WorldWideScience

Sample records for silver nitrate solution

  1. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution... intended to be filtered through a silver-containing water filter. (g) Bottled water must meet the quality...

  2. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  3. Revitalising Silver Nitrate for Caries Management

    Directory of Open Access Journals (Sweden)

    Sherry Shiqian Gao

    2018-01-01

    Full Text Available Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs.

  4. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  5. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    Science.gov (United States)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  6. Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate

    International Nuclear Information System (INIS)

    Hirakawa, Keiko

    1983-01-01

    Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because o f abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972 -- 73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. (author)

  7. Antimicrobial Effectiveness of Cellulose based Fabrics treated with Silver Nitrate Solution using Plasma Processes

    Directory of Open Access Journals (Sweden)

    Jelena Peran

    2017-12-01

    Full Text Available In order to obtain antibacterial properties, the possibility of deposition of silver particles from silver nitrate (AgNO3 solutions by plasma deposition process using argon as a carrier gas (PDP-Ar was explored. Hexamethyldisiloxane and acrylic acid were used as precursors and were deposited by plasma enhanced-chemical vapor deposition (PE-CVD. The processes were carried out on lyocell and modal fbrics and antimicrobial efficacy was determined on E. coli and S. aureus using time kill assay method. The results of minimal inhibitory concentration (MIC show that higher antimicrobial efficacy on E. coli is exhibited by the solution of (AgNO3 in ethylene-glycol (0.066 μg/ml rather than in absolute ethanol (0.265 μg/ml. For S. aureus, minimal inhibitory concentrations of AgNO3 solutions in both absolute ethanol and ethylene-glycol as solvents are obtained at the same value (0.132 μg/ml. Overall, the best antibacterial eff ect for both modal and lyocell samples has been achieved against E. coli using treatments with precursors (AAC and HMDSO and Ag-NO3 in ethylene-glycol as solvent, with prolonged incubation time.

  8. The Synthesis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution

    International Nuclear Information System (INIS)

    Sri Budi Harmani; Dewi Sondari; Agus Haryono

    2008-01-01

    Described in this research are the synthesis of silver nanoparticle produced by chemical reduction of silver salt (silver nitrate AgNO 3 ) solution. As a reducer, sodium citrate (C 6 H 5 O 7 Na 3 ) was used. Preparation of silver colloid is done by using chemical reduction method. In typical experiment 150 ml of 1.10 -3 M AgNO 3 solution was heated with temperature variation such as 90, 100, 110 degree of Celsius. To this solution 15 ml of 1 % trisodium citrate was added into solution drop by drop during heating. During the process, solution was mixed vigorously. Solution was heated until colour's change is evident (pale yellow solution is formed). Then it was removed from the heating element and stirred until cooled to room temperature. Experimental result showed that diameter of silver nanoparticles in colloid solution is about 28.3 nm (Ag colloid, 90 o C); 19.9 nm (Ag colloid, 100 o C)and 26.4 nm (Ag colloid, 110 o C). Characterization of the silver nanoparticle colloid conducted by using UV-Vis Spectroscopy, Particles Size Analyzer (PSA) and Scanning Electron Microscope (SEM) indicate the produced structures of silver nanoparticles. (author)

  9. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  10. The direct effect in the gamma radiolysis of frozen aqueous solutions of nitrates

    International Nuclear Information System (INIS)

    Kalecinski, J.

    1974-01-01

    The gamma radiolysis of frozen at 77 and 195 K solutions of lithium, sodium, potassium, magnesium, strontium and silver nitrates was examined. The yields of the direct effect G(NO 2 - ) were shown to depend on the type of the nitrate and to correlate with the free volumes of the solutions. (author)

  11. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  12. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  14. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2016-01-01

    Silver nitrate hexamethylenetetramine [Ag(NO 3 )·N 4 (CH 2 ) 6 ] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H 2 O 2 electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO 3 )·N 4 (CH 2 ) 6 ] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  15. Effect of the application of silver nitrate on antioxidant status in watermelon plants

    International Nuclear Information System (INIS)

    Fuente, M.C.D.L.; Rangel, A.S.

    2014-01-01

    In this experiment we studied the absorption of silver by watermelon plants of the variety Jubilee, as well as the effect on the lycopene content and antioxidant status. The treatments were based on a silver nitrate solution of different concentrations: 0, 30, 60, 90 and 200 mg L-1, applied at intervals of 8 days throughout the crop cycle. The determination of silver content was performed by atomic emission spectroscopy (AES), whereas the detection of the silver particles inside plant tissues was carried out by means of scanning electron microscopy (SEM). By analyzing the data obtained in the experiment, a statistically significant difference was detected between treatments and between different plant organs. There was a greater accumulation of silver in the roots of plants and the content was positively related to the rate of application of AgNO/sub 3/. The antioxidant status analyzed in the fruits increased three times in the plants exposed to 30 mg L-1 AgNO/sub 3/ concentration. Meanwhile, lycopene content decreased with increased concentration of silver in solution and showed the highest content with 30 mg L-1 AgNO/sub 3/. (author)

  16. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  17. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate.

    Science.gov (United States)

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2015-09-10

    We report the use of silver (Ag)-modified carbon and Ag ultramicroelectrodes (UMEs) for electrochemical detection of nitrate. We investigated several methods for electrodeposition of Ag; our results show that the addition of a complexation agent (ammonium sulfate) in the Ag deposition solution is necessary for electrodeposition of nanostructured Ag that adheres well to the electrode. The electrodeposited Ag on both types of electrodes has branch-like structures that are well-suited for electrocatalytic reduction of nitrate. The use of UMEs is advantageous; the sigmoidal-shaped cyclic voltammogram allows for sensitive detection of nitrate by reducing the capacitive current, as well as enabling easy quantification of the nitrate reduction current. Both cyclic voltammetry and chronoamperometry were used to characterize the electrodes; and independent of the electrochemical interrogation technique, both UMEs were found to have a wide linear dynamic range (4-1000 μM) and a low limit of detection (3.2-5.1 μM). More importantly, they are reusable up to ∼100 interrogation cycles and are selective enough to be used for direct detection of nitrate in a synthetic aquifer sample without any sample pretreatment and/or pH adjustment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate

    International Nuclear Information System (INIS)

    Brillant, S.

    1968-01-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [fr

  19. Measurement of Nitrate Concentration in Aqueous Media Using an Electrochemical Nanosensor Based on Silver Nanoparticles-Nanocellulose/Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Majid Shadfar

    2017-11-01

    Full Text Available Nitrate pollution is at the forefront of groundwater contamination which poses serious environmental and public health hazards.  Nitrate is usually released in solution from agricultural activities and finds its way into groundwater resources. The objective of the present study was to determine, accurately concentrations of nitrate ions in water samples from the environment using sensitive electrochemical methods. For this purpose, a modified glassy carbon electrode modified with a nanocomposite consisting of silver nanoparticles, nanocellulose, and graphene oxide (Ag/NC/GO-GCE was used. The characterization of the nanocomposite was investigated using scanning electron microscope (SEM, X-Ray diffraction (XRD, and electrochemical impedance spectroscopy (EIS. The modified Ag/NC/GO-GCE electrode was used as nanosensor for the electrocatalytic determination of nitrate using the voltammetric method. The effects of the parameters of scan rate, pH, and different nitrate concentrations were studied and the optimum conditions were obtained. A limit of detection of 0.016 µM (S/N=3 was found in the linear range of 0.005 to 10 mM nitrate. The Ag/NC/GO-GCE electrode exhibited a synergistic effect toward voltammetric determination of nitrate in the presence of graphene oxide, nanocellulose, and silver nanocatalyst. The nanosensor developed here showed excellent sensitivity, selectivity, and stability toward nitrate determination in aqueous solutions without any significant interference.

  20. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  1. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    Science.gov (United States)

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Treatment with silver nitrate versus topical steroid treatment for umbilical granuloma: A non-inferiority randomized control trial.

    Directory of Open Access Journals (Sweden)

    Chikako Ogawa

    Full Text Available The aim of this prospective multicenter randomized controlled trial was to compare the efficacy of silver nitrate cauterization against that of topical steroid ointment in the treatment of neonatal umbilical granuloma.An open-label, non-inferiority randomized controlled trial was conducted from January 2013 to January 2016. The primary endpoint for the silver nitrate cauterization and topical steroid ointment groups was the healing rate after 2 weeks of treatment, applying a non-inferiority margin of 10%. The healing rate was evaluated until completion of 3 weeks of treatment.Participants comprised 207 neonates with newly diagnosed umbilical granuloma, randomized to receive silver nitrate cauterization (n = 104 or topical steroid ointment (n = 103. Healing rates after 2 weeks of treatment were 87.5% (91/104 in the silver nitrate cauterization and 82% (82/100 in the topical steroid ointment group group. The difference between groups was -5.5% (95% confidence interval, -19.1%, 8.4%, indicating that the non-inferiority criterion was not met. After 3 weeks of treatment, the healing rate with topical steroid ointment treatment was almost identical to that of silver nitrate cauterization (94/104 [90.4%] vs. 91/100 [91.0%]; 0.6% [-13.2 to 14.3]. No major complications occurred in either group.This study did not establish non-inferiority of topical steroid ointment treatment relative to silver nitrate cauterization, presumably due to lower healing rates than expected leading to an underpowered trial. However, considering that silver nitrate cauterization carries a distinct risk of chemical burns and that the overall efficacy of topical steroid ointment treatment is similar to that of silver nitrate cauterization, topical steroid ointment might be considered as a good alternative in the treatment of neonatal umbilical granuloma due to its safety and simplicity. To clarify non-inferiority, a larger study is needed.

  3. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions

    NARCIS (Netherlands)

    Dima, G.E.; Vooys, de A.C.A.; Koper, M.T.M.

    2003-01-01

    A comparative study was performed to determine the reactivity of nitrate ions at 0.1 M on eight different polycrystalline electrodes (platinum, palladium, rhodium, ruthenium, iridium, copper, silver and gold) in acidic solution using cyclic voltammetry (CV), chronoamperometry and differential

  4. Low temperature fabrication of conductive silver lines and dots via transfer-printing and nanoimprinting lithography techniques

    International Nuclear Information System (INIS)

    Wu, Chun-Chang; Hsu, Steve Lien-Chung; Chiu, Ching-Wei; Wu, Jung-Tang

    2013-01-01

    In this work, we have developed novel methods to fabricate conductive silver tracks and dots directly from silver nitrate solution by transfer-printing and nanoimprinting lithography techniques, which are inexpensive and can be scaled down to the nanometer scale. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. Energy dispersive spectrometric analysis results indicate that the silver nitrate has been converted to silver completely. In order to obtain smooth and continuous conductive patterned silver features with high resolution, the silver lines with widths of a few tens of micrometers to nanometers were patterned by using a spin-coating approach. Using a 14 M silver nitrate solution, continuous silver conductive lines with a resistivity of 8.45 × 10 −5 Ω cm has been produced. (paper)

  5. Antibacterial Effect of Silver Diamine Fluoride on Cariogenic Organisms.

    Science.gov (United States)

    Lou, Yali; Darvell, Brain W; Botelho, Michael G

    2018-05-01

    To screen the possible antimicrobial activity of a range of clinically used, silver-based compounds on cariogenic organisms: silver diamine fluoride (SDF), silver fluoride, and silver nitrate. Preliminary screening disk-diffusion susceptibility tests were conducted on Mueller-Hinton agar plates inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces naeslundii, organisms known to be cariogenic. In order to identify which component of the silver compounds was responsible for any antibacterial (AB) effect, and to provide controls, the following were also investigated at high and low concentrations: sodium fluoride, ammonium fluoride, ammonium chloride, sodium fluoride, sodium chloride, and sodium nitrate, as well as deionized water as control. A volume of 10 pL of a test solution was dispensed onto a paper disk resting on the inoculated agar surface, and the plate incubated anaerobically at 37°C for 48 hours. The zones of inhibition were then measured. Silver diamine fluoride, silver fluoride, silver nitrate, and ammonium fluoride had significant AB effect (p effect at low concentration; the remaining other compounds had no effect. Silver ions appear to be the principal AB agent at both high and low concentration; fluoride ions only have an AB effect at high concentration, while ammonium, nitrate, chloride and sodium ions have none. The anticaries effect of topical silver solutions appears restricted to that of the silver ions. Silver compounds, such as SDF, silver fluoride, and silver nitrate have AB effect against cariogenic organisms and these may have clinical impact in arresting or preventing dental decay. Sodium fluoride did not have AB effect under the conditions tested.

  6. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  7. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    Science.gov (United States)

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  8. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate; Densite et conductibilite de sels fondus. Etude comparative des melanges binaires nitrates alcalins-nitrate d'argent et nitrates alcalins-nitrate de thallium

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, S [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [French] Le choix des methodes et le nombre de mesures effectuees nous permettent de donner les resultats de densite et de conductibilite electrique des melanges fondus binaires nitrate alcalin-nitrate d'argent et nitrate alcalin-nitrate de thallium sous forme d'equations. Les ecarts a la linearite des isothermes de volume et de conductibilite molaire sont precises en calculant les grandeurs d'exces correspondantes dont les variations sont analysees en fonction du parametre de Tobolsky. Nous justifions l'absence de relation de signe entre l'entropie et le volume d'exces. Nous montrons que les nitrates d'argent et de thallium, vis-a-vis de la conductibilite d'exces, contrairement aux proprietes thermodynamiques, se conduisent comme les nitrates alcalins. Ce resultat est confirme par l'etude des variations des enthalpies d'activation de conductibilite partielle molaire qui met d'autre part en evidence le comportement particulier du nitrate de lithium. (auteur)

  9. The effect of silver nitrate, chloroformic garlic extract and normal saline in induction of sclerosing cholangitis in rabbits

    International Nuclear Information System (INIS)

    Hosseni, Seyed V.; Mohebzadeh, J.; Mehrabani, D.; Amini, M.; Kumar, Perikala V.; Bagheri, Mohammad H.; Sadjjadi, Seyed M.; Amini, A.

    2008-01-01

    Objective was to the effects of 0.5% silver nitrate, 20% chloroformic garlic extract and 0.9% normal saline in induction of sclerosing cholangitis in the bile ducts of rabbits. During a 6-months period from April to September 2006 in Shiraz University Laboratory Animal Research Center, we selected 3 equal groups of rabbits. We injected 0.5% silver nitrate, 20% chloroformic garlic extract and 0.9% normal saline into the bile ducts of each group. The animals were euthanized and autopsied after 4 months and the liver and bile ducts were removed and studied histopathologically. Cholangiography was undertaken to evaluate the presence and extent of any sclerosing cholangitis. Animals showed sclerosing cholangitis in silver nitrate group (7 [58%]), one (8%) in chloroformic garlic extract group and one (7%) in normal saline group. The difference between silver nitrate and chloroformic garlic extract groups were statistically significant and similar results were noticed between chloroformic garlic extract and normal saline groups. Twenty percent of chloroformic garlic extract had fewer complications such as sclerosing cholangitis, compared to other materials. (author)

  10. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  11. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  12. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.; Moisy, P.

    2012-01-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with circle NO 2 radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during γ-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  13. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  14. A multinuclear solid-state magnetic resonance study of silver nitrate triphenylphosphine

    International Nuclear Information System (INIS)

    Oh, S.-W.; Bernard, G.M.; Wasylishen, R.E.; McDonald, R.; Ferguson, M.J.

    2005-01-01

    Variable-temperature solid-state 31 P, 15 N, and 2 H NMR spectroscopy, X-ray diffraction, and differential scanning calorimetry studies of the 1:1 adduct of silver nitrate and triphenylphosphine (AgNO 3 ·PPh 3 ) reveal a solid-solid phase transition at 300 K. The principal components of the phosphorus and nitrogen chemical shift tensors for both phases are determined from NMR spectra of MAS and stationary samples. In addition, the indirect spin-spin coupling between phosphorus and the naturally occurring isotopes of silver ( 107 Ag and 109 Ag) are resolved. Experimental 2 H NMR line shapes for silver nitrate perdeuterated triphenylphosphine are those characteristic of rigid phenyl groups at temperatures above and below the phase-transition temperature. Powder and single-crystal X-ray diffraction data for AgNO 3 ·PPh 3 obtained at 193, 295, and 313 K are reported; data obtained at 193 and 295 K are almost identical, but are significantly different from those obtained at 313 K and from an earlier single-crystal X-ray diffraction investigation performed at 298 K. All X-ray studies found that AgNO 3 ·PPh 3 crystallizes in the monoclinic form, space group P2 1 lc. (author)

  15. Effects of ethylene inhibitors, silver nitrate (AgNO3), cobalt chloride ...

    African Journals Online (AJOL)

    Significant increase in shoot regeneration, leaf chlorophyll content and rooting occurred when silver nitrate (AgNO3), cobalt chloride (CoCl2) or aminooxyacetic acid (AOA) were added to banana culture medium. The highest numbers of shoots per explants shoot length and leaf surface area was obtained when media were ...

  16. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    Science.gov (United States)

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) were<95.0% and within-day and between-day coefficients of variations were 0.556% and 1.63% respectively. The method showed good correlation (R(2)=0.998) with the popular Griess reaction method. Epoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Silver Nitrate and Different Culture Vessels Influence High Frequency Microrhizome Induction In Vitro and Enhancement Growth of Turmeric Plantlet During Ex Vitro Acclimatization

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2012-11-01

    Full Text Available Eleven cultivars of C. longa var. Lakadong were collected from Manipur having different topography. Curcumin content in different cultivars has been analyzed by using UV-Visible Spectrophotometer (100 Bio-Carry Spectrophotometer. The curcuminoids content were analyzed and quantified for identification of best quality cultivar. Thoubal Cultivar with highest curcumin content (9.44% was subjected for tissue culture technique using different culture vessels and silver nitrate for rapid multiplication and scaling up of microrhizome production. High multiplication rate of 27.40�0.47 were obtained in Murashige and Skoog�s medium supplemented with 3% sucrose + 1 mg L-1 ?-napthalene acetic acid, 4 mg L-1 6-benzyl-amino-purine and 11 ?M silver nitrate. Effect of different culture vessels and silver nitrate were studied for microrhizome and multiple shoots formation. Relatively higher rate of shoots along with microrhizome (17.5�0.32 can be seen in Growtek which was grown without any plant growth regulator. Growtek was used for scaling up of microrhizome production in vitro and utmost microrhizome was produced in liquid Murashige and Skoog�s medium supplemented with 8% sucrose, 1 mg L-1 ?-napthalene acetic acid, 4 mg L-1 6-benzyl-amino-purine and 11 ?M silver nitrate (36.25�0.27. Addition of silver nitrate in the medium resulted in improvement of microrhizome induction in vitro. Higher concentration of silver nitrate (33, 44, 66, 88 ?M negatively affected the microrhizome and shoot multiplication and shows inhibition of tissue response completely. Analysis of in vitro derived plantlets during acclimatization shows that the exogenous applied of silver nitrate shows superior growth as compared to control. 90-95% of plantlets with and 75-80% plantlets without silver nitrate treatment were successfully established under ex vitro acclimatization. The protocol could be utilized for large scale production of true-to-type plantlets and as alternative

  18. Silver Nitrate and Different Culture Vessels Influence High Frequency Microrhizome Induction In Vitro and Enhancement Growth of Turmeric Plantlet During Ex Vitro Acclimatization

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2012-11-01

    Full Text Available Eleven cultivars of C. longa var. Lakadong were collected from Manipur having different topography. Curcumin content in different cultivars has been analyzed by using UV-Visible Spectrophotometer (100 Bio-Carry Spectrophotometer. The curcuminoids content were analyzed and quantified for identification of best quality cultivar. Thoubal Cultivar with highest curcumin content (9.44% was subjected for tissue culture technique using different culture vessels and silver nitrate for rapid multiplication and scaling up of microrhizome production. High multiplication rate of 27.400.47 were obtained in Murashige and Skoogs medium supplemented with 3% sucrose + 1 mg L-1 ?-napthalene acetic acid, 4 mg L-1 6-benzyl-amino-purine and 11 ?M silver nitrate. Effect of different culture vessels and silver nitrate were studied for microrhizome and multiple shoots formation. Relatively higher rate of shoots along with microrhizome (17.50.32 can be seen in Growtek which was grown without any plant growth regulator. Growtek was used for scaling up of microrhizome production in vitro and utmost microrhizome was produced in liquid Murashige and Skoogs medium supplemented with 8% sucrose, 1 mg L-1 ?-napthalene acetic acid, 4 mg L-1 6-benzyl-amino-purine and 11 ?M silver nitrate (36.250.27. Addition of silver nitrate in the medium resulted in improvement of microrhizome induction in vitro. Higher concentration of silver nitrate (33, 44, 66, 88 ?M negatively affected the microrhizome and shoot multiplication and shows inhibition of tissue response completely. Analysis of in vitro derived plantlets during acclimatization shows that the exogenous applied of silver nitrate shows superior growth as compared to control. 90-95% of plantlets with and 75-80% plantlets without silver nitrate treatment were successfully established under ex vitro acclimatization. The protocol could be utilized for large scale production of true-to-type plantlets and as alternative method to step

  19. A multinuclear solid-state magnetic resonance study of silver nitrate triphenylphosphine

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.-W.; Bernard, G.M.; Wasylishen, R.E. [Univ. of Alberta, Dept. of Chemistry, Gunning/Lemieux Chemistry Centre, Edmonton, Alberta (Canada)]. E-mail: roderick.wasylishen@ualberta.ca; McDonald, R.; Ferguson, M.J. [Univ. of Alberta, Dept. of Chemistry, X-Ray Crystallography Lab., Edmonton, Alberta (Canada)

    2005-10-15

    Variable-temperature solid-state {sup 31}P, {sup 15}N, and {sup 2}H NMR spectroscopy, X-ray diffraction, and differential scanning calorimetry studies of the 1:1 adduct of silver nitrate and triphenylphosphine (AgNO{sub 3}{center_dot}PPh{sub 3}) reveal a solid-solid phase transition at 300 K. The principal components of the phosphorus and nitrogen chemical shift tensors for both phases are determined from NMR spectra of MAS and stationary samples. In addition, the indirect spin-spin coupling between phosphorus and the naturally occurring isotopes of silver ({sup 107}Ag and {sup 109}Ag) are resolved. Experimental {sup 2}H NMR line shapes for silver nitrate perdeuterated triphenylphosphine are those characteristic of rigid phenyl groups at temperatures above and below the phase-transition temperature. Powder and single-crystal X-ray diffraction data for AgNO{sub 3}{center_dot}PPh{sub 3} obtained at 193, 295, and 313 K are reported; data obtained at 193 and 295 K are almost identical, but are significantly different from those obtained at 313 K and from an earlier single-crystal X-ray diffraction investigation performed at 298 K. All X-ray studies found that AgNO{sub 3}{center_dot}PPh{sub 3} crystallizes in the monoclinic form, space group P2{sub 1}lc. (author)

  20. The silver(I nitrate complex of the ligand N-(pyridin-2-ylmethylpyrazine-2-carboxamide: a metal–organic framework (MOF structure

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-04-01

    Full Text Available The reaction of silver(I nitrate with the mono-substituted pyrazine carboxamide ligand, N-(pyridin-2-ylmethylpyrazine-2-carboxamide (L, led to the formation of the title compound with a metal–organic framework (MOF structure, [Ag(C11H10N4O(NO3]n, poly[μ-nitrato-[μ-N-(pyridin-2-ylmethyl-κNpyrazine-2-carboxamide-κN4]silver(I]. The silver(I atom is coordinated by a pyrazine N atom, a pyridine N atom, and two O atoms of two symmetry-related nitrate anions. It has a fourfold N2O2 coordination sphere, which can be described as distorted trigonal–pyramidal. The ligands are bridged by the silver atoms forming –Ag–L–Ag–L– zigzag chains along the a-axis direction. The chains are arranged in pairs related by a twofold screw axis. They are linked via the nitrate anions, which bridge the silver(I atoms in a μ2 fashion, forming the MOF structure. Within the framework there are N—H...O and C—H...O hydrogen bonds present.

  1. A comparative study of propranolol versus silver nitrate cautery in the treatment of recurrent primary epistaxis in children

    Science.gov (United States)

    Ahmed, Ahmed E; Abo El-Magd, Essam A; Hasan, Gamal M; El-Asheer, Osama M

    2015-01-01

    Background Epistaxis is a common medical problem in pediatric population. Although in most cases it is mild and self-limiting, a proportion of childhood epistaxis is massive, recurrent, or resistant to conventional management. Objective To compare effectiveness of propranolol as a treatment option for childhood epistaxis versus conventional silver nitrate cautery. Study design and methodology This is a prospective interventional comparative study that was carried out during a period of 1 year (January 1, 2013 to December 31, 2013) at Qena University Hospital and Assiut University Children’s Hospital. One hundred children aged 6–12 years who presented with epistaxis to Qena University Hospital and Assiut University Children’s Hospital during the study period and fulfilling the inclusion criteria were included in the study. They were randomly assigned into one of two interventional groups, where 50 children were treated with oral propranolol (propranolol treatment group) and another 50 children were treated with conventional silver nitrate cautery (cauterization treatment group) for their epistaxis. Propranolol was given at a dose of 1.5–2 mg/kg/day (divided into three doses). Patients were followed for 6 months after their discharge for recurrence of epistaxis. Results Both groups of patients showed minimal recurrent epistaxis with rates of 14% for propranolol treated group and 12% for cauterization group, with no statistically significant difference between both groups. Local pain was found to be more in patients treated with silver nitrate cauterization. Conclusion Treatment of primary epistaxis with propranolol or silver nitrate cautery showed equal rates of recurrence, and local nasal pain was slightly more among silver nitrate cauterization treated group. Propranolol could be a favorable treatment option for patients with primary epistaxis. Further studies that include multiple centers and larger number of patients are recommended for more clarification

  2. Effectiveness of Cerium Nitrate-Silver Sulfadiazine in the Treatment of Facial Burns: A Multicenter, Randomized, Controlled Trial

    NARCIS (Netherlands)

    Oen, I.M.M.H.; van Baar, M.E.; Middelkoop, E.; Nieuwenhuis, M.K.

    2012-01-01

    Background: The face is a very frequent site of burn injuries. This multicenter, randomized, controlled trial thus investigates the effectiveness of cerium nitrate-silver sulfadiazine in the treatment of facial burns compared with silver sulfadiazine. Methods: Adult patients with acute facial burns

  3. [Effects of silver nitrate on the phase state of model multibilayer membranes].

    Science.gov (United States)

    Vashchenko, O V; Iermak, Yu L; Krasnikova, A O; Lisetski, L N

    2015-01-01

    In order to study the effects caused by silver nitrate (AgNO3) on model lipid membranes, we studied multibilayer membranes based on L-α-dipalmitoylphosphatidylcholine (DPPC) and AgNO3 aqueous soluitions in a wide concentration range (up to 30 wt%) by means of differential scanning calorimetry. It has been shown that the presence of AgNO3 leads both to an increase in the main phase transition temperature (T(m)) and appearance of an additional phase transition peak (T(m)), suggesting increasing of both density and heterogeneity of the lipid membrane. The effect of nitrate ions (NO ) was shown to be of the opposite nature (bilayer fluidizing), so the integral densifying effect of AgNO3 can be referred solely to the action of silver ions (Ag(+)). With increasing AgNO3 concentration, the tendency was observed to opposite changes in T(m) and T'(m) peaks intensity, thereby at about 26. wt% of AgNO3 the initial peak (T(m)) disappeared. In the range of Ag+ therapeutic concentrations (up to 2 wt%) no significant changes in the DPPC membrane were revealed. This can be one of the reasons of the absence of a damaging effect of silver drugs on a host organism with simultaneous pronounced bactericidal effect.

  4. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  5. 75 FR 28488 - Silver Nitrate; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-05-21

    ... ( regulations.gov ) under the docket number EPA-HQ-OPP- 2009-0663. Silver nitrate is a water soluble inorganic... polymers and fatty acids; carriers such as clay and diatomaceous earth; thickeners such as carrageenan and... for which there is reliable information.'' This includes exposure through drinking water and in...

  6. Novel method for synthesis of silver nanoparticles and their application on wool

    Energy Technology Data Exchange (ETDEWEB)

    Boroumand, Majid Nasiri [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Montazer, Majid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Dresden (Germany); Liesiene, Jolanta [Faculty of Chemical Technology, Kaunas University of Technology, Kaunas (Lithuania); Šaponjic, Zoran [Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade (Serbia); Dutschk, Victoria, E-mail: v.dutschk@utwente.nl [Faculty of Engineering Technology, University of Twente, Enschede (Netherlands)

    2015-08-15

    Graphical abstract: Tentative mechanism for reduction of Ag{sup +} by polyphenols having two hydroxy groups in ortho-position – the use of silver nanoparticles and an aqueous solution of extracted dye from Pomegranate peel as a reducing agent for synthesis silver nanoparticles from silver nitrate. - Highlights: • A new method for the synthesis of silver nanoparticles suitable to impart antibacterial properties of wool fabric proposed. • Silver nanopartilces were synthesized by a biochemical reduction method. • An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for synthesis of silver nanoparticles from silver nitrate. - Abstract: In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (R{sub Dye}/{sub Ag} = [Dye]/[AgNO{sub 3}]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying

  7. Novel method for synthesis of silver nanoparticles and their application on wool

    International Nuclear Information System (INIS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-01-01

    Graphical abstract: Tentative mechanism for reduction of Ag + by polyphenols having two hydroxy groups in ortho-position – the use of silver nanoparticles and an aqueous solution of extracted dye from Pomegranate peel as a reducing agent for synthesis silver nanoparticles from silver nitrate. - Highlights: • A new method for the synthesis of silver nanoparticles suitable to impart antibacterial properties of wool fabric proposed. • Silver nanopartilces were synthesized by a biochemical reduction method. • An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for synthesis of silver nanoparticles from silver nitrate. - Abstract: In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (R Dye / Ag = [Dye]/[AgNO 3 ]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy

  8. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    Science.gov (United States)

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  9. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    Science.gov (United States)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the

  10. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  11. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  12. Solution Processed Silver Nanoparticles in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Marko Berginc

    2014-01-01

    Full Text Available A plasmonic effect of silver nanoparticles (Ag NPs in dye-sensitized solar cells (DSSCs is studied. The solutions of silver nitrate in isopropanol, ethylene glycol, or in TiO2 sol were examined as possible precursors for Ag NPs formation. The solutions were dip-coated on the top of the porous TiO2 layer. The results of optical measurements confirmed the formation of Ag NPs throughout the porous TiO2 layer after the heat treatment of the layers above 100°C. Heat treatment at 220°C was found to be optimal regarding the formation of the Ag NPs. The porous TiO2 layers with Ag NPs have been evaluated also in DSSC by measuring current-voltage characteristics and the external quantum efficiency of the cells. In addition, the amount of adsorbed dye has been determined to prove the plasmonic effect in the cells. The I-V characterization of the DSSCs revealed an increase of the short circuit current in the presence of Ag NPs although the amount of the attached dye molecules decreased. These results confirm that the performance enhancement is related to the plasmonic effect. However, neither a thin sol-gel TiO2 layer nor poly(4-vinylpyridine shells provide effective protection for the long term stability of the Ag NPs against the corrosion of I3-/I- based electrolyte.

  13. Relaxation of the silver/silver iodide electrode in aqueous solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI

  14. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  15. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver

    NARCIS (Netherlands)

    Klasen, HJ

    In 1965, Moyer revived interest in silver nitrate solution. He concluded on the basis on in vitro and in vivo studies that a 0.5% solution represented the lowest concentration at which antibacterial action (against Staphylococcus aureus, haemolytic streptococci and generally against Pseudomonas

  16. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  17. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  18. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  19. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  20. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  1. Generation of Hybrid Peptide-Silver Nanoparticles for Antibacterial and Antifouling Applications

    KAUST Repository

    Seferji, Kholoud

    2018-01-01

    and antifouling agents. Our innovative antibacterial agents are hybrid peptide silver nanoparticles (CH-01-AgNPs) that are created de novo and in situ from a silver nitrate solution (AgNO3) in the presence of ultrashort self-assembling peptides compounds

  2. Biosynthesis of Silver and Gold Crystals Using Grapefruit Extract

    OpenAIRE

    Chen Long; Wang Jianli; Wang Hongfeng; Qi Zhaopeng; Zheng Yuchuan; Wang Junbo; Pan Le; Chang Guanru; Yang Yongmei

    2016-01-01

    In this paper, biological synthesis of silver and gold crystals using grapefruit extract is reported. On treatment of aqueous solutions of silver nitrate and chloroauric acid with grapefruit extract, the formation of stable silver and gold particles at high concentrations is observed to occur. The silver particles formed are quasi-spherical or irregular with sizes ranging from several hundred nanometers to several microns. The gold quasi-spheres with holes on surfaces and with diameters rangi...

  3. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  4. Colloidal silver solutions with antimicrobial properties

    International Nuclear Information System (INIS)

    Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C.

    2008-01-01

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties

  5. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  6. Complexes of pentavalent plutonium in lithium nitrate solutions

    International Nuclear Information System (INIS)

    Mekhail, F.M.; Zaki, M.R.

    1977-01-01

    Pu 0 2 ion can form nitrate complexes in concentrated solution of lithium nitrate of PH 3.5. Spectrophotometric and ion exchange studies revealed the existence of two complexes, presumably the mono-and the dinitro. The rate of adsorption of the dinitrato complex, formed in 4 to 6 M-lithium nitrate solutions, on De-Acidite FF has been investigated and suggested to be diffusion controlled. The adsorption isotherm found to obey satisfactorily Freundlich equation

  7. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    International Nuclear Information System (INIS)

    Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling

    2015-01-01

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag + ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO 3 ) against five different bacterial species; Aeromonas hydrophila (A. hydrophila), Pseudomonas putida (Ps. putida), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO 3 . The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO 3

  8. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Mosselhy, Dina A. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China); El-Aziz, Mohamed Abd; Hanna, Magdy [Cairo University, Department of Fish Diseases and Management, Faculty of Veterinary Medicine (Egypt); Ahmed, Mohamed A. [Cairo University, Material Science Laboratory (1), Physics Department, Faculty of Science (Egypt); Husien, Mona M. [Animal Health Research Institute, Microbiological Unit, Fish Diseases Department (Egypt); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China)

    2015-12-15

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag{sup +} ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO{sub 3}) against five different bacterial species; Aeromonas hydrophila (A. hydrophila), Pseudomonas putida (Ps. putida), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO{sub 3}. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO{sub 3}.

  9. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    Science.gov (United States)

    Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling

    2015-12-01

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag+ ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO3) against five different bacterial species; Aeromonas hydrophila ( A. hydrophila), Pseudomonas putida ( Ps. putida), Escherichia coli ( E. coli), Staphylococcus aureus ( S. aureus), and Bacillus subtilis ( B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO3. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO3.

  10. Toxicity of silver nanoparticles against bacteria, yeast, and algae

    Energy Technology Data Exchange (ETDEWEB)

    Dorobantu, Loredana S., E-mail: loredana@ualberta.ca; Fallone, Clara [University of Alberta, Department of Chemical and Materials Engineering (Canada); Noble, Adam J. [Trent University, Department of Biology (Canada); Veinot, Jonathan; Ma, Guibin [University of Alberta, Department of Chemistry (Canada); Goss, Greg G. [University of Alberta, Department of Biological Sciences (Canada); Burrell, Robert E. [University of Alberta, Department of Biomedical Engineering (Canada)

    2015-04-15

    The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag{sup +}. Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag{sup +} was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO{sub 3} had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment.

  11. Toxicity of silver nanoparticles against bacteria, yeast, and algae

    International Nuclear Information System (INIS)

    Dorobantu, Loredana S.; Fallone, Clara; Noble, Adam J.; Veinot, Jonathan; Ma, Guibin; Goss, Greg G.; Burrell, Robert E.

    2015-01-01

    The toxicity mechanism employed by silver nanoparticles against microorganisms has captivated scientists for nearly a decade and remains a debatable issue. The question most frequently asked is whether silver nanoparticles exert specific effects on microorganisms beyond the well-documented antimicrobial activity of Ag + . Here, we study the effects of citrate- (d = 17.5 ± 9.4 nm) and 11-mercaptoundecanoic acid (d = 38.8 ± 3.6 nm)-capped silver nanoparticles on microorganisms belonging to various genera. The antimicrobial effect of Ag + was distinguished from that of nanosilver by monitoring microbial growth in the presence and absence of nanoparticles and by careful comparison of the responses of equimolar silver nitrate solution. The results show that when using equimolar silver solutions, silver nitrate has higher toxic potential on all microorganisms than both nanoparticles tested. Furthermore, some microorganisms are more susceptible to silver than others and the choice of capping agent is relevant in the toxicity. Atomic force microscopy disclosed that AgNO 3 had a destructive effect on algae. The antimicrobial activity of nanosilver could be exploited to prevent microbial colonization of medical devices and to determine the fate of nanoparticles in the environment

  12. Mechanism of bactericidal activity of Silver Nitrate - a concentration dependent bi-functional molecule

    Directory of Open Access Journals (Sweden)

    Sureshbabu Ram Kumar Pandian

    2010-10-01

    Full Text Available Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.

  13. Silver Nanoparticles Modification of Ultra High Molecular Weight Polyethylene in Non-Aqueous Medium

    OpenAIRE

    V. N. Glushko; L. I. Blokhina; E. E. Anisimova; M. V. Bogdanovskaya; V. I. Kozhukhov; T. A. Cherdyntseva

    2016-01-01

    A series of experiments for obtaining modified with silver nanoparticles ultra-high molecular weight polyethylene (UHMWPE) is done. Optimal precursors are silver trifluoroacetate, silver nitrate and silver methanesulfonate. Three variants of UHMWPE modification is studied: 1) the polyol synthesis, 2) polymer processing silver nanoparticle colloid and 3) reduction of silver salt solution in the UHMWPE polymer matrix. It is found that the last method is optimal. The specific surface of obtained...

  14. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  15. Photodegradation of Paracetamol in Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Meng; Ruijuan, Qu; Jinyan, Liang; Xi, Yang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  16. Photodegradation of Paracetamol in Nitrate Solution

    International Nuclear Information System (INIS)

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-01-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  17. Investigation of complexing of trivalent lanthanoids in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Proyaev, V.V.; Edinakova, V.

    1985-01-01

    Complexing of trivalent lanthanoids (Ce, Eu) with nitrate-ions in concentrated solutions of lithium and sodium nitrates has been studied in a wide range of ionic forces (1.0-7.0), using the extractional, densimetric and solubility methods. Nitrate complexes registered by the extraction and solubility methods mainly are of second sphere character. During rare earth extraction from concentrated nitrate solutions in the range of nitrate-ion concentrations <= 5 mol/l second sphere neutral nitrate complexes take part in distribution, at higher values of nitrate-ion concentration formation of intrasphere monoligand complexes of lanthanoids should be taken into account

  18. Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants.

    Science.gov (United States)

    Pintér, Enikõ; Patakfalvi, Rita; Fülei, Tamas; Gingl, Zoltan; Dékany, Imre; Visy, Csaba

    2005-09-22

    Conducting polypyrrole (PPy) powder synthesized by using FeCl3 x 6 H2O and/or Fe(NO3)3 oxidants was impregnated in silver salt solutions. The stability and decomposition of the material was followed by thermogravimetric measurements. The total silver content was determined by atom absorption spectroscopy (ICP-AAS). The heat and electric conductivities of the composites were measured and correlated with the silver content. The incorporated silver was speciated and measured by X-ray diffraction (XRD). The spectra proved that the chemical state of the silver incorporated into the composite depends on the anion used in the polymerization process. In the case of the polymerization in a nitrate ion containing solution, the impregnation leads exclusively to the formation of metallic silver. The size distribution of the AgCl and Ag nanoparticles, determined from transmission electron microscopy (TEM) pictures in the different composites, proves the formation of a rather uniform species below 10 and 7 nm, respectively. The observations can be correlated with the different interactions in the PPy-chloride/nitrate-silver systems. The redox type interaction based conclusions can be considered as a guide during the preparation of other metal-conducting polymer composites.

  19. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  20. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  1. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  2. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  3. Study on removing nitrate from uranium solution by ion-exchange method

    International Nuclear Information System (INIS)

    Zhou Genmao

    2004-01-01

    Nitrate of low concentration can interfere with adsorption of uranyl sulfate anion on anion-exchange resins because the anion-exchange resins have a stronger affinity for nitrate in uranium solution. Nitrate can be adsorbed with a high efficiency resin, then desorbed by sodium hydroxide. The nitrate concentration is about 60 g/L in eluate. The research results show that nitrate can be recovered from uranium solution with N-3 anion-exchange resin

  4. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Jurkschat, Kerstin; Crossley, Alison; Hassellöv, Martin; Taylor, Cameron; Soares, Amadeu M.V.M.; Loureiro, Susana

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO 3 by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO 3 and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO 3 differ in toxicity according to the test species and endpoint. •AgNP and AgNO 3 induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity

  5. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabianne, E-mail: ribeiro.f@ua.pt [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal); Gallego-Urrea, Julián Alberto [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Jurkschat, Kerstin; Crossley, Alison [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Hassellöv, Martin [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Taylor, Cameron [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Soares, Amadeu M.V.M.; Loureiro, Susana [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal)

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO{sub 3} by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO{sub 3} and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO{sub 3} differ in toxicity according to the test species and endpoint. •AgNP and AgNO{sub 3} induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity.

  6. Removal of uranium from ammonium nitrate solution by nanofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Runci; Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang [China Institute of Atomic Energy, Beijing (China). Dept. of Radiochemistry

    2017-07-01

    Two types of nanofiltration membranes were tested to remove uranium dissolved in ammonium nitrate solution, and the influence of operating parameters as transmembrane pressure, tangential velocity and feed temperature was investigated. Experimental results showed NF270 membrane can reject more than 96% uranium and allow most (90% min) ammonium nitrate solution passed by, and with a permeate flux of 60 L/(m{sup 2}.h). Nanofiltration seems to be a promising technology for the removal of uranium and recovery of ammonium nitrate simultaneously.

  7. Structural modification in the formation of starch - silver nanocomposites

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  8. Green Synthesis of Silver Nanoparticles by using Eucalyptus Globulus Leaf Extract

    Science.gov (United States)

    Balamurugan, Madheswaran; Saravanan, Shanmugam

    2017-12-01

    A single step eco-friendly, energy efficient and economically scalable green method was employed to synthesize silver nanoparticles. In this work, the synthesis of silver nanoparticles using Eucalyptus globulus leaf extract as reducing and capping agent along with water as solvent at normal room temperature is described. Silver nanoparticles were prepared from aqueous silver nitrate solution by adding the leaf extract. The prepared nanoparticles were characterized by using UV-visible Spectrophotometer, X-ray diffractometer, High Resolution Transmission Electron Microscope (HR-TEM) and Fourier Transform Infrared Spectroscope (FTIS). X-ray diffraction studies brought to light the crystalline nature and the face centered cubic structure of the silver nanoparticles. Using HR-TEM. the nano sizes and morphology of the particles were studied. The mean sizes of the prepared silver nanoparticles ranged from 30 to 36 nm. The density of the particles was tuned by varying the molar ratio of silver nitrate. FTIS studies showed the functional group of organic molecules which were located on the surface of the silver nanoparticles. Originating from the leaf extracts, these organic molecules reduced and capped the particles.

  9. Preparation of counterion stabilized concentrated silver sols.

    Science.gov (United States)

    LaPlante, Sylas; Halaciuga, Ionel; Goia, Dan V

    2011-07-01

    A strategy for obtaining stable concentrated silver dispersions without dedicated stabilizing agents is presented. This approach consists of rapidly mixing aqueous solutions of silver salicylate and ascorbic acid. By using salicylate as Ag(+) counterion, it is possible to prepare stable sols with metal concentrations up to two orders of magnitude higher than with silver nitrate. The stabilizing effect of the counterion is the result of a decreased ionic strength due to salicylate protonation and its adsorption on the surface of silver. Both effects increase the range of the electrostatic repulsive forces by expanding the electrical double layer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Radiolytic reduction reaction of colloidal silver bromide solution

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Zushi, Takehiro; Hasegawa, Kunihiko; Matsuura, Tatsuo.

    1995-01-01

    The reduction reaction of colloidal silver bromide (AgBr 3 ) 2- in nitrous oxide gas saturated solution of some alcohols: methanol, ethanol, 2-propanol and 2-methyl-2-propanol by γ-irradiation was studied spectrophotometrically in order to elucidate the mechanism of the formation of colloidal silver bromide (AgBr 3 ) 3- at ambient temperature. The amount of colloidal silver bromide formed increases in the order: i-PrOH, EtOH, MeOH. In t-BuOH, colloidal silver bromide did not form. The relative reactivities of alcohols for colloidal silver bromide was also studied kinetically. (author)

  11. INVESTIGATIONS THE EFFECT OF EOSIN B DYE ON X- RAY DIFFRACTION PATTERN OF SILVER NITRATE DOPED PVP FILMS

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi Al-Kadhemy

    2017-07-01

    Full Text Available In this research, X-ray diffraction of the powder (PVP polymer, Eosin B dye, and silver nitrate and (EB/PVP, AgNO3/PVP, EB/AgNO3/PVP films have been studied. Casting method is used to prepare homogeneous films on plastic petri dishes. All parameters accounted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ.The nature of the structural of materials and films will be investigated. The XRD pattern of PVP polymer was amorphous structure with two broader peaks and the Eosin B dye and silver nitrate have crystalline structure. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVP polymer.

  12. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.

    2009-01-01

    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  13. Effect of Silver Nitrate DuringEx vitro Acclimatization of Micropropagated Ginger Cultivars

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2014-03-01

    Full Text Available Silver nitrate (AgNO3 was used under in vitro conditions to study the response of ginger cultivars ‘Nadia’ and ‘Baishey’ under ex vitro. Micropropagated plants treated with AgNO3 showed significant difference (p<0.05 compared to those plantlets without AgNO3 and control type in almost all the different quantitative traits analyzed. Significant difference in number of finger per plant and minirhizome yield indicated the repercussion of AgNO3 during acclimatization.

  14. The effectiveness of the biannual application of silver nitrate solution followed by sodium fluoride varnish in arresting early childhood caries in preschool children: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Chu, Chun-Hung; Gao, Sherry Shiqian; Li, Samantha Ky; Wong, May Cm; Lo, Edward Cm

    2015-09-25

    The application of 38 % silver diamine fluoride (SDF) has been shown to be effective in arresting early childhood caries (ECC). Since SDF is not available in certain countries, some dentists use adjunctive application of 25 % silver nitrate (AgNO3) and 5 % sodium fluoride (NaF) to arrest ECC. This randomised controlled trial will systematically compare the efficacy of a 25 % AgNO3 solution followed by 5 % NaF varnish with that of a 38 % SDF solution in arresting ECC when applied at half-yearly intervals over a 30-month period. This study is a randomised, double-blinded, non-inferiority clinical trial. The hypothesis tested is that adjunctive application of 25 % AgNO3 followed by 5 % NaF is at least not appreciably worse than a 38 % SDF in arresting ECC. Approximately 3100 kindergarten children aged 3-4 years will be screened and at least 1070 children with caries will be recruited. This sample size is sufficient for an appropriate statistical analysis (power at 90 % (β = 0.10) with a 2-sided type-I error of α = 0.05), allowing for an overall 20 % drop-out rate. The children will be randomly allocated into 2 groups to treat their caries over a 30-month period: Group A - biannual adjunctive application of a 25 % AgNO3 solution and a 5 % NaF varnish, and Group B - biannual adjunctive application of a 38 % SDF solution followed by a placebo varnish. Clinical examinations will be conducted at 6-month intervals. Primary outcome measured is the number of active caries surfaces which are arrested. Information on confounding factors such as oral hygiene habits will be collected through a parental questionnaire. We expect that adjunctive application of 25 % AgNO3 solution and 5 % NaF varnish and of 38 % SDF solution can both effectively arrest ECC. Lower concentrations of silver and fluoride are contained in 25 % AgNO3 and 5 % NaF, respectively, than in 38 % SDF; therefore, AgNO3/NaF are more favourable for use in young children. Because its use for caries management is

  15. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  16. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  17. Influences of impurities on iodine removal efficiency of silver alumina adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Tetsuo; Funabashi, Kiyomi [Hitachi, Ltd., Ibaraki (Japan); Kondo, Yoshikazu [Hitachi, Ltd., Ibaraki (Japan)

    1997-08-01

    Silver impregnated alumina adsorbent (AgA), which was developed for iodine removal from off-gas of nuclear power and reprocessing plants has been tested laying emphasis on investigation of the influences gaseous impurities have on adsorbent chemical stability and iodine removal efficiency. The influences of the major impurities such as nitrogen oxides and water vapor were checked on the chemical state of impregnated silver compound (AgNO{sub 3}) and decontamination factor (DF) value. At 150{degrees}C, a forced air flow with 1.5% nitrogen oxide (NO/NO{sub 2}=1/1) reduced silver nitrate to metallic silver, whereas pure air and air with 1.5% NO{sub 2} had no effect on the chemical state of silver. Metallic silver showed a lower DF value for methyl iodide in pure air (without impurities) than silver nitrate and the lower DF of metallic silver was improved when impurities were added. At 40{degrees}C, a forced air flow with 1.5% nitrogen dioxide (NO{sub 2}) increased the AgA weight by about 20%, which was caused by the adsorption of nitric acid solution on the AgA surface. AgA with l0wt% silver showed higher weight increase than that with 24wt% silver which had lower porosity. Adsorption of acid solution lowered the DF value, which would be due to the hindrance of contact between methyl iodide and silver. The influences of other gaseous impurities were also investigated and AgA showed superior characteristics at high temperatures. 14 refs., 11 figs.

  18. Densities concentrations of aqueous of uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.

    1966-01-01

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U 3 O 8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs

  19. Structural modification in the formation of starch – silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com [Department of Applied Science and Technology, A.C.Tech. Campus, Anna University, Chennai – 600 025 (India); Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2016-05-23

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  20. Structural modification in the formation of starch – silver nanocomposites

    International Nuclear Information System (INIS)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal; Aswal, V. K.

    2016-01-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO_3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO_3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO_3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  1. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.

    Science.gov (United States)

    Topuz, Emel; van Gestel, Cornelis A M

    2015-12-01

    The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions. © 2015 SETAC.

  2. A novel wound rinsing solution based on nano colloidal silver

    Directory of Open Access Journals (Sweden)

    Soheila Kordestani

    2014-10-01

    Full Text Available Objective(s: The present study aimed to investigate the antiseptic properties of a colloidal nano silver wound rinsing solution to inhibit a wide range of pathogens including bacteria, viruses and fungus present in chronic and acute wounds. Materials and Methods:The wound rinsing solution named SilvoSept® was prepared using colloidal nano silver suspension. Physicochemical properties, effectiveness against microorganism including  Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739 ,Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA , Mycobacterium spp. , HSV-1 and H1N1, and biocompatibility tests were carried out according to relevant standards . Results: X-ray diffraction (XRD scan was performed on the sample and verify single phase of silver particles in the compound. The size of the silver particles in the solution, measured by dynamic light scattering (DLS techniqu, ranged 80-90 nm. Transmission electron microscopy (TEM revealed spherical shape with smooth surface of the silver nanoparticles. SilvoSept® reduced 5 log from the initial count of 107 CFU/mL of Staphylocoocous aureus ATCC 6538P, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 8739, Candida albicans ATCC 10231, Aspergillus niger ATCC 16404, MRSA, Mycobacterium spp. Further assessments of SilvoSept solution exhibited a significant inhibition on the replication of HSV-1 and H1N1. The biocompatibility studies showed that the solution was non-allergic, non-irritant and noncytotoxic. Conclusion: Findings of the present study showed that SilvoSept® wound rinsing solution containing nano silver particles is an effective antiseptic solution against a wide spectrum of microorganism. This compound can be a suitable candidate for wound irrigation.   

  3. Method for improved decomposition of metal nitrate solutions

    Science.gov (United States)

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  4. Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Carlos, I.A.

    2009-01-01

    This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 x 10 -1 mol L -1 Zn(NO 3 ) 2 + 2.5 x 10 -2 mol L -1 AgNO 3 . This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (E d ), deposition charge density (q d ) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology

  5. Antimicrobial potentials of silver colloidal (nanorods) on clinical ...

    African Journals Online (AJOL)

    Antimicrobial resistance in developing countries has long been an issue of major concern. Nanotechnology has become an eye opener for the intervention on multiple drug resistance organisms. In this study we investigated the antimicrobial potentials of Silver Nitrate (nanorods) solution used in managing infectious ...

  6. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  7. Radiolysis studies of uranyl nitrate solution in nitric acid medium

    International Nuclear Information System (INIS)

    Siri, Sandra; Mondino, Angel V.

    2005-01-01

    The radiolysis of acidic uranyl nitrate solutions was investigated using Co-60 gamma radiation. Hydrogen peroxide was determined as a function of increasing dose. The UV-vis absorption spectra of the irradiated solutions were measured and the spectral changes were analyzed. The increasing dose increases the absorbance intensities, possibly by an increment in nitrate concentration produced by radiolysis, which can originate the formation of different uranyl complexes in solution. (author)

  8. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle marmelos

    Directory of Open Access Journals (Sweden)

    JohnSamuel Godwin Christopher

    2015-10-01

    Full Text Available ABSTRACTThe aim of this study was to optimize the biosynthesis of silver nanoparticles using leaves ofAegle marmelos as the primary source. The optimal reaction medium comprised 2:1 concentration of leaf extract and 6mM concentration of silver nitrate solution (pH 7. The biosynthesized silver nanoparticles were confirmed by UV-Vis spectroscopy at 420 nm, XRD and FTIR analysis. The antimicrobial properties of silver nanoparticles were confirmed withBacillus subtilis andPseudomonas aeruginosa.

  9. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  10. Effets of Silver Salt Concentrations on Green Synthesis of Silver Nanoparticles Using the Plant Nigella Saliva

    Directory of Open Access Journals (Sweden)

    M.R. Saeri

    2016-03-01

    Full Text Available Bio-inspired silver nanoparticles were synthesized with the aid of a novel method, using leaves of the plant Nigella sativa. After drying the leaves in air, they were first sweltered in boiling distilled water and the liquid was filtered subsequently. The result was the brothused to reduce solutions including various concentrations of silver nitrate in a proper amount of pH. The displayed UV–visible spectra identified formation of silver nanoparticles whenever the colorless initial acclimated mixture turned brown. The centrifuged powder samples were examined using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (FESEM and energy dispersive X-ray diffraction analysis (EDX methods. The results clearly revealed that the final particles of precipitated powder are high purity agglomerates of silver nanoparticles. Besides, the effects of various amounts of the silver salt on particle size of nano silver were studied, using a particle size analyzer. FTIR results also indicated the role of different functional groups in the synthetic process.

  11. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Mosselhy, Dina A.; He, Wei [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China); Li, Dan [Tsinghua University, MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences (China); Meng, Yaping [Tsinghua University, State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China)

    2016-08-15

    The wide antimicrobial administration of silver nanoparticles (AgNPs) has raised the risks associated with their exposure. However, there is lack of robust toxicological data for the applied AgNPs to be in line with their wide antimicrobial applications. This study therefore set out to assess the in vivo toxicity of two different sizes of AgNPs using zebrafish embryos (Danio rerio) as a brilliant in vivo model. The pivotal role of size of AgNPs in the toxicity was highlighted, wherein the smaller AgNPs (Ag-9 nm) exhibited more embryo toxicities than the larger particles (Ag-30 nm). Much uncertainty still exists about whether the cause of in vivo toxicity of AgNPs is the physicochemical properties of AgNPs or the released silver ions (Ag{sup +}). Therefore, another purpose of this study is to compare the toxicity of AgNPs with silver nitrate (AgNO{sub 3}) in terms of mortality, hatchability and cardiac rates, and a series of phenotypic endpoints of zebrafish embryos. Collectively, the present results point towards the remarkable size-dependent toxicity of AgNPs. Wherein, the smaller AgNPs (9 ± 2 nm) induce increased mortality rates and decreased hatchability rates than the larger particles (30 ± 5 nm) in a dose-dependent manner. Besides, AgNPs and AgNO{sub 3} induce holistic different toxic mortality and hatchability rates. We have also found striking discrepancies in the phenotypic defects that were induced by AgNPs and AgNO{sub 3}. The significant phenotypic defect induced by AgNPs is the axial deformity, while it is the deposition of Ag{sup +} on the embryonic chorion for AgNO{sub 3}. Therefore, it is proposed that AgNPs and AgNO{sub 3} induce different in vivo toxicities.

  12. A study of precipitation from pure solutions of uranyl nitrate; Etude de la precipitaion de solutions pures de nitrate d'uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Decrop, J; Holder, J; Sauteron, J [Commissariat a l' Energie Atomique, Usine du Bouchet, Service des Lab. de Recherches et de Controle, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    After its purification by extraction of the uranyl nitrate from the organic solvent, uranium has to be converted into solid form again: uranium trioxide (UO{sub 3}). It can be done either by thermal decomposition of uranyl nitrate or by precipitation of uranium, followed by filtration and calcination. Only the second method has been studied for now at the Bouchet plant. This paper reports the bench-scale and pilot-scale experiments of the studies of the precipitation of pure solutions of uranyl nitrate using ammonia (gaseous or in solution) or ammonium carbonate. These have been carried out at the Bouchet plant. It investigates the chemical aspect (pH, precipitates chemical composition) and the technical aspect of the different ways of precipitation (conditions of precipitation, decantation and filtration of precipitates). (M.P.)

  13. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  14. Synthesis of silver nanowires using hydrothermal technique for flexible transparent electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Vijila, C. V. Mary; Rahman, K. K. Arsina; Parvathy, N. S.; Jayaraj, M. K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Division, Dept. of Physics, Cochin University of Science and Technology, Kochi, Kerala (India)

    2016-05-23

    Transparent conducting films are becoming increasingly interesting because of their applications in electronics industry such as their use in solar energy applications. In this work silver nanowires were synthesized using solvothermal method by reducing silver nitrate and adding sodium chloride for assembling silver into nanowires. Absorption spectra of nanowires in the form of a dispersion in deionized water, AFM and SEM images confirm the nanowire formation. Solution of nanowire was coated over PET films to obtain transparent conducting films.

  15. Contribution to the study of the evaporation of aqueous uranyl nitrate solutions; Contribution a l'etude de l'evaporation des solutions aqueuses de nitrate d'uranyle

    Energy Technology Data Exchange (ETDEWEB)

    Billy, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-05-15

    This work was carried out with a view to define the conditions under which is affected the concentration of aqueous uranyl nitrate solutions one of the steps in uranium extraction metallurgy. The first port is devoted to the experimental determination of the physical characteristics of aqueous uranyl nitrate solutions, from dilute to concentrated solutions. The second part of this work is devoted to the isothermal evaporation of solution a west ted-wall column; this chemical engineering study has been more particularly devoted to the definition of the influence of the dynamics of the liquid phase on the exchange of matter between the two phases in contact. (author) [French] La concentration par evaporation des solutions aqueuses de nitrate d'uranyle constitue une etape de la metallurgie de l'uranium dont ce travail a voulu preciser la connaissance. Dans ce but, une premiere partie a ete consacree a la determination experimentale de caracteristiques physiques des solutions aqueuses de nitrate d'uranyle, des solutions diluees aux solutions saturees. Dans une deuxieme partie, ce travail a porte sur l'evaporation isotherme des solutions dans une colonne a paroi mouillee; cette etude de genie chimique a ete plus particulierement orientee de facon a preciser l'influence de la dynamique de la phase liquide sur l'echange de matiere entre les deux phases en contact. (auteur)

  16. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  17. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  18. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis.

    Science.gov (United States)

    Antunes, Elsa; Jacob, Mohan V; Brodie, Graham; Schneider, Philip A

    2017-12-01

    The contamination of water with silver has increased due to the widespread applications of products with silver employed as antimicrobial agent. Adsorption is a cost-effective method for silver removal from aqueous solution. In this study biochar, produced from the microwave assisted pyrolysis of biosolids, was used for silver removal from an aqueous solution. The adsorption kinetics, isotherms and thermodynamics were investigated to better understand the silver removal process by biochar. X-ray diffraction results demonstrated that silver removal was a combination two consecutive mechanisms, reduction and physical adsorption. The Langmuir model fitted the experimental data well, showing that silver removal was predominantly a surface mechanism. The thermodynamic investigation demonstrated that silver removal by biochar was an exothermic process. The final nanocomposite Ag-biochar (biochar plus silver) was used for methylene blue adsorption and photodegradation. This study showed the potential of using biochar produced from biosolids for silver removal as a promising solution to mitigate water pollution and an environmentally sustainable approach for biosolids management and re-use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  20. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    The aim of the present study was the removal of phosphate and nitrate by sodium alginate seagrass (Cymodocea rotundata) beads from aqueous solutions. The adsorption characteristics of phosphate and nitrate on the seagrass beads were optimized under different operational parameters like adsorbent dosage, initial ...

  1. Formation of novel assembled silver nanostructures from polyglycol solution

    International Nuclear Information System (INIS)

    Zhang Jie; Liu Ke; Dai Zhihui; Feng Yuying; Bao Jianchun; Mo Xiangyin

    2006-01-01

    This paper described a simple and mild chemical reduction approach to prepare novel silver nanostructures with different morphologies. Dendritic silver nanostructure was obtained by a fast reduction reaction using hydrazine as a reducing agent in aqueous solution of polyglycol, while both the zigzag and linear Ag nanostructures were slowly assembled using polyglycol as a reducing agent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained silver nanostructures. Fourier transform infrared absorption (FT-IR) spectra were recorded to show that there exists a certain coordination of the oxygen atoms in the polyglycol with Ag + ions in aqueous solution of the AgNO 3 /polyglycol. Furthermore, the examination of the morphologies of the products obtained at different stages of the reaction of Ag + ions with polyglycol revealed that such a coordination is of utmost importance for the formation of the silver nanostructures, namely polyglycol provided lots of active sites for the coordination, nucleation, growth and serves as backbones for directing the assembly of the metal particles formed. The formation mechanism of the dendritic silver nanostructure was called a coordination-reduction-nucleation-growth-fractal growth process. The strong surface plasmon absorption bands at 470 nm for the zigzag silver and at 405 nm for the dendritic silver were found

  2. Design of one evaporation system for uranyl nitrate solution

    International Nuclear Information System (INIS)

    Mancilla Romero, R.J.

    1975-01-01

    The authors propose an instant evaporation system with recirculation of the concentrated solution to raise the concentration from 50 to 1500 g of uranium per litre of solution. The capacity of the plant is to be 14.1 kg of uranium per hour. The main equipment used in the system is as follows: 1. Ring-type heat exchanger, for increasing the temperature of the mixture of fresh and recirculated solution from 80 to 115 0 C; 2. Separation tank, in which instant evaporation is carried out. The absolute pressure inside the tank will be 500 mmHg, with steam separation from a concentrated (78.5 wt.%) uranyl nitrate solution; 3. Desuperheater-condenser of horizontal tubular type for condensing water vapour and recovering any uranyl nitrate that may have been entrained; 4. Storage tank for the concentrate, with a capacity for one day's normal operation, and a heating coil to prevent crystallization of the concentrated solution; 5. Two storage tanks for feed and condensate with capacity for one day's normal operation; 6. Supporting structure for the above components. Virtually all equipment in contact with the uranyl nitrate solution will be made of 304 stainless steel. Saturated steam at 143.3 0 C will be required. The cost of the proposed system is $543 030.00. (author)

  3. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    Science.gov (United States)

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  4. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  5. Preparation of working calibration and test materials: uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yamamura, S.S.; Spraktes, F.W.; Baldwin, J.M.; Hand, R.L.; Lash, R.P.

    1977-05-01

    Reliable working calibration and test materials (WCTMs) are essential to a meaningful analytical measurements quality assurance program. This report describes recommended methods for the preparation of uranyl nitrate solution WCTMs for testing analytical methods, for calibrating methods, and for testing personnel. Uranyl nitrate solution WCTMs can be synthesized from characterized starting materials or prepared from typical plant materials by thorough characterization with reference to primary or secondary reference calibration and test materials (PRCTMs or SRCTMs). Recommended starting materials are described along with detailed procedures for (a) preparing several widely-used types of uranyl nitrate solution WCTMs, (b) packaging the WCTMs, (c) analyzing the WCTMs to establish the reference values or to confirm the synthesis, and (d) statistically evaluating the analytical data to assign reference values and to assess the accuracy of the WCTMs

  6. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    Science.gov (United States)

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  7. VITAMINE C EFFECT ON SILVER NITRATE INDUCED METHEMOGLOBINEMIA:ANIMAL STUDY

    Directory of Open Access Journals (Sweden)

    M.A RAJABI

    2001-09-01

    Full Text Available Introduction. Methemoglobinemia is a condition characterized by increased quantities of hemoglobin in which the iron of heme is oxidized to the ferric(Fe3+ form. Methemoglobin is useless as an oxygen carrier and thus causes a varying degree of cyanosis. The condition may arise as a result of a genetic defect in red blood cell metabolism or hemoglobin structure, or it may be acquired following exposure to various axidant drugs or toxins. The most common cause of methemoglobinemia, as in this clinical case, is ingestion of or exposure of skin or mucous membranes to oxidizing agents (such as anesthetics and silver nitrate. Methods. In an experimental animal study, 30 rabbits with the same weight and sex are devided in two groups (A and B.-Vitamine C is administered to group B (200 mg/kg intraperitoneal. One houre after that, laparotomy was done. Then silver nitrate was injected intraperitoneal (1000 mg/kg in both groups. Blood samples were examined 30 and 60 minutes after injection. Results. Methemoglobin before and after intervention in group A was 0.38±0.13, 1.63±0.02 (30 min and 2.21 ± 0.4 (60 min percent respectively. Methemoglobin before and after intervention in group B was 0.39±0.13, 0.82 ± 0.19 (30 min and 0.41 ± 0.1.7 (60 min percent, respectively. Methemoglobin concentration was greater in group A in 30th and 60th minute after intervention (P < 0.0l Discussion. Ascorbic acid penetrate the erythrocyte membrane. Under physiological conditions ascorbic acid induced methemoglobin reduction is far less important than reduction by the NADH dependent methemoglobin reductase system. In methemoglobinemic conditions caused by toxic effects or by congenital methemoglobin reductase deficiency treatment with ascorbic acid is possible. However, critically increased methemoglobin content of the blood higher than 30% makes therapy with methylene blue necessary. So, vitamine C is recommended for methemoglobinemia therapy.

  8. Detection of colloidal silver chloride near solubility limit

    Science.gov (United States)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  9. Corrosion performance of several metals in plutonium nitrate solution

    International Nuclear Information System (INIS)

    Takeda, Seiichiro; Nagai, Takayuki; Yasu, Shozo; Koizumi, Tsutomu

    1995-01-01

    Corrosion behavior of several metals exposed in plutonium nitrate solution was studied. Plutonium nitrate solution with the plutonium concentration ranging from 0.01 to 300 g/l was used as a corrosive medium. Specimens tested were type 304 ULC (304 ULC) stainless steel, type 310 Nb (310 Nb) stainless steel, titanium (Ti), titanium-5% tantalum alloy (Ti-5Ta), and zirconium (Zr). Corrosion behavior of these metals in plutonium nitrate solution was evaluated through examining electrochemical characteristics and corrosion rates obtained by weight loss measurement. From the results of the corrosion tests, it was found that the corrosion rate of stainless steels i.e. 304 ULC and 310 Nb, increases by the presence of plutonium in nitric acid solution. The corrosion potential of the stainless steels shifted linearly towards the noble direction as the concentration of plutonium increases. It is thought that the shifts in corrosion potential of the stainless steels to the noble direction results an increase in anodic current and, hence, corrosion rate. Valve metals, i.e. Ti, Ti-5Ta and Zr, showed good corrosion resistance over the whole range of plutonium concentration examined here. (author)

  10. Critical experiment study on uranyl nitrate solution experiment facility

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Wang Jinrong

    2005-01-01

    The Uranyl Nitrate Solution Experiment Facility was constructed for the research on nuclear criticality safety. In this paper, the configuration of the facility is introduced; a series of critical experiments on uranyl nitrate solution is described later, which were performed for various uranium concentrations under different conditions, i.e. with or without neutron absorbers in the core and with or without water-reflector outside the core. Critical volume and the minimum 235U critical mass for different uranium concentrations are presented. Finally, theoretical analysis is made on the experimental results. (authors)

  11. The potential/pH diagram of silver in aqueous ammonium salt solution

    NARCIS (Netherlands)

    Sluyters, J.H.; Wijnen, M.D.; Hul, H.J. van den

    1961-01-01

    The potential/pH diagram of silver in aqueous ammonium salt solution at 25°C has been calculated and verified experimentally. Calculations were carried out on the basis of the standard potential of the silver/silver-ion couple, the dissociation constants of the silver mono- and di-ammonia

  12. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was

  13. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  14. Nitrate Removal from Aqueous Solutions Using Almond Charcoal Activated with Zinc Chloride

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-10-01

    Full Text Available Background & Aims of the Study: Nitrate is one of the most important contaminants in aquatic environments that can leached to water resources from various sources such as sewage, fertilizers and decomposition of organic waste. Reduction of nitrate to nitrite in infant’s blood stream can cause “blue baby” disease in infants. The aim of this study was to evaluate the nitrate removal from aqueous solutions using modified almond charcoal with zinc chloride. Materials &Methods: This study is an experimental survey. At the first charcoal almond skins were prepared in 5500C and then modified with ZnCl2. Morphologies and characterization of almond shell charcoal were evaluated by using FTIR, EDX, BET and FESEM. Adsorption experiments were conducted with 500 ml sample in Becker. The nitrate concentration removal, contact time, pH and charcoal dosage were investigated. The central composite design method was used to optimizing the nitrate removal process. The results analyzed with ANOVA test. Results: The best condition founded in 48 min, 1250 ppm, 125 mg/l and 3 for retention time, primary nitrate concentration, charcoal dosage and pH respectively. The results showed that the nitrate removal decreases with increasing pH. Modification of skin charcoal is show increasing of nitrate removal from aquatic solution. Conclusion: In this study, the maximum nitrate removal efficiency for raw charcoal and modified charcoal was determined 15.47% and 62.78%, respectively. The results showed that this method can be used as an effective method for removing nitrate from aqueous solutions.

  15. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  16. Influence of surfactant on the preparation of silver nanoparticles by polyol method

    International Nuclear Information System (INIS)

    Dung Dang, Thi My; Tuyet Le, Thi Thu; Dang, Mau Chien; Fribourg-Blanc, Eric

    2012-01-01

    In this study, silver nanoparticles were synthesized from silver nitrate via a polyol method in ambient atmosphere. In our synthesis route, polyvinylpyrrolidone (PVP) is used as both size controller and capping agent, ethylene glycol acts both as solvent and reducing agent. The obtained silver nanoparticles were characterized by ultraviolet-visible spectrophotometry which indicated the formation of nanoparticles. Investigation of Fourier transform infrared spectroscopy clearly demonstrated the coordination between silver nanoparticles and PVP. Transmission electron microscopy (TEM) contributed to the particle size analysis. The surface plasmon resonance peak in absorption spectra of silver colloidal solution showed absorption from 406 to 409 nm. The average size of the resulting silver nanoparticles was below 10 nm with a dependency on the PVP concentration. (paper)

  17. Bases for DOT exemption uranyl nitrate solution shipments

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1982-07-01

    Uranyl nitrate solutions from a Savannah River Plant reprocessing facility have been transported in cargo tank trailers for more than 20 years without incident during transit. The solution is shipped to Oak Ridge for further processing and returned to SRP in a solid metal form for recycle. This solution, called uranyl nitrate hexahydrate (UNH) solution in Department of Transportation (DOT) regulations, is currently diluted about 2-fold to comply with DOT concentration limits (10% of low specific activity levels) specified for bulk low specific activity (LSA) liquid shipments. Dilution of the process solution increases the number of shipments, the cost of transportation, the cost of shipper preparations, the cost of further reprocessing in the receiving facility to first evaporate the added water, and the total risk to the population along the route of travel. However, the radiological risk remains about the same. Therefore, obtaining an exemption from DOT regulations to permit shipment of undiluted UNH solution, which is normally about two times the present limit, is prudent and more economical. The radiological and nonradiological risks from shipping a unit load of undiluted solution are summarized for the probable route. Data and calculations are presented on a per load or per shipment basis throughout this memorandum to keep it unclassified

  18. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  19. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  20. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  1. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  2. Comparison of methenamine silver nitrate and Giemsa stain for detection of Pneumocystis carinii in bronchoalveolar lavage specimens from HIV infected patients

    DEFF Research Database (Denmark)

    Holten-Andersen, W; Kolmos, H J

    1989-01-01

    Seventy-seven bronchoalveolar lavages from human immunosuppressive virus infected patients with pulmonary symptoms were examined routinely for the presence of Pneumocystis carinii, using Giemsa stain to detect trophozoites and methenamine silver nitrate to detect cysts. Thirty-seven samples were...

  3. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  4. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  5. Preparation of carbon microspheres decorated with silver nanoparticles and their ability to remove dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qingchun [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Wu, Qingsheng, E-mail: qswu@tongji.edu.cn [Department of Chemistry, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China); Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2015-02-11

    Highlights: • Carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared. • AgNP-CMSs show not only rapid and high adsorption capacity to methylene blue (MB) in water, but also excellent reusability. • It exhibits photocatalytic activity to Rhodamine B as well as MB under visible light. • The adsorption is from the ionic interactions but not the π–π conjugations. • The origin of photocatalysis is a surface plasmon resonance effect of AgNP on CMSs. - Abstract: Solid, but not hollow or porous, carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) were prepared from silver nitrate and CMSs by a redox reaction at room temperature. The CMSs and AgNP-CMSs were characterized using X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and UV–vis spectrophotometry. Though with non-high specific surface area, the AgNP-CMSs exhibited a high adsorption capacity toward methylene blue (MB) in an aqueous solution. The AgNP-CMSs were able to remove all the MB from a solution of 30 mg/L MB in water within 1 min when the adsorbent concentration was 0.12 g/L. The AgNP-CMSs also exhibited good adsorption and photocatalytic activity in the decomposition of aqueous Rhodamine B as well as MB under visible light. FTIR was used to examine the interaction between AgNP-CMSs and MB, and the spectrum and more extra experiments suggest ionic interactions between cationic dyes and the negatively charged groups can be formed but not the presence of abundant π–π conjugations between dye molecules and the aromatic rings. The origin of the photocatalytic activity of AgNP-CMSs was attributed to a surface plasmon resonance (SPR) effect of the silver nanoparticles on the CMSs.

  6. Polyaniline–silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Trchová, Miroslava; Prokeš, J.; Varga, M.; Stejskal, Jaroslav

    2011-01-01

    Roč. 56, č. 10 (2011), s. 3580-3585 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conductivity * polyaniline * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.832, year: 2011

  7. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  8. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Science.gov (United States)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  9. Biosynthesized Silver Nanoparticles Used in Preservative Solutions for Chrysanthemum cv. Puma

    Directory of Open Access Journals (Sweden)

    Luis M. Carrillo-López

    2016-01-01

    Full Text Available The use of pulse solutions containing antimicrobials has been reported, but more research is necessary. To increase vase life and to study their effect on opening inflorescences, silver nanoparticles were used in vase solutions for cv. Puma Chrysanthemum stems. The nanoparticles were synthesized biologically using Chenopodium ambrosioides L. applied at concentrations of 0.01, 0.05, 0.1, 0.5, 1, and 5 mM and compared with a control. Treatments were replicated five times. The stems were cut to 50 cm and observed until the end of their vase life. Low concentrations of silver nanoparticles promoted inflorescence opening and leaf yellowing, while the control leaves remained green, but there was a lower degree of inflorescence opening. High concentrations of silver nanoparticles (0.5, 1, and 5 mM caused senescence due to low water uptake through the stems. Statistical differences in inflorescence opening and diameter, bacterial growth (CFU mL−1 in vase solutions, fresh weight, water uptake, and vase life were found among treatments. Longer vase life and less weight loss were observed in the stems exposed to low concentrations of silver nanoparticles. Low concentrations of silver nanoparticles promoted inflorescence opening and increased vase life of Chrysanthemum cv. Puma.

  10. Spectroscopic Characterization of HAN-Based Liquid Gun Propellants and Nitrate Salt Solutions

    Science.gov (United States)

    1989-01-15

    spectra were recorded of bubbles of a concentrated aqueous nitrate solution, mineral oil, and an aqueous surfactant solution. Polymethacrylic acid ...FTIR spectra of droplets of a concentrated aqueous nitrate salt based solution (LGP1845), of solid particles cf polymethacrylic acid packing IO, 3... polymethacrylic acid low density packing foam cut to a 3x4 mnn rectangle was levitated with a low acoustic power. The sample was easily I positioned in the

  11. A study of precipitation from pure solutions of uranyl nitrate

    International Nuclear Information System (INIS)

    Decrop, J.; Holder, J.; Sauteron, J.

    1961-01-01

    After its purification by extraction of the uranyl nitrate from the organic solvent, uranium has to be converted into solid form again: uranium trioxide (UO 3 ). It can be done either by thermal decomposition of uranyl nitrate or by precipitation of uranium, followed by filtration and calcination. Only the second method has been studied for now at the Bouchet plant. This paper reports the bench-scale and pilot-scale experiments of the studies of the precipitation of pure solutions of uranyl nitrate using ammonia (gaseous or in solution) or ammonium carbonate. These have been carried out at the Bouchet plant. It investigates the chemical aspect (pH, precipitates chemical composition) and the technical aspect of the different ways of precipitation (conditions of precipitation, decantation and filtration of precipitates). (M.P.)

  12. Determination of plutonium in pure plutonium nitrate solutions - Gravimetric method

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the concentration of plutonium in pure plutonium nitrate solutions and reference solutions, containing between 100 and 300 g of plutonium per litre, in a nitric acid medium. The weighed portion of the plutonium nitrate is treated with sulfuric acid and evaporated to dryness. The plutonium sulfate is decomposed and formed to oxide by heating in air. The oxide is ignited in air at 1200 to 1250 deg. C and weighed as stoichiometric plutonium dioxide, which is stable and non-hygroscopic

  13. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  14. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Science.gov (United States)

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  15. XPS study of the passive layers formed on lead in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Uchida, Miho; Okuwaki, Akitsugu

    1997-01-01

    The analysis of the lead surface immersed in aqueous nitrate solutions by X-ray photoelectron spectroscopy (XPS) shows the formation of passive oxide layer containing nitrogen compound. The oxide layer formed on the lead surface in aqueous ammonium nitrate solution was hydrolyzed and cracked. (author)

  16. Toxicity Study of Silver Nanoparticles Synthesized from Suaeda monoica on Hep-2 Cell Line.

    Science.gov (United States)

    Satyavani, Kaliyamurthi; Gurudeeban, Selvaraj; Ramanathan, Thiruganasambandam; Balasubramanian, Thangavel

    2012-01-01

    Recently there has been fabulous excitement in the nano-biotechnological area for the study of nanoparticles synthesis using some natural biological system, which has led the growth advanced nanomaterials. This intention made us to assess the biologically synthesized silver nanoparticles from the leaf of Suaeda monoica (S.monoica) using 1 mM silver nitrate. The leaf extract of S.monoica incubated with 1 mM silver nitrate solution and characterized by UV- spectrometer and AFM. The effect of synthesized silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line was evaluated by the MTT colorimetric technique. As a result we observed gradual change in the colour of extract from greenish to brown. The synthesized silver nanoparticles confirmed by UV at 430 nm and spherical shape identified in the range of 31 nm under AFM. The effect of silver nanoparticles on Human Epidermoid Larynx Carcinoma cell line exhibits a dose-dependent toxicity for the cell tested and the viability of Hep-2 cells decreased to 50 % (IC(50)) at the concentration of 500 nM. Further findings will be determined the exact mechanisms of this cost effective Nano-treatments.

  17. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  18. Deposition and Characterization of Silver Oxide from Solution of Silver, Cassava and Sugarcane Juice Effects

    Directory of Open Access Journals (Sweden)

    Uche E. Ekpunobi

    2013-06-01

    Full Text Available Silver oxide was deposited on metallic substrates (zinc and lead from silver solution with different additives at a pH of 5, dc current of 0.2A, 4V for 20seconds at 25°C. The additives were cassava solution and sugarcane juice. The metallic substrates served as cathode while a copper electrode serves as the anode. Compositions of the electrolytes were 50ml AgNO3, 50ml AgNO3 and 50ml of cassava solution or 50ml of sugarcane juice. Structural and textural characterizations were carried out on the deposits. The result showed that deposition using zinc substrate gave a better result than that of lead in that the deposits were pure without impurities. Using cassava solution as additive, a pure Ag2O3 deposit was obtained while sugarcane juice gave a pure intergrowth of Ag2O3 and Ag3O4 deposits both on zinc substrates.

  19. The uptake of silver(I from chloride solutions by amine extractants

    Directory of Open Access Journals (Sweden)

    Wejman Katarzyna

    2017-01-01

    Full Text Available The amine extractants, bis(2-ethylhexylamine, N,N-dimethylethanolamine, and trioctylamine were used to recover silver(I ions from chloride solutions. The effect of the pH, contact time, extractant concentration and reextraction were studied. It was found that extraction of silver(I depended on the pH, extractant concentration and strongly on the contact time. Reextraction of Ag(I ions from the loaded organic phase showed that the metal can be removed in over 50% for the three extractant using sodium hydroxide. The recovery of silver from the chloride leaching solutions were above 85% for bis(2-ethylhexylamine, above 58% for N,N-dimethylethanolamine, and above 70% for trioctylamine.

  20. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    Science.gov (United States)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  1. Fermi level equilibration between colloidal lead and silver particles in aqueous solution

    International Nuclear Information System (INIS)

    Henglein, A.; Holzwarth, A.; Mulvaney, P.

    1992-01-01

    Colloidal solutions of lead and silver were mixed under the exclusion of air. The equilibration of the Fermi levels in the two different types of metal particles took place over a few days at room temperature. The equilibration took place by the transfer of lead atoms from lead to silver particles until the latter carried a lead mantle of one to two monolayers. This could be concluded from the observed changes in the optical spectrum of the silver particles. The results are discussed in terms of two mechanisms: (1) Pb atom transfer following heterocoagulation of the lead and silver particles and (2) electron transfer during Brownian encounters, followed by Pb 2+ desorption from the lead particles and subsequent Pb 2+ reductor on the silver particles carrying the transferred electrons. Traces of methylviologen, MV 2+ , in the solution drastically increase the rate of equilibration; this is explained by a relay mechanism in which electrons in the lead particles are first picked up by MV 2+ and are then transferred from MV + to the silver particles. 2 refs., 4 figs

  2. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  3. Sustainability of silver nanoparticles in solutions and polymer materials

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Malikov, Sh.; Khaydarov, R.A.; Mironov, V.V.

    2006-01-01

    The technology of obtaining stable silver nanoparticles in solutions and composite materials for attainment of antimicrobial and antifungal properties to different surfaces has been developed. The shape of particles is spherical, diameter is about 5 nm. Various concentrations of silver nanoparticles have been deposited onto surfaces of different materials (cotton and synthetic fabrics, fibroid sorbents and polymer materials). Different ways of treatment and densities of nanoparticles on the treated surface have been studied during 6 months with respect to the best sustainability. In order to prevent agglomeration of obtained metal nanoparticles on the surface of materials treated, stabilizing reagents (ethylene glycol, formic acid, sodium dodecyl sulphate, etc.) have been used and their relative efficacy has been examined. Residual concentrations of the nanoparticles on various fabrics after 1, 3, 5 and 10 cycles of washing have been also studied. The treated fabrics keep their antibacterial properties after at least 3 times of laundering. The best finishing process to attach silver nanoparticles combination to various materials has been compared with biocidal properties of such antibacterial agents as metal salt solutions and zinc pyrithione.The possibility of treatment of nuclear track membranes by silver nanoparticles in order to prevent microbial growth on the surface of membranes has been discussed. (author)

  4. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  5. Extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Berinskij, A.E.; Keskinov, V.A.

    2000-01-01

    Isotherms of extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates by solutions of tributylphosphate (TBP) and diisooctylmethylphosphonate (DIOMP) in kerosene at 298.15 Deg C and pH 1 are presented. Equations for description of interphase distribution of components of the systems considered are suggested. These equations describe distribution of components adequately in the systems of thorium nitrate (uranyl nitrate) - rare earth nitrates - (TBP, DIOMP) in the case of wide variation of phase compositions. Dependences of separation factors on composition of aqueous phase are considered [ru

  6. Influence of Experimental Conditions on Deposition of Silver Nanoparticles Onto Surface of Graphene Oxide / Wpływ Warunków Eksperymentalnych Na Proces Osadzania Nanocząstek Srebra Na Powierzchni Tlenku Grafenu

    Directory of Open Access Journals (Sweden)

    Wojnicki M.

    2015-12-01

    Full Text Available Present work describes the influence of silver nanoparticles precursor form as well as the impact of graphene oxide initial concentration on deposition of the silver nanoparticles onto graphene oxide. Borane dimethylamine complex (DMAB was used as the reducing agent. It was observed that application of silver ammonia complexes as the silver nanoparticles precursor as well as alkaline solution effect in higher quantity of deposited AgNPs in comparison to deposition process with the use of silver(I nitrate in acidic solution.

  7. An efficient way to prepare silver nanorods in high concentration by polyol method without adding other metal or salt

    International Nuclear Information System (INIS)

    Chen Yong; Guan Jianguo; Xie Hongquan

    2012-01-01

    Using ethylene glycol as solvent and reductant, polyvinyl pyrrolidone(PVP) as capping agent under the action of appropriately preformed silver crystal seeds and controlled addition rates of silver nitrate and PVP solution, silver nanorods with length of 2–15 μm and diameter of 200–880 nm can be obtained in high concentration of AgNO 3 as 0.50 M. In the absence of the preformed seeds, nanorods cannot be obtained as the main product, if the AgNO 3 concentration is over 0.10 M. It is necessary to use the appropriately preformed silver crystal seeds for the high concentration preparation of silver nanorods. Transmission Electron Microscopy images showed that Ag seeds preformed at appropriate silver nitrate concentrations exhibited the multiply twinned particles of decahedral shape(MTPs), which formed Ag nanorods in the presence of PVP. Through study of the effects of various factors on the nanostructure of silver, the favorable conditions are: appropriately preformed seeds concentration at 6.54–9.81 mM, addition rate of AgNO 3 solution at 0.30–0.43 mL min −1 and molar ratio of PVP/AgNO 3 at 1.1–1.4, in order to control the crystal growth rate of silver matching the reduction rate of AgNO 3 by ethylene glycol. The nanorods obtained were characterized by Scanning Electron Microscopy, EDX, XRD, Raman spectrometry, Infrared Spectrophotometry and Ultraviolet Spectrophotometry. On the base of the above results, the mechanism of rates matching for obtaining silver nanorods was briefly discussed. This method is a simple, facile and economical method using high concentration with high yield without using other metal or salt to massively synthesize silver nanorods through adding preformed silver seeds to control the reduction rate of silver nitrate and the crystal growth rate of silver nanorods. As compared to the conventional polyol method using lower silver nitrate concentration, this method can save ethylene glycol used and time of operation and the as

  8. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  9. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  10. Preparation of Silver Nanostructures from Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    M. A. Pedroza-Toscano

    2012-01-01

    Full Text Available Precipitation of silver nanoparticles at 70°C was carried out by dosing a 1.3 M sodium borohydride aqueous solution over bicontinuous microemulsions formed with a mixture of sodium bis(2-ethylhexyl sulfosuccinate (AOT and sodium dodecylsulfate (SDS as surfactants, a 0.5 M silver nitrate aqueous solution, and toluene. Weight ratios of 2.5/1 and 3/1 AOT/SDS were used in the precipitation reactions. Silver nanoparticles were characterized by transmission electronic microscopy, X-ray diffraction, and atomic absorption spectroscopy. A mixture of isolated spheroidal nanoparticles (≈15 wt.% with an average diameter around 10 nm and wormlike structures (≈85 wt.% with an average length close to 480 nm and an average diameter ca. 40 nm was obtained, regardless of the AOT/SDS ratio. Higher yields were obtained compared with those reported when reverse microemulsions were employed. Formation of wormlike structures was ascribed to one-dimensional aggregation of crystal and particles within the channels of bicontinuous microemulsions, which performed as templates.

  11. Radiation chemistry of the aqueous aluminium nitrate solution (Preprint no. RC-26)

    International Nuclear Information System (INIS)

    Kalkar, C.D.; Date, D.B.

    1991-01-01

    Radiolysis of aqueous aluminium nitrate solution is studied as a function of concentration in the range 10 -4 M to 10 -1 M. The stable radiolytic product of nitrate radiolysis is nitrite. The yield of nitrite linearly increases with absorbed dose. The G(NO 2 ) values are determined at various concentrations of aluminium nitrate. A suitable mechanism is proposed to explain the observed G-value for the reduction of nitrate to nitrite. (author). 6 refs., 1 tab

  12. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    Science.gov (United States)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  13. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Science.gov (United States)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  14. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  15. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Science.gov (United States)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-06-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  16. The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil.

    Science.gov (United States)

    Jesmer, Alexander H; Velicogna, Jessica R; Schwertfeger, Dina M; Scroggins, Richard P; Princz, Juliska I

    2017-10-01

    The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO 3 ; as ionic Ag + ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag + in soil samples was estimated using an ion-exchange technique applied to KNO 3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO 3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag + than those from AgNO 3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.

  17. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    Science.gov (United States)

    Campillo Gloria, E.; Ederley, Vélez; Gladis, Morales; César, Hincapié; Jaime, Osorio; Oscar, Arnache; Uribe José, Ignacio; Franklin, Jaramillo

    2017-06-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO3) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) - Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV-visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λmax ~ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated.

  18. Synthesis of Silver nanoparticles (AgNPs) with Antibacterial Activity

    International Nuclear Information System (INIS)

    Gloria, E. Campillo; Ederley, Vélez; César, Hincapié; Gladis, Morales; Jaime, Osorio; Oscar, Arnache; José, Ignacio Uribe; Franklin, Jaramillo

    2017-01-01

    The synthesis of nanomaterials is currently one of the most active in nanoscience branches; especially those help improve the human quality life. Silver nanoparticles (AgNPs) are an example of this as it is known to have inhibitory and bactericidal effects. In this work, we report the synthesis of silver nanoparticles by chemical reduction method of silver nitrate (AgNO 3 ) from aqueous solution, using a mix of polivinyl pyrrolidone (PVP) – Aloe Vera as reducing agent and for stabilization and control of particle size. Silver nanoparticles obtained were characterized by Scanning Electron Microscopy (SEM), UV–visible spectroscopy and measurements using Zetasizer Nano ZS were applied to size estimation. The existence of surface plasmon resonance peak at λ max ∼ 420 nm is evidence of silver nanoparticles formation. It was possible to standardize an appropriate protocol for the evaluation of bactericidal activity of the nanoparticles, for mesophilic microorganisms. Bactericidal activity above 90% against these kinds of bacteria was demonstrated. (paper)

  19. Green Synthesis, Characterization, and Antibacterial Activity of Silver/Polystyrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manal A. Awad

    2015-01-01

    Full Text Available A novel, nontoxic, simple, cost-effective and ecofriendly technique was used to synthesize green silver nanoparticles (AgNPs. The AgNPs were synthesized using orange peel extract as a reducing agent for silver nitrate salt (AgNO3. The particle size distribution of AgNPs was determined by Dynamic Light Scattering (DLS. The average size of silver nanoparticles was 98.43 nm. The stable dispersion of silver nanoparticles was added slowly to polystyrene solution in toluene maintaining the temperature at 70°C. The AgNPs/polystyrene (PS nanocomposite solution was cast in a petri dish. The silver nanoparticles encapsulated within polymer chains were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM equipped with Energy Dispersive Spectroscopy (EDS in addition to Transmission Electron Microscopy (TEM. The green AgNPs/PS nanocomposite film exhibited antimicrobial activity against Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae and Salmonella, and Gram-positive bacteria Staphylococcus aureus. Thus, the key findings of the work include the use of a safe and simple AgNPs/PS nanocomposite which had a marked antibacterial activity which has a potential application in food packaging.

  20. In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds

    OpenAIRE

    Lim, Mim Mim; Sultana, Naznin

    2016-01-01

    The development of nano-sized scaffolds with antibacterial properties that mimic the architecture of tissue is one of the challenges in tissue engineering. In this study, polycaprolactone (PCL) and PCL/gelatine (Ge) (70:30) nanofibrous scaffolds were fabricated using a less toxic and common solvent, formic acid and an electrospinning technique. Nanofibrous scaffolds were coated with silver (Ag) in different concentrations of silver nitrate (AgNO3) aqueous solution (1.25, 2.5, 5, and 10?%) by ...

  1. Anodic Behavior of Alloy 22 in Calcium Chloride and in Calcium Chloride Plus Calcium Nitrate Brines

    International Nuclear Information System (INIS)

    Evans, K.J.; Day, S.D.; Ilevbare, G.O.; Whalen, M.T.; King, K.J.; Hust, G.A.; Wong, L.L.; Estill, J.C.; Rebak, R.B.

    2003-01-01

    Alloy 22 (UNS N60622) is a nickel-based alloy, which is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in concentrated calcium chloride (CaCl 2 ) brines and to evaluate the inhibitive effect of nitrate, especially to localized corrosion. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion potential of Alloy 22 was approximately -360 mV in the silver-silver chloride (SSC) scale and independent of the tested temperature. Cyclic polarization tests showed that Alloy 22 was mainly susceptible to localized attack in 5 M CaCl 2 at 75 C and higher temperatures. The addition of nitrate in a molar ratio of chloride to nitrate equal to 10 increased the onset of localized corrosion to approximately 105 C. The addition of nitrate to the solution also decreased the uniform corrosion rate and the passive current of the alloy

  2. Plans and equipment for criticality measurements on plutonium-uranium nitrate solutions

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Clayton, E.D.; Durst, B.M.

    1982-01-01

    Data from critical experiments are required on the criticality of plutonium-uranium nitrate solutions to accurately establish criticality control limits for use in processing and handling of breeder type fuels. Since the fuel must be processed both safely and economically, it is necessary that criticality considerations be based on accurate experimental data. Previous experiments have been reported on plutonium-uranium solutions with Pu weight ratios extending up to some 38 wt %. No data have been presented, however, for plutonium-uranium nitrate solutions beyond this Pu weight ratio. The current research emphasis is on the procurement of criticality data for plutonium-uranium mixtures up to 60 wt % Pu that will serve as the basis for handling criticality problems subsequently encountered in the development of technology for the breeder community. Such data also will provide necessary benchmarks for data testing and analysis on integral criticality experiments for verification of the analytical techniques used in support of criticality control. Experiments are currently being performed with plutonium-uranium nitrate solutions in stainless steel cylindrical vessels and an expandable slab tank system. A schematic of the experimental systems is presented

  3. Isotope dilution surface ionization mass spectrometry of silver in environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Murozumi, M; Nakamura, S; Suga, K [Muroran Inst. of Tech., Hokkaido (Japan)

    1981-03-01

    Surface ionization mass spectrometry has been developed to measure isotopic abundances and concentrations of silver in commercial high-purity metals, environmental materials such as rocks and plants, and /sup 109/Ag and /sup 107/Ag spikes. A minute amount of silver is extracted into a dithizone chloroform solution from a nitric acid solution of above samples. After the silver is back-extracted into 6.0 ml of a 7 mol/l HNO/sub 3/ solution, the solution is evaporated to dryness under the nitrogen atmosphere. Silver nitrate thus formed is dissolved in a mixture of 60 ..mu..l of an 0.003% silica gel suspended water and 5 ..mu..l of a 2% phosphoric acid. An aliquot of this solution is applied to the mass spectrometry using a rhenium single filament as an ion emitter. The proposed method can detect the presence of 10/sup -14/ g of silver on the ion emitter, and measure the /sup 109/Ag//sup 107/Ag isotopic ratio in environmental materials with the accuracy of 0.1 -- 0.2% in the coefficient of variation. Isotope dilution mass spectrometry using a /sup 107/Ag spike has revealed the silver concentration in the environmental standard materials, which were prepared by the National Bureau of Standards, U.S.A. and National Institute of Environmental Studies of Japan, as follows; 27.9 +- 0.2 ppb for the Orchard Leaves and 34.3 +- 0.3 ppb in the Pepper Bush. The determined values of silver in the Granodiorite, JG-1, and Basalt, JB-1 powders made by the Geological Survey of Japan are 25.4 +- 0.4 ppb and 41.3 +- 0.1 ppb respectively. Silver concentration in a coastal sea water sample is found to be at the level of 2.5 +- 0.4 ppt.

  4. Ruthenium release from thermally overheated nitric acid solution containing ruthenium nitrosyl nitrate and sodium nitrate to solidify

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo; Ueda, Yasuyuki; Enokida, Youichi [Nuclear Chemical Engineering Laboratory, Nagoya University, Nagoya 4648603 (Japan)

    2016-07-01

    Radioactive ruthenium (Ru) is one of the dominant elemental species released into the environment from a fuel reprocessing plant in a hypothetical design accident due to its relatively higher fission yield and longer half-life. After the hypothetical accident assuming the loss of all electric power and cooling functions, high-level liquid waste (HLLW) may be overheated by the energetic decays of many fission products in it, and Ru may be oxidized to the volatile tetroxide, RuO{sub 4}, which is released through the off-gas pathway. At a reprocessing plant in Japan, alkaline solution from the solvent scrubbing stream is sometimes mixed with the HLLW followed by vitrification, which can be influenced by the addition of sodium nitrate to a simulated HLLW containing ruthenium nitrosyl nitrate that was experimentally evaluated on a small scale using the overheated nitric acid solution of 2 mol/dm{sup 3}, which was kept at 180 Celsius degrees in a glass evaporator placed in a thermostatic bath. The release fraction of Ru increased by approximately 30% by the addition of sodium nitrate. This may be partially explained by the existence of relatively highly concentrated nitrate ions in the liquid phase that oxidize the ruthenium species to RuO{sub 4} during the drying process. (authors)

  5. Preparation of Silver Nano-Particles and Use as a Material for Water Sterilization

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2011-01-01

    Full Text Available High dispersed nanodimensional silver metal (nanosilver solution of concentration ranging from 40 to 400 mg/L was prepared from silver nitrate in water media with and without dispersing reagent. The reduction process was initiated by ammonium hydroxide and glucose was used as a reductive reagent. The nanosilver solution was characterized by color changing from light-yellow to yellow, brown, red-brown, brown-green, dark-green, blue, dark-blue and those were depending on silver concentration and dimension of silver metal particles. The nanosilver solution was possibly used as a direct sterilizing reagent or coating on calcinated laterite grains to create sterilizing material in bacterial removing filter. Direct sterilization ability of nanosilver solution and nanosilver coated material was investigated. The results showed that with 10 ppb nanosilver in supplied water, all bacteria will be removed within 25–30 min. 10 mm thick layer of silica gel or 20 mm of calcinated laterite coated nanosilver could remove all bacteria in water flowed though with maximum flow rate of 100 L.m2/min. Moreover, sterilizing material was nontoxic and applicable for drinking water production.

  6. PVDF nanofibers with silver nanoparticles and silver/titanium dioxide for antimicrobial applications;Eletrofiacao de nanofibras de PVDF com nanoparticulas de prata e de prata/dioxido de titanio para aplicacoes antimicrobiais

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ligia M.M.; Olyveira, Gabriel M. de, E-mail: gmolyveira@yahoo.com.b, E-mail: ligialmmc@hotmail.co [Universidade Federal de Sao Carlos (PPGCEM/UFScar), SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais; Gregorio Filho, Rinaldo; Pessan, Luiz A., E-mail: pessan@ufscar.b, E-mail: gregorio@ufscar.b [Universidade Federal de Sao Carlos (UFScar), SP (Brazil)

    2009-07-01

    PVDF nanofibers with and without nanoparticles were produced by the method of electro spinning using dimethylformamide (DMF). Silver nitrate nanoparticles (0,5 and 2 wt %) and silver/titanium dioxide nanoparticles obtained by the reduction method (2 wt %) were synthesized and added to the PVDF solution to prepared nanofibers. The processes of electrospinning and film preparation using PVDF with the nanoparticles were compared. Silver/titanium dioxide nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) with EDX and x-ray photoelectron spectroscopy (XPS) to show silver/titanium dioxide nanoparticles. Nanofibers mats were characterized with SEM to study the effects of the addition of the nanoparticles on the morphology behavior and spectroscopy by Fourier transform infrared (FTIR) to analyze the crystalline phase of PVDF films. (author)

  7. Green, one-step and template-free synthesis of silver spongelike networks via a solvothermal method

    International Nuclear Information System (INIS)

    Yi, Zao; Xu, Xibin; Zhang, Kuibao; Tan, Xiulan; Li, Xibo; Luo, Jiangshan; Ye, Xin; Wu, Weidong; Wu, Jie; Yi, Yougen; Tang, Yongjian

    2013-01-01

    Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions. The products were characterized by X-ray powder diffraction, UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy and selected area electron diffraction. These Ag nanoparticles (NPs) appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional (3D) networks with time. The carboxylate groups, generated by glucose oxidation, interacted with the Ag nanostructures, resulting in formation of silver spongelike networks having very uniform wire diameters distributions (about 20 nm in diameter). A new plasmon band was observed in the longer-wavelengths region (565–912 nm) of the conventional transverse plasmon resonance band at 430 nm. In principle, this one-step, template-free approach can also be extended to large-scale 3D organizations of other transition/noble metal NPs. - Graphical abstract: Silver spongelike networks were synthesized from an alkaline pH solution of silver nitrate and glucose under solvothermal conditions, with any other reducing or capping agent. These Ag nanoparticles appear to undergo sequentially linear aggregation and welding initially, and then, they randomly cross link into self-supporting, three-dimensional spongelike networks with time. Highlights: ► Silver spongelike networks were synthesized using eco-friendly glucose. ► This synthesis was a seedless process, and did not need any other surfactant or capping agent. ► The process was initial reduction – nucleation – adsorption – growth – branching

  8. Synthesis of silver nanoparticles by chemical reduction at various fraction of MSA and their structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diantoro, Markus, E-mail: m-diantoror@yahoo.com; Fitrianingsih, Rina, E-mail: m-diantoror@yahoo.com; Mufti, Nandang, E-mail: m-diantoror@yahoo.com; Fuad, Abdulloh, E-mail: m-diantoror@yahoo.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (UM), Jl. Semarang No. 5 Malang 65145 (Indonesia)

    2014-03-24

    Nanosilver is currently one of the most common engineered nanomaterials and is used in many applications that lead to the release of silver nanoparticles and silver ions into aqueous systems. Nanosilver also possesses enhanced antimicrobial activity and bioavailability that may less environmental risk compared with other manufactured nanomaterials. Described in this research are the synthesis of silver nanoparticle produced by chemical reduction from silver nitrate (AgNO{sub 3}) solution. As a reducing agent, Sodium Borohydride (NaBH{sub 4}) was used and mercaptosuccinic Acid (MSA) as stabilizer to prevent the nanoparticle from aglomerating. It was also used two kinds of solvent, they are water and methanol. In typical experiment MSA was dissolve in methanol with a number of variation of molarity i.e. 0,03 M, 0,06 M, 0,12 M, 0,15 M, and the mixture was kept under vigorous stirring in an ice bath. A solution of silver nitrate of 340 mg in 6,792 ml water was added. A freshly prepared aqueous solution of sodium borohydride (756,6 mL in 100 mL of water) was added drop wisely. The solution was kept for half an hour for stirring and were allowed to settle down in methanol. The obtained samples then characterized by means of x-ray diffractometer, and scanning electron microscopy, as well as transmission electron microscopy to obtain their structures of silver nanoparticles, morphology, and sizes. It is shown that diameter of silver nanoparticle sized about 24.3 nm (Ag@MSA 0.03 M), 20.4 nm (Ag@MSA 0.06 M), 16.8 nm (Ag@MSA 0.12 M), 16.9 nm (Ag@MSA 0.15 M) which was calculated by Scherrer formula by taking the FWHM from fitting to Gaussian. The phases and lattice parameter showed that there is no significant change in its volume by increasing molarity of stabilizer. In contrast, the size of particles is decreasing.

  9. A case of generalized argyria after ingestion of colloidal silver solution.

    Science.gov (United States)

    Kim, Yangho; Suh, Ho Seok; Cha, Hee Jeong; Kim, Suk Hwan; Jeong, Kyoung Sook; Kim, Dong Hoon

    2009-03-01

    A 58-year-old woman was referred to our hospital due to progressive skin darkening, which began 5 months previously. The patient had strikingly diffuse blue-gray discoloration of the skin, most prominent in sun-exposed areas, especially her face and hands. The oral mucosa, tongue, gums, eye conjunctiva, ears, nail beds, and trunk were also involved. Bluish-gray discoloration of all nails was aggravated by cold weather. She had ingested 1 L of colloidal silver solution daily for approximately 16 months as a traditional remedy. Her serum silver concentration was 381 ng/ml which was a very high (reference level: silver and sulfur in the dense black deposits. The ingestion of colloidal silver appears to be an increasing practice among patients using alternative health practices. All silver-containing products including colloidal silver should be labeled with a clear warning to prevent argyria, especially in alternative health practices.

  10. 41 CFR 109-27.5107 - Recovery of silver from used hypo solution and scrap film.

    Science.gov (United States)

    2010-07-01

    ... used hypo solution and scrap film. 109-27.5107 Section 109-27.5107 Public Contracts and Property... § 109-27.5107 Recovery of silver from used hypo solution and scrap film. The requirements for the recovery of silver from used hypo solution and scrap film are contained in § 109-45.1003 of this chapter. ...

  11. Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue

    Science.gov (United States)

    Chettri, Prajwal; Vendamani, V. S.; Tripathi, Ajay; Singh, Manish Kumar; Pathak, Anand P.; Tiwari, Archana

    2017-06-01

    Here we present the synthesis of reduced graphene oxide and silver nanoparticle-reduced graphene oxide composites using aqueous extract of dry leaves of Psidium guajava by one pot reflux method. Psidium guajava extract simultaneously reduces silver nitrate and graphene oxide in the reaction mixture which is confirmed by various spectroscopic techniques. Variable concentrations of silver nitrate solution are used to obtain reduced graphene oxide with different dosage of silver nanoparticles and the resultant composites are examined using surface enhanced Raman scattering measurements. Considering methylene blue as a probe molecule, it is found that the surface enhanced Raman scattering activity increases with the increase in the dose of silver nanoparticles. Our as-synthesised silver nanoparticle-reduced graphene oxide composite shows remarkable performance in detecting methylene blue with concentration as low as 10-8 M for which the enhancement factor is 4.6 × 105. In addition, we report that the reduced graphene oxide quenches the photoluminescence of methylene blue more efficiently than silver nanoparticle-reduced graphene oxide composite. The charge transfer states have been extracted which are mainly responsible for the quenching processes.

  12. Corrosion evaluation of uranyl nitrate solution evaporator and denitrator in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Yamanaka, Atsushi; Hashimoto, Kowa; Uchida, Toyomi; Shirato, Yoji; Isozaki, Toshihiko; Nakamura, Yoshinobu

    2011-01-01

    The Tokai reprocessing plant (TRP) adopted the PUREX method in 1977 and has reprocessed spent nuclear fuel of 1140 tHM (tons of heavy metals) since then. The reprocessing equipment suffers from various corrosion phenomena because of high nitric acidity, solution ion concentrations, such as uranium, plutonium, and fission products, and temperature. Therefore, considering corrosion performance in such a severe environment, stainless steels, titanium steel, and so forth were employed as corrosion resistant materials. The severity of the corrosive environment depends on the nitric acid concentration and the temperature of the solution, and uranium in the solution reportedly does not significantly affect the corrosion of stainless steels and controls the corrosion rates of titanium steel. The TRP equipment that handles uranyl nitrate solution operates at a low nitric acid concentration and has not experienced corrosion problems until now. However, there is a report that corrosion rates of some stainless steels increase in proportion to rising uranium concentrations. The equipment that handles the uranyl nitrate solution in the TRP includes the evaporators, which concentrate uranyl nitrate to a maximum concentration of about 1000 gU/L (grams of uranium per liter), and the denitrator, where uranyl nitrate is converted to UO 3 powder at about 320degC. These equipments are therefore required to grasp the degree of the progress of corrosion to handle high-temperature and high-concentration uranyl nitrate. The evaluation of this equipment on the basis of thickness measurement confirmed only minor corrosion and indicated that the equipment would be fully adequate for future operation. (author)

  13. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  14. Potentiometric determination of free nitric-acid in trilaurylamine solutions containing plutonium nitrate

    International Nuclear Information System (INIS)

    Perez, J.J.; Saey, J.C.

    1965-01-01

    A potentiometric method of determination of the free nitric acid in trilaurylamine solutions containing plutonium or thorium nitrates is described. The potentiometric titration is carried out in a mixture of benzene and 1,2-dichloro ethane with a standard solution of trilaurylamine as the titrant. When thorium nitrate is present the metal complex is not dissociated then the titration has a single end-point. In the case of plutonium nitrate the partial dissociation of the plutonium complex corresponds to a second point. The experimental error in duplicate analyses of 50 samples is about 1 per cent for free acid concentrations in the range of 0,03 to 0,1 N and plutonium concentrations between 1 to 5 g/l. (authors) [fr

  15. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    Science.gov (United States)

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.

  16. Purification of simulated waste water using green synthesized silver nanoparticles of Piliostigma thonningii aqueous leave extract

    Science.gov (United States)

    Shittu, K. O.; Ihebunna, O.

    2017-12-01

    Synthesis of nanoparticles from various biological systems has been reported, but among all such systems, biosynthesis of nanoparticles from plants is considered the most suitable method. The use of plant material not only makes the process eco-friendly, but also the abundance makes it more economical. The aim of this study was to biologically synthesize silver nanoparticle using Piliostigma thonningii aqueous leaf extract and applied in the purification of laboratory stimulated waste with optimization using the different conditions of silver nanoparticle production such as time, temperature, pH, concentration of silver nitrate and volume of the aqueous extract. The biosynthesized silver nanoparticles were characterized by UV-visible spectrophotometry, nanosizer, energy dispersive x-ray analysis (EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The time intervals for the reaction with aqueous silver nitrate solution shows an increase in the absorbance with time and became constant giving a maximum absorbance at 415 nm at 60 min of incubation. The pH of 6.5, temperature 65 °C, 1.25 mM of silver nitrate and 5 ml of plant extract was the best condition with maximum absorbance. The results from nanosizer, UV-vis and TEM suggested the biosynthesis silver nanoparticle to be spherical ranging from 50 nm to 114 nm. The EDX confirmed the elemental synthesis of silver at 2.60 keV and FTIR suggested the capping agent to be hydroxyl (OH) group with -C=C stretching vibrations. The synthesized silver nanoparticle also shows heavy metal removal activity in laboratory simulated waste water. The safety toxicity studies show no significant difference between the orally administered silver nanoparticles treated water group and control group, while the histopathological studies show well preserved hepatic architecture for the orally administered silver nanoparticle treated waste water group when compared with the control

  17. A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions.

    Science.gov (United States)

    Tyne, William; Lofts, Stephen; Spurgeon, David J; Jurkschat, Kerstin; Svendsen, Claus

    2013-08-01

    A new toxicity test medium for Caenorhabditis elegans is presented. The test solution is designed to provide a better representation of natural soil pore water conditions than currently available test media. The medium has a composition that can readily be modified to allow for studies of the influences of a range of environmentally relevant parameters on nematode biology and toxicology. Tests conducted in the new medium confirmed that nematodes' reproduction was possible at a range of solution pH levels, offering the potential to conduct toxicity studies under a variety of conditions. A test to establish silver nanoparticle and dissolved silver nitrate toxicity, a study type not feasible in M9 or agar media due to precipitation and nanoparticle agglomeration, indicated lower silver nanoparticle (median effective concentration [EC50] of 6.5 mg Ag/L) than silver nitrate (EC50 0.28 mg Ag/L) toxicity. Characterization identified stable nanoparticle behavior in the new test medium. Copyright © 2013 SETAC.

  18. Continuous synthesis of colloidal silver nanoparticles by electrochemical discharge in aqueous solutions

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Chen, Yu-Chun; Shyue, Jing-Jong

    2011-01-01

    This article presents an electrochemical discharge (ECD) method that consists of a combination of chemical methods and electric arc discharges. In the method, 140 V is applied to an Ag electrode from a DC power supply. The arc-discharge between the electrodes produces metallic silver nanoparticles and silver ions in the aqueous solution. Compared with the original arc discharge, this ECD method creates smaller nanoparticles, prevents clumping of the nanoparticles, and shortens the production time. The citrate ions also reduce the silver ions to silver nanoparticles. In addition, the citrate ions cap the surface of the produced silver nanoparticles and the zeta potential increases. In this article, the weight loss of the electrodes and the reduction of silver ions to silver nanoparticles as a function of citrate concentration and electric conductivity of the medium are discussed. Furthermore, the properties of the colloidal silver prepared with ECD are analyzed by UV–Vis spectroscopy, dynamic light scattering, electrophoresis light scattering, and scanning electron microscopy. Finally, a continuous production apparatus is presented for the continuous production of colloidal silver.

  19. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.

    Science.gov (United States)

    Bankura, K P; Maity, D; Mollick, M M R; Mondal, D; Bhowmick, B; Bain, M K; Chakraborty, A; Sarkar, J; Acharya, K; Chattopadhyay, D

    2012-08-01

    A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Terbium nitrate luminescence quenching by eosin in he presence of lithium perchlorate in sulfolane solutions

    International Nuclear Information System (INIS)

    Ostakhov, S.S.; Kolosnitsyn, V.S.; Krasnogorskaya, N.N.; Kazakov, V.P.

    2000-01-01

    Quenching of terbium nitrate luminescence by anionic dye, eosin, in the presence of lithium perchlorate in sulfolane solutions was studied. Temperature dependence of terbium nitrate luminescence in sulfolane solutions in the presence of perchlorate anions were considered. The values of energy required for water molecular substitution in Tb 3+ ion coordination sphere for solvent molecule in electrolyte solution were ascertained [ru

  1. Green Synthesis of Silver Nanoparticles Using Pimpinella anisum L. Seed Aqueous Extract and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Hashem Akhlaghi

    2015-09-01

    Full Text Available An aqueous extract of Pimpinella anisum was used for green synthesis of silver nanoparticles by bio reduction of an aqueous solution of silver nitrate. Silver nanoparticles were characterized by UV–Vis spectrometry, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD analysis, scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDAX. The increase in absorption at 420 nm was used for recording the formation of a colloidal suspension of silver nanoparticles. The binding properties of the capped Ag nanoparticles synthesized from aqueous extract of P. anisum were analyzed by FTIR. XRD studies revealed that most of the nanoparticles were cubic and face centered cubic in shape. SEM analysis showed the size and shape of silver nanoparticles and EDAX confirmed the presence of silver. The synthesized silver nanoparticles showed DPPH free radical scavenging activity.

  2. Green synthesis of silver nanoparticles and its application for mosquito control

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available Objective: To synthesize and characterize silver nanoparticles from aqueous root extract of Parthenium hysterophorus (P. hysterophorus and also to evaluate the potentiality of synthesized silver nanoparticles as larvacidal agent against Culex quinquefasciatus (Cx. quinquefasciatus. Methods: The silver nano particles were generated using root extract of P. hysterophorus. The characterization of synthesized nanoparticles was done by visual color change, UV-Vis spectrum, scanning electron micrograph, fluorescent microscope and Fourier transform infrared spectroscopy. Results: It was found that aqueous silver ions can be reduced by aqueous root extract of P. hysterophorus to generate extremely stable silver nanoparticles in aqueous medium. Larvae were exposed to varying concentrations of plant extracts, aqueous silver nitrate solution and synthesized silver nanoparticles for 0, 24 and 48 h separately. Aqueous root extract showed moderate larvicidal effects; however, the maximum efficacy (60.18% was observed with the synthesized silver nanoparticles against the larvae of Cx. quinquefasciatus. Conclusions: These results suggest that the green synthesis of silver nanoparticles have the potential to be used as an ideal eco-friently approach for the control of the Cx. quinquefasciatus. This is the first report on the mosquito larvicidal activity of the nano particle synthesized by P. hysterophorus.

  3. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  4. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of nitrate on corrosion of austenitic stainless steel in boiling nitric acid solution containing chromium ions

    International Nuclear Information System (INIS)

    Hasegawa, Satoshi; Kim, Seong-Yun; Ebina, Tetsunari; Ito, Tatsuya; Nagano, Nobumichi; Hitomi, Keitaro; Ishii, Keizo; Tokuda, Haruaki

    2016-01-01

    The oxidation behavior of chromium and the corrosion behavior of austenitic stainless steel in boiling nitric acid solution containing highly concentrated nitrates were investigated using UV-visible spectroscopic measurements, Raman spectral measurements, immersion tests, and potentiodynamic polarization measurements. The oxidation rate measurement of chromium from Cr(III) to Cr(VI) was performed by 1 M boiling nitric acid solution containing each highly concentrated nitrates: Al(NO_3)_3, Nd(NO_3)_3, Ca(NO_3)_2, Mg(NO_3)_2, and NaNO_3 as a simulant of uranium nitrate in uranium concentrator in reprocessing plants. As a result, the rate of chromium oxidation was different depending on the added nitrates even at the same nitric acid concentration. In addition, the oxidation rate of chromium was increased with increasing the calculated partial pressure of nitric acid in consideration of the hydration of cation of nitrates. Furthermore, the corrosion rate of type 310 stainless steel was accelerated by the solution having a high chromium oxidation rate containing nitrates. These results indicated that the acceleration of the corrosion rate in the solutions depending on the oxidation rate of chromium, and the rate is affected by the salt-effect of nitrates. (author)

  6. Electro-gravimetric recovery of silver from aqueous solutions and its precursors

    Directory of Open Access Journals (Sweden)

    A. Shah,

    2016-08-01

    Full Text Available A simple electrolytic cell was used for electrochemical recovery of silver from aqueous solutions containing 100 mg/L Ag(I. Two different sets of electrodes were applied to find the enhanced recovery of silver. Rocks and ores samples were processed through fire assay method and acid digestion. A set of electrodes comprised of stainless steel anode and aluminum cathode gave maximum recovery (96.5% of silver. This simple, robust, environment friendly and highly sensitive method was effectively applied to various ores and rock samples. The developed method with slight modifications can also be applied for the recovery of other metals.

  7. Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires

    Science.gov (United States)

    Zhao, Tian; Fan, Jun-Bing; Cui, Jing; Liu, Jin-Hua; Xu, Xiao-Bo; Zhu, Ming-Qiang

    2011-01-01

    Synthesis of well-defined silver nanostructure in terms of size and shape has been strongly motivated by the requirements to their size- and shape-dependent optical properties which achieve their practical applications ranging from biosensing to catalysis and optics. In this Letter, an ultrafast synthetic process for the well-defined Ag nanocubes and nanowires have been developed, which simply involve the microwave-mediated polyol reduction of silver nitrate in ethylene glycol by adding different amount sodium sulfide (Na2S) into the solution. The possible growth and evolution process of the Ag nanocubes and nanowires involves the microwave ultrafast nucleation and growth followed by oxidative etching of Ag nanocrystals.

  8. Process for denitrating waste solutions containing nitrates and actinides with simultaneous separation of the actinides

    International Nuclear Information System (INIS)

    Gompper, K.

    1986-01-01

    The invention is intended to reduce the acid and nitrate content of nitrate waste solutions, to reduce the total salt content of the waste solution, to remove the actinides contained in it by precipitation, without any danger of violent reactions or an increase in the volume of the waste solution. The invention achieves this by mixing the waste solution with diethyl oxalate at room temperature and heating the mixture to at least 80 0 C. (orig./PW) [de

  9. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.

    Science.gov (United States)

    Gorup, Luiz F; Longo, Elson; Leite, Edson R; Camargo, Emerson R

    2011-08-15

    A new method to stabilize silver nanoparticles by the addition of ammonia is proposed. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C. After approximately 12 min, a diluted ammonia solution was added to the reaction flask to form soluble diamine silver (I) complexes that played an important growth moderating role, making it possible to stabilize metallic silver nanoparticles with sizes as small as 1.6 nm after 17 min of reaction. Colloidal dispersions were characterized by UV-visible absorption spectroscopy, X-ray diffraction, and transmission electronic microscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Electron spectra and mechanism of complexing of uranyl nitrate in water-acetone solutions

    International Nuclear Information System (INIS)

    Zazhogin, A.A.; Zazhogin, A.P.; Komyak, A.I.; Serafimovich, A.I.

    2003-01-01

    Based on the analysis of the luminescence and electronic absorption spectra, the processes of complexing in an aqueous solution of UO 2 (NO 3 ) 2 ·6H 2 O with small additions of acetone have been studied. In a pure aqueous solution, uranyl exists as the complex UO 2 ·5H 2 O. It is shown that the addition of acetone to the solution leads to the displacement of some water molecules out of the first coordination sphere of uranyl and the formation of the uranyl nitrate dihydrate complexes UO 2 (NO 3 ) 2 ·2H 2 O. It has been established that the stability of these complexes is determined by the decrease in the water activity and in the degree of hydration of uranyl and nitrate, which is the result of the local increase in the concentration of acetone molecules (due to their hydrophobicity) in the regions of the solution where uranyl and nitrate ions are found. The experimental facts supported the mechanism proposed are presented. (authors)

  12. The research of technology and equipment for a microwave denitration process of the uranyl nitrate solution

    International Nuclear Information System (INIS)

    Bao Weimin; Wang Xuejun; Ma Xuquan; Shi Miaoyi; Zhang Zhicheng; Bao Zhu Tian.

    1991-01-01

    In order to improve the present process of converting the plutonium nitrate into oxide powder in the nuclear fuel cycle, a new conversion process for the direct denitration using microwave heating has been developed. Microwave denitration is based on intramolecular polarization of a material in electric field and has no need of a process of heat transfer during microwave heating, so that the whole material can be heated quickly and uniformly. The thermal decomposition reactions of Pu, U, Th and RE nitrate have been analyzed and compared. The uranyl nitrate solution was chosen as imitative plutonium nitrate solution. The performance parameters ε r tanδ of U, Th and RE nitrate and oxide in microwave field were measured. The data obtained show that all of them could absorb microwave energy well and cause heating decomposition reactions. The microwave denitration test unit was designed and made. Denitration tests for rare-earths nitrate and uranyl nitrate solutions were performed. It could be completed in one step that the uranyl nitrate solution was evaporated, dryed and denitrated in a vessel. The denitrated products are a porous lump and easy to scrape off from the denitration vessel. The main forms of the products UO 3 ·0.8H 2 O and U 3 O 8 which have excellent powder properties. The capacity of the denitration unit is 1.3 kg UO 3 /h. According to the experimental results the simplicity, feasibility and good repeatability of the process have been fully proved. The unit operates easily and is adaptable to conversion of nitrate in nuclear fuel cycle. (author)

  13. A Study of Antibioactivity of Nanosilver Colloid and Silver Ion Solution

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2014-01-01

    Full Text Available The colloidal silver solution was successfully prepared in dielectric fluid by using electrical spark discharge (ESD without any surfactants. It does not require the toxic chemical agents in the process, which may affect the effectiveness of nanosilver colloid as an antibacterial agent. Nanocolloidal silver produced by ESD is characterized as low cost, zero environmental pollution, continuous, and rapid mass production process. In order to test the effect of antibioactivity, nanosilver dough was tested; the silver nanofluid was prepared by ESD machine, made into dough at different concentrations, and fermented for three hours in order to observe changes in the diameter of the dough. The results showed that the effect of effectiveness of nanosilver at the concentration of 100 ppm was weak, whereas the effect of 60 ppm silver ion (100 ppm AgNO3 was significant, as the dissociation rate of silver ion concentration correlates to the antibioactivity.

  14. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Mendez, Miguel A., E-mail: maguilarme@ipn.mx; San Martin-Martinez, Eduardo; Ortega-Arroyo, Lesli [Instituto Politecnico Nacional, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada (Mexico); Cobian-Portillo, Georgina [Instituto Politecnico Nacional, Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (Mexico); Sanchez-Espindola, Esther [Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biologicas, Prolongacion Manuel M. Carpio s/n, esq. Plan de Ayala (Mexico)

    2011-06-15

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV-Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV-Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5-24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  15. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides

    International Nuclear Information System (INIS)

    Aguilar-Méndez, Miguel A.; San Martín-Martínez, Eduardo; Ortega-Arroyo, Lesli; Cobián-Portillo, Georgina; Sánchez-Espíndola, Esther

    2011-01-01

    Colloidal silver nanoparticles were synthesized by reducing silver nitrate solutions with glucose, in the presence of gelatin as capping agent. The obtained nanoparticles were characterized by means of UV–Vis spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The response surface methodology (RSM) was also used to determine the influence of the variables on the size of the nanoparticles. The antifungal activity of the silver nanoparticles was evaluated on the phytopathogen Colletotrichum gloesporioides, which causes anthracnose in a wide range of fruits. The UV–Vis spectra indicated the formation of silver nanoparticles preferably spherical and of relatively small size (<20 nm). The above-mentioned was confirmed by TEM, observing a size distribution of 5–24 nm. According to RSM the synthesis variables influenced on the size of the silver nanoparticles. By means of FTIR spectroscopy it was determined that gelatin, through their amide and hydroxyl groups, interacts with nanoparticles preventing their agglomeration. The growth of C. gloesporioides in the presence of silver nanoparticles was significantly delayed in a dose dependent manner.

  16. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract

    Energy Technology Data Exchange (ETDEWEB)

    Karimi Zarchi, A.A.; Faridi Majidi, R. [Tehran University of Medical Sciences, Department of Nanomedicine, School of Advanced Medical Technologies, Tehran (Iran, Islamic Republic of); Mokhtari, N.; Shahverdi, A.R. [Tehran University of Medical Sciences, Department of Pharmaceutical Biotechnology and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of); Arfan, M.; Rehman, T.; Ali, M. [University of Peshawar, Institute of Chemical Sciences, Peshawar, Khyber Pakhtoonkhwa (Pakistan); Amini, M. [Tehran University of Medical Sciences, Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran (Iran, Islamic Republic of)

    2011-05-15

    In this study a sunlight-induced method for rapid synthesis of silver nanoparticles using an ethanol extract of Andrachnea chordifolia is described. The silver nitrate solutions (1 mM) containing the ethanol extract of Andrachnea chordifolia were irradiated by both sunlight radiation and by sunlight radiation passed through different colored filters (red, yellow or green). The smallest size of silver nanoparticles was obtained when a silver ion solution was irradiated for 5 minutes by direct sunlight radiation. Further examination of the shape and size and of the surface chemistry of these biogenic silver nanoparticles, which were prepared under sunlight radiation, was carried out using transmission electron microscopy and infrared spectroscopy, respectively. Transmission electron microscopy images show spherical particles with an average size of 3.4 nm. Hydroxyl residues were also detected on the surface of these biogenic silver nanoparticles fabricated using plant extract of Andrachnea chordifolia under sunlight radiation. Our study on the reduction of silver ions by this plant extract in darkness shows that the synthesis process can take place under dark conditions at much longer incubations (48 hours). Larger silver polydispersed nanoparticles ranging in size from 3 to 30 nm were obtained when the silver ions were treated with the ethanol extract of Andrachnea chordifolia under dark conditions for 48 hours. (orig.)

  17. Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings.

    Science.gov (United States)

    Oliveira, R N; Rouzé, R; Quilty, B; Alves, G G; Soares, G D A; Thiré, R M S M; McGuinness, G B

    2014-02-06

    Polyvinyl alcohol (PVA) hydrogels are materials for potential use in burn healing. Silver nanoparticles can be synthesized within PVA hydrogels giving antimicrobial hydrogels. Hydrogels have to be swollen prior to their application, and the common medium available for that in hospitals is saline solution, but the hydrogel could also take up some of the wound's fluid. This work developed gamma-irradiated PVA/nano-Ag hydrogels for potential use in burn dressing applications. Silver nitrate (AgNO3) was used as nano-Ag precursor agent. Saline solution, phosphate-buffered solution (PBS) pH 7.4 and solution pH 4.0 were used as swelling media. Microstructural evaluation revealed an effect of the nanoparticles on PVA crystallization. The swelling of the PVA-Ag samples in solution pH 4.0 was low, as was their silver delivery, compared with the equivalent samples swollen in the other media. The highest swelling and silver delivery were related to samples prepared with 0.50% AgNO3, and they also presented lower strength in PBS pH 7.4 and solution pH 4.0. Both PVA-Ag samples were also non-toxic and presented antimicrobial activity, confirming that 0.25% AgNO3 concentration is sufficient to establish an antimicrobial effect. Both PVA-Ag samples presented suitable mechanical and swelling properties in all media, representative of potential burn site conditions.

  18. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    International Nuclear Information System (INIS)

    Zhang Wanzhong; Qiao Xueliang; Chen Jianguo

    2006-01-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag 4 + intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields

  19. Nitrate adsorption from aqueous solution using granular chitosan-Fe{sup 3+} complex

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qili [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution,China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Chen, Nan, E-mail: chennan@cugb.edu.cn [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Feng, Chuanping [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Hu, WeiWu [The Journal Center, China University of Geosciences (Beijing), Beijing, 100083 (China)

    2015-08-30

    Highlights: • Granular chitosan-Fe{sup 3+} complex had high performance for nitrate adsorption. • Granular chitosan-Fe{sup 3+} complex had shorter equilibrium time (1.5 h). • Nitrate adsorption was ascribed to ion exchange and electrostatic attraction. • Granular chitosan-Fe{sup 3+} complex could be regenerated using NaCl solution. - Abstract: In the present study, In order to efficiently remove nitrate, granular chitosan-Fe{sup 3+} complex with high chemical stability and good environmental adaptation was synthesized through precipitation method and characterized using SEM, XRD, BET and FTIR. The nitrate adsorption performance was evaluated by batch experiments. The results indicated that granular chitosan-Fe{sup 3+} complex was an amorphous and mesoporous material. The BET specific surface area and average pore size were 8.98 m{sup 2} g{sup −1} and 56.94 Å, respectively. The point of zero charge was obtained at pH 5. The maximum adsorption capacity reached 8.35 mg NO{sub 3}{sup −}-N g{sup −1} based on Langmuir–Freundlich model. Moreover, no significant change in the nitrate removal efficiency was observed in the pH range of 3.0–10.0. The adverse influence of sulphate on nitrate removal was the most significant, followed by bicarbonate and fluoride, whereas chloride had slightly adverse effect. Adsorption process followed the pseudo-second-order kinetic model, and the experimental equilibrium data were fitted well with the Langmuir–Freundlich and D–R isotherm models. Thermodynamic parameters revealed that nitrate adsorption was a spontaneous and exothermic process. Granular chitosan-Fe{sup 3+} complex could be effectively regenerated by NaCl solution.

  20. Physicochemical analysis of cryocrystallization processes of aqueous solutions of yttrium, barium, copper nitrates and their mixtures

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Mozhaev, A.P.; Tesker, A.M.; Churagulov, B.R.

    1992-01-01

    Products of fast hardening of aqueous solutions of different concentration of yttrium, barium copper nitrates and their mixtures including mixture of three nitrates with molar ratio equal to 1:2:3 used for synthesis of YBa 2 Cu 3 O 7-x HTSC by cryochemical technique, in liquid nitrogen, are studied using low-temperature, differential thermal and X-ray phase analyses. Aqueous solutions of barium, copper, yttrium nitrates are shown to belong to three different classes which differ in behaviour at fast cooling and subsequent slow heating. Cryogranulate at YBa 2 Cu 2 O 7-x synthesis using cryochemical technique represents mixture of X-ray amorphous Ba(NO 3 ) 2 , crystalline Cu(NO 3 ) 2 ·6H 2 O and ice, as well as, supercooled aqueous solution of yttrium and copper nitrates

  1. Pyrene As a New Detector for Determining the Composition of Silver Nanoparticle Dispersions in Aqueous Solutions

    Science.gov (United States)

    Romanovskaya, G. I.; Kazakova, S. Yu.; Koroleva, M. V.; Zuev, B. K.

    2018-03-01

    It is proposed that the fluorescence of monomeric molecules of pyrene in solid matrices or in concentrated micellar solutions be used as a detector for determining the compositional homogeneity of silver nanoparticle (NP) dispersions in aqueous solutions synthesized in different ways. It is found that the morphology of silver NPs affects the change in the fluorescence intensity of monomeric molecules of pyrene in a certain (violet or blue) region of the pyrene optical spectrum. The observed phenomenon is attributed to the resonance of electronic transitions in the monomeric molecules of pyrene in regions with plasmon oscillations in silver nanoparticles. A new way of obtaining fluorescent silver NPs is found.

  2. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities

    OpenAIRE

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2014-01-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV–Vis absorption spectroscopy, SEM and...

  3. Electrochemical deposition of silver nanostructures from aqueous solutions in the presence of sodium polyacrylate

    OpenAIRE

    Topchak, Roman; Okhremchuk, Yevhen; Kuntyi, Orest

    2013-01-01

    The silver nanostructures obtaining was investigated by electrochemical deposition from aqueous solutions ((1?10) mM AgNO3 + 50 m? NaPA) onto graphite substrate. The influence of the concentration of silver ions and cathodic potential values in the range E = -0,2 ... -1,0 V on surface filling degree and geometry of silver particles was (had been) studied. It is shown, the discrete silver particles ranging in size from 50 to 400 nm with a uniform distribution on the surface of the substrate...

  4. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    Science.gov (United States)

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  5. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    Science.gov (United States)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  6. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    International Nuclear Information System (INIS)

    Peter Amaladhas, T; Akkini Devi, T; Ananthi, N; Priya Velammal, S; Sivagami, S

    2012-01-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV–Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9–31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was –36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus. (paper)

  7. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  8. Removal of nitrate from ammonium hydroxide solution containing organics by ion exchange method

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Gamare, Jayashree S.; Vaidya, V.N.

    2004-01-01

    Removal of nitrate from ammonium hydroxide solution containing HMTA (hexamethyltetramine) and Urea was studied using indigenously available anion exchange resins. This type of waste is produced during nuclear fuel preparation by internal gelation process. The resins used are Tulsion A-27(MP) and Duolite A. 102D. The time of equilibration and capacity of the resins were determined from distribution ratios obtained by equilibrating resin with nitrate solution. The loading, washing and elution behavior of nitrate on these resins were studied using synthetic mixture having similar composition of the waste produced. Elution studies were carried out using sodium hydroxide, hydrochloric acid and ammonium chloride. The studies were also carried out at higher temperature of around 60 degC. The data was compared with that obtained using Dowex 1x4 for the same purpose. (author)

  9. Characterization and Antimicrobial Property of Poly(Acrylic Acid Nanogel Containing Silver Particle Prepared by Electron Beam

    Directory of Open Access Journals (Sweden)

    Jong-Bae Choi

    2013-05-01

    Full Text Available In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid (PAAc and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels. The nanoparticles were characterized by scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA. The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect.

  10. First start-up of nuclear criticality safety experiment facility for uranyl nitrate solution

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Shen Leisheng; Hu Dingsheng; Zhao Shouzhi; He Tao; Sun Zheng; Lin Shenghuo; Yao Shigui

    2005-01-01

    The uranyl nitrate solution experiment facility for the research on nuclear criticality safety is described. The nuclear fuel loading steps in the first start-up for water-reflected core are presented. During the experiments, the critical volume of uranyl nitrate solution was determined as 20479.62 mL with count rate inverse extrapolation method, reactivity interpolation method, and steady power method. By calculation, critical mass of 235 U was derived as 1579.184 g from experimental data. The worth of control rods was also calibrated in the first start-up of the facility. (authors)

  11. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  12. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  13. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  14. Activation of Graphene Oxide with Hydrochloric Acid for Nitrate Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Abolghasem Alighardashi

    2017-11-01

    Full Text Available Long-term drinking of nitrate-contaminated water poses a serious risk to human health. The present study explores the possibility of enhancing the adsorption capacity of graphene oxide via activation with hydrochloric acid for nitrate removal from aqueous solutions. Experiments were performed in a batch reactor in which such major factors as pH, reaction time, and concentrations of both graphene oxide (GO and activated graphene oxide (AGO were used as variables. Nitrate removal efficiency was investigated using the One-Way ANOVA statistical test and SPSS-16 software. The chemical composition and solid structure of the synthesized AGO were analyzed using FE-SEM coupled with energy dispersive spectrometry (EDS. The micropore volumes of the samples were determined using the BET and BJH. The predominant composition (52% of the synthesized AGO was C and its mean pore diameter was 26.896 nm. The maximum adsorption capacity of AGO was estimated at 3333.33 mg/g. Based on the results, the AGO nano-structure may be recomended as a new means for nitrate removal from aqueous solutions.

  15. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Science.gov (United States)

    El-Sheikh, M. A.

    2014-01-01

    The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325

  16. A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. El-Sheikh

    2014-01-01

    Full Text Available The water soluble photoinitiator (PI 4-(trimethyl ammonium methyl benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs. A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS, silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.

  17. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electronic spectra of plutonium ions in nitric acid and in lithium nitrate solutions

    International Nuclear Information System (INIS)

    Mekhail, F.M.

    1987-01-01

    The absorption spectra of plutonium ions in nitric acid have been described. There is a characteristic change in the absorption spectra of Pu v in lithium nitrate solutions. In 2 M-lithium nitrate a new peak at 969 nm and high absorption at 1200 nm are noticed. A decrease in the absorption by about 20% and the appearance of a new shoulder at 1120 nm in 6 M-lithium nitrate are found. There is no change in the spectrum in 4 M-lithium nitrate. The absorption spectra of plutonium ions in the spectral range 200 - 400 nm are interesting. All plutonium ions have an intense band in the region 250 - 260 nm as well as a less intense and rather diffuse band at 320 - 330 nm in lithium nitrate solutions the sharp band at 250 - 260 nm has disappeared. This suggests that this band is very sensitive to the environmental field. The band is probably produced by 5 F q → 5 f q-1 6 d transition as well as electron transfer. It is believed that the spectrum of Pu V at pH 6.5 represents the hydrolysis product Pu O 2 (O H). 9 fig., 4 tab

  19. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    sunny t

    water, 3.5 g of NaCl were dissolved to obtain 3.5 g/l salinity final solution. When the ... The nitrate adsorption was highly pH dependent, which affects the ... adsorption mechanism that the optimum pH for phosphate removal by .... Biosorption of copper(ii) from aqueous ... Accumulation and detoxification of toxic elements by ...

  20. Intravenous Exposure of Pregnant Mice to Silver Nanoparticles: Silver Tissue Distribution and Effects in Maternal and Extra-Embryonic Tissues and Embryos

    Science.gov (United States)

    Austin, Carlye Anne

    This research explores the tissue distribution of silver, as well as adverse effects in pregnant mice and embryos, following prenatal silver nanoparticle (AgNP) exposure. Chapter one of this dissertation is a survey of the published literature on the reproductive and/or developmental toxicity of AgNPs. The available data indicate that AgNPs adversely affect sperm count, viability, and/or motility both in vivo and in vitro, and cause apoptosis and necrosis in spermatogonial stem cells and testicular cells. Additionally, AgNP exposure results in mortality and morphological deformities in fish embryos, but produces no adverse effects in chicken embryos. The current published research on in vivo AgNP exposure to mammals during gestation consists of only three studies, one of which is described in chapter two of this dissertation. These studies report results that may suggest a potential for adverse effects on fetal development (e.g. , decreased viability and fetal and placental weights, increased incidence of developmentally young embryos), but additional research is needed. Chapter two of this dissertation investigates the distribution of silver in tissues of pregnant mice and gestation day (GD) 10 embryos following intravenous maternal exposure to 50 nm AgNPs during early organogenesis (GDs 7-9). Examinations of embryo morphology and histology were also performed. Results demonstrated the presence of silver in all organs and tissues examined. Silver concentrations were highest in liver, spleen, and visceral yolk sac, and lowest in embryos. Groups of mice were also treated with soluble silver nitrate, and the pattern of silver tissue distribution following silver nitrate exposure was similar to that which followed AgNP treatment. Transmission electron microscopy-energy dispersive x-ray spectroscopy (TEM-EDS) confirmed the presence of vesicle-bound nanoparticulate silver in visceral yolk sac endoderm, but not mesoderm. This finding, along with the high silver

  1. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  2. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts.

    Science.gov (United States)

    Chudobova, Dagmar; Nejdl, Lukas; Gumulec, Jaromir; Krystofova, Olga; Rodrigo, Miguel Angel Merlos; Kynicky, Jindrich; Ruttkay-Nedecky, Branislav; Kopel, Pavel; Babula, Petr; Adam, Vojtech; Kizek, Rene

    2013-06-28

    Polymers are currently widely used to replace a variety of natural materials with respect to their favourable physical and chemical properties, and due to their economic advantage. One of the most important branches of application of polymers is the production of different products for medical use. In this case, it is necessary to face a significant disadvantage of polymer products due to possible and very common colonization of the surface by various microorganisms that can pose a potential danger to the patient. One of the possible solutions is to prepare polymer with antibacterial/antimicrobial properties that is resistant to bacterial colonization. The aim of this study was to contribute to the development of antimicrobial polymeric material ideal for covering vascular implants with subsequent use in transplant surgery. Therefore, the complexes of polymeric substances (hyaluronic acid and chitosan) with silver nitrate or silver phosphate nanoparticles were created, and their effects on gram-positive bacterial culture of Staphylococcus aureus were monitored. Stages of formation of complexes of silver nitrate and silver phosphate nanoparticles with polymeric compounds were characterized using electrochemical and spectrophotometric methods. Furthermore, the antimicrobial activity of complexes was determined using the methods of determination of growth curves and zones of inhibition. The results of this study revealed that the complex of chitosan, with silver phosphate nanoparticles, was the most suitable in order to have an antibacterial effect on bacterial culture of Staphylococcus aureus. Formation of this complex was under way at low concentrations of chitosan. The results of electrochemical determination corresponded with the results of spectrophotometric methods and verified good interaction and formation of the complex. The complex has an outstanding antibacterial effect and this effect was of several orders higher compared to other investigated complexes.

  3. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  4. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  5. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  6. Hydrolysis-precipitation studies of aluminum (III) solutions. I. Titration of acidified aluminum nitrate solutions

    NARCIS (Netherlands)

    Vermeulen, A.C.; Geus, John W.; Stol, R.J.; Bruyn, P.L. de

    Acidified aluminum nitrate solutions were titrated with alkali (NaOH or KOH) over a temperature range of 24°C to 90°C. A homogeneous distribution of added base was achieved by: (i) in situ decomposition of urea (90°C); and (ii) a novel method involving injection through a capillary submerged in the

  7. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    Science.gov (United States)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  8. Seasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cups.

    Science.gov (United States)

    Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef

    2017-07-01

    The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.

  9. Synthesis of Silver Particle onto Bamboo Charcoal by Tripropylene Glycol and the Composites Characterization

    Directory of Open Access Journals (Sweden)

    Tzu Hsuan Chiang

    2014-01-01

    Full Text Available In this study, tripropylene glycol was used as a reducting agent in the polyol process to reduce silver nitrate to the form of silver particles deposited onto the surface of bamboo charcoal (BC. The reduction temperature and time were critical parameters as they control the size of the silver particles formed as well as their distribution onto the surface of the BC. The reduction of silver nitrate by the tripropylene glycol occurred at a temperature of 120 °C for 3 h, and the silver particles, which had a face-centered cubic lattice structure, were distributed onto the surface of the BC. These synthesis conditions should work well with tripropylene glycol as reducing agent that can be helpful in the convenient preparation of Ag/BC particles. When Ag/BC powders were manufactured using 3 g of silver nitrate content, the prepared composites had the largest thermal conductivity at 0.2490 W/(m·K.

  10. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    Science.gov (United States)

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  11. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  12. Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions

    International Nuclear Information System (INIS)

    Szymanska-Chargot, M.; Gruszecka, A.; Smolira, A.; Bederski, K.; Gluch, K.; Cytawa, J.; Michalak, L.

    2009-01-01

    The synthesis of silver nanoparticles via UV irradiation of AgNO 3 solutions was controlled by using UV-vis absorption spectra and TEM (transmission electron microscope) images. The UV-vis absorption method is good enough for the general control of synthesis process, and TEM images give us information about size of formed species. For investigated solutions of silver nitrate in ethanol and water, we observed formation of large nanoparticles (size about 100 nm) and nanorods (100 nm in length). Moreover, there was effort to confirm evidence of formation of these particles by using TOF mass spectrometer. Due to laser desorption/ionization process there is only evidence of small silver nanoparticles Ag x , x ≤ 4 (clusters), and variety of silver compounds Ag x N y O z (x ≤ 5, y ≤ 2, z ≤ 3).

  13. Green synthesis and antibacterial activity screening of silver nanoparticles reduced by papaya (Carica papaya L.) leaves extract

    International Nuclear Information System (INIS)

    Esplana, Camille S.; Cabling, Mercedes Q.

    2013-01-01

    The field of nano technology is the most active area of research in modern material sciences. Though there are many chemical, as well as physical methods, green synthesis is the most emerging method of synthesis. This study aimed to describe a cost effective and environment friendly technique for green synthesis of silver nanoparticles. The synthesis of silver nanoparticles was prepared by adding Carica papaya L. leaves extract to 1mM silver nitrate solution. The color change in reaction mixture (pale yellow to dark brown color was observed during the incubation period , due to excitation of surface plasmon vibrations in silver nanoparticles. Nanoparticles were characterized using UV-Visible absorption spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDX) analysis. Absorption spectra of silver nanoparticles formed in the reaction media has absorbance peak at 280 nm, broadening of peak indicates that the particles are poly dispersed. SEM analysis described the morphology and the size of the particles. XRD confirmed the crystalline structure of the nanoparticles. The presence of the elemental silver was observed in the graph obtained from EDX analysis, which also supports the XRD results. The biomass of plants produces their nano materials by a process called bio mineralization. The tests cultures included in the study were Staphylococcus aureus, Escherichia coli and Salmonella. Results showed that the maximum inhibitory effect using 1mM silver nitrates against the microbes were obtained. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy alternative to conventional methods of silver nanoparticles synthesis (author)

  14. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  15. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    International Nuclear Information System (INIS)

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25 0 C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations

  17. Comparision of Chitosan Function as Adsorbent for Nitrate Removal Using Synthetic Aqueous Solution and Drinking Water

    Directory of Open Access Journals (Sweden)

    Mohammad Norisepehr

    2013-12-01

    Full Text Available Background & Objectives: Nitrate and nitrite compounds pollution of groundwater resources in recent years which recently their mean concentration due to enhancement of different kind of municipal, industrial and agriculture waste water, were increased. The most common source of nitrates entering the water include chemical fertilizers and animal manure in agriculture, septic tank effluent, wastewater, wastewater treatment plants, animal and plant residue analysis on the ground of non-sanitary disposal of solid waste and the use of absorbing wells for sewage disposal. Materials and methods: This experimental study is applied to the nitrate removal using chitosan in laboratory scale at ambient temperature and the design of the system was Batch. Effects of parameters such as pH, contact time, initial concentration and adsorbent concentration of nitrate on nitrate removal from aqueous solution was studied. Results: Function of chitosan in synthetic aqueous solution and drinking water according to the slurry system results, the optimum condition was obtained at pH=4, 20 min contact time and increasing the initial concentration of nitrate enhance the adsorption capacity of chitosan. Also optimum dosage of adsorbent was obtained at 0.5 g/l. The data obtained from the experiments of adsorbent isotherm were analyzed using Langmuir and Freundlich isotherm models. The Langmuir equation was found to be the best fitness with the experimental data (R2>0.93. Conclusion: Although efficiency of Nitrate removal in synthetic aqueous solution was better than drinking water, adsorption process using chitosan as an option for the design and selection nitrate removal should be considered in order to achieve environmental standards.

  18. Effect of uranyl nitrate and free acid concentration in feed solution of gelation on UO2 kernel quality

    International Nuclear Information System (INIS)

    Masduki, B.; Wardaya; Widarmoko, A.

    1996-01-01

    An investigation on the effect of uranium and free nitric acid concentration of uranyl nitrate as feed of gelation process on quality of UO 2 kernel was done.The investigation is to look for some concentration of uranyl nitrate solutions those are optimum as feed for preparation of gelled UO 3 . Uranyl nitrate solution of various concentration of uranium (450; 500; 550; 600; 650; 700 g/l) and free nitric acid of (0.9; 1.0; 1.1 N) was made into feed solutions by adding urea and HMTA with mole ratio of urea/uranium and HMTA/uranium 2.1 and 2.0. The feed solutions were changed into spherical gelled UO 3 by dropping was done to get the optimum concentrations of uranyl nitrate solutions. The gelled UO 3 was soaked and washed with 2.5% ammonia solution for 17 hours, dried at 70 o C, calcined at 350 o C for 3 hours then reduced at 850 o C for 3 hours. At every step of the steps process the colour and percentage of well product of gelled UO 3 were noticed. The density and O/U ratio of end product (UO 2 kernel) was determined, the percentage of well product of all steps process was also determined. The three factor were used to chose the optimum concentration of uranyl nitrate solution. From this investigation it was concluded that the optimum concentration of uranyl nitrate was 600 g/l uranium with free nitric acid 0,9 - 1,0 N, the percentage of well product was 97% density of 6.12 - 4.8 g/cc and O/U ratio of 2.15 - 2.06. (author)

  19. Study of the electrochemical oxidation of Am with lacunary heteropolyanions and silver nitrate

    International Nuclear Information System (INIS)

    Chartier, D.

    1999-01-01

    Electrochemical oxidation of Am(III) with certain lacunary heteropolyanions (LHPA α 2 -P 2 W 17 O 61 10- or αSiW 11 O 39 8- ) and silver nitrate is an efficient way to prepare Am(VI). This document presents bibliographic data and an experimental study of the process. Thus, it has been established that Am(IV) is an intermediate species in the reaction and occurs in 1:1 (Amt IV LHPA) or 1:2 (Am IV (LHAP) 2 ) complexes with the relevant LHPA. These 1:1 complexes of Am(IV) have been identified and isolated in this work whereas 1:2 complexes were known from previous studies. The reactivity of these complexes in oxidation shows that 1:1 complexes of Am(IV) are oxidised much more quickly than 1:2 complexes. Apparent stability constants of Am(III) and Am(IV) complexes with the relevant LHPA have been measured for a 1 M nitric acid medium. Thermodynamic data of the reaction are then assessed: redox potentials of Am pairs are computed for a 1 M nitric acid medium containing various amount of LHPA ligands. Those results show that the role of LHPA is to stabilize the intermediate species Am(IV) by lowering the Am(IV)/Am(III) pair potential of about 1 Volt. Nevertheless, if this stabilisation is too strong (i.e. of tungsto-silicate), the oxidation of Am(IV) requires high anodic potential (more than 2 V/ENH). Then, the faradic yield of the oxidation of americium is poor because of water oxidation. This study has also shown that the main role of silver is to catalyze the electrochemical oxidation of Am IV (LHPA) X complexes. Indeed, these oxidations without silver are extremely slow. An oxygen tracer experiment has been performed during the oxidation of Am(III) in Am(VI). It has been shown that the oxygen atoms of Am(VI) (AMO 2 2+ ) come from water molecules of the solvent and not from the complexing oxygen atoms of the ligands. (author)

  20. Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent

    International Nuclear Information System (INIS)

    Zhan Yanhui; Lin Jianwei; Zhu Zhiliang

    2011-01-01

    Surfactant modified zeolites (SMZ) with different coverage types were prepared by loading the cetylpyridinium bromide (CPB) onto the surface of the natural zeolites. The adsorption behavior of nitrate on SMZ was investigated. Natural zeolite and SMZ with monolayer CPB coverage were inefficient for the removal of nitrate from aqueous solution. However, SMZ with patchy bilayer or bilayer CPB coverage was efficient in nitrate removal, and the nitrate adsorption capacity of SMZ increased with its CPB loading. For typical SMZ with bilayer CPB coverage, the nitrate adsorption process was well described by the pseudo-second-order kinetic model, and the experimental isotherm data fitted well with the Langmuir, Freundlich and Dubinin-Redushkevich isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and the results showed that the adsorption of nitrate on SMZ was spontaneous and exothermic in nature. The presence of competing anions such as chloride, sulfate and bicarbonate ions slightly reduced the nitrate adsorption efficiency. Anionic exchange and electrostatic interaction were proven to be the main mechanisms that govern the adsorption of nitrate on SMZ.

  1. Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.

    Science.gov (United States)

    Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G

    2014-02-01

    There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.

  2. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  3. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity

    Science.gov (United States)

    Das, Manoja; Smita, Soumya Shuvra

    2018-03-01

    Biosynthesis of silver nanoparticles was achieved using bark extract of Butea monosperma (Lam.) Taub., a native plant of Indian subcontinent and southeast Asia. The plant parts are familiar for ailment of different diseases. The bioactive compounds present in bark of the plant were extracted with Soxhlet extractor. Silver nitrate (AgNO3) was used as a raw material for preparation of silver nanoparticles (AgNPs). The ratio of bark extract and silver nitrate solution for synthesis of AgNPs was standardized as 3:5. The change in colour of the solution from pale yellow to deep brown can be correlated to reduction reaction catalyzed by plant bioactive compounds. The formation of AgNPs was confirmed by UV-Vis spectrophotometer. The surface plasmon resonance (SPR) maxima, λmax, were recorded at 452 nm. SPR indicates the nature and type of particles present in the solution. The suitable concentration of AgNO3 was found to be 10 mM to carry out reduction reaction with the bark extract. Alkaline environment (pH 9) suitably promotes the reaction. FTIR graph of synthesized AgNPs shows the shifting peak of 3265.0 wavelength/cm and 1635.40 wavelength/cm indicates that AgNPs were coated with plant biomolecules, which is attributed to the stabilization of AgNPs. XRD and SEM photograph of the AgNPs showed that they were spherical in shape and capped with bioactive compounds. Thus, the synthesized AgNPs are more stable, less toxic and homogenous in shape. The average diameter of the nanoparticles was 81 nm. The synthesized AgNPs had efficacy against a Gram-negative bacteria (Escherichia coli), a Gram-positive bacteria (Staphylococcus aureus), and a mold (Aspergillus niger). The maximum conversion was 66%. From the present investigation, it can be concluded that the bioactive compounds present in the bark of Butea have the capacity to reduce silver ion into silver nanoparticles in aqueous condition and the synthesized AgNPs are stabilized and loss toxic. Moreover, they also possess

  4. Potentiodynamic characteristics of cadmium and silver in alkaline solutions

    International Nuclear Information System (INIS)

    Saidman, S.B.; Vilche, J.R.; Arvia, A.J.; Lopes Teijelo, M.

    1984-01-01

    The potentiodynamic and ellipsometric characteristics of cadmium and silver in alkaline solutions are studied. The phenomenology of both electrodes shows some common features which are interpreted in termo of a complex hydrated oxide anodic film structure resulting from simultaneous electrochemical and chemical reactions. The kinetics of film growth fits the predictions of nucleation and growth models. (C.L.B.) [pt

  5. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. In vitro cytotoxity of silver: implication for clinical wound care.

    Science.gov (United States)

    Poon, Vincent K M; Burd, Andrew

    2004-03-01

    In this study, we look at the cytotoxic effects of silver on keratinocytes and fibroblasts. We have assessed the viability of monolayer cultures using the MTT and BrdU assays. The composition of the culture medium and also the culture technique were modified to assess the effects of culture 'environment' on the susceptibility of the cells to the toxic action of silver. Further in vitro, experiments were performed using tissue culture models to allow cellular behavior in three dimensional planes which more closely simulated in vivo behavior. The silver source was both silver released from silver nitrate solution but also nanocrystalline silver released from a commercially available dressing. The results show that silver is highly toxic to both keratinocytes and fibroblasts in monolayer culture. When using optimized and individualized culture the fibroblasts appear to be more sensitive to silver than keratinocytes. However, when both cell types were grown in the same medium their viability was the same. Using tissue culture models again indicated an 'environmental effect' with decreased sensitivity of the cells to the cytotoxic effects of the silver. Nevertheless in these studies the toxic dose of skin cells ranging from 7 x 10(-4) to 55 x 10(-4)% was similar to that of bacteria. These results suggest that consideration of the cytotoxic effects of silver and silver-based products should be taken when deciding on dressings for specific wound care strategies. This is important when using keratinocyte culture, in situ, which is playing an increasing role in contemporary wound and burn care.

  7. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  8. Preparation standardisation and use of plutonium nitrate reference solutions

    International Nuclear Information System (INIS)

    Brown, M.L.; Drummond, J.L.

    1981-07-01

    A procedure is described for the purification of a plutonium nitrate solution in nitric acid for use as a plutonium master standard. Anion exchange chromatography followed by oxalate precipitation is used to purify the plutonium and the residual cationic impurities are analysed by emission spectroscopy. The plutonium content is accurately and precisely measured by two independent methods, namely by gravimetry as PuO 2 at 1250 0 C and by ceric oxidation, ferrous reduction and dichromate titration. Full details of the purification procedure are given, with recommended methods for storing and using the standard solution. It is concluded that such a solution is the most satisfactory reference material, available for plutonium analysis for reprocessing plants, and is adequately related to other, internationally accepted, standard reference materials. (author)

  9. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  10. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    International Nuclear Information System (INIS)

    Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L.

    2014-01-01

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO 3 ) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO 3 , KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed

  11. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Mikac, L.; Ivanda, M., E-mail: ivanda@irb.hr [Ruđer Bošković Institute, Laboratory for Molecular Physics (Croatia); Gotić, M. [Ruđer Bošković Institute, Laboratory for Synthesis of New Materials (Croatia); Mihelj, T. [Ruđer Bošković Institute, Laboratory for Synthesis and Processes of Self-assembling of Organic Molecules (Croatia); Horvat, L. [Ruđer Bošković Institute, Laboratory for Electron Microscopy (Croatia)

    2014-12-15

    Silver colloids were produced by chemical reduction of silver salt (silver nitrate, AgNO{sub 3}) solution. As reducing agents, trisodium citrate, sodium borohydride, ascorbic acid, polyvinylpyrrolidone, and glucose were used. The colloids were characterized by UV–Vis, DLS, zeta potential measurements, and SEM. The colloids were stabilized with negative groups or large molecules attached to their surface. The surface-enhanced Raman scattering (SERS) effect of stabilized nanoparticles was measured by using pyridine and rhodamine 6G molecules as analytes and NaNO{sub 3}, KCl, and KBr at different concentrations as aggregating agents. The best Raman signal enhancement was achieved using silver nanoparticles of 40 nm size reduced and stabilized with citrate. The SERS signal of analyte molecules was further enhanced with the addition of sodium borohydride as an alternative aggregating agent. The borohydride had the strongest impact on the SERS effect of the colloid consistent of large (0.5 µm) silver nanoparticles stabilized with aminodextran. The mixture colloid-borohydride-pyridine was stable for hours. The mechanism of borohydride in the colloids is discussed.

  12. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    Directory of Open Access Journals (Sweden)

    Amanda J. Youker

    2013-01-01

    Full Text Available Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration on Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.

  13. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  14. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  15. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  16. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2012-05-01

    Full Text Available The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG, and β-d-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD, zeta potential measurements and Fourier transform infrared (FT-IR. The use of green chemistry reagents, such as glucose, provides green and economic features to this work.

  17. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template

    Directory of Open Access Journals (Sweden)

    C. Y. Liu

    2018-07-01

    Full Text Available Supramolecular β-cyclodextrin (β-CD was used as a soft template for the fabrication of long silver nanowires. A novel design using self-assembled β-CD for the reduction of silver ions was studied. The concentrations of iron chloride, silver nitrate, and the template were controlling factors for the growth of the silver nanowires. Iron chloride was used to accelerate and facilitate the formation of the silver nanowires and inhibit oxidative etching. However, an excessive concentration of Fe+3 resulted in etching of the silver nanostructures. Furthermore, the silver concentration was another controlling factor. The length of the silver nanowires increased as the concentration of silver cations increased. Nevertheless, an excess concentration of silver cations formed various silver crystalline structures. In this study, the optimal ratio between iron chloride and silver nitrate was determined to be 1:13.3. A maximum length of 20 µm was achieved using a concentration of 0.23 M for the soft template. Moreover, the junction of two growing silver nanowires was observed, forming a long fused nanowire, and some significant boundaries were observed. The observed results were further confirmed using scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses. X-ray diffraction (XRD and energy dispersive spectrometer (EDS analyses were used to indicate the presence of silver and the formation of crystalline materials.

  18. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    International Nuclear Information System (INIS)

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-01-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ("1H NMR and "1"3C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL"−"1. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity

  19. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Venil, Chidambaram Kulandaisamy, E-mail: ckvenil@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Sathishkumar, Palanivel [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Malathi, Mahalingam [Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu (India); Usha, Rajamanickam [Department of Microbiology, Karpagam University, Coimbatore 641 023, Tamil Nadu (India); Jayakumar, Rajarajeswaran [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusoff, Abdull Rahim Mohd [Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia); Ahmad, Wan Azlina, E-mail: azlina@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru (Malaysia)

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ({sup 1}H NMR and {sup 13}C NMR), UV–Vis, and LC–MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36 μg mL{sup −1}. This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. - Highlights: • First report on flexirubin mediated silver nanoparticles • Silver nanoparticles synthesised using flexirubin • Flexirubin mediated silver nanoparticles found to possess in vitro anti-cancer activity.

  20. The extraction of lanthanides and americium by benzyldiakylamines and benzyltrialkylammonium nitrates from the nitrate solutions; structure and aggregation of their salts

    International Nuclear Information System (INIS)

    Jedinakova, V.; Zilkova, J.; Dvorak, Z.; Vojtiskova, M.

    1982-01-01

    Benzyldialkylamine and benzyltrialkylammonium nitrates were used for the extraction of lanthanides and americium from aqueous nitrate solutions. The dependence of the extraction performance for Ln(III) and Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent were investigated. The extraction of Am(III) is compared with the extraction of lanthanides. The difference in distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium. Using vapor phase osmometry and cryoscopy the association of these compounds was measured at 5.5deg, 25deg and 37deg C, allowing rough estimates of ΔH and ΔS for the formation of the aggregates, monomers in the case of benzyldiethylamine, benzyldibutylamine, benzyldihexylamine and benzyldioctylamine, tetramers for the benzyldibutylamine nitrate and tetramers for benzyldimethyldodecylammonium nitrate. (author)

  1. Sterilization of African Violet in the in Vitro Culture Using Synthesized Silver Nanoparticles by Two Plant Extracts

    Directory of Open Access Journals (Sweden)

    M. Solgi

    2015-12-01

    Full Text Available One of the major advantages of in vitro culture of African violet (Saintpaulha ionantha is production of new cultivars and propagation of their chimera which might not be propagated by the other methods. In this study, we tested the effects of silver nanoparticles on the sterilization rate (antifungal and antibacterial activity, regeneration and shoot formation of African violet "Pink Amiss" explants. These nanoparticles were synthesized from pomegranate peels and Damask rose petals extracts. We used a completely randomized design test with factorial arrangement to investigate various volumetric ratios of plant extracts to silver nitrate (1:20, 1:10, 1:5 and 1:1 on the culture contaminations. Using silver nanoparticles synthesized by the plant extracts, especially Damask rose petals extract resulted in no fungal and bacterial contamination in the African violet explants after 1 and 3 weeks as compared to the control, and silver nitrate (1mM. All tested concentrations of the silver nanoparticles significantly (P &le 0.05 controlled both bacterial and fungal contaminations. The 1:20 ratio of plant extracts to silver nitrate showed the best control. In addition, the highest regeneration (%52 and shoot regeneration (%38 was observed in this treatment. In conclusion, we suggest using silver nanoparticles synthesized by plant extracts for sterilization of in Vitro Culture for African Violet rather than using other chemicals such as silver nitrate.

  2. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles.

    Science.gov (United States)

    Pivec, Tanja; Hribernik, Silvo; Kolar, Mitja; Kleinschek, Karin Stana

    2017-05-01

    This study introduces a novel green in-situ procedure for introduction of silver nanoparticles (Ag NPs) on and into cellulose fibres in a three-stage process. First-stage of the process includes the activation of cellulose fibres in alkaline solution, followed by reduction of silver nitrate to Ag NPs in the second stage, while the last stage of process involves washing and neutralization of fibres. Efficiency of the method towards incorporation of silver particles into the fibres' internal structure was characterized; the coatings' morphology and determination of spatial presence of Ag particles were imagining by the scanning electron microscopy and accompanying energy dispersive x-ray spectroscopy analysis; prepared fibres have superior durability of particles' coating against washing and excellent antimicrobial activity even after 20 washing cycles. Additionally, the water retention of silver treated fibres was improved, while the mechanical properties were not significantly impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthesis of YBa2Cu3O7-y from nitrate solutions with urea additions

    International Nuclear Information System (INIS)

    Pershin, V.I.; Naumov, V.S.; Mozhaev, A.P.; Lyashchenko, A.K.; Pobedina, A.B.; Khajlova, E.G.

    1994-01-01

    Solubility of bariun nitrate is studied in the Y(NO 3 ) 3 -Ba(NO 3 ) 2 -Cu(NO 3 )-CO(NH 2 ) 2 -H 2 O system at the ratio Y:B:Cu-1:2:3 and variable concentration of urea in the solution. Mentioned aqua-salt compositions are used in cryochemical synthesis of HTSC. Solutions of yttrium, barium and copper nitrates with urea additions were demonstrated to be recommended to improvements in the process during development of alternative synthesis from aqua-salt compositions. 15 refs., 3 figs., 2 tabs

  4. Estimation of silver in Ag-meta kaolinite by neutron activation

    International Nuclear Information System (INIS)

    Daniels, E.A.; Rao, S.M.

    1981-01-01

    The present work is based on the neutron activation of Ag-meta kaolinite for the determination of its silver content from the β-activity of the compound using standard tables which showed the percentage of silver in mixtures of silver nitrate and meta kaolinite of known composition against β-activity of the mixture activated under identical conditions. (author)

  5. Water-Reflected 233U Uranyl Nitrate Solutions in Simple Geometry

    International Nuclear Information System (INIS)

    Elam, K.R.

    2001-01-01

    A number of critical experiments involving 233 U were performed in the Oak Ridge National Laboratory Building 9213 Critical Experiments Facility during the years 1952 and 1953. These experiments, reported in Reference 1, were directed toward determining bounding values for the minimum critical mass, minimum critical volume, and maximum safe pipe size of water-moderated solutions of 233 U. Additional information on the critical experiments was found in the experimental logbooks. Two experiments utilizing uranyl nitrate (UO 2 (NO 3 ) 2 ) solutions in simple geometry are evaluated in this report. Experiment 37 is in a 10.4-inch diameter sphere, and Experiment 39 is in a 10-inch diameter cylinder. The 233 U concentration ranges from 49 to 62 g 233 U/l. Both experiments were reflected by at least 6 inches of water in all directions. Paraffin-reflected uranyl nitrate experiments, also reported in Reference 1, are evaluated elsewhere. Experiments with smaller paraffin reflected 5-, 6-, and 7.5-inch diameter cylinders are evaluated in U233-SOL-THERM-004. Experiments with paraffin reflected 8-, 8.5-, 9-, 10-, and 12-inch diameter cylinders are evaluated in U233-SOL-THERM-002. Later experiments with highly-enriched 235 U uranyl fluoride solution in the same 10.4-inch diameter sphere are reported in HEU-SOL-THERM-010. Both experiments were judged acceptable for use as criticality-safety benchmark experiments

  6. One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property.

    Science.gov (United States)

    Firoz Babu, K; Dhandapani, P; Maruthamuthu, S; Anbu Kulandainathan, M

    2012-11-06

    Polymer-silver nanocomposites modified cotton fabrics were prepared by in situ chemical oxidative polymerization using pyrrole and silver nitrate. In a redox reaction between pyrrole and silver nitrate, silver ions oxidize the pyrrole monomer and get reduced. This reduced silver as nanoparticles deposited on/into the polypyrrole/cotton matrix layer and the interaction between silver and polypyrrole was by adsorption or electrostatic interaction. The structure and composite formation on cotton fiber was investigated using SEM, FT-IR, XPS and XRD. The results showed that a strong interaction existing between silver nanoparticles with polypyrrole/cotton matrix. FT-IR studies clearly indicated that the interaction between polypyrrole (-N-H) and cellulose (>C-OH) was by hydrogen bonding. It is observed that the conductivity of the composite coated fabrics has been increased by the incorporation of silver nanoparticles. In the synthesized composites, silver content plays an important role in the conductivity and antimicrobial activity rate of the fabrics against gram positive Staphylococcus aureus and gram negative Escherichia coli bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  8. Synthesis and electrical properties of silver nanoplates for electronic applications

    Directory of Open Access Journals (Sweden)

    Xiong Nana

    2015-06-01

    Full Text Available In this paper, silver nanoplates of 100 to 500 nm size were synthesized by reduction of silver nitrate with N,Ndimethylformamide, using poly(vinylpyrolidone as a surfactant and ferric chloride as a controlling agent, at 120 to 160 °C for 5 to 24 hours. The influence of the concentration of ferric chloride, the reaction temperature and reaction time on the morphology of the product has been investigated by transmission electron microscopy, scanning electron microscopy and UV-Vis spectroscopy. The results indicated that the products obtained at the low reaction temperature and short reaction time in the presence of FeCl3 in the reaction solution were in the form of silver nanoplates, whose morphology was mainly triangular and hexagonal. In addition, the size and thickness of the nanoplates increased with increasing of the FeCl3 concentration. At a high reaction temperature and long reaction time, the truncated triangle and hexagonal nanoplates were mainly produced. Furthermore, the sintering behavior of nanoplates was studied and the results showed that sintering of the silver nanoplates started at 180 °C, and a typical sintering behavior was observed at higher temperatures. The incorporation of the silver nanoplates into the polymer matrix with micro-sized silver flakes led to an increase in the matrix resistivity in almost all cases, especially at high fractions and low curing temperatures. The curing temperature had an influence on the resistivity of the conductive adhesives filled with micro-sized silver flakes and silver nanoplates due to sintering of the silver nanoplates.

  9. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs) and Silver Nitrate (AgNO3) on Brassica sp.

    Science.gov (United States)

    Vishwakarma, Kanchan; Shweta; Upadhyay, Neha; Singh, Jaspreet; Liu, Shiliang; Singh, Vijay P; Prasad, Sheo M; Chauhan, Devendra K; Tripathi, Durgesh K; Sharma, Shivesh

    2017-01-01

    Continuous formation and utilization of nanoparticles (NPs) have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs) were biosynthesized from silver nitrate (AgNO 3 ) by green synthesis approach using Aloe vera extract. Mustard ( Brassica sp.) seedlings were grown hydroponically and toxicity of both AgNP and AgNO 3 (as ionic Ag + ) was assessed at various concentrations (1 and 3 mM) by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO 3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO 3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO 3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX) and catalase (CAT) were inhibited by AgNPs and AgNO 3. Interestingly, damaging impact of AgNPs was lesser than AgNO 3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO 3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO 3 on crop plants.

  10. Differential Phytotoxic Impact of Plant Mediated Silver Nanoparticles (AgNPs and Silver Nitrate (AgNO3 on Brassica sp.

    Directory of Open Access Journals (Sweden)

    Kanchan Vishwakarma

    2017-10-01

    Full Text Available Continuous formation and utilization of nanoparticles (NPs have resulted into significant discharge of nanosized particles into the environment. NPs find applications in numerous products and agriculture sector, and gaining importance in recent years. In the present study, silver nanoparticles (AgNPs were biosynthesized from silver nitrate (AgNO3 by green synthesis approach using Aloe vera extract. Mustard (Brassica sp. seedlings were grown hydroponically and toxicity of both AgNP and AgNO3 (as ionic Ag+ was assessed at various concentrations (1 and 3 mM by analyzing shoot and root length, fresh mass, protein content, photosynthetic pigments and performance, cell viability, oxidative damage, DNA degradation and enzyme activities. The results revealed that both AgNPs and AgNO3 declined growth of Brassica seedlings due to enhanced accumulation of AgNPs and AgNO3 that subsequently caused severe inhibition in photosynthesis. Further, the results showed that both AgNPs and AgNO3 induced oxidative stress as indicated by histochemical staining of superoxide radical and hydrogen peroxide that was manifested in terms of DNA degradation and cell death. Activities of antioxidants, i.e., ascorbate peroxidase (APX and catalase (CAT were inhibited by AgNPs and AgNO3. Interestingly, damaging impact of AgNPs was lesser than AgNO3 on Brassica seedlings which was due to lesser accumulation of AgNPs and better activities of APX and CAT, which resulted in lesser oxidative stress, DNA degradation and cell death. The results of the present study showed differential impact of AgNPs and AgNO3 on Brassica seedlings, their mode of action, and reasons for their differential impact. The results of the present study could be implied in toxicological research for designing strategies to reduce adverse impact of AgNPs and AgNO3 on crop plants.

  11. Determination of free nitric acid in uranyl nitrate solution

    International Nuclear Information System (INIS)

    Mayankutty, P.C.; Ravi, S.; Nadkarni, M.N.

    1981-01-01

    Potentiometric titration of uranyl nitrate solution with sodium hydroxide exhibits two peaks. The first peak characterises the following reaction, UO 2 (C 2 O 4 )+NaOH Na[UO 2 (C 2 O 4 )(OH)]. This reaction, indicating the partial hydrolysis of uranyl oxalate complex, appears to be complete at pH9. If the titration is carried out to this end-point pH, the total alkali consumed can be equated to the sum of uranium content and the free acidity present in the sample volume. Based on this, a method was standardised to determine the free acidity in uranyl nitrate solution. The sample, taken in a solution of potassium oxalate previously adjusted to pH9, is titrated to this pH with standard sodium hydroxide. The free acidity in the sample can be computed by subtracting the alkali reacted with uranium from the total alkali consumed. Analyses of several synthetic samples containing uranium and nitric acid in a wide range of combinations indicate that the free acidity can be accurately determined by this method, if uranium concentration in the sample is known. The results are compared to those obtained by two other widely used methods, viz., (i) titration of pH7 in the presence of neutral potassium oxalate to suppress hydrolysis and (ii) separation of hydrolyzable ions on a cationic resin and alkali titration of the free acid released. The advantages of and the precision obtained with the present method over the above two methods are discussed. (author)

  12. Fabrication of Antibacterial Wound Dressings from Silk Fibroin and Silver Nano particles

    International Nuclear Information System (INIS)

    Uttayarat, P.; Jetawattana, S.; Suwanmala, P.; Eamsiri, J.; Pongpat, S.

    2011-06-01

    Full text: Patients with burn wounds that cover large body surface area are susceptible to infection which can lead to fatality. Wound dressings or skin grafts are needed to cover the wound during the regeneration of new skin tissue. The aim of this research is to fabricate antibacterial wound dressings from silk fibroin derived from the natural silk cocoon and silver nanoparticles (AgNPs) prepared by gamma irradiation. Fibroin mats composed of nonwoven fibers with diameter of 670± 11.5 nm were fabricated by electro spinning. Using gamma irradiation, the starting silver nitrate solution was reduced to colloidal AgNPs. The fibroin mats were coated with AgNPs at various AgNP concentration and then evaluated for their antibacterial property by disc diffusion test. The concentration of colloidal AgNP solution ≤ 1 mM was found to be as sufficient in inhibiting the growth of Pseudomonas aeruginosa and Staphylococcus aureus as commercial wound dressings embedded with silver ions. These results demonstrate that electro spun fibroin mats coated with AgNPs exhibite antibacterial property and can be further developed for the treatment of burn wounds

  13. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1987-11-01

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO 3 and involves the formate radical (HCOO . ). The second mechanism holds at 3 and involves the hyponitrous radical (HNO . ). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  14. Synthesis of positively charged hybrid PHMB-stabilized silver nanoparticles: the search for a new type of active substances used in plant protection products

    Science.gov (United States)

    Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.

    2017-07-01

    Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.

  15. Synthesis and characterization of monodispersed silver nanoparticles

    Science.gov (United States)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  16. Synthesis and characterization of monodispersed silver nanoparticles

    International Nuclear Information System (INIS)

    Christy, A Jegatha; Umadevi, M

    2012-01-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO 3 ), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM). (paper)

  17. Synthesis of Silver Nanoparticles in Cotton Fabric by Polyvinyl-2-pyrrolidone as a Reducing and Stabilizing Agent

    Directory of Open Access Journals (Sweden)

    Farbod Alimohammadi

    2012-12-01

    Full Text Available Silver nanoparticles have been extensively applied in various fields suchas polymers and textile fibers considering their well known antimicrobialproperties. In conventional methods nano silver is synthesized through chemical reduction however, in this paper a novel synthesis method based on aqueous solution of ammonia/silver complex with cationic stabilizer along with UV-C irradiation is introduced. On this basis, silver nitrate was oxidized with sodium hydroxide and then transformed into [Ag(NH32]+ aqueous solution with ammonia followed by adding PVP as a reducing and stabilizing agent and irradiated by UV-C. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption and the X-ray diffraction (XRD demonstrated that the colloidal nanoparticles were pure silver and Zeta sizer showed particle size distribution. Cotton fabric finishing was accomplished in pad process with various concentrations of nano-sized colloidal silver. Some characteristics of the fabric such as antimicrobial against different microorganisms including gram positive bacteria (Staphylococcous aureus, one gram negative bacteria (Escherichia coli, UV–vis spectrophotometry, color space a*, b* and L*, scanning electron microscopy, EDAX were investigated. Very good antibacterial efficacy against S. aureus and E. coli (higher than 97% appeared even by applying a low nanosilver content (200 ppm for twenty cycles of home laundering. Polyvinyl pyrrolidone resulted in a remarkable control in the release of silver nanoparticle from the coating and can improve the long-term microbiological activity, especially against home laundering.

  18. Chemical effects induced by dissolving γ-irradiated alkali halides in aqueous nitrate, permanganate and chromate solutions

    International Nuclear Information System (INIS)

    Phansalkar, V.K.; Bapat, L.; Ravishankar, D.

    1982-01-01

    Dissolution of γ-irradiated alkali halides in aqueous solutions of sodium nitrate, potassium permanganate and potassium chromate at neutral pH induces chemical changes leading to the formation of NO 2 - in nitrate, Mn(IV) and Cr(III) species in permanganate and chromate solutions, respectively. Further, the studies on nitrate and permanganate systems show that the amount of NO 2 - and Mn(IV) formed grows by increasing the dose of γ-irradiation of the salt and the amount of irradiated salt. Moreover, the extent of chemical changes effected by irradiated chlorides has been found to be more than that of bromides. The mesh size of the irradiated salt and the presence of scavengers like I - and methanol in the system, affects the yield of NO 2 - . (author)

  19. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles

    Science.gov (United States)

    Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-01

    A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.

  20. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study

    Science.gov (United States)

    Ojha, Sunita; Sett, Arghya; Bora, Utpal

    2017-09-01

    In this study, we report synthesis of silver nanoparticles (RcAgNPs) from silver nitrate solution using methanolic leaf extract of Ricinus communis var. carmencita. The polyphenols present in the leaves reduce Ag++ ions to Ag0 followed by a color change. Silver nanoparticle formation was ensured by surface plasmon resonance between 400 nm to 500 nm. Crystallinity of the synthesized nanoparticles was confirmed by UHRTEM, SAED and XRD analysis. The capping of phytochemicals and thermal stability of RcAgNPs were assessed by FTIR spectra and TGA analysis, respectively. It also showed antibacterial activity against both gram positive and gram negative strains. RcAgNPs were non-toxic against normal cell line (mouse fibroblast cell line L929) at lower concentrations (80 µg ml-1).

  1. The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles

    International Nuclear Information System (INIS)

    Fellahi, Ouarda; Marcon, Lionel; Coffinier, Yannick; Boukherroub, Rabah; Sarma, Rupak K; Saikia, Ratul; Das, Manash R; Hadjersi, Toufik; Maamache, Mustapha

    2013-01-01

    The paper reports on the preparation and antibacterial activity of silicon nanowire (SiNW) substrates coated with Ag or Cu nanoparticles (NPs) against Escherichia coli (E. coli) bacteria. The substrates are easily prepared using the metal-assisted chemical etching of crystalline silicon in hydrofluoric acid/silver nitrate (HF/AgNO 3 ) aqueous solution. Decoration of the SiNWs with metal NPs is achieved by simple immersion in HF aqueous solutions containing silver or copper salts. The SiNWs coated with Ag NPs are biocompatible with human lung adenocarcinoma epithelial cell line A549 while possessing strong antibacterial properties to E. coli. In contrast, the SiNWs decorated with Cu NPs showed higher cytotoxicity and slightly lower antibacterial activity. Moreover, it was also observed that leakage of sugars and proteins from the cell wall of E. coli in interaction with SiNWs decorated with Ag NPs is higher compared to SiNWs modified with Cu NPs. (paper)

  2. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  3. Improvement of INVS Measurement Uncertainty for Pu and U-Pu Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Marlow, Johnna Boulds [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makino, Risa [Japan Atomic Energy Agency (JAEA), Tokai (Japan); Nakamura, Hironbu [Japan Atomic Energy Agency (JAEA), Tokai (Japan)

    2017-04-27

    In the Tokai Reprocessing Plant (TRP) and the Plutonium Conversion Development Facility (PCDF), a large amount of plutonium nitrate solution which is recovered from light water reactor (LWR) and advanced thermal reactor (ATR), FUGEN are being stored. Since the solution is designated as a direct use material, the periodical inventory verification and flow verification are being conducted by Japan Safeguard Government Office (JSGO) and International Atomic Agency (IAEA).

  4. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  5. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  6. Biosynthesis and evaluation of the characteristics of silver nanoparticles using Cassia fistula fruit aqueous extract and its antibacterial activity

    Science.gov (United States)

    Ghafoori, Seyed Mohammad; Entezari, Maliheh; Taghva, Arefeh; Tayebi, Zahra

    2017-12-01

    There are several ways to produce nanoparticles, but the biological method of nanoparticle production is considered most efficient by researchers due to its eco-friendly and energy saving properties. In this study, the biosynthesis of silver nanoparticles (AgNPs) via Cassia fistula fruit pulp extract was examined. Furthermore, its antibacterial effects were investigated both in vitro and in vivo. To achieve biosynthesis, 10 ml of C. fistula extract was added to 90 ml of aqueous solution of 1 mM silver nitrate. The solution was incubated in darkness overnight, at room temperature. After changing the color of solution, the production of AgNPs was examined by UV-Vis spectrophotometry, XRD and DLS methods. Finally, the antibacterial activity of AgNPs was investigated by using three methods: (1) agar well diffusion, (2) MIC determining and (3) effect on prevention of infection in wound on rat models. The results revealed that synthesized silver nanoparticles have strong antibacterial activity in vitro and in vivo conditions. Undeniably, further research is required to investigate the side effects of such particles.

  7. Radiation stability of colloidal metals in aqueous solutions: silver and other metals

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The effect of accelerated electrons and γ-rays of 60N i on the stability of aqueous solutions of colloidal silver was studied. The threshold of absorbed dose, at which the stability dramatically decreases and coagulation of the metal occurs, was found. This critical dose corresponds to the reduction of silver ions determining the electrical potential of the sols. Radiation neutralization was also found for cadmium was not observed in the case of thallium, copper and platinum. A mechanism of the effect of radiation, taking into account the electrostatic factor in the stability of metal sols, was considered. (author)

  8. Biosythesis of Silver Nanoparticles using Putri Malu (Mimosa pudica Leaves Extract and Microwave Irradiation Method

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2016-11-01

    Full Text Available In this paper, the biosynthesis of silver nanoparticles (AgNPs using Mimosa pudica extract is discussed. Mimosa pudica leaves extract using water as solvent was used as bio-reductor to an aqueous solution of silver nitrate (AgNO3 and in order to accelerate the reduction, microwave irradiation method was applied. The AgNPs obtained were characterized using UV-Vis spectrophotometry, FTIR spectrophotometry, XRD, SEM-EDX, and particle size analysis based on dynamic scattering method. Effect of preparation method to the formation of AgNPs is also evaluated in antibacterial activity towards E.coli and P. aeruginosa. Rapid and ecofriendly biosynthesis of stable silver nanoparticles was observed in this study. The characterization results and antibacterial assay indicated the uniform and smaller particle size of AgNPs obtained by using microwave method and positively enhance the antibacterial activity against tested bacteria.

  9. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    Science.gov (United States)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM

    Directory of Open Access Journals (Sweden)

    Vikas Sarsar

    2015-11-01

    Full Text Available The biofabricated silver nanoparticles are extensively used in environmental, biotechnological and biomedical applications. The synthesis of SNPs has been carried out by using the filtrate extract of novel fungal strain Penicillium atramentosum KM. To undertake this study, P. atramentosum KM extract was exposed to silver nitrate and the obtained SNPs were thoroughly analyzed using physicochemical characterization tools such as UV–visible spectroscopy (UV–vis, Fourier transformation infrared (FTIR, X-ray diffraction (XRD and transmission electron microscopy (TEM. As evident from the FTIR spectra plausibly the protein components of fungal extract caused the reduction of silver nitrate. The SNPs showed a characteristic UV–visible peak at 420 nm with an average size of 5–25 nm. The XRD record exhibited the characteristic peaks of 111, 200, 220 and 311 nanoparticles signifying that these nanoparticles were crystalline in nature. Parametric optimization showed maximum absorbance of 420 nm at pH 7, 25 °C with 3 mM silver nitrate, concentration ratio of fungal extract and silver nitrate was 5:5 in 72 h. The synthesized SNPs showed antimicrobial activity against bacterial strains.

  11. Precipitation of gold and silver from cyanide solutions by hydrated electrons generated by ionizing radiation

    International Nuclear Information System (INIS)

    Chernyak, A.S.; Zhigunov, V.A.; Shepot'ko, M.L.; Smirnov, G.I.; Dolin, P.I.; Bobrova, A.S.; Khikin, G.I.

    1981-01-01

    Redox reactions are widely used in chemistry and chemical engineering for the precipitation of noble metals, since this general class of reactions offers the possibility of selective recovery of these metals from solutions that are complex in composition. The classical method for precipitation of gold and silver from cyanide process solutions is reduction by metallic zinc. This process has certain advantages, and it is easy to carry out under plant conditions with high indices of efficiency. However, the precipitation of gold and silver is accompanied by contamination of the solutions with zinc ions, which makes it difficult to recycle the cyanide solutions; also, additional treatment of the precipitates is required before they are directed to the refining process. Hence, greater quantities of reagents are required, the process conversion becomes more complicated, and the cost of producing the metals is higher. All of these factors make it attractive to seek new methods for processing cyanide solutions that do not have these shortcomings. An interesting approach to the solution of this problem is the use of so-called ''reagentless'' precipitation methods, among which we may class the reduction of gold and silver to the metallic state in cyanide solutions by hydrated electrons generated by ionizing radiation. The significant advances that have been made in research on the hydrated electron, along with data indicating that it is feasible, at least in principle, to use the hydrated electron for industrial purposes, have been the stiumlus for setting up the studies that are reported here

  12. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition

    International Nuclear Information System (INIS)

    Henglein, A.

    1979-01-01

    Organic free radicals of high negative redox potential such as α-alcohol radicals were found to transfer electrons to colloidal silver particles stabilized by sodium dodecyl sulfate in aqueous solution. The colloidal particles thus became a pool of stored electrons that could reduce water to form hydrogen or react with suitable acceptors in solution. The organic radicals were produced by irradiation, using suitable scavengers for the primary radicals from the radiolysis of the aqueous solvent. The solutions initially contained silver ions at 1 x 10 -4 - 2 x 10 -3 M. At doses below 10 5 rd, the silver ions were completely reduced to form the colloidal catalyst. In this dose range, the corresponding hydrogen yield amounted to 1 molecule per 100 eV. It increased steeply at higher doses up to 3 molecules per 100 eV. The H 2 yield decreased with increasing dose rate and with increasing pH in alkaline solutions. It was highest at a concentration of sodium dodecyl sulfate of 1 x 10 -3 M, i.e., far below the critical micelle concentration of this surfactant. Changes in the absorption spectrum of the colloid are attributed to changes in the size of the silver particles upon charging up with electrons. The competition of radical-colloid reactions with radical-radical deactivation in the bulk of solution or at the surface of the colloidal particles is also discussed. 11 figures

  13. Chelating effect of silver nitrate by chitosan on its toxicity and growth performance in broiler chickens

    Directory of Open Access Journals (Sweden)

    Yemdjie Mane Divine Doriane

    2017-06-01

    Full Text Available Objective: This study was conducted to investigate the chelating effect of silver nitrate (AgNO3 by chitosan on growth performances, hematological and biochemical parameters, and the histopathological structure of the liver and the kidney in broiler chicken. Materials and methods: A total of 192 day-old Cobb 500 strain chicks were randomly assigned to 3 treatments of 64 chicks each. Control group was fed on basal diet without supplement (R0 and the two others groups were fed on rations supplemented with 10 mg of unchelated (RAg or chelated (RCs-Ag AgNO3 per Kg of feed, respectively. Parameters that have been studied consisted of feed intake, weight gain, blood and serum biochemical, and histopathological analyses of liver and kidney. Results: Results revealed that chelation of AgNO3 by chitosan did not have any effect on growth performances and hematological parameters in chicken. However, chelated and unchelated AgNO3 increased the serum content in triglyceride, and cholesterol and decreased the serum content in creatinin, albumin and alanine aminotransferase (ALAT. Chelating AgNO3 with chitosan prevented and corrected the toxicity induced on the histological structure of liver and kidney. Conclusion: Chitosan can be used as a chelating agent to alleviate the harmful effects of AgNO3 as silver ion for poultry. [J Adv Vet Anim Res 2017; 4(2.000: 187-193

  14. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina

    Indian Academy of Sciences (India)

    UV-visible absorption scan of a 48 h culture exposed to 5mM silver nitrate revealed a broad peak at 450nm indicative of the surface plasmon resonance of SNPs. XRD analysis confirmed the presence of elemental silver and the crystallite size was calculated to be 25nm using Scherrer formula. The average particle size as ...

  15. On the influence of molecular structure on the conductivity of electrolyte solutions - sodium nitrate in water

    Directory of Open Access Journals (Sweden)

    H. Krienke

    2013-01-01

    Full Text Available Theoretical calculations of the conductivity of sodium nitrate in water are presented and compared with experimental measurements. The method of direct correlation force in the framework of the interionic theory is used for the calculation of transport properties in connection with the associative mean spherical approximation (AMSA. The effective interactions between ions in solutions are derived with the help of Monte Carlo and Molecular Dynamics calculations on the Born-Oppenheimer level. This work is based on earlier theoretical and experimental studies of the structure of concentrated aqueous sodium nitrate solutions.

  16. Modeling of critical experiments employing Raschig rings in uranyl nitrate solution

    International Nuclear Information System (INIS)

    Tanner, J.E.

    1989-01-01

    Four critical experiments employing borated glass rings in concentrated uranyl nitrate solution yielded k eff higher by 0. 04 when modeled with a flux-weighted, homogenized cross section set than when modeled with discrete rings. k eff varied by 0.014 for a 10% boron uncertainty and by up to 0.04 for a 10% packing fraction uncertainty

  17. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T

    2004-10-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am{sup -2}) conditions in the FM-01 LC flow cell.

  18. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    International Nuclear Information System (INIS)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T.

    2004-01-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am -2 ) conditions in the FM-01 LC flow cell

  19. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  20. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities.

    Science.gov (United States)

    Niraimathi, K L; Sudha, V; Lavanya, R; Brindha, P

    2013-02-01

    The present work focuses the use of the aqueous extract of Alternanthera sessilis Linn. (Amaranthaceae) in producing silver nanoparticles (AgNPs) from silver nitrate aqueous. Phytochemical analysis of the extract revealed the presence of alkaloid, tannins, ascorbic acid, carbohydrates and proteins and they serve as effective reducing and capping agents for converting silver nitrate into nanoparticles. The synthesized silver nanoparticles (AgNPs) were also tested for proteins and ascorbic acid. Its pH was also determined (5.63). The AgNPs obtained was characterized by UV-vis spectroscopy, FT-IR spectroscopy, SEM, Zeta sizer and TG-DSC. SEM images which revealed the presence of various shapes and sizes. FT-IR spectrum showed the AgNPs having a coating of proteins indicating a dual role of bio-molecules responsible for capping and efficient stabilization of the silver nanoparticles. Presence of impurities and melting point profile were screened by TG-DSC analyzer. AgNPs were synthesized from the silver nitrate through the reducing power of ascorbic acid present in A. sessilis leaves. In this study, we also investigated antimicrobial and antioxidant activity of green synthesized AgNPs. The antimicrobial activity is investigated by Bauer et al.'s method. Antioxidant activity was done by DPPH method. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  2. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  3. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  4. Establishing the traceability of a uranyl nitrate solution to a standard reference material

    International Nuclear Information System (INIS)

    Jackson, C.H.; Clark, J.P.

    1978-01-01

    A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Two different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal

  5. Corrosion behavior of 321 stainless steel in low-acidity uranium nitrate solution

    International Nuclear Information System (INIS)

    Liao Junsheng; Sun Ying; Zhang Wanglin; Ding Ping; Yang Jiangrong; Wu Lunqiang

    2003-01-01

    Weighing and electrochemical methods have been used to investigate the high-temperature uniform corrosion and electrochemical corrosion behavior of lCr18Ni9Ti (321) stainless steel in uranium nitrate solution at different concentrations and pH values. The uniform corrosion results showed that the corrosion rate of 321 stainless steel was less than 0.04 g/m 2 .h, and the visible change of surface smoothness was not observed through 960 h. It was perfect corrosion-resisting in obtained conditions. The electro-chemical corrosion behavior study has been performed to investigate 321 stainless steel in uranium nitrate solutions of the dissolved and saturated oxygen. The corrosion potential and corrosion current density were obtained. Auger photoelectron spectroscopy for measurement of uranium in specimen was used to indicate that uranium is in corrosion product. The corrosion film was measured by Ar ion gun sputter, and the thickness is 10-15 nm. (authors)

  6. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)], E-mail: Adel.anoubigh@ipest.rnu.tn; Cherif, Mourad [IPEIEM, Universite de Tunis-El Manar, BP244. 2096. El Manar II (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France); Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)

    2008-11-15

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO{sub 3} and NaNO{sub 3}) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr}G{sup 0}) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive {delta}{sub tr}G{sup 0} value which is mainly of enthalpic origin.

  7. Criticality parameters for uranyl nitrate or plutonium nitrate systems in tributyl phosphate/kerosine and water

    International Nuclear Information System (INIS)

    Weber, W.

    1985-01-01

    This report presents the calculated values of smallest critical masses and volumina and neutron physical parameters for uranyl nitrate (3, 4, 5% U-235) or plutonium nitrate (5% Pu-240), each in a 30 per cent solution of tributyl phosphate (TBP)/kerosine. For the corresponding nitrate-water solutions, newly calculated results are presented together with a revised solution density model. A comparison of the data shows to what extent the criticality of nitrate-TBP/kerosine systems can be assessed on the basis of nitrate-water parameters, revealing that such data can be applied to uranyl nitrate/water systems, taking into account that the smallest critical mass of uranyl nitrate-TBP/kerosine systems, up to a 5 p.c. U-235 enrichment, is by 4.5 p.c. at the most smaller than that of UNH-water solutions. Plutonium nitrate (5% Pu-240) in the TBP/kerosine solution will have a smallest critical mass of up to 7 p.c. smaller, as compared with the water data. The suitability of the computing methods and cross-sections used is verified by recalculating experiments carried out to determine the lowest critical enrichment of uranyl nitrate. The calculated results are well in agreement with experimental data. The lowest critical enrichment is calculated to be 2.10 p.c. in the isotope U-235. (orig.) [de

  8. A method for the gravimetric determination of plutonium in pure plutonium nitrate concentrate solution

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.

    1986-12-01

    Plutonium nitrate solution is treated with sulphuric acid before being heated and finally ignited. The stoichiometric plutonium dioxide so formed is weighed and hence the plutonium content is calculated. (author)

  9. Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae submitted at the flooding and the "Ethrel" and silver nitrate application

    Directory of Open Access Journals (Sweden)

    Viviane M. Davanso

    2003-01-01

    Full Text Available Three-month-old Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae plants cultivated in the greenhouse were submitted to 56 days of flooding and to "Ethrel" and silver nitrate applications to find out it’s capacity for morphological and physiological modifications to survive under flooding conditions and at which degree such responses were correlated with alterations in the ethylene level. Flooding and the "Ethrel" application caused growth reduction and epinasty in T. avellanedae and the application of silver nitrate lessened some these symptoms. Certain symptoms shown during flooding by this species and its ability to develop structures which lessen hypoxia effects, such as stem fissures and hypertrophied lenticels in the roots, modifications which enable the species to adapt to short flooding periods, could be related to increases in the ethylene concentration in the plant tissues.Plantas de Tabebuia avellanedae Lor. ex Griseb. (Bignoniaceae com três meses de idade e cultivadas em casa de vegetação, foram submetidas a 56 dias alagamento e à aplicação de "Ethrel" e de nitrato de prata. Objetivou-se verificar qual a capacidade desta espécie apresentar modificações morfológicas e fisiológicas para sobreviver durante períodos de inundação e em que grau tais respostas podem estar relacionadas com alterações nos níveis de etileno. O alagamento e a aplicação de "Ethrel" provocaram redução do crescimento e epinastia em T. avellanedae e a aplicação de nitrato prata amenizou em certos aspectos estes efeitos. Alguns sintomas apresentados por esta espécie durante a inundação e sua capacidade de desenvolver estruturas que amenizam os efeitosda hipoxia, como rachaduras corticaise hipertrofia de lenticelas nas raízes (modificações que possibilitaram a adaptação a curtos períodos de inundação podem estar relacionados a aumentos na concentração de etileno nos tecidos da planta.

  10. Ammonia volatilization from surface-applied nitrogen solution of urea and ammonium nitrate

    International Nuclear Information System (INIS)

    Trivellin, Paulo Cezar Ocheuze; Stefanutti, Ronaldo; Lima Filho, Oscar Fontvo de; Tziboy, Edgar Alfredo Tzi; Oliveira Junior, Jovo Alberto de; Bendassolli, Jose Albertino

    1996-08-01

    The urea is one of the fertilizers more utilized in modern agriculture. One of the problems in the urea utilization is the ammonium volatilization, resulting in low utilization of N-fertilizers by the plants.The objective of this study it was to evaluate and to compare in laboratories conditions , utilizing the 15 N technic the soil's ammonium lost by volatilization associated a superficial application of nitrogen corresponding doses like urea solution and urea and ammonium nitrates solution

  11. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  12. Silver loaded WO3−x/TiO2 composite multifunctional thin films

    International Nuclear Information System (INIS)

    Dunnill, Charles W.; Noimark, Sacha; Parkin, Ivan P.

    2012-01-01

    Multifunctional WO 3−x –TiO 2 composite thin films have been prepared by sol–gel synthesis and shown to be good visible light photocatalysts whilst retaining a desirable underlying blue colouration. The WO 3−x –TiO 2 composite thin films were further enhanced using silver nanoparticles synthesised in-situ on the surface from the photo-degradation of silver nitrate solution. Thin films were characterised using X-ray diffraction, Raman, Scanning electron microscopy and UV–visible spectroscopy and shown to photo degrade stearic acid, using white light λ = 420–800 nm. - Highlights: ► WO 3−X TiO 2 composite thin films were synthesised by sol–gel methods. ► Blue tinted glass is desirable for the value added glass industry. ► Silver nanoparticle island formation enhances the activity of the films. ► Blue tinted “value added” coated glass is now possible.

  13. Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution

    International Nuclear Information System (INIS)

    Sarafian, P.G.

    1975-12-01

    The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain-assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible

  14. Solidification of nitrate solutions with alkali-activated slag and slag–metakaolin cements

    International Nuclear Information System (INIS)

    Rakhimova, Nailia R.; Rakhimov, Ravil Z.; Osin, Yury N.; Naumkina, Natalia I.; Gubaidullina, Alfiya M.; Yakovlev, Grigory I.; Shaybadullina, Arina V.

    2015-01-01

    Highlights: • The effectiveness of an AASC matrix for NaNO 3 solution solidification is stated. • XRD, DTA-TG, and X-ray microtomography experiments were performed. • Crystallization of NaNO 3 reduces the shrinkage of hardened AASC-based waste forms. • Metakaolin shortens the setting time and increases the compressive strength of AASC. - Abstract: The solidification of nitrate solutions with alkali-activated slag (AASC) and slag–metakaolin cements (AASMC) and the resulting setting times, compressive strengths, dimensional stability, water resistance, hydration products, microstructures, and macroporous network structures were evaluated. The influences of the alkali activator concentration, mineral composition of metakaolin, ratio of slag to slag + metakaolin, and concentration of NaNO 3 on the cement performance were all evaluated in detail. The compressive strength of cemented nitrate solutions with AASC and AASMC aged for 28 days was from 13.4 to 42 MPa depending on the NaNO 3 concentration. X-ray diffractometer, differential thermal analyzer, and electron microscope analyses suggested that NaNO 3 crystallizes in cementitious matrices without reacting with the hydration products of AASC and AASMC. X-ray microtomography showed that the solidified NaNO 3 solution with a salt concentration of 700 g/l and AASC had a denser microstructure without shrinkage microcracks, a smaller macropore volume, and smaller macropore sizes than hardened AASC-based paste mixed with water

  15. Biofabrication of chitosan-silver composite SERS substrates enabling quantification of adenine by a spectroscopic shift

    International Nuclear Information System (INIS)

    Luo, X L; Bentley, W E; Buckhout-White, S; Rubloff, G W

    2011-01-01

    Surface-enhanced Raman scattering (SERS) has grown dramatically as an analytical tool for the sensitive and selective detection of molecules adsorbed on nano-roughened noble metal structures. Quantification with SERS based on signal intensity remains challenging due to the complicated fabrication process to obtain well-dispersed nanoparticles and well-ordered substrates. We report a new biofabrication strategy of SERS substrates that enable quantification through a newly discovered spectroscopic shift resulting from the chitosan-analyte interactions in solution. We demonstrate this phenomenon by the quantification of adenine, which is an essential part of the nucleic acid structure and a key component in pathways which generate signal molecules for bacterial communications. The SERS substrates were fabricated simply by sequential electrodeposition of chitosan on patterned gold electrodes and electroplating of a silver nitrate solution through the chitosan scaffold to form a chitosan-silver nanoparticle composite. Active SERS signals of adenine solutions were obtained in real time from the chitosan-silver composite substrates with a significant concentration-dependent spectroscopic shift. The Lorentzian curve fitting of the dominant peaks suggests the presence of two separate peaks with a concentration-dependent area percentage of the separated peaks. The chitosan-mediated composite SERS substrates can be easily biofabricated on predefined electrodes within microfluidic channels for real-time detection in microsystems.

  16. Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 250C

    International Nuclear Information System (INIS)

    Spedding, F.H.; Baker, J.L.; Walters, J.P.

    1979-01-01

    Specific heats of aqueous solutions of the trinitrates of La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured from 0.1 m to saturation at 25 0 C. Apparent molal heat capacities, phi/sub cp/, were calculated for these solutions, and empirical polynomial equations were obtained which expressed phi/sub cp/ as a function of m/sup 1/2/ for each salt. The partial molal heat capacities of the solvent, anti C 1 /sub p/, and solute, anti C 2 /sub p/, were calculated from these equations. Unlike chloride and perchlorate data reported earlier, values of anti C 1 /sub p/ for nitrate solutions across the rare earth series did not show a two series effect. Instead, anti C 1 /sub p/ values at lower concentrations (0.5 and 1.0 m) appear correlated with reported first formation constants for rare earth-nitrate complexes. 31 references, 9 figures, 2 tables

  17. Silver colloidal effects on excited-state structure and intramolecular charge transfer of p-N, N-dimethylaminobenzoic acid in aqueous cyclodextrin solutions

    International Nuclear Information System (INIS)

    Choi, Jung Kwon; Kim, Yang Hee; Yoon, Min Joong; Lee, Seung Joon; Kim, Kwan; Jeoung, Sae Chae

    2001-01-01

    The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (I a /I b ) of DMABA in the aqueous α-CD solutions are greatly decreased while the I a /I b values in the aqueous β-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in α-CD or β-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of v s (CO 2 - )(1380 cm -1 ) with appearance of v (C-OH)(1280 cm -1 ) band, respectively. Thus, in the aqueous β-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen bonded with the secondary hydroxyl group of β-CD while in aqueous and α-CD solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous β-CD solutions the enhancement of the I a /I b value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of β-CD as well as the lower polarity of the rim of the β-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/β-CD complex in the presence of silver colloids

  18. Interaction of cadmium and indium nitrate mixture with sodium tungstate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Belousova, E E; Krivobok, V I; Gruba, A I [Donetskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-01-01

    The interaction of the mixture of cadmium and indium nitrates with sodium tungstate in aqueous solution is studied using the methods of ''residual concentrations'', pH potentiometry and conductometry. Independent of the ratio of components in the initial solution a mixture of coprecipitated normal tungstates of cadmium and indium is formed in the system. Heat treatment of the precipitates at 800 deg C for 50 hrs with subsequent hardening results in the formation of solid solutions on the basis of normal cadmium and indium tungstates.

  19. Silver as antibacterial towards Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Simone eBelluco

    2016-03-01

    Full Text Available Listeria monocytogenes is a serious foodborne pathogen that can contaminate food during processing and can grow during food shelf-life. New types of safe and effective food contact materials embedding antimicrobial agents, like silver, can play an important role in the food industry. The present work aimed at evaluating the in vitro growth kinetics of different strains of L. monocytogenes in the presence of silver, both in its ionic and nano form. The antimicrobial effect was determined by assaying the number of culturable bacterial cells, which formed colonies after incubation in the presence of silver nanoparticles (AgNPs or silver nitrate (AgNO3. Ionic release experiments were performed in parallel. A different reduction of bacterial viability between silver ionic and nano forms was observed, with a time delayed effect exerted by AgNPs. An association between antimicrobial activity and ions concentration was shown by both silver chemical forms, suggesting the major role of ions in the antimicrobial mode of action.

  20. Determination of uranium in uranyl nitrate solutions of nuclear grade quality - Gravimetric method

    International Nuclear Information System (INIS)

    1990-01-01

    This international Standard specifies a precise and accurate gravimetric method for determining the uranium content in uranyl nitrate product solutions of nuclear grade quality at concentrations above 100 g/l of uranium. Non-volatile impurities influence the accuracy of the method. Uranyl nitrate is converted into uranium octoxide (U 3 O 8 ) by ignition in air to constant mass at 900 deg. C ± 10 deg. C. Calculation of the uranium content in the sample using a gravimetric conversion factor which depends on the isotopic composition of the uranium. The isotopic composition is determined by mass spectrometry

  1. A New Method for the Deposition of Metallic Silver on Porous Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Kathryn N. Jackson

    2018-01-01

    Full Text Available A new method of silver application to a porous ceramic water filter used for point-of-use water treatment is developed. We evaluated filter performance for filters manufactured by the conventional method of painting an aqueous suspension of silver nanoparticles onto the filter and filters manufactured with a new method that applies silver nitrate to the clay-water-sawdust mixture prior to pressing and firing the filter. Filters were evaluated using miscible displacement flow-through experiments with pulse and continuous-feed injections of E. coli. Flow characteristics were quantified by tracer experiments using [3H]H2O. Experiments using pulse injections of E. coli showed similar performance in breakthrough curves between the two application methods. Long-term challenge tests performed with a continuous feed of E. coli and growth medium resulted in similar log removal rates, but the removal rate by nanosilver filters decreased over time. Silver nitrate filters provided consistent removal with lower silver levels in the effluent and effective bacterial disinfection. Results from continued use with synthetic groundwater over 4 weeks, with a pulse injection of E. coli at 2 and 4 weeks, support similar conclusions—nanosilver filters perform better initially, but after 4 weeks of use, nanosilver filters suffer larger decreases in performance. Results show that including silver nitrate in the mixing step may effectively reduce costs, improve silver retention in the filter, increase effective lifespan, and maintain effective pathogen removal while also eliminating the risk of exposure to inhalation of silver nanoparticles by workers in developing-world filter production facilities.

  2. Performance of some silver sorbents for control of radioiodine from nuclear fuel operations

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Halko, B.T.; Waters, E.D.; Orme, R.M.

    1989-01-01

    The Process Facility Modification (PFM) proposed for the Hanford PUREX plant includes control of gaseous radioiodine. In support of the Westinghouse Hanford Company (WHC) design effort for the PFM, the Pacific Northwest Laboratory (PNL) has evaluated caustic scrubbing and the use of silver-containing solid sorbents to remove iodine from the dissolver offgas (DOG) stream. The present report describes the behavior of several silver-containing zeolites and silver nitrate-impregnated silicic acid tested under conditions simulating normal and standby operation of the PFM. These studies found that the silver zeolites, Norton silver mordenite (NAgZ), Linde silver mordenite (LAgZ), and partially silver-exchanged Linde silver faujasite (PAgX), can routinely reduce the gaseous iodine concentration in a simulated PFM DOG to -5 μmol I/L, while a commercially produced silver nitrate-impregnated silicic acid (AgNO 3 Si) could not at these test conditions. Tests simulating standby operation of beds loaded up to 0.25 μmol I/g sorbent indicate that standby operation will not result in effluent concentrations above 10 -5 μmol I/L. At higher loadings standby operation initially caused iodine to migrate from NAgZ. There were indications that the iodine tends to stabilize with time, but insufficient information is available to fully characterize these reactions

  3. Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Kapoor, S.; Gopinathan, C.

    1998-01-01

    Radiolytic reduction of silver, copper and cadmium ions and the subsequent formation of their clusters was studied in aqueous gelatin or carboxy methyl cellulose (CMC) solutions. Presence of gelatin or CMC in the solution affects the early processes. The rate of reduction by hydrated electron reduces due to complexation. However, when the ratio of silver ions to monomeric chains decreases over a certain limit the process of reduction inhibits completely. The effect of ionic strength or pH and the reducing radical on the rate of formation of colloidal Cu and Cd is also discussed

  4. Silver loaded WO{sub 3-x}/TiO{sub 2} composite multifunctional thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dunnill, Charles W.; Noimark, Sacha; Parkin, Ivan P., E-mail: I.P.Parkin@ucl.ac.uk

    2012-06-30

    Multifunctional WO{sub 3-x}-TiO{sub 2} composite thin films have been prepared by sol-gel synthesis and shown to be good visible light photocatalysts whilst retaining a desirable underlying blue colouration. The WO{sub 3-x}-TiO{sub 2} composite thin films were further enhanced using silver nanoparticles synthesised in-situ on the surface from the photo-degradation of silver nitrate solution. Thin films were characterised using X-ray diffraction, Raman, Scanning electron microscopy and UV-visible spectroscopy and shown to photo degrade stearic acid, using white light {lambda} = 420-800 nm. - Highlights: Black-Right-Pointing-Pointer WO{sub 3-X} TiO{sub 2} composite thin films were synthesised by sol-gel methods. Black-Right-Pointing-Pointer Blue tinted glass is desirable for the value added glass industry. Black-Right-Pointing-Pointer Silver nanoparticle island formation enhances the activity of the films. Black-Right-Pointing-Pointer Blue tinted 'value added' coated glass is now possible.

  5. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  6. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  7. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    Science.gov (United States)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  8. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  9. Synthesis of silver nanoparticles using DL-alanine for ESR dosimetry applications

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Nicolucci, Patricia; Baffa, Oswaldo

    2012-01-01

    The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with DL-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the DL-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure DL-alanine, contributing to the construction of small-sized dosimeters. - Highlights: ► The synthesis is environmentally benign, easy to perform, and of low-cost. ► DL-Alanine was employed both as reducing and capping agent. ► Mean size of 7.5 nm, narrow size distribution, and spherical shape of particles. ► Increased sensitivity and reduced energetic dependence compared with pure alanine. ► The nanocomposite has potential application for ESR dosimetry.

  10. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Directory of Open Access Journals (Sweden)

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  11. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Senthilkumar, Kalimuthu; Sivakumar, Kannan; Kim, Se-Kwon

    2013-01-01

    The biosynthesis of nanoparticles has been proposed as a cost effective environmental friendly alternative to chemical and physical methods. Microbial synthesis of nanoparticles is under exploration due to wide biomedical applications, research interest in nanotechnology and microbial biotechnology. In the present study, an ecofriendly process for the synthesis of nanoparticles using a novel Nocardiopsis sp. MBRC-1 has been attempted. We used culture supernatant of Nocardiopsis sp. MBRC-1 for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Nocardiopsis sp. MBRC-1 culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, FE-SEM, EDX, FTIR, and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 420 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were spherical in shape with an average particle size of 45 ± 0.15 nm. The EDX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FTIR analysis revealed that the protein component in the form of enzyme nitrate reductase produced by the isolate in the culture supernatant may be responsible for reduction and as capping agents. The XRD spectrum showed the characteristic Bragg peaks of 1 2 3, 2 0 4, 0 4 3, 1 4 4, and 3 1 1 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against bacteria and fungi. Cytotoxicity of biosynthesized AgNPs against in vitro human cervical cancer cell line (HeLa) showed a dose-response activity. IC50 value was found to be 200 μg/mL of AgNPs against HeLa cancer cells. Further studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs as

  12. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Michaels, S.L.; Michel, R.C.; Terpandjian, P.D.; Vora, J.N.

    1976-01-01

    Bacterial denitrification by Pseudomonas Stutzeri has been chosen as the method for removing nitrate from the effluent stream of the Y-12 uranium purification process. A model was developed to predict bacterial growth and carbon and nitrate depletion during the induction period and steady state operation. Modification of analytical procedures and automatic control of the pH in the reactor are recommended to improve agreement between the prediction of the model and experimental data. An initial carbon-to-nitrogen (C/N) mass ratio of 1.4-1.5 insures adequate population growth during the induction period. Further experiments in batch reactors and in steady state flow reactors are recommended to obtain more reliable kinetic rate constants

  13. Rapid determination of fluoride in uranyl nitrate solution obtained in conversion process of uranium tetrafluoride

    International Nuclear Information System (INIS)

    Levin, R.; Feldman, R.; Sahar, E.

    1976-01-01

    In uranium production the conversion of impure uranium tetrafluoride by sodium hydroxide was chosen as a current process. A rapid method for determination of fluoride in uranyl-nitrate solution was developed. The method includes precipitation of uranium as diuranate, separation by centrifugation, and subsequent determination of fluoride in supernate by titration with thorium nitrate. Fluoride can be measured over the range 0.15-2.5 gr/gr U, with accuracy of +-5%, within 15 minutes. (author)

  14. Pleurodesis induced by intrapleural injection of silver nitrate or talc in rabbits: can it be used in humans? Pleurodese induzida pela injeção intrapleural de nitrato de prata ou talco em coelhos: há perspectivas para o uso em humanos?

    Directory of Open Access Journals (Sweden)

    Francisco S. Vargas

    2003-04-01

    Full Text Available OBJECTIVE: To evaluate the pleuropulmonary alterations caused by intrapleural injection of silver nitrate or talc in an experimental model, in order to consider its use in human beings. METHOD: 112 rabbits were randomly selected to receive intrapleural 0.5% silver nitrate or 400 mg/kg talc slurry in 2 ml saline. Eight rabbits of each group were sacrificed after 1, 2, 4, 6, 8, 10, or 12 months. Regarding the pleural cavity, the degree of macroscopic pleurodesis (adherences and microscopic alterations, represented by inflammation and pleural fibrosis, were analyzed. The parenchyma was evaluated regarding the degree of alveolar collapse, intra-alveolar septum edema, and cellularity, on a 0 to 4 scale. RESULTS: Intrapleural injection of silver nitrate produced earlier and more intense pleurodesis than talc slurry injection. The parenchymal damage was more evident with silver nitrate, considered as moderate, and limited to the first evaluation (after one month. From the second month on and throughout the entire one-year follow-up, the parenchymal damage was similar with both substances, only the pleural adherences were more intense with silver nitrate. CONCLUSIONS: Intrapleural silver nitrate produces better and longer-lasting than intrapleural talc injection. The parenchymal alterations, although discreet, are more pronounced when silver nitrate is used, but minimal after two months, and similar to those produced by talc injection during the entire one-year observation period. These effects on the pulmonary parenchyma do not contraindicate the use in humans. Thus, the use of intrapleural silver nitrate to produce fast and effective pleurodesis can be considered in patients in which pleural cavity symphysis is desired.OBJETIVO DE ESTUDO: Avaliar as alterações pleuropulmonares causadas pela injeção intrapleural de talco ou nitrato de prata em modelo experimental, com o intuito de considerar sua utilização em humanos. MÉTODO: 112 coelhos foram

  15. A concetration-dependent model for silver colloids in nanostructured sol-gel materials

    Science.gov (United States)

    Garcia-Macedo, Jorge A.; Franco, Alfredo; Renteria, Victor; Valverde-Aguilar, Guadalupe

    2005-08-01

    We report on the physical modelling of the photoconductive response of nanostructured sol-gel films in function of the silver nitrate concentration (ions and colloids). This model considers several factors as the silver nitrate concentration and the transport parameters obtained. The model is compared with others commonly used. 2d-hexagonal nanostructured sol-gel thin films were prepared by dip-coating method using a non-ionic diblock copolymer Brij58 (surfactant) to produce channels into the film. Silver colloids (metallic Ag0 nanoparticles ) were obtained by spontaneous reduction process of Ag+ ions to Ag0. These nanoparticles were deposited into the channels formed by the surfactant. The structure was identified by X-ray diffraction and TEM. An absorption band located at 430 nm was detected by optical absorption; it corresponds to the plasmon surface. Fit to this band with modified Gans theory is presented. Photoconductivity studies were performed on films with silver ions and films with silver colloids to characterized their mechanisms of charge transport in the darkness and under illumination at 420, 633 nm wavelengths. Transport parameters were calculated. The films with silver colloids exhibit a photovoltaic effect stronger than the films with silver ions. While, the last ones possesses a photoconductivity behaviour.

  16. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  17. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang; Wang Huaping

    2009-01-01

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  18. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group

    International Nuclear Information System (INIS)

    Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P.; Kang, H.-D.

    2003-01-01

    The colloidal silver nanoparticles were prepared by the γ-irradiation of silver nitrate (AgNO 3 ) in a mixture solution of water and 2-propanol in the presence of poly(vinylpyrrolidone) as a colloidal stabilizer. The Ag colloids obtained by γ-irradiation were characterized by use of XRD and TEM. The surface of the Ag colloids were modified by use of mercaptosuccinic acid (MSA), (D)-cysteine (Cys), and (L)-Cys, respectively. The MSA and (L)-Cys-capped Ag colloids were aggregated because of hydrogen bonding of the carboxylic acid and amino acid group, respectively. From the analysis by CD spectroscopy, it was shown that chiral-enhanced phenomena were obtained in (L)- and (D)-Cys-capped Ag colloids

  19. Generation of Hybrid Peptide-Silver Nanoparticles for Antibacterial and Antifouling Applications

    KAUST Repository

    Seferji, Kholoud

    2018-05-01

    An alarming increase of antibiotic-resistant bacterial strains has made the demand for novel antibacterial agents, for example, more effective antibiotics, highly crucial. One of the oldest antimicrobial agents is elementary silver which has been used for thousands of years. Even in our days, elementary silver is used for medical purposes, such as for burns, wounds, and microbial infections. We have taken the effectiveness of elementary silver into consideration to generate novel antibacterial and antifouling agents. Our innovative antibacterial agents are hybrid peptide silver nanoparticles (CH-01-AgNPs) that are created de novo and in situ from a silver nitrate solution (AgNO3) in the presence of ultrashort self-assembling peptides compounds. The nucleation of CH-01-AgNPs is initiated by irradiating the peptide solution mixed with the AgNO3 solution using ultraviolet (UV) light at a wavelength of 254 nm, in the absence of any reducing or capping agents. Obviously, the peptide itself serves as the reducing agent. The ultrashort peptides are four amino acids in length with an innate ability to self-assemble into nanofibrous scaffolds. Using these ultrashort peptides CH-01 we were able to create hybrid peptide silver nanoparticles CH-01-AgNPs with a diameter of 4-6 nm. The synthesized CH-01-AgNPs were further characterized using ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, and X-ray photoelectron spectroscopy. The antibacterial and antifouling activity of CH-01-AgNPs were then investigated using either gram-negative bacteria, such as antibiotic-resistant Top10 Escherichia coli and Pseudomonas aeruginosa PDO300, or gram-positive bacteria, such as Staphylococcus aureus CECT 976. The hybrid nanoparticles demonstrated very promising antibacterial and antifouling activity with higher antibacterial and antifouling activity as commercial silver nanoparticles. Quantitative Polymerase Chain Reaction (qPCR) results showed

  20. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  1. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  2. Minimum critical values of uranyl and plutonium nitrate solutions calculated by various routes of the french criticality codes system CRISTAL using the new isopiestic nitrate density law

    International Nuclear Information System (INIS)

    Anno, Jacques; Rouyer, Veronique; Leclaire, Nicolas

    2003-01-01

    This paper provides for various cases of 235 U enrichment or Pu isotopic vectors, and different reflectors, new minimum critical values of uranyl nitrate and plutonium nitrate solutions (H + =0) obtained by the standard IRSN calculation route and the new isopiestic density laws. Comparisons are also made with other more accurate routes showing that the standard one's results are most often conservative and usable for criticality safety assessments. (author)

  3. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shibin [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Shi Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China)]. E-mail: gshi@tsinghua.edu.cn

    2007-04-15

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles.

  4. Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction

    International Nuclear Information System (INIS)

    Wang Shibin; Shi Gaoquan

    2007-01-01

    Uniformly sized silver/polypyrrole (Ag/PPy) core-shell nanoparticles were synthesized by one-step hydrothermal reaction of pyrrole and silver nitrate in the presence of polyvinyl pyrrolidone (PVP) as protection agent. The morphology and structures of the nanoparticles have been studied by scanning and transmission electronic microscopes, X-ray diffractometer and Raman spectroscopy. The experimental results indicated that the particles had 120 nm silver cores with 20 nm polypyrrole (PPy) coatings. The reaction conditions have strong effects on the morphology of the nanoparticles

  5. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  6. Effect of diluent on extraction of uranyl nitrate from nitric acid solution by tri-n-octylamine

    International Nuclear Information System (INIS)

    Kojima, Takashi; Ukon, Toshiaki; Fukutomi, Hiroshi

    1979-01-01

    The distribution ratios in the extraction equilibriums of uranylnitrate from 3 M HNO 3 by tri-n-octylamine (TOA) nitrate salt in nitrobenzene, chlorobenzene, benzene, toluene, cyclohexane, nitrobenzene-benzene and benzene-cylohexane mixtures have been determined in varying the concentrations of uranyl nitrate and TOA nitrate salt. The extraction mechanisms have been discussed in detail based on the law of mass action. It has been concluded that the extractions of uranyl nitrate by TOA nitrate salt in nitrobenzene, 74% nitrobenzene-benzene and 49% nitrobenzene-benzene mixture are represented by the equation TOAHNO 3 (org) + UO 2 2+ (aq) + 2 NO 3 - (aq) = TOAHUO 2 (NO 3 - ) 3 (org), while the extractions of uranyl nitrate by TOA nitrate salt in chlorobenzene, benzene, toluene, cyclohexane, benzene-cyclohexane mixtures and 24% nitrobenzene-benzene mixture are represented by the equation 2 TOAHNO 3 (org) + UO 2 2+ (aq) + 2 NO 3 - (aq) = TOAHUO 2 (NO 3 ) 3 TOAHNO 3 (org). In the latter the extraction equilibrium constants increase in the order of chlorobenzene < benzene < toluene < cyclohexane and with decreasing of the volume fraction of benzene in benzene-cyclohexane mixtures. The effects of diluent have been discussed in detail on the basis of the Hildebrand-Scatchard theory of regular solutions. (author)

  7. Sub-critical pulsed neutron experiments with uranyl nitrate solutions in spherical geometry

    International Nuclear Information System (INIS)

    Gurin, Victor N.; Ryazanov, Boris G.; Sviridov, Victor I.; Volnistov, Vladimir V.

    2003-01-01

    The pulse source method is used to study homogeneous solution assemblies. Three sets of sub-critical pulse experiments with spherical tanks filled with water solution of uranyl nitrate (90% enrichment) were carried out at the RF-GS facility, Obninsk, Russia. Seven spherical tanks with the volume within the range of 1.29 L to 19.8 L were used in the experiments. Three uranium concentrations were studied, i.e. 20.7, 29.6 and 37.5 g/L. The sub-critical experiments were analyzed with the MCNP 4A code based on the Monte-Carlo method, and with ENDF/B-V library. (author)

  8. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  9. Green recovery of silver as crystalline Nano-particles from corresponding waste solutions by Lime Juice as compared with Ascorbic acid and Citric acid

    OpenAIRE

    Hamid Reza Safaei

    2017-01-01

    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs), However, none of them have concerned to do recovery, removal and separation as a goal. In this study silver nanoparticles (Ag-NPs) were recovered from fixer effluent solution as waste solution of silver by interacting with Lime juice as a bio-reducing and bio-capping agent. The best conditions for obtaining Ag NPs were determined by UV-Visible, FT-IR spectroscopy, DLS technique, SEM and X...

  10. Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract.

    Science.gov (United States)

    Nasiriboroumand, Majid; Montazer, Majid; Barani, Hossein

    2018-02-01

    The potential application of any nanoparticles, including silver nanoparticles (AgNPs), strongly depends on their stability against aggregation. In the current study, an aqueous extract of pomegranate peel was used as a stabilizer during synthesis of AgNPs. Nanoparticles have been prepared by the chemical reduction method from an aqueous solution of silver nitrate in the presence of sodium borohydride as a reducing agent. The AgNPs were characterized by dynamic light scattering (DLS), zeta-potential measurements, UV-Vis spectroscopy and transmission electron microscopy (TEM). The antibacterial efficiency of AgNPs against Escherichia coli was investigated. The size, polydispersity index, FWHM, and colloidal stability of nanoparticles in dispersion depends on the extract concentrations. In the presence of pomegranate peel extract, the nanoparticles suspension shows colloidal stability at least for a week. Our studies show that synthesized AgNPs with the above described procedure were stable at pH = 3-12 and in the temperature range of 25-85 °C. Additionally, AgNPs exhibit antibacterial properties, especially at the lowest amount of extract to silver ratio (K Extract/Ag ). Copyright © 2018. Published by Elsevier B.V.

  11. Direct spectrophotometric analysis of low level Pu (III) in Pu(IV) nitrate solution

    International Nuclear Information System (INIS)

    Mageswaran, P.; Suresh Kumar, K.; Kumar, T.; Gayen, J.K.; Shreekumar, B.; Dey, P.K.

    2010-01-01

    Among the various methods demonstrated for the conversion of plutonium nitrate to its oxide, the oxalate precipitation process either as Pu (III) or Pu (IV) oxalate gained wide acceptance. Since uranous nitrate is the most successful partitioning agent used in the PUREX process for the separation of Pu from the bulk amount of U, the Pu (III) oxalate precipitation of the purified nitrate solution will not give required decontamination from U. Hence Pu IV oxalate precipitation process is a better option to achieve the end user's specified PuO 2 product. Prior to the precipitation process, ensuring of the Pu (IV) oxidation state is essential. Hence monitoring of the level of Pu oxidation state either Pu (III) or Pu (IV) in the feed solution plays a significant role to establish complete conversion of Pu (III). The method in vogue to estimate Pu(lV) content is extractive radiometry using Theonyl Trifluoro Acetone (TTA). As the the method warrants a sample preparation with respect to acidity, a precise measurement of Pu (IV) without affecting the Pu(III) level in the feed sample is difficult. Present study is focused on the exploration of direct spectrophotometry using an optic fiber probe of path length of 40mm to monitor the low level of Pu(III) after removing the bulk Pu(lV) which interfere in the Pu(III) absorption spectrum, using TTA-TBP synergistic mixture without changing the sample acidity

  12. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz, E-mail: irek@uni.lodz.pl [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna [University of Lodz, Department of Technology and Chemistry of Materials, Pomorska 163, 90-236 Lodz (Poland); Wolszczak, Marian [Technical University of Lodz, Institute of Applied Radiation Chemistry, Wroblewskiego 15, 93-590 Lodz (Poland); Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra [University of Lodz, Department of Industrial Microbiology and Biotechnology, Pilarskiego 14/16, 90-231 Lodz (Poland)

    2011-06-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 {+-} 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO{sub 2} nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO{sub 2} covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  13. The effect of the deposition parameters on size, distribution and antimicrobial properties of photoinduced silver nanoparticles on titania coatings

    International Nuclear Information System (INIS)

    Piwonski, Ireneusz; Kadziola, Kinga; Kisielewska, Aneta; Soliwoda, Katarzyna; Wolszczak, Marian; Lisowska, Katarzyna; Wronska, Natalia; Felczak, Aleksandra

    2011-01-01

    Controlled photodeposition of silver nanoparticles (AgNP) on titania coatings using two different sources of UV light is described. Titania (anatase) thin films were prepared by the sol-gel dip-coating method on silicon wafers. AgNPs were grown on the titania surface as a result of UV illumination of titania films immersed in aqueous solutions of silver nitrate. UV xenon lamp or excimer laser, both operating at the wavelength 351 ± 5 nm, was used as illumination sources. The AFM topography of AgNP/TiO 2 nanocomposites revealed that silver nanoparticles could be synthesized by both sources of illumination, however the photocatalysis carried out by UV light from xenon lamp illumination leads to larger AgNP than those synthesized using the laser beam. It was found that the increasing concentration of silver ions in the initial solution increases the number of Ag nanoparticles on the titania surface, while longer time of irradiation results the growth of larger size nanoparticles. Antibacterial tests performed on TiO 2 covered by Ag nanoparticles revealed that increasing density of nanoparticles enhances the inhibition of bacterial growth. It was also found that antibacterial activity drops by only 10-15% after 6 cycles compared to the initial use.

  14. Sodium nitrate-cerium nitrate-water ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Fedorenko, T.P.; Onishchenko, M.K.

    1978-01-01

    Solubility isotherm of sodium nitrate-cerium nitrate-water system at 25 deg C consists of three crystallization branches of initial salts and double compound of the composition 2NaNO 3 xCe(NO 3 ) 3 x2H 2 O. Sodium nitrate introduced in the solution strengthens complexing. Physico-chemical characteristics are in a good agreement with solubility curve

  15. Time-dependent effect in green synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Darroudi M

    2011-04-01

    Full Text Available Majid Darroudi1,2, Mansor Bin Ahmad3, Reza Zamiri4, AK Zak5, Abdul Halim Abdullah1,3, Nor Azowa Ibrahim31Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; 3Department of Chemistry, 4Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, MalaysiaAbstract: The application of “green” chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD and atomic force microscopy (AFM. The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work.Keywords: silver nanoparticles, gelatin, green chemistry, time-dependent effect, ultraviolet-visible spectra

  16. The Anti-Fasciolasis Properties of Silver Nanoparticles Produced by Trichoderma harzianum and Their Improvement of the Anti-Fasciolasis Drug Triclabendazole

    Directory of Open Access Journals (Sweden)

    AbdelElah A. Banaja

    2013-11-01

    Full Text Available Recently, new strains of Fasciola demonstrated drug resistance, which increased the need for new drugs or improvement of the present drugs. Nanotechnology is expected to open some new opportunities to fight and prevent diseases using an atomic scale tailoring of materials. The ability to uncover the structure and function of biosystems at the nanoscale, stimulates research leading to improvement in biology, biotechnology, medicine and healthcare. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Therefore, this work aimed to isolate fungal strains from Taif soil samples, which have the ability to synthesize silver nanoparticles. The fungus Trichoderma harzianum, when challenged with silver nitrate solution, accumulated silver nanoparticles (AgNBs on the surface of its cell wall in 72 h. These nanoparticles, dislodged by ultrasonication, showed an absorption peak at 420 nm in a UV-visible spectrum, corresponding to the plasmon resonance of silver nanoparticles. The transmission electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodisperse silver nanoparticles (average particle size: 4.66 nm by the fungus. The percentage of non hatching eggs treated with the Triclabendazole drug was 69.67%, while this percentage increased to 89.67% in combination with drug and AgNPs.

  17. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities.

    Science.gov (United States)

    Kagithoju, Srikanth; Godishala, Vikram; Nanna, Rama Swamy

    2015-10-01

    Inspired green synthesis of metallic nanoparticles is evolving as an important branch of nanotechnology. Traditionally these are manufactured by wet chemical methods which require toxic and flammable chemicals. We report for the first time an economic and eco-friendly green synthesis of silver nanoparticles using Strychnos potatorum aqueous leaf extract from 3 mM silver nitrate solution. Nanoparticles thus formed are confirmed and characterized by using UV-Vis absorption spectroscopy, SEM and XRD measurements. The XRD and SEM analysis showed the average particle size of nanoparticles as 28 nm as well as revealed their (mixed, i.e., cubic and hexagonal) structure. Further, these green synthesized nanoparticles showed bactericidal activity against multidrug-resistant human pathogenic bacteria.

  18. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum

    Science.gov (United States)

    Chandrappa, C. P.; Govindappa, M.; Chandrasekar, N.; Sarkar, Sonia; Ooha, Sepuri; Channabasava, R.

    2016-06-01

    In the present study, Penicillium species extract isolated from Calophyllum apetalum was used for the synthesis of silver nanoparticles and it was confirmed by changing the color of the silver nitrate UV-Vis spectrum. The synthesized nanoparticles have been characterized by biophysical techniques such as scanning electron microscopy and x-ray diffraction.

  19. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    Science.gov (United States)

    Abu-Thabit, Nedal Y.; Basheer, Rafil A.

    2014-09-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.

  20. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts

    Directory of Open Access Journals (Sweden)

    Shahbazi Nafeseh

    2013-09-01

    Full Text Available   Objective(s: To evaluate the influences of aqueous extracts of plant parts (stem, leaves, and root of Portulaca oleracea L. on bioformation of silver nanoparticles (AgNPs.   Materials and Methods: Synthesis of silver nanoparticles by different plant part extracts of Portulaca oleracea L. was carried out and formation of nanoparticles were confirmed and evaluated using UV-Visible spectroscopy and AFM. Results: The plant extracts exposed with silver nitrate showed gradual change in color of the extract from yellow to dark brown. Different silver nanoperticles were formed using extracts of different plant parts. Conclusion: It seems that the plant parts differ in their ability to act as a reducing and capping agent.

  1. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  2. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  3. Green synthesis of silver nanoparticles and investigation of their colorimetric sensing and cytotoxicity effects

    Science.gov (United States)

    Pahlavan Noghabi, Mohammad; Parizadeh, Mohammad Reza; Ghayour-Mobarhan, Majid; Taherzadeh, Danial; Hosseini, Hasan Ali; Darroudi, Majid

    2017-10-01

    The "Green" synthesis of metallic nanoparticles and investigation of their optical properties has become a useful application between nanoscience and medicine. In this work, silver nanoparticles (Ag-NPs) were successfully prepared through a facile and green method by treating silver ions with chitosan. Preparation of Ag-NPs in silver nitrate solution (0.01 M) resulted in small and spherical shapes of Ag-NPs with a mean diameter of 10.2 nm. The formation of Ag-NPs was approved by surface Plasmon resonance (SPR) absorption peaks, using UV-vis spectrophotometer, while Ag-NPs were successfully employed in colorimetric sensing of H2O2 via an analytical procedure. Degradation process of Ag-NPs, encouraged by the catalytic decomposition of H2O2, causes a significant change in the absorbance intensity of SPR band depending on the H2O2 concentration. The cytotoxicity effect of synthesized Ag-NPs was examined on HEK293 cell line. The results illustrate a concentration-dependent toxicity for the tested cells, while15.07 μg/mL of IC50 was obtained.

  4. Fast and low-temperature sintering of silver complex using oximes as a potential reducing agent for solution-processible, highly conductive electrodes

    International Nuclear Information System (INIS)

    Yoo, Ji Hoon; Park, Su Bin; Kim, Ji Man; Han, Dae Sang; Chae, Jangwoo; Kwak, Jeonghun

    2014-01-01

    Highly conductive, solution-processed silver thin-films were obtained at a low sintering temperature of 100 °C in a short sintering time of 10 min by introducing oximes as a potential reductant for silver complex. The thermal properties and reducibility of three kinds of oximes, acetone oxime, 2-butanone oxime, and one dimethylglyoxime, were investigated as a reducing agent, and we found that the thermal decomposition product of oximes (ketones) accelerated the conversion of silver complex into highly conductive silver at low sintering temperature in a short time. Using the acetone oxime, the silver thin-film exhibited the lowest surface resistance (0.91 Ω sq −1 ) compared to those sing other oximes. The silver thin-film also showed a high reflectance of 97.8%, which is comparable to evaporated silver films. We also demonstrated inkjet printed silver patterns with the oxime-added silver complex inks. (paper)

  5. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  6. A bibliographical review on the radiolysis of uranyl nitrate solutions in nitric acid medium

    International Nuclear Information System (INIS)

    Siri, Sandra; Mondino, Angel V.

    2004-01-01

    A bibliographical study on the effects of ionizing radiation on uranyl nitrate solutions in nitric acid medium was performed, and the state of knowledge on this subject is presented. The main experimental and theoretical results on water, nitric acid and uranium solutions radiolysis are reviewed and critically evaluated. This paper provides a collection of references as an aid to the development of practical applications, and to stimulate new research on fundamental processes in these systems. (author) [es

  7. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    Science.gov (United States)

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  8. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  9. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  10. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN) solutions

    OpenAIRE

    Koh, Kai Seng; Chin, Jitkai; Wahida Ku Chik, Tengku F.

    2013-01-01

    Decomposition of hydroxylammonium nitrate (HAN) solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition ...

  11. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol.

    Science.gov (United States)

    Naraginti, Saraschandra; Sivakumar, A

    2014-07-15

    The present study reports a simple and robust method for synthesis of silver and gold nanoparticles using Coleus forskohlii root extract as reducing and stabilizing agent. Stable silver nanoparticles (AgNPs) and gold nanopoarticles (AuNPs) were formed on treatment of an aqueous silver nitrate (AgNO3) and chloroauric acid (HAuCl4) solutions with the root extract. The nanoparticles obtained were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). UV-Vis and TEM analysis indicate that with higher quantities of root extract, the interaction is enhanced leading to size reduction of spherical metal nanoparticles. XRD confirms face-centered cubic phase and the diffraction peaks can be attributed to (111), (200), (222) and (311) planes for these nanoparticles. These synthesized Ag and Au nanoparticles were found to exhibit excellent bactericidal activity against clinically isolated selected pathogens such as Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The synthesized AgNPs were also found to function as an efficient green catalyst in the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride, which was apparent from the periodical color change from bright yellow to colorless, after the addition of AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of halogens, silicon, phosphorus, carbon, sulfur, tributyl phosphate and of free acid in uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Chu Van Vinh

    2003-01-01

    High-purity uranium compounds are widely used in nuclear field in the form of uranyl nitrate or uranium oxides. In production of uranium material the estimation and the control of products quality is necessary and very important. Halogens was separated from uranium compounds by steam distillation and they were later determined by high performance liquid chromatography (HPLC) for Cl - , Br - , I - ions. Br - was also determined by spectrophotometric and iodide by the individual pulse polarography. Silicon and phosphorus in uranyl nitrate solutions were determined by the photometric method. Sulfur was determined as sulfate form by the measurement of turbidity by the titrimetry. TBP in kerosene and free acid in aqueous solution were determined by the titration. (author)

  13. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Aouina, Nizar; Cachet, Hubert; Debiemme-chouvy, Catherine; Tran, Thi Tuyet Mai

    2010-01-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10 -3 , 10 -2 and 10 -1 M. For a nitrate concentration of 10 -2 M, D was found to be 1.31 x 10 -5 cm 2 s -1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  14. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    International Nuclear Information System (INIS)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO 3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text

  15. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Energy Technology Data Exchange (ETDEWEB)

    Mustatea, Gabriel [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Vidal, Loïc [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France); Calinescu, Ioan [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science (Romania); Dobre, Alina; Ionescu, Mariana [National Research and Development Institute for Food Bioresources – IBA Bucharest (Romania); Balan, Lavinia, E-mail: lavinia.balan@uha.fr [Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361 (France)

    2015-01-15

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3–11 nm) were generated from hydroalcoholic AgNO{sub 3} solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  16. A photochemical approach designed to improve the coating of nanoscale silver films onto food plastic wrappings intended to control bacterial hazards

    Science.gov (United States)

    Mustatea, Gabriel; Vidal, Loïc; Calinescu, Ioan; Dobre, Alina; Ionescu, Mariana; Balan, Lavinia

    2015-01-01

    Plasmonic silver film was directly generated on a variety of substrates through a facile and environmentally friendly method, which involves a UV-photoreduction process without any reducing or stabilizing agent and requiring no thermal step. Top-coated films of unprotected silver nanoparticles (3-11 nm) were generated from hydroalcoholic AgNO3 solution and directly on glass substrates or food packaging plastic wraps, low density polyethylene film, and polyvinyl chloride. The natural antibacterial activity of the material was evaluated. The correlation between silver migration and antimicrobial activity of silver-functionalized substrates against pure strains of gram-negative bacteria ( Escherichia coli) and gram-positive bacteria ( Staphylococcus aureus) was demonstrated. By way of illustration, food plastic wraps top-coated in this way exhibited a high antibacterial activity. The metal nanoparticle film obtained in this way was characterized and the influence of several parameters (fluence, exposure, silver nitrate concentration, and nature of the free radicals generator) on their formation was studied. Moreover, by shaping the actinic beam with an appropriate device, it is very easy to pattern the brown yellow silver nanofilm or to print messages in plain text.

  17. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    Science.gov (United States)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  18. Radiation Synthesis of PVA/ Chitosan Membranes Containing Silver Nanoparticles for Biomedical Applications

    International Nuclear Information System (INIS)

    Elbarbary, A.M.; El-Sawy, N.M.

    2015-01-01

    Silver Nanoparticles (AgNPs) were synthesized by γ-rays of polyvinyl alcohol/ chitosan (PVA/ CS) membranes containing silver nitrate (AgNO ) with promising antimicrobial and biomedical applications. The synthesized silver nanoparticles characterized by Ultra Violet spectroscopy (UV), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV studies showed a strong peak around λmax at 420 nm. A uniform distribution of silver nanoparticles inside PVA/ CS membranes was achieved by TEM investigation. The prepared silver nanoparticles showed good antimicrobial activity. The membranes containing AgNPs showed non-thrombogenicity effect and slightly haemolytic potential. The prepared membranes containing AgNPs had promising use in biomedical applications.

  19. Role of electrodes in ambient electrolytic decomposition of hydroxylammonium nitrate (HAN solutions

    Directory of Open Access Journals (Sweden)

    Kai Seng Koh

    2013-09-01

    Full Text Available Decomposition of hydroxylammonium nitrate (HAN solution with electrolytic decomposition method has attracted much attention in recent years due to its efficiencies and practicability. However, the phenomenon has not been well-studied till now. By utilizing mathematical model currently available, the effect of water content and power used for decomposition was studied. Experiment data shows that sacrificial material such as copper or aluminum outperforms inert electrodes in the decomposition of HAN solution. In the case of using copper wire to electrolyse HAN solutions, approximately 10 seconds is required to reach 100 °C regardless of concentration of HAN. In term of power consumption, 100 W–300 W was found to be the range in which decomposition could be triggered effectively using copper wire as electrodes.

  20. Ammonia complexes of metals in aqueous solutions with high concentrations of ammonia

    International Nuclear Information System (INIS)

    Padar, T.G.; Novikov, L.K.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.

    1991-01-01

    Potentiometric method, glass electrodes and Bierrum function were used to study the formation of ammonia complexes of magnesium, calcium, cadmium, zinc, copper(2) and silver in 2.0 mol/dm 3 aqueous solutions of ammonia nitrate with 0-18 mol/dm 3 ammonia concentrations at 25.0 deg C. Step constants of stability of studied complexes were calculated and their compositions were determined with account of nonideal character of aqueous-salt solutions with ammonia concentrations above 1.0 mol/dm 3 . Values of correction effects on salting out ammonia action for Bierrum function in solutions with 1.0-18 mol/dm 3 ammonia concentrations were found

  1. Growth and sedimentation of fine particles produced in aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hatada, Motoyoshi; Jonah, C.D.

    1994-10-01

    It is known that palladium and palladium-silver fine particles were formed from deaerated aqueous solutions of palladium sulfate and palladium sulfate-silver sulfate induced by gamma-ray irradiation. Changes in particle size and with amount of particles in the solution with time during and after irradiation were studied using dynamic light scattering technique and UV spectrophotometer. The particles formed from palladium sulfate solution are found to be water-filled bulky particles of diameter of 200 nm, which grow by mutual coagulation even after irradiation was terminated. Average density depends on concentration of palladium ion in the solution and dose, and the lowest density was about 2 g/cm 3 for particles of 200 nm obtained from 0.06 mM solution by 2.4 kGy irradiation. The average density of the particles obtained from palladium sulfate-silver sulfate solutions was smaller than those obtained for the corresponding palladium sulfate solutions. Supersonic agitation destroyed coagulated precipitates to form fine particles, but did not form clusters of a few atoms. (author)

  2. Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles.

    Science.gov (United States)

    Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Park, Hyun Jung; Kim, Jung-Ho; Lee, Ok Joo; Park, Chan Hum

    2014-10-01

    In this study, a good combination consisting of electrospun silk fibroin nanofibers incorporated with high-purity hydroxyapatite (HAp) nanoparticles (NPs) and silver NPs is introduced as antimicrobial for tissue engineering applications. The variable pressure field emission scanning electron microscope results confirmed randomly placed nanofibers are produced with highly dispersed HAp and silver NPs in nanofibers after electrospinning. The X-ray diffraction results demonstrated crystalline features of each of the three components used for electrospinning. Moreover, the TEM-EDS analysis confirmed the presence and chemical nature of each component over individual silk nanofiber. The FT-IR analyses was used confirm the different vibration modes caused due to functional groups present in silk fibroin, Hap, and silver NPs. The obtained nanofibers were checked for antimicrobial activity by using two model organisms Escherichia coli and Staphylococcus aureus. Subsequently, the antimicrobial tests have indicated that prepared nanofibers do possess good bactericidal activity. The ability of N,N-dimethylformamide and silk fibroin used to reduce silver nitrate into silver metal was evaluated using MTT assay. The nanofibers were grown in presence of NIH 3T3 fibroblasts, which revealed toxic behavior to fibroblasts at higher concentrations of silver nitrate used in this study. Furthermore, cell attachment studies on nanofibers for 3 and 12 days of incubation time were minutely observed and correlated with the results of MTT assay. The reported results confirmed the high amounts of silver nitrate can lead to toxic effects on viability of fibroblasts and had bad effect in cell attachment. © 2013 Wiley Periodicals, Inc.

  3. Critical experiments on low enriched uranyl nitrate solution with STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    1996-01-01

    As the STACY started steady operations, systematic criticality data on low enriched uranyl nitrate solution system could be accumulated. Main experimental parameters for the cylindrical tank of 60 cm in diameter were uranium concentration and the reflector condition. Basic data on a simple geometry will be helpful for the validation of the standard criticality safety codes, and for evaluating the safety margin included in the criticality designs. Experiments on the reactivity effects of structural materials such as borated concrete and polyethylene are on schedule next year as the second series of experiments using 10 wt% enriched uranyl solution. Furthermore, neutron interacting experiments with two slab tanks will be performed to investigate the fundamental properties of neutron interaction effects between core tanks. These data will be useful for making more reasonable calculation models and for evaluating the safety margin in the criticality designs for the multiple unit system. (J.P.N.)

  4. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity

    Science.gov (United States)

    Ezealisiji, K. M.; Noundou, X. S.; Ukwueze, S. E.

    2017-11-01

    In recent time, various phytosynthetic methods have been employed for the fabrication of silver nanoparticles; these unique metal nanoparticles are used in several applications which include pharmaceuticals and material engineering. The current research reports a rapid and simple synthetic partway for silver nanoparticles (AgNPs) using root bark aqueous extract of Annona muricata and the evaluation of its antimicrobial efficacy against pathogenic microorganisms. The root bark extract was treated with aqueous silver nitrate solution. Silver ions were reduced to silver atoms which on aggregation gave Silver nanoparticles; the biosynthesized AgNPs were characteristically spherical, discreet and stabilized by phytochemical entities and were characterized using ultraviolet visible spectroscopy, transmission electron microscope (TEM) and photon correlation microscopy. The aqueous plant extract-AgNPs suspension was subjected to Fourier transform infrared spectroscopy. TEM result for the average particle size is 22 ± 2 nm. The polydispersity index and zeta-potential were found to be 0.44 ± 0.02 and - 27.90 ± 0.01 mV, respectively (Zeta-Sizer). The antimicrobial evaluation result showed that the synthesized silver nanoparticles at different concentration were very active against the Gram-positive bacteria ( B. subtilis, S. aureous) and Gram-negative bacteria ( K. Pneumonia, E. Coli and Pseudomonas aeruginosa), P. aeruginosa being most susceptible to the anti microbial effect of the silver nanoparticles. Stable silver nanoparticles with antimicrobial activity were obtained through biosynthesis.

  5. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  6. Bacterial transmission from lens storage cases to contact lenses-Effects of lens care solutions and silver impregnation of cases.

    Science.gov (United States)

    Vermeltfoort, Pit B J; Hooymans, Johanna M M; Busscher, Henk J; van der Mei, Henny C

    2008-10-01

    The killing efficacies of multipurpose lens care solutions on planktonic and biofilm bacteria grown in polypropylene contact lens storage cases with and without silver impregnation and effects on bacterial transmission from storage cases to silicone hydrogel contact lenses were investigated. For transmission studies, biofilms of Staphylococcus aureus 835 or Pseudomonas aeruginosa no. 3 were grown on lens storage cases and incubated with a contact lens in different multipurpose lens care solutions (Opti-Free(R)Express(R), ReNu(R) MultiPlus(R), and SoloCare Aquatrade mark) or 0.9% NaCl. In addition, planktonic bacteria were directly suspended in multipurpose solutions and their killing efficacies were determined. The numbers of transmitted live and dead bacteria on the lenses were measured using a combination of plate counting and fluorescence microscopy. The highest killing efficacies were shown by Opti-Free(R) Express(R) for planktonic as well as for biofilm bacteria. Silver impregnation of lens cases in combination with the prescribed solution increased the killing efficacy for P. aeruginosa in biofilms, whereas effects for S. aureus were minor. Lowest numbers of live and dead bacteria were transmitted to a lens in Opti-Free(R) Express(R) multipurpose solution, with no significant differences between lens types and no effects of silver impregnation. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2008. (c) 2008 Wiley Periodicals, Inc.

  7. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  8. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    International Nuclear Information System (INIS)

    Naghavi, Kazem; Saion, Elias; Rezaee, Khadijeh; Yunus, Wan Mahmood Mat

    2010-01-01

    Colloidal silver nanoparticles were synthesized by γ-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10 -4 and 1.84x10 -3 M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a 60 Co γ source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak λ max blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  9. Insight into the electroreduction of nitrate ions at a copper electrode, in neutral solution, after determination of their diffusion coefficient by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aouina, Nizar; Cachet, Hubert [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Debiemme-chouvy, Catherine, E-mail: catherine.debiemme-chouvy@upmc.f [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France); Tran, Thi Tuyet Mai [Laboratoire Interfaces et Systemes Electrochimiques - UPR15 du CNRS, Universite Pierre et Marie Curie - Paris 6, 4, place Jussieu, F-75005 Paris (France)

    2010-10-01

    The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at -0.9, -1.2 and -1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10{sup -3}, 10{sup -2} and 10{sup -1} M. For a nitrate concentration of 10{sup -2} M, D was found to be 1.31 x 10{sup -5} cm{sup 2} s{sup -1} allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface.

  10. Calculated k-effectives for light water reactor typical, U + Pu nitrate solution critical experiments

    International Nuclear Information System (INIS)

    Primm, R.T. III; Mincey, J.F.

    1982-01-01

    The Department of Energy's Consolidated Fuel Reprocessing Program has as a goal the design of nuclear fuel reprocessing equipment. In order to validate computer codes used for criticality analyses in the design of such equipment, k-effectives have been calculated for several U + Pu nitrate solution critical experiments. As of January 1981, descriptions of 45 unpoisoned, U + Pu solution experiments were available in the open literature. Twelve of these experiments were performed with solutions which have physical characteristics typical of dissolved, light water reactor fuel. This paper contains a discussion of these twelve experiments, a review of the calculational procedure used to determine k-effectives, and the results of the calculations

  11. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    International Nuclear Information System (INIS)

    Pant, Hem Raj; Pandeya, Dipendra Raj; Nam, Ki Taek; Baek, Woo-il; Hong, Seong Tshool; Kim, Hak Yong

    2011-01-01

    Silver-impregnated TiO 2 /nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO 2 /nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO 2 NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO 3 to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO 2 NPs of the prepared nanocomposite mat. The antibacterial property of a TiO 2 /nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO 2 /nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  12. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    Science.gov (United States)

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Fractionation of silver isotopes in native silver explained by redox reactions

    Science.gov (United States)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  14. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  15. Determination of 15N nitrates in water samples using mass spectrometry

    International Nuclear Information System (INIS)

    Moya, P.; Aguirre, E.; Gallardo, P.

    2000-01-01

    The nitrogen element (Z = 7) has two stable isotopes, whose relative quantities are 99.64% for 14 N and 0.36% for 15 N. Nitrogen is part of many processes and reactions that are important to life and that affect the quality of the water. Within the nitrogen cycle there are kinetic and thermodynamic fractionation processes, which are potentially important for tracing its sources and demands. Water contamination due to nitrates is a serious problem that is affecting large parts of the biosphere. Surface water contamination can be remedied by prevention and control measures, but the problem becomes acute when the contamination penetrates to groundwater water. Contaminated groundwater can remain in the aquifers for centuries, even milleniums, and decontamination is very difficult, if not impossible. Isotopic techniques can help to evaluate how vulnerable the groundwater is to contamination from the surface when its displacement speed and extra load area are determined. Then the sources of surface contamination (natural, industrial, agricultural, domestic) can be identified. Isotopic techniques can also describe an incipient contamination, and they can provide an early alert when chemical or biological indicators do not reveal any signs for concern. The isotopic fractionation of several nitrogen compounds provide the basis for using 15 N as a hydrological isotope tool. There are three main sources of nitrogen contamination in water, these are: organic nitrogen in the soil, nitrogenized fertilizers, domestic, industrial and animal wastes. The following technical procedure describes the method for determining the isotopic ration 15 N/ 14 N in nitrates in water. The nitrate is separated from the water using ion exchange columns through a resin, which is eluded with HCI and with the addition of silver oxide becomes silver nitrate. This solution is freeze-dried and submitted to combustion at 850 in a sealed quartz tube, using copper/copper oxide for the nitrogen reduction

  16. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    Science.gov (United States)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  17. Synthesis of highly conductive cotton fiber/nanostructured silver/polyaniline composite membranes for water sterilization application

    International Nuclear Information System (INIS)

    Abu-Thabit, Nedal Y; Basheer, Rafil A

    2014-01-01

    Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500–1000 nm size giving a membrane electrical resistance in the range of 10–30 Ohm sq −1 . However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2–10 Ohm sq. −1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 10 7 –10 8 CFU mL −1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h −1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected. (paper)

  18. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  19. Comparison of plasma generated nitrogen fertilizer to conventional fertilizers ammonium nitrate and sodium nitrate for pre-emergent and seedling growth

    Science.gov (United States)

    Andhavarapu, A.; King, W.; Lindsay, A.; Byrns, B.; Knappe, D.; Fonteno, W.; Shannon, S.

    2014-10-01

    Plasma source generated nitrogen fertilizer is compared to conventional nitrogen fertilizers in water for plant growth. Root, shoot sizes, and weights are used to examine differences between plant treatment groups. With a simple coaxial structure creating a large-volume atmospheric glow discharge, a 162 MHz generator drives the air plasma. The VHF plasma source emits a steady state glow; the high drive frequency is believed to inhibit the glow-to-arc transition for non-thermal discharge generation. To create the plasma activated water (PAW) solutions used for plant treatment, the discharge is held over distilled water until a 100 ppm nitrate aqueous concentration is achieved. The discharge is used to incorporate nitrogen species into aqueous solution, which is used to fertilize radishes, marigolds, and tomatoes. In a four week experiment, these plants are watered with four different solutions: tap water, dissolved ammonium nitrate DI water, dissolved sodium nitrate DI water, and PAW. Ammonium nitrate solution has the same amount of total nitrogen as PAW; sodium nitrate solution has the same amount of nitrate as PAW. T-tests are used to determine statistical significance in plant group growth differences. PAW fertilization chemical mechanisms are presented.

  20. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  1. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    International Nuclear Information System (INIS)

    Shao-Peng, Zhu; Shao-Chun, Tang; Xiang-Kang, Meng

    2009-01-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability. (cross-disciplinary physics and related areas of science and technology)

  2. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.

    Science.gov (United States)

    Ashour, Asmaa A; Raafat, Dina; El-Gowelli, Hanan M; El-Kamel, Amal H

    2015-01-01

    The growing threat of microbial resistance against traditional antibiotics has prompted the development of several antimicrobial nanoparticles (NPs), including silver NPs (AgNPs). In this article, a simple and eco-friendly method for the synthesis of AgNPs using the cranberry powder aqueous extract is reported. Cranberry powder aqueous extracts (0.2%, 0.5%, and 0.8% w/v) were allowed to interact for 24 hours with a silver nitrate solution (10 mM) at 30°C at a ratio of 1:10. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy and their concentrations were determined using atomic absorption spectroscopy. The prepared NPs were evaluated by transmission electron microscopy, measurement of ζ-potential, and Fourier-transform infrared spectroscopy. The in vitro antimicrobial properties of AgNPs were then investigated against several microbial strains. Finally, in vivo appraisal of both wound-healing and antimicrobial properties of either plain AgNPs (prepared using 0.2% extract) or AgNP-Pluronic F-127 gel was conducted in a rat model after induction of a Staphylococcus aureus ATCC 6538P wound infection. The formation of AgNPs was confirmed by ultraviolet-visible spectroscopy, where a surface-plasmon resonance absorption peak was observed between 432 and 438 nm. Both size and concentration of the formed AgNPs increased with increasing concentration of the extracts. The developed NPs were stable, almost spherical, and polydisperse, with a size range of 1.4-8.6 nm. The negative ζ-potential values, as well as Fourier-transform infrared spectroscopy analysis, indicated the presence of a capping agent adsorbed onto the surface of the particles. In vitro antimicrobial evaluation revealed a size-dependent activity of the AgNPs against the tested organisms. Finally, AgNPs prepared using 0.2% extract exhibited a substantial in vivo healing potential for full-thickness excision wounds in rats. AgNPs were successfully synthesized from a silver nitrate solution

  3. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  4. Silver diamine fluoride: a caries "silver-fluoride bullet".

    Science.gov (United States)

    Rosenblatt, A; Stamford, T C M; Niederman, R

    2009-02-01

    The antimicrobial use of silver compounds pivots on the 100-year-old application of silver nitrate, silver foil, and silver sutures for the prevention and treatment of ocular, surgical, and dental infections. Ag(+) kills pathogenic organisms at concentrations of linings, water purification systems, hospital gowns, and caries prevention. To distill the current best evidence relative to caries, this systematic review asked: Will silver diamine fluoride (SDF) more effectively prevent caries than fluoride varnish? A five-database search, reference review, and hand search identified 99 human clinical trials in three languages published between 1966 and 2006. Dual review for controlled clinical trials with the patient as the unit of observation, and excluding cross-sectional, animal, in vitro studies, and opinions, identified 2 studies meeting the inclusion criteria. The trials indicated that SDF's lowest prevented fractions for caries arrest and caries prevention were 96.1% and 70.3%, respectively. In contrast, fluoride varnish's highest prevented fractions for caries arrest and caries prevention were 21.3% and 55.7%, respectively. Similarly, SDF's highest numbers needed to treat for caries arrest and caries prevention were 0.8 (95% CI=0.5-1.0) and 0.9 (95% CI=0.4-1.1), respectively. For fluoride varnish, the lowest numbers needed to treat for caries arrest and prevention were 3.7 (95% CI=3.4-3.9) and 1.1 (95% CI=0.7-1.4), respectively. Adverse events were monitored, with no significant differences between control and experimental groups. These promising results suggest that SDF is more effective than fluoride varnish, and may be a valuable caries-preventive intervention. As well, the availability of a safe, effective, efficient, and equitable caries-preventive agent appears to meet the criteria of both the WHO Millennium Goals and the US Institute of Medicine's criteria for 21st century medical care.

  5. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 10 6 ±3.56 x 10 4 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  6. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  7. Synthesis of New Polyether Ether Ketone Derivatives with Silver Binding Site and Coordination Compounds of Their Monomers with Different Silver Salts

    Directory of Open Access Journals (Sweden)

    Jérôme Girard

    2016-05-01

    Full Text Available Polyether ether ketone (PEEK is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4′-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of these new monomers with different silver salts was studied. Crystal structures of different intermediates were obtained with a linear coordination between two pyridine groups and the silver ions in all cases. The mechanical and thermal properties of different new polymers were characterized. The synthesized PEEKN5 polymers showed similar properties than the PEEK ones whereas the PEEKN7 polymers showed similar thermal properties but the mechanical properties are not as good as the ones of PEEK. To improve these properties, these polymers were complexed with silver nitrate in order to “cross-link” with silver ions. The presence of ionic silver in the polymer was then confirmed by thermogravimetric analysis (TGA and X-ray powder diffraction (XRPD. Finally, a silver-based antimicrobial compound was successfully coated on the surface of PEEKN5.

  8. Nuclear fuel technology - Determination of uranium in uranyl nitrate solutions of nuclear grade quality - Gravimetric method

    International Nuclear Information System (INIS)

    2003-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the mass fraction of uranium in uranyl nitrate solutions of nuclear grade quality containing more than 100 g/kg of uranium. Non-volatile impurities influence the accuracy of the method

  9. Potentiometric determination of free nitric-acid in trilaurylamine solutions containing plutonium nitrate; Dosage potentiometrique de l'acidite nitrique libre dans les solutions organiques de trilaurylamine

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J J; Saey, J C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-07-01

    A potentiometric method of determination of the free nitric acid in trilaurylamine solutions containing plutonium or thorium nitrates is described. The potentiometric titration is carried out in a mixture of benzene and 1,2-dichloro ethane with a standard solution of trilaurylamine as the titrant. When thorium nitrate is present the metal complex is not dissociated then the titration has a single end-point. In the case of plutonium nitrate the partial dissociation of the plutonium complex corresponds to a second point. The experimental error in duplicate analyses of 50 samples is about 1 per cent for free acid concentrations in the range of 0,03 to 0,1 N and plutonium concentrations between 1 to 5 g/l. (authors) [French] Une methode potentiometrique de dosage de l'acidite nitrique libre dans les solutions de trilaurylamine contenant un complexe de plutonium ou de thorium est decrite. La potentiometrie est effectuee en prenant comme base titrante la trilaurylamine et comme milieu de dilution un melange de benzene et de 1,2 dichloroethane. Dans le cas du thorium, le complexe organometallique n'est pas deplace et la courbe de titrage presente un seul point d'inflexion. Dans le cas du plutonium le complexe est partiellement dissocie ce qui correspond a un second saut de potentiel. La moyenne des erreurs experimentales sur 50 echantillons doses a ete d'environ {+-} 1 pour cent sur l'acide libre. Les solutions experimentees contenaient de 0,03 a 0,1 N en acide et de 1 a 5 g/l en plutonium. (auteurs)

  10. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  11. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  12. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  13. Influence of silver doping on surface defect characteristics of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Rani, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India); Department of Physics, DAV University Jalandhar, - 144 001, Punjab (India)

    2015-08-28

    In the present work, we proposed a novel silver doped TiO{sub 2} polyethylene conjugated films to improve the performance of DSSCs. Oxides nanoparticles dispersed in a semiconducting polymer form the active layer of a solar cell. Localized surface plasmon resonance effects associated with spatially dispersed silver (Ag) nanoparticles can be exploited to enhance the light-harvesting efficiency, the photocurrent density and the overall light-to electrical-energy-conversion efficiency of high-area DSSCs based TiO{sub 2} photoanodes. Silver doped titanium dioxide (TiO{sub 2}:Ag) is prepared by sol-gel technique and deposited on fluorine doped indium oxide (FTO) coated glass substrates by using doctor blade technique at 550°C from aqueous solutions of titanium butoxide and silver nitrate precursors. The effect of Ag doping on electrical properties of films is studied. The Ag-TiO{sub 2} films are about 548 times more photosensitive as compare to the pure TiO{sub 2} sample. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of TiO{sub 2} nanoparticles promotes the separation of photogenerated electron-hole pairs and thus enhances the photosensitivity. Photoconduction mechanism of all prepared samples is investigated by performing transient photoconductivity measurements on TiO{sub 2} and Ag-TiO{sub 2} films keeping intensity of light constant.

  14. Photocatalytic and antibacterial properties of a TiO{sub 2}/nylon-6 electrospun nanocomposite mat containing silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pant, Hem Raj [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Engineering Science and Humanities, Institute of Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu (Nepal); Pandeya, Dipendra Raj [Department of Microbiology and Immunology, Institute for Medical Science, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Nam, Ki Taek; Baek, Woo-il [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hong, Seong Tshool [Department of Microbiology and Immunology, Institute for Medical Science, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Hak Yong, E-mail: khy@jbnu.ac.kr [Department of Textile Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-05-15

    Silver-impregnated TiO{sub 2}/nylon-6 nanocomposite mats exhibit excellent characteristics as a filter media with good photocatalytic and antibacterial properties and durability for repeated use. Silver nanoparticles (NPs) were successfully embedded in electrospun TiO{sub 2}/nylon-6 composite nanofibers through the photocatalytic reduction of silver nitrate solution under UV-light irradiation. TiO{sub 2} NPs present in nylon-6 solution were able to cause the formation of a high aspect ratio spider-wave-like structure during electrospinning and facilitated the UV photoreduction of AgNO{sub 3} to Ag. TEM images, UV-visible and XRD spectra confirmed that monodisperse Ag NPs (approximately 4 nm in size) were deposited selectively upon the TiO{sub 2} NPs of the prepared nanocomposite mat. The antibacterial property of a TiO{sub 2}/nylon-6 composite mat loaded with Ag NPs was tested against Escherichia coli, and the photoactive property was tested against methylene blue. All of the results showed that TiO{sub 2}/nylon-6 nanocomposite mats loaded with Ag NPs are more effective than composite mats without Ag NPs. The prepared material has potential as an economically friendly photocatalyst and water filter media because it allows the NPs to be reused.

  15. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  16. EFFECTS OF SILVER NANOPARTICLES IN SOLUTION AND LIPOSOMAL FORM ON SOME BLOOD PARAMETERS IN FEMALE RABBITS DURING FERTILIZATION AND EARLY EMBRYONIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Vasyl Syrvatka

    2014-02-01

    Full Text Available Silver nanoparticles are the most rapidly growing classes of nanoproducts. In this study, we investigated the influence of subcutaneous injections of silver nanoparticles in solution and in liposomal form on hematological and biochemical parameters of blood of New Zealand White rabbits during hormonal treatment, fertilization and early embryonic development. The females treated by free silver nanoparticles and silver nanoparticles in liposomal form received silver at a dose of 10 µg/kg/day in 5 % glucose solution during 28 days. Blood sampling was done four times: the day before the compounds administration; on day 7 after the compounds administration; in the period after hormonal induction and fertilization and on the 14th day of pregnancy. Our results showed changes in some biochemical (lactate dehydrogenase activities, progesterone and estradiol concentration, malondialdehyde level, etc. and hematological (hematocrit, mean cell volume, mean corpuscular hemoglobin concentration, etc. parameters under the influence of hormonal treatment and pregnancy. The concentration of progesterone showed significantly higher values (P˂0.05 on GDs 1 in S group than in C group. The percentage of neutrophils was significantly higher in SG rabbits after 7 days of silver nanoparticles administration than that in the CG. There were no significant changes in red blood cells parameters, platelets, and activity of some ferments (ALP, AST, ALT, LDH, GGT between control and silver groups during the entire period of experiment. In conclusion, the hematological and biochemical values of blood obtained in the given study showed that free silver nanoparticles and silver nanoparticles in liposomal form in the investigated concentrations had no toxic effect on hormonal treatment, fertilization and early embryonic development in New Zealand White rabbits.

  17. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  18. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  19. Sweet Nanochemistry: A Fast, Reliable Alternative Synthesis of Yellow Colloidal Silver Nanoparticles Using Benign Reagents

    Science.gov (United States)

    Cooke, Jason; Hebert, Dominique; Kelly, Joel A.

    2015-01-01

    This work describes a convenient and reliable laboratory experiment in nanochemistry that is flexible and adaptable to a wide range of educational settings. The rapid preparation of yellow colloidal silver nanoparticles is achieved by glucose reduction of silver nitrate in the presence of starch and sodium citrate in gently boiling water, using…

  20. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    Directory of Open Access Journals (Sweden)

    Z. Gheshlaghi

    2015-09-01

    Full Text Available Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting, two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM were used in a hydroponics greenhouse experiment with a completely randomized design and 3 replications. Modified Hoagland and Arnon nutrient solutions were used for the experiment. The results indicated that by increasing nitrate concentration of solution, nitrate accumulation in roots and shoots of lettuce and spinach increased significantly (P ≤ 0.05, and the same trend was observed for the nitrate reductase activity in the shoots of the two species. Increasing the nitrate concentrations of solution, reduced the shoot dry weight and the concentration of Fe and Cu in both species, where as it increased the K and Zn concentrations in the shoots of the two species in each both harvest times, the nitrate accumulation increased, but the nitrate reductase activity decreased in the shoots of the two species over the course of the growth. The Concentration of Fe, Cu and K decreased in the shoots of lettuce and the spinach with the time, despite the increase in Zn concentration in the shoots. The results also indicated that increasing nitrate concentrations of solution to the levels greater than the plant capacity for reduction and net uptake of nitrate, leads to the nitrate accumulation in the plants. Nitrate accumulation in plant tissue led to decreases in fresh shoot yield and Fe and Cu concentrations and nitrate reductase activities in both lettuce and spinach.

  1. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    International Nuclear Information System (INIS)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando

    2016-01-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO 4 2− /g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO 4 2− /g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  2. Aqueous dissolution of silver iodide and associated iodine release under reducing conditions with FeCl2 solution

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Imamura, Toshitaka; Idemitsu, Kazuya; Arima, Tatsumi; Kato, Osamu; Nishimura, Tsutomu; Asano, Hidekazu

    2008-01-01

    An empirical and analytical study was performed on the aqueous dissolution of silver iodide (AgI) to release iodine under reducing conditions with Fe 2+ in order to understand the fundamental chemical and/or physical behavior of potential radioactive iodine waste forms under geological disposal conditions. Aqueous dissolution tests of AgI powder in FeCl 2 solutions (10 -6 M to 10 -3 M) were performed in a glove box purged with a gas mixture (Ar + 5% H 2 ). The test results showed that AgI dissolves to release iodine at extremely slow rates, being controlled by a diffusion process in any FeCl 2 solution. The comparison with thermodynamic calculations based on redox equilibria suggested that the AgI dissolution proceeds by redox reaction between Ag + and Fe 2+ ; however, it was far from the thermodynamic equilibrium. These results suggested that the form of AgI itself has a potential to immobilize iodine for a long time even under the disposal conditions. Solid-phase analysis for the reacted AgI by using SEM/EDS showed a certain amount of silver (maybe metallic silver) precipitated at the surface. On the basis of these results and discussion, a potential mechanism for the actual AgI dissolution was proposed as follows. The AgI dissolution proceeds by redox reaction between Ag + and Fe 2+ to release I - , which results in the precipitation of metallic silver as a reduction product of Ag + at the AgI surface to form a thin layer covering the AgI surface. The silver layer evolves to be protective against the transport of reactant species, by which the further dissolution to reach the equilibrium is suppressed. Consequently, the dissolution proceeds at extremely slow rates, being controlled by a diffusion process. (author)

  3. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    Science.gov (United States)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  4. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  5. The interplay between hydrogen evolution reaction and nitrate reduction on boron-doped diamond in aqueous solution: the effect of alkali cations

    International Nuclear Information System (INIS)

    Manzo-Robledo, A.; Lévy-Clément, C.; Alonso-Vante, N.

    2014-01-01

    The nitrate ion reduction was studied on boron-doped diamond (BDD) electrodes by real-time on-line differential electrochemical mass spectrometry (DEMS) coupled with chronoamperometry in K + , Na + cation-containing electrolyte solutions. It was found, via steady state voltammetry, that the hydrogen evolution reaction (HER) was affected by the presence of K + or Na + . A moderate HER occurs in K + -containing electrolyte solution favoring the reaction between NO 3 − and H 2 species, whereas in Na + -containing electrolyte solutions, the HER kinetics was more important leading to a suppression of molecular nitrogen generation. The use of isotope-labeled nitrogen and DEMS confirmed the influence of alkali cations toward the nitrate ion reduction

  6. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.

    1961-01-01

    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the

  7. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  8. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  9. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  10. Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Naghavi, Kazem, E-mail: Kazem.naghavi@gmail.co [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Saion, Elias [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia); Rezaee, Khadijeh [Department of Nuclear Engineering, Faculty of Modern Sciences and Technologies, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Yunus, Wan Mahmood Mat [Universiti Putra Malaysia, Physics Department, 43400 UPM SERDANG, Selangor (Malaysia)

    2010-12-15

    Colloidal silver nanoparticles were synthesized by {gamma}-irradiation-induced reduction method of an aqueous solution containing silver nitrate as a precursor in various concentrations between 7.40x10{sup -4} and 1.84x10{sup -3} M, polyvinyl pyrrolidone for capping colloidal nanoparticles, isopropanol as radical scavenger of hydroxyl radicals and deionised water as a solvent. The irradiations were carried out in a {sup 60}Co {gamma} source chamber at doses up to 70 kGy. The optical absorption spectra were measured using UV-vis spectrophotometer and used to study the particle distribution and electronic structure of silver nanoparticles. As the radiation dose increases from 10 to 70 kGy, the absorption intensity increases with increasing dose. The absorption peak {lambda}{sub max} blue shifted from 410 to 403 nm correspond to the increase of absorption conduction electron energy from 3.02 to 3.08 eV, indicating the particle size decreases with increasing dose. The particle size was determined by photon cross correlation spectroscopy and the results showed that the particle diameter decreases exponentially with the increase of dose. The transmission electron microscopy images were taken at doses of 20 and 60 kGy and the results confirmed that as the dose increases the diameter of colloidal silver nanoparticle decreases and the particle distribution increases.

  11. Green synthesis of silver nanoparticles using biopolymers, carboxymethylated-curdlan and fucoidan

    International Nuclear Information System (INIS)

    Leung, Thomas Chun-Yiu; Wong, Chung Kai; Xie Yong

    2010-01-01

    There is a growing need in developing a reliable and eco-friendly methodology for the synthesis of metallic nanoparticles, which may be applied for many nanotechnological applications. Natural compounds such as biopolymers are one of the resources which could be used for this purpose. The present study involves the development of a simple, ecological and user-friendly method in synthesizing silver nanoparticles by using carboxymethylated-curdlan or fucoidan as reducing and stabilizing agents. Reduction of silver ions by these biopolymers occurred when heating at 100 deg. C, led to the formation of silver nanoparticles in the range of 40-80 nm in dimensions. The silver nanoparticles were formed readily within 10-15 min. Morphological observation and characterization of the silver nanoparticles were performed by using dynamic light scattering (DLS), high-resolution transmission electron microscopy (HRTEM), and UV-vis absorption spectrophotometer. The size of silver nanoparticles can be controlled by using different concentrations of carboxymethylated-curdlan, fucoidan or silver nitrate. This way of silver nanoparticles preparation is easy, fast, user-friendly and suitable for large-scale production.

  12. Studies on synthesis of some composites and their uses for cesium separation

    International Nuclear Information System (INIS)

    Someda, H.H.; El-Zahhar, A.A.; Shehata, M.K.K.; El-Naggar, H.A.

    2002-01-01

    In this study some composite sorbents were prepared by supporting hexacyanoferrate complexes of some transition metals like Co, Ni, Fe and Zn on some different solid supports e.g. cellulose and other natural materials as wood powder. These composites were used for cesium sorption and showed that the highest sorption capacity is for zinc composite and the lowest is for cobalt composite. Also the factors affecting the sorption capacity like acid concentration, competing ions and cesium ion concentration were studied. The release of the sorbed cesium from the composite materials was also studied under different concentrations of different solutions like sodium nitrate, silver nitrate, ammonium nitrate and a mixture of ammonium nitrate and silver nitrate solutions

  13. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum

    Science.gov (United States)

    Gopinath, V.; Velusamy, P.

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 μg ml-1. The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide.

  14. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    Science.gov (United States)

    Kemp, Melissa M.; Kumar, Ashavani; Mousa, Shaymaa; Dyskin, Evgeny; Yalcin, Murat; Ajayan, Pulickel; Linhardt, Robert J.; Mousa, Shaker A.

    2009-11-01

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (Pcancer and inflammatory diseases.

  15. Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2013-12-01

    Full Text Available Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli and Staphylococcus aureus (S. aureus. Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU and variously characterized by field emission scanning electron microscopy (FESEM, fourier transform infra-red (FTIR spectroscopy, X-ray diffraction (XRD and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w AgNO3, 1% and 10% (w/w Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA indicated greater thermal stability.

  16. The Analysis of Silver Nanoparticles After the Manipulation of Synthesis Parameters and with the Addition of Potassium 2-(9-Carboxy-1-Octylnonylsulfanyl)-Malonate

    International Nuclear Information System (INIS)

    Chin, S.Y.; Hakam, M.A.O.; Goh, S.C.; Yarmo, M.A.

    2011-01-01

    This research aimed to synthesize and characterize silver nanoparticles by manipulating the parameters involved in stabilizing the particles. The silver nanoparticles in this research were synthesized by reduction process of silver nitrate (AgNO 3 ) with sodium borohydrate (NaBH 4 ) as the reducing agent. The addition of potassium 2- (9-carboxy-1-octylnonylsulfanyl)-malonate into silver nanoparticles solution functioned as a stabilizing agent. The parameters involved in this research were the effect of time towards stability of silver nanoparticles, the effect of addition of potassium 2-(9-carboxy-1-octylnonylsulfanyl)- malonate and the pH level effect towards the synthesized silver nanoparticles. Based on the results obtained from Transmission Electron Microscopy (TEM), we have observed that the incorporation of potassium 2-(9-carboxy-1- octyl-nonanesulfonyl)-malonate as the stabilizing agent can prevent the agglomeration of silver nanoparticles within 16 days which is a breakthrough for the synthesis of silver nanoparticles by using sodium borohydride. The micrograph showed that the size of silver nanoparticles synthesized were within the range of 1.5 nm to 8.3 nm. In addition to that, Dynamic Light Scattering (DLS) technique was used in this research to measure the average size of the silver nanoparticles which stabilized with potassium 2-(9-carboxy-1-octyl-nonanesulfonyl)-malonate. X-Ray Diffraction (XRD) analysis was carried out to view the effect of manipulated pH level on crystalline silver nanoparticles structure. The XRD diffractogram showed the diffraction peaks which can be indexed to planes of face- centered cubic (fcc) of pure silver. (author)

  17. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  18. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    International Nuclear Information System (INIS)

    Huang, Qijin; Shen, Wenfeng; Xu, Qingsong; Tan, Ruiqin; Song, Weijie

    2014-01-01

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10 7  S m −1 , which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10 7  S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed

  19. Properties of polyacrylic acid-coated silver nanoparticle ink for inkjet printing conductive tracks on paper with high conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qijin [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Shen, Wenfeng, E-mail: wfshen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Xu, Qingsong [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Tan, Ruiqin [Faculty of Information Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China); Song, Weijie, E-mail: weijiesong@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-10-15

    Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 10{sup 7} S m{sup −1}, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices. - Highlights: • An ink from silver nanoparticles coated with polyacrylic acid was prepared. • The ink was used for inkjet-printed tracks at varying printing parameters. • The conductivity of printed tracks sintered at 150 °C increased to 2.1 × 10{sup 7} S/m. • Mechanism for dispersion and aggregation of the nanoparticles in ink is discussed.

  20. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  1. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  2. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air.

    Science.gov (United States)

    Quan, De; Shim, Jun Ho; Kim, Jong Dae; Park, Hyung Soo; Cha, Geun Sig; Nam, Hakhyun

    2005-07-15

    Nitrate monitoring biosensors were prepared by immobilizing nitrate reductase derived from yeast on a glassy carbon electrode (GCE, d = 3 mm) or screen-printed carbon paste electrode (SPCE, d = 3 mm) using a polymer (poly(vinyl alcohol)) entrapment method. The sensor could directly determine the nitrate in an unpurged aqueous solution with the aid of an appropriate oxygen scavenger: the nitrate reduction reaction driven by the enzyme and an electron-transfer mediator, methyl viologen, at -0.85 V (GCE vs Ag/AgCl) or at -0.90 V (SPCE vs Ag/AgCl) exhibited no oxygen interference in a sulfite-added solution. The electroanalytical properties of optimized biosensors were measured: the sensitivity, linear response range, and detection limit of the sensors based on GCE were 7.3 nA/microM, 15-300 microM (r2 = 0.995), and 4.1 microM (S/N = 3), respectively, and those of SPCE were 5.5 nA/microM, 15-250 microM (r2 = 0.996), and 5.5 microM (S/N = 3), respectively. The disposable SPCE-based biosensor with a built-in well- or capillary-type sample cell provided high sensor-to-sensor reproducibility (RSD sensor system was demonstrated by determining nitrate in real samples.

  3. A novel Ag catalyzation process using swelling impregnation method for electroless Ni deposition on Kevlar® fiber

    Science.gov (United States)

    Pang, Hongwei; Bai, Ruicheng; Shao, Qinsi; Gao, Yufang; Li, Aijun; Tang, Zhiyong

    2015-12-01

    A novel Ag catalyzation process using swelling impregnation pretreatment method was developed for electroless nickel (EN) deposition on Kevlar fiber. Firstly, the fiber was immersed into an aqueous dimethylsulfoxide (DMSO) solution of silver nitrate to impart silver nitrate into the inner part of the fiber near the surface. Subsequently silver nitrate was reduced to metal silver nanoparticles on the fiber surface by treatment with aqueous solution of sodium borohydride. After electroless plating, a dense and homogeneous nickel coating was obtained on the fiber surface. The silver nanoparticles formed at the fiber surface functioned as a catalyst for electroless deposition as well as an anchor for the plated layer. The study also revealed that the incorporation of surfactant sodium dodecyl sulfate (SDS) in electroless nickel plating bath can enhance the adhesion strength of EN layer with the fiber surface and minimize the surface roughness of the EN coating. The Ni plated Kevlar fiber possessed excellent corrosion resistance and high tensile strength.

  4. Application of composite materials based on various extractants for isolation of lanthanides(III) nitrates from multicomponent aqueous solutions

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Pyartman, A.K.; Kesnikov, V.A.; Pleshkov, M.A.; Exekov, M.H.

    1999-01-01

    In present work we obtained samples of composite materials mentioned containing tributylphosphate (TBP) and trialkylmethylammonium nitrate (TAMAN). Extraction of lanthanides(III) nitrates of cerium group from multicomponent aqueous solutions by means of these materials was studied. Some systems with different concentration of sodium nitrate up to 5 mol/l and the same systems containing additions of sodium chloride or sulfate along with sodium nitrate was investigated, isotherm of extraction being obtained for all cases. Also we compared in identical conditions extraction process when liquid extractants were used and process with composite materials. It was found that traditional extraction systems and systems based on composite extractants demonstrated almost the same extraction properties in respect to lanthanides(III) nitrates. Extraction isotherms observed in identical conditions and being shown in the same coordinates had no difference with taking into account errors of experiment. This fact allow to use the same mathematical model for those systems. For systems studied it was generated mathematical model that is able to describe extraction process when component concentration vary in wide range, with assumption being used that ratio activity coefficients in organic phase stay constant. (authors)

  5. Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Robert Emil; Briggs, Joseph Blair

    1999-06-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  6. Study on the synthesis of antibacterial plastic by using silver nanoparticles doped in zeolite framework

    International Nuclear Information System (INIS)

    Le Anh Quoc; Dang Van Phu; Nguyen Ngoc Duy; Nguyen Thi Kim Lan; Vo Thi Kim Lang; Nguyen Quoc Hien

    2015-01-01

    Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by gamma irradiation in ethanol solution of silver ion-zeolite (Ag"+/Z) prepared by ion exchange reaction between silver nitrate (AgNO_3) and zeolite 4A. The effect of the Ag"+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and AgNPs size of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~1.000 ppm) and then PP-AgNPs/Z plastics were prepared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96% on the plastic surface. In conclusion, possessing many advantages such as: vigorously antimicrobial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry. (author)

  7. Study on the synthesis of antibacterial plastic by using silver nanoparticles doped in zeolite framework

    International Nuclear Information System (INIS)

    Le Anh Quoc; Dang Van Phu; Nguyen Ngoc Duy; Nguyen Thi Kim Lan; Vo Thi Kim Lang; Nguyen Quoc Hien

    2016-01-01

    Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag"+/Z) prepared by ion exchange reaction between silver nitrate (AgNO_3) and zeolite 4A. The effects of the Ag"+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were prepared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PPAgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the plastic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry. (author)

  8. Quantification of naphazoline nitrate by UV-spectrophoto-metry

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-12-01

    Full Text Available One of the main tasks of pharmaceutical chemistry – medical drugs study. Spectrophotometry is widely used in studying of the structure and composition (complexes, dyes, analytical reagents, etc. of various compounds. It widely used for qualitative and quantitative determination of substances (determination of elements traces in metals, alloys, technical facilities. The dependence between substance structure and its electronic spectrum is being studied by many researchers till nowadays. The aim of this work was to highlight the issues of naphazoline quantify definition techniques by the UV-spectrophotometry. According to the existing methods of quality control (MQC, naphazoline nitrate is a substance quantitatively determined by acid-base titration among a mixture of anhydrous acetic acid and acetic anhydride. Titration is carried out with a solution of 0,1 M perchloric acid (indicator - crystal violet. To check the quality of nasal drops nafazoline nitrate MQC is recommended UV-spectrophotometry: drug is dissolved in boric acid solution (20 g/l as the reference solution used solution pharmacopoeia standard sample substance nafazoline nitrate. The character of UV-spectra of the nafazoline nitrate in solvents of different polarity (water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl, 5M H2SO4, was defined and studied. Standard sample of nafazoline nitrate was obtained from the State Enterprise "Scientific and Expert Pharmacopoeia Centre Ukraine". In order to study UV-spectra nafazoline nitrate spectrophotometer SPECORD 200-222U214 (Germany was used. UV-spectrum of nafazoline nitrate in water and 95% ethanol are characterized by two maxima at 270 and 280 nm. Absorption band of nafazoline nitrate in 0, 1 M sodium hydroxide has two maxima at 271 and 280 nm, and in 0, 1 M solution of hydrochloric acid and 5 M solution of sulfuric acid maxima coincide with the maxima spectrum of the drug in water, 95% ethanol. In order to avoid errors associated with

  9. Estimating soil solution nitrate concentration from dielectric spectra using PLS analysis

    Science.gov (United States)

    Fast and reliable methods for in situ monitoring of soil nitrate-nitrogen concentration are vital for reducing nitrate-nitrogen losses to ground and surface waters from agricultural systems. While several studies have been done to indirectly estimate nitrate-nitrogen concentration from time domain s...

  10. Preparative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols using silver nitrate-impregnated silica gel medium pressure liquid chromatography and analysis of sandalwood oil.

    Science.gov (United States)

    Daramwar, Pankaj P; Srivastava, Prabhakar Lal; Priyadarshini, Balaraman; Thulasiram, Hirekodathakallu V

    2012-10-07

    The major sesquiterpene constituents of East-Indian sandalwood oil (Z)-α- and (Z)-β-santalols have shown to be responsible for most of the biological activities and organoleptic properties of sandalwood oil. The work reported here describes the strategic use of medium pressure liquid chromatography (MPLC) for the separation of both α- and β-santalenes and (Z)-α- and (Z)-β-santalols. Silver nitrate impregnated silica gel was used as the stationary phase in MPLC for quantitative separation of α- and β-santalenes and (Z)-α- and (Z)-β-santalols with mobile phases hexane and dichloromethane, respectively. The purities of α-santalene and (Z)-α-santalol obtained were >96%; however, β-santalene and (Z)-β-santalol were obtained with their respective inseparable epi-isomers. Limits of quantification (LoQ) relative to the FID detector were measured for important sesquiterpene alcohols of heartwood oil of S. album using serial dilutions of the standard stock solutions and demonstrated that the quality of the commercial sandalwood oil can be assessed for the content of individual sesquiterpene alcohols regulated by Australian Standard (AS2112-2003), International Organization for Standardization ISO 3518:2002 (E) and European Union (E. U.).

  11. Simultaneous high-performance liquid chromatographic determination of nitrate, nitrite, and organic pesticides in soil solution using a multidimensional column with ultraviolet detection

    International Nuclear Information System (INIS)

    Nkedi-Kizza, P.; Owusu-Yaw, J.

    1992-01-01

    In many fertilizer trials, the amount of nitrate-nitrogen in soil solution must be quantified frequently because nitrate is easily leached. Because pesticides are generally applied to cropland with fertilizers, quantitative information is needed on the concentration of these chemicals still available in the soil. Information on nitrite, nitrate and pesticide concentrations in food, water and environmental samples is essential because of their toxicity and potential for groundwater and surface water contamination. Most of the methods currently used for nitrate determination also account for nitrite, because nitrite and some organics act as interferences. Some of the existing analytical methods require sample reduction or derivatization, complex solvent mixtures or large sample volumes which make analysis times long. A High-Performance Liquid Chromatography (HPLC) method has been developed for the simultaneous determination of nitrate, nitrite and organic pesticides in soil solution samples and extracts using a multidimensional separator column with ultraviolet detection at 220 nm. The method is rapid and requires small sample volumes (20 μL). It is a sensitive method which is suitable for routine analyses of up to 100 samples per day. A comparison of this method with standard ion chromatography with conductivity detection showed very good agreement between the two methods for the analysis of NO3- and NO2-

  12. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  13. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    Science.gov (United States)

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  14. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    Science.gov (United States)

    Martínez-Bernett, D.; Silva-Granados, A.; Correa-Torres, S. N.; Herrera, A.

    2016-02-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution.

  15. Chromatographic analysis of phytochemicals components present in mangifera indica leaves for the synthesis of silver nanoparticles by AgNO3 reduction

    International Nuclear Information System (INIS)

    Martínez-Bernett, D; Silva-Granados, A; Herrera, A; Correa-Torres, S N

    2016-01-01

    It was studied the green synthesis of silver nanoparticles (AgNPs) from the reduction of a silver nitrate solution (1 and 10mM) in the presence of an extract of mangifera indica leaves. Phytochemicals components present in extracts of mango leaves were determined using a GC-MS chromatograph. The results showed the presence of the phenolic compound pyrogallol (26.9% wt/5mL of extract) and oleic acid (29.1% wt/5mL of extract), which are useful for the reduction of the metallic salt AgNO 3 and the stabilization of silver nanoparticles. The synthesized nanoparticles were characterized by UV visible spectroscopy (UV-vis), evidencing absorbances at wavelengths of 417nm (AgNPs-1) and 414nm (AgNPs- 10), which are characteristic peaks of this metallic nanoparticles. Scanning Electron Microscopy (SEM) was used to determine the size of the synthesized nanoparticles. A particle size of about 28±7nm was observed for the AgNPs-1 sample and 26±5nm for the AgNPs-10. This suggests the advantages of green chemistry to obtain silver nanoparticles with a narrow size distribution. (paper)

  16. Towards Environmentally-benign Nanoengineering: Antimicrobial Nanoparticles Based on Silver-infused Lignin Cores

    Science.gov (United States)

    Richter, Alexander Philipp

    Engineered nanomaterials are capable of solving challenges in industries important to society such as energy, agriculture, and health care. Antimicrobial silver nanoparticles (AgNPs) are the most widely used nanoparticles by number of commercial products in commerce today. However, the increased introduction of AgNPs in industrial applications may lead to discharge of persistent nanoparticles in the environment and undesired impacts on living organisms. This dissertation will present a new class of antimicrobial environmentallybenign nanoparticles (EbNPs) designed with green chemistry principles, which can serve as highly efficient microbicide substitutes of the AgNPs. The EbNP core is made of biodegradable lignin, and is infused with an optimal amount of silver ions. We report on the fabrication of environmentally benign nanoparticles (EbNPs) using two types of lignin precursors with simple, inexpensive, and non-toxic processes, (i) by employing a solvent exchange precipitation method at room temperature and (ii) by applying an environmentally friendly water-based acid precipitation method. The synthesis of Organosolv (High Purity Lignin) nanoparticles via antisolvent flash precipitation method in water resulted in particles in the size range of 45 to 250 nm in diameter. We investigate the synthesis parameters of Kraft (Indulin AT) lignin nanoparticles by flash precipitation induced by pH drop in ethylene glycol. Furthermore, we evaluate the ionic strength and pH stability of both lignin nanoparticle suspensions and highlight differences in the systems. After silver ion infusion of Indulin AT nanoparticles followed by surface modification, we show that the EbNPs exhibit higher antimicrobial activity towards Gram-negative human pathogens Escherichia coli and Pseudomonas aeruginosa and Gram-positive human pathogens Staphylococcus epidermidis in direct comparison with silver nanoparticles and silver nitrate solution, and that the particles are effective against

  17. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  18. Study of the electroreduction of nitrate on copper in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Reyter, David [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada); Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, CP 8888, Montreal, Qc (Canada); Roue, Lionel [INRS Energie, Materiaux et Telecommunications, 1650 bd. Lionel Boulet, Varennes, Qc (Canada)

    2008-08-20

    The electrocatalytic activity of a Cu electrode for the electroreduction of nitrate in alkaline medium was investigated by linear sweep voltammetry at stationary and rotating disc electrodes. Nitrate-reduction products generated upon prolonged electrolyses at different potentials were quantified. In addition, adsorption phenomena associated with the nitrate electroreduction process were characterized by electrochemical quartz crystal microbalance (EQCM) experiments. This data revealed that nitrate electroreduction process strongly depends on the applied potential. Firstly, at ca. -0.9 V vs. Hg/HgO, the electroreduction of adsorbed nitrate anions to nitrite anions was identified as the rate-determining step of the nitrate electroreduction process. Between -0.9 and -1.1 V, nitrite is reduced to hydroxylamine. However, during long-term electrolyses, hydroxylamine is not detected and presumably because it is rapidly reduced to ammonia. At potential more negative than -1.1 V, nitrite is reduced to ammonia. At ca. -1.45 V, i.e. just before the hydrogen evolution reaction, the abrupt decrease of the cathodic current is due to the electrode poisoning by adsorbed hydrogen. In addition, during the first minutes of nitrate electrolysis, a decrease of the copper electrode activity was observed at the three investigated potentials (-0.9, -1.1 and -1.4 V). From polarization and EQCM measurements, this deactivation was attributed to the adsorption of nitrate-reduction products, blocking the electrode surface and slowing down the nitrate electroreduction rate. However, it was demonstrated that the Cu electrode can be reactivated by the periodic application of a square wave potential pulse at -0.5 V, which causes the desorption of poisoning species. (author)

  19. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    Science.gov (United State