 layer Mepilex Heel(®) dressings by Mölnlycke Health Care, Gothenburg, Sweden) for pressure ulcer prevention in the sacrum, buttocks and heels in high-risk patients, those in Emergency Department (ED), intensive care unit (ICU) and operating room (OR). Literature on which this recommendation is based includes one prospective randomised control trial, three cohort studies and two case series. Recommendations for dressing use in patients at high risk for pressure injury and shear injury were also provided. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Irradiation with visible light enhances the antibacterial toxicity of silver nanoparticles produced by laser ablation

    Science.gov (United States)

    Ratti, Matthew; Naddeo, J. J.; Tan, Yuying; Griepenburg, Julianne C.; Tomko, John; Trout, Cory; O'Malley, Sean M.; Bubb, Daniel M.; Klein, Eric A.

    2016-04-01

    The rise of antibiotic-resistant bacteria is a rapidly growing global health concern. According to the Center for Disease Control, approximately 2 million illnesses and 23,000 deaths per year occur in the USA due to antibiotic resistance. In recent years, there has been a surge in the use of metal nanoparticles as coatings for orthopedic implants, wound dressings, and food packaging, due to their antimicrobial properties. In this report, we demonstrate that the antibacterial efficacy of silver nanoparticles (AgNPs) is enhanced with exposure to light from the visible spectrum. We find that the increased toxicity is due to augmented silver ion release and bacterial uptake. Interestingly, silver ion toxicity does not appear to depend on the formation of reactive oxygen species. Our findings provide a novel paradigm for using light to regulate the toxicity of AgNPs which may have a significant impact in the development of new antimicrobial therapeutics.

  9. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Science.gov (United States)

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  10. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    Directory of Open Access Journals (Sweden)

    Subhamoy Das

    2016-10-01

    Full Text Available Wound healing is an intricate process that requires complex coordination between many cells and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care; the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds including excessive inflammation, ischemia, scarring and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or currently used in clinical practice.

  11. Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface

    Science.gov (United States)

    The development of point of care diagnostic protease sensors applied to wound healing has received increased interest for chronic wound treatment and as an interface with chronic wound dressings. Biosensor technology has grown exponentially in recent years. Here we focus on nanocelluosic biosensor t...

  12. Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model.

    Science.gov (United States)

    Brackman, G; De Meyer, L; Nelis, H J; Coenye, T

    2013-06-01

    Although several factors contribute to wound healing, bacterial infections and the presence of biofilm can significantly affect healing. Despite that this clearly indicates that therapies should address biofilm in wounds, only few wound care products have been evaluated for their antibiofilm effect. For this reason, we developed a rapid quantification approach to investigate the efficacy of wound care products on wounds infected with Staphylococcus spp. An in vitro chronic wound infection model was used in which a fluorescent Staph. aureus strain was used to allow the rapid quantification of the bacterial burden after treatment. A good correlation was observed between the fluorescence signal and the bacterial counts. When evaluated in this model, several commonly used wound dressings and wound care products inhibited biofilm formation resulting in a decrease between one and seven log CFU per biofilm compared with biofilm formed in the absence of products. In contrast, most dressings only moderately affected mature biofilms. Our model allowed the rapid quantification of the bacterial burden after treatment. However, the efficacy of treatment varied between the different types of dressings and/or wound care products. Our model can be used to compare the efficacy of wound care products to inhibit biofilm formation and/or eradicate mature biofilms. In addition, the results indicate that treatment of infected wounds should be started as soon as possible and that novel products with more potent antibiofilm activity are needed. © 2013 The Society for Applied Microbiology.

  13. Effects of Aloe Vera and Chitosan Nanoparticle Thin-Film Membranes on Wound Healing in Full Thickness Infected Wounds with Methicillin Resistant Staphylococcus Aureus.

    Science.gov (United States)

    Ranjbar, Reza; Yousefi, Alireza

    2018-01-01

    To assess effect of Aleo vera with chitosan nanoparticle biofilm on wound healing in full thickness infected wounds with antibiotic resistant gram positive bacteria. Thirty rats were randomized into five groups of six rats each. Group I: Animals with uninfected wounds treated with 0.9% saline solution. Group II: Animals with infected wounds treated with saline. Group III: Animals with infected wounds were dressed with chitosan nanoparticle thin-film membranes. Group IV: Animals with infected wounds were treated topically with Aloe vera and Group V: Animals with infected wounds were treated topically with Aloe vera and dressed with chitosan nanoparticle thin-film membranes. Wound size was measured on 6, 9, 12, 15, 18 and 21days after surgery. Microbiology, reduction in wound area and hydroxyproline contents indicated that there was significant difference ( p vera with chitosan nanoparticle thin-film membranes had a reproducible wound healing potential and hereby justified its use in practice.

  14. Treatment of hardware infection after osteosynthesis of lower leg using negative pressure wound therapy and transforming powder dressing.

    Science.gov (United States)

    Marinović, Marin; Ivandcić, Aldo; Spanjol, Josip; Pina, Maja; Bakota, Bore; Bandalović, Ante; Cukeljs, Fabijan

    2014-12-01

    Fractures of the distal part of the lower leg are more common in everyday practice and traumatology. In young and active patients these injuries are mainly caused by high energy trauma. They are treated with external fixator in first step, and in second step, after sanation of the soft tissue, with open reduction and internal fixation (ORIF). It is very safe and effective method of treatment. Treatment of the infections that occur in the early postoperative period after open reduction and internal fixation represents a great problem and challenge for surgeons. It is widely accepted that the presence of deep infection can't be cured in the presence of hardware. However, removal of hardware in the presence of unhealed fractures significantly complicates sanation of infection and fracture itself We have decided to present a 35-years-old patient with a hardware infection with present chronic wound with hardware exposed eight months after the first operation and six months after second operation. The wound measured one centimeter in diameter with cell detritus and bad granulations tissue inside the wound. Hardwre was exposed in the depth of the wound.The secretion was minimal. Negative Pressure Wound Therapy (NPWT) was applicated after debridemet and lavage performed in ambulatory conditions. The starting therapy was continuously -125 mm Hg of vacuum. After five days of NPWT the defect was partially filled with granula- tion tissue. For another five days we continue with NPWT with the same values of-125 mm Hg pressure but in the inter- mitent mode. After that period we used transforming powder dressing for covering and protection of the wound with was filled with granulation tissue. Five days later, wound was completely healed with epithelisation. After four months of patient follow-up, we found the wound is completely repaired. The patient denies pain and has continued orderly flow of fracture healing, with no signs of infection.

  15. Chitosan: A potential biopolymer for wound management.

    Science.gov (United States)

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A practical offer for hypospadias dressing: Allevyn ® | Narci | African ...

    African Journals Online (AJOL)

    We use a product that is produced for healing chronic wounds and burns, Allevyn Adhesive®, as a wound dressing after hypospadias surgery and circumcision. Materials and Methods: We included 61 hypospadias and 85 circumcision cases operated in our clinic between November 2007 and August 2010, for the study.

  17. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  18. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  19. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  20. A Comparison of Healing Effects of Propolis and Silver Sulfadiazine on Full Thickness Skin Wounds in Rats

    Directory of Open Access Journals (Sweden)

    E. Moghtaday Khorasgani*, A. H. Karimi and M. R. Nazem

    2010-04-01

    Full Text Available Healing effects of propolis and silver sulfadiazine (SS on skin wounds in rats were compared using qualitative and quantitative parameters and histopathological findings. A total of 30 full thickness skin wounds were created on dorsal aspects of 10 rats; i.e., three wounds on each rat. Of these wounds, 10 each were allocated to group A (propolis, group B (SS and group C (control. The skin wounds in the rats of groups A, B and C were covered daily for 14 days with 50% propolis cream, SS skin cream and bepanthane cream (control, respectively. Postoperatively, the wound surfaces were examined macroscopically and the healing process and the rates of wound expansion, contraction and epithelialization processes were quantitatively analyzed. As a result, propolis was found in general to have a better wound healing effect than others. At the 10th day of experiment histopathologically, there was inflammatory reaction with infiltration of lymphocytes, macrophages and neutrophils and proliferation of fibroblastic loose connective tissue in dermis of rats of all groups. The severity of these changes was lower in propolis treated group compared to other two groups.

  1. Nanotoxicity in Systemic Circulation and Wound Healing.

    Science.gov (United States)

    Bakshi, Mandeep Singh

    2017-06-19

    Nanotoxicity of nanomaterials is an important issue in view of their potential applications in systemic circulation and wound healing dressing. This account specifically deals with several characteristic features of different nanomaterials which induce hemolysis and how to make them hemocompatible. The shape, size, and surface functionalities of naked metallic as well as nonmetallic nanoparticles surfaces are responsible for the hemolysis. An appropriate coating of biocompatible molecules dramatically reduces hemolysis and promotes their ability as safe drug delivery vehicles. The use of coated nanomaterials in wound healing dressing opens several new strategies for rapid wound healing processes. Properly designed nanomaterials should be selected to minimize the nanotoxicity in the wound healing process. Future directions need new synthetic methods for engineered nanomaterials for their best use in nanomedicine and nanobiotechnology.

  2. Leptospermum Honey for Wound Care in an Extremely Premature Infant.

    Science.gov (United States)

    Esser, Media

    2017-02-01

    Neonatal wound care is challenging due to the fragility and vulnerable skin structure. Neonates are often left susceptible to the forces of their environment, leaving them open to infection when skin injury occurs. Leptospermum honey has been used successfully in adult patients, with evidence lacking in the neonatal population. This case demonstrates the management of a difficult-to-heal wound in a 23-week gestation infant. Selecting the proper treatment and products for wound healing is challenging, with little evidence-based research available for the treatment of neonatal wounds. Leptospermum honey and other adult-driven dressings have been used for neonatal wound care as well as other adult-driven dressings. This case demonstrates the benefits of Leptospermum honey as an option for neonatal wounds. This case presents the treatment and healing of an extensive wound of a 23-week gestation neonate using a hydrogel product initially and then transitioning to a Leptospermum honey dressing due to suboptimal healing. Results of this treatment included quick healing time, little to no scarring, and no loss of movement or function to the affected extremities. The incorporation of Leptospermum honey for wound care has the potential to promote faster wound healing, with less scarring in the neonatal population. Adult wound care principles have been applied in the face of a weak evidence base relating to neonatal-specific cases. There is a need for continued research related to moist wound healing in the neonatal population, with resulting product and practice recommendations.

  3. Effectiveness of bridge V.A.C. dressings in the treatment of diabetic foot ulcers

    OpenAIRE

    Nather, Aziz; Hong, Ng Yau; Lin, Wong Keng; Sakharam, Joshi Abhijit

    2011-01-01

    Objectives: This is a prospective study of the clinical efficacy of the V.A.C. Granufoam Bridge Dressing for the treatment of diabetic foot ulcers. Materials and methods: Five consecutive patients with diabetic foot ulcers were treated with V.A.C. Granufoam Bridge Dressings and studied over a period of 22-48 days. The indications for treatment included diabetic patients with open ray amputation wounds and wounds post-drainage for abscess with exposed deep structures. Clinical outcome was meas...

  4. Development of Technology for Enrichment of Silver Containing Ores

    Science.gov (United States)

    Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka

    2016-10-01

    The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the rep