WorldWideScience

Sample records for silver lead zinc

  1. Lead and silver extraction from waste cake from hydrometallurgical zinc production

    Directory of Open Access Journals (Sweden)

    DUSAN D. STANOJEVIC

    2008-05-01

    Full Text Available This paper presents the experimental results of the extraction of lead and silver from a lead–silver waste cake obtained in the process of hydrometallurgical zinc production. While controlling the pH value, the lead–silver cake was leached at a temperature close to boiling point in different concentrations of aqueous calcium chloride solutions. The experiments were performed applying different ratios between the mass of cake and the volume of the leaching agent under different durations of the process. It was concluded that at the optimal process parameters (pH 2.0–2.5; CaCl2 concentration, 3.6 mol dm-3; temperature, 95 °C; solid/liquid ratio, 1:5, the leaching efficiency of lead and silver could reach the approximate value of 94 %. Applying the same optimal process parameters, the method was applied to the leaching of a lead–silver cake in a magnesium chloride solution, but with significantly lower efficiencies. The results show that leaching of lead and silver in a calcium chloride solution could be a prospective method for increasing the recovery of lead and silver during hydrometallurgical zinc production.

  2. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    Science.gov (United States)

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  3. Silver-zinc: status of technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Karpinski, A.P.; Makovetski, B.; Russell, S.J.; Serenyi, J.R.; Williams, D.C. [Yardney Technical Products, Pawcatuck, CT (United States)

    1999-07-01

    Michel Yardney and Professor Henri Andre developed the first practical silver-zinc battery more than 55 years ago. Since then, primary and rechargeable silver-zinc batteries have attracted a variety of applications due to their high specific energy/energy density, proven reliability and safety, and the highest power output per unit weight and volume of all commercially available batteries. Although significant improvements have been achieved on traditional systems such as lead-acid and nickel/cadmium, and in spite of the advent of new electrochemistries such as lithium-ion and nickel/metal hydride, many users still rely on silver-zinc to satisfy their most demanding and critical requirements. Over the past few years, several of the internal components have been subject to many studies which resulted in significant improvements in the battery wet life and cycle life. Specifically, these include new separator materials which offer an alternative to the cellulosic membranes, improvements to the zinc electrode that include additives that help reduce shape-change and dendritic growth, and to a lesser extent, process changes to the silver electrode and additives to the electrolyte. In comparison, the commonly used secondary systems are lead-acid, nickel/cadmium, nickel/metal hydride, and lithium-ion. Each has attributes which make them desirable for certain applications. Where low cost, high voltage, and high rate capability is required, the lead-acid battery is an obvious choice whenever size and weight are not critical. For applications requiring longer wet life, moderate rate capability, and high cycle life, nickel/cadmium or nickel/metal hydride can be used in spite of their poor charge retention and higher costs. Relatively newer systems are also available such as lithium-ion or lithium polymer technology which are preferred for their high voltage and excellent cycle life. Among the disadvantages of these systems are higher costs, limited configurations (usually

  4. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  5. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    Science.gov (United States)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA

    International Nuclear Information System (INIS)

    Oliveira, G.M. de; Carlos, I.A.

    2009-01-01

    This paper shows the study of silver-zinc electrodeposition from a thiourea solution with added (ethylenedinitrilo)tetraacetic acid (EDTA), disodium salt and N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), trisodium salt. Voltammetric results indicated that silver-zinc alloy can be obtained applying overpotential higher than 0.495 V, in Tu solution containing 1.0 x 10 -1 mol L -1 Zn(NO 3 ) 2 + 2.5 x 10 -2 mol L -1 AgNO 3 . This was due to silver(I) ion complexation with thiourea, which shifted the silver deposition potential to more negative value and due to silver-zinc alloy deposition, which occurred at potentials more positive than the potential to zinc deposition alone. EDTA or HEDTA did not significantly affect the silver and zinc deposition potentials, but decreased the current density for silver-zinc deposition. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses of the silver-zinc deposits showed that the morphology and composition changed as a function of the conditions of deposition, viz, deposition potential (E d ), deposition charge density (q d ) and solution composition (silver, EDTA and HEDTA concentrations). EDS analysis of the deposits showed sulphur (S) incorporated into the silver-zinc deposit, while SEM images showed that this sulphur content seemed to improve the silver-zinc morphology, as did the presence of EDTA and HEDTA in the solution, which enhanced the sulphur incorporation into the silver-zinc deposit. X-ray diffraction (XRD) analysis of the silver-zinc deposit showed that it was amorphous, irrespective of its composition and morphology

  7. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-01-01

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO 4 ) and silver mineral; silver jarosite decomposed into silver sulfate (Ag 2 SO 4 ); and zinc ferrite (ZnO·Fe 2 O 3 ) decomposed into zinc sulfate (ZnSO 4 ) and hematite (Fe 2 O 3 ). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy

  8. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  9. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  10. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    International Nuclear Information System (INIS)

    Quirós, Jennifer; Borges, João P.; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-01-01

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  11. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  12. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Haisheng; Sun, Wei, E-mail: hanhaishengjingji@126.com; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO{sub 4}) and silver mineral; silver jarosite decomposed into silver sulfate (Ag{sub 2}SO{sub 4}); and zinc ferrite (ZnO·Fe{sub 2}O{sub 3}) decomposed into zinc sulfate (ZnSO{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.

  13. Nickel hydrogen and silver zinc battery cell modeling at the Aerospace Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, A.H.

    1996-02-01

    A nickel hydrogen battery cell model has been fully developed and implemented at The Aerospace Corporation. Applications of this model to industry needs for the design of better cells, power system design and charge control thermal management, and long-term performance trends will be described. Present efforts will be described that are introducing the silver and zinc electrode reactions into this model architecture, so that the model will be able to predict performance for not only silver zinc cells, but also nickel zinc, silver hydrogen, and silver cadmium cells. The silver zinc cell modeling effort is specifically designed to address the concerns that arise most often in launch vehicle applications: transient response, power-on voltage regulation, hot or cold operation, electrolyte spewing, gas venting, self-discharge, separator oxidation, and oxalate crystal growth. The specific model features that are being employed to address these issues will be described.

  14. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  15. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    International Nuclear Information System (INIS)

    Wu, Jiaqi; Lee, Chin C.

    2016-01-01

    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  16. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  17. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  18. Fabrication and test of inorganic/organic separators. [for silver zinc batteries

    Science.gov (United States)

    Smatko, J. S.

    1974-01-01

    Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.

  19. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  20. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  1. Mineral commodity profiles: Silver

    Science.gov (United States)

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  2. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  3. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  4. Fate of Zinc and Silver Engineered Nanoparticles in Sewerage Networks

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage sy...

  5. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  6. Lead and Zinc pollution of soils in the Kabwe lead-zinc mining area

    International Nuclear Information System (INIS)

    Musonda, B.M.; Tembo, F

    2004-01-01

    Lead and Zinc pollution of soils related to mining activities in Kabwe district is one of the major environmental problems in Zambia today. In this study, we investigated the distribution of lead and zinc in topsoil and subsoil. Samples were collected from topsoil(0-20cm) and subsoil(20-50cm)at predetermined sites using a 5km x 5km regional grid and a 500m x 500m local grid. After preparation 260 local and 200 regional samples were analysed for heavy metals by atomic absorption spectrophotometry. The background levels of cold HNO3 extractable lead and zinc are 50mg/kg and 70mg/kg respectively. The degree of Pb and Zn contamination of the soils varies with proximity of the soils to Kabwe mining centre. The content of Pb and Zn in topsoil that is very close to the mine is up to 1.6% and 3.9% respectively while soils that are very far from the mine generally contain less than 10mg/kg Pb and 20mg/kg Zn. The heavy metal contamination patterns in soils adjacent to the mine have been formed by wind dispersion of particulate matter and dry deposition. The risk of exposure of humans to lead and zinc is very high in areas that are adjacent to the mining centre. (author)

  7. A super ink jet printed zinc-silver 3D microbattery

    Science.gov (United States)

    Ho, C. C.; Murata, K.; Steingart, D. A.; Evans, J. W.; Wright, P. K.

    2009-09-01

    A novel super ink jet printing (SIJP) system was used to fabricate 3D zinc-silver microbatteries directly on a substrate. The SIJP provides a simple and flexible method to deposit interesting 2D and 3D structures of varying morphologies without the waste and large energy inputs typical of standard microfabrication technologies. The system was used to print pairs of silver electrodes with arrays of pillars on glass substrates, and in the presence of an electrolyte, the battery self-assembled during the first charge. Using an aqueous electrolyte solution of KOH with dissolved ZnO, the SIJP printed structures showed similar electrochemical behavior to batteries composed of silver foil electrodes. For a sparse array of pillars (~2.5% footprint area of each electrode pad occupied by pillars), a capacity increase of 60% was achieved in comparison with a cell with planar electrodes.

  8. Lifetime estimates for sterilizable silver-zinc battery separators

    Science.gov (United States)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  9. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Nomura, Shinfuku

    2011-01-01

    Nanoparticles are continuously synthesized from submerged magnesium, zinc, and silver rods 1–2 mm in diameter by microwave plasma in pure water at 20 kPa. Magnesium-hydroxide nanoplates shaped as triangles, truncated triangles or hexagons with 25–125 nm in size are synthesized with a production rate of 60 g h −1 . Zinc-oxide nanoparticles formed as sharp sticks with diameters of 50 nm and lengths of 150–200 nm are synthesized with a production rate of 14 g h −1 . Silver nanoparticles with a diameter of approximately 6 nm are synthesized with a production rate of 0.8 g h −1 . The excitation temperature is estimated by applying the Boltzmann plot method in assumption of local thermodynamic equilibrium. The excitation temperatures obtained from hydrogen, magnesium, and zinc lines are 3300 ± 100 K, 4000 ± 500 K, and 3200 ± 500 K, respectively.

  10. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  11. Deposition and Characterization of Silver Oxide from Solution of Silver, Cassava and Sugarcane Juice Effects

    Directory of Open Access Journals (Sweden)

    Uche E. Ekpunobi

    2013-06-01

    Full Text Available Silver oxide was deposited on metallic substrates (zinc and lead from silver solution with different additives at a pH of 5, dc current of 0.2A, 4V for 20seconds at 25°C. The additives were cassava solution and sugarcane juice. The metallic substrates served as cathode while a copper electrode serves as the anode. Compositions of the electrolytes were 50ml AgNO3, 50ml AgNO3 and 50ml of cassava solution or 50ml of sugarcane juice. Structural and textural characterizations were carried out on the deposits. The result showed that deposition using zinc substrate gave a better result than that of lead in that the deposits were pure without impurities. Using cassava solution as additive, a pure Ag2O3 deposit was obtained while sugarcane juice gave a pure intergrowth of Ag2O3 and Ag3O4 deposits both on zinc substrates.

  12. Determination of high content of copper lead zinc silver in Geo-logical Samples by Flame Atomic Absorption Spectrometry%火焰原子吸收法测定地质样品中高含量的铜铅锌银

    Institute of Scientific and Technical Information of China (English)

    文双辉

    2014-01-01

    This paper deals with the method of non sensitive line determination of high content of copper lead zinc silver in Geological Samples by flame atomic absorption spectrometry, The optimum condi-tions for determination of each component are determined through ex-periment The working curve range 0-125 ug g/ ml,Determination of values and standard values,Component relative standard deviation (n=11) were lower than 1%, suitable for the determination of copper lead zinc silver in the range of 1%-15% samples.%本文研究了采用非灵敏线火焰原子吸收法测定地质样中较高含量的铜铅锌银的方法,通过实验确定了各组分测定的最佳条件。工作曲线范围0-125微克/毫升,测定值与标准值相吻合,各组分相对标准差(n=11)均低于1%,适合地质样品中较高含量铜铅锌银的测定。

  13. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  14. A versatile silver oxide-zinc battery for synchronous orbit and planetary missions

    Science.gov (United States)

    Schwartz, H. J.; Soltis, D. G.

    1973-01-01

    A new kind of silver-zinc cell has been developed and tested under NASA support which can withstand severe heat sterilization requirements and does not display the traditional life limiting aspect of zinc electrodes - i.e., shape change. These cells could be used on a planetary lander mission which requires wet-stand periods of over a year, a modest number of cycles (400 to 500) and may require dry heat sterilization. The weight advantage of these cells over the traditional nickel-cadmium batteries makes them also an attractive alternative for synchronous orbit service where 400 to 500 cycles would be required over a five-year period.

  15. Long-term loss rates of radioisotopes of cobalt, zinc, ruthenium, caesium and silver by Mytilus edulis under field conditions

    International Nuclear Information System (INIS)

    Dahlgaard, H.

    1999-01-01

    Long-term loss rates of cobalt, zinc, ruthenium, caesium and silver by Mytilus edulis soft parts as well as shells were measured under field conditions in the Mediterranean Sea at Monaco during a period of 13 months after experimental contamination. For all 5 elements, the loss could be described by two exponential functions for the soft parts and one for the shells. Biological half lives for the long-lived compartment ranged from ∼20 days for caesium to 100 - 200 days for cobalt, zinc, ruthenium and silver for soft parts as well as for shells. A comparison with results from similar experiments performed under very different environmental conditions in the Baltic Sea indicated that caesium and maybe silver had a faster turnover in the warm and saline Mediterranean, whereas loss rates for cobalt and zinc were comparable. It is argued, that reliable deduction of loss rates require experiments running over several months to a year, and it is pointed out that shorter term experiments - even up to 3 months - may give biased results. (author)

  16. Fermi level equilibration between colloidal lead and silver particles in aqueous solution

    International Nuclear Information System (INIS)

    Henglein, A.; Holzwarth, A.; Mulvaney, P.

    1992-01-01

    Colloidal solutions of lead and silver were mixed under the exclusion of air. The equilibration of the Fermi levels in the two different types of metal particles took place over a few days at room temperature. The equilibration took place by the transfer of lead atoms from lead to silver particles until the latter carried a lead mantle of one to two monolayers. This could be concluded from the observed changes in the optical spectrum of the silver particles. The results are discussed in terms of two mechanisms: (1) Pb atom transfer following heterocoagulation of the lead and silver particles and (2) electron transfer during Brownian encounters, followed by Pb 2+ desorption from the lead particles and subsequent Pb 2+ reductor on the silver particles carrying the transferred electrons. Traces of methylviologen, MV 2+ , in the solution drastically increase the rate of equilibration; this is explained by a relay mechanism in which electrons in the lead particles are first picked up by MV 2+ and are then transferred from MV + to the silver particles. 2 refs., 4 figs

  17. Realization of ultrathin silver layers in highly conductive and transparent zinc tin oxide/silver/zinc tin oxide multilayer electrodes deposited at room temperature for transparent organic devices

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Thomas; Schmidt, Hans; Fluegge, Harald; Nikolayzik, Fabian; Baumann, Ihno; Schmale, Stephan; Johannes, Hans-Hermann; Rabe, Torsten [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Hamwi, Sami, E-mail: sami.hamwi@ihf.tu-bs.de [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany); Riedl, Thomas [Institute of Electronic Devices, Bergische Universitaet Wuppertal, Rainer-Gruenter Str. 21, 42119 Wuppertal (Germany); Kowalsky, Wolfgang [Institut fuer Hochfrequenztechnik, Technische Universitaet Braunschweig, Schleinitzstr. 22, 38106 Braunschweig (Germany)

    2012-05-01

    We report on transparent and highly conductive multilayer electrodes prepared at room temperature by RF sputtering of zinc tin oxide (ZTO) and thermal evaporation of ultrathin silver (Ag) as top contact for transparent organic light emitting diodes (TOLED). Specifically, we study the morphological, electrical and optical properties of the multilayer structure in particular of the thin Ag film. The tendency of Ag to form agglomerates over time on top of ZTO is shown by atomic force microscopy. From the optical constants derived from ellipsometric measurements we evidenced a bulk like behavior of an Ag film with a thickness of 8 nm embedded in ZTO leading to a low sheet resistance of 9 {Omega}/sq. Furthermore we verify the optical constants by simulation of an optimized ZTO/Ag/ZTO structure. As an application we present a highly efficient TOLED providing a device transmittance of > 82% in the visible part of the spectrum. The TOLED shows no damage caused by sputtering on a lighting area of 80 mm{sup 2} and exhibits efficiencies of 43 cd/A and 36 lm/W.

  18. Models for mass transfer effects in semi-fuel cells and for a silver-zinc battery

    Science.gov (United States)

    Venkatraman, Murali Sankar

    Semi-Fuel Cells (SFCs) and Silver-Zinc batteries have been recognized as batteries for high power applications. For channel flow between two parallel plates, featured in SFCs, obstacles may take the form of ordered asymmetrical porous nets. The net controls the spacing between the two electrode plates. The effect of the inert insulating net and its geometry on the heat and mass transfer characteristics in such a system is presented. The governing equations for momentum, continuity, and energy are solved in a three-dimensional domain using a commercial computational fluid dynamics software for fully developed flow with constant temperature boundary conditions. The local Nusselt number is calculated from the resulting temperature distribution. This net also affects the limiting current distribution in an SFC operating at limiting current because it disrupts the parabolic laminar flow velocity distribution. Hence, the current density distribution is obtained from the Nusselt number distribution through a heat and mass transfer analogy. The location, spacing, and number of the longitudinal and transverse ribs of the net are shown to affect the local and average current density distributions and Nusselt numbers on each of the two electrode plates. The results show that transverse ribs have a greater effect and that the enhancements of the average current density of 250% can be obtained for a spacing of 0.94 x 10-3 m with greater than 16 transverse ribs. A silver-zinc battery shows similar mass transfer limitations while discharged at moderate to high discharge rates. A one-dimensional mathematical model consisting of a negative (zinc) electrode, separator, and positive (silver) electrode, has been developed to study the performance and thermal behavior of the silver-zinc cell during discharge. The physical phenomena described here are reaction kinetics, mass transfer and heat generation. The analysis includes finite matrix conductivities (thermal and electrical

  19. Removal of lead and zinc ions from water by low cost adsorbents.

    Science.gov (United States)

    Mishra, P C; Patel, R K

    2009-08-30

    In this study, activated carbon, kaolin, bentonite, blast furnace slag and fly ash were used as adsorbent with a particle size between 100 mesh and 200 mesh to remove the lead and zinc ions from water. The concentration of the solutions prepared was in the range of 50-100 mg/L for lead and zinc for single and binary systems which are diluted as required for batch experiments. The effect of contact time, pH and adsorbent dosage on removal of lead and zinc by adsorption was investigated. The equilibrium time was found to be 30 min for activated carbon and 3h for kaolin, bentonite, blast furnace slag and fly ash. The most effective pH value for lead and zinc removal was 6 for activated carbon. pH value did not effect lead and zinc removal significantly for other adsorbents. Adsorbent doses were varied from 5 g/L to 20 g/L for both lead and zinc solutions. An increase in adsorbent doses increases the percent removal of lead and zinc. A series of isotherm studies was undertaken and the data evaluated for compliance was found to match with the Langmuir and Freundlich isotherm models. To investigate the adsorption mechanism, the kinetic models were tested, and it follows second order kinetics. Kinetic studies reveals that blast furnace slag was not effective for lead and zinc removal. The bentonite and fly ash were effective for lead and zinc removal.

  20. Lead and zinc intoxication in companion birds.

    Science.gov (United States)

    Puschner, Birgit; Poppenga, Robert H

    2009-01-01

    Although the toxicity of lead and zinc to birds is widely recognized by veterinarians and bird owners, these metals are frequently found in the environments of pet and aviary birds, and intoxications are common. Clinical signs exhibited by intoxicated birds are often nonspecific, which makes early diagnosis difficult. Fortunately, lead and zinc analyses of whole blood and serum or plasma, respectively, are readily available and inexpensive; elevated concentrations can confirm intoxication. Once diagnosed, intoxication can be effectively treated by (1) preventing further exposure, (2) administering chelating drugs, and (3) providing symptomatic and supportive care.

  1. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L.; Yoho, M.; Landsberger, S.

    2015-09-01

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide 110 Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide 199 Au and 438.6 keV of metastable radionuclide 69m Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide 66 Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used, various geological

  2. Analysis of impurities in silver matrix by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Hussain, R.; Ishaque, M.; Mohammad, D.

    1999-01-01

    A procedure for the analysis of aluminium, chromium, copper, lead, mercury, nickel and zinc mainly using flame lens atomic absorption spectrophotometry has been described. The results depict that the presence of silver does not introduce any significant interference, when standards are prepared in matching silver matrix solutions. The calibration curves obey the straight-line equations passing through the origin. Thus the separation of silver matrix from the analyte solutions is not necessary. The method has successfully been applied for the analysis of silver foils, wires, battery grade silver oxides and silver nitrate samples containing analyte elements in the concentration range 2 to 40 ppm. (author)

  3. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Gao, M.; Feng, B.; Sun, Y.; Xing, G.; Li, S.; Yang, J.; Yang, L.; Zhang, Y.; Liu, H.; Fan, H.; Sui, Y.; Zhang, Z.; Liu, S.; Song, H.

    2012-01-01

    We report on the fabrication of a highly aligned silver-decorated array of zinc oxide nanotubes for use in surface-enhanced Raman spectroscopy (SERS). The ZnO nanotube array was first prepared by chemical etching, and the silver nanoparticles (AgNPs) were then deposited on their surface by magnetron sputtering. Such ZnO/Ag hybrid structures are shown to act as SERS-active substrates with remarkable sensitivity. The enhancement factor can be as high as 10 5 when using 4-mercaptopyridine in solution as a SERS probe. The synergistic combination between SERS 'hot spots' and the formation of an interfacial electric field between the zinc oxide nanotubes and the AgNPs in our opinion contribute to the high sensitivity. The relative standard deviations of signal intensities for the major SERS peaks are <7 %. This demonstrates that the optimized ZnO/Ag hybrid represents an excellent SERS substrate that may be used in trace analysis and ultrasensitive molecular sensing. (author)

  4. Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA).

    Science.gov (United States)

    van der Merwe, Deon; Carpenter, James W; Nietfeld, Jerome C; Miesner, John F

    2011-07-01

    Lead and zinc poisoning have been recorded in a variety of bird species, including migrating waterfowl such as Canada Geese (Branta canadensis), at sites contaminated with mine waste from lead and zinc mines in the Tri-State Mining District, Kansas, Oklahoma, and Missouri, USA. The adverse health impacts from mine waste on these birds may, however, be more extensive than is apparent from incidental reports of clinical disease. To characterize health impacts from mine waste on Canada Geese that do not have observable signs of poisoning, four to eight apparently healthy birds per site were collected from four contaminated sites and an uncontaminated reference site, and examined for physical and physiologic evidence of metals poisoning. Tissue concentrations of silver, aluminum, arsenic, barium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, nickel, lead, selenium, thallium, vanadium, and zinc were determined by inductively coupled plasma mass spectroscopy. Adverse health effects due to lead were characterized by assessing blood δ-aminolevulinic acid dehydratase (ALAD) enzyme activity. Adverse effects associated with zinc poisoning were determined from histologic examination of pancreas tissues. Elevated tissue lead concentrations and inhibited blood ALAD enzyme activities were consistently found in birds at all contaminated sites. Histopathologic signs of zinc poisoning, including fibrosis and vacuolization, were associated with elevated pancreatic zinc concentrations at one of the study sites. Adverse health effects associated with other analyzed elements, or tissue concentrations indicating potentially toxic exposure levels to these elements, were not observed.

  5. Cycle life test. Evaluation program for secondary spacecraft cells. [performance tests on silver zinc batteries, silver cadmium batteries, and nickel cadmium batteries

    Science.gov (United States)

    Harkness, J. D.

    1976-01-01

    Considerable research is being done to find more efficient and reliable means of starting electrical energy for orbiting satellites. Rechargeable cells offer one such means. A test program is described which has been established in order to further the evaluation of certain types of cells and to obtain performance and failure data as an aid to their continued improvement. The purpose of the program is to determine the cycling performance capabilities of packs of cells under different load and temperature conditions. The various kinds of cells tested were nickel-cadmium, silver-cadmium, and silver-zinc sealed cells. A summary of the results of the life cycling program is given in this report.

  6. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    Science.gov (United States)

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  7. [Unification of methods for determining the trace quantities of lead, zinc, sodium and potassium ions in the assessment of drinking water adn transfusion fluid quality].

    Science.gov (United States)

    Popkov, V A; Golovina, N V; Evgrafov, A A

    2001-01-01

    The results of long-term studies made by the Department of General Chemistry, I. M. Sechenov Moscow Medical Academy, that deals with unification of methods for determining some ions of metals (lead, zinc, sodium, and potassium) in the assessment of the quality of drinking water and transfusion fluids are summarized. A procedure was developed to determine the trace impurities of zinc, lead, and silver by atomic absorption spectrometry (AAS) by using sorption concentration. C-80-2-aminothiazole, a new sorbent synthesized at the Research Institute of Polymers, was used to detect these ions in the drinking water. With regards to the chosen optimal conditions, drinking water samples were analyzed via their direct spraying in the air-acetylene flame. The prior sorption concentration determined drinking water zinc and lead ions in the concentrations equal to or less than their permissible dose concentrations. The studies indicated that the used methods to determine the trace quantities of metals in the drinking water and aqueous solutions show a high sensitivity, rapidity, simplicity of sample preparation.

  8. Enhanced thermal property measurement of a silver zinc battery cell using isothermal calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ubelhor, Ryan, E-mail: ryan.ubelhor@navy.mil [Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, IN 47522 (United States); Ellison, Daniel [Science Applications International Corporation, 300 Highway 361, Crane, IN 47522 (United States); Pierce, Cecilia [Naval Surface Warfare Center, Crane Division, 300 Highway 361, Crane, IN 47522 (United States)

    2015-04-20

    Highlights: • Design and construction of novel heat flow calorimeter for large battery cell. • Heat flow characterization of silver zinc battery under load. • Thermal efficiency determination of silver zinc battery under load. • Surface map of heat flow of silver zinc battery under load. - Abstract: The push for increased energy density of electrochemical cells highlights the need for novel electrochemical techniques as well as additional characterization methods for these cells in order to meet user needs and safety requirements. To achieve ever increasing energy densities and faster controlled release of that energy, all materials of construction must be constantly evaluated from electrode to casing and everything in-between. Increasing the energy density of the cell improves its utility, but it also increases the waste heat and maximum potential uncontrolled energy release. Design agents and system developers need new ways to monitor and classify the probability and severity of the catastrophic failures as well as the system characteristics during intended operation. To support optimization of these battery cells it is necessary to understand their thermal characteristics at rest as well as under prescribed charge and discharge cycles. One of the many calorimetric tools available to observe and record these characteristics is heat flow calorimetry. Typically, a heat flow calorimeter is operated isothermally and measures the sum heat released or consumed by a sample material inside of a calorimetric measuring cell. For this study an improved calorimetric measuring cell for a modified Hart 6209 precision temperature bath was designed and constructed to measure the heat flow of larger electrochemical cells (18 × 8 × 16 cm). This new calorimetric measuring cell is constructed to allow independent measurements of heat flow among each of the sample’s six sides in contrast to the typical one measurement of the average heat flow. Heat flows from 0.01 to 7

  9. Enhanced thermal property measurement of a silver zinc battery cell using isothermal calorimetry

    International Nuclear Information System (INIS)

    Ubelhor, Ryan; Ellison, Daniel; Pierce, Cecilia

    2015-01-01

    Highlights: • Design and construction of novel heat flow calorimeter for large battery cell. • Heat flow characterization of silver zinc battery under load. • Thermal efficiency determination of silver zinc battery under load. • Surface map of heat flow of silver zinc battery under load. - Abstract: The push for increased energy density of electrochemical cells highlights the need for novel electrochemical techniques as well as additional characterization methods for these cells in order to meet user needs and safety requirements. To achieve ever increasing energy densities and faster controlled release of that energy, all materials of construction must be constantly evaluated from electrode to casing and everything in-between. Increasing the energy density of the cell improves its utility, but it also increases the waste heat and maximum potential uncontrolled energy release. Design agents and system developers need new ways to monitor and classify the probability and severity of the catastrophic failures as well as the system characteristics during intended operation. To support optimization of these battery cells it is necessary to understand their thermal characteristics at rest as well as under prescribed charge and discharge cycles. One of the many calorimetric tools available to observe and record these characteristics is heat flow calorimetry. Typically, a heat flow calorimeter is operated isothermally and measures the sum heat released or consumed by a sample material inside of a calorimetric measuring cell. For this study an improved calorimetric measuring cell for a modified Hart 6209 precision temperature bath was designed and constructed to measure the heat flow of larger electrochemical cells (18 × 8 × 16 cm). This new calorimetric measuring cell is constructed to allow independent measurements of heat flow among each of the sample’s six sides in contrast to the typical one measurement of the average heat flow. Heat flows from 0.01 to 7

  10. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  11. X-ray radiometric analysis of lead and zinc concentrates using germanium radiation detector

    International Nuclear Information System (INIS)

    Vajgachev, A.A.; Mamysh, V.A.; Mil'chakov, V.I.; Shchekin, K.I.; Berezkin, V.V.

    1975-01-01

    The results of determination of lead, zinc and iron in lead and zinc concentrates by the X-ray-radiometric method with the use of germanium semiconductor detector are presented. In the experiments the 57 Co source and tritium-zirconium target were used. The activity of 57 Co was 2 mc. The area of the germanium detector employed was 5g mm 2 , its thickness - 2.3 mm. In lead concentrates zinc and iron were determined from the direct intensity of K-series radiation. In the analysis of zinc concentrates the same conditions of recording and excitation were used as in the case of lead concentrates, but the measurements were conducted in saturated layers. It is demonstrated that the use of germanium semiconductor detectors in combination with the suggested methods of measurements makes it possible to perform determination of iron, zinc and lead in zinc and lead concentrates with permissible error

  12. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  13. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  14. Production of high purity granular metals: cadmium, zinc, lead

    Directory of Open Access Journals (Sweden)

    Shcherban A. P.

    2017-04-01

    Full Text Available Cadmium, zinc and lead are constituent components of many semiconductor compounds. The obtained high purity distillates and ingots are large-size elements, which is not always convenient to use, and thus require additional grinding, which does not always allow maintaining the purity of the original materials. For the growth of semiconductor and scintillation single crystals it is advisable to use "friable" granular high-purity distillates, which can be processed without the risk of contamination. For example, the European low-background experiment LUCIFER required more than 20 kg of high-purity granulated zinc, which was agreed to be supplied by NSC KIPT. This task was then extended to cadmium and lead. Motivated by these tasks, the authors of this paper propose complex processes of deep refining of cadmium, zinc and lead by vacuum distillation. A device producing granules has been developed. The process of granulation of high-purity metals is explored. The purity of produced granules for cadmium and zinc is >99,9999, and >99,9995% for lead granules. To prevent oxidation of metal granules during exposition to air, chemical methods of surface passivation were used. Organic solvent based on dimethylformamide used as a coolant improves the resistance of granules to atmospheric corrosion during the granulation of high purity Cd, Zn and Pb.

  15. An analytical study of prehistoric lead and silver objects from the Aegean

    International Nuclear Information System (INIS)

    Pernicka, E.; Wagner, G.A.; Assimenos, K.; Doumas, C.; Begemann, F.; Todt, W.

    1983-01-01

    In the course of an archaeometallurgical study on the metal sources of archaic silver coinage it was discovered that lead-silver mines on the Cycladic island of Siphnos, which were known to Herodotus (III, 57) and exploited in archaic times, were already worked in the Early Bronze Age (EBA). In addition, new excavations in Thorikos have shown that the well-known lead-silver deposit of Laurion on Attika was also exploited as early as the EBA. In order to assess the role which these two mining districts and other possible ore sources played in the Bronze Age for the supply of lead and silver, we analyzed prehistoric lead and silver objects from the Aegean region. The methods employed were the same as have been used to characterize the ore deposits. In addition we wanted to study to what extent cupellation was practised in these early periods. Bulk composition and trace element concentrations were determined by instrumental and radiochemical neutron activation and atomic absorption spectrometry. Isotope abundance analyses were performed on a VARIAN MAT 261 mass spectrometer. Experimental details are given. Results are presented and discussed. (U.K.)

  16. Modelling the effect of temperature and free acid, silver, copper and lead concentrations on silver electrorefining electrolyte conductivity

    OpenAIRE

    Aji, Arif T.; Kalliomäki, Taina; Wilson, Benjamin P.; Aromaa, Jari; Lundström, Mari

    2016-01-01

    Conductivity is one of the key physico-chemical properties of electrolyte in silver electrorefining since it affects the energy consumption of the process. As electrorefining process development trends towards high current density operation, having electrolytes with high conductivities will greatly reduce the energy consumption of the process. This study outlines investigations into silver electrorefining electrolyte conductivity as a function of silver, free acid, copper and lead concentrati...

  17. Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference

    Directory of Open Access Journals (Sweden)

    Massimo Marino

    2014-06-01

    Full Text Available The conversion of heat into current can be obtained by a process with two stages. In the first one, the heat is used for distilling a solution and obtaining two flows with different concentrations. In the second stage, the two flows are sent to an electrochemical cell that produces current by consuming the concentration difference. In this paper, we propose such an electrochemical cell, working with water solutions of zinc chloride. The cell contains two electrodes, made respectively of zinc and silver covered by silver chloride. The operation of the cell is analogous to that of the capacitive mixing and of the “mixing entropy battery”: the electrodes are charged while dipped in the concentrated solution and discharged when dipped in the diluted solution. The cyclic operation allows us to extract a surplus of energy, at the expense of the free energy of the concentration difference. We evaluate the feasibility of such a cell for practical applications and find that a power up to 2 W per m2 of the surface of the electrodes can be achieved.

  18. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská

    2006-12-01

    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  19. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  20. Food chain transfer of cadmium and lead to cattle in a lead-zinc smelter in Guizhou, China

    International Nuclear Information System (INIS)

    Cai Qiu; Long Meili; Zhu Ming; Zhou Qingzhen; Zhang Ling; Liu Jie

    2009-01-01

    Cadmium (Cd) and Lead (Pb) are environmental pollutants. Environmental samples and bovine tissues were collected from the areas around a lead-zinc smelter in Guizhou, China for Cd, Pb, zinc (Zn) and copper (Cu) analysis. Cd in soil (10 mg/kg) and feed (6.6 mg/kg) from the polluted areas was 10 times higher than the Chinese Standards, resulting in higher Cd in bovine kidney (38 mg/kg) and liver (2.5 mg/kg). Pb in feed (132 mg/kg) from the polluted area was much higher than unpolluted areas, causing higher Pb levels in bovine tissues. Environmental Zn was elevated, but bovine tissue Zn was normal. Cu in bovine liver decreased with increased Cd and Pb. Metals in drinking water and in bovine muscle were within the Standard range. Thus, in the areas of this lead-zinc smelter, the environment has been contaminated with Cd and Pb, which has been transferred to cattle through the food chain. - Cd and Pb from lead-zinc smelters contaminate the environment and accumulate in bovine tissues.

  1. Investigation on life cycle assessment of lead and zinc production

    Directory of Open Access Journals (Sweden)

    Sabere Nazari

    2015-12-01

    Full Text Available Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion of water resources were collected and discussed. It was concluded that depletion of water resources affected the environment and this was the main issue of the lead and zinc production of this plant. According to the results, in the global warming’s impact category, the proportion of carbon dioxide is more than that of methane. The results also showed that in the acidification’s impact category, the nitrogen oxide proportion is greater compared to that of the sulfur dioxide.

  2. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  3. The mineralogy and geochemistry of the copper lead and zinc sulphides of the Otavi Mountainland

    International Nuclear Information System (INIS)

    Emslie, D.P.

    1980-01-01

    A study of 44 samples from the area revealed that the major primary sulphides, which constitute the bulk of the mineralization, are galena, sphalerite, chalcopyrite, and tennantite. The copper mineralization is concentrated in the Huttenberg Formation of the Tsumeb Subgroup and in the Nosib Subgroup, and the lead and zinc mineralization mainly in the Berg Aukas, Gauss, Auros, Maieberg, and Elandshoek Formations of the Otavi Group. Antimony, manganese, and silver were detected in all the samples of galena analysed, and selenium in four deposits. Silver, iron, and zinc were found within tennantite exsolutions in sphalerite. The concentrations of these minor and trace elements are probably too low to affect the economic potential of any of the deposits. Manganese was also observed in samples of sphalerite, which were found to vary in colour according to their manganese content, being dark red when the manganese content is high and ranging through orange to yellow as the manganese content decreases.The deposits of the Otavi Mountainland are similar in many ways to deposits of the Mississippi Valley type, and a similar genesis is proposed for the Mountainland. It is sugessted that the genesis involved the deposition of sediments and chemical deposits in the Swakop Basin, the leaching of the contained metals from the clay particles by the fluid trapped in the sediments, and the transportation of these metals in brine solutions. Bacterial action resulted in the formation of hydrogen sulphide, which was then trapped in the solutions. Bacterial action resulted in the formation of hydrogen sulphide, which was then trapped in the carbonates and later released when the dolomitic rocks of the area were subjected to folding, faulting, and brecciation. On its release, the hydrogen sulphide reacted with the brine solutions to form sulphide deposits in the fault and breccia zones

  4. 25 CFR 215.21 - Payment of gross production tax on lead and zinc.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment of gross production tax on lead and zinc. 215.21... ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.21 Payment of gross production tax on lead and zinc. The superintendent of the Quapaw Indian Agency is hereby authorized and directed to pay at the...

  5. The emerging case of nanopollutants in the aquatic environment: analytical challenges for the exposure assessment of silver and zinc oxide nanoparticles

    CSIR Research Space (South Africa)

    Thwala, Melusi

    2016-09-01

    Full Text Available of emerging environmental contaminants partly due to limited capability to detect and quantify them in environmental matrices. The current paper presents findings from the exposure assessments of silver and zinc oxide nanoparticles (Ag and ZnO NPs...

  6. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  7. Lead and zinc contamination of vegetation in the southern Pennines

    Energy Technology Data Exchange (ETDEWEB)

    Shimwell, D W; Laurie, A E

    1972-01-01

    Three types of heavy metal tolerant vegetation occurring on the spoil heaps in the Pennines are described sociologically and ecologically and their distribution in the Peak District National Park mapped. Concentrations of lead and zinc extractable from soils by acetic acid are recorded, as are total values for these two heavy metals in the tissues of the main component phanerogams and cryptogams of the vegetation. The range of values for zinc in plant tissues are uniformly higher than those for lead. Concentrations of lead accumulated by these plants are higher than those reported for the accumulation of atmospheric lead. The differences in heavy metal absorption, retention and excretion between ectohydric and myxohydric mosses are shown to be quite distinct. The heavy metals are excreted in the former type and form a crust in periods of drought with up to 6% lead and 1.5% zinc content, while, in the latter, the metals tend to be located mainly in the older growth at the base of the moss carpets. The concentrations of the two metal ions in two Peak District rivers proved to be less than 1 ppm in all samples.

  8. Ruby coloured lead glasses by generation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Pocillo, 1, 40100 La Granja de San Ildefonso (Segovia) (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Spanish Council for Scientific Research (CSIC), Avda. Gregorio del Amo, 8, 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es

    2004-11-15

    Both yellow and red superficial ruby lead crystal glasses have been obtained by Ag{sup +} ion-exchange. For red ruby colouring lead glass substrates were previously doped with reducing oxides (arsenic, antimony, cerium and tin). The best experimental conditions for silver ion-exchange were determined. The optical absorption behaviour of the samples was studied to point out the influence of the parameters involved in the ion-exchange process. Moreover, other parameters affecting the final colouring of the glasses (kind of dopant, dopant concentration, etc.) were also analysed. The dopant percentage added to the lead crystal glass is the most important factor for developing superficial red ruby colouring. Antimony oxide doped lead glass ion-exchanged with silver showed the most intense red ruby colouring, even for a doping concentration lower than those of arsenic oxide doped samples able to enhance similar colour. Spectral saturation appeared for the highest doping concentration and for the most severe ion-exchange conditions. Chromatic coordinates were calculated from the corresponding transmission visible spectra. The colour purity showed by the samples obtained satisfies the ornamental requirements that motivated this research.

  9. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    The toxicological evaluations of cadmium, iron, manganese, lead and zinc were carried out against albino mice model, Mus musculus. On the basis of 96 hrLC50 value, cadmium (0.47 mM) was found to be the most toxic followed by zinc (2.40 mM), lead (2.42 mM), iron (4.25 mM) and manganese (5.70 mM) was least toxic.

  10. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  11. A shortcut hydrothermal strategy for the synthesis of zinc nanowires

    International Nuclear Information System (INIS)

    Hu Jianqiang; Chen Zhiwu; Xie Jingsi; Yu Ying

    2008-01-01

    Synthesis of metal nanowires has opened many new possibilities for designing ideal building blocks for future nanodevices. In this work, zinc nanowires with lengths of micrometre magnitude were synthesized in high yield by a shortcut hydrothermal strategy. The synthesis involves a template-free, non-seed and catalyst-free solution-phase process to high-quality zinc nanowires, which is low-cost and proceeds at relatively short time. In this process, zinc nanowires were prepared through the reduction of zinc acetate with absolute ethanol in the presence of silver nitrate under hydrothermal atmosphere. The strategy suggests that silver ion plays a vital role in the synthesis of zinc nanowires, without which the substituted product is zinc oxide nanowires. X-ray diffraction and energy-dispersive x-ray spectroscopy measurements confirm the final formation of zinc nanowires and component transformation from zinc oxide nanowires in the introduction of silver ion. We believe that with the efficient synthesis, longer zinc nanowires can be fabricated and may find potential applications for superconductors and nanodevices. (fast track communication)

  12. 25 CFR 215.25 - Other minerals and deep-lying lead and zinc minerals.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Other minerals and deep-lying lead and zinc minerals. 215.25 Section 215.25 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEAD AND ZINC MINING OPERATIONS AND LEASES, QUAPAW AGENCY § 215.25 Other minerals and deep-lying lead...

  13. Research keeps lead and zinc viable in high-tech markets

    Science.gov (United States)

    Cole, Jerome F.

    1989-08-01

    Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.

  14. Photochemical oxygen reduction by zinc phthalocyanine and silver/gold nanoparticle incorporated silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Manas; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Azad, Uday Pratap

    2012-12-15

    Silver or gold nanoparticles are synthesized using a borohydride reduction method and are anchored simultaneously into/onto the mercaptopropyl functionalized silica. Later, zinc phthalocyanine is adsorbed onto the above materials. Thin films of these materials are prepared by coating an aqueous colloidal suspension of the respective material onto glass plates. Visible light irradiation of these films in oxygen saturated, stirred aqueous solutions effectively reduces oxygen to hydrogen peroxide. The photocatalytic reduction of oxygen is explained on the basis of the semiconducting properties of the silica films. The back electron transfer reaction is largely prevented by means of a sacrificial electron donor, triethanolamine. - Highlights: Black-Right-Pointing-Pointer Zinc phthalocyanine adsorbed silica materials were prepared. Black-Right-Pointing-Pointer Thin films of these materials photocatalytically reduce oxygen. Black-Right-Pointing-Pointer The photocatalysis is explained based on semiconductor properties of the materials. Black-Right-Pointing-Pointer Metal nanoparticles increase the photocatalytic efficiency of the materials.

  15. On the problem of zinc extraction from the slags of lead heat

    Science.gov (United States)

    Kozyrev, V. V.; Besser, A. D.; Paretskii, V. M.

    2013-12-01

    The possibilities of zinc extraction from the slags of lead heat are studied as applied to the ZAO Karat-TsM lead plant to be built for processing ore lead concentrates. The process of zinc extraction into commercial fumes using the technology of slag fuming by natural gas developed in Gintsvetmet is recommended for this purpose. Technological rules are developed for designing a commercial fuming plant, as applied to the conditions of the ZAO Karat-TsM plant.

  16. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    Science.gov (United States)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  17. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam

    International Nuclear Information System (INIS)

    Ha, Nguyen Thi Hoang; Sakakibara, Masayuki; Sano, Sakae; Nhuan, Mai Trong

    2011-01-01

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg -1 dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).

  18. Uptake of metals and metalloids by plants growing in a lead-zinc mine area, Northern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sakakibara, Masayuki, E-mail: sakakiba@sci.ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Sano, Sakae [Department of Geology, Ehime University, Matsuyama 790-8577 (Japan); Nhuan, Mai Trong [Department of Environmental Geology, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam)

    2011-02-28

    This study was conducted to evaluate the phytoremediation and phytomining potential of 10 plant species growing naturally at one of the largest lead-zinc mines in Northern Vietnam. Total concentrations of heavy metals and arsenic were determined in the plant and in associated soil and water in and outside of the mine area. The results indicate that hyperaccumulation levels (mg kg{sup -1} dry weight) were obtained in Houttuynia cordata Thunb. (1140) and Pteris vittata L. (3750) for arsenic, and in Ageratum houstonianum Mill. (1130), Potamogeton oxyphyllus Miq. (4210), and P. vittata (1020) for lead. To the best of our knowledge, the present paper is the first report on metal accumulation and hyperaccumulation by H. cordata, A. houstonianum, and P. oxyphyllus. Based on the obtained concentrations of metals, bioconcentration and translocation factors, as well as the biomass of these plants, the two latter species and P. vittata are good candidates for phytoremediation of sites contaminated with arsenic and multi-metals. None of the collected plants was suitable for phytomining, given their low concentrations of useful metals (e.g., silver, gallium, and indium).

  19. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    Science.gov (United States)

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Lead, zinc and pHconcentrationsof Enyigba soils in Abakaliki Local ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... Lead is relatively unavailable to plants when the soil pH is above 6.5, while availability of zinc ... zinc, in a soil is available for uptake by plants or move- ment down the soil profile depends on a range of .... incineration as manure including the natural occurrence of rock or ore bodies with high levels of trace ...

  1. An evaluation of airborne nickel, zinc, and lead exposure at hot dip galvanizing plants.

    Science.gov (United States)

    Verma, D K; Shaw, D S

    1991-12-01

    Industrial hygiene surveys were conducted at three hot dip galvanizing plants to determine occupational exposure to nickel, zinc, and lead. All three plants employed the "dry process" and used 2% nickel, by weight, in their zinc baths. A total of 32 personal and area air samples were taken. The air samples were analyzed for nickel, zinc, and lead. Some samples were also analyzed for various species of nickel (i.e., metallic, soluble, and oxidic). The airborne concentrations observed for nickel and its three species, zinc, and lead at the three plants were all well below the current and proposed threshold limit values recommended by the American Conference of Governmental Industrial Hygienists (ACGIH).

  2. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J. [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico); Ţălu, Ştefan [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641 Cluj (Romania); Méndez, Alia [Centro de Química-ICUAP Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria Puebla, 72530 Puebla (Mexico); Trejo, G., E-mail: gtrejo@cideteq.mx [Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, A.P.064, C.P.76703, Querétaro (Mexico)

    2015-07-01

    Highlights: • Zn/AgPs composites coatings were formed for electrodeposition. • CTAB promotes occlusion of silver particles in the coating. • Zn/AgPs coatings present very good antibacterial activity. - Abstract: Composite coatings consisting of zinc and silver particles (Zn/AgPs) with antibacterial activity were prepared using an electrodeposition technique. The morphology, composition, and structure of the Zn/AgPs composite coatings were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS), inductively coupled plasma (ICP) spectrometry, and X-ray diffraction (XRD). The antibacterial properties of the coatings against the microorganisms Escherichia coli as a model Gram-negative bacterium and Staphylococcus aureus as a model Gram-positive bacterium were studied quantitatively and qualitatively. The results revealed that the dispersant cetyltrimethylammonium bromide (CTAB) assisted in the formation of a stable suspension of Ag particles in the electrolytic bath for 24 h. Likewise, a high concentration of CTAB in the electrolytic bath promoted an increase in the number of Ag particles occluded in the Zn/AgPs coatings. The Zn/AgPs coatings that were obtained were compact, smooth, and shiny materials. Antimicrobial tests performed on the Zn/AgPs coatings revealed that the inhibition of bacterial growth after 30 min of contact time was between 91% and 98% when the AgPs content ranged from 4.3 to 14.0 mg cm{sup −3}.

  3. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    , primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial......In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit...... silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium...

  4. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  5. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Science.gov (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  6. Toxicity to woodlice of zinc and lead oxides added to soil litter

    Science.gov (United States)

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  7. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis; Determinacion de plata, oro, zinc y cobre en muestras minerales mediante diversas tecnicas de analisis por activacion de neutrones instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Yoho, M.; Landsberger, S., E-mail: neisla126@hotmail.com [University of Texas at Austin, Nuclear Engineering Teaching Laboratory, Austin 78712, Texas (United States)

    2015-09-15

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide {sup 110}Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide {sup 199}Au and 438.6 keV of metastable radionuclide {sup 69m}Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide {sup 66}Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used

  8. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  9. Cost-Effectiveness Analysis in Comparing Alginate Silver Dressing with Silver Zinc Sulfadiazine Cream in the Treatment of Pressure Ulcers

    Directory of Open Access Journals (Sweden)

    Apirag Chuangsuwanich

    2013-09-01

    Full Text Available BackgroundThe treatment of pressure ulcers is complicated, given the various wound dressing products available. The cost of different treatments varies and the cost-effectiveness of each product has not been thoroughly evaluated. We compare two wound dressing protocols-alginate silver dressing (AlSD and silver zinc sulfadiazine cream (AgZnSD with regard to wound healing and cost-effectiveness.MethodsPatients with grade III or IV sacral or trochanteric pressure ulcers were eligible for this prospective, randomized controlled trial. The patients were randomized to receive one of the two dressings for an eight-week period. The criteria of efficacy were based on the Pressure Ulcer Scale for Healing (PUSH scoring tool. The cost of treatment was also assessed.ResultsTwenty patients (12 women and 8 men were randomly assigned to receive either AlSD (n=10 or AgZnSD cream (n=10. The demographic data and wound characteristics were comparable in the two groups. The two groups showed no significant difference in the reduction of PUSH score, wound size, or volume of exudate. The tissue type score was significantly lower in the AlSD group (3.15±0.68-1.85±0.68 vs. 2.73±0.79-2.2±0.41; P=0.015. The cost of treatment was significantly lower in the AlSD group (377.17 vs. 467.74 USD, respectively; P<0.0001.ConclusionsAlginate silver dressing could be effectively used in the treatment of grade III and IV pressure ulcers. It can improve wound tissue characteristics and is cost-effective.

  10. Synthesis and investigation of physico-chemical, antibacterial, biomymetic properties of silver and zinc containing hydroxyapatite

    Science.gov (United States)

    Zhuk, Ilya; Rasskazova, Lyudmila; Korotchenko, Natalia; Kozik, Vladimir; Kurzina, Irina

    2017-11-01

    In the work we carried out microwave synthesis of modified hydroxyapatites (HA) with different content of ions. A solid solution based on HA remains a single-phase sample when the calcium ions are substituted by silver and zinc ions up to 5 % by weight (0.5 mole fraction). The microstructure parameters, morphology and the particle powders size were studied by X-ray diffraction analysis, IR spectroscopy, and scanning electron microscopy (SEM). It is shown that the modification of HA by silver (AgHA) and zinc (ZnHA) ions increases the size of its particles, the degree of crystallinity, and the pore sizes of the samples while reducing their specific surface and uniformity of their forms. Elemental analysis and distribution of elements over the surface of HA, AgHA, and ZnHA powders were performed by X-ray spectral microanalysis (RSMA). The ratio of Ca/P is within the range of 1.66-1.77 and corresponds to the ratio of Ca/P in stoichiometric HA and the HA entering bone tissue. The ability of AgHA- and ZnHA-substrates to form on their surface a calcium-phosphate layer from the simulated body fluid (SBF) at 37 °C is determined. This ability decreases in the order: in ZnHA it is less than in AgHA, but greater than in HA. The antibacterial activity of the samples was analyzed. The AgHA sample has both bactericidal and persistent bacteriostatic properties in the case of direct contact with Escherichia coli cells.

  11. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    Science.gov (United States)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  12. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  13. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  14. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  15. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  16. Environmental pollution levels of lead and zinc in Ishiagu and Uburu communities of Ebonyi State, Nigeria.

    Science.gov (United States)

    Oje, Obinna A; Uzoegwu, Peter N; Onwurah, Ikechukwu N E; Nwodo, Uchechukwu U

    2010-09-01

    Water and soil samples from the area were therefore analyzed for their lead and zinc content. Computation of pollution statuses of lead and zinc revealed topsoil lead geoaccumulation indices of -0.143 and -0.069 and zinc geoaccumulation indices of 1.168 and 0.713 for Ishiagu and Uburu respectively. The pollution indices were determined to be 0.499 and 0.3564 for soil in Ishiagu and Uburu respectively and also 5.11 and 2.42 for water in Ishiagu and Uburu communities respectively. Water/soil concentration ratio were found to be 0.0018 and 0.0014 for lead in Ishiagu and Uburu respectively. On the other hand, the water/soil concentration ratio for zinc was computed to be 0.001 and 0.0008 for Ishiagu and Uburu respectively. These results seem to suggest that the pollution of the environment by these heavy metals in the areas were as a result of the water being contaminated by lead and zinc not necessarily their concentrations in the soil.

  17. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  18. Silver recovery from the waste materials by the method of flotation process

    OpenAIRE

    B. Oleksiak; G. Siwiec; A. Tomaszewska; D. Piękoś

    2018-01-01

    During the leaching process of zinc concentrates, the waste materials rich in various metals such as eg. silver are produced. So far no attempts of silver recovery from the mentioned waste materials have been made due to the lack of any method which would be both effective and beneficial. The paper presents some possibilities of application of flotation process in silver recovery form waste materials generated during zinc production.

  19. Analysis of Lead and Zinc by Mercury-Free Potentiometric Stripping Analysis

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    A method is presented for trace-element analysis of lead and zinc by potentiometric stripping analysis (PSA) where both the glassy-carbon working electrode and the electrolyte are free of mercury. Analysis of zinc requires an activation procedure of the glassy-carbon electrode. The activation...... is performed by pre-concentrating zinc on glassy carbon at -1400 mV(SCE) in a mercury-free electrolyte containing 0.1 M HCl and 2 ppm Zn2+, followed by stripping at approx. -1050 mV. A linear relationship between stripping peak areas, recorded in the derivative mode, and concentration was found...

  20. Silver recovery from the waste materials by the method of flotation process

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2018-01-01

    Full Text Available During the leaching process of zinc concentrates, the waste materials rich in various metals such as eg. silver are produced. So far no attempts of silver recovery from the mentioned waste materials have been made due to the lack of any method which would be both effective and beneficial. The paper presents some possibilities of application of flotation process in silver recovery form waste materials generated during zinc production.

  1. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    Science.gov (United States)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  2. UHF-plasma torch emission spectrometry for cadmium, lead and zinc by vaporization introduction

    International Nuclear Information System (INIS)

    Nakashima, Ryozo

    1978-01-01

    As the introduction technique of aerosol into the plasma torch, vaporization introduction of metals was studied. An aliquot of metal nitrates was pipetted in a graphite crucible and dried with a vacuum pump. The dried sample was heated in a high-frequency induction furnace under inert gas carrier such as argon or nitrogen (reduction introduction). Chlorination introduction with hydrogen chloride was also studied. High-purity grade of argon, nitrogen and hydrogen chloride was used as carrier. Intensities were based on the peak area of intensity-time curves at 228.8 nm (cadmium), 405.8 nm (lead), and 213.9 nm (zinc). In the reduction introduction, the minimum temperatures to attain a constant peak area, which means a complete vaporization were 700 0 C (cadmium), 1500 0 C (lead), and 1100 0 C (zinc), respectively. In the chlorination, this temperature was 500 0 C (cadmium), 700 0 C (lead), and 300 0 C (zinc) respectively. For two introduction techniques, the latter was more sensitive than the former for cadmium and zinc, while the former was more sensitive for lead. The optimum temperature, detection limits, and the coefficients of variance calculated from the measurements of 1.0 μg of metals were as follows: Cadmium: chlorination at 850 0 C, D.L. 5ng, C.V. 10%. Lead: reduction at 1600 0 C, D.L. 10ng, C.V. 15%. Zinc: chlorination at 850 0 C, D.L. 5ng, C.V. 9%. Linear calibration lines having 45 0 slope at log-log plots, were obtained over the range from 0.05 to 6 μg for cadmium and zinc, 0.06 to 6 μg for lead on the conditions above. These techniques were also applied for analyses of biological materials for three metals without prior separations. Although the sensitivity of the chlorination introduction technique for lead was rather poor compared with that of reduction technique, the chlorination technique was applied to minimize the introduction of coexisting materials such as alkali and alkaline earth metals. The analytical results agreed reasonably with the

  3. [The morphofunctional state of the bone marrow in lead and zinc intoxication].

    Science.gov (United States)

    Vladimtseva, T M; Pashkevich, I A; Salmina, A B

    2006-01-01

    The nucleolus is a compulsory nuclear structure of all cells of eukaryotes. The quantitative and qualitative characteristics of nuclei show the functional activity of a cell, the rate of its synthesis of RNA and portents, and its metabolic state. Heavy metals (zinc chloride and lead acetate) were comparatively investigated for their effects on the nucleolar apparatus of bone marrow cells in in vivo experiments. Zinc chloride and lead acetate were ascertained to damage the nucleolar apparatus of cells, thus decreasing their transcriptional activity or irreversibly damaging them.

  4. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    Science.gov (United States)

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  5. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin; Bruhn, Mikkel; Søndergaard, Chris; Jensen, Dorete

    2004-12-01

    In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.

  6. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  7. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  8. Behavior of lead and zinc in plasma, erythrocytes, and urine and ALAD in erythrocytes following intravenous infusion of CaEDTA in lead workers.

    Science.gov (United States)

    Araki, S; Aono, H; Fukahori, M; Tabuki, K

    1984-01-01

    To evaluate the effect of calcium disodium ethylenediamine tetraacetate (CaEDTA) on concentrations of lead and zinc in plasma, erythrocytes, whole blood, and urine, we administered CaEDTA by intravenous infusion for 1 hr to seven lead workers with blood lead concentrations of 46-67 micrograms/100 g (mean 54 micrograms/100 g). The plasma lead concentration (PPb) and the mobilization yield of lead in urine by CaEDTA were highest during the period between 1 and 2 hr after the infusion was started. In contrast, the lead concentration in erythrocytes (EPb) and in whole blood (BPb) remained unchanged during the 24 hr following infusion. Plasma zinc concentration (PZn) also fell rapidly following CaEDTA infusion; the decline was followed by a gradual rise in the zinc concentration in erythrocytes (EZn) without alteration in the zinc in whole blood. The mobilization yield of zinc in urine by CaEDTA (MZn) reached its highest level within 1 hr after the start of the infusion. Delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes gradually increased for 5 hr following CaEDTA infusion. These observations suggest that (1) PPb concentration is a more sensitive indicator of the body burden of chelatable lead than is either BPb or EPb; (2) MZn is mobilized mostly from plasma during the first several hours following the start of CaEDTA infusion, and the fall in PZn concentration following infusion is compensated first by a rise in EZn concentration and then by an immediate redistribution of zinc in other organs to the blood; and (3) Pb-inhibited ALAD activity is reactivated by the increased EZn during and shortly after CaEDTA infusion.

  9. Assessment of Undiscovered Deposits of Gold, Silver, Copper, Lead, and Zinc in the United States: A Portable Document (PDF) Recompilation of USGS Open-File Report 96-96 and Circular 1178

    Science.gov (United States)

    U.S. Geological Survey National Mineral Resource Assessment Team Recompiled by Schruben, Paul G.

    2002-01-01

    This publication contains the results of a national mineral resource assessment study. The study (1) identifies regional tracts of ground believed to contain most of the nation's undiscovered resources of gold, silver, copper, lead, and zinc in conventional types of deposits; and (2) includes probabilistic estimates of the amounts of these undiscovered resources in most of the tracts. It also contains a table of the significant known deposits in the tracts, and includes descriptions of the mineral deposit models used for the assessment. The assessment was previously released in two major publications. The conterminous United States assessment was published in 1996 as USGS Open-File Report 96-96. Subsequently, the Alaska assessment was combined with the conterminous assessment in 1998 and released as USGS Circular 1178. This new recompilation was undertaken for several reasons. First, the graphical browser software used in Circular 1178 was ONLY compatible with the Microsoft Windows operating system. It was incompatible with the Macintosh operating system, Linux, and other types of Unix computers. Second, the browser on Circular 1178 is much less intuitive to operate, requiring most users to follow a tutorial to understand how to navigate the information on the CD. Third, this release corrects several errors and numbering inconsistencies in Circular 1178.

  10. Fate of Zinc and Silver Engineered Nanoparticles in ...

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  11. Morphology of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication

    Directory of Open Access Journals (Sweden)

    Harets V.I.

    2016-05-01

    Full Text Available Morphological state of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication was studied. We found that values of the hepatofetal index in the groups Pb+Ag and Pb+Au had significant differences as compared to the group exposed to lead intoxication, but did not differ significantly from the control group and made up 0,086±0,001 and 0,083±0,001, respectively. Value of the relative area of blood vessels in groups Pb+Ag and Pb+Au was 13.08±0.53% and 16.83±0.53%, respectively, which had no significant difference as compared to control group, but differed from the value of lead intoxication group. Under the influence of silver citrate on a background of lead intoxication the relative area of hematopoietic cells was 52,5±0,95%; this indicates to modification action of silver on haematopoiesis. Thus, injection of silver and gold citrates prevents negative effect of lead on morphometric parameters of embryonic liver, relative area of blood vessels and hematopoietic cells. Experiment results showed protective effect of silver and gold citrates on a background of lead intoxication during hepatogenesis.

  12. Lead and zinc removal with storage period in porous asphalt ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... total suspended sediments (TSS)), nutrients (e.g., total Kjeldahl nitrogen (TKN)), oil ... (e.g., lead, copper and zinc), are carried by stormwater runoff ..... The essential mineral of limestone ..... kinetics of basalt–water interaction.

  13. 78 FR 46948 - Proposed Agreement Regarding Site Costs and Covenants Not To Sue for American Lead and Zinc Mill...

    Science.gov (United States)

    2013-08-02

    ... Not To Sue for American Lead and Zinc Mill Site, Ouray County, Colorado AGENCY: Environmental... provides for Settling Party's payment of certain response costs incurred at the American Lead and Zinc Mill... reference the American Lead and Zinc Mill Site, the EPA Docket No. CERCLA-08-2013- 0004. The Agency's...

  14. A fast method for the determination of lead in honey samples using stabilizer-free silver nanoparticles

    Science.gov (United States)

    Bittar, Dayana Borges; Catelani, Tiago Augusto; Pezza, Leonardo; Pezza, Helena Redigolo

    2018-01-01

    A sensitive, rapid and robust method based on the use of stabilizer-free silver nanoparticles was developed for lead detection in honey. Silver nanoparticles were synthesized without the presence of any stabilizers using silver nitrate and sodium borohydride as precursors where the latter was applied as reducing agent. The optimization of the experimental variables (AgNO3 and NaBH4) for the formation of the nanoparticles was carried out using varying volumes of these solutions. Spectrophotometric measurements at 393 nm showed a linear working range between 0.0500 and 0.167 mg L- 1 lead (R = 0.994), with limits of detection (LOD) and quantification (LOQ) of 0.0135 and 0.0451 mg L- 1, respectively. The proposed method proved to be a significantly sensitive mechanism for lead detection in honey samples.

  15. Non-cyanide process for flotation of a uranium-bearing lead-zinc polymetallic sulphide ore

    International Nuclear Information System (INIS)

    Li Qingxin

    1988-01-01

    The characteristics of the minerals of a urnium-bearing lead-zinc ore are described in this paper, And the experimentsl results of non-cyanide flotation process are given. The tests show that the selective flotation process of lead and zinc followed by uranium treatment is feasible in technology and reasonable in economics. When the run-of-mine contains 2.86%Pb, 2.47%Zn and 0,019%U, the lead concentrate containing 65.13%Pb, and 4.51%Zn, the zinc concentrate containing 52.00%Zn and 1.22%Pb, and the uranium concentrate containing 0.028%U can be obtained with the recoveries of 94.87%Pb, 87.61%Zn and 66.13%U respectively. The influence of sodium sulphite on flotaion process, the effect of sodium sulphite and the flotation mechanism of dibutyldithiophosphate ammonium are also discussed

  16. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff.

    Science.gov (United States)

    Harada, Shigeki; Yanbe, Miyu

    2018-04-01

    This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lead, zinc and pHconcentrationsof Enyigba soils in Abakaliki Local ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... Abakaliki Local Government Area of Ebonyi State,. Nigeria. F. N. Nweke1 ... establish a base line pollution index for lead and zinc in Enyigba soil as an exogenous source of these .... is done to reduce the pH value of the soil.

  18. Cost-Effectiveness Analysis in Comparing Alginate Silver Dressing with Silver Zinc Sulfadiazine Cream in the Treatment of Pressure Ulcers

    Directory of Open Access Journals (Sweden)

    Apirag Chuangsuwanich

    2013-09-01

    Full Text Available Background The treatment of pressure ulcers is complicated, given the various wound dressingproducts available. The cost of different treatments varies and the cost-effectiveness of eachproduct has not been thoroughly evaluated. We compare two wound dressing protocolsalginatesilver dressing (AlSD and silver zinc sulfadiazine cream (AgZnSD with regard towound healing and cost-effectivenessMethods Patients with grade III or IV sacral or trochanteric pressure ulcers were eligible forthis prospective, randomized controlled trial. The patients were randomized to receive oneof the two dressings for an eight-week period. The criteria of efficacy were based on thePressure Ulcer Scale for Healing (PUSH scoring tool. The cost of treatment was also assessed.Results Twenty patients (12 women and 8 men were randomly assigned to receive eitherAlSD (n=10 or AgZnSD cream (n=10. The demographic data and wound characteristics werecomparable in the two groups. The two groups showed no significant difference in the reductionof PUSH score, wound size, or volume of exudate. The tissue type score was significantlylower in the AlSD group (3.15±0.68-1.85±0.68 vs. 2.73±0.79-2.2±0.41; P=0.015. The costof treatment was significantly lower in the AlSD group (377.17 vs. 467.74 USD, respectively;P<0.0001.Conclusions Alginate silver dressing could be effectively used in the treatment of grade IIIand IV pressure ulcers. It can improve wound tissue characteristics and is cost-effective.

  19. Determination of lead and zinc concentrations in the blood and liver of the captive common green iguana (Iguana iguana).

    Science.gov (United States)

    Burns, Russell P; Paul-Murphy, Joanne

    2009-09-01

    Heavy metal toxicosis is a well-known phenomenon in wild, captive-animal, and domestic animal medicine. However, the occurrence among reptiles is not well documented. One reason for this is the lack of information regarding reference blood and tissue levels of heavy metals in reptiles. To determine normal blood lead, plasma zinc, and liver lead and zinc concentrations, blood and liver samples were collected from 4 adult and 16 juvenile, healthy green iguanas (Iguana iguana). Lead and zinc levels were measured using atomic absorption spectroscopy. Using the mean +/- two SD as the normal reference range, the present study suggests the following for captive common green iguana: 1) whole blood lead level: 0.06 +/- 0.06 microg/ml; 2) plasma zinc level: 2.68 +/- 1.66 microg/ml; 3) liver lead level (wet-weight basis): <1.0 +/- 0.0 microg/g; 4) liver lead level (dry-weight basis): <3.0 +/- 0.0 microg/g; 5) liver zinc level (wet-weight basis): 24.9 +/- 11.6 microg/g; and 6) liver zinc level (dry-weight basis): 83.4 +/- 44.6 microg/g. These values are fairly consistent with published reference levels in other mammalian and avian species.

  20. The stratigraphy of the Malmani dolomite subgroup in the Carletonville area, Transvaal: genetic implications for lead-zinc mineralization

    International Nuclear Information System (INIS)

    Clay, A.N.

    1986-01-01

    The geological setting of a borehole intersection of lead-zinc mineralization in the Malmani Dolomite Subgroup in the Carletonville area is discussed. It is suggested that the lead and zinc ions were derived from the overlying shales, transported as bisulphide complexes in silica-enriched, alkaline solutions, and deposited during silicification in the upper part of the dolomite succession which contains relic evaporites. Lead isotope data suggests that the known lead-zinc deposits in the Transvaal sequence are not of major importance. However, the dolomites are regarded as very probable hosts for Mississippi Valley type base metal deposits and offer important exploration targets. This study includes lead isotopic data. Lead isotope compositions and model lead ages for galenas in the zinc deposits are shown. It is concluded that the leads have undergone either a two-stage evolution process, or have mixed with 206 Pb-enriched ores. Model ages suggest that the lead was derived from an approximate 2,7 Ga source and that mineralization took place at 1,7 Ga

  1. The determination of lead, zinc, and magnesium in dolomite and its benefication products by use of x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jacobs, J.J.

    1985-01-01

    An investigation was undertaken on the development of fast, simple, and accurate methods of analysis for lead and zinc in tailings and middlings from dolomite, and for lead, zinc, and magnesium in concentrates obtained from dolomite. A pressed-powder technique and X-ray-fluorescence spectrometry (XRFS) were used. Good agreement was found between the XRFS values for lead and zinc in low concentrations and the values obtained by other techniques of analysis when the calibration for the XRFS method was effected by the use of synthetic standards comprising lead and zinc oxides in a dolomite matrix. For high concentrations of the analytes, all the oxides and sulphides of lead and zinc in the samples had to be converted to the sulphate form, and a matrix correction had to be applied to the assigned values of the oxide calibration standards. The lower limits of detection for lead, zinc, and magnesium were 0,004, 0,003, and 0,18 per cent respectively. The recommended methods are detailed in two appendices

  2. Effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H.; Araki, S.

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  3. Lead, zinc and pH concentrations of Enyigba soils in Abakaliki Local ...

    African Journals Online (AJOL)

    The concentrations of lead (Pb) and zinc (Zn) were quantitatively determined in surface and sub-surface soils in Enyigba, Ebonyi State, Nigerian's major lead mining area using atomic absorption spectrophotometer. pH status of the soils was similarly determined. The survey was conducted to establish a base line pollution ...

  4. Protective effect of zinc over lead toxicity on testes

    International Nuclear Information System (INIS)

    Rafique, M.; Shaikh, S.P.; Tahir, F.

    2010-01-01

    To determine the effects of lead and zinc on testes. Study Design: Randomized control trial. Place and Duration of Study: Basic Medical Sciences Institute, Jinnah Postgraduate Medical Centre, Karachi, from August 2003 to December 2005. Methodology: Sixty adult (90 days old) albino rats were obtained from animal house JPMC for the study and divided into 3 groups. Group A received injection normal saline 1 cc intraperitoneally daily for 8 weeks. Group B received lead chloride in a dose of 10 mg/kg body weight intraperitoneally daily. Group C received zinc chloride in a dose of 1 mg/kg body weight before half an hour of injection of lead chloride in a dose of 10 mg/kg body weight intraperitoneally daily so that to provide pre-treatment. On the day of completion of treatment the animals were sacrificed testes removed and fixed in Bouin's fluid. Testes were dehydrated in the ascending strength of alcohol, 5 mu m thick sections were cut and stained with PAS Iron Hematoxylin. Student's t-test was used for statistical analysis with significance at p < 0.05. Results: The mean diameter of seminiferous tubule was 291.91+-1.18, 198.53 +- 1.67 and 288.77 +- 1.11 mu m in groups A, B and C respectively. Diameter of seminiferous tubules decreased by 31.99% in group B (p < 0.001; CI 89.023 to 97.736) as compared group A and while group B comparing with group C, the diameter of seminiferous tubules was decreased by 31.25% (p-value = 0.076; CI -94.264 to -86.203). Mean thickness of germinal epithelium was 96.19 +- 1.01, 50.69 +- 1.20 and 94.94 +- 0.54 mu m in groups A, B and C respectively. Thickness of germinal epithelium decreased by 47.30 in group B (P < 0.001; CI 42.503 to 48.496) as compared to group A and while comparing group B with group C, the thickness of germinal epithelium was decreased by 46.61% (p=-44.25; CI -46.704 to -41.787). Conclusion: Zinc prevented toxic effects of lead on germinal epithelium in the albino rats. (author)

  5. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments

    International Nuclear Information System (INIS)

    Odzak, Niksa; Kistler, David; Sigg, Laura

    2017-01-01

    Nanoparticles, such as silver (Ag-NP) and zinc oxide (ZnO-NP), are increasingly used in many consumer products. These nanoparticles (NPs) will likely be exposed to the aquatic environment (rain, river, lake water) and to light (visible and UV) in the products where they are applied, or after those products are discharged. Dissolution of Ag-NP and ZnO-NP is an important process because the dissolved Ag + and Zn 2+ are readily available and toxic for aquatic organisms. The objective of this study was to investigate the role of daylight (UV and visible) for the fate of engineered Ag-NP and ZnO-NPs in different types of natural waters. Ag-NP and ZnO-NP were exposed to rainwater, river Rhine, and lake waters (Greifen, Lucerne, Cristallina, Gruère) under different light conditions (no light, UV 300–400 nm and visible light 400–700 nm) for up to 8 days. Stronger agglomeration of Ag-NP was observed in the waters with higher ionic strength in comparison to those with lower ionic strength. Visible light tended to increase the dissolution of Ag-NP under most natural water conditions in comparison to dark conditions, whereas UV-light led to decreased dissolved Ag + after longer exposure time. These effects illustrate the dynamic interactions of Ag-NP with light, which may lead both to increased oxidation and to increased reduction of Ag + by organic compounds under UV-light. In the case of ZnO-NP, agglomeration occurred at higher ionic strength, but the effects of pH were predominant for dissolution, which occurred up to concentrations close to the solubility limit of ZnO(s) at pH around 8.2 and to nearly complete dissolution of ZnO-NP at lower pH (pH 4.8–6.5), with both visible and UV-light facilitating dissolution. This study thus shows that light conditions play an important role in the dissolution processes of nanoparticles. - Highlights: • Effects of visible and UV-light on dissolution of silver and zinc oxide nanoparticles were examined. • Natural waters

  6. Influence upon the development of plants of zinc and lead, precipitated from factory fumes into the soil

    Energy Technology Data Exchange (ETDEWEB)

    Lundergardh, H

    1927-01-01

    The investigation reported here deals with soil from a field situated close to a roasting factory for zinc ore. From the fumes of the factory, zinc and lead have precipitated into the soil. From the field, 25 kg of soil were taken from each of 6 places symmetrically distributed over the field and used in pot cultures. The results of experiments show that even though the soil is enriched in lead and zinc, they occur in nearly insoluble combinations, and are physiologically ineffective.

  7. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  8. Contamination of Soil, Water, Plant and Dust by Zinc, Lead and Cadmium in Southwest Isfahan

    Directory of Open Access Journals (Sweden)

    Nastaran Esmaeilpourfard

    2016-02-01

    Full Text Available Introduction Due to mining, considerable amounts of heavy metal bearing mineralsare scattered in the atmosphere in the form of dust and make the surrounding air, water and soils polluted.Runoff water movingfrom the mountainstowardsplains may also transport heavy metals from mines to the soils.One type ofpollutions is contamination withheavy metals.The purpose of the present research has been to investigate the effect of heavy metals of mine on soil, water, plant and dust pollution. Materials and Methods: Gushfil mine is located 3 kilometers southwest of Sepahanshahr, Isfahan. Soil profiles were dug 500 meters apart along three parallel transects, between east of Sepahanshahr and Gushfil mine. The profiles were described and samples were collected from their horizons. Ore, wells, plant and dust were sampled as well. Total concentrations of lead, zinc and cadmium were measured in the samples. To find the origin of polluted dust and soil, lead isotopes contents in the samples were measured and regressional relationships between the ratios of these contents were investigated. Results and Discussion Sepahanshahr soils are not contaminated by zinc, lead and cadmium, but within a distance of one to two kilometers from the Gushfil mine, the soils are polluted by zinc and lead. Cadmium contamination was not observed in the studied soils. In all of the soils, the heavy metals content varies downwards irregularly. The reason for this variation trend is that the studied soils are alluvial. In different periods of time, alluvium parent materials have been transported by runoff water from the lead and zinc mines towards the alluvial piedmont plain. The studied heavy metals have been distributed irregularly in different horizons of the soils that have been formed in these parent materials. Lead and cadmium concentrations of drinking water in the studied area are much higher than the maximum amount allowed by the World Health Organization. Cadmium content in

  9. The effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation.

    Science.gov (United States)

    Aono, H; Araki, S

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  10. Determination of Cadmium, Lead and Zinc in Vegetables in Jaipur (India).

    Science.gov (United States)

    Kumar, Ashok; Verma, P S

    2014-01-01

    An atomic absorption spectroscopic method was used for the determination of Lead, Cadmium and Zinc in vegetables grown in and around Jaipur food stuffs irrigated with industrial waste water. Vegetable samples were collected after maturity, and analyzed, such as spinach (Spinacia oleracea), ladyfinger (Abelmoschus esulentus), pepper mint (Menthe pipereta), brinjal (Solanum melongena), coriander (Coriandrum sativum), cauliflower (Brassica oleracea), onion (Allium cepa), radish (Raphanus sativus), pointedgourd (Trichosanthes dioica), bottlegourd (Lagenaria siceraria), chilies (Capsicum annum), ribbedgourd (Luffa acutangula) and pumpkin (Curcurbites pepo). The concentration of Lead ranged between 1.40-71.06 ppm, Cadmium 0.61-34.48 ppm and Zinc 0.39-187.26 ppm in vegetable samples. The results reveal that urban consumers are at greater risk of purchasing fresh vegetables with high levels of heavy metal, beyond the permissible limits, as defined by the Indian Prevention of Food Adulteration Act, 1954 and WHO.

  11. Assessing the speciation pattern of lead and zinc in surface water collected from Abegede creek, Ijora and Lagos

    International Nuclear Information System (INIS)

    Adeniyi, A.A.; Okedeyi, O.O.

    2004-01-01

    A two stage sequential extraction procedure for the speciation of zinc and lead has been applied to surface water randomly collected from three sites in Abegede Creek, Ijora and Lagos. The determination of the labile and non-labile metals species was carried out by flame atomic absorption spectrophotometry (FAAS). The mean values of non-labile zinc and lead concentrations from the three sites, A, B and Care 0.54 minus plus 0.25 mg/l; 0.55 plus minus 0.26 mg/l;1.13 plus 0.76 mg/l; respectively for zinc and 0.13 plus minus 0.09 mg/l; 0.17 plus minus 0.07 mg/l;0.42 plus minus 0.23 mg/l respectively for lead. These are higher than for the labile species in the three sites;0.14 plus minus 0.07 mg/l; 0.21 plus minus 0.22 mg/l; 0.73 plus minus 0.82 mg/l, respectively for zinc and ND; 0.02 plus minus 0.04 mg/l; 0.16 plus minus 0.22 mg/l, respectively for lead. The statistical analysis of variance of the distribution of zinc and lead in the three sites were estimated at 95% confidence level. The values of metal and obtained were compared with Nigeria's background values for some rivers and the World Health Organization limits for drinking water respectively and found to be generally higher especially for lead levels. The probable sources of zinc and lead in the Creek are from natural and point sources, although there could be non-point source contributions from urban run-offs and vehicular exhaust. (author)

  12. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  13. Facile fabrication of dual emissive nanospheres via the self-assembling of CdSe@CdS and zinc phthalocyanine and their application for silver ion detection

    Science.gov (United States)

    Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai

    2017-09-01

    The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.

  14. Bioprotective effect of zinc in macro- and nanoaquachelate form on embryonal development of rats in conditions of lead intoxication

    Directory of Open Access Journals (Sweden)

    Beletskaya E.M.

    2013-06-01

    Full Text Available The article presents results of studied influence of low doses of lead and zinc (nanozinc on embryonal development in a la¬boratory experiment on rats. Negative influence of lead on pregnancy of laboratory animals, manifested in violation of the physiological dynamics of the rectal temperature and decrease in body weight gain was revealed. Embryotoxic effect of low doses of lead results in increased fetal mortality by 2.16 times compared to the control group of animals, de¬terioration of the morphometric indices of fetuses, violation of placentogenesis. Simultaneous injections of zinc on back¬ground of lead intoxication causes a protective effect on the body of pregnant rats and embryonal development of the offspring, more pronounced for zinc citrate, received by using aquananotehnology, as compared to zinc chloride. Thus, by morphometry indices, male fetuses were more sensitive to prenatal lead exposure in comparison to female fetuses.

  15. Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation

    Science.gov (United States)

    Burrows, J. E.; Peters, S. C.

    2009-12-01

    Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.

  16. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    Science.gov (United States)

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  17. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland.

    Science.gov (United States)

    Qu, Juanjuan; Ren, Guangming; Chen, Bao; Fan, Jinghua; E, Yong

    2011-11-01

    In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

  18. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  19. Lead-zinc interactions in the production of osteocalcin by ROS 17/2.8 osteoblastic bone cells

    International Nuclear Information System (INIS)

    Pounds, J.G.

    1991-01-01

    The serum level of osteocalcin, a bone specific protein produced by osteoblasts and used clinically as a marker of osteoblast acceptive, is decreased in lead intoxicated children. Previous studies suggest that the reduced osteocalcin production appears to be the result of impaired transcriptional regulation of this 1,25-dihydroxyvitamin D 3 gene product, and not translation. As part of a study to investigate the potential interaction of Pb 2+ with Zn 2+ , and with the zinc fingers of the vitamin D receptor, ROS cells were treated with 0, 5, 10, or 25 μM lead acetate for 24 hr, in the presence of 10, 30, or 50 μM Zn followed by an additional 24 hr treatment with lead with 1,25-dihydroxyvitamin D 3 (100 pg/ml media). At the end of this period a radioimmunoassay was conducted to determine the amount of osteocalcin in the cells and secreted in the media. 1,25-dihydroxyvitamin D 3 caused an increase in osteocalcin secreted into the media in cultures containing 0 μM lead, but this increase was inhibited by lead in a concentration dependent manner, so that osteocalcin secretion in 10 or 25 μM lead treated groups was less than cultures without 1,25-dihydroxyvitamin D 3 treatment. This inhibitory effect of lead was blocked by increasing the medium zinc concentration of 50 μM. Increasing medium Pb 2+ concentrations decreased the amount of 65 Zn taken up by cells by ∼30%, which was nullified by increasing medium Zn. These results suggest that lead produces a localized and specific Zn deficiency in the vitamin D receptor zinc finger, and perhaps other zinc metalloproteins, and that these effects of lead are not mediated through general effects on RNA or protein synthesis

  20. Electrochemical reduction of oxygen on lead-silver alloys in an alkaline medium

    International Nuclear Information System (INIS)

    Seliverstov, S.D.; Arkhangel'skaya, Z.P.; Lyzlov, N.Y.

    1986-01-01

    The use of lead-silver alloys as materials for the gas-absorbing electrode in sealed silver-cadmium alkaline storage batteries is desirable primarily from the stanpoint of saving the costly silver. The authors studied reduction of oxygen with the aim of optimizing the composition of the Pb-Ag alloy and of the porous structure of the electrodes. The alloys were made in a muffle furnace in corundum crucibles under a layer of VI-2 flux. Curves are shown which represent the dependence of the ionization current of molecular oxygen on smooth partially immersed electrodes made from alloys differing in composition on the length of the part of the electrode withdrawn from the solution. It is shown that decrease of the corrosion resistance of the alloy in the porous electrode causes partial loss of its mechanical strength. Worsening of the electric contact between the particles of active material is also possible. An alloy of the composition (mass %) 60 Pb-40 Ag is the most suitable from the practical standpoint

  1. Assessment of the bacterial organisms in water from a lead-zinc ...

    African Journals Online (AJOL)

    Twenty-four (24) bulk water samples collected from a lead-zinc mining pit in Ishiagu, Ebonyi State, Nigeria over a period of 2 years were used to assess the bacterial population of the mining pit water. Nine bacterial organisms, which included Bacillus sp., Pseudomonas aeruginosa, Proteus sp., Escherichia coli, ...

  2. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions

    DEFF Research Database (Denmark)

    Cupi, Denisa; Hartmann, Nanna B.; Baun, Anders

    2016-01-01

    sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase...

  3. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  4. Smart methanol sensor based on silver oxide-doped zinc oxide nanoparticles deposited on microchips

    International Nuclear Information System (INIS)

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    We have prepared calcined silver oxide-doped zinc oxide nanoparticles (NPs) by a hydrothermal method using reducing agents in alkaline medium. The doped NPs were characterized by UV/vis, FTIR, and X-ray photoelectron spectroscopy, and by X-ray powder diffraction and field-emission scanning electron microscopy. The NPs were deposited on microchips to result in a sensor that has a fast response to methanol in the liquid phase. Features include high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r 2  = 0.9981) over the 0.25 mmolL −1 to 0.25 molL −1 methanol concentration range. The sensitivity is ∼7.917 μA cm −2 mmolL −2 , and the detection limit is 71.0 ± 0.5 μmolL −1 at a signal-to-noise-ratio of 3. (author)

  5. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    Science.gov (United States)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  6. Determination of microquantities of silver in platinum by isotope dilution

    International Nuclear Information System (INIS)

    Yedinakova, V.; Sladkovska, Y.

    1980-01-01

    A method is described for determining microquantities of silver in platinum. It is based on isotope dilution by means of substoichiometric extraction of dithizonates with carbon tetrachloride. The determination of silver according to this technique is not interfered by zinc or gold in quantities exceeding the silver content by one order of magnitude nor by a great excess of platinum. In the presence of copper the addition of complexon is necessary. (author)

  7. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc

    OpenAIRE

    Jin, Fei; Al-Tabbaa, Abir

    2014-01-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration pr...

  8. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan

    2018-01-01

    Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.

  9. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    Science.gov (United States)

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  10. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  11. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  12. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    International Nuclear Information System (INIS)

    Aston, John E.; Apel, William A.; Lee, Brady D.; Peyton, Brent M.

    2010-01-01

    Research highlights: →At. caldus sorbs lead, zinc, and copper across a range of pH and temperature. →At. caldus shows a relatively high sorption capacity for zinc and copper at low pH. → Lead, zinc, and copper sorption decreases in tertiary mixtures. → Copper appears to sorb via a different mechanism(s) than lead or zinc. - Abstract: This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g -1 , to viable cells at pH 5.5. The highest k L (binding-site affinity) observed was 61.2 ± 3.0 L mmol -1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  13. Recycling of Zinc- and Lead-Bearing Residues with Pyrolysis Gas

    Science.gov (United States)

    Pichler, C.; Antrekowitsch, J.

    2015-09-01

    Efforts in the metallurgical industry for an approximation to the zero waste concept has led to many different investigations. Together with the greenhouse effect, CO2 emissions have caused additional costs for different process steps in the industry. For this reason, alternative carbon carriers have been sought, and charcoal was found to be an ideal substitute, due to its CO2 neutrality. In order to use it in the metallurgical industry, an optimization of the charcoal production through a carbonization process must be carried out. Beside the charcoal, pyrolysis gas also occurs during the heating of wood or agricultural wastes under the exclusion of air. Because of combustible compounds in this gas, it is possible to use it as a reduction agent instead of fossil carbon carriers. Together with the idea of preventing landfilling of metallurgical by-products, an investigation was carried out to treat zinc- and lead-containing materials. For this issue a special process concept was designed and developed. The main aspect was to recycle the zinc- and lead-containing Waelz slag, which results from the processing of steel mill dusts, in a vertical retort. Two different sizes of facilities were constructed to perform the reaction system of the solid Waelz slag with the gaseous reduction agent of pyrolysis gas.

  14. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  15. Hybrid input-output approach to metal production and its application to the introduction of lead-free solders.

    Science.gov (United States)

    Nakamura, Shinichiro; Murakami, Shinsuke; Nakajima, Kenichi; Nagasaka, Tetsuya

    2008-05-15

    The production process of metals such as copper, lead, and zinc is characterized by mutual interconnections and interdependence, as well as by the occurrence of a large number of byproducts, which include precious or rare metals, such as gold, silver, bismuth, and indium. On the basis of the framework of waste input-output (WIO), we present a hybrid 10 model that takes full account of the mutual interdependence among the metal production processes and the interdependence between them and all the other production sectors of the economy as well. The combination of a comprehensive representation of the whole national economy and the introduction of process knowledge of metal production allows for a detailed analysis of different materials-use scenarios under the consideration of full supply chain effects. For illustration, a hypothetical case study of the introduction of lead-free solder involving the production of silver as a byproduct of copper and lead smelting processes was developed and implemented using Japanese data. To meet the increased demand for the recovery and recycling of silver resources from end-of-life products, the final destination of metal silver in terms of products and user categories was estimated, and the target components with the highest silver concentration were identified.

  16. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    Directory of Open Access Journals (Sweden)

    Zamani Abbas Ali

    2012-12-01

    Full Text Available Abstract The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP. Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs. Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  17. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    Science.gov (United States)

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  18. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    Directory of Open Access Journals (Sweden)

    Lijie Guo

    2018-01-01

    Full Text Available This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS on cemented tailing backfill (CTB that contains lead-zinc smelting slag. CTB and cemented paste (CP containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.

  19. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  20. Influence of lead ions on the macromorphology of electrodeposited zinc

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Tetsuaki [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth of initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.

  1. Selective masking and demasking for the stepwise complexometric determination of aluminium, lead and zinc from the same solution

    Directory of Open Access Journals (Sweden)

    Singh Nahar

    2008-03-01

    Full Text Available Abstract Background A complexometric method based on selective masking and de-masking has been developed for the rapid determination of aluminium, lead and zinc from the same solution in glass and glass frit samples. The determination is carried out using potassium cyanide to mask zinc, and excess disodium salt of EDTA to mask lead and aluminium. The excess EDTA was titrated with standard Mn(IISO4 solution using Erichrome Black-T as the indicator. Subsequently selective de-masking agents – triethanolamine, 2,3-dimercaptopropanol and a formaldehyde/acetone mixture – were used to determine quantities of aluminium, lead and zinc in a stepwise and selective manner. Results The accuracy of the method was established by analysing glass certified reference material NBS 1412. The standard deviation of the measurements, calculated by analysing five replicates of each sample, was found to be less than 1.5% for the method proposed. Conclusion The novelty of the method lies in its simplicity and accuracy afforded by there not being a need for a prior separation or instrumentation. The proposed method was found to be highly selective for the precise determination of aluminum, zinc and lead in the routine analysis of glass batch and allied materials.

  2. Preliminary study of flotation behavior of Besham Lead-Zinc ore

    International Nuclear Information System (INIS)

    Khan, M.M.; Din, F.; Rafiq, M.

    2001-01-01

    This preliminary study examines the flotation behavior of the mineral galena from Besham Lead-Zinc ore samples with reference to the particle size, collector types such as Ethyl and Propyl xanthates and depressants. The comminution of the as mined ore was carried out in the laboratory jaw crusher and disc mill as well as in a laboratory ball mill. The material having size range between-90 microns and +63 microns was selected for flotation studies. (author)

  3. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.; Velazquez-Salazar, J.; José Yacaman, M.; Ponce, A. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio 78249 (United States); González, F. J. [Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210 (Mexico); Diaz de Leon, R. [Instituto Tecnológico de San Luis Potosí, San Luis Potosi 78437 (Mexico)

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of the radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.

  4. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    Science.gov (United States)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  5. ETAAS determination of thallium and silver from water matrix after colloidal precipitate flotation using lead(II hexamethylenedithiocarbamate

    Directory of Open Access Journals (Sweden)

    TRAJCE STAFILOV

    2001-10-01

    Full Text Available Afast method for the preconcentration of thallium and silver in nanogram quantities in fresh drinking waters (source, well, tap and waters for irrigation using colloidal precipitate flotation is described. Lead(II hexamethylenedithiocarbamate, Pb(HMDTC2 played the role of flotation collector. The experimental conditions for the successful separation of thallium and silver (mass of Pb, amount ofHMDTC-, pHof the system, induction time, type of surfactant etc. were optimized. After flotation separation from the mother liquor, the solid sublate containing traces of thallium and silver was dissolved and the analytes were determined by electrothermal atomic absorption spectrometry (ETAAS. The results of the ETAAS analysis are compared with those obtained by inductively coupled plasma-atomic emission spectrometry. The detection limit for thallium by this method is 0.027 mg/l, and for silver 0.005 microg/l.

  6. A survey of hazardous and toxic wastes from lead and zinc industries in Zanjan province

    International Nuclear Information System (INIS)

    Khamesi, J.; Asadi, A.

    2008-01-01

    Angoran, situated in north-west of Zanjan province is unique in Middle East in respect of its rich reserves of Lead and Zinc minerals. These valuable reserves have attracted a number of Lead and Zinc industries into the province. With the absent of a proper waste management practices, a great deal of hazardous and toxic wastes are produced which contains a high percent of heavy metals that are potential sources for soil and water pollution. In this paper, after recognition of the main sources of the pollutants, the affected and vulnerable areas are mapped using Geographic Information System. The quality and quantity of these hazardous wastes are then evaluated by sampling and analyzing the samples and by taking into account the undesirable environmental conditions faced by the province, a number of preventive and curative measures for a better waste management practices are introduced. The annual wastes produced by 22 Zinc plants in the province are calculated to be about 260000 tons of filter cake leachates, 13000 tons of Cobalt filter cake, and 6550 tons of Cadmium-Nickel filter cakes. Two active Lead factories in the province are also producing about 13000 tons of slag annually. These wastes are containing 27000 ton Zinc, 9220 ton Lead, 560 ton Cadmium and 242000 tons of other wastes, that are left in open spaces within the factory or is dumped in dry riverbeds or near river valleys.The wastes are transported and deposited by wind in the environment and are washed by rain into the river systems or are soaked into the ground polluting the underground aquifers. Based of Basel Convention, these wastes are given international codes (Y 23, Y 31, Y 26, Y 46). Possession, disposal, and recycling of such wastes must be undertaken with specific management measures

  7. ETAAS determination of thallium and silver from water matrix after colloidal precipitate flotation using lead(II) hexamethylenedithiocarbamate

    OpenAIRE

    TRAJCE STAFILOV; KATARINA CUNDEVA; GORICA PAVLOVSKA

    2001-01-01

    Afast method for the preconcentration of thallium and silver in nanogram quantities in fresh drinking waters (source, well, tap) and waters for irrigation using colloidal precipitate flotation is described. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2 played the role of flotation collector. The experimental conditions for the successful separation of thallium and silver (mass of Pb, amount ofHMDTC-, pHof the system, induction time, type of surfactant etc.) were optimized. After flotation...

  8. Changes in density of aluminium, lead and zinc melts dependent on temperature

    International Nuclear Information System (INIS)

    Kazachkov, S.P.; Kochegura, N.M.; Markovskij, E.A.

    1979-01-01

    Density of aluminium, lead and zinc in various aggregate states has been studied in a wide temperature range. The density of the above metals was found to manifest temperature hysteresis after melting and cyclic change at the temperature of melting and crystallization. These phenomena are in agreement with the Stuart model of liquid state

  9. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  10. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  11. Beneficiation studies on low-grade complex polymetallic lead-zinc ore of duddar (lasbela) Balochistan, Pakistan

    International Nuclear Information System (INIS)

    Bhatti, M.R.; Kazim, K.R.; Mehmood, R.; Akram, A.

    2016-01-01

    A bench-scale beneficiation study was performed on low-grade complex lead-zinc ore of Duddar area, District Lasbela, Balochistan Province, Pakistan. The polymetallic ore under investigation contains galena and sphalerite as valuable minerals of lead and zinc. The low-grade ore was upgraded by selective sequential froth flotation technology to recover both minerals. An effort was made to investigate the effect of important variables on grade and recovery of concentrates and to design the process flow sheet. Different parameters of flotation process such as particle size of the feed, pH and % solids of the pulp, speed of impeller, type of reagents (collectors, frothers, regulators and modifiers) and their quantities, conditioning time and flotation time were optimized to attain maximum grade and recovery of respective concentrates. The rougher concentrates obtained were subjected to one regrinding and two cleaning operations to achieve higher-grade concentrates of both metals. Bench-scale flotation tests show that it is possible to obtain a lead concentrate assaying 65.24% Pb with recovery rate of 81.32% and a zinc concentrate containing 55.63% Zn content with recovery rate of 80.28%. Both the concentrates meet the specifications required for metallurgical and chemical grades. (author)

  12. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    OpenAIRE

    Guo, Lijie; Li, Wenchen; Yang, Xiaocong; Xu, Wenyuan

    2018-01-01

    This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis a...

  13. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Stafilov, Trajce; Sajn, Robert; Pancevski, Zlatko; Boev, Blazo; Frontasyeva, Marina V.; Strelkova, Lyudmila P.

    2010-01-01

    The results of a first systematic study of spatial distribution of different elements in surface soil over the Veles region (50 km 2 ) known for its lead and zinc industrial activity in the recent past are reported. A total of 201 soil samples were collected according to a dense net in urban area and less dense net in rural area. The total of 42 elements were analyzed by epithermal neutron activation analysis (ENAA) and by atomic absorption spectrometry (AAS). The content of elements such as As, Au, Cd, Cu, Hg, In, Pb, Sb, Se, Zn in soil samples around the lead and zinc smelter and in the adjacent part of the town of Veles has appeared to be much higher than in those collected in the surrounding areas due to the pollution from the plant. Thus, the content of Cd (three times); Pb and Zn (two times) is even higher than the corresponding intervention (critical) values according to the Dutch standards. The results obtained by two complementary analytical techniques, AAS and ENAA, are discussed in terms of multivariate statistics. GIS technology was applied to depict the areas most affected by contamination from the lead and zinc smelter.

  14. Tuning photoluminescence of ZnS nanoparticles by silver

    Indian Academy of Sciences (India)

    Wintec

    Ag@ZnS core-shell nanoparticles. ... doped ZnS NPs and thus changes the emission charac- teristics. We also ... Nanoparticles; photoluminescence; silver; zinc sulfide; doping. 1. ..... Sooklal K, Brain S, Angel M and Murphy C J 1996 J. Phys.

  15. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  16. Plasma melting and recycling technology for decommissioning material. Removal of zinc and lead of ferrous scrap

    International Nuclear Information System (INIS)

    Ikeda, Koichi; Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    A great amount of nonradioactive waste such as concrete, metal and the like, will be generated intensively in a short period when dismantling nuclear power plants. Thus, it is very important for smooth dismantling to promote their recycling. Melting operates conditions to recycle metal easily, but degrades the quality by contamination of tramp elements. So it was performed to melt carbon steel coated with anti-corrosive paint including lead, zinc, etc. and to analyze the steel grade for study of obtaining the desired grade. On some test conditions, concentration of lead and zinc just after melting all samples lowered less than target concentration which was permissible for cast iron. About the unsatisfactory conditions when a lot of slag generated, concentration of zinc was simulated changing the sequence of plasma melting. The result showed that an efficient sequence controlled input energy to maintain molten bath after melting all samples as quickly as possible. (author)

  17. Selective masking and demasking for the stepwise complexometric determination of aluminium, lead and zinc from the same solution

    OpenAIRE

    Kayal, Nijhuma; Singh, Nahar

    2008-01-01

    Abstract Background A complexometric method based on selective masking and de-masking has been developed for the rapid determination of aluminium, lead and zinc from the same solution in glass and glass frit samples. The determination is carried out using potassium cyanide to mask zinc, and excess disodium salt of EDTA to mask lead and aluminium. The excess EDTA was titrated with standard Mn(II)SO4 solution using Erichrome Black-T as the indicator. Subsequently selective de-masking agents – t...

  18. Evaluation of Foliar Spraying of Zinc and Calcium Fertilizers on Yield and Physiological Traits of Safflower under Lead Stress

    Directory of Open Access Journals (Sweden)

    P Jamshidi

    2017-10-01

    Full Text Available Introduction In order to evaluate the effect of foliar spraying of zinc and calcium on yield and physiological traits of safflower under lead stress, a factorial experiment based on randomized complete block design was performed in Kerman agricultural and natural resource research and education center in 2014-2015 with three replications. The first factorial included three levels (control, and 0.5 and 1 μM lead spraying, whereas the second and third factorials were spraying zinc sulfate at three concentrations (zero, and 10 and 20 μM and spraying calcium chloride at two levels (zero and 20 μM, respectively. According to the results, grain yield, the 1000-grain weight, leaf dry weight, number of seeds per head, head weight and chlorophyll content decreased. On the other hand, a significant increase was observed in the activities of catalase and ascorbate peroxidase enzymes and amount of malondialdehyde in plants. Moreover, spraying zinc fertilizer in lead treatment resulted in a significant increase in activity of catalase enzyme, reduction of membrane lipid peroxidation, prevention of chlorophyll destruction and maintenance of grain yield. However, the effect of spraying calcium fertilize in lead treatment was only significant on chlorophyll content. According to the results of the research, it seems that spraying zinc fertilizer had more effects on improved growth of safflower under lead stress, compared to spraying calcium fertilizer. Therefore, in air pollution with heavy metals (lead, application of zinc sulfate fertilizer can be an effective approach to maintain the growth and production of plants. Among the various heavy metals, lead (Pb is a major anthropogenic pollutant that has been released to the environment since the industrial revolution and accumulated in different terrestrial and aquatic ecosystems These elements will transfer to leaves in polluted areas and will rapidly uptake and cause irreparable damages to the most

  19. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  20. The mode of occurrence of gold and silver in the Dominian Reef and their response to cyanidation after pressure leading

    International Nuclear Information System (INIS)

    Glatthaar, C.W.; Feather, C.E.

    1985-01-01

    Gold and silver in the Upper Reef of the Dominion Group in the Afrikander Lease area occur in several minerals. Native gold, electrum, and amalgam are the main gold bearers, whereas silver, in addition to being present in the above alloys, is also represented by native silver, in mercurian silver (arquerite), acanthite, stromeyerite, and a bismuth-silver sulphide (schaba-chite or pavionite), and in solid solution in galena. Only minute quantities of these silver-bearing minerals were found, and attempts to evaluate their relative abundances in the ore proved to be difficult. It was possible, however, by use of an electron microprobe, to quantify the silver contents in electrum, amalgam, mercurian silver, and galena. Mass-balance studies based on the calculated galena content suggest that about half of the total silver is associated with galena in solid solution. In practice, the uranium present in the conglomerates of the Dominion Group is extracted first. Because of the refractory nature of the uranium-bearing minerals, a leach at high temperature and high pressure is recommended. While this pressure leach is beneficial to the subsequent cyanidation of gold, a large proportion of the silver present is rendered refractory. The poor recoveries of silver are believed to be due close association of silver and galena. It is believed that silver is released during the dissolution of galena, acanthite, other silver sulphides, and native silver, and subsequently precipitated either as an insoluble complex silver-iron sulphate (argentojarosite) or in solid solution in jarosite (potassium-iron sulphate). Neither compound is amenable to cyanidation. A mixture of plumbojarosite (lead-iron sulphate) and jarosite were seen to form protective coatings on galena particles, and may occlude other silver-bearing minerals in the same manner. In contrast, finely divided gold particles are liberated from pyrite and other minerals during pressure leaching and become readily available to

  1. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.

    Science.gov (United States)

    Ye, Maoyou; Li, Guojian; Yan, Pingfang; Ren, Jie; Zheng, Li; Han, Dajian; Sun, Shuiyu; Huang, Shaosong; Zhong, Yujian

    2017-10-01

    Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na 2 S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na 2 S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na 2 S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thallium and Silver binding to dissolved organic matter

    Science.gov (United States)

    Benedetti, M. F.; Martin, L.; Simonucci, C.; Viollier, E.

    2017-12-01

    Silver (Ag) and thallium (Tl) are potential contaminants at the vicinity of mining sites and are harmful pollutants. Silver can be found in mine but also as released by the dissolution of Silver nanoparticles, a major new emerging contaminant. Tl is both lithophilic and calcophilic elements and found in sulphur ores (associated with lead, zinc, antimony…) or in rocks containing K-feldspar. Speciation of Ag and Tl is poorly known mainly due to their low concentrations in aquatic environments. Review of Ag and Tl geochemistry clearly shows a lack of quantitative information about interactions with natural organic matter. Organic ligands could play an important role in Ag or Tl bioavailability, chemical reactivity (adsorption or photo oxidation inhibition or catalysis) and hence geochemical transfers. Based on equilibrium between two solutions that are separated by a selectively permeable membrane, the so-called "Donnan membrane technique" (DMT) provides a measure of free ion concentrations. Analytes measurements are performed by HR-ICP-MS Element 2 (Thermo Scientific). Experimental setup allows the Donnan equilibrium to be reached after 100 and 120 hours for Tl. Experiments performed with purified natural organic matter allow calculating complexation constants in multiple pH conditions. With this work, we contribute new data and interpretations to an active debate on Ag and Tl geochemical modeling. In conclusion, this work brings a new view on risk assessment for mining activities.

  3. Effect of bismuth and silver on the corrosion behavior of Sn-9Zn alloy in NaCl 3 wt.% solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmido, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Sabbar, A. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Zouihri, H.; Dakhsi, K. [UATRS, CNRST, Angle Allal Fassi, FAR, BP 8027, Hay Riad, Rabat (Morocco); Guedira, F. [Laboratory of Chimie Physique General, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); Serghini-Idrissi, M. [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco); El Hajjaji, S., E-mail: selhajjaji@hotmail.com [Laboratory of Spectroscopy Infra Rouge, Faculty of Sciences, University Med V Agdal, Av. Ibn Battouta, B.P. 1014, M-10000 Rabat (Morocco)

    2011-08-15

    Highlights: > Sn-9Zn-xAg-yBi as alternative for Sn-Pb solder. > Effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt%. > Bi and Ag lead to the increase of corrosion rate. > EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product. - Abstract: The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential E{sub corr} is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn{sub 5}(OH){sub 8}Cl{sub 2}H{sub 2}O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.

  4. Vacancy enhancement of diffusion after quenching and during irradiation in silver-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.

    1980-01-01

    Quenching and annealing experiments were performed on silver-zinc alloys with 8.14 and 30 at %Zn. From the changes of the electrical resistivity due to an increase of the degree of short-range order, the activation energy of self-diffusion was determined to be Qsub(SD) = 1.60 and Qsub(SD) = 1.38 eV for both alloys, respectively. For the migration energy of vacancies, a value Esub(V)sup(M) = 0.64 eV was found for the alloy with 8.14 at %Zn. Evidence is given that the vacancy migration energy Esub(V)sup(M) of the alloys with 30 at %Zn is smaller than 0.60 eV in agreement with data given by Berry and Orehotsky. The results of measurements of radiation-enhanced diffusion obtained by a Russian and a French group, are reinterpreted. It follows that the increase of the degree of order during irradiation is obtained only be vacancy enhancement of diffusion and that the migration activation energy of self-interstitials is Esub(I)sup(M) approximately 0.46 eV and Esub(I)sup(M) approximately 0.41 eV for the alloys with 8.14 and 30 at %Zn, respectively. (author)

  5. 40 CFR 440.104 - New source performance standards (NSPS).

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and... copper, lead, zinc, gold, silver, or molybdenum bearing ores or any combination of these ores from open... discharge of process wastewater to navigable waters from mills that use the froth-flotation process alone...

  6. The analysis of pilot-plant products for copper, zinc, and lead with the telsec lab-x-250 analyser

    International Nuclear Information System (INIS)

    Domel, G.

    1977-01-01

    Suites of sulphide material representative of copper, zinc, and lead concentrates, as well as 'intermediate' products, low-grade material, and tailing samples, were analysed with the Telsec Lab-X-250 Analyser, which is a radio-isotope x-rayfluorescence instrument using 'balanced' filters for energy selection. A brief description of the instrument is given, stress being laid on the principle of 'balanced' filters. The determination of optimum instrumental parameters is described, and diagrams are provided to demonstrate the efficacy of energy selection. Correlation diagrams are given for all three elements in each of the materials analysed. The scatter of data points encountered is examined in terms of possible spectral interference and matrix variation. It was found that, within specified limits of acceptability, all three elements could be determined satisfactorily in copper and lead concentrates and in low-grade material. Zinc concentrates could be analysed only for zinc. The mechanisms of the spectral interference effects peculiar to the use of balanced filters are discussed, and a correction procedure is described and applied to improve the correlation for copper in the presence of a high zinc content. It is shown that the poor correlation found for 'intermediate' products and for lead in zinc concentrates is mainly due to matrix variations. The concentration range covered, the sensitivity, the precision, and, where applicable, the detectionlimits are tabulated for all three elements and all types of material analysed. A comparison of the results obtained with the Analyser and those obtained by atomic-absorption spectrophotometry is provided [af

  7. Neurotoxicity of dental amalgam is mediated by zinc.

    Science.gov (United States)

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  8. Thermodynamic Considerations for a Pyrometallurgical Extraction of Indium and Silver from a Jarosite Residue

    Directory of Open Access Journals (Sweden)

    Stefan Steinlechner

    2018-05-01

    Full Text Available Indium and silver are technologically important, critical metals, and in the majority of cases, they are extracted as a by-product of another carrier metal. The importance of indium has seen recent growth, and for technological reasons, these metals can be found in industrial residues from primary zinc production, such as the iron precipitate—jarosite. To secure the supply of such metals in Europe, and with the idea of a circular economy and the sustainable use of raw materials, the recycling of such industrial residues is coming into focus. Due to the low value of jarosite, the focus must lie simultaneously on the recovery of valuable metals and the production of high-quality products in order to pursue an economical process. The objective of this article is to give the fundamentals for the development of a successful process to extract the minor elements from roasted jarosite. As such, we use thermodynamic calculations to show the behavior of indium and silver, leading to a recommendation for the required conditions for a successful extraction process. In summary, the formation of chlorine compounds shows high potential to meet the challenge of simultaneously recovering these metals together with zinc at the lowest possible energy input.

  9. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2016-01-01

    Silver nitrate hexamethylenetetramine [Ag(NO 3 )·N 4 (CH 2 ) 6 ] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H 2 O 2 electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO 3 )·N 4 (CH 2 ) 6 ] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  10. 40 CFR 444.12 - Monitoring Requirements

    Science.gov (United States)

    2010-07-01

    ... ASTM Standards, for determination of arsenic, cadmium, chromium (total), copper, lead, silver, and zinc... pollutants (arsenic, cadmium, chromium (total), copper, pH, lead, mercury, TSS, silver, titanium, and zinc... 136.3(a), Table IB, you may also use EPA Method 200.8, “Determination of Trace Elements in Water and...

  11. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(InGaAs/Ge Solar Cells

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lei

    2018-06-01

    Full Text Available We synthesized a silver nanoparticle/zinc oxide (Ag NP/ZnO thin film by using spin-coating technology. The treatment solution for Ag NP/ZnO thin film deposition contained zinc acetate (Zn(CH3COO2, sodium hydroxide (NaOH, and silver nitrate (AgNO3 aqueous solutions. The crystalline characteristics, surface morphology, content of elements, and reflectivity of the Ag NPs/ZnO thin film at various concentrations of the AgNO3 aqueous solution were investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and ultraviolet–visible–near infrared spectrophotometry. The results indicated that the crystalline structure, Ag content, and reflectance of Ag NP/ZnO thin films depended on the AgNO3 concentration. Hybrid antireflection coatings (ARCs composed of SiNx and Ag NPs/ZnO thin films with various AgNO3 concentrations were deposited on GaInP/(InGaAs/Ge solar cells. We propose that the optimal ARC consists of SiNx and Ag NP/ZnO thin films prepared using a treatment solution of 0.0008 M AgNO3, 0.007 M Zn(CH3COO2, and 1 M NaOH, followed by post-annealing at 200 °C. GaInP/(AlGaAs/Ge solar cells with the optimal hybrid ARC and SiNx ARC exhibit a conversion efficiency of 34.1% and 30.2% with Voc = 2.39 and 2.4 V, Jsc = 16.63 and 15.37 mA/cm2, and fill factor = 86.1% and 78.8%.

  12. Analyses of alloys for quelatometry, part one, alloys with copper, lead and zinc

    International Nuclear Information System (INIS)

    Clavijo Diaz, Alfonso

    1995-01-01

    A chemical-mathematic model and experimental method based on the acid base balances is developed for the analysis of metallic ions, isolated or in mixtures. The theoretical titling curves, including chelones-forming agents and metallo-chromic indicator were worked on a personal computer. This chelometric method was applied to the quantitative determination of copper, zinc and lead ions in alloys

  13. Grinding in lead-zinc concentrator Sasa – choice between different grinding media

    OpenAIRE

    Krstev, Boris

    2004-01-01

    In this paper will be present result obtained from investigation in the grinding circuit of the lead-zinc concentrator Sasa,using differen grindng media: • Litzkhun-Niederwipper Forged Steel grinding balls; • GSI LUCCHINI Moly-Cop Forged Steel grinding balls; • Cast steel grinding balls from Ukraina and Bulgaria; In the same time will be shown comparation between obtained parameters using different grinding balls specially: • Capacity of the grinding mill; • Particle size; ...

  14. Estimation of the exchange current density and comparative analysis of morphology of electrochemically produced lead and zinc deposits

    Directory of Open Access Journals (Sweden)

    Nikolić Nebojša D.

    2017-01-01

    Full Text Available The processes of lead and zinc electrodeposition from the very dilute electrolytes were compared by the analysis of polarization characteristics and by the scanning electron microscopic (SEM analysis of the morphology of the deposits obtained in the galvanostatic regime of electrolysis. The exchange current densities for lead and zinc were estimated by comparison of experimentally obtained polarization curves with the simulated ones obtained for the different the exchange current density to the limiting diffusion current density ratios. Using this way for the estimation of the exchange current density, it is shown that the exchange current density for Pb was more than 1300 times higher than the one for Zn. In this way, it is confirmed that the Pb electrodeposition processes are considerably faster than the Zn electrodeposition processes. The difference in the rate of electrochemical processes was confirmed by a comparison of morphologies of lead and zinc deposits obtained at current densities which corresponded to 0.25 and 0.50 values of the limiting diffusion current densities. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172046

  15. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  16. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  17. [Effects of Different Modifier Concentrations on Lead-Zinc Tolerance, Subcellular Distribution and Chemical Forms for Four Kinds of Woody Plants].

    Science.gov (United States)

    Chen, Yong-hua; Zhang, Fu-yun; Wu, Xiao-fu; Liang, Xi; Yuan, Si-wen

    2015-10-01

    Four kinds of lead-zinc tolerant woody plants: Nerium oleander, Koelreuteria paniculata, Paulownia and Boehmeria were used as materials to estimate their enrichment and transferable capacity of lead (Pb) and zinc (Zn) and analyze the subcellular distribution and chemical speciation of Zn and Ph in different parts of plants, under different modifier concentrations (CK group: 100% lead-zinc slag plus a small amount of phosphate fertilizer, improved one: 85% of lead-zinc slag ± 10% peat ± 5% bacterial manure plus a small amount of phosphate fertilizer, improved two: 75% lead-zinc slag ± 20% peat ± 5% bacterial manure ± a small amount of phosphate). Results showed that: (1) The content of Pb, Zn in matrix after planting four kinds of plants was lower than before, no significant difference between improved one and improved two of Nerium oleander and Boehmeria was found, but improved two was better than improved one of Paulownia, while improved one was better than improved two of Koelreuteria paniculata; Four plants had relatively low aboveground enrichment coefficient of Pb and Zn, but had a high transfer coefficient, showed that the appropriate modifier concentration was able to improve the Pb and Zn enrichment and transfer ability of plants. (2) In subcellular distribution, most of Pb and Zn were distributed in plant cell wall components and soluble components while the distribution in cell organelles such as mitochondria, chloroplasts and nucleus component were less. Compared with CK group, two improved group made soluble components of the cell walls of Pb fixation and retention of zinc role in the enhancement. (3) As for the chemical forms of Pb and Zn in plants, the main chemical forms of Pb were hydrochloric acid, sodium chloride and ethanol extractable forms, while other chemical form contents were few, the main chemical forms of Zn were different based on plant type. Compared with CK group, the proportion of the active Pb chemical form in different plant

  18. Modelling drivers and distribution of lead and zinc concentrations in soils of an urban catchment (Sydney estuary, Australia).

    Science.gov (United States)

    Johnson, L E; Bishop, T F A; Birch, G F

    2017-11-15

    The human population is increasing globally and land use is changing to accommodate for this growth. Soils within urban areas require closer attention as the higher population density increases the chance of human exposure to urban contaminants. One such example of an urban area undergoing an increase in population density is Sydney, Australia. The city also possesses a notable history of intense industrial activity. By integrating multiple soil surveys and covariates into a linear mixed model, it was possible to determine the main drivers and map the distribution of lead and zinc concentrations within the Sydney estuary catchment. The main drivers as derived from the model included elevation, distance to main roads, main road type, soil landscape, population density (lead only) and land use (zinc only). Lead concentrations predicted using the model exceeded the established guideline value of 300mgkg -1 over a large portion of the study area with concentrations exceeding 1000mgkg -1 in the south of the catchment. Predicted zinc did not exceed the established guideline value of 7400mgkg -1 ; however concentrations were higher to the south and west of the study area. Unlike many other studies we considered the prediction uncertainty when assessing the contamination risk. Although the predictions indicate contamination over a large area, the broadness of the prediction intervals suggests that in many of these areas we cannot be sure that the site is contaminated. More samples are required to determine the contaminant distribution with greater precision, especially in residential areas where contamination was highest. Managing sources and addressing areas of elevated lead and zinc concentrations in urban areas has the potential to reduce the impact of past human activities and improve the urban environment of the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The geochemical evolution of syncollisional magmatism and the implications for significant magmatic-hydrothermal lead-zinc mineralization (Gangdese, Tibet)

    Science.gov (United States)

    Zhou, Jinsheng; Yang, Zhusen; Hou, Zengqian; Liu, Yingchao; Zhao, Xiaoyan; Zhang, Xiong; Zhao, Miao; Ma, Wang

    2017-09-01

    In addition to well-known subduction processes, the collision of two continents also generates abundant ore deposits, as in the case of the Tibetan Plateau, which is the youngest and most spectacular collisional belt on Earth. During the building history of the Gangdese magmatic belt, several magmatic flare-up events developed, however, significant magmatic-hydrothermal lead-zinc mineralization dominantly accompanied the magmatism during the syncollisional period ( 65-41 Ma). Based on integrated geochemical and isotopic data, we provide insights into the genesis and evolution of syncollisional magmas, and their implications for significant magmatic-hydrothermal lead-zinc mineralization. The Sr-Nd isotopic compositions of most syncollisional igneous rocks (87Sr/86Sr = 0.7034-0.7123; εNd(t) = - 9.0 to + 1.8) indicate a mixing origin between mantle-derived basaltic magmas and ancient crustal melts, and fractional crystallization is a fundamental mechanism by which syncollisional magmas evolve towards intermediate to silicic compositions. Most lead-zinc mineralization-related plutons are high silica (76.14% wt.% SiO2 on average), high oxygen fugacity (average ΔFMQ + 2.5) granites with highly evolved chemical signatures [average Eun/Eun* = 0.33, high Rb/Sr (average = 3.9)], and they represent the final products from primary magmas. Due to the contribution of ancient crustal melts to the genesis of mineralization-related parent magmas, the spatial distribution of Pb-Zn deposits within the northern Gangdese magmatic belt is controlled by the lithospheric architecture. In compressional environments, magmas have low evacuation efficiency and long magma chamber lifespan, which is favorable for basaltic parents evolved to high silica granites through sufficient fractional crystallization. This scenario contributes to our understanding of the significant magmatic-hydrothermal lead-zinc mineralization that occurred in the syncollisional period.

  20. Lead dust in Broken Hill homes: effect of remediation on indoor lead levels.

    Science.gov (United States)

    Boreland, F; Lyle, D M

    2006-02-01

    This study was undertaken to determine whether home remediation effectively reduced indoor lead levels in Broken Hill, a long-established silver-lead-zinc mining town in outback Australia. A before-after study of the effect of home remediation on indoor lead levels was embedded into a randomized controlled trial of the effectiveness of remediation for reducing elevated blood lead levels in young children. Moist towelettes were used to measure lead loading (microg/m2) on internal windowsills and internal and entry floors of 98 homes; samples were collected before, immediately after, and 2, 4, 6, 8, and 10 months after remediation. Data were log(10) transformed for the analysis. Remediation reduced average indoor lead levels by approximately 50%, and lead levels remained low for the duration of the follow-up period (10 months). The greatest gains were made in homes with the highest initial lead levels; homes with low preremediation lead levels showed little or no benefit. Before remediation, homes located in areas with high soil lead levels or with "poor" dust proofing had higher lead levels than those in areas with lower soil lead levels or with "medium" or "good" dust proofing; these relative differences remained after remediation. There was no evidence that lead loading was reduced by an increased opportunity to become aware of lead issues. We conclude that remediation is an effective strategy for reducing the lead exposure of children living in homes with high indoor lead levels.

  1. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    International Nuclear Information System (INIS)

    Furko, M.; Jiang, Y.; Wilkins, T.A.; Balázsi, C.

    2016-01-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO_3)_2 and NH_4H_2PO_4 components. During the electrochemical deposition Ag"+ and Zn"2"+ ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn"2"+ is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  2. Detection of certain minerals of uranium, zinc, lead and other metals using photoluminescence

    International Nuclear Information System (INIS)

    Seigel, H.O.; Robbins, J.C.

    1980-01-01

    We have discovered that certain photoluminescent minerals of uranium, lead, zinc, fluorine, tungsten and other elements which may naturally occur at the surface of the earth can be selectively detected in the presence of most other photoluminescent minerals and organic materials which are likely to occur at the earth's surface. The base of selective ldetection is the discovery that the lifetimes of photoluminescent emission of materials in the latter class are much shorter than the lifetimes of photoluminescent emission of materials in the former class. This invention utilizes this discovery in the detection of minerals of uranium, zinc, lead, flourine, tungsten, molybdenum, mercury and other elements. In one embodiment of the invention, using a laser or other short duration source of optical excitation, measurements of the photoluminescent response of the earth are made at times sufficiently long for the photoluminescence of other common and unwanted sources to have substantially decayed, thereby selectively detection and identifying certain minerals of potiential economic interest. In another embodiment a source of light is modulated at a predetermined frequency and the photoluminescent response of the earth which is out-of-phase with the source is measured. In a third embodiment this source of light may be incident solar radiation after passage through asuitable modulator

  3. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  4. Substrates coated with silver nanoparticles as a neuronal regenerative material

    Directory of Open Access Journals (Sweden)

    Alon N

    2014-05-01

    Full Text Available Noa Alon,1,3,* Yana Miroshnikov,2,3,* Nina Perkas,2,3 Ifat Nissan,2,3 Aharon Gedanken,2,3 Orit Shefi1,31Faculty of Engineering, 2Department of Chemistry, 3Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel*These authors contributed equally to this workAbstract: Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs and zinc oxide nanoparticles (ZnONPs demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies.Keywords: nerve regeneration, nanotopography, antibacterial material, neuroblastoma, gold nanoparticles, zinc oxide nanoparticles

  5. Analysis of metals with luster: Roman brass and silver

    Energy Technology Data Exchange (ETDEWEB)

    Fajfar, H., E-mail: helena.fajfar@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia); Rupnik, Z. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Šmit, Ž. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia)

    2015-11-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  6. Analysis of metals with luster: Roman brass and silver

    International Nuclear Information System (INIS)

    Fajfar, H.; Rupnik, Z.; Šmit, Ž.

    2015-01-01

    Non-destructive PIXE analysis using in-air proton beam was used for the studies of earliest brass coins issued during the 1st century BC by Greek cities in Asia Minor, Romans and Celts, and for the studies of plated low grade silver coins of the 3rd century AD. The analysis determined the levels of zinc and important trace elements, notably selenium, which confirms spread of selenium-marked copper from the east. For plating, combined tinning and silvering was identified by the mapping technique for the mid 3rd century AD, which evolved into mere plating by 270 AD.

  7. Transfer printed silver nanowire transparent conductors for PbS-ZnO heterojunction quantum dot solar cells.

    Science.gov (United States)

    Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R

    2015-04-01

    Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.

  8. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  9. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    Science.gov (United States)

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  10. The comparative study of contents of zinc and lead in ore samples of Namtu-Bawdwin Mine by wet analysis, X-ray fluorescence and X-ray diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Kyaw-Soe,

    1990-05-01

    Lead-zinc ores taken from Namtu-Bawdwin area had been analyzed by wet processes in the Department of Chemistry, 1984. These ore samples have been analyzed by energy dispersive X-ray fluorescence method in the Department of Physics and X-ray diffraction method is also used to determine elements of lead and zinc compounds in these ore samples in the University`s Research Centre. In brief, we study comparatively the contents of lead and zinc and their compounds using the methods of wet processes, X-ray fluorescence and X-ray diffraction. (author).

  11. Voltammetry of Lead Cations on a New Type of Silver Composite Electrode in the Presence of Other Cations

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šebková, Světlana; Kopanica, M.

    2004-01-01

    Roč. 379, - (2004), s. 294-301 ISSN 1618-2642 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : voltammetry * silver composite electrode * lead cations Subject RIV: CG - Electrochemistry Impact factor: 2.098, year: 2004

  12. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  13. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  14. Revegetation of metalliferous mine spoil contaminated by lead and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M S; McNeilly, T; Putwain, P D

    1977-04-01

    Plant growth and development on metalliferous mine spoil is restricted by the high concentrations of phytotoxic metals and by the low levels of macronutrients in the substrates. Swards established on innocuous amendments applied to the surface of mine spoil deteriorate when roots penetrate to the underlying toxic substratum. This deterioration is attributed to the accumulation of toxic metals. The rate of decline is determined by the inherent fertility of the amendment and the depth to which it is applied. Results of field trials on calcareous and acidic lead/zinc spoils indicate that inert amendments may be more suitable where revegetation is for amenity or recreational purposes. Legumes are essential components of low-maintenance swards established on substrates of low nutrient status.

  15. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials

    Energy Technology Data Exchange (ETDEWEB)

    Furko, M., E-mail: monika.furko@bayzoltan.hu [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary); Jiang, Y.; Wilkins, T.A. [Institute of Particle Science and Engineering, University of Leeds, LS2 9JT (United Kingdom); Balázsi, C. [Bay Zoltán Nonprofit Ltd. for Applied Research, H-1116 Budapest, Fehérvári u. 130 (Hungary)

    2016-05-01

    In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4} components. During the electrochemical deposition Ag{sup +} and Zn{sup 2+} ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn{sup 2+} is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements. - Highlights: • Ag and Zn doped calcium phosphate (CaP) layers were electrochemically deposited. • Layer degradation was studied by EIS and potentiodynamic measurements. • The bioceramic coatings became passive after a period of immersion time. • Ag and Zn modified layer shows higher degradation rate compared to pure CaP coating.

  16. Mineral resource potential map of the Benton Range Roadless Area, Mono County, California

    Science.gov (United States)

    Donahoe, James L.; McKee, Edwin D.; Rains, Richard L.; Barnes, Donald J.; Campbell, Harry W.; Denton, David K.; Iverson, Stephen R.; Jeske, Rodney E.; Stebbins, Scott A.

    1983-01-01

    Tungsten-bearing rocks in the Benton Range Roadless Area occur in tactite lenses within the Paleozoic metasedimentary units that surround and are intruded by Triassic granodiorite of the Benton Range. High anomalous tungsten values were found in the southern part of the study area. Quartz-vein deposits with copper, lead, zinc, and silver may occur within the Jurassic granitic rock in the northwestern part of the area. Stream-sediment and panned-concentrate samples from the northwestern part of the roadless area, reveal anomalous values in a number of elements. Some of these elements are indicative of mineral suites that form by hydrothermal alteration and are potential metallic-ore producers. Metals having anomalous values are antimony, copper, lead, molybdenum, tin, and zinc; their presence suggests the potential for deposits of the lead-zinc-silver or copper-molybdenum type. Molybdenum and lead were identified by geochemical sampling as having low to moderate potential in the roadless area. An estimated 190,000 tons (172,000 t) of subeconomic gold and silver resources are inside the roadless area at the Gold Crown, Gold Webb, and Gold Wedge mines; another 60,000 tons (54,000 t) of subeconomic gold and silver resources are just outside the area at the Tower, Gold Webb, and Gold Wedge mines (table 1). Most of the lode gold and silver deposits are in quartz veins and shear zones. Minor amounts of copper, lead, and zinc occur in some gold deposits. About 2,240 oz (70 kg) of gold, 8,450 oz (260 kg) of silver, and 4,600 lb of lead (2,090 kg) have been produced from the roadless area. In addition, 7,257 oz (226 kg) of gold and 350 oz (11 kg) silver were produced at the Tower mine, near the area.

  17. Chlorophyll content in pine (Pinus silvestris L. needles exposed to flue dust from lead and zinc works

    Directory of Open Access Journals (Sweden)

    M. Świeboda

    2015-01-01

    Full Text Available Chlorophyll a and b, sulphur, zinc and lead contents were determined in annual and biennial needles of Scotch pine (Pinus silevstris L. exposed to flue dust-polluted air. Intoxication indexes were calculated on the basis of the obtained results.

  18. Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation

    Science.gov (United States)

    Galeano, Belinda; Korff, Emily; Nicholson, Wayne L.

    2003-01-01

    Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected. PMID:12839825

  19. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  20. Trace elements studies on Karachi populations, part III: blood copper, zinc, magnesium and lead levels in psychiatric patients with disturbed behavior

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood levels of copper, zinc, magnesium and lead were determined in 29 males and 15 females suffering from disturbed behavior. As far as we could ascertain they were under no medication and belong to low income groups. Male patients had significantly higher levels than female patients for zinc but there was no sexual difference for magnesium or cooper. In patients copper and lead levels were higher than for normals, but no difference could be found for Mg and Zn. At least one metal abnormality was observed in 19 of the males and 9 (60.0%) of the female patients. (author)

  1. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  2. Effect of electrolysis condition of zinc powder production on zinc-silver oxide battery operation

    International Nuclear Information System (INIS)

    Mojtahedi, M.; Goodarzi, M.; Sharifi, B.; Vahdati Khaki, J.

    2011-01-01

    A research conducted to produce zinc powder through electrolysis of alkaline solutions by using various concentrations of KOH and zincate in the bath. Different current densities were applied for each concentration and then, morphological changes of Zn powder batches were examined by scanning electron microscopy. Afterward, an anode electrode was produced from each pack of powder. Thirty-six Zn-AgO battery cells were prepared totally. Discharge parameters of the cells were examined and time-voltage curves were analyzed. Discharge times were investigated for various conditions of Zn deposition and the proper terms were suggested. It has been seen that increase of KOH concentration and decrease of zincate ion in the bath solution will change the zinc morphology and increase the resultant battery discharge time. The longest time of discharge, before reduction of cell voltage to 1.25 V, was 7.91 min. This result was obtained for Zn powder produced in zincate concentration of 0.5 M, KOH concentration of 11 M and current density of 2500 A/m 2 .

  3. Mercury dispersion in soils of an abandoned lead-zinc-silver mine, San Quintín (Spain)

    Science.gov (United States)

    Esbrí, José Maria; Martín-Crespo, T.; Gómez-Ortiz, D.; Monescillo, C. I.; Lorenzo, S.; Higueras, P.

    2010-05-01

    The mine considered on this work, namely San Quintín, is a filonian field with hydrothermal ores exploited during almost fifty years (1887-1934), producing 550.000Tm of galena, 550Tm of silver and 5.000 of sphalerite. Some rewashing works of tailings muds was achieved in recent times (1973-1985), including flotation tests of cinnabar ore from Almadén mines. The main problems remaining on the site are an active acid mine drainage (with pH ~ 2) and heavy metal dispersion on soils including gaseous mercury emissions. We present here results of a survey including soils sampling with mercury analysis and other pedological parameters, as well as determinations of mercury inmission in the atmosphere, using a common sampling grid. Analysis of soils samples has been carried out using an atomic absorption spectrometer AMA254, while air determinations were made by the same technique, using a Lumex RA-915+. The maps have been obtained by means of SURFER 8 software, as well as by ArcGIS software, and puts forward dispersion of mercury from cinnabar ore dump (108 ?g×g-1) to nearby soils (0.3 ?g×g-1 at 700 m of distance). The dispersion of mercury vapor exceed WHO level for chronic exposure (200 ng×m-3) in a small area (250 meters from cinnabar dump).

  4. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.

    Science.gov (United States)

    Odzak, Niksa; Kistler, David; Sigg, Laura

    2017-07-01

    Nanoparticles, such as silver (Ag-NP) and zinc oxide (ZnO-NP), are increasingly used in many consumer products. These nanoparticles (NPs) will likely be exposed to the aquatic environment (rain, river, lake water) and to light (visible and UV) in the products where they are applied, or after those products are discharged. Dissolution of Ag-NP and ZnO-NP is an important process because the dissolved Ag + and Zn 2+ are readily available and toxic for aquatic organisms. The objective of this study was to investigate the role of daylight (UV and visible) for the fate of engineered Ag-NP and ZnO-NPs in different types of natural waters. Ag-NP and ZnO-NP were exposed to rainwater, river Rhine, and lake waters (Greifen, Lucerne, Cristallina, Gruère) under different light conditions (no light, UV 300-400 nm and visible light 400-700 nm) for up to 8 days. Stronger agglomeration of Ag-NP was observed in the waters with higher ionic strength in comparison to those with lower ionic strength. Visible light tended to increase the dissolution of Ag-NP under most natural water conditions in comparison to dark conditions, whereas UV-light led to decreased dissolved Ag + after longer exposure time. These effects illustrate the dynamic interactions of Ag-NP with light, which may lead both to increased oxidation and to increased reduction of Ag + by organic compounds under UV-light. In the case of ZnO-NP, agglomeration occurred at higher ionic strength, but the effects of pH were predominant for dissolution, which occurred up to concentrations close to the solubility limit of ZnO(s) at pH around 8.2 and to nearly complete dissolution of ZnO-NP at lower pH (pH 4.8-6.5), with both visible and UV-light facilitating dissolution. This study thus shows that light conditions play an important role in the dissolution processes of nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  6. Microdetermination of lead, cadmium, zinc and tin in biological and related materials by atomic absorption spectrometry after mineralisation and extraction

    International Nuclear Information System (INIS)

    Boiteau, H.L.; Metayer, C.

    1978-01-01

    Two technics permitting to determine either lead, cadmium and zinc, or tin in any biological material (blood, urines, organs, alimentary products of animal or vegetable origin) are described. Every operation (mineralisation and extraction) is made in the same tube and technics, conceived in a way to simplify the manipulations and to reduce the more possible the contamination risks are suitable for determination in series. By working on trial samples near 250 mg, the lower determination limits are around 2 ppb for cadmium, 40 ppb for lead and tin and 2 ppm for zinc. The repeatability studies of different technical stages show that mineralisation and extraction only have a weak incidence on the acccuracy of the results [fr

  7. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    Science.gov (United States)

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  8. Spectroscopic attributes of Sm3+ doped magnesium zinc sulfophosphate glass: Effects of silver nanoparticles inclusion

    Science.gov (United States)

    Ahmadi, F.; Hussin, R.; Ghoshal, S. K.

    2017-11-01

    We report the modified optical properties of Sm3+ doped magnesium zinc sulfophosphate glass system with silver nanoparticles (Ag NPs) inclusion. Three glass samples were prepared using melt quenching method and characterized. TEM images revealed the nucleation of Ag NPs with average diameter ≈12.50 nm. The UV-Vis-NIR spectra showed thirteen absorption bands. The surface plasmon resonance (SPR) band of Ag NPs was manifested at 446 nm. FTIR spectra disclosed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 units. Ag NPs concentration dependent bonding parameters and Judd-Ofelt (JO) intensity parameters were calculated. The JO parameter Ω2 was reduced with the increase of Ag NPs contents, indicating the ionicity and symmetry enhancement between Sm3+ ions with their surrounding ligands. The emission spectra of all samples under the excitation wavelength of 402 nm exhibited four significant peaks centered at 562, 599, 644 and 702 nm which are allocated to 4G5/2 →6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively. Inclusion of Ag NPs was discerned to augment the luminescence intensity by a factor of two, which was majorly ascribed to the local field effect of Ag NPs and subsequent energy transfer from the NPs to Sm3+ ions.

  9. Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models

    Science.gov (United States)

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2009-01-01

    This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The

  10. Spectrometric gamma investigations concerning zinc-lead ores and the products of their processing

    International Nuclear Information System (INIS)

    Girczys, J.; Skowronek, J.; Zrodlowski, B.

    1983-01-01

    Zinc-lead ore and products of its enrichment were investigated using gamma spectrometry for the content of uranium, thorium and potassium 40. It was stated that the mean content of these elements in a deposit does not diverge from their mean concentration in the lithosphere. They also accompany the surrounding rocks. As a result of mechanical processing of this ore radionuclides pass discards in which they do not form concentrations dangerous for life, either. In the exploitation areas and in the surroundings there is no state of ecological hazard. (author)

  11. Silver recovery from zinc metallurgical sludge – analysis of solutions

    Directory of Open Access Journals (Sweden)

    Pietrzyk Stanisław

    2017-01-01

    Full Text Available During the hydrometallurgical process of zinc production, conducted in the ZGH “Bolesław” S.A. in Bukowno [Mine and Metallurgical Plant], about 40,000 tons of sludge is generated. After dehydration in the Larox filter presses, sludge contains ca. 16-18% of Zn, 20-25% of Fe, and 200-300 ppm of Ag. Next, sludge is transported to the Olkusz concentrator for flotation to obtain concentrate enriched with Ag (1,000-1,500 ppm. The concentrate is then sent to the HC “Miasteczko Śląskie” [zinc smelter], while the flotation tailings are subjected to recycling in waelz kiln in Bukowno to regain mainly Zn and Pb, in the form of oxides (also sent later to the HC “Miasteczko Śląskie”.

  12. The effect of biologically and chemically synthesized silver nanoparticles (AgNPs) on biofilm formation

    Science.gov (United States)

    Chojniak, Joanna; Biedroń, Izabela; Mendrek, Barbara; Płaza, Grażyna

    2017-11-01

    Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental-friendly technology for synthesis of nanomaterials. Different types of nanomaterials like copper, zinc, titanium, magnesium, gold, and silver have applied in the various industries but silver nanoparticles have proved to be most effective against bacteria, viruses and eukaryotic microorganisms. The antimicrobial property of silver nanoparticles are widely known. Due to strong antibacterial property silver nanoparticles are used, e.g. in clothing, food industry, sunscreens, cosmetics and many household and environmental appliances. The aim of the study was to compare the effect of silver nanoparticles (AgNPs) synthesized biologically and chemically on the biofilm formation. The biofilm was formed by the bacteria isolated from the water supply network. The commonly used crystal violet assay (CV) was applied for biofilm analysis. In this study effect of biologically synthesized Ag-NPs on the biofilm formation was evaluated.

  13. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    Science.gov (United States)

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  14. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Ju Shaohua; Zhang Yifei; Zhang Yi; Xue Peiyi; Wang Yihui

    2011-01-01

    Highlights: → The extraction fractions of various valuable metals during NH 4 Cl leaching are very high. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. → The process can detoxified the hazardous elements such as Pb, As, Cd thoroughly. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. → The final residue contains about 55 wt% Fe, and have the potential to be used as iron concentrate. - Abstract: A hydrometallurgical process for treating the hazardous jarosite residue from zinc hydrometallurgy was proposed, for not only detoxifying the residue, but also recovering the contained valuable metal components. The jarosite was initially activated and decomposed by sintering at 650 o C for 1 h. The sintered residue was leached in 6 mol L -1 aqueous NH 4 Cl solution at 105 o C, followed by filtration. The leaching extraction of Zn, Pb, Cu, Cd and Ag are more than 95%. During reduction with Zn powder, more than 93% of Pb, Cu, Ag and Cd can be simultaneously recovered. Then the NH 4 Cl leaching residue were leached again in 30 wt% aqueous NaOH solution for 1 h at 160 o C, and about 94% of As and 73% of Si were removed from the residue. The final residue was almost completely detoxified, and contains about 55 wt% Fe, which can be used as an iron concentration.

  15. CONTENT OF ZINC, LEAD AND CADMIUM IN SELECTED AGRICULTURAL SOILS IN THE AREA OF THE ŚLĄSKIE AND CIĘŻKOWICKIE FOOTHILLS

    OpenAIRE

    Agnieszka Józefowska; Anna Miechówka; Michał Gąsiorek; Paweł Zadrożny

    2014-01-01

    The purpose of this study was to evaluate the state of contamination with zinc, lead, and cadmium in selected soils of the Śląskie and Ciężkowickie Foothills and to determine the impact of the type of agricultural use and selected physico-chemical properties of soils on heavy metal content. The test soils were characterized by natural content of zinc, lead, and cadmium in most cases. Only one type of soil located on Śląskie Foothills developed increased levels of Cd (1.1 mg · kg-1). The conte...

  16. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    Science.gov (United States)

    Petrovský, E.; Kapička, A.; Jordanova, N.; Borůvka, L.

    2001-09-01

    Several proxy methods have been used recently to outline increased levels of pollution. One of them is based on measurements of the concentration of (ferri)magnetic minerals of anthropogenic origin. This method has been used recently in the mapping of both polluted and unpolluted areas. In order to validate this method, a more detailed study of links between magnetic parameters characterising the physical shape of magnetic minerals and concentrations of heavy metals is needed. In this study, we analysed the magnetic characteristics of alluvial soils, formed as a result of several breakdowns of wet deposit sink of ashes from a lead ore smelter. The soils were previously analysed for concentration of lead, zinc and cadmium. Our results show that in this case of a shared source of heavy metals and magnetic minerals, simple measurements of magnetic susceptibility discriminate well between polluted and clean areas. In addition, the concentration pattern agrees with the concentrations of the heavy metals studied in deeper soil layers that were not affected by post-depositional changes due to climate and remediation efforts.

  17. NORTH END ROADLESS AREA, ARIZONA.

    Science.gov (United States)

    Drewes, Harald; Bigsby, P.R.

    1984-01-01

    Studies conducted in the North End Roadless Area, Arizona indicate probable or substantiated metallic mineral-resource potential in about one-fifth of the area. The area has potential for disseminated or stockwork-type molybdenum mineralization, copper-lead-zinc-silver veins, lead-zinc-silver limestone replacement deposits, and tungsten-bearing contact metamorphic skarn deposits. The area also contains cement rock and marble dimension stone, but has only slight promise for the occurrence of petroleum and natural gas.

  18. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    Science.gov (United States)

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe.

  19. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  20. CONTENT OF ZINC, LEAD AND CADMIUM IN SELECTED AGRICULTURAL SOILS IN THE AREA OF THE ŚLĄSKIE AND CIĘŻKOWICKIE FOOTHILLS

    Directory of Open Access Journals (Sweden)

    Agnieszka Józefowska

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the state of contamination with zinc, lead, and cadmium in selected soils of the Śląskie and Ciężkowickie Foothills and to determine the impact of the type of agricultural use and selected physico-chemical properties of soils on heavy metal content. The test soils were characterized by natural content of zinc, lead, and cadmium in most cases. Only one type of soil located on Śląskie Foothills developed increased levels of Cd (1.1 mg · kg-1. The content of zinc, lead, and cadmium in the surface layer (0-30 cm was higher in the soils of Śląskie Foothills than in soils of Ciężkowickie Foothills. The bedrocks from which the soils of these two mesoregions are formed differed significantly only in the content of zinc (it was higher in the soils of Śląskie Foothills. The content of Zn, Pb, and Cd in the surface layer of soil depends on its texture and organic carbon and total nitrogen content. There was also a positive correlation between the content of Pb and Cd and hydrolytic acidity and between the content of Zn and Ca and CEC. Different types of land uses did not influence the content of the metals.

  1. Radiotracer investigations of the shaft processes in Polish zinc and lead metallurgy. 2

    International Nuclear Information System (INIS)

    Michalik, J.S.; Bazaniak, Z.; Palige, J.

    1990-01-01

    The conditions and the physico-chemical processes occurring in the ISP furnace cause the possibility of partial reoxidation of vapourized zinc escaping from the furnace counter-current to the batch material. In order to determine the reoxidation degree and localize the active zone the radiotracer method was applied. The method of solving the convolution integral was used. The experimental part resulted indetermination of impulse characteristics of the zinc condenser; in the next step, the curves of zinc concentration distribution at the ISP furnace outlet were found by calculations. 65 Zn was used as tracer for the industrial experiments. About 25-30% of total amount of zinc obtained as a result of zinc oxides reduction processes undergoes reoxidation in the surface layer of the bath in the furnace shaft. The method of tracer preparation for investigating the behaviour of zinc occurring in the form of silicates and ferrates in the shaft has been proposed. (author)

  2. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  3. From silver nanoparticles to nanostructures through matrix chemistry

    International Nuclear Information System (INIS)

    Ayyad, Omar; Munoz-Rojas, David; Oro-Sole, Judith; Gomez-Romero, Pedro

    2010-01-01

    Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag-Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

  4. Radioactivity of Ore Sites of Lead, Zinc and Phosphate in Serbia

    International Nuclear Information System (INIS)

    Todorovic, D.; Jankovic, M.; Nikolic, J.; Kosutic, D.

    2011-01-01

    Natural resources such as ores contain radioactive nuclides at various concentrations. Therefore it is important to investigate the radioactivity in these resources as well as in the soil at the locations of ore deposits. For that reason we conducted preliminary measurements in the soil samples taken from the locations of lead and zinc ore deposits (Bosilegrad and Raska) and from the locations of phosphate ore deposits of phosphate (Bosilegrad). The activity concentrations of radionuclides in soil samples were determined by gamma spectrometry (HPGe detector, relative efficiency 23 %). Results showed the presence of natural radionuclides 226Ra, 232Th, 40K, 235U, 238U as well as the produced radionuclide 137Cs (from the Chernobyl accident). Ambient gamma radiation dose rate in ground level air was also measured. (author)

  5. MIM Holdings Limited 1984 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    M.I.M. Holdings Limited is a major mining and mineral processing company formed in 1970. The group traces its origins to 1924 following the discovery of silver lead zinc started in 1931 and parallel production of silver lead zinc ore at Mount Isa the previous year. Today the MIM group is a diversified mineral, coal and metal producing and marketing organisation. Details of the company's principal activities over the last year, and accounts and management information for the last year are presented.

  6. Determination of lead, zinc and benzo(a)pyrene in incineration flue gas

    International Nuclear Information System (INIS)

    Han Baohua; Gao Zhuqin; Guo Qian

    2003-01-01

    An analitical method was developed for the determination of lead(Pb), zinc(Zn) and benzo(a)pyrene (BaP) in flue gas of radwaste pyroysis incinerator, respectively using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and High Performance Liquid Chromatography (HPLC). The sample preparation and the influence of major components in back-ground were researched. Interference correction coefficient for Pb and Zn are given in this article. The recovery of Pb, Zn and BaP are all above 84.0% and the relative standard deviation (RSD) were 3.51% for Pb, 7.28% for Zn and 4.50% for BaP, respectively. It shows that this analytical method can meet the incineration processes. (authors)

  7. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  8. Removal of Cadmium, Zinc, Lead and Copper by Sorption on Leaching Residue from Nickel Production

    Directory of Open Access Journals (Sweden)

    Miroslava Václavíková

    2006-12-01

    Full Text Available A leaching resudue from the nickel production (LRNi, was used to study the removal of selected bivalent cations (Cd, Pb, Cu and Zn from model aqueous solutions. Batch-type experiments have been performed in solutions with initial concentrations of heavy metals in the range of 20-400 mg.L-1 and the adsorbent dosage 2 g.L-1. All adsorption experiments were carried out at ambient temperature (22+1°C in orbital shaker. The experimental data were modeled with Langmuir and Freundlich isotherms. The relatively high uptake indicated that LRNi can adsorb considerable amounts of cadmium and zinc (maximum uptake capacity for cadmium: 25 mg/g at pH 7.2 and ca. 40 mg/g for zinc at pH 7. A significant uptake was also observed for copper and lead at pH 5.8 and 6 respectively, which was attributed to the precipitation of the respective insoluble hydroxides.

  9. Modelling the physico-chemical effect of silver electrorefining as effect of temperature, free acid, silver, copper and lead concentrations

    Science.gov (United States)

    Aji, Arif T.; Kalliomäki, Taina; Wilson, Benjamin P.; Aromaa, Jari; Lundström, Mari

    2017-01-01

    The study of electrolyte bath properties is essential for the improvement of silver electrolysis based processes. The paper outlines investigations into suitable models for the calculation of physico-chemical properties with the emphasis placed on conductivity, density and viscosity. Measurements were conducted within the industrial operation parameters used for silver electrolytes and the results indicate that these type of industrial electrolytes have an operating conductivity within the range of 60-140 mS/cm, density of 1.05-1.14 g/cm3 and a viscosity of 0.75-0.91 mm2/s. A representative model for each of these properties was proposed in order to calculate the conductivity, density and viscosity of silver electrolyte. From the evaluation of models, it was determined that all models have R2 (accuracy of fit) and Q2 (accuracy of prediction) values above 0.9 and thus can be regarded as excellent models.

  10. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process.

    Science.gov (United States)

    Ye, Maoyou; Yan, Pingfang; Sun, Shuiyu; Han, Dajian; Xiao, Xiao; Zheng, Li; Huang, Shaosong; Chen, Yun; Zhuang, Shengwei

    2017-02-01

    During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCl) concentration (10-200 g/L) and temperature (25 and 50 °C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 °C and at a rate of 99.46% at 50 °C when the NaCl concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  12. Atmospheric deposition study in the area of Kardzhali lead-zinc plant based on moss analysis

    International Nuclear Information System (INIS)

    Hristozova, G.; Marinova, S.; Strelkova, L.P.; Goryajnova, Z.; Frontas'eva, M.V.; Stafilov, T.

    2015-01-01

    For the first time the moss biomonitoring technique was used to assess the environmental situation in the area affected by the lead-zinc plant as one of the most hazardous enterprises in Bulgaria. 77 Hypnum cupressiforme moss samples were collected in the Kardzhali municipality in the summer and autumn of 2011. The concentrations of a total of 47 elements were determined by means of instrumental epithermal neutron activation analysis (ENAA), atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Multivariate statistics was applied to characterize the sources of elements detected in the samples. Four groups of elements were found. In comparison to the data averaged for the area outside of the town, the atmospheric deposition loads for the elements of industrial origin in Kardzhali, where the smelter chimney is located, were found to be much higher. Median levels of the measured concentrations of the most toxic metals (Pb, Zn, Cd, As, Cu, In, Sb) were extremely high in this hot spot when compared to the median Bulgarian cross-country data from the 2010-2011 European moss survey. GIS technology was used to produce element distribution maps illustrating deposition patterns of element pollutants in the study area. The results obtained contribute to the Bulgarian environmental research used to study and control the manufacturing processes of the lead-zinc plant in the town of Kardzhali.

  13. Occurrence of lead, copper, zinc, and arsenic compounds in atmospheric dusts, and the sources of these impurities

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J T; Bloxam, H C.L.

    1933-06-30

    The authors indicate that the combustion of fossil fuels such as coal for industrial and electrical power causes the deposition of zinc, arsenic, copper, and lead which are then found in the dust and soots of most urban areas. They express the fear that these dusts, if not poisonous, may be expected to be injurious to the health of man, animals, and plants.

  14. The technical and economic efficiency in the mineral processing for lead-zinc and copper ores by Microsoft excel

    OpenAIRE

    Krstev, Aleksandar; Krstev, Boris; Krstev, Dejan; Vuckovski, Zoran

    2012-01-01

    The comparisons between economical and technical efficiency for lead flotation indicators, zinc flotation indicators in Sasa mine, Toranica and Zletovo mine. The comparisons for economic and technical efficiency for copper flotation indicators in Bucim mine. The possibility of equaled between both efficiencies for flotation indicators from mentioned mines using Microsoft Excel 2010.

  15. Factors affecting the simultaneous determination of copper, lead, cadmium, and zinc concentrations in human head hair using differential pulse anodic stripping voltammetry method

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    Conditions of analysis of copper, lead, cadmium and zinc content in human hair using differential pulse anodic stripping voltammetry (DPASV) and hanging mercury drop electrode (HMDE) have been established. Sample digestion using using the mixture HCI; H 2 O 2 ;HNO 3 in the ratio 2:1:40 by volume gave the best wet-ashing procedure. The peak currents and peak potentials of zinc, cadmium and lead, copper were maximum at pH 6-7 and 1-3 respectively, when excess H 2 O 2 was eliminated with subsequent addition of hydroxyamine hydrochloride. Matrix concentration effects were minimized by digesting weights not exceeding 50 mg per sample. The effect of selenium (IV) was negligible and was ignored. The detection limit of 0.0036 ng/cm 3 for Cd + 2 was obtained while the values for zinc, lead and copper were 0.0230, 0.0287 and 0.0269 ng/cm 3 respectively at the 95% confidence limit. The observed DPASV condition of analysis of these metals are useful for routine determination of the metals in human hair and should complement the conventional flame absorption spectrophotometry method. (author)

  16. Morphology of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication

    OpenAIRE

    Harets V.I.; Shatorna V.F.; Belska Iu.O.

    2016-01-01

    Morphological state of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication was studied. We found that  values of the hepatofetal index in the groups Pb+Ag and Pb+Au had significant differences as compared to the group exposed to lead intoxication, but did not differ significantly from the control group and made up 0,086±0,001 and 0,083±0,001, respectively. Value of the relative area of blood vessels in groups Pb+Ag and Pb+Au was 13.08±0.53% and...

  17. 40 CFR 440.102 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold... obtain copper bearing ores, lead bearing ores, zinc bearing ores, gold bearing ores, or silver bearing... which employ the froth flotation process alone or in conjunction with other processes, for the...

  18. Estimation of lead and zinc in human hair using atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Kazi, S.; Kazi, T.G.; Kazi, G.H.

    1993-01-01

    Trace elements analysis in hair can be useful in studying the impact of environmental and dietary factors on human in general for lead and zinc content in hair. Samples of people of different age groups, sex with varied living habits of the individual living in different areas of Sind, urban as well as rural areas were of special interest to be studied to find correlation of socioeconomic factors and the presence of these elements in hair samples. The purpose of this study was to determine whether age, sex and physiological status and environmental pollution affect composition of hair. The method of sample preparation and use of atomic absorption techniques providing unequivocal and direct estimation of metals in ppm/ppb range to arrive upon conclusion. (author)

  19. Effect of thermal processing on silver thin films of varying thickness deposited on zinc oxide and indium tin oxide

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.; Ngo, A. T.; Alford, T. L.; Iyer, S.

    2009-01-01

    Silver films of varying thicknesses (25, 45, and 60 nm) were deposited on indium tin oxide (ITO) on silicon and zinc oxide (ZnO) on silicon. The films were annealed in vacuum for 1 h at different temperatures (300-650 deg. C). Four-point-probe measurements were used to determine the resistivity of the films. All films showed an abrupt change in resistivity beyond an onset temperature that varied with thickness. Rutherford backscattering spectrometry measurements revealed agglomeration of the Ag films upon annealing as being responsible for the resistivity change. X-ray pole figure analysis determined that the annealed films took on a preferential texturing; however, the degree of texturing was significantly higher in Ag/ZnO/Si than in Ag/ITO/Si samples. This observation was accounted for by interface energy minimization. Atomic force microscopy (AFM) measurements revealed an increasing surface roughness of the annealed films with temperature. The resistivity behavior was explained by the counterbalancing effects of increasing crystallinity and surface roughness. Average surface roughness obtained from the AFM measurements were also used to model the agglomeration of Ag based on Ostwald ripening theory

  20. Lead and zinc concentrations in plasma, erythrocytes, and urine in relation to ALA-D activity after intravenous infusion of Ca-EDTA.

    OpenAIRE

    Ishihara, N; Shiojima, S; Hasegawa, K

    1984-01-01

    Lead and zinc concentrations in plasma, erythrocytes, and urine, urinary ALA concentration, and ALA-D activity in blood were studied for four hours in two male lead workers during and after a one hour infusion of Ca-EDTA 2Na. Urinary and plasma lead concentrations increased as a result of administering Ca-EDTA 2Na, and the ratios of lead concentrations in plasma to those in urine were greatly increased. The increase of plasma lead concentration was not due to the haemolytic effect of Ca-EDTA ...

  1. Zinc deficiency leads to lipofuscin accumulation in the retinal pigment epithelium of pigmented rats.

    Directory of Open Access Journals (Sweden)

    Sylvie Julien

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. METHODOLOGY/PRINCIPAL FINDINGS: Adult Long Evans (LE rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE. The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4-3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. CONCLUSIONS/SIGNIFICANCE: In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane.

  2. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  3. Silver sources of archaic Greek coinage

    International Nuclear Information System (INIS)

    Gentner, W.; Mueller, O.; Wagner, G.A.; Gale, N.H.

    1978-01-01

    The authors report on new chemical and lead isotopic results and interpretations of archaic Greek silver coins from the Asyut hoard which was buried around 475 B.C. Aeginetan coins were of central interest in this study. Possible ancient silver mines were explored in the Aegean region in the course of several geologic expeditions, and chemically and isotopically investigated. Some of the silver sources in Greece were traced by combination of the analytical methods and questions of provenance were solved. In addition, processes of silver smelting and refining were studied. Results and implications of this work are summarized in the final section on Conclusions. (orig.) [de

  4. Sustainability of silver nanoparticles in solutions and polymer materials

    International Nuclear Information System (INIS)

    Khaydarov, R.R.; Malikov, Sh.; Khaydarov, R.A.; Mironov, V.V.

    2006-01-01

    The technology of obtaining stable silver nanoparticles in solutions and composite materials for attainment of antimicrobial and antifungal properties to different surfaces has been developed. The shape of particles is spherical, diameter is about 5 nm. Various concentrations of silver nanoparticles have been deposited onto surfaces of different materials (cotton and synthetic fabrics, fibroid sorbents and polymer materials). Different ways of treatment and densities of nanoparticles on the treated surface have been studied during 6 months with respect to the best sustainability. In order to prevent agglomeration of obtained metal nanoparticles on the surface of materials treated, stabilizing reagents (ethylene glycol, formic acid, sodium dodecyl sulphate, etc.) have been used and their relative efficacy has been examined. Residual concentrations of the nanoparticles on various fabrics after 1, 3, 5 and 10 cycles of washing have been also studied. The treated fabrics keep their antibacterial properties after at least 3 times of laundering. The best finishing process to attach silver nanoparticles combination to various materials has been compared with biocidal properties of such antibacterial agents as metal salt solutions and zinc pyrithione.The possibility of treatment of nuclear track membranes by silver nanoparticles in order to prevent microbial growth on the surface of membranes has been discussed. (author)

  5. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    Science.gov (United States)

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently

  6. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Katrine Bilberg

    2012-01-01

    Full Text Available The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP- coated silver nanoparticles (81 nm was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8 had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3. The nanosilver and silver ion 48-hour median lethal concentration (LC50 values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  7. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  8. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.

    Science.gov (United States)

    Paraszkiewicz, Katarzyna; Frycie, Aleksandra; Słaba, Mirosława; Długoński, Jerzy

    2007-10-01

    The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii-fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 +/- 2.67, 156.1 +/- 10.32 mg g(-1) for Cd2+, 22.2 +/- 3.40, 95.2 +/- 14.21 mg g(-1) for Zn2+ and 51.1 +/- 1.85, 230.0 +/- 28.47 mg g(-1) for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.

  9. Contaminant Characteristics and Health Risk Assessment of Heavy Metals in Soils from Lead-Zincs Melting Plant in Huize County, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    LIU Xiao-yan

    2016-05-01

    Full Text Available In order to explore history environmental problems of lead-zinc smelting, Huize County, Yunnan Province, forty-two surface soil samples were collected randomly from 14 sampling sites surrounding lead-zinc smelting plant. Heavy metals(Cr, Cu, Mn, Ni, Pb, Zn, Cd, As and Hg in all samples were determined by inductively coupled plasma-optical emission spectroscopy and atomic fluorescence spectrophotometer. Contamination characteristics of heavy metals in soils were observed on the basis of background values of comprehensive pollution index method. Potential risk was evaluated by using the geoaccumulation index(Igeo, potential ecological risk index(RI and health risk assessment method. The results indicated that the average concentrations of Cr, Cu, Mn, Ni, Pb, Zn, Cd, As and Hg were 92.25, 226.81, 1 567.45, 65.16, 394.66, 1 451.63, 11.16, 43.81, 0.47 mg·kg-1, respectively. Based on the Environmental Quality Standard for Soil, the multiple super scale of Cd concentration was highest, more than 274 times. According to the Igeo, Cd ranged from partial severity to serious degree. The RI indicated that the soils around lead-zinc smelting plant were at the serious ecological hazard level. Health risk assessment showed that Pb and Cd in soils surrounding old site had potential health risk to children.

  10. The study and microstructure analysis of zinc and zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2015-01-01

    Full Text Available The given paper is closely connected with the process of the manufacturing of ZnO. The purity of the metal zinc has crucial influence on the quality of ZnO. ZnO can be produced by pyrometallurgical combustion of zinc and hard zinc. But this mentioned method of preparation leads to the creation of the enormous amount of waste including chemical complexes. On the basis of the occurrence of the residual content of other elements, it is possible to make prediction about the material behavior in the metallographic process. The input and finally materials were investigated and this investigation was done from the aspect of structural and chemical composition of the materials.

  11. Selenium-induced autometallographic demonstration of endogenous zinc in organs of the rainbow trout, Salmo gairdneri

    DEFF Research Database (Denmark)

    Baatrup, E

    1989-01-01

    , the intestine, and the gills, whereas, no such grains were found in preparations from fish having received 1 ppm Se. The use of selenium for the histochemical demonstration of endogenous zinc versus exogenous metals is discussed. Also, consideration is given to the question of which part of the total tissue......Autometallographic (AMG) silver enhancement of endogenous zinc was studied in seven organs of the rainbow trout Salmo gairdneri. Groups of trout were injected intraperitoneally with sodium selenite in doses ranging from 0.08 to 25 ppm, administered 1 h before being killed. The concentration...

  12. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  13. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    Science.gov (United States)

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  14. Agglomeration during wet milling of LAST (lead-antimony-silver-tellurium) powders

    International Nuclear Information System (INIS)

    Hall, B.D.; Case, E.D.; Ren, F.; Johnson, J.R.; Timm, E.J.

    2009-01-01

    LAST (lead-antimony-silver-tellurium) compounds comprise a family of semiconducting materials with good thermoelectric properties. However, the as-cast form of LAST exhibits large grain size and hence low mechanical strength. Powder processing can produce a fine powder particle size that enhances fracture strength, however the powders tend to agglomerate if the individual powder diameters are less than a few microns across. Dry milling or wet milling (hexane additions of 0 cm 3 and 10 cm 3 ) produced hard agglomerates roughly 40 μm in diameter while wet milling with hexane additions of 25 cm 3 , 30 cm 3 or 50 cm 3 resulted in small, porous agglomerates roughly 20 μm in diameter. Thus, by adjusting the amount of milling liquid used while milling LAST powders, one can shift from hard to soft agglomerates, where the literature shows that soft agglomerates are less harmful to the final, sintered product. Also, in agreement with the results from the literature on other materials, wet milling of LAST powders produced smaller particle sizes but required longer times to reach the grindability limit

  15. Study of the speciation of lead and zinc in industrial dusts and slags and in a contaminated soil: a spectroscopic approach

    International Nuclear Information System (INIS)

    Sobanska, Sophie

    1999-01-01

    As the study of physicochemical forms of metals in polluted soils is necessary to understand their mobilisation, and therefore to assess the risk they represent for the environment, the objective of this research thesis is to determine the speciation of lead and zinc in a soil contaminated by particles (dust and slag) released by a lead production plant. This determination is performed by using a spectroscopic approach, optic microscopy, X ray diffraction, scanning electronic microscopy, transmission electronic microscopy, electronic microprobe, and Raman micro-spectrometry. In order to understand the evolution of speciation of metals and of their propagation in soils, dust and slag produced by the industrial process have been sampled, and morphologically characterized. Associations of metals with other compounds like iron oxides and carbonates have been highlighted. The author shows that the contact with the ground results in a higher alteration of particles and in metal mobilisation. She reports the study of lead and zinc localisation in various particles, and of the influence of a change of soil physicochemical conditions (pH decrease, reduction by soil clogging during humid periods) [fr

  16. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    Science.gov (United States)

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-11-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag2O), namely Ag2O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag2O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag2O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag2O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag2O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag2O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag2O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag2O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail.

  17. The influence of narrow optical gap silver oxide on zinc oxide nanoparticles produced by microwave-assisted colloidal synthesis: photocatalytic studies

    International Nuclear Information System (INIS)

    Prakoso, S. P.; Paramarta, V.; Tju, H.; Taufik, A.; Saleh, R.

    2016-01-01

    This paper reports a photocatalytic study on wide band gap zinc oxide (ZnO) incorporated by narrow band gap silver oxide (Ag 2 O), namely Ag 2 O/ZnO nanocomposites, which were prepared by colloidal synthesis with microwave supports. The Ag 2 O/ZnO nanocomposites were prepared with three different molar ratios (MR) of Ag 2 O to ZnO (MR: 0.25, 0.5 and 0.75). In order to confirm qualitatively the concentration ratio of Ag 2 O in ZnO, crystal phase intensity ratio was executed by peak indexing from x-ray diffraction. The Ag 2 O/ZnO nanocomposites properties were further investigated using diffuse reflectance spectroscopy. The nanocomposites were tested for the degradation of organic dyes solutions under visible and UV light irradiations. The photocatalytic activity of Ag 2 O/ZnO nanocomposites under visible light increased with increasing molar ratio of Ag 2 O to ZnO, while the opposite trends observed under UV light irradiation. The improvement of photoabsorption together with photocatalytic activities might be suspected due to the p-n heterojunction structure in Ag 2 O/ZnO nanocomposites. The corresponding mechanism will be discussed in detail. (paper)

  18. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    chloride aggregates at sizes of up to 1 µm were identified both in the epidermis and dermis. The large size of these particles suggests that the aggregation occurred in the skin. The formation of these aggregates likely slowed down the systemic absorption of silver. Conversely, these aggregates may form a reservoir enabling prolonged release of silver ions, which might lead to local effects.Keywords: silver textile, silver release, skin

  19. Flotation of zinc and lead oxide minerals from Olkusz region calamine ores

    Directory of Open Access Journals (Sweden)

    Cichy Krystian

    2016-01-01

    Full Text Available The paper presents chemical and mineralogical characteristics of calamine ore from the Pomorzany mine. A flowsheet for recovery of sulphide minerals of zinc and lead in the form of the Zn-Pb bulk concentrate was presented. In the following part, preparation of the feed for flotation of Zn-Pb oxide minerals and optimal conditions for separation from it iron sulphide minerals, represented by marcasite, were determined. In the final section the results of flotation of Zn-Pb oxide minerals with anionic collector AM2 belonging to the hydroxyamide group of collectors and a cationic collector in the form of a coconut amine, being a mixture of primary aliphatic amines, were presented. Basing on the obtained results, a technological flowsheet for the recovery of Zn-Pb sulphide and oxide minerals from the calamine ore of the Pomorzany mine was presented.

  20. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna

    DEFF Research Database (Denmark)

    Cupi, Denisa; Hartmann, Nanna Isabella Bloch; Baun, Anders

    2015-01-01

    The present study investigated changes in suspension stability and ecotoxicity of engineered nanoparticles (ENPs) by addition of Suwannee River natural organic matter and aging of stock and test suspensions prior to testing. Acute toxicity tests of silver (Ag), zinc oxide (ZnO), and titanium...... not decrease toxicity significantly. Conversely, the presence of Suwannee River natural organic matter (NOM; 20mgL-1) completely alleviated Ag ENP toxicity in all testing scenarios and did not aid in stabilizing suspensions. In contrast, addition of Suwannee River NOM stabilized ZnO ENP suspensions and did...... in stock suspensions. The authors' results suggest that aging and presence of Suwannee River NOM are important parameters in standard toxicity testing of ENPs, which in some cases may aid in gaining better control over the exposure conditions but in other cases might contribute to agglomeration...

  1. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Stability Modification of SPR Silver Nano-Chips by Alkaline Condensation of Aminopropyltriethoxysilane

    Directory of Open Access Journals (Sweden)

    M. Ghorbanpour

    2015-04-01

    Full Text Available The Silver SPR chip was modified by alkaline-silane condensation with aminopropyltriethoxysilane (APTES in NaOH aqueous solution at different times. Silver sputtered slides coated with APTES were immersed in NaOH solution, enabling us to produce silver surfaces homogeneously covered with APTES. The surface properties of grafted APTES on sputtered silver surface as a occasion of time were studied using SPR analysis, AFM and contact angle measurement. The mechanical and chemical stability of samples was assayed by tape test and NaCl test. The answers show that hydrolysis and condensation of APTES are activated in alkaline solution and lead to formation of a protective APTES layer on the surface of silver. The morphology of APTES on silver surface is a function of coverage density that is altered by changing time. At short times (< 30 min, APTES molecules physically adsorb to the surface leads to weak protection. At higher condensation times, APTES molecules chemically bond to the surface and each other leads to better protection.

  3. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  4. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  5. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C.; Verelst, Marc; Dexpert-Ghys, Jeannette; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2008-01-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  6. Leaching assessment of road materials containing primary lead and zinc slags.

    Science.gov (United States)

    Barna, R; Moszkowicz, P; Gervais, C

    2004-01-01

    Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.

  7. Improvements mineral dressing and extraction processes of gold-silver ores from San Pedro Frio Mining District, Colombia

    International Nuclear Information System (INIS)

    Yanez Traslavina, J. J.; Vargas Avila, M. A.; Garcia Paez, I. H.; Pedraza Rosas, J. E.

    2005-01-01

    The San Pedro Frio district mining, Colombia, is a rich region production gold-silver ores. Nowadays, the extraction processes used are amalgamation, percolation cyanidation and precipitation with zinc wood. Due to the ignorance of the ore characteristics, gold and silver treatment processes are inadequate and not efficient. In addition the inappropriate use of mercury and cyanide cause environmental contamination. In this research the ore characterization was carried out obtained fundamental parameters for the technical selection of more efficient gold and silver extraction processes. Experimental work was addressed to the study of both processes the agitation cyanidation and the adsorption on activated carbon in pulp. As a final result proposed a flowsheet to improve the precious metals recovery and reduce the environment contamination. (Author)

  8. Health risk assessment of heavy metals (cadmium, nickel, lead and zinc in withdrawed parsley vegetable from some farms in Hamedan city

    Directory of Open Access Journals (Sweden)

    M Cheraghi

    2014-11-01

    Results: Average concentration of cadmium, nickel, lead and zinc in parsley vegetable is in the order of 1/14, 2/56, 16/65 and 25/23 mg/kg and average concentration of this metals in soil is in the order of 0/23, 23/51, 20/85 and 57/5 mg/kg. Results of this study showed that average concentration of Cadmium and Leadin parsley is above WHO/FAO whereas average concentration of Nickel and Zink in parsleywas assessed less than WHO/FAO. Also the average concentration of every four metals in soil of farms was less than WHO/FAO levels.On the other hand the amount of risk and health index (HRI in parsley for lead metal was above 1 and for cadmium, nickel and zinc metals was less than 1. Conclusion: According to the studing results, cultivated parsley in this area was polluted to the heavy metalsCadmium and Lead, and the results indicates the very easy transferring of this metals from soil to parsley that was not healthy for human daily consumption and risk and health index (HRI that was above 1 for lead metal shows the hygienic potential risk of this metal in relation to the polluted parsley consumption in human daily alimentary diet.

  9. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems

    Science.gov (United States)

    Mboyi, Anza-vhudziki; Kamika, Ilunga; Momba, MaggyN. B.

    2017-08-01

    The widespread use of commercial nanomaterials (NMs) in consumer products has raised environmental concerns as they can enter and affect the efficiency of the wastewater treatment plants. In this study the effect of various concentrations of zinc oxide NMs (nZnO) and silver NMs (nAg) on the selected wastewater bacterial species (Bacillus licheniformis, Brevibacillus laterosporus and Pseudomonas putida) was ascertained at different pH levels (pH 2, 7 and 10). Lethal concentrations (LC) of NMs and parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) were taken into consideration to assess the performance of a wastewater batch reactor. Bacterial isolates were susceptible to varying concentrations of both nZnO and nAg at pH 2, 7 and 10. It was found that a change in pH did not significantly affect the toxicity of test NMs towards target bacterial isolates. All bacterial species were significantly inhibited (p 0.05) in COD removal in the presence of increasing concentrations of NMs, which resulted in increasing releases of COD. Noticeably, there was no significant difference (p > 0.05) in the decrease in DO uptake in the presence of increasing NM concentrations for all bacterial isolates. The toxic effects of the target NMs on bacterial populations in wastewater may negatively impact the performance of biological treatment processes and may thus affect the efficiency of wastewater treatment plants in producing effluent of high quality.

  10. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    Science.gov (United States)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  11. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  12. 76 FR 30027 - National Oil and Hazardous Substance Pollution Contingency Plan; National Priorities List

    Science.gov (United States)

    2011-05-24

    ..., OU8, and OU10 have been partially deleted from the NPL. The Yak Tunnel (OU1), D&RGW Slag Piles and Easement (OU3), Upper California Gulch (OU4), ASARCO Smelter/Colorado Zinc-Lead Mill Site (OU5), Stray..., silver, lead and zinc ore. As these mines were developed, waste rock was excavated along with the ore and...

  13. Experience in production works by X-ray radiometric logging to improve the confidence of borehole cross section sampling for zinc and lead

    International Nuclear Information System (INIS)

    Krasnoperov, V.A.; Zvujkovskij, Z.P.; Budnikov, F.G.; Sheleshko, R.P.

    1977-01-01

    An experiment on the application of roentgenoradiometric logging (RRL) for simultaneous determination of lead and zinc in prospecting boreholes is described. The measurements were made with a GKS-IH spectrometer equipped with modernized logging SP-4 probes of 42 mm in diameter with external units and CPM-19 counters. A radioactive armoured cable KRK-2 was used for transmitting information, the diagrams being recorded on an PR-6 photorecorder. The characteristic lines of the K-series of zinc and the L-series of lead, as well as singly scattered source radiation were recorded. The ranges of the recorded energies were 7-10, 10-15, and 18-21 keV. The spectrometer resolution for the zinc line was 20-23%. The portion of the integral spectrum of the working source with an energy of over 40 keV from the 87-keV line of cadmium-109 was used as a gamma reference. As a result of the investigation it was concluded that the sensitivity threshold of RRL is 3-5 times lower than the limiting content for overbalance ores and meets the prospecting requirements. The errors in the estimate of the contents and linear resources from RRL are commensurate with those of qualitative geological testing

  14. Relationship between zinc protoporphyrin (ZPP) and free erythrocyte protoporphyrin (FEP) in lead-exposed individuals

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, V.; Pripic-Majic, D.; Telis, S.

    1980-11-01

    The relationship between zinc protoporphyrin (ZPP) and total erythrozyte protoporphyrin, measured as free erythrozyte protoporphyrin (FEP), was determined in 194 adult subjects with different occupational and non-occupational lead exposures. Furthermore, the ZPP-FEP comparison was considered with respect to the dose-effect relationship of ZPP and FEP with blood lead (PbB) for males and females, Bilirubin (Bil.) interferences in ZPP analysis were taken into account. A very close and highly significant relationship was established between ZPP and FEP values. A significant correlation between log ZPP or log FEP and PbB was also found. It was established, by both in vitro and in vivo studies, that Bil. interferes with the ZPP fluorescence readings; the relationship between false positive ZPP concentrations and Bil. concentrations was highly significant. A small but highly significant influence of increased carboxyhemoglobin (COHb) concentrations on the decrease in hermatofluorometer ZPP readings, due to inadequate oxygenation of the blood, was found. The results obtained confirm the usefulness of ZPP determinations using hematofluorometers for surveillance of increased lead absorption but stress that the interfering effect of Bil. and to a lesser extent of COHb, cannot be ignored.

  15. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  16. First-year plant density of seeded vegetation on amended lead-zinc chat tailing

    International Nuclear Information System (INIS)

    Norland, M.R.; Veith, D.L.

    1991-01-01

    Mining of lead and zinc sulfides began in the Kansas portion of the Tri-State Mining District in 1976 and continued until the 1950s when a decrease in the demand for lead and zinc forced operations to shut down. As a result of this shallow underground mining, chat tailing and other mine wastes were deposited on the soil surface or as mine waste piles. In 1983, the U.S. EPA added 285 km of Cherokee County, Kansas, to the National Priorities List due to the risks to human health and the environment by heavy metal contamination. In 1985, the EPA declared the Cherokee County portion of the Tri-State District to be a Superfund Site and began remedial action investigations at the Galena, Kansas subsite. The Bureau of Mines is evaluating site stabilization techniques in Galena, to minimize wind and water erosion, infiltration and percolation through the mine wastes. Vegetation and the use of locally available organic wastes are being tested as site stabilization techniques. A 4x3x3 factorial experiment arranged in a randomized complete block was initiated in 1990. Four organic waste materials (composted yard waste, composted cattle manure, spent mushroom compost and turkey litter) were applied with inorganic fertilizer. Control plots were included in the design. A total of 39 combinations were assigned to 2.5 by 4 m test plots at random and each combination was replicated three times. All experimental plots were seeded with a mix of introduced or native and cool or warm season grasses and leguminous forbs. First-year results of this long-term study suggest that the type of organic waste material used as a soil amendment has a significant effect on first-year plant density. Applications of composted cattle manure, composted yard waste and spent mushroom compost resulted in mean plant densities of 90, 83 and 76 plants M-2 which are significantly higher than the mean plant density of control plots and plots amended with turkey litter, 37 and 21 plants M-2

  17. Action of fluorine, lead, and zinc on soils, vegetation and animals in metal works

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, J.; Karweta, S.; Szalonek, I.

    Almost all the activities of industry exert an influence on the biosphere. In examining the complicated problems of the interaction of industry and the biosphere it is necessary to distinguish between three fundamental groups of factors which, without doubt, are destructive. They are: (1) sources which pollute surface and subterranean water thus polluting soils; (2) sources which pollute the atmosphere with solids, gases and, rarely, liquids; and (3) the installations and actions which cause changes in the shape of the land, often connected with the direct devastation of the soil, and influence the hydrology of the area. The authors study the actions of fluorine, lead and zinc in relation to these factors. 4 tables.

  18. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  19. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614–1700 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada)

    2013-05-01

    The increasing applications of different nanomaterials in the myriad of nano-enabled products and their potential for leaching have raised considerable environmental, health and safety (EHS) concerns. As systematic studies investigating potential anomalies in the morphology and anatomy of crop plants are scarce, herein we report on the developmental responses of two agriculturally significant crop plants, maize (Zea mays L.) and cabbage (Brassica oleracea var. capitata L.), upon in vitro exposure to nanoparticles of citrate-coated silver (Citrate–nAg) and zinc oxide (nZnO). Analyses involve histology of the primary root morphology and anatomy using light microscopy, metal biouptake, moisture content, rate of germination, and root elongation. Comparative toxicity profiles of the ionic salts (AgNO{sub 3} and ZnSO{sub 4}) are developed. Notably, we uncover structural changes in maize primary root cells upon exposure to Citrate–nAg, nZnO, AgNO{sub 3}, and ZnSO{sub 4}, possibly due to metal biouptake, suggesting potential for functional impairments in the plant growth and development. Citrate–nAg exposure results in lower Ag biouptake compared to AgNO{sub 3} treatment in maize. Microscopic evidence reveals ‘tunneling-like effect’ with nZnO treatment, while exposure to AgNO{sub 3} leads to cell erosion in maize root apical meristem. In maize, a significant change in metaxylem count is evident with Citrate–nAg, AgNO{sub 3}, and ZnSO{sub 4} treatment, but not with nZnO treatment (p > 0.1). In both maize and cabbage, measures of germination and root elongation reveal lower nanoparticle toxicity compared to free ions. As moisture data do not support osmotically-induced water stress hypothesis for explaining toxicity, we discuss other proximate mechanisms including the potential role of growth hormones and transcription factors. These findings highlight previously overlooked, anatomically significant effects of metal nanoparticles, and recommend considering

  20. Application of granulated lead-zinc slag in concrete as an opportunity to save natural resources

    Science.gov (United States)

    Alwaeli, Mohamed

    2013-02-01

    The last decades marked a period of growth and prosperity in construction industry which involves the use of natural resources. This growth is jeopardized by the lack of natural resources that are available. On the other hand there has been rapid increase in the industrial waste production. Most of the waste do not find any effective use and cause a waste disposal crisis, thereby contributing to health and environmental problems. Recycling of industrial waste as aggregate is thus a logical option to manage this problem. The paper reports on some experimental results obtained from the production of concretes containing granulated slag of lead and zinc industry as sand replacement mixed in different proportions. Granulated slag is substituted for raw sand, partly or totally. Ratios of 25%, 50%, 75% and 100% by weight of sand are used. The effects of granulated lead-zinc slag (GLZS) as sand replacement material on the compressive strength and gamma radiation attenuation properties of concrete are investigated and analyzed. Then, these properties are compared with those of ordinary concrete. The results showed that replacement material have some effects on the compressive strength and gamma radiation properties of the concrete. The experimental results indicate that, the concrete mixed with GLZS as a sand replacement have better strength. Concerning the absorption properties for gamma radiation the data show that the addition of GLZS resulted in an increase of the attenuation of gamma radiation. Consequently, these concretes could be used for construction of shields protecting personnel who work in laboratories where radiation is used. Additionally, the thickness of the concrete with GLZS was calculated and compared with ordinary concrete.

  1. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    International Nuclear Information System (INIS)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H.

    2002-01-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l -1 Pb, 2.5, 5, 10, 20 and 30 mg l -1 Zn, or 0.25, 0.50, 1 and 2 mg l -1 Cu for 14 days, respectively, then tolerance index (TI) and EC 50 (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu

  2. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    Energy Technology Data Exchange (ETDEWEB)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H

    2002-12-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l{sup -1} Pb, 2.5, 5, 10, 20 and 30 mg l{sup -1} Zn, or 0.25, 0.50, 1 and 2 mg l{sup -1} Cu for 14 days, respectively, then tolerance index (TI) and EC{sub 50} (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu.

  3. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    Science.gov (United States)

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  4. Mineral resources of the South Mccullough Mountains Wilderness Study Area, Clark County, Nevada

    International Nuclear Information System (INIS)

    DeWitt, E.; Anderson, J.L.; Barton, H.N.; Jachens, R.C.; Podwysocki, M.H.; Brickey, D.W.; Close, T.J.

    1989-01-01

    The authors present a study of 19,558 acres of the South McCullough Mountains Wilderness Study Area. The study area contains no identified mineral resources and has no areas of high mineral resource potential. However, five areas that make up 20 percent of the study area have a moderate potential either for undiscovered silver, gold, lead, copper, and zinc resources in small vein deposits; for lanthanum and other rare-earth elements, uranium, thorium, and niobium in medium-size carbonatite bodies and dikes; for tungsten and copper in small- to medium-size vein deposits; or for silver and gold in small vein or breccia-pipe deposits. Six areas that makeup 24 percent of the study area have an unknown resource potential either for gold, silver, lead, and copper in small vein deposits; for gold, silver, lead, zinc, copper, and arsenic in small vein or breccia-pipe deposits; for lanthanum and other rare-earth elements, uranium, thorium, and niobium in medium-size carbonatite bodies and dikes; or for tungsten and copper in small vein deposits

  5. Concentration of lead and zinc in greenhouse cucumbers of Hamadan province in 2012

    Directory of Open Access Journals (Sweden)

    Z BigMohammadi

    2013-08-01

    Full Text Available Heavy metal pollution of agricultural soils is a major environmental problem that can affect plant production, food safety and human health. Soil contamination with heavy metals occurs as a result of human activities. Heavy metals can easily accumulate in edible tissues of leafy vegetables, fruits and seeds. Few studies have been conducted on heavy metals concentration in soil and greenhouse crops. Therefore, this study aimed to determine the concentrations of lead (Pb and zinc (Zn in greenhouse cucumbers produced in Hamadan province. The concentrations of heavy metals were measured using atomic emission method. Results showed that the mean concentrations of Pb and Zn in cucumber samples were 0.33 and 3.14 mg/kg, respectively. Also the results of the statistical analysis revealed a negative correlation between the measured concentrations. Moreover, the concentration of Zn in the samples obtained from Hamadan greenhouses and lead concentration in Tuyserkan, Famenin, as well as Malayer samples were above the recommended limits. Daily intake amounts of Pb and Zn from vegetables consumption for three age categories (children, adolescents, and adults were calculated. In conclusion, daily intake of Pb and Zn were determined below the recommended limits.

  6. Bactericidal properties of silver films on intramedullary implants

    Science.gov (United States)

    Gallagher, C.; Walker, C.; Cortes, E.; Hettinger, Jeffrey; Krchnavek, R.; Caputo, G. A.; Ostrum, R.

    2011-03-01

    We report on investigations of silver films on titanium and stainless steel substrates as anti-bacterial coatings for intramedullary nails used in orthopedic trauma. Silver films are deposited using a magnetron sputtering technique from a single elemental target. The deposition parameter (energy, pressure, and temperature) dependence of the silver film microstructure and adhesion will be presented. Preliminary measurements of the effectiveness of the silver films as a bactericide on S. aureus bacteria demonstrate that the films are effective destroying the bacteria. The process of this investigation will be presented. Preliminary transmission electron microscopy measurements will also presented which image healthy and damaged bacteria helping to identify the fundamental mechanism leading to the effectiveness of silver as an anti-bacterial coating. We acknowledge the support of Rowan University, College of Liberal Arts and Sciences.

  7. Lead and zinc accumulation and tolerance in populations of six wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); Department of Environmental Science and Technology, East China Normal University, Shanghai (China); Ye, Z.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275 (China); Wong, M.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-05-15

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices.

  8. Lead and zinc accumulation and tolerance in populations of six wetland plants

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices

  9. Silver nanoparticles in combination with acetic acid and zinc oxide quantum dots for antibacterial activities improvement—A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sedira, Sofiane, E-mail: sofianebilel@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Ayachi, Ahmed Abdelhakim, E-mail: ayachi-med@hotmail.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Lakehal, Sihem, E-mail: lakehal.lakehal@gmail.com [Ceramic Laboratory, University of Constantine1, Constantine (Algeria); Fateh, Merouane, E-mail: merouane.fateh@gmail.com [Microbiological Laboratory Engineering and Application, University of Constantine1, Constantine (Algeria); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [Ceramic Laboratory, University of Constantine1, Constantine (Algeria)

    2014-08-30

    Graphical abstract: - Highlights: • Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method. • Ag NPs exert their bactericidal effect mainly by Ag{sup +} ions. • CH{sub 3}COOH addition to Ag NPs improves bactericidal effect more than ZnO Qds addition. • E. coli and P. aeruginosa are more sensitive to NPs than K. pneumonia and S. aureus. - Abstract: Due to their remarkable antibacterial/antivirus properties, silver nanoparticles (Ag NPs) and zinc oxide quantum dots (ZnO Qds) have been widely used in the antimicrobial field. The mechanism of action of Ag NPs on bacteria was recently studied and it has been proven that Ag NPs exerts their antibacterial activities mainly by the released Ag{sup +}. In this work, Ag NPs and ZnO Qds were synthesized using polyol and hydrothermal method, respectively. It was demonstrated that Ag NPs can be oxidized easily in aqueous solution and the addition of acetic acid can increase the Ag{sup +} release which improves the antibacterial activity of Ag NPs. A comparative study between bactericidal effect of Ag NPs/acetic acid and Ag NPs/ZnO Qds on Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus was undertaken using agar diffusion method. The obtained colloids were characterized using UV–vis spectroscopy, Raman spectrometry, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM)

  10. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    International Nuclear Information System (INIS)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam; Schmidt, Éder C.; Meder, Fabian; Monopoli, Marco; Cargnin-Ferreira, Eduardo; Bouzon, Zenilda L.; Fisher, Andrew S.; Sheehan, David; Dafre, Alcir L.

    2014-01-01

    count). At 24 h post exposure, decreased (−29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (−28%) and levels of protein thiols (−21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (−47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas

  11. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Schmidt, Éder C. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Meder, Fabian; Monopoli, Marco [Centre for Bionano Interactions, University College Dublin, Dublin (Ireland); Cargnin-Ferreira, Eduardo [Federal Institute of Santa Catarina, Campus Garopaba, Laboratory of Histological Markers, 88495-000 Garopaba, SC (Brazil); Bouzon, Zenilda L. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Fisher, Andrew S. [School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA Plymouth (United Kingdom); Sheehan, David [Department of Biochemistry, University College Cork, Cork (Ireland); Dafre, Alcir L., E-mail: alcir.dafre@ufsc.br [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-08-15

    hemocyte count). At 24 h post exposure, decreased (−29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (−28%) and levels of protein thiols (−21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (−47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas.

  12. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    Science.gov (United States)

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  13. Facile fabrication of silver nanoparticles with temperature-responsive sizes as highly active SERS substrates

    Science.gov (United States)

    Wu, Jing; Fang, Jinghuai; Cheng, Mingfei; Gong, Xiao

    2016-12-01

    In our work, large-scale silver NPs (nanoparticles) are successfully synthesized on zinc foils with controllable size by regulating the temperature of the displacement reaction. Our results show that when the temperature is 70 °C, the average size of silver NPs is approximately 88 nm in diameter, and they exhibit the strongest SERS activity. The gap between nanoparticles is simultaneously regulated as near as possible, which produces abundant "hot spots" and nanogaps. Crystal violet (CV) was used as probe molecules, and the SERS signals show that the values of relative standard deviation in the intensity of the main vibration modes are less than 10%, demonstrating excellent reproducibility of the silver NPs. Furthermore, the high surface-average enhancement factor of 3.86 × 107 is achieved even when the concentration of CV is 10-7 M, which is sufficient for single-molecule detection. We believe that this low cost and rapid route would get wide applications in chemical synthesis.

  14. Lead, cadmium, and zinc concentrations in plaster and mortar from structures in Jasper and Newton Counties, Missouri (Tri-State Mining District)

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Phyllis M [Chemistry Department, Southwest Missouri State University, 901 S. National Avenue, Springfield, MO 65804 (United States); Pavlik, Jeffrey W [Chemistry Department, Southwest Missouri State University, 901 S. National Avenue, Springfield, MO 65804 (United States); Sheets, Ralph W [Chemistry Department, Southwest Missouri State University, 901 S. National Avenue, Springfield, MO 65804 (United States); Biagioni, Richard N [Chemistry Department, Southwest Missouri State University, 901 S. National Avenue, Springfield, MO 65804 (United States)

    2005-01-05

    The primary goal of this study was to evaluate anecdotal evidence that within Jasper and Newton Counties, Missouri, two counties within the Tri-State Mining District, granular mine tailings were commonly used in place of river sands in wall plasters and mortar. Interior wall plaster and mortar samples from structures in this mining district were analyzed for lead, cadmium, and zinc, and compared to samples from Springfield, MO (comparison site). The Jasper and Newton County samples showed elevated concentrations of the three elements, consistent with the inclusion of mine tailings, with a number of samples containing lead and cadmium at concentrations greater than EPA remediation targets for yard soil. X-ray diffraction studies showed the presence of the zinc ore minerals, sphalerite and hemimorphite, in high level samples. Thin section optical studies identified the major component of the aggregate as chert, a mineral abundant within the tailing piles. Because dust from crumbling plaster and mortar could represent an avenue for significant heavy metal exposure to building occupants, we suggest that there may be associated health consequences that should be further evaluated.

  15. Lead, cadmium, and zinc concentrations in plaster and mortar from structures in Jasper and Newton Counties, Missouri (Tri-State Mining District)

    International Nuclear Information System (INIS)

    Perry, Phyllis M.; Pavlik, Jeffrey W.; Sheets, Ralph W.; Biagioni, Richard N.

    2005-01-01

    The primary goal of this study was to evaluate anecdotal evidence that within Jasper and Newton Counties, Missouri, two counties within the Tri-State Mining District, granular mine tailings were commonly used in place of river sands in wall plasters and mortar. Interior wall plaster and mortar samples from structures in this mining district were analyzed for lead, cadmium, and zinc, and compared to samples from Springfield, MO (comparison site). The Jasper and Newton County samples showed elevated concentrations of the three elements, consistent with the inclusion of mine tailings, with a number of samples containing lead and cadmium at concentrations greater than EPA remediation targets for yard soil. X-ray diffraction studies showed the presence of the zinc ore minerals, sphalerite and hemimorphite, in high level samples. Thin section optical studies identified the major component of the aggregate as chert, a mineral abundant within the tailing piles. Because dust from crumbling plaster and mortar could represent an avenue for significant heavy metal exposure to building occupants, we suggest that there may be associated health consequences that should be further evaluated

  16. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  17. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    OpenAIRE

    Mehmet Akif Özcan

    2015-01-01

    The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloida...

  18. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  19. Solid-state superionic stamping with silver iodide-silver metaphosphate glass

    International Nuclear Information System (INIS)

    Jacobs, K E; Hsu, K H; Han, X; Azeredo, B P; Ferreira, P M; Kumar, A; Fang, N X

    2011-01-01

    This paper demonstrates and analyzes the new use of the glassy solid electrolyte AgI-AgPO 3 for direct nanopatterning of thin silver films with feature resolutions of 30 nm. AgI-AgPO 3 has a high room temperature ionic conductivity with Ag + as the mobile ion, leading to silver etch/patterning rates of up to 20 nm s -1 at an applied bias of 300 mV. The glass can be melt-processed at temperatures below 200 deg. C, providing a facile and economical pathway for creating large area stamps, including the 25 mm 2 stamps shown in this study. Further, the glass is sufficiently transparent to permit integration with existing tools such as aligners and imprint tools, enabling high overlay registration accuracy and facilitating insertion into multi-step fabrication recipes.

  20. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    Science.gov (United States)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies

  1. Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.

    Science.gov (United States)

    Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide

    2016-03-01

    The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.

  2. Effects of mining-associated lead and zinc soil contamination on native floristic quality.

    Science.gov (United States)

    Struckhoff, Matthew A; Stroh, Esther D; Grabner, Keith W

    2013-04-15

    We assessed the quality of plant communities across a range of lead (Pb) and zinc (Zn) soil concentrations at a variety of sites associated with Pb mining in southeast Missouri, USA. In a novel application, two standard floristic quality measures, Mean Coefficient of Conservatism (Mean C) and Floristic Quality Index (FQI), were examined in relation to concentrations of Pb and Zn, soil nutrients, and other soil characteristics. Nonmetric Multidimensional Scaling and Regression Tree Analyses identified soil Pb and Zn concentrations as primary explanatory variables for plant community composition and indicated negative relationships between soil metals concentrations and both Mean C and FQI. Univariate regression also demonstrated significant negative relationships between metals concentrations and floristic quality. The negative effects of metals in native soils with otherwise relatively undisturbed conditions indicate that elevated soil metals concentrations adversely affect native floristic quality where no other human disturbance is evident. Published by Elsevier Ltd.

  3. Potentiometric titration of zinc and cadmium in electrolytes of in galvanic baths

    International Nuclear Information System (INIS)

    Kosyuga, E.A.; Kalugin, A.A.; Gur'ev, I.A.

    1979-01-01

    The method of potentiometric titration of zinc and cadmium by complexone 3 in electrolytes of galvanic baths using sulphide - silver electrode for determining the finite point of titration is suggested. Copper (2) ions are proposed as indicator ions. The potentiometric determination should be performed at pH=10. The method is verified on model electrolyte solutions and on the electrolyte solutions of operating baths.The technique can be used for automatic control. The time for analysis is 10 minutes

  4. Green synthesis of silver nanoparticles and silver colloidal solutions

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  5. Antibacterial properties and mechanisms of gold-silver nanocages

    Science.gov (United States)

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  6. A review of silver-rich mineral deposits and their metallogeny

    Science.gov (United States)

    Graybeal, Frederick T.; Vikre, Peter

    2010-01-01

    Mineral deposits with large inventories or high grades of silver are found in four genetic groups: (1) volcanogenic massive sulfide (VMS), (2) sedimentary exhalative (SEDEX), (3) lithogene, and, (4) magmatichydrothermal. Principal differences between the four groups relate to source rocks and regions, metal associations, process and timing of mineralization, and tectonic setting. These four groups may be subdivided into specific metal associations on ternary diagrams based on relative metal contents. The VMS deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 33 g/t Ag. Variable Ag- Pb-Zn-Cu-Au ± Sn concentrations are interpreted as having been derived both from shallow plutons and by leaching of the volcanic rock pile in regions of thin or no continental crust and the mineralization is syngenetic. Higher silver grades are associated with areas of abundant felsic volcanic rocks. The SEDEX deposits rarely contain more than 15,600 t Ag (500 Moz). Grades average 46 g/t Ag. Silver, lead, and zinc in relatively consistent proportions are leached from sedimentary rocks filling rift-related basins, where the continental crust is thin, and deposited as syngenetic to diagenetic massive sulfides. Pre-mineral volcanic rocks and their detritus may occur deep within the basin and gold is typically absent. Lithogene silver-rich deposits are epigenetic products of varying combinations of compaction, dewatering, meteoric water recharge, and metamorphism of rift basin-related clastic sedimentary and interbedded volcanic rocks. Individual deposits may contain more than 15,600 t Ag (500 Moz) at high grades. Ores are characterized by four well-defined metal associations, including Ag, Ag-Pb-Zn, Ag-Cu, and Ag-Co-Ni-U. Leaching, transport, and deposition of metals may occur both in specific sedimentary strata and other rock types adjacent to the rift. Multiple mineralizing events lasting 10 to 15 m.y., separated by as much as 1 b.y., may occur in a single basin

  7. Precipitation of gold and silver from cyanide solutions by hydrated electrons generated by ionizing radiation

    International Nuclear Information System (INIS)

    Chernyak, A.S.; Zhigunov, V.A.; Shepot'ko, M.L.; Smirnov, G.I.; Dolin, P.I.; Bobrova, A.S.; Khikin, G.I.

    1981-01-01

    Redox reactions are widely used in chemistry and chemical engineering for the precipitation of noble metals, since this general class of reactions offers the possibility of selective recovery of these metals from solutions that are complex in composition. The classical method for precipitation of gold and silver from cyanide process solutions is reduction by metallic zinc. This process has certain advantages, and it is easy to carry out under plant conditions with high indices of efficiency. However, the precipitation of gold and silver is accompanied by contamination of the solutions with zinc ions, which makes it difficult to recycle the cyanide solutions; also, additional treatment of the precipitates is required before they are directed to the refining process. Hence, greater quantities of reagents are required, the process conversion becomes more complicated, and the cost of producing the metals is higher. All of these factors make it attractive to seek new methods for processing cyanide solutions that do not have these shortcomings. An interesting approach to the solution of this problem is the use of so-called ''reagentless'' precipitation methods, among which we may class the reduction of gold and silver to the metallic state in cyanide solutions by hydrated electrons generated by ionizing radiation. The significant advances that have been made in research on the hydrated electron, along with data indicating that it is feasible, at least in principle, to use the hydrated electron for industrial purposes, have been the stiumlus for setting up the studies that are reported here

  8. Lead toxicity on hematological parameters in workers with occupational exposure to lead

    International Nuclear Information System (INIS)

    Dursun, N.; Koese, K.

    1998-01-01

    The effects of lead on hematological parameters were studied in lead exposed male workers occupied for 17.84+-4.22 years in a metal powder producing factory in Kayseri, Turkey and control male workers in same city. Blood lead and plasma zinc levels were measured by Atomic Absorption Spectrophotometry (AAS) and hematological parameters by Culture Counter S. The lead exposure workers had higher lead levels (13.81+- 9.21 mug/dl) as compared to control subjects (2.37+-0.10 mug/dl). No difference was observed in the plasma zinc levels of both groups. As indices of lead exposure, red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Hct) values significantly decreased. Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC) significantly increased except MCV. There was also an increase in MCV, but it was not significant. (author)

  9. Silver Nanoparticles and Studies on Using in Poultry Nutrition

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Özcan

    2015-02-01

    Full Text Available The use of colloidal silver as an antibiotic was becoming widespread until the 1940s. However, with the discovery of antibiotics, usage of colloidal silver had been reduced because of being expensive. The fact that bacteria develop resistance to antibiotics lead to prohibiton the usage of antibiotics in poultry diets as growth promoters. Based on these developments reuse of colloidal silver has been raised as an alternative to antibiotics. Without prejudice to the beneficial enzymes, colloidal silver disables certain enzymes needed by bacteria, viruses, yeasts, and fungus resulting in the destruction of these enzymes. It is reported that increase in surface area of nano-particles of silver increase antibacterial activity. The most important limitation on the widespread use of silver nanoparticles as feed additives is uncertainty about the possible toxic effects. In this review, studies for the use of colloidal silver particles in poultry feed were evaluated and tried to seek answer the question “may be a new resource that can be used as an alternative to antibiotics?

  10. Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure.

    Directory of Open Access Journals (Sweden)

    Jens Boenigk

    Full Text Available Among metal pollutants silver ions are one of the most toxic forms, and have thus been assigned to the highest toxicity class. Its toxicity to a wide range of microorganisms combined with its low toxicity to humans lead to the development of a wealth of silver-based products in many bactericidal applications accounting to more than 1000 nano-technology-based consumer products. Accordingly, silver is a widely distributed metal in the environment originating from its different forms of application as metal, salt and nanoparticle. A realistic assessment of silver nanoparticle toxicity in natural waters is, however, problematic and needs to be linked to experimental approaches. Here we apply metatranscriptome sequencing allowing for elucidating reactions of whole communities present in a water sample to stressors. We compared the toxicity of ionic silver and ligand-free silver nanoparticles by short term exposure on a natural community of aquatic microorganisms. We analyzed the effects of the treatments on metabolic pathways and species composition on the eukaryote metatranscriptome level in order to describe immediate molecular responses of organisms using a community approach. We found significant differences between the samples treated with 5 µg/L AgNO3 compared to the controls, but no significant differences in the samples treated with AgNP compared to the control samples. Statistical analysis yielded 126 genes (KO-IDs with significant differential expression with a false discovery rate (FDR <0.05 between the control (KO and AgNO3 (NO3 groups. A KEGG pathway enrichment analysis showed significant results with a FDR below 0.05 for pathways related to photosynthesis. Our study therefore supports the view that ionic silver rather than silver nanoparticles are responsible for silver toxicity. Nevertheless, our results highlight the strength of metatranscriptome approaches for assessing metal toxicity on aquatic communities.

  11. Page 1 606 Ethiopian Journal of Environmental Studies ...

    African Journals Online (AJOL)

    USER

    2015-07-27

    Jul 27, 2015 ... recovered as minerals (McLean and. Bledsoe, 1992). ... include iron, arsenic, lead, lead-zinc, cobalt, gold-silver ... essential metals have no known functions or benefits in the ..... (2001). 'Heavy metal interactions in soils and ...

  12. Zinc oxide nano-rods based glucose biosensor devices fabrication

    Science.gov (United States)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  13. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  14. Influence of thickness and coatings morphology in the antimicrobial performance of zinc oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Sampaio, P. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Azevedo, S. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Vaz, C. [CBMA, University of Minho, Campus de Gualtar, 4700 Braga (Portugal); Espinós, J.P. [Instituto de Ciencia de Materiales de Sevilla, CSIC-University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla (Spain); Teixeira, V., E-mail: vasco@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal); Carneiro, J.O., E-mail: carneiro@fisica.uminho.pt [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimaraes (Portugal)

    2014-07-01

    In this research work, the production of undoped and silver (Ag) doped zinc oxide (ZnO) thin films for food-packaging applications were developed. The main goal was to determine the influence of coatings morphology and thickness on the antimicrobial performance of the produced samples. The ZnO based thin films were deposited on PET (Polyethylene terephthalate) substrates by means of DC reactive magnetron sputtering. The thin films were characterized by optical spectroscopy, X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The antimicrobial performance of the undoped and Ag-doped ZnO thin films was also evaluated. The results attained have shown that all the deposited zinc oxide and Ag-doped ZnO coatings present columnar morphology with V-shaped columns. The increase of ZnO coatings thickness until 200 nm increases the active surface area of the columns. The thinner samples (50 and 100 nm) present a less pronounced antibacterial activity than the thickest ones (200–600 nm). Regarding Ag-doped ZnO thin films, it was verified that increasing the silver content decreases the growth rate of Escherichia coli and decreases the amount of bacteria cells present at the end of the experiment.

  15. Catalytic effects of silver plasmonic nanoparticles on the redox reaction leading to ABTS˙+ formation studied using UV-visible and Raman spectroscopy.

    Science.gov (United States)

    Garcia-Leis, A; Jancura, D; Antalik, M; Garcia-Ramos, J V; Sanchez-Cortes, S; Jurasekova, Z

    2016-09-29

    ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) is a compound extensively employed to evaluate the free radical trapping capacity of antioxidant agents and complex mixtures such as biological fluids or foods. This evaluation is usually performed by using a colourimetric experiment, where preformed ABTS radical cation (ABTS˙ + ) molecules are reduced in the presence of an antioxidant causing an intensity decrease of the specific ABTS˙ + UV-visible absorption bands. In this work we report a strong effect of silver plasmonic nanoparticles (Ag NPs) on ABTS leading to the formation of ABTS˙ + . The reaction of ABTS with Ag NPs has been found to be dependent on the interfacial and plasmonic properties of NPs. Specifically, this reaction is pronounced in the presence of spherical nanoparticles prepared by the reduction of silver nitrate with hydroxylamine (AgH) and in the case of star-shaped silver nanoparticles (AgNS). On the other hand, spherical nanoparticles prepared by the reduction of silver nitrate with citrate apparently do not react with ABTS. Additionally, the formation of ABTS˙ + is investigated by surface-enhanced Raman scattering (SERS) and the assignment of the most intense vibrational bands of this compound is performed. The SERS technique enables us to detect this radical cation at very low concentrations of ABTS (∼2 μM). Altogether, these findings allow us to suggest the use of ABTS/Ag NPs-systems as reliable and easy going substrates to test the antioxidant capacity of various compounds, even at concentrations much lower than those usually used in the spectrophotometric assays. Moreover, we have suggested that ABTS could be employed as a suitable agent to investigate the interfacial and plasmonic properties of the metal nanoparticles and, thus, to characterize the nanoparticle metal systems employed for various purposes.

  16. Preconcentration of silver as silver xanthate on activated carbon

    International Nuclear Information System (INIS)

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  17. Application of SIMS to the study of selective deposition of trace amounts of lead and bismuth from solution onto the metals nickel and silver

    International Nuclear Information System (INIS)

    Smith, D.; Peck, G.

    1996-01-01

    Full text: The natural 233 U decay series includes the trio 210 Pb, 210 Bi and 210 Po. These are useful in estimating rates of environmental processes and 210 Po is a major contributor to the radiation dose of marine organisms. To develop an understanding of the distribution of these closely related radionuclides in the environment it is necessary to be able to measure all three. Accurate measurements depend on preliminary separation of the nuclides. Isolation and measurement of 210 Bi has been a continuing problem and this has restricted the study of the role of this nuclide in environmental processes. We have developed a sample preparation that includes plating polonium from solution onto a silver disc then plating bismuth onto a nickel disc and leaving the lead in solution. The 210 Bi is measured by Cerenkov counting. Any 210 Pb plating onto nickel with the bismuth would interfere in subsequent counting as it decays rapidly to 210 Bi. We have used SIMS (Secondary Ion Mass Spectrometry) to measure bismuth and lead deposited on the nickel and silver discs. This is possible because the stable isotopes of the four elements do not overlap. SIMS is especially appropriate for this study as the Bi and Pb deposited as thin films on the metal surface. Careful selection of experimental conditions allowed quantitative measurements of lead and bismuth without mutual interference. The results have been used in developing plating conditions that optimise separation of lead and bismuth

  18. Mineral Resources of the Morey and Fandango Wilderness Study Areas, Nye County, Nevada

    Science.gov (United States)

    John, David A.; Nash, J. Thomas; Plouff, Donald; McDonnell, John R.

    1987-01-01

    The Morey (NV-060-191) and Fandango (NV-060-190) Wilderness Study Areas are located in the northern Hot Creek Range about 25 mi north of Warm Springs, Nev. At the request of the Bureau of Land Management, 46,300 acres of the Morey and Fandango Wilderness Study Areas were studied. In this report, the area studied is referred to as 'the wilderness study area', or simply 'the study area'. Geologic, geochemical, geophysical, and mineral surveys were conducted by the USGS and the USBM in 1984 to appraise the identified mineral resources and to assess the mineral resource potential of the study areas. These studies indicate that there are small identified resources of zinc, lead, and silver at the Lead Pipe property in the Fandango Wilderness Study Area, several areas of high potential for the occurrence of gold resources in the Fandango study area, small areas of low and moderate potential for the occurrence of silver, lead, and zinc resources in the Fandango study area, areas of moderate and high potential for the occurrence of silver, lead, and zinc resources in the Morey study area, and an area of low potential for copper, molybdenum, and tin in the Morey study area. Both study areas have low resource potential for petroleum, natural gas, uranium, and geothermal energy.

  19. A facile route to synthesize nanogels doped with silver nanoparticles

    Science.gov (United States)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, 160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, 5 nm) are synthesized "in situ" in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  20. 40 CFR 60.381 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... control device. Control device means the air pollution control equipment used to reduce particulate matter..., copper, gold, iron, lead, molybdenum, silver, titanium, tungsten, uranium, zinc, and zirconium. This...

  1. Properties of tire rubber with zinc-containing technological additives

    Directory of Open Access Journals (Sweden)

    S. N. Kayushnikov

    2017-01-01

    Full Text Available In this paper, we studied the influence of zinc-containing technological additives on partial replacement of zinc oxide and stearic acid on deformation-strength and performance properties of tire elastomeric compositions based on polyisoprene rubber and combination of oil-filled butadiene-styrene and polybutadiene rubbers. It was revealed that partial replacement of zinc oxide and stearic acid with zinc-containing technological additives does not significantly affect the basic physico-mechanical properties of rubbers based on synthetic rubbers of general use. It was determined that the introduction of zinc-containing technological additives SCC2 in combination with zinc oxide in all the studied ratios and SCC3 in combination with zinc oxide in 4: 1 and 3: 1 ratios leads to increase (up to 10.4% of the resistance of these rubbers under the action of temperature-force fields, which is probably due to a more even distribution of polar components of curing system in non-polar elastomeric matrix, as well as the type of cross-links formed during vulcanization under the action of surface-active additives. It has been found that the introduction of zinc-containing additives into the elastomeric compositions based on SRMS-30 ARKM-15 + SRD in combination with zinc oxide leads to increase to 6.3% of wear resistance of rubbers, which may be due to a lower defectiveness of vulcanization structure of these rubbers, concentration of stress centers in the material. For rubbers based on SRI-3, preservation of bond strength of rubber with a textile cord at a sufficiently high level is shown.

  2. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  3. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  4. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    Science.gov (United States)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2015-03-01

    The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in "FORTRAN-77", has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  5. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  6. Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes.

    Science.gov (United States)

    Yu, Jong-Su; Kim, Inyoung; Kim, Jung-Su; Jo, Jeongdai; Larsen-Olsen, Thue T; Søndergaard, Roar R; Hösel, Markus; Angmo, Dechan; Jørgensen, Mikkel; Krebs, Frederik C

    2012-09-28

    Semitransparent front electrodes for polymer solar cells, that are printable and roll-to-roll processable under ambient conditions using different approaches, are explored in this report. The excellent smoothness of indium-tin-oxide (ITO) electrodes has traditionally been believed to be difficult to achieve using printed front grids, as surface topographies accumulate when processing subsequent layers, leading to shunts between the top and bottom printed metallic electrodes. Here we demonstrate how aqueous nanoparticle based silver inks can be employed as printed front electrodes using several different roll-to-roll techniques. We thus compare hexagonal silver grids prepared using either roll-to-roll inkjet or roll-to-roll flexographic printing. Both inkjet and flexo grids present a raised topography and were found to perform differently due to only the conductivity of the obtained silver grid. The raised topographies were compared with a roll-to-roll thermally imprinted grid that was filled with silver in a roll-to-roll process, thus presenting an embedded topography. The embedded grid and the flexo grid were found to perform equally well, with the flexographic technique currently presenting the fastest processing and the lowest silver use, whereas the embedded grid presents the maximally achievable optical transparency and conductivity. Polymer solar cells were prepared in the same step, using roll-to-roll slot-die coating of zinc oxide as the electron transport layer, poly-3-hexylthiophene:phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) as the active layer and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the top electrode, along with a flat bed screen printed silver grid. The power conversion efficiency (PCE) obtained for large area devices (6 cm(2)) was 1.84%, 0.79% and 1.72%, respectively, for thermally imprinted, inkjet and flexographic silver grids, tested outside under the real sun. Central to all three approaches was that they

  7. A facile route to synthesize nanogels doped with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Coll Ferrer, M. Carme [University of Pennsylvania, Department of Materials Science (United States); Ferrier, Robert C. [University of Pennsylvania, Department of Chemical and Biomolecular Engineering (United States); Eckmann, David M. [University of Pennsylvania, Department of Anesthesiology and Critical Care (United States); Composto, Russell J., E-mail: composto@seas.upenn.edu [University of Pennsylvania, Department of Materials Science (United States)

    2013-01-15

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core-shell polymer host containing silver nanoparticles. First, the nanogels (NG, {approx}160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, {approx}5 nm) are synthesized 'in situ' in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  8. A facile route to synthesize nanogels doped with silver nanoparticles

    International Nuclear Information System (INIS)

    Coll Ferrer, M. Carme; Ferrier, Robert C.; Eckmann, David M.; Composto, Russell J.

    2013-01-01

    In this study, we describe a simple method to prepare hybrid nanogels consisting of a biocompatible core–shell polymer host containing silver nanoparticles. First, the nanogels (NG, ∼160 nm) containing a lysozyme rich core and a dextran rich shell, are prepared via Maillard and heat-gelation reactions. Second, silver nanoparticles (Ag NPs, ∼5 nm) are synthesized “in situ” in the NG solution without requiring additional reducing agents. This approach leads to stable Ag NPs located in the NG. Furthermore, we demonstrate that the amount of Ag NPs in the NG can be tuned by varying silver precursor concentration. Hybrid nanogels with silver nanoparticles have potential in antimicrobial, optical, and therapeutic applications.

  9. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  10. Determination of Zinc Status in Humans: Which Indicator Should We Use?

    Directory of Open Access Journals (Sweden)

    Frank T. Wieringa

    2015-05-01

    Full Text Available Zinc deficiency has serious wide-ranging health consequences and is thought to be one of the most prevalent micronutrient deficiencies in the world. However, reliable indicators or biomarkers to assess zinc status are not available at present. Indirect indicators such as the prevalence of stunting or anemia, iron deficiency, as well as more direct indicators such as plasma zinc concentrations are being used at present to estimate the prevalence of zinc deficiency in populations. However, as this paper shows by using data from a recent national micronutrient survey in Vietnam, the estimates of the prevalence of zinc deficiency using these different indicators can vary widely, leading to inconsistencies. In this paper, zinc deficiency among children is four times more prevalent than iron deficiency and 2.3 times more than stunting prevalence for example. This can lead not only to confusion concerning the real extent of the prevalence of zinc deficiency in populations, but also makes it hard to inform policy on whether action is needed or not. Moreover, evaluation of programs is hampered by the lack of a clear indicator. Efforts should be made to identify the most suitable indicator to evaluate the impact of programs aimed at improving zinc status and health of populations.

  11. Pyrolysis Gas as a Renewable Reducing Agent for the Recycling of Zinc- and Lead-Bearing Residues: A Status Report

    Science.gov (United States)

    Pichler, C.; Antrekowitsch, J.

    2017-04-01

    The topic "Zero Waste" has been in existence for several years in the industry, and the metallurgical industry has also made efforts to reduce the amounts of residues occurring and have started several investigations to cut down on metallurgical by-products which have to be landfilled. Especially, the additional costs for CO2 emissions in different metallurgical steps have led to investigations into alternative carbon carriers. Charcoal has been identified to serve as an ideal substitute due its CO2-neutrality. For the applications of this renewable carbon carrier in metallurgical processes, charcoal production by means of a carbonization process needs to be optimized. As a by-product during the heating of agricultural wastes or wood by excluding air, pyrolysis gas occurs. Due to the existence of combustible compounds in this gas, an application as a reduction agent instead of fossil carbon carriers in metallurgy is possible. Based on the prevention of dumping metallurgical by-products, an investigation has been developed to treat zinc- and lead-containing materials. To realize this, a dedicated process concept has been designed and developed. As the main focuses, the usage of the pyrolysis gas from charcoal production for the Waelz kiln process and the recycling of zinc- and lead-containing Waelz slag, resulting from the processing of steel mill dust in a vertical retort, have to be mentioned. Within this research, the process concept was executed from laboratory-scale up to pilot-scale testing, described in this article.

  12. Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review.

    Science.gov (United States)

    Hadrup, Niels; Lam, Henrik R

    2014-02-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least a factor of five before a level of concern to the general population is reached. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  14. Trace elements studies on Karachi population part IV: blood copper, zinc, magnesium and lead levels in psychiatric patients with depression, mental retardation and seizure disorder

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood copper, zinc, magnesium and lead levels were determined by atomic absorption spectroscopy for 15 males and 16 female suffering from depression, 6 males and 1 female with mental retardation and 3 males and 4 females with seizure disorders. They were all under no medication and belong to low income groups. No difference in copper levels was found between the sexes in any of the groups. The levels in all the groups were significantly higher than in the normals. In depressives, males had significantly higher zinc levels than females and only female depressives had lower levels from normals. In both depressives and normals, males had higher magnesium levels than females but no group of patients had significantly different levels from normals. Lead levels were significantly higher in female depressives and for those with seizure disorders than for controls. At least one metal abnormality was found in 21 (67.7%) depressive, 5 (71.4%) of those with mental retardation and 6 (85.7%) with seizure disorders. (author)

  15. Analysis of Catalonian silver coins from the Spanish War of Independence period (1808-1814) by Energy Dispersive X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Pitarch, A., E-mail: apitarch@ija.csic.e [Laboratory of X-Ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' - ICTJA, Spanish Council for Scientific Research - CSIC, Lluis Sole Sabaris s/n, 08028 Barcelona (Spain); Queralt, I. [Laboratory of X-Ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' - ICTJA, Spanish Council for Scientific Research - CSIC, Lluis Sole Sabaris s/n, 08028 Barcelona (Spain); Alvarez-Perez, A. [Department of Geology, Faculty of Sciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-02-01

    Between the years 1808 and 1814, the Spanish War of Independence took place. This period, locally known as 'Guerra del Frances', generated the need for money and consequently five mints were opened around the Catalan territory. To mark the 200th anniversary of the beginning of the war, an extensive campaign of Energy Dispersive X-ray Fluorescence measurements of some of these 'emergency coins' was carried out. Apart from the silver (major constituent of all the studied coins) it has been possible to recognize copper as main metal alloying element. Likewise, the presence of zinc, tin, lead, gold, platinum, antimony, nickel and iron has been also identified. The obtained results have been useful not only for the characterization of the alloys, but also to determine the differences and analogies between the emissions and for historical explanations.

  16. 40 CFR 302.6 - Notification requirements.

    Science.gov (United States)

    2010-07-01

    ..., phosphate, tin, zircon, hafnium, vanadium, monazite, and rare earth mines. Land disturbance incidental to..., chromium, copper, lead, nickel, selenium, silver, thallium, or zinc is not required if the mean diameter of...

  17. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  18. Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus.

    Directory of Open Access Journals (Sweden)

    Rebekah L Scheuerle

    Full Text Available Zinc delivery from a nipple shield delivery system (NSDS, a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32-51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch's correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.

  19. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites

    Science.gov (United States)

    Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.

    2016-01-01

    Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708

  20. Jewellery

    DEFF Research Database (Denmark)

    Hamann, Dathan; Thyssen, Jacob P; Hamann, Carsten R

    2015-01-01

    and lead release by the use of artificial sweat immersion and plasma optical emission spectroscopy. RESULTS: Eighteen elements were detected. The 10 most frequently occurring were, in order of frequency, copper, iron, zinc, nickel, silver, chromium, tin, manganese, lead, and cobalt. Release of nickel...

  1. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    International Nuclear Information System (INIS)

    Meyer, A.; Flege, I.; Senanayake, S.; Kaemena, B.; Rettew, R.; Alamgir, F.; Falta, J.

    2011-01-01

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  2. The lifecycle of silver in the United States in 2009

    Science.gov (United States)

    Goonan, Thomas G.

    2014-01-01

    Because silver is highly sought after for its properties, which make it eminently suitable for new technology applications, a clear understanding of the flow of materials in the economy, the historical context, and trends for the future can help project the future of silver in the economy of the United States. Silver has many properties that are desired in today’s economy. It has superior electrical and heat conductivity, chemical stability, high-temperature strength, malleability, and other characteristics that make it important in high-tech electronic and other industrial applications. Because it is relatively scarce as a natural resource and is easily coined, silver historically has been an important monetary metal. As knowledge of silver chemistry has increased, many industrial end uses have been developed. This study reviews the flows of silver into various end uses and examines the nature of the end use with respect to the silver properties desired and the ability of the end use to produce recyclable end-of-life materials. For the most part, silver can be profitably recycled, but the recycling activity is helped by tipping fees (fees imposed on scrap generators by scrap collectors for taking the material) for materials that might otherwise be regulated as hazardous wastes. New high-technology applications use silver in nanolevel amounts, leading to a potential for dissipative loss and reduced recycling capability.

  3. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  4. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  5. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli ...

    African Journals Online (AJOL)

    To study the antibacterial mechanisms, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to observe morphological changes of E. coli K88 treated with 0.8 μg/ml zinc oxide nanoparticles. The results reveal that zinc oxide nanoparticles could damage cell membranes, lead to leakage of ...

  6. King Solomon's Silver? Southern Phoenician Hacksilber Hoards and the Location of Tarshish

    Directory of Open Access Journals (Sweden)

    Christine M. Thompson

    2013-10-01

    Full Text Available Evidence from silver hoards found in Phoenicia is linking Tarshish, the legendary source of King Solomon's silver, to ores in the western Mediterranean. Biblical passages sometimes describe this lost land as a supplier of metals (especially silver to Phoenician sailors who traded in the service of Solomon and Hiram of Tyre in the 10th century BC. Classical authors similarly attribute the mercantile supremacy of the Phoenicians to their command of lucrative supplies of silver in the west, before they colonised the coasts and islands of its metalliferous regions around 800 BC. Conservative rejections of such reports have correctly emphasised a lack of evidence from silver. Lead isotope analyses of silver hoards found in Phoenicia now provide the initial evidence for pre-colonial silver-trade with the west; ore-provenance data correlate with the ancient documents that indicate both Sardinia and Spain as suppliers, and Sardinia as the island of Tarshish.

  7. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  8. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, S., E-mail: stanislav.stanek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Oswald, J. [Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10/112, 162 00 Prague (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Spirkova, J. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic)

    2016-03-15

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 10{sup 16} cm{sup −2} was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the {sup 4}I{sub 11/2}–{sup 4}I{sub 15/2} transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  9. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  10. Improved electrolyte for zinc-bromine flow batteries

    Science.gov (United States)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  11. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    Science.gov (United States)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  12. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Size-tunable silver nanoparticles synthesized by using aminopolycarboxylic acids at ambient-temperature

    International Nuclear Information System (INIS)

    Malkar, Vishwabharati V.; Chadha, R.; Biswas, N.; Mukherjee, T.; Kapoor, S.

    2009-01-01

    Full text: Stable aqueous sols of silver nanoparticles are prepared by using various aminopolycarboxylic acids as stabilizing agents at ambient temperature. The precursor silver perchlorate is reduced using γ radiations. Interestingly, it was observed that size of silver nanoparticles obtained could be tuned using various aminopolycarboxylic acids of varying carboxylic acid groups The silver sols synthesized by this method were stable for months and particles obtained were monodisperse in almost all cases. Particle formation was observed at equimolar concentration of silver and aminopolycarboxylic acids. The stabilization of particles even in the absence of any polymer indicates that the adsorption of aminopolycarboxylic acids on silver particle is a spontaneous process. The adsorbed aminopolycarboxylic acids can saturate the residual valence force of the silver atom on the particle surface by coordinating with unoccupied orbital. Adsorption of aminopolycarboxylic acids does not lead to any change in surface plasmon band of silver nanoparticles; this indicates that anions in the double layer on the colloidal particle have different chemical properties from the free anions. Synthesized silver nanoparticles were characterized by UV-visible spectrophotometer, X-ray Diffraction, Dynamic Light Scattering and Transmission Electron Microscope

  14. Magnetic and Structural Properties of Electrodeposited Iron on Copper and Silver

    International Nuclear Information System (INIS)

    Koempe, K.; Kuehl, E.; Nagorny, K.

    2002-01-01

    Electrodeposition of iron on copper or silver leads to the formation of bcc-iron or amorphous iron. Thermal annealing usually results in soluted iron (also γ-iron and clusters) in copper. On silver the insolubility of iron never causes the formation of bcc-iron. Instead on copper as well as on silver fcc-iron states are formed, especially at relatively low temperatures with short times of annealing. Moessbauer spectroscopy accompanied by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) are applied for characterisation of the iron states.

  15. 40 CFR 440.103 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead... copper, lead, zinc, gold, silver, or molybdenum bearing ores or any combination of these ores from open... pollutants discharged from mills that use the froth-flotation process alone, or in conjunction with other...

  16. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  17. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark Patrick, E-mail: mark.taylor@mq.edu.au; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-11-15

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m{sup 2}) with the highest lead in surface dust (59,900 μg/m{sup 2}) and post-play hand wipes (60,900 μg/m{sup 2}) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 207}Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust.

  18. Environmental arsenic, cadmium and lead dust emissions from metal mine operations: Implications for environmental management, monitoring and human health

    International Nuclear Information System (INIS)

    Taylor, Mark Patrick; Mould, Simon Anthony; Kristensen, Louise Jane; Rouillon, Marek

    2014-01-01

    Although blood lead values in children are predominantly falling globally, there are locations where lead exposure remains a persistent problem. One such location is Broken Hill, Australia, where the percentage of blood lead values >10 μg/dL in children aged 1–4 years has risen from 12.6% (2010), to 13% (2011) to 21% (2012). The purpose of this study was to determine the extent of metal contamination in places accessible to children. This study examines contemporary exposure risks from arsenic, cadmium, lead, silver and zinc in surface soil and dust, and in pre- and post-play hand wipes at six playgrounds across Broken Hill over a 5-day period in September 2013. Soil lead (mean 2,450 mg/kg) and zinc (mean 3,710 mg/kg) were the most elevated metals in playgrounds. Surface dust lead concentrations were consistently elevated (mean 27,500 μg/m 2 ) with the highest lead in surface dust (59,900 μg/m 2 ) and post-play hand wipes (60,900 μg/m 2 ) recorded close to existing mining operations. Surface and post-play hand wipe dust values exceeded national guidelines for lead and international benchmarks for arsenic, cadmium and lead. Lead isotopic compositions ( 206 Pb/ 207 Pb, 208 Pb/ 207 Pb) of surface dust wipes from the playgrounds revealed the source of lead contamination to be indistinct from the local Broken Hill ore body. The data suggest frequent, cumulative and ongoing mine-derived dust metal contamination poses a serious risk of harm to children. - Highlights: 1.Playground soils and surface dust in a mining town have high metal concentrations. 2.Elevated levels of As, Cd, Pb and Zn dust are found on playground users′ hands. 3.Pb isotope analysis shows that the source of playground dust is ore body Pb. 4.Surface mine operations must be contained to reduce childhood lead exposure risks. 5.Mine environmental licences need to set trigger values for As, Cd, Pb and Zn dust

  19. Superficial characterization by XP S of silver nanoparticles and their hydrothermal deposit over zircaloy

    International Nuclear Information System (INIS)

    Contreras R, A.; Gutierrez W, C.; Martinez M, I.; Medina A, A. L.

    2012-10-01

    The analysis technique of X-ray photoelectron spectroscopy (XP S) is sensitive exclusively to the first layers of the solids surface, which allows obtaining information about the chemical, physical and electronic properties of them. The combustible elements of the boiling water nuclear reactors (BWR) are formed by zircaloy pipes that contain in their interior pellets or uranium dioxide. In this work is studied the zircaloy surface, oxidized zircaloy under similar conditions to those of a reactor BWR type and oxidized zircaloy with a hydrothermal deposit of silver nanoparticles and zinc. The silver deposit is a proposal of the Materials Technology Department of the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, which has the same objective that the noble metals deposit (Pt, Pd, and Rh) that is practiced in some of the reactors BWR, in order to mitigating the speed of crack growth for IGSCC in stainless steels 304 Ss. (Author)

  20. Zirconium and hafnium tetrachloride separation by extractive distillation with molten zinc chloride lead chloride solvent

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1988-01-01

    In an extractive distillation method for separating hafniuim tetrachloride from zirconium tetrachloride of the type wherein a mixture of zirconium and hafnium tetrachlorides is introduced into an extractive distillation column, which extractive distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a molten salt solvent is circulated into the reflux condenser and through the column to provide a liquid phase, and wherein molten salt solvent containing zirconium tetrachloride is taken from the reboiler and run through a stripper to remove zirconium tetrachloride product from the molten salt solvent and the stripped molten salt solvent is returned to the reflux condenser and hafnium tetrachloride enriched vapor is taken as product from the reflux condenser, the improvement is described comprising: the molten salt having a composition of at least 30 mole percent zinc chloride and at least 10 mole percent of lead chloride

  1. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  2. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  3. Adsorption of iodide and iodate on colloidal silver surface

    International Nuclear Information System (INIS)

    Zhang Aiping; Tie Xiaoyun; Zhang Jinzhi; An Yanwei; Li Lingjie

    2008-01-01

    'Chemically pure' silver colloids were prepared by laser ablated method to investigate their adsorption-induced spectral and morphologic changes, using UV-visible absorption, Raman and transmission electron microscopy (TEM) techniques, when nucleophilic different anions (IO 3 - and I - ) were added into sols. It reveals that the adsorption of nucleophiles on silver surfaces leads to an excess negative charge in the metal interior and modifies both surface charge density and the Fermi levels of metal, which is responsible for the colloidal aggregation, reconstruction and appearance of new resonance absorption bands or with wavelength shift. In addition, two models regarding different adsorption effects of these two anions on silver surfaces were proposed to explain their variant spectral and TEM phenomena.

  4. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  5. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Zinc status in South Asian populations--an update.

    Science.gov (United States)

    Akhtar, Saeed

    2013-06-01

    This article attempts to highlight the prevalence of zinc deficiency and its health and economic consequences in South Asian developing countries and to shed light on possible approaches to combating zinc deficiency. A computer-based search was performed on PubMed, Google, and ScienceDirect.com to retrieve relevant scientific literature published between 2000 and 2012. The search yielded 194 articles, of which 71 were culled. Studies were further screened on the basis of population groups, age and sex, pregnancy, and lactation. The most relevant articles were included in the review. Cutoffs for serum zinc concentration defined for zinc deficiency were 65 microg/dL for males and females aged or = 10 years. Population segments from rural and urban areas of South Asian developing countries were included in the analysis. They comprised pregnant and lactating women, preschool and school children. The analysis reveals that zinc deficiency is high among children, pregnant and lactating women in India, Pakistan, Bangladesh, Sri Lanka, and Nepal. Diarrhoea has been established as a leading cause to intensify zinc deficiency in Bangladesh. Little has been done in Sri Lanka and Nepal to estimate the prevalence of zinc deficiency precisely. A substantial population segment of the South Asian developing countries is predisposed to zinc deficiency which is further provoked by increased requirements for zinc under certain physiological conditions. Supplementation, fortification, and dietary diversification are the most viable strategies to enhancing zinc status among various population groups.

  7. Free zinc ion and dissolved orthophosphate effects on phytoplankton from Coeur d'Alene Lake, Idaho

    Science.gov (United States)

    Kuwabara, J.S.; Topping, B.R.; Woods, P.F.; Carter, J.L.

    2007-01-01

    Coeur d'Alene Lake in northern Idaho is fed by two major rivers: the Coeur d'Alene River from the east and the St. Joe River from the south, with the Spokane River as its outlet to the north. This phosphorus-limited lake has been subjected to decades of mining (primarily for zinc and silver) and other anthropogenic inputs. A 32 full-factorial experimental design was used to examine the interactive effects of free (uncomplexed) zinc ion and dissolved-orthophosphate concentrations on phytoplankton that were isolated from two sites along a longitudinal zinc-concentration gradient in Coeur d'Alene Lake. The two sites displayed different dominant taxa. Chlorella minutissima, a dominant species near the southern St. Joe River inlet, exhibited greater sensitivity to free Zn ions than Asterionella formosa, collected nearer the Coeur d'Alene River mouth with elevated dissolved-zinc concentrations. Empirical phytoplankton-response models were generated to describe phytoplankton growth in response to remediation strategies in the surrounding watershed. If dissolved Zn can be reduced in the water column from >500 nM (i.e., current concentrations near and down stream of the Coeur d'Alene River plume) to management of phosphorus inputs by surrounding communities will ultimately determine the limnologic state of the lake.

  8. 25 CFR 214.8 - Acreage limitation.

    Science.gov (United States)

    2010-04-01

    ..., silver, copper, or other useful metals, 640 acres. (b) For beds of placer gold, gypsum, asphaltum, phosphate, iron ores, and other useful minerals, other than coal, lead, and zinc, 960 acres. (c) For coal, 4...

  9. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Li, Zhenjiang; Sheng, Liying; Xie, Cuicui; Meng, Alan; Zhao, Kun

    2016-01-01

    The authors describe the fabrication of a nanocomposite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles by microwave-assisted synthesis. The composite was further reduced in-situ with hydrazine hydrate and then placed, along with the enzyme glucose oxidase, on a glassy carbon electrode. The synergistic effect of the materials employed in the nanocomposite result in excellent electrocatalytic activity. The Michaelis-Menten constant of the adsorbed GOx is 0.25 mM, implying a remarkable affinity of the GOx for glucose. The amperometric response of the modified GCE is linearly proportional to the concentration of glucose in 0.1 to 12.0 mM concentration range, and the detection limit is 10.6 µM. The biosensor is highly selective, well reproducible and stable. (author)

  10. Graphene coatings for chemotherapy: avoiding silver-mediated degradation

    International Nuclear Information System (INIS)

    Mazzola, Federico; Cooil, Simon; Skjønsfjell, Eirik Torbjørn Bakken; Breiby, Dag W; Wells, Justin W; Trinh, Thuat; Kjelstrup, Signe; Østli, Elise Ramleth; Høydalsvik, Kristin; Preobrajenski, Alexei; Cafolla, Attilio A; Evans, D Andrew

    2015-01-01

    Chemotherapy treatment usually involves the delivery of fluorouracil (5-Fu) together with other drugs through central venous catheters. Catheters and their connectors are increasingly treated with silver or argentic alloys/compounds. Complications arising from broken catheters are common, leading to additional suffering for patients and increased medical costs. Here, we uncover a likely cause of such failure through a study of the surface chemistry relevant to chemotherapy drug delivery, i.e. between 5-Fu and silver. We show that silver catalytically decomposes 5-Fu, compromising the efficacy of the chemotherapy treatment. Furthermore, HF is released as a product, which will be damaging to both patient and catheter. We demonstrate that graphene surfaces inhibit this undesirable reaction and would offer superior performance as nanoscale coatings in cancer treatment applications. (paper)

  11. 40 CFR 437.44 - Effluent limitations attainable by the application of the best available technology economically...

    Science.gov (United States)

    2010-07-01

    ... Lead Mercury Nickel Silver Tin Titanium Vanadium Zinc (2) The in-plant limitations that apply to metal... Pyridine 2,4,6-trichlorophenol Metal parameters Arsenic Cadmium Chromium Cobalt Copper Lead Mercury Tin...-Cresol p-Cresol n-Decane Fluoranthene n-Octadecane Phenol Pyridine 2,4,6-trichlorophenol Metal parameters...

  12. Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhynchos myciss. I. The telencephalon

    DEFF Research Database (Denmark)

    Piñuela, C; Baatrup, E; Geneser, F A

    1992-01-01

    was mainly confined to the neuropil, but both moderately and intensely stained nerve cell bodies were of common occurrence. Stained fibers were never observed. The staining revealed a specific distribution pattern which could easily be correlated with the telencephalic nuclei defined on the basis......The present paper which describes the distribution of zinc in the telencephalon of the rainbow trout, Oncorhynchos myciss, is the first report on the distribution of a heavy metal in the fish brain. Zinc was demonstrated histochemically by silver enhancement using the Neo-Timm method. The staining...... of cytoarchitectural features. However, the telencephalon stained much more weakly than the rest of the brain, in striking contrast to the situation in the reptilian, mammalian, and avian brain. In these classes, high staining intensities are observed almost exclusively in the telencephalon. The staining...

  13. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation

    Science.gov (United States)

    Jayasri, M. A.; Suthindhiran, K.

    2017-06-01

    Plants have gained importance in situ bioremediation of heavy metals. In the present study, different concentrations of zinc (Zn2+) (0.5, 5, 10, 15, 20 mg/l) and lead (Pb2+) (1, 2, 4, 6, 8 mg/l) were used to evaluate metal tolerance level of Lemna minor. L.minor were exposed to metals for 4 days and tested for its dry to fresh weight ratio (DW/FW), photosynthetic pigments production and protein content. The oxidative damage was detected by measuring catalase activity. L.minor showed tolerance against Zn2+ and Pb2+ at a concentration of 10 and 4 mg/l, respectively. Among the metals, Pb2+ showed a significant toxicity at 8 mg/l. High concentration (20 mg/l of Zn2+ and 8 mg/l of Pb2+) of the metals displayed a considerable negative effect on soluble proteins (13 fold decrease with Zn2+ and 4 fold decrease with Pb2+) and photosynthetic pigments (twofold decrease with Zn2+ and onefold decrease with Pb2+) and lead to a consequent reduction in number of fronds. Further, the catalase was greatly increased (twofold decrease with Zn2+ and sixfold decrease with Pb2+) under metal stress. The results indicate that L.minor withstands Zn2+ and Pb2+ toxicity up to the concentration of 10 and 4 mg/l, respectively. Hence, the metal tolerant property of this plant shall be exploited for bioremediation of Zinc and Lead in polluted water. Further, the detailed and wide range of heavy metal toxicity studies should be done to reveal the possible use of this plant on large scale bioremediation purpose.

  14. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    Science.gov (United States)

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  16. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.

    Science.gov (United States)

    Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman

    2018-03-15

    Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh Kumar, Ramasamy; Poornima Priyadharsani, Krishnamurthy; Thamaraiselvi, Kaliannan, E-mail: kthamaraiselvi@hotmail.com [Bharathidasan University, Laboratory of Molecular Microbial Bioremediation and Nanobiotechnology, Department of Environmental Biotechnology (India)

    2012-05-15

    In this study, an environmental friendly process for the synthesis of silver nanoparticles (AgNPs) using a fungus Aspergillus tamarii has been investigated. The process of silver ion reduction by the fungal extracellular filtrate was spontaneous which lead to the development of an easy process for synthesis of silver nanoparticles. The AgNPs formed were characterized using UV-Visible spectrum, FTIR, and SEM. The results revealed that silver ions reduction by the fungal extracellular filtrate started at 420 nm after 0.5 h of incubation time. The FTIR peaks were observed at 1393, 1820, 2727, and 3545 cm{sup -1}. The SEM result showed the distribution of spherical AgNPs ranging from 25 to 50 nm.

  18. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    Science.gov (United States)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  19. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  20. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  1. Assessment of semen function and lipid peroxidation among lead exposed men

    International Nuclear Information System (INIS)

    Kasperczyk, Aleksandra; Kasperczyk, Slawomir; Horak, Stanislaw; Ostalowska, Alina; Grucka-Mamczar, Ewa; Romuk, Ewa; Olejek, Anita; Birkner, Ewa

    2008-01-01

    The study population included healthy, fertile men, employees of Zinc and Lead Metalworks (n = 63). Workers exposed to lead were divided into two groups: a group with moderate exposure to lead (ME) - blood lead level (PbB) 25-40 μg/dl and a group with high exposure to lead (HE) PbB = 40-81 μg/dl. The control group consisted of office workers with no history of occupational exposure to lead. Evaluation of lead, cadmium and zinc level in blood and seminal plasma, zinc protoporphyrin in blood (ZPP), 5-aminolevulinic acid in urine (ALA), malondialdehyde (MDA) in seminal plasma and sperm analysis were performed. No differences were noted in the concentration of cadmium and zinc in blood and seminal plasma in the study population. Lipid peroxidation in seminal plasma, represented as MDA concentration, significantly increased by about 56% in the HE group and the percentage of motile sperm cells after 1 h decreased by about 34% in comparison to the control group. No statistically significant correlation between other parameters of sperm analysis and lead exposure parameters nor between lead, cadmium and zinc concentration in blood and seminal plasma were found. A positive association between lead intoxication parameters (PbB, ZPP, lead seminal plasma) and MDA concentration in sperm plasma and inverse correlation with sperm cells motility (PbB, ZPP) was found. An increased concentration of MDA was accompanied by a drop in sperm cells motility. In conclusion, we report that high exposure to lead causes a decrease of sperm motility in men most likely as a result of increased lipid peroxidation, especially if the level in the blood surpasses the concentration of 40 μg/dl

  2. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    International Nuclear Information System (INIS)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-01-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO 3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi

  3. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    Science.gov (United States)

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  4. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  5. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  6. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  7. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  8. Associated equilibria with participatian of single and mixed silver, lead and cadmium halide complexes in mixtures of molten alkali and alkaline earth metal nitrates

    International Nuclear Information System (INIS)

    Gouk, Kh.S.; Gupta, R.K.; Vekma, K.V.

    1983-01-01

    Associated equilibria in the systems, which contain single and mixed silver, cadmium and lead halide complexes in the KNO 3 -Ba(N0 3 ) 2 (87.6:12.4 and 89:11 mol.%) and NaNO 3 -Ba(NO 3 ) 2 (94.2-5.8 mol%) melts in the temperature range from 568.2 up to 698.2 K are investigated. Applicability of equations derivated on the base of quasi-lattice model to description of temperature coefficients of association constants is analized

  9. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  10. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    Science.gov (United States)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  11. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    Science.gov (United States)

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  12. Development kinetics of silver clusters on silver halides

    International Nuclear Information System (INIS)

    Grzesiak, S.; Belloni, J.; Marignier, J.-L.

    2008-01-01

    Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied

  13. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    Full Text Available Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  14. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  15. Differential effects of lead and zinc on inhibitory avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    F.S. de Oliveira

    2001-01-01

    Full Text Available We studied the effects of chronic intoxication with the heavy metals lead (Pb2+ and zinc (Zn2+ on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05. In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05. Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05, an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.

  16. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  17. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    DEFF Research Database (Denmark)

    Löschner, Katrin; Hadrup, Niels; Qvortrup, Klaus

    2011-01-01

    Background: The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food...... and food contact materials. Results: AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study...... in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of Ag...

  18. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    Science.gov (United States)

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  19. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni, Marcella [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Yue, Junqi; Zhang, Lifeng [PUB, 40 Scotts Road, Singapore 228231 (Singapore); Xie, Jianping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Ong, Choon Nam [Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Leong, David Tai, E-mail: cheltwd@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)

    2015-10-30

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10{sup −6}–10{sup −3} μg mL{sup −1}. However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL{sup −1}, through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10{sup −7} μg mL{sup −1}. This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general.

  20. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  1. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  2. Evaluation of blood zinc, calcium and blood lead levels among children aged 1-36 months.

    Science.gov (United States)

    Ji, Xiaojun; He, Hong; Ren, Lisheng; Liu, Ji; Han, Chunhua

    2014-09-01

    Early childhood lead exposure is associated with numerous adverse health effects. Biomonitoring among susceptible populations, such as children, has not been previously conducted. The aim of the study is to evaluate the blood lead (Pb) and total blood calcium (Ca) levels; blood zinc (Zn) levels. A cross-sectional study was designed to collect healthy children age 1- 36 months (Mean ± SD: 1.5 ± 0.6 age, 60% boys) in the study from January 2010 to September 2011. The overall mean blood Pb levels were 42.18 ± 12.13 μg/L, the overall mean blood Zn and total blood Ca concentrations were 62.18 ± 12.33 μmol/L and 1.78 ± 0.13 mmol/L, respectively. The prevalence of elevated blood Pb levels in all children was 1.3%. A significant difference was found between female and male subjects for the blood Pb and Zn. After controlling for gender and age, there was a weak positive correlation between total blood Ca and Zn level. The blood Pb levels had a significant negative correlation with total blood Ca level after adjusting for age and gender, and these findings suggest that Pb had effect on positive blood Zn and total blood Ca levels; parents should pay more attention to the nutrition of girls. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Sediment quality in Burlington Harbor, Lake Champlain, U.S.A.

    Science.gov (United States)

    Lacey, E.M.; King, J.W.; Quinn, J.G.; Mecray, E.L.; Appleby, P.G.; Hunt, A.S.

    2001-01-01

    Surface samples and cores were collected in 1993 from the Burlington Harbor region of Lake Champlain. Sediment samples were analyzed for trace metals (cadmium, copper, lead, nickel, silver and zinc), simultaneously extracted metal/acid volatile sulfide (SEM-AVS), grain size, nutrients (carbon and nitrogen) and organic contaminants (polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs)). The concentrations of cadmium, copper, silver and zinc from the partial sediment digestion of the surface samples correlated well with each other (r2 > 0.60) indicating that either a common process, or group of processes determined the sediment concentrations of these metals. In an analysis of the spatial distribution of the trace metals and PAHs, high surficial concentrations were present in the southern portion of the Harbor. The trace metal trend was strengthened when the concentrations were normalized by grain size. A sewage treatment plant outfall discharge was present in the southeastern portion of the Harbor at the time of this study and is the major source of trace metal and PAH contamination. Evaluation of sediment cores provides a proxy record of historical trace metal and organic inputs. The peak accumulation rate for copper, cadmium, lead, and zinc was in the late 1960s and the peak silver accumulation rate was later. The greatest accumulation of trace metals occurred in the late 1960s after discharges from the STP began. Subsequent declines in trace metal concentrations may be attributed to increased water and air regulations. The potential toxicity of trace metals and organic contaminants was predicted by comparing contaminant concentrations to benchmark concentrations and potential trace metal bioavailability was predicted with SEM-AVS results. Surface sample results indicate lead, silver, ???PAHs and ???PCBs are potentially toxic and/or bioavailable. These predictions were supported by studies of biota in the Burlington Harbor watershed. There

  4. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    International Nuclear Information System (INIS)

    Mohapatra, Bandita; Kuriakose, Sini; Mohapatra, Satyabrata

    2015-01-01

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO 3 concentration. • Increase in AgNO 3 concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO 3 solution. The effects of AgNO 3 concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO 3 concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO 3 concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods

  5. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  6. Characterization of polypyrrole-silver nanocomposites prepared in the presence of different dopants.

    Science.gov (United States)

    Pintér, Enikõ; Patakfalvi, Rita; Fülei, Tamas; Gingl, Zoltan; Dékany, Imre; Visy, Csaba

    2005-09-22

    Conducting polypyrrole (PPy) powder synthesized by using FeCl3 x 6 H2O and/or Fe(NO3)3 oxidants was impregnated in silver salt solutions. The stability and decomposition of the material was followed by thermogravimetric measurements. The total silver content was determined by atom absorption spectroscopy (ICP-AAS). The heat and electric conductivities of the composites were measured and correlated with the silver content. The incorporated silver was speciated and measured by X-ray diffraction (XRD). The spectra proved that the chemical state of the silver incorporated into the composite depends on the anion used in the polymerization process. In the case of the polymerization in a nitrate ion containing solution, the impregnation leads exclusively to the formation of metallic silver. The size distribution of the AgCl and Ag nanoparticles, determined from transmission electron microscopy (TEM) pictures in the different composites, proves the formation of a rather uniform species below 10 and 7 nm, respectively. The observations can be correlated with the different interactions in the PPy-chloride/nitrate-silver systems. The redox type interaction based conclusions can be considered as a guide during the preparation of other metal-conducting polymer composites.

  7. Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Mai [Institute of Marine and Antarctic Studies University of Tasmania, Launceston, Tasmania 7250 (Australia); Nørregaard, Rasmus; Bach, Lis; Sonne, Christian; Søndergaard, Jens; Gustavson, Kim; Aastrup, Peter [Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nowak, Barbara, E-mail: B.Nowak@utas.edu.au [Institute of Marine and Antarctic Studies University of Tasmania, Launceston, Tasmania 7250 (Australia)

    2017-02-15

    Fourhorn sculpins (Myoxocephalus quadricornis) and shorthorn sculpins (Myoxocephalus scorpius) have been considered suitable local bioindicators for environmental monitoring studies in the Arctic. Because these species share many characteristics, data from the two species have previously been pooled when assessing marine metal contamination. A chemical and histological study was conducted on fourhorn and shorthorn sculpins collected around a contaminated lead-zinc mine at East Greenland to investigate whether there were any differences in the residues of metals, histopathology and parasites in liver and gills between the two sculpin species. The results demonstrated that concentrations of copper (Cu), zinc (Zn), mercury (Hg) and lead (Pb) were significantly higher in the fourhorn sculpins (p<0.001) while there were no significant differences for arsenic (As) or cadmium (Cd). Furthermore, density of blood vessel fibrosis (p=0.028), prevalence and density of chondroplasia (p=0.002 and p=0.005, respectively), number of mucin-containing mucous cells (p<0.001) and chloride cells (p<0.001) and mean intensity of colonial Peritricha (p<0.001) were significantly higher in fourhorn sculpin. Based on these results we suggest that pooling the two species when conducting environmental assessments is not recommended as it can lead to incorrect conclusions. We propose that a larger study investigating the biological effects of zinc-lead mining in Greenland is needed. - Highlights: • Fourhorn sculpins (Myoxocephalus quadricornis) more sensitive to pollution than shorthorn sculpins (Myoxocephalus scorpius). • Metal residues, histological changes and presence of parasites were species-specific. • Different sculpin species should not be pooled together as pollution biomarkers.

  8. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Physics Department, Faculty of Science, Zagazig University (Egypt)

    2015-03-15

    Highlights: •Monochromatic features of Be, Zn and Pb single crystals. •Calculations of neutron reflectivity using a computer program MONO. •Optimum mosaic spread, thickness and cutting plane of single crystals. -- Abstract: The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in “FORTRAN-77”, has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  9. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lengyel,I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD.

  10. High Concentration of Zinc in Sub-retinal Pigment Epithelial Deposits

    International Nuclear Information System (INIS)

    Lengyel, I.; Flinn, J.; Peto, T.; Linkous, D.; Cano, K.; Bird, A.; Lanzirotti, A.; Frederickson, C.; van Kuijk, F.

    2007-01-01

    One of the hallmarks of age-related macular degeneration (AMD), the leading cause of blindness in the elderly in Western societies, is the accumulation of sub-retinal pigment epithelial deposits (sub-RPE deposits), including drusen and basal laminar deposits, in Bruch's membrane (BM). The nature and the underlying mechanisms of this deposit formation are not fully understood. Because we know that zinc contributes to deposit formation in neurodegenerative diseases, we tested the hypothesis that zinc might be involved in deposit formation in AMD. Using zinc specific fluorescent probes and microprobe synchrotron X-ray fluorescence we showed that sub-RPE deposits in post-mortem human tissues contain unexpectedly high concentrations of zinc, including abundant bio-available (ionic and/or loosely protein bound) ions. Zinc accumulation was especially high in the maculae of eyes with AMD. Internal deposit structures are especially enriched in bio-available zinc. Based on the evidence provided here we suggest that zinc plays a role in sub-RPE deposit formation in the aging human eye and possibly also in the development and/or progression of AMD

  11. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Science.gov (United States)

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  12. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial

    Directory of Open Access Journals (Sweden)

    Shumeng Kou

    2018-03-01

    Full Text Available Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ; the most (relative abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis

  13. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial.

    Science.gov (United States)

    Kou, Shumeng; Vincent, Gilles; Gonzalez, Emmanuel; Pitre, Frederic E; Labrecque, Michel; Brereton, Nicholas J B

    2018-01-01

    Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya , Desmonostoc muscorum , and Microcoleus steenstrupii . The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus , Solirubrobacter , and Ohtaekwangia . Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila , Pedobacter steynii , Pseudolabrys taiwanensis , Methylophilus

  14. Zinc Deficiency‐Like Syndrome in Fleckvieh Calves: Clinical and Pathological Findings and Differentiation from Bovine Hereditary Zinc Deficiency

    Science.gov (United States)

    Jung, S.; Majzoub‐Altweck, M.; Trefz, F.M.; Seifert, C.; Knubben‐Schweizer, G.; Fries, R.; Hermanns, W.; Gollnick, N.S.

    2018-01-01

    Background Zinc deficiency‐like (ZDL) syndrome is an inherited defect of Fleckvieh calves, with striking similarity to bovine hereditary zinc deficiency (BHZD). However, the causative mutation in a phospholipase D4 encoding gene (PLD4) shows no connection to zinc metabolism. Objectives To describe clinical signs, laboratory variables, and pathological findings of ZDL syndrome and their utility to differentiate ZDL from BHZD and infectious diseases with similar phenotype. Animals Nine hospitalized calves with crusting dermatitis and confirmed mutation in PLD4 and medical records from 25 calves with crusting dermatitis or suspected zinc deficiency. Methods Prospective and retrospective case series. Results The 9 calves (age: 5–53 weeks) displayed a moderate to severe crusting dermatitis mainly on the head, ventrum, and joints. Respiratory and digestive tract inflammations were frequently observed. Zinc supplementation did not lead to remission of clinical signs in 4 calves. Laboratory variables revealed slight anemia in 8 calves, hypoalbuminemia in 6 calves, but reduced serum zinc concentrations in only 3 calves. Mucosal erosions/ulcerations were present in 7 calves and thymus atrophy or reduced thymic weights in 8 calves. Histologically, skin lesions were indistinguishable from BHZD. Retrospective analysis of medical records revealed the presence of this phenotype since 1988 and pedigree analysis revealed a common ancestor of several affected calves. Conclusions and Clinical Importance ZDL syndrome should be suspected in Fleckvieh calves with crusting dermatitis together with diarrhea or respiratory tract inflammations without response to oral zinc supplementation. Definite diagnosis requires molecular genetic confirmation of the PLD4 mutation. PMID:29424482

  15. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    Directory of Open Access Journals (Sweden)

    De Souza Gabriel IH

    2005-07-01

    Full Text Available Abstract Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material.

  16. [Remediation Pb, Cd contaminated soil in lead-zinc mining areas by hydroxyapatite and potassium chloride composites].

    Science.gov (United States)

    Wang, Li; Li, Yong-Hua; Ji, Yan-Fang; Yang, Lin-Sheng; Li, Hai-Rong; Zhang, Xiu-Wu; Yu, Jiang-Ping

    2011-07-01

    The composite agents containing potassium chloride (KCl) and Hydroxyapatite (HA) were used to remediate the lead and cadmium contaminated soil in Fenghuang lead-zinc mining-smelting areas, Hunan province. The objective of this study was to identify and evaluate the influence of Cl- to the fixing efficiency of Pb and Cd by HA. Two types of contaminated soil (HF-1, HF-2) were chosen and forty treatments were set by five different Hydroxyapatite (HA) dosages and four different Cl- dosages. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the results. It showed that HA could efficiently fix the Pb and Cd from TCLP form. The maximum Pb-fixing efficiency and Cd-fixing efficiency of two types of soil were 83.3%, 97.27% and 35.96%, 57.82% when the HA: Pb: KCl molar ratio was 8: 1: 2. Compared to the fixing efficiency without KCl, KCl at the KCl: Pb molar ratio of 2 improved Pb-fixing efficiency and Cd-fixing efficiency by 6.26%, 0.33% and 7.74%, 0.83% respectively when the HA: Pb molar ratio was 8. Generally, Cl- can improve the Pb/Cd-fixing efficiency in heavy metal contaminated soil by Hydroxyapatite.

  17. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  18. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  19. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  20. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  1. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  2. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Lead dust in broken hill homes--a potential hazard for young children?

    Science.gov (United States)

    Boreland, F; Lyle, D M; Wlodarczyk, J; Balding, W A; Reddan, S

    2002-01-01

    To determine the potential hazard posed by indoor lead dust to young children in Broken Hill, a silver-lead-zinc mining town in outback Australia, and the degree to which lead flux is influenced by factors such as geographical location, house construction type and condition. 116 homes were selected and 93 (80%) studied from 10 localities in Broken Hill during the spring of 1995. Lead flux was measured using 85 mm diameter polystyrene petri dishes. Dishes were placed in four rooms of each house to collect dust over a six-to-eight-week period. Data on the location, condition and construction type of each house were recorded. Multiple linear regression was used to determine predictors of lead flux. Flux data were log transformed for the analysis. Average household lead flux varied nearly seven-fold across districts from a low of 166 (distant from the mines), to a high of 1,104 microg/m2/30-day period (adjacent to the mines). Houses that were 'adequately sealed' had 2.9 times the lead flux, and 'poorly sealed' houses 4.3 times the flux, of 'very well sealed' houses. Construction material did not significantly affect these flux levels, and no statistically significant interactions were found between house condition and location or house type. Many Broken Hill homes have high levels of lead flux that pose a potential risk to young children. Quantification of this hazard provides useful information for the community that can help focus efforts on actions required to minimise lead dust in the home. Household dust is a potential source of lead for young children in at-risk communities. Information on lead flux in homes can assist these communities and public health agencies to better understand and deal more effectively with the problem.

  4. Range-extending Zinc-air battery for electric vehicle

    Directory of Open Access Journals (Sweden)

    Steven B. Sherman

    2018-01-01

    Full Text Available A vehicle model is used to evaluate a novel powertrain that is comprised of a dual energy storage system (Dual ESS. The system includes two battery packs with different chemistries and the necessary electronic controls to facilitate their coordination and optimization. Here, a lithium-ion battery pack is used as the primary pack and a Zinc-air battery as the secondary or range-extending pack. Zinc-air batteries are usually considered unsuitable for use in vehicles due to their poor cycle life, but the model demonstrates the feasibility of this technology with an appropriate control strategy, with limited cycling of the range extender pack. The battery pack sizes and the battery control strategy are configured to optimize range, cost and longevity. In simulation the vehicle performance compares favourably to a similar vehicle with a single energy storage system (Single ESS powertrain, travelling up to 75 km further under test conditions. The simulation demonstrates that the Zinc-air battery pack need only cycle 100 times to enjoy a ten-year lifespan. The Zinc-air battery model is based on leading Zinc-air battery research from literature, with some assumptions regarding achievable improvements. Having such a model clarifies the performance requirements of Zinc-air cells and improves the research community's ability to set performance targets for Zinc-air cells.

  5. Investigation into the possibility of using short silver half-lives for the determination of silver in nuclear emulsions

    International Nuclear Information System (INIS)

    Guazzoni, P.; Laverlochere, M.; Heilmann, C.; Jung, M.; Francois, H.

    1982-01-01

    The 24 s and 2.4 mn short halft-life Ag 110 and Ag 108 isotopes were used to determine the quantity of silver remaining in developed nuclear emulsions after exposure to various neutron and gamma radiations. The test carried out should lead to the development and construction of automatic measurement equipment [fr

  6. Selenium-induced autometallographic demonstration of endogenous zinc in organs of the rainbow trout, Salmo gairdneri

    DEFF Research Database (Denmark)

    Baatrup, E

    1989-01-01

    of selenium obtained by each organ was determined by gamma-spectrometry, and compared with the autometallographic deposition of silver grains. The relative accumulation of selenium in the organs was: liver greater than spleen greater than kidney greater than intestine greater than gills greater than brain......, the intestine, and the gills, whereas, no such grains were found in preparations from fish having received 1 ppm Se. The use of selenium for the histochemical demonstration of endogenous zinc versus exogenous metals is discussed. Also, consideration is given to the question of which part of the total tissue...

  7. Effective radium concentration in topsoils contaminated by lead and zinc smelters

    Energy Technology Data Exchange (ETDEWEB)

    Girault, Frédéric, E-mail: girault@ipgp.fr [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France. (France); Perrier, Frédéric; Poitou, Charles; Isambert, Aude [Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France. (France); Théveniaut, Hervé; Laperche, Valérie [Bureau de Recherches Géologiques et Minières, Orléans, France. (France); Clozel-Leloup, Blandine [Bureau de Recherches Géologiques et Minières, Villeurbanne, France. (France); Douay, Francis [Laboratoire Génie Civil et géo Environnement, ISA Lille, Lille, France. (France)

    2016-10-01

    Trace elements (TE) are indicative of industrial pollution in soils, but geochemical methods are difficult to implement in contaminated sites with large numbers of samples. Therefore, measurement of soil magnetic susceptibility (MS) has been used to map TE pollutions, albeit with contrasted results in some cases. Effective radium concentration (EC{sub Ra}), product of radium concentration by the emanation factor, can be measured in a cost-effective manner in the laboratory, and could then provide a useful addition. We evaluate this possibility using 186 topsoils sampled over about 783 km{sup 2} around two former lead and zinc smelters in Northern France. The EC{sub Ra} values, obtained from 319 measurements, range from 0.70 ± 0.06 to 12.53 ± 0.49 Bq·kg{sup −1}, and are remarkably organized spatially, away from the smelters, in domains corresponding to geographical units. Lead-contaminated soils, with lead concentrations above 100 mg·kg{sup −1} < 3 km from the smelters, are characterized on average by larger peak EC{sub Ra} values and larger dispersion. At large scales, away from the smelters, spatial variations of EC{sub Ra} correlate well with spatial variations of MS, thus suggesting that, at distance larger than 5 km, variability of MS contains a significant natural component. Larger EC{sub Ra} values are correlated with larger fine fraction and, possibly, mercury concentration. While MS is enhanced in the vicinity of the smelters and is associated with the presence of soft ferrimagnetic minerals such as magnetite, it does not correlate systematically with metal concentrations. When multiple industrial and urban sources are present, EC{sub Ra} mapping, thus, can help in identifying at least part of the natural spatial variability of MS. More generally, this study shows that EC{sub Ra} mapping provides an independent and reliable assessment of the background spatial structure which underlies the structure of a given contamination. Furthermore, EC{sub Ra

  8. Effective radium concentration in topsoils contaminated by lead and zinc smelters

    International Nuclear Information System (INIS)

    Girault, Frédéric; Perrier, Frédéric; Poitou, Charles; Isambert, Aude; Théveniaut, Hervé; Laperche, Valérie; Clozel-Leloup, Blandine; Douay, Francis

    2016-01-01

    Trace elements (TE) are indicative of industrial pollution in soils, but geochemical methods are difficult to implement in contaminated sites with large numbers of samples. Therefore, measurement of soil magnetic susceptibility (MS) has been used to map TE pollutions, albeit with contrasted results in some cases. Effective radium concentration (EC_R_a), product of radium concentration by the emanation factor, can be measured in a cost-effective manner in the laboratory, and could then provide a useful addition. We evaluate this possibility using 186 topsoils sampled over about 783 km"2 around two former lead and zinc smelters in Northern France. The EC_R_a values, obtained from 319 measurements, range from 0.70 ± 0.06 to 12.53 ± 0.49 Bq·kg"−"1, and are remarkably organized spatially, away from the smelters, in domains corresponding to geographical units. Lead-contaminated soils, with lead concentrations above 100 mg·kg"−"1 < 3 km from the smelters, are characterized on average by larger peak EC_R_a values and larger dispersion. At large scales, away from the smelters, spatial variations of EC_R_a correlate well with spatial variations of MS, thus suggesting that, at distance larger than 5 km, variability of MS contains a significant natural component. Larger EC_R_a values are correlated with larger fine fraction and, possibly, mercury concentration. While MS is enhanced in the vicinity of the smelters and is associated with the presence of soft ferrimagnetic minerals such as magnetite, it does not correlate systematically with metal concentrations. When multiple industrial and urban sources are present, EC_R_a mapping, thus, can help in identifying at least part of the natural spatial variability of MS. More generally, this study shows that EC_R_a mapping provides an independent and reliable assessment of the background spatial structure which underlies the structure of a given contamination. Furthermore, EC_R_a may provide a novel index to identify soils

  9. The degradation of lining of rotary furnaces in the production of zinc oxide

    OpenAIRE

    Natália Luptáková; Evgeniy Anisimov; Františka Pešlová

    2014-01-01

    This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including ch...

  10. Exposure of juvenile turbot (Scophthalmus maximus) to silver nanoparticles and 17α-ethinylestradiol mixtures

    DEFF Research Database (Denmark)

    Farkas, Julia; Salaberria, Iurgi; Styrishave, Bjarne

    2017-01-01

    Combined exposure to engineered nanoparticles (ENPs) and anthropogenic contaminants can lead to changes in bioavailability, uptake and thus effects of both groups of contaminants. In this study we investigated effects of single and combined exposures of silver (Ag) nanoparticles (AgNPs) and the s......Combined exposure to engineered nanoparticles (ENPs) and anthropogenic contaminants can lead to changes in bioavailability, uptake and thus effects of both groups of contaminants. In this study we investigated effects of single and combined exposures of silver (Ag) nanoparticles (Ag...

  11. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  12. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    International Nuclear Information System (INIS)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Jurkschat, Kerstin; Crossley, Alison; Hassellöv, Martin; Taylor, Cameron; Soares, Amadeu M.V.M.; Loureiro, Susana

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO 3 by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO 3 and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO 3 differ in toxicity according to the test species and endpoint. •AgNP and AgNO 3 induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity

  13. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabianne, E-mail: ribeiro.f@ua.pt [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal); Gallego-Urrea, Julián Alberto [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Jurkschat, Kerstin; Crossley, Alison [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Hassellöv, Martin [Department of Chemistry and Molecular Biologyx, University of Gothenburg, Kemivägen 4, 41296 Gothenburg (Sweden); Taylor, Cameron [Department of Materials, Oxford University Begbroke Science Park OX5 1PF (United Kingdom); Soares, Amadeu M.V.M.; Loureiro, Susana [Department of Biology and CESAM, University of Aveiro. Campus Universitario de Santiago, 3810-193. Aveiro (Portugal)

    2014-01-01

    Silver nanoparticles (AgNP) have gained attention over the years due to the antimicrobial function of silver, which has been exploited industrially to produce consumer goods that vary in type and application. Undoubtedly the increase of production and consumption of these silver-containing products will lead to the entry of silver compounds into the environment. In this study we have used Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio as model organisms to investigate the toxicity of AgNP and AgNO{sub 3} by assessing different biological endpoints and exposure periods. Organisms were exposed following specific and standardized protocols for each species/endpoints, with modifications when necessary. AgNP were characterized in each test-media by Transmission Electron Microscopy (TEM) and experiments were performed by Dynamic Light Scattering (DLS) to investigate the aggregation and agglomeration behavior of AgNP under different media chemical composition and test-period. TEM images of AgNP in the different test-media showed dissimilar patterns of agglomeration, with some agglomerates inside an organic layer, some loosely associated particles and also the presence of some individual particles. The toxicity of both AgNO{sub 3} and AgNP differ significantly based on the test species: we found no differences in toxicity for algae, a small difference for zebrafish and a major difference in toxicity for Daphnia magna. - Highlights: •Effects of silver nanoparticles and nitrate were compared in three aquatic species. •The presence of food on the immobilization assay for Daphnia magna significantly decreased AgNP toxicity. •AgNP and AgNO{sub 3} differ in toxicity according to the test species and endpoint. •AgNP and AgNO{sub 3} induced dissimilar abnormalities on zebrafish embryos' development. •AgNP behavior in the test media will rule its bioavailability and uptake and therefore toxicity.

  14. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  15. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.

    2016-03-01

    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  16. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  17. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  18. Lead (Pb) and Zinc (Zn) Concentrations in Marine Gastropod Strombus Canarium in Johor Coastal Areas

    International Nuclear Information System (INIS)

    Shaikhah Sabri; Mohd Ismid Mohd Said; Shamila Azman

    2014-01-01

    Strombus canarium is a popular food source with high commercial value in southern part of Peninsular Malaysia. As a deposit feeder, Strombus canarium can accumulate pollutants especially heavy metals in their system. Study on this species was conducted at Teluk Sengat and Mersing, Johor where samples of seawater and Strombus canarium were collected during spring low tides around 0 to 0.2 meters. Lead (Pb) and zinc (Zn) concentrations were investigated to determine pollution status in the area. Samples from Teluk Sengat showed that Zn has higher concentration in both water and S. canarium with 0.055 mg/ L and 20.257 mg/ kg wet weight respectively. However the concentrations were within permissible limit of Malaysia Marine Water Quality Criteria and Standard (MMWQS). In contrast, Pb concentration at Teluk Sengat exceeded the MMWQS and its concentration in soft tissues of S. canarium also exceeded the permissible limit recommended by Food and Agriculture Organisation (0.5 mg/ kg wet weight) and World Health Organisation (0.2 mg/ kg wet weight). (author)

  19. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  20. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies

    DEFF Research Database (Denmark)

    Danscher, G; Juhl, S; Stoltenberg, M

    1997-01-01

    samples containing zinc-enriched (ZEN) cells, are frozen in liquid nitrogen or by CO2 gas immediately after removal. The tissue blocks are cut in a cryostat and the sections placed on glass slides. The slides are transferred to an H2S exposure chamber placed in a -15 C freezer. After 1-24 hr of gas...

  1. Zinc Finger Takes on a Whole New Meaning: Reducing and Monitoring Zinc Blanks in the Isotope Lab

    Science.gov (United States)

    Wilkes, E. B.; Wasylenki, L. E.; Anbar, A. D.

    2010-12-01

    In terms of avoiding contamination, zinc is one of the most difficult elements to study isotopically. The reason for this is that zinc stearate is a very common mold release agent in the production of plastics, including those most often used in isotope geochemistry clean labs. While polyethylene bottles, polypropylene centrifuge tubes, pipette tips, and Kimwipes are all potential sources of contaminant zinc, by far the largest amount of zinc is introduced to the laboratory by gloves. Most items can be effectively rid of zinc by soaking in dilute hydrochloric acid, but gloves cannot be cleaned easily, and use of gloves can quickly lead to contamination on many surfaces throughout the lab. We recently conducted several experiments in which dissolved zinc was partly adsorbed onto synthetic Mn oxyhydroxide particles. The dissolved and adsorbed pools were separated by filtration, purified with ion exchange chemistry, and analyzed for isotope composition by MC-ICP-MS. We used a commercially purchased ICP standard solution both as our standard (delta66/64Zn = 0) and as the source of the zinc in the experiments. Whenever gloves were worn during purification, process blanks contained as much as 150 ng Zn, and both the dissolved and adsorbed pools of zinc came out enriched in heavy isotopes relative to the starting pool, contrary to our expectation of mass balance. When gloves were not worn, blanks were brands of vinyl gloves, including one brand recommended to us for being “low” in zinc, measured +10‰ relative to our standard. We therefore concluded that glove zinc contaminated most of our experimental samples. We were only able to see such clear evidence of contamination because (1) we were doing an experiment in which we expected one light and one heavy pool of zinc compared to our standard, and (2) we happened to use an ICP standard solution for delta = 0 that is strongly enriched in light isotopes relative to both brands of gloves. We caution others who measure

  2. Highly efficient silver patterning without photo-resist using simple silver precursors

    International Nuclear Information System (INIS)

    Byun, Younghun; Hwang, Eoc-Chae; Lee, Sang-Yun; Lyu, Yi-Yeol; Yim, Jin-Heong; Kim, Jin-Young; Chang, Seok; Pu, Lyong Sun; Kim, Ji Man

    2005-01-01

    Highly efficient method for silver patterning without photo-resist was developed by using high photosensitive organo-silver precursors, which were prepared by a simple reaction of silver salts and excess of amines. The FT-IR and GC-MS spectra were recorded depending on UV exposure time, for (n-PrNH 2 )Ag(NO 3 ).0.5MeCN and (n-PrNH 2 )Ag(NO 2 ).0.5MeCN, to understand the photolysis mechanism. The results indicate not only dissociation of coordinated amine and acetonitrile, but also decomposition of corresponding anion upon UV irradiation. When a precursor thin film was exposed to broadband UV irradiation, a partially reduced and insoluble silver species were formed within several minutes. After development, the irradiated areas were treated with a reducing agent to obtain pure metallic patterns. Subsequently, annealing step was followed at 100-350 deg. C to increase the adhesion of interface and cohesion of silver particles. The line resolution of 5 μm was obtained by the present silver precursors. Film thickness was also controllable from 50 to 250 nm by repetition of the above procedure. The average electrical conductivity was in the range of 3-43 Ω cm, measured by four-point probe technique. AES depth profile of the silver pattern thus obtained showed carbon and oxygen contents are less than 1% through the whole range. Even though sulfur contaminant exists on the surface, it was believed that nearly pure silver pattern was generated

  3. Zinc Deficiency-Like Syndrome in Fleckvieh Calves: Clinical and Pathological Findings and Differentiation from Bovine Hereditary Zinc Deficiency.

    Science.gov (United States)

    Langenmayer, M C; Jung, S; Majzoub-Altweck, M; Trefz, F M; Seifert, C; Knubben-Schweizer, G; Fries, R; Hermanns, W; Gollnick, N S

    2018-03-01

    Zinc deficiency-like (ZDL) syndrome is an inherited defect of Fleckvieh calves, with striking similarity to bovine hereditary zinc deficiency (BHZD). However, the causative mutation in a phospholipase D4 encoding gene (PLD4) shows no connection to zinc metabolism. To describe clinical signs, laboratory variables, and pathological findings of ZDL syndrome and their utility to differentiate ZDL from BHZD and infectious diseases with similar phenotype. Nine hospitalized calves with crusting dermatitis and confirmed mutation in PLD4 and medical records from 25 calves with crusting dermatitis or suspected zinc deficiency. Prospective and retrospective case series. The 9 calves (age: 5-53 weeks) displayed a moderate to severe crusting dermatitis mainly on the head, ventrum, and joints. Respiratory and digestive tract inflammations were frequently observed. Zinc supplementation did not lead to remission of clinical signs in 4 calves. Laboratory variables revealed slight anemia in 8 calves, hypoalbuminemia in 6 calves, but reduced serum zinc concentrations in only 3 calves. Mucosal erosions/ulcerations were present in 7 calves and thymus atrophy or reduced thymic weights in 8 calves. Histologically, skin lesions were indistinguishable from BHZD. Retrospective analysis of medical records revealed the presence of this phenotype since 1988 and pedigree analysis revealed a common ancestor of several affected calves. ZDL syndrome should be suspected in Fleckvieh calves with crusting dermatitis together with diarrhea or respiratory tract inflammations without response to oral zinc supplementation. Definite diagnosis requires molecular genetic confirmation of the PLD4 mutation. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  4. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors.

    Science.gov (United States)

    Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao

    2017-01-10

    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V -1 ·s -1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  5. The effect of silver thickness on the enhancement of polymer based SERS substrates

    International Nuclear Information System (INIS)

    Schneidewind, H; Weber, K; Zeisberger, M; Hübner, U; Dellith, A; Cialla-May, D; Mattheis, R; Popp, J

    2014-01-01

    We investigated silver-covered polymer based nanogratings as substrates for surface-enhanced Raman spectroscopy (SERS), in particular with respect to the thickness of the plasmonically active silver film. In order to obtain accurate geometrical input data for the simulation process, we inspected cross sections of the gratings prepared by breaking at cryogenic temperature. We noticed a strong dependence of the simulation results on geometrical variations of the structures. Measurements revealed that an increasing silver film thickness on top of the nanogratings leads to a blue shift of the plasmonic resonance, as predicted by numerical simulations, as well as to an increased field enhancement for an excitation at 488 nm. We found a clear deviation of the experimental data compared to the simulated results for very thin silver films due to an island-like growth at a silver thickness below 20 nm. In order to investigate the SERS activity. we carried out measurements with crystal violet as a model analyte at an excitation wavelength of 488 nm. The SERS enhancement increases up to a silver thickness of about 30 nm, whereas it remains nearly constant for thicker silver films. (paper)

  6. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  7. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  8. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    Science.gov (United States)

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  9. Simultaneous determination of lead, cadmium and zinc in Metro Manila air particulates by anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Castaneda, Soledad S.

    1999-02-01

    Air particulate samples were collected from two monitoring stations in Metro Manila using a 'Gent' type dichotomous sampler for pollutant source apportionment studies. Samples were collected in two fractions: a fine fraction with aerodynamic diameter, d p p 3 : HCL: HF, 4: 1: 1) for at least 20 minutes with subsequent heating at lower power settings for a total of 20 minutes more, effectively decomposed the sample with complete recovery of the elements. The digests were evaporated to near dryness to eliminate the troublesome effect of HF and HNO 3 and to decrease acidity of the electrolytic solution to pH ≥ 2. At pH 2, the addition of at least 0.01 M KCl was needed to improve sensitivity. The formation of Zn-Cu intermetallic compounds which interfered in the accurate quantitation of zinc was eliminated by addition of gallium as a 'third' element. The amount of gallium needed varied from sample to sample and was affected by the pH of the solution. The DPASV parameters found to be optimum for the analysis of the air particulate samples are as follows: pulse amplitude, 50 mV; scan rate, 10 mV/sec; E dep , - 1.30 V; t dep , 2 min; and RDE rotation rate, 1500 rpm. Detection limits of 0.2 ppb for zinc, 0.6 ppb for lead, and 0.05 ppb for cadmium in the sample matrix were obtained. The standard addition method was found to be reliable for the quantitative determination of the analytes in the sample. All R 2 values obtained were > 0.9900 at 95% confidence level. Validation of the established analytical methodology by analyzing certified reference standards and performing parallel analysis by GF-AAS and flame AAS showed acceptable accuracy of the DPASV measurements. (Author)

  10. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  11. Lead neurotoxicity: In vitro and in vivo effects

    International Nuclear Information System (INIS)

    Rowles, T.K.

    1989-01-01

    Neuroglial cells, in particular astroglia, are thought to play a role in the neurotoxicity of lead. Two hypotheses have been proposed as possible cellular mechanism of this neurotoxicity: (1) lead affects intracellular levels of metals which mediate the toxic effects noted, and (2) lead affects intracellular heme biosynthesis which is then toxic to the cells. Zinc was found to have a profound effect on both intracellular lead levels and on cell numbers in lead-treated rat astroglia. A comparison of bovine and rat astroglia in culture indicated that the bovine cell cultures were not more sensitive to lead, even though calves are more sensitive. Lead was also shown to affect intracellular heme biosynthesis by a decrease in 14 C aminolevulinic acid incorporation into extractable heme in lead-treated rat astroglia. Finally, low levels of lead in immature guinea pigs caused changes in tissue levels of lead, iron, copper, and zinc with no change in weight gain or body:brain weight ratios

  12. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  13. Synthesis of silver/silver chloride/graphene oxide composite and its surface-enhanced Raman scattering activity and self-cleaning property

    Science.gov (United States)

    Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan

    2017-09-01

    Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.

  14. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  15. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  16. Synthesis and characterization of silver nanoparticles by sol-gel route from silver nitrate

    International Nuclear Information System (INIS)

    Morales, Jorge; Moran, Jose; Quintana, Maria; Estrada, Walter

    2009-01-01

    Silver nanoparticles colloids have been synthesized by sol-gel method. This synthesis consists in silver nitrate reduction by ethylene glycol in a process called polyol. The growth of the nanoparticles have been controlled by the steric stabilization of the colloid with polyvinylpyrrolidone (PVP, M w = 40 000). The silver nanoparticle size and structure was depending on the control of parameters such as: molar concentrations ratio of silver nitrate and PVP, temperature of reaction and the reflux time. Colloids have been characterized by UV-vis spectroscopy in the range from 300 to 1000 nm. The results show that the typical peak of surface plasmon resonance is formed at 400-450 nm indicating the formation of silver nanoparticles. The presences of silver nanoparticles of spherical shape with size among 20-40 nm were observed by transmission electronic microscopy (TEM). Electron diffraction patterns confirmed that synthesized colloids contain metallic silver with a crystal structure face centered cubic FCC. (author)

  17. Environmental significance of copper, lead, manganese, uranium and zinc speciation in the event of contaminated waters release from the Ranger Uranium Mining Complex

    International Nuclear Information System (INIS)

    Noller, B.N.; Currey, N.A.

    1983-01-01

    The likely impact of the accidental release of tailings dam water during the dry season at the Ranger Uranium Mining Complex was examined. A speciation scheme utilising sizing by filtration and ion-exchange with Chelex 100 has given an insight into the likely partitioning of zinc, copper, lead, manganese and uranium following the addition of tailings dam water to samples from waterbodies in the vicinity of the uranium mining/milling complex. The speciation findings are discussed in terms of likely toxic effects on fish

  18. Zinc, copper and lead contents of wines. Comparison between the total concentrations by atomic absorption spectrometry and the concentrations of the free ions by polarography

    Directory of Open Access Journals (Sweden)

    J.-B. Fournier

    1998-03-01

    Full Text Available In the introduction of this article, some examples of the use of trace element data in the characterisation of viticultural produce are reminded. This paper described the determination of zinc, copper and lead by two techniques based on radically different principles. The atomic absorption spectrometry, applied after the mineralisation of the samples by wet process, allows the determination of the total element contents in wine. The polarography allows the analysis of the concentrations of these elements that are under labile chemical forms, and which are dissolved under the ionic forms Zn++, Cu++ and Pb++. The wines analysed in this study were produced from three different parcels chosen in relation to their geological qualities. The vines implanted on these parcels are strictly identical, and three fermentation techniques were applied to each lots of grapes. The results obtained shows that the copper is only under ionic form and that the temperature of the fermentation influences the total copper level in the final wine. At the opposite, there is no ion Pb++ in the samples, but a long duration of maceration increases the lead content. Concerning zinc, only the ions Zn++ are present in the wine in case of a short duration of the maceration. When this duration increases, some other chemical forms of zinc are dissolved in addition to the ions Zn++ which are instantaneously dissociated in aqueous solutions. The problem of the contamination of grapes by the materials used, the phytosanitary treatments and the atmospheric pollution is discussed. The knowledge of the proportion of a trace element that is under ionic forms is indispensable to evaluate the bio-availability of the considered element and the toxicologic risks. The advent and the expansion of the electrochemical methods is expected as an important advance in this field of research.

  19. Use of a silver ion selective electrode to assess mechanisms responsible for biological effects of silver nanoparticles

    International Nuclear Information System (INIS)

    Koch, Marcus; Kiefer, Silke; Cavelius, Christian; Kraegeloh, Annette

    2012-01-01

    For a detailed analysis of the biological effects of silver nanoparticles, discrimination between effects related to the nano-scale size of the particles and effects of released silver ions is required. Silver ions are either present in the initial particle dispersion or released by the nanoparticles over time. The aim of this study is to monitor the free silver ion activity {Ag + } in the presence of silver nanoparticles using a silver ion selective electrode. Therefore, silver in the form of silver nanoparticles, 4.2 ± 1.4 nm and 2–30 nm in size, or silver nitrate was added to cell culture media in the absence or presence of A549 cells as a model for human type II alveolar epithelial cells. The free silver ion activity measured after the addition of silver nanoparticles was determined by the initial ionic silver content. The p {Ag + } values indicated that the cell culture media decrease the free silver ion activity due to binding of silver ions by constituents of the media. In the presence of A549 cells, the free silver ion activity was further reduced. The morphology of A549 cells, cultivated in DME medium containing 9.1% (v/v) FBS, was affected by adding AgNO 3 at concentrations of ≥30 μM after 24 h. In comparison, silver nanoparticles up to a concentration of 200 μM Ag did not affect cellular morphology. Our experiments indicate that the effect of silver nanoparticles is mainly mediated by silver ions. An effect of silver on cellular morphology was observed at p {Ag + } ≤ 9.2.

  20. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films

    International Nuclear Information System (INIS)

    Cavalheiro, A.A.; Bruno, J.C.; Saeki, M.J.; Valente, J.P.S.; Florentino, A.O.

    2008-01-01

    The effects of silver insertion on the TiO 2 photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO 2 thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO 2 anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg C W -1 when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material

  1. Zinc and lead transfer in a contaminated roadside soil: Experimental study and modeling

    International Nuclear Information System (INIS)

    Hanna, K.; Lassabatere, L.; Bechet, B.

    2009-01-01

    The application of a surface complexation model to simulate the sorption of metals on single sorbents is very well investigated, but very little is known regarding the use of surface complexation modeling to simulate the metal mobility in contaminated roadside soils. The overall objective of this study was to examine whether the use of the surface complexation model (SCM) could correctly describe the migration of zinc and lead in roadside soil under various physicochemical conditions. The release and transport of Zn and Pb was studied by means of batch reactors and saturated chromatography columns. Soil batch experiments were conducted to evaluate the effects of pH variation and ionic strength on the metal mobility from soil. Elution of Pb and Zn was examined in column experiments by using acetic acid at pH5 and EDTA at pH7. The modeling work has focused on the development of a SCM using MINTEQ2 database incorporated in PHREEQC-2 to describe the interactions between trace metals and the main mineral soil components (quartz, iron and aluminum oxides). In this study, it was found that the SCM was able to simulate the mobility of metals from soil by assuming one mononuclear surface reaction between one solution species (Me 2+ ) and one type of site on the surface of soil dominant sorbents

  2. Mineral resources of the Turtle Mountains Wilderness Study Area, San Bernardino County, California

    Science.gov (United States)

    Howard, Keith A.; Nielson, Jane E.; Simpson, Robert W.; Hazlett, Richard W.; Alminas, Henry V.; Nakata, John K.; McDonnell, John R.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 105,200 acres of the Turtle Mountains Wilderness Study Area (CDCA-307) were evaluated for mineral resources (known) and resource potential (undiscovered). In this report, the area studied is referred to as "the wilderness study area" or simply "the study area"; any reference to the Turtle Mountain Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management.The wilderness study area is in southeastern San Bernardino County, Calif. Gold, silver, copper, and lead have been mined within and adjacent to the study area. Copper-zinc-silver-gold mineral occurrences are found in the southern part and gold-silver mineral occurrences are found in the northern part of the study area; identified low- to moderate-grade gold-silver resources occur adjacent to the study area along the western boundary. Six areas in the south-central and northwestern parts of the study area have high resource potential, two broad areas have moderate resource potential, and part of the southwest corner has low resource potential for lode gold, silver, and associated copper, lead, zinc, molybdenum, and tungsten. Alluvium locally within one of these areas has moderate resource potential for placer gold and silver, and the entire area has low resource potential for placer gold and silver. There is low resource potential for perlite, ornamental stone (onyx marble and opal), manganese, uranium and thorium, pegmatite minerals, and oil and gas within the study area. Sand and gravel are abundant but are readily available outside the wilderness study area.

  3. One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China.

    Science.gov (United States)

    Zhang, Enlou; Liu, Enfeng; Shen, Ji; Cao, Yanmin; Li, Yanling

    2012-01-01

    Reconstruction of trace metal pollution histories and sources may help us to regulate current pollutant discharge. This is especially important for the highland lakes in southwestern China, which are facing trace metals pollution. We present sedimentary records of 11 metals accumulated in Yangzong Lake since the 1870's, a highland lake in southwestern China. Pollution of lead and zinc (Pb and Zn) was differentiated based on principal component analysis, geochemical normalization, and lead isotope ratios. Nearly all the metals as well as grain size composition show generally constant values before the mid-1980's, denoting stable detrital input in the catchment. Fluctuations in the concentrations of the metals as well as grain size composition since the mid-1980's indicate an increase in soil erosion with strengthened human disturbance in the catchment. After geochemical normalization, Pb and Zn showed constant values before 1990 AD and then a gradual increase in parallel with the variations in 208Pb/206Pb and 207Pb/206Pb ratios, indicating that Pb and Zn pollution occurred. Combining the data of 208pb/206Pb and 207Pb/6Pb ratios in the sediments of Yangzong Lake, leaded gasoline, Pb-Zn ore and coal, and consumption or production historical trends, we deduced that the enhanced Pb and Zn pollution in Yangzong Lake is caused primarily by ore mining and refining.

  4. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Akbar Badii

    2012-01-01

    Full Text Available After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1 a non-fortified bread, (2 a high-zinc bread, and (3 a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05. Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p < 0.01. It was concluded that fortification of flour with 50-100 ppm zinc was an effective way to achieve adequate zinc intake and absorption in zinc-deficient people. It also appeared that consuming zinc-fortified bread improved iron absorption.

  5. Biological recovery of metals, sulfur and water in the mining and metallurgical industry

    NARCIS (Netherlands)

    Weijma, J.; Copini, C.F.M.; Buisman, C.J.N.; Schultz, C.E.

    2002-01-01

    Metals of particular interest in acid mine drainage and industrial wastewaters include copper, zinc, cadmium, arsenic, manganese, aluminum, lead, nickel, silver, mercury, chromium, uranium and iron, in a concentration that can range from 106 to 102 g/l. The composition of such wastewater reflects

  6. The wealth of Tajikistan bowels

    International Nuclear Information System (INIS)

    Baratov, R.

    1989-01-01

    There are more than 350 deposits discover and explore now on the territory of Tajikistan, about 100 from which develop by industry. There are 36 kinds of minerals are mining. The Tajikistan bowels have lead, zinc, copper, antimony, mercury, gold, silver, tungsten, molybdenum, bismuth, iron

  7. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  8. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Liu Suwen; Wehmschulte, Rudolf J.; Lian Guoda; Burba, Christopher M.

    2006-01-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  9. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xie, Ming [Kunming Institute of Precious Metals, Kunming 650106 (China); Liu, Yichun, E-mail: liuyichun@kmust.edu.cn [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yi, Jianhong [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2017-07-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  10. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao, Qi; Xie, Ming; Liu, Yichun; Yi, Jianhong

    2017-01-01

    Highlights: • Electroless plating method assisted by ultrasonic spray atomization was developed. • This method leads to much more uniform silver coatings on MWCNTs. • The plating parameters affect the layer morphologies a lot. - Abstract: A novel method was developed to deposit nanosized silver particles on multi-walled carbon nanotubes (MWCNTs). The electroless plating of silver on MWCNTs accomplished in small solution drops generated by ultrasonic spray atomization, which inhibited excessive growth of silver particles and led to much more uniform nanometer grain-sized coatings. The results showed that pretreatment was essential for silver particles to deposit on the MWCNTs, and the electrolyte concentration and reaction temperature were important parameters which had a great influence on the morphology and structure of the silver coatings. Possible mechanisms of this method are also discussed in the paper.

  11. Fractionation of silver isotopes in native silver explained by redox reactions

    Science.gov (United States)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  12. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  13. Thermomechanical Modeling of Sintered Silver - A Fracture Mechanics-based Approach: Extended Abstract: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.

  14. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  15. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  16. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  17. Effects of Foliar Application of Nano Zinc Chelate and Zinc Sulfate on Zinc Content, Pigments and Photosynthetic Indices of Holy Basil (Ocimum sanctum(

    Directory of Open Access Journals (Sweden)

    Zohreh Moghimi pour

    2017-02-01

    contents were measured at beginning of flowering stage. Photosynthetic parameters were measured by Infra-red gas analyzer (LCA4, ADC Co. Ltd., Hoddesdon, UK. Instantaneous water use efficiency (WUEinst was calculated as Pn/E ratio. Light use efficiency was calculated as Pn/PPFD ratio. Result and discussion: The results showed that the effect of foliar application of zinc fertilizers on all measured traits except Ci and WUE was significant (p≥0.01. The highest values of zinc content (110.53 mg.kg-1, chlorophyll a (0.99 mg.kg-1 fresh weight, chlorophyll b (0.30 mg.kg-1 fresh weight, chlorophyll a+b (1.29 mg.kg-1 fresh weight and carotenoid (0.18 mg.kg-1 fresh weight traits were obtained in plants sprayed with 1.5 g.l-1 nano zinc chelate. The lowest amount of zinc content (21.37 mg.kg-1, chlorophyll a (0.58 mg.kg-1 fresh weight, chlorophyll b (0.14 mg.kg-1 fresh weight, chlorophyll a+b (0.72 mg.kg-1 fresh weight and carotenoid (0.13 mg.kg-1 fresh weight traits were obtained in control plants. Foliar application of holy basil with 1.5 g.l-1 nano zinc chelate led to increase in stomata conductance (322.22 mm H2O.m-2.s-1, transpiration rate (2.86 mm H2O.m-2.s-1, net photosynthesis (11.75 μm CO2.m-2.s-1 and light use efficiency (6.10 μm CO2. μm photon-1. The minimum amount of stomata conductance (172.00 mm H2O.m-2.s-1, transpiration rate (2.16 mm H2O.m-2.s-1, net photosynthesis (8.23 μm CO2.m-2.s-1 and light use efficiency (4.46 μm CO2. μm photon-1 were observed in control plants. There were positive correlation (p≥0.01 between zinc content and chlorophyll a, chlorophyll b, chlorophyll a+b and carotenoid. Zinc content also had positive and significant correlation (p≥0.01 with stomata conductance, CO2 under stomata, transpiration rate, net photosynthesis and light use efficiency. So, providing zinc by foliar application with 1 and 1.5 g.l-1 nano zinc chelate and 1.5 g.l-1 zinc sulfate can lead to increase in chlorophyll and carotenoid contents. Increase in net

  18. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  19. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  20. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.